WorldWideScience

Sample records for cord blood mesenchymal

  1. Isolation of mesenchymal stem cells from equine umbilical cord blood

    OpenAIRE

    Thomsen Preben D; Heerkens Tammy; Koch Thomas G; Betts Dean H

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is lo...

  2. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non......-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low......, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal...

  3. Isolation of mesenchymal stem cells from equine umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Thomsen Preben D

    2007-05-01

    Full Text Available Abstract Background There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5°C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.

  4. In vitro differentiation of human umbilical cord blood mesenchymal ...

    African Journals Online (AJOL)

    May H. Hasan

    2016-08-05

    Aug 5, 2016 ... hepatocyte-like cells were detected on day 21 and increased on day 28. Protein ... MSCs can be a promising source of cell therapy for intractable liver diseases. ..... blood-derived mesenchymal stem cells by DNA microarray.

  5. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Thomsen, Preben Dybdahl; Betts, Dean H.

    2009-01-01

      BACKGROUND AIMS: A robust methodology for the isolation of cord blood-derived multipotent mesenchymal stromal cells (CB-MSCs) from fresh umbilical cord blood has not been reported in any species. The objective of this study was to improve the isolation procedure for equine CB-MSCs. METHODS: Pre-culture...... separation of red and white blood cells was done using either PrepaCyte?-EQ medium or Ficoll-Paque? PREMIUM density medium. Regular FBS and MSC-qualified FBS were compared for their ability to support the establishment of putative primary MSC colonies. RESULTS AND CONCLUSIONS: Our results indicate that Prepa...

  6. Human Umbilical Cord Mesenchymal Stromal Cells Support Viability of Umbilical Cord Blood Hematopoietic Stem Cells but not the "Stemness" of Their Progeny in Co-Culture.

    Science.gov (United States)

    Romanov, Yu A; Volgina, N E; Balashova, E E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-08-01

    Cell-cell interactions and the ability of mesenchymal stromal cells to support the expansion of hematopoietic progenitor cells were studied in co-culture of human umbilical cord tissue-derived mesenchymal stromal cells and nucleated umbilical cord blood cells. It was found that hematopoietic stem cells from the umbilical cord blood are capable to adhere to mesenchymal stromal cells and proliferate during 3-4 weeks in co-culture. However, despite the formation of hematopoietic foci and accumulation of CD34(+) and CD133(+) cells in the adherent cell fraction, the ability of newly generated blood cells to form colonies in semi-solid culture medium was appreciably reduced. These findings suggest that human umbilical cord tissue-derived mesenchymal stromal cells display a weak capability to support the "stemness" of hematopoietic stem cell progeny despite long-term maintenance of their viability and proliferation.

  7. Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves

    Institute of Scientific and Technical Information of China (English)

    Mi-Ae Sung; Jong-Ho Lee; Hun Jong Jung; Jung-Woo Lee; Jin-Yong Lee; Kang-Mi Pang; Sang Bae Yoo; Mohammad S. Alrashdan; Soung-Min Kim; Jeong Won Jahng

    2012-01-01

    Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.

  8. Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    Optimal conditions for culturing of multipotent mesenchymal stromal cells in the presence of pooled umbilical cord blood serum were determined. It was found that umbilical cord blood serum in a concentration range of 1-10% effectively supported high viability and proliferative activity of cells with unaltered phenotype and preserved multilineage differentiation capacity. The proposed approach allows avoiding the use of xenogenic animal sera for culturing of multipotent mesenchymal stromal cells and creates prerequisites for designing and manufacturing safe cellular and/or acellular products for medical purposes.

  9. Differentiation and tumorigenicity of neural stem cells from human cord blood mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Jing Xiang; Changming Wang; Jingzhou Wang

    2009-01-01

    BACKGROUND:Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity.OBJECTIVE:To investigate isolation and in vitro cultivation methods of human cord blood MSCs,to observe expression of neural stem cell (NSC) marker mRNA under induction,and to detect tumorigenicity in animals.DESIGN,TIME AND SETTING:A cell biological,in vitro trial and a randomized,controlled,in vivo experiment were performed at the Department of Neurology,Daping Hospital at the Third Military Medical University of Chinese PLA from August 2006 to May 2008.MATERIALS:Umbilical cord blood was collected from full-term-delivery fetus at the Department of Gynecology and Obstetrics of DapJng Hospital,China.Eighteen BALB/C nu/nu nude mice were randomly assigned to three groups:back subcutaneous,cervical subcutaneous,and control,with 6 mice in each group.METHODS:Monocytes were isolated from heparinized human cord blood samples by density gradient centrifugation and then adherent cultivated in vitro to obtain MSC clones.After the cord blood MSCs were cultured for 7 days with nerve growth factor and retinoic acid to induce differentiation into NSCs,the cells (adjusted density of 1×10~7/mL) were prepared into cell suspension.In the back subcutaneous and cervical subcutaneous groups,nude mice were hypodermically injected with a 0.5-mL cell suspension into the back and cervical regions,respectively.In the control group,nude mice received a subcutaneous injection of 0.5 mL physiological saline into the back or cervical regions,respectively.MAIN OUTCOME MEASURES:Cellular morphology was observed by inverted microscopy,cultured cord blood MSCs were examined by flow cytometry,expression of nestin and musashi-1 mRNA was detected by reverse-transcriptase polymerase chain reaction prior to and after induction,and tumorigenicity following cord blood MSC transplantation was assayed by hematoxylin-eosin staining.RESULTS:Following adherent cultivation

  10. Cord Blood

    Directory of Open Access Journals (Sweden)

    Saeed Abroun

    2014-05-01

    Full Text Available   Stem cells are naïve or master cells. This means they can transform into special 200 cell types as needed by body, and each of these cells has just one function. Stem cells are found in many parts of the human body, although some sources have richer concentrations than others. Some excellent sources of stem cells, such as bone marrow, peripheral blood, cord blood, other tissue stem cells and human embryos, which last one are controversial and their use can be illegal in some countries. Cord blood is a sample of blood taken from a newborn baby's umbilical cord. It is a rich source of stem cells, umbilical cord blood and tissue are collected from material that normally has no use following a child’s birth. Umbilical cord blood and tissue cells are rich sources of stem cells, which have been used in the treatment of over 80 diseases including leukemia, lymphoma and anemia as bone marrow stem cell potency.  The most common disease category has been leukemia. The next largest group is inherited diseases. Patients with lymphoma, myelodysplasia and severe aplastic anemia have also been successfully transplanted with cord blood. Cord blood is obtained by syringing out the placenta through the umbilical cord at the time of childbirth, after the cord has been detached from the newborn. Collecting stem cells from umbilical blood and tissue is ethical, pain-free, safe and simple. When they are needed to treat your child later in life, there will be no rejection or incompatibility issues, as the procedure will be using their own cells. In contrast, stem cells from donors do have these potential problems. By consider about cord blood potency, cord blood banks (familial or public were established. In IRAN, four cord blood banks has activity, Shariati BMT center cord blood bank, Royan familial cord blood banks, Royan public cord blood banks and Iranian Blood Transfusion Organ cord blood banks. Despite 50,000 sample which storage in these banks, but the

  11. Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    2015-01-01

    Full Text Available Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB. In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit.

  12. Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research

    Science.gov (United States)

    Roura, Santiago; Pujal, Josep Maria; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2015-01-01

    Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB). In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs) on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit. PMID:25861654

  13. The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood.

    Science.gov (United States)

    Zeddou, Mustapha; Briquet, Alexandra; Relic, Biserka; Josse, Claire; Malaise, Michel G; Gothot, André; Lechanteur, Chantal; Beguin, Yves

    2010-07-01

    Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbecco's modified Eagle's medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+-depleted MNC and CD133+- or LNGFR+-enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non-invasive and abundant source of MSC.

  14. Isolation and characterization of in vitro culture of hair follicle cells differentiated from umbilical cord blood mesenchymal stem cells.

    Science.gov (United States)

    Bu, Zhang-Yu; Wu, Li-Min; Yu, Xiao-Hong; Zhong, Jian-Bo; Yang, Ping; Chen, Jian

    2017-07-01

    The present investigation explored the in vitro culture, isolation and characterization of hair follicle cell differentiation from umbilical cord blood mesenchymal stem cells (MSCs). Flow cytometry was used to obtain MSCs from the isolation and purification of human umbilical cord blood MSCs. Culture suspension of hair follicle organ was centrifuged and the supernatant used in the culture medium of MSCs, and the entire process of induced differentiation was recorded by photomicroscopy. The expression level of surface marker CK15 of hair follicle cells obtained from induced differentiation was detected with immunofluorescence. RT-PCR method was used to further detect the difference in expression of CK15 between hair follicle cells and umbilical cord blood MSCs, and statistical analysis was carried out. CD44(+)CD29(+) double-labeled cells accounted for 50.8% of all the samples of umbilical cord blood MSCs in this study. The diameter of hair follicle cells differentiated from umbilical cord blood stem cells reached 800×10(-3) mm after 3 weeks of cell culture. Based on the detection and colocalization of CK15 expression in induced hair follicle cells, the overlap ratio between CK15 and nuclei reached 83% in hair follicle cells, which was obviously higher than that in umbilical cord blood stem cells. The difference had statistical significance (Pumbilical cord blood stem cells by using the supernatant from hair follicle cells. This method can be used for high-speed induced differentiation with high purity, which is promising for clinical application.

  15. Sustained expression of coagulation factor IX by modified cord blood-derived mesenchymal stromal cells.

    Science.gov (United States)

    Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2014-01-01

    Hemophilia B patients are subject to frequent and spontaneous bleeding caused by a deficiency of clotting factor IX (FIX). Mesenchymal stromal cells (MSCs) have been used in cellular therapies as a result of their immunomodulatory properties, the ability to home to sites of injury and their amenability to various ex vivo modifications, including lentiviral-mediated gene transfer. MSCs were isolated from human umbilical cord blood and differentiated into adipogenic, chondrogenic and osteogenic lineages. A lentiviral DNA vector containing the human FIX gene was generated using traditional restriction enzyme digest and ligation techniques to generate viable replication-incompetent lentiviral particles that were used to transduce MSCs. Quantitative measurement of FIX expression was conducted using an enzyme-linked immunosorbent assay. The over-expression of FIX was sustained in vitro at levels > 4 µg/10(6) cells/24 h and FIX coagulant activity was > 2.5 mIU/10(6) cells/24 h for the 6-week duration of study. Lentiviral modification of cells with a multiplicity of infection of 10 did not adversely affect the potential of cord blood (CB) MSCs to differentiate to adipocytes, chondrocytes and osteoblastic cells, and the expression of functional FIX was sustained after differentiation and was similar to that in nondifferentiated cells. Modification of human CB MSCs with a lentiviral vector resulted in sustained high FIX expression in vitro after differentiation to adipogenic, chondrogenic and osteoblastic cells. These modified MSCs could have applications in cellular therapies for hemophilia B. Copyright © 2014 John Wiley & Sons, Ltd.

  16. Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    We studied the expression of different classes of surface molecules (CD13, CD29, CD40, CD44, CD54, CD71, CD73, CD80, CD86, CD90, CD105, CD106, CD146, HLA-I, and HLA-DR) in mesenchymal stromal cells from human umbilical cord and bone marrow during co-culturing with nucleated umbilical cord blood cells. Expression of the majority of surface markers in both types of mesenchymal stromal cells was stable and did not depend on the presence of the blood cells. Significant differences were found only for cell adhesion molecules CD54 (ICAM-1) and CD106 (VCAM-1) responsible for direct cell-cell contacts with leukocytes and only for bone marrow derived cells.

  17. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells

    OpenAIRE

    Van Pham, Phuc; Vu, Ngoc Bich; Pham, Vuong Minh; Truong, Nhung Hai; Pham, Truc Le-Buu; Dang, Loan Thi-Tung; Nguyen, Tam Thanh; Bui, Anh Nguyen-Tu; Phan, Ngoc Kim

    2014-01-01

    Background Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable U...

  18. Proteomic validation of multifunctional molecules in mesenchymal stem cells derived from human bone marrow, umbilical cord blood and peripheral blood.

    Directory of Open Access Journals (Sweden)

    Jumi Kim

    Full Text Available Mesenchymal stem cells (MSCs are one of the most attractive therapeutic resources in clinical application owing to their multipotent capability, which means that cells can differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle and marrow stroma. Depending on the cellular source, MSCs exhibit different application potentials according to their different in vivo functions, despite similar phenotypic and cytological characteristics. To understand the different molecular conditions that govern the different application or differentiation potential of each MSC according to cellular source, we generated a proteome reference map of MSCs obtained from bone marrow (BM, umbilical cord blood (CB and peripheral blood (PB. We identified approximately 30 differentially regulated (or expressed proteins. Most up-regulated proteins show a cytoskeletal and antioxidant or detoxification role according to their functional involvement. Additionally, these proteins are involved in the increase of cell viability, engraftment and migration in pathological conditions in vivo. In summary, we examined differentially expressed key regulatory factors of MSCs obtained from several cellular sources, demonstrated their differentially expressed proteome profiles and discussed their functional role in specific pathological conditions. With respect to the field of cell therapy, it may be particularly crucial to determine the most suitable cell sources according to target disease.

  19. The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Shin, Ji-woong; Carter, Janet E; Sakamoto, Toshiro; Jin, Hee Kyung; Bae, Jae-sung

    2010-08-30

    The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-beta peptide (Abeta) in the form of amyloid plaques in the brain parenchyma and neuronal loss. The mechanism associated with neuronal death by amyloid plaques is unclear but oxidative stress and glial activation has been implicated. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are being scrutinized as a potential therapeutic tool to prevent various neurodegenerative diseases including AD. However, the therapeutic impact of hUCB-MSCs in AD has not yet been reported. Here we undertook in vitro work to examine the potential impact of hUCB-MSCs treatment on neuronal loss using a paradigm of cultured hippocampal neurons treated with Abeta. We confirmed that hUCB-MSCs co-culture reduced the hippocampal apoptosis induced by Abeta treatment. Moreover, in an acute AD mouse model to directly test the efficacy of hUCB-MSCs treatment on AD-related cognitive and neuropathological outcomes, we demonstrated that markers of glial activation, oxidative stress and apoptosis levels were decreased in AD mouse brain. Interestingly, hUCB-MSCs treated AD mice demonstrated cognitive rescue with restoration of learning/memory function. These data suggest that hUCB-MSCs warrant further investigation as a potential therapeutic agent in AD.

  20. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation

    Institute of Scientific and Technical Information of China (English)

    Chang Dong LI; Wei Yuan ZHANG; He Lian LI; Xiao Xia JIANG; Yi ZHANG; Pei Hsien TANG; Ning MAO

    2005-01-01

    Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium.The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology,a large expansive potential,and cell cycle characteristics including a subset of quiescent cells.In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic,osteogenic and chondrogenic lineages.Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells,which uniformly expressed CD29,CD44,CD73,CD 105,CD166,laminin,fibronectin and vimentin while being negative for expression of CD31,CD34,CD45 and α-smooth muscle actin.Most importantly,immuno-phenotypic analyses demonstrated that these cells expressed class I major histocompatibility complex (MHC-Ⅰ),but they did not express MHC-Ⅱ molecules.Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli.This strongly implies that they may have potential application in allograft transplantation.Since placenta and UCB are homogeneous,the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.

  1. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  2. Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo.

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    Full Text Available Stem cell therapies are promising strategies to regenerate human injured tissues, including ischemic myocardium. Here, we examined the acquisition of properties associated with vascular growth by human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs, and whether they promoted vascular growth in vivo. UCBMSCs were induced in endothelial cell-specific growth medium (EGM-2 acquiring new cell markers, increased Ac-LDL uptake, and migratory capacity as assessed by qRT-PCR, Western blotting, indirect immunofluorescence, and invasion assays. Angiogenic and vasculogenic potentials could be anticipated by in vitro experiments showing self organization into Matrigel-mediated cell networks, and activation of circulating angiogenic-supportive myeloid cells. In mice, following subcutaneous co-injection with Matrigel, UCBMSCs modified to co-express bioluminescent (luciferases and fluorescent proteins were demonstrated to participate in the formation of new microvasculature connected with the host circulatory system. Response of UCBMSCs to ischemia was explored in a mouse model of acute myocardial infarction (MI. UCBMSCs transplanted using a fibrin patch survived 4 weeks post-implantation and organized into CD31(+network structures above the infarcted myocardium. MI-treated animals showed a reduced infarct scar and a larger vessel-occupied area in comparison with MI-control animals. Taken together, the presented results show that UCBMSCs can be induced in vitro to acquire angiogenic and vasculogenic properties and contribute to vascular growth in vivo.

  3. Umbilical Cord Blood Platelet Lysate as Serum Substitute in Expansion of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Shirzad, Negin; Bordbar, Sima; Goodarzi, Alireza; Mohammad, Monire; Khosravani, Pardis; Sayahpour, Froughazam; Baghaban Eslaminejad, Mohamadreza; Ebrahimi, Marzieh

    2017-10-01

    The diverse clinical applications for human mesenchymal stem cells (hMSCs) in cellular therapy and regenerative medicine warrant increased focus on developing adequate culture supplements devoid of animal-derived products. In the present study, we have investigated the feasibility of umbilical cord blood-platelet lysate (UCB-PL) as a standard substitute for fetal bovine serum (FBS) and human peripheral blood-PL (PB-PL). In this experimental study, platelet concentrates (PC) from UCB and human PB donors were frozen, melted, and sterilized to obtain PL. Quality control included platelet cell counts, sterility testing (viral and microbial), total protein concentrations, growth factor levels, and PL stability. The effects of UCB-PL and PB-PL on hMSCs proliferation and differentiation into osteocytes, chondrocytes, and adipocytes were studied and the results compared with FBS. UCB-PL contained high levels of protein content, platelet-derived growth factor- AB (PDGF-AB), and transforming growth factor (TGF) compared to PB-PL. All growth factors were stable for at least nine months post-storage at -70˚C. hMSCs proliferation enhanced following treatment with UCB-PL. With all three supplements, hMSCs could differentiate into all three lineages. PB-PL and UCB-PL both were potent in hMSCs proliferation. However, PB promoted osteoblastic differentiation and UCB-PL induced chondrogenic differentiation. Because of availability, ease of use and feasible standardization of UCB-PL, we have suggested that UCB-PL be used as an alternative to FBS and PB-PL for the cultivation and expansion of hMSCs in cellular therapy.

  4. Cord-Blood Banking

    Science.gov (United States)

    ... to Be Smart About Social Media Cord-Blood Banking KidsHealth > For Parents > Cord-Blood Banking Print A ... for you and your family. About Cord-Blood Banking Cord-blood banking basically means collecting and storing ...

  5. Factors inducing human umbilical cord blood-derived mesenchymal stem cells to differentiate into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Nawei Zhang; Fengqing Ji

    2006-01-01

    OBJECTIVE:Human umbilical cord blood-derived mesenchymal stem cells (HUCB-derived MSCs)can differentiate into neuron-like cells,which can be used to treat some central nervous system(CNS)diseases.To investigate the factors,which can induce HUCB-derived MSCs to differentiate into neuron-like cells,so as to find effective methods for future clinical application.DATA SOURCES:Using the key terms"human umbilical cord blood"combined with"mesenchymal stem cells,neuron-like cells,neural cells"respectively,the relevant articles in English published during the period from January 1999 to June 2006 were searched from the Medline database.Meanwhile,relevant Chinese articles published from January 1999 to June 2006 were searched Using the same key terms.STUDY SELECTION: All articles associated with the differentiation from human umbilical cord blood into neuron-like cells were selected firstly.Then the full texts were looked up by searchling Ovid medical Journals full-text database and Elsevier Electrical Journals Full-text Database.Articles with full expeiments,enrolled in inducible factors or involved inducible mechanism were retdeved.DATA EXTRACTION:Among 119 collected correlative articles,29 were involved and 90 were excluded.DATA SYNTHESIS:The inducible factors of HUCB-derived MSCs differentiatling into neuron-like cells included renal endothelial growth factors,fibroblasts,β-mercaptoethanol,dimethyl sulfoxide,butyl hydroxyl anisol,brain-derived neurotrophic factor,Danshen,retinoic acid,sodium ferulate and so on,but its mechanism was unclear.CONCLUSION:Human umbilical cord blood-derived MSCs can differentiate into neuron-like cells,with varied inductors.

  6. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum

    Science.gov (United States)

    Esmaeli, Azadeh; Moshrefi, Mojgan; Shamsara, Ali; Eftekhar-vaghefi, Seyed Hasan; Nematollahi-mahani, Seyed Noureddin

    2016-01-01

    Background: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. Objective: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs). Materials and Methods: Umbilical cord blood of healthy neonates, delivered by Caesarian section, was collected and the serum was separated. hUC-MSCs and hBM-MSCs were isolated and characterized by assessment of cell surface antigens by flow cytometry, alkaline phosphatase activity and osteogenic/adipogenic differentiation potential. The cells were then cultured in Iscove's Modified Dulbecco's Medium (IMDM) by conventional methods in three preparations: 1- with hUCS, 2- with FBS, and 3- without serum supplements. Cell proliferation was measured using WST-1 assay, and cell viability was assessed by trypan blue staining. Results: The cells cultured in hUCS and FBS exhibited similar morphology and mesenchymal stem cells properties. WST-1 proliferation assay data showed no significant difference between the proliferation rate of either cells following hUCS and FBS supplementation. Trypan blue exclusion dye test also revealed no significant difference for viability between hUCS and FBS groups. A significant difference was detected between the proliferation rate of stem cells cultured in serum-supplemented medium compared with serum-free medium. Conclusion: Our results indicate that human umbilical cord serum can effectively support proliferation of hBM-MSCS and hUC-MSCs in vitro and can be used as an appropriate substitute for FBS, especially in clinical studies. PMID:27738658

  7. Production of good manufacturing practice-grade human umbilical cord blood-derived mesenchymal stem cells for therapeutic use.

    Science.gov (United States)

    Van Pham, Phuc; Phan, Ngoc Kim

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are multipotent stem cells that can be differentiated into several specific cell types such as adipocytes, osteoblasts, and chondroblasts. They also were demonstrated to trans-differentiate into other cell lineages such as muscle cells and neurons. Thus, they are considered a promising stem cell source for therapeutic use. Here, we describe a method for production of good manufacturing practice-grade human UCB-MSCs for therapeutic use. The obtained UCB-MSCs are free of allogenous or xenogenous proteins. In addition, these MSCs could maintain the MSC phenotype in long-term culture.

  8. A Simple Method to Isolate and Expand Human Umbilical Cord Derived Mesenchymal Stem Cells: Using Explant Method and Umbilical Cord Blood Serum.

    Science.gov (United States)

    Hassan, Ghmkin; Kasem, Issam; Soukkarieh, Chadi; Aljamali, Majd

    2017-08-31

    Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from umbilical cords and are therapeutically used because of their ability to differentiate into various types of cells, in addition to their immunosuppressive and anti-inflammatory properties. Fetal bovine serum (FBS), considered as the standard additive when isolating and culturing MSCs, has a major limitation related to its animal origin. Here, we employed a simple and economically efficient protocol to isolate MSCs from human umbilical cord tissues without using digestive enzymes and replacing FBS with umbilical cord blood serum (CBS). MSCs were isolated by culturing umbilical cord pieces in CBS or FBS supplemented media. Expansion and proliferation kinetics of cells isolated by explant method in the presence of either FBS or CBS were measured, with morphology and multi-differentiation potential of expanded cells characterized by flow cytometry, RT-PCR, and immunofluorescence. MSCs maintained morphology, immunophenotyping, multi-differentiation potential, and self-renewal ability, with better proliferation rates for cells cultured in CBS compared to FBS supplement media. We here present a simple, reliable and efficient method to isolate MSCs from umbilical cord tissues, where cells maintained proliferation, differentiation potential and immunophenotyping properties and could be efficiently expanded for clinical applications.

  9. Combination of autologous bone marrow mesenchymal stem cells and cord blood mononuclear cells in the treatment of chronic thoracic spinal cord injury in 27 cases

    Directory of Open Access Journals (Sweden)

    Lian-zhong WANG

    2012-08-01

    Full Text Available Objective To investigate and evaluate therapeutic effects of transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells for late thoracic spinal cord injury. Methods Data from 27 patients with late thoracic spinal cord injury who received transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells in Neurosurgery Department of 463rd Hospital of PLA between July 2006 and July 2008 were collected and analyzed. The full treatment course consisted of 4 consecutive injections at one week apart. Indicators for evaluation followed that of the American Spiral Injury Association (ASIA Impairment Scale (AIS grade, ASIA motor and sensory scores, ASIA visual analog score, and the Ashworth score. The follow-up period was 6 months. Evaluations were made 6 weeks and 6 months after the treatment. Results Improvement from AIS A to AIS B was found in 4 patients. In one patient, improvement from AIS A to AIS C and in one patient from AIS B to AIS C was found 6 weeks after the treatment. The AIS improvement rate was 22.2%. In one patient improvement from AIS A to AIS B was found after 6 months. The overall AIS improvement rate was 25.9%. ASIA baseline motor scores of lower extremties were 0.5±1.5, 1.7±2.9, 3.1±3.6 before the treatment, 6 weeks and 6 months after the treatment, respectively, and showed a statistically significant improvement (P < 0.05. ASIA sensory scores including light touch and pinprick were 66.6±13.7 and 67.0±13.6 respectively before treatment, and they became 68.8±14.4, 68.4±14.7 and 70.5±14.4, 70.2±14.4 six weeks and six months after the treatment. The changes were statistically significant (P < 0.05; Modified Ashworth Scale scores were 1.8±1.5, 1.6±1.2,1.1±0.8 respectively at baseline, 6 weeks and 6months after the treatment, and showed a statistically significant descending trend (P < 0.05. Conclusion Transplantation of

  10. Brain-derived neurotrophic factor induces neuron-like cellular differentiation of mesenchymal stem cells derived from human umbilical cord blood cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Lei Chen; Guozhen Hui; Zhongguo Zhang; Bing Chen; Xiaozhi Liu; Zhenlin Liu; Hongliang Liu; Gang Li; Zhiguo Su; Junfei Wang

    2011-01-01

    Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.

  11. Distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in canines after intracerebroventricular injection.

    Science.gov (United States)

    Park, Sang Eon; Jung, Na-Yeon; Lee, Na Kyung; Lee, Jeongmin; Hyung, Brian; Myeong, Su Hyeon; Kim, Hyeong Seop; Suh, Yeon-Lim; Lee, Jung-Il; Cho, Kyung Rae; Kim, Do Hyung; Choi, Soo Jin; Chang, Jong Wook; Na, Duk L

    2016-11-01

    In this study, we investigated the distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered via intracerebroventricular (ICV) injection in a canine model. Ten beagles (11-13 kg per beagle) each received an injection of 1 × 10(6) cells into the right lateral ventricle and were sacrificed 7 days after administration. Based on immunohistochemical analysis, hUCB-MSCs were observed in the brain parenchyma, especially along the lateral ventricular walls. Detected as far as 3.5 mm from the cortical surface, these cells migrated from the lateral ventricle toward the cortex. We also observed hUCB-MSCs in the hippocampus and the cervical spinal cord. According to real-time polymerase chain reaction results, most of the hUCB-MSCs were found distributed in the brain and the cervical spinal cord but not in the lungs, heart, kidneys, spleen, and liver. ICV administered hUCB-MSCs also enhanced the endogenous neural stem cell population in the subventricular zone. These results highlighted the ICV delivery route as an optimal route to be performed in stem cell-based clinical therapies for neurodegenerative diseases.

  12. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells on the radiation-induced GI syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Se Hwan; Jang, Won Suk; Lee, Sun Joo; Park, Eun Young; Kim, Youn Joo; Jin, Sung Ho; Park, Sun Hoo; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-05-15

    The gastrointestinal (GI) tract is one of the most radiosensitive organ systems in the body. Radiation-induced GI injury is described as destruction of crypt cell, decrease in villous height and number, ulceration, and necrosis of intestinal epithelium. Studies show that mesenchymal stem cells (MSCs) treatment may be useful in the repair or regeneration of damaged organs including bone, cartilage, or myocardium. MSCs from umbilical cord blood (UCB) have many advantages because of the immature nature of newborn cells compared to bone marrow derived MSCs. Moreover, UCB-MSCs provide no ethical barriers for basic studies and clinical applications. In this study, we explore the regeneration capability of human UCB-MSCs after radiation-induced GI injury

  13. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells.

    Science.gov (United States)

    Phuc, Pham Van; Nhung, Truong Hai; Loan, Dang Thi Tung; Chung, Doan Chinh; Ngoc, Phan Kim

    2011-01-01

    Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are multipotent cells. They are able to differentiate into functional cells from not only mesoderm but also endoderm. Many researches showed that cells derived from fresh human UCB could transdifferentiate into insulin-secreting cells. In this study, transdifferentiating potential of cryopreserved human UCB-derived MSCs into insulin-secreting cell was investigated. Fresh human UCB was enriched the mononuclear cells by Ficoll-Paque centrifugation. The mononuclear cell population was cryopreserved in cryo-medium containing Iscove's modified Dulbecco's media (IMDM) with 10% DMSO at -196°C for 1 yr. After thawing, mononuclear cells were cultured to isolate MSCs in medium IMDM with 20% FBS supplemented with growth factors. At the fifth passages, MSCs were confirmed by flow cytometry about expression of CD13, CD14, CD34, CD45, CD166, and HLA-DR markers; after that, they were induced to differentiate into adipocytes and osteoblasts. After inducing with specific medium for islet differentiation, there were many clusters of cell like islet at day 14-28. Using real-time reverse transcription polymerase chain reaction (RT-PCR) to analyze the expression of functional genes, the result showed that Nestin, Pdx-1, Ngn3, Ils-1, Pax6, Pax4, Nkx2.2, Nkx6.1, Glut-2, Insulin genes expressed. The results showed that MSCs derived from banked cord blood can differentiate into functional pancreatic islet-like cells in vitro. If human MSCs, especially MSCs from banked cord blood of diabetes patients themselves can be isolated, proliferated, differentiated into functional pancreatic islet-like cells, and transplanted back into them (autologous transplantation), their high-proliferation potency and rejection avoidance will provide one promising therapy for diabetes.

  14. Human umbilical cord blood derived mesenchymal stem cells were differentiated into pancreatic endocrine cell by Pdx-1 electrotransfer

    Directory of Open Access Journals (Sweden)

    Phuoc Thi-My Nguyen

    2014-02-01

    Full Text Available Diabetes mellitus type 1 is an autoimmune disease with high incidence in adolescents and young adults. A seductive approach overcomes normally obstacles treatment is cell-replacement therapy to endogenous insulin production. At the present, to get enough pancreatic endocrine cells (PECs in cell transplantation, differentiation of mesenchymal stem cells (MSCs into IPCs is an interesting and promising strategy. This study aimed to orient umbilical cord blood-derived MSCs (UCB-MSCs to PECs by Pdx-1 electrotransfer. UCB-MSCs were isolated from human umbilical cord blood according to published protocol. Pdx-1 was isolated and cloned into a plasmid vector. Optimal voltage of an electrotransfer was investigated to improve the cell viability and gene transfection efficacy. The results showed that 200V of the electrotransfer significantly increased in the efficiency of electrotransfer and survival cells compared with other high voltages (350V and 550V. Pdx-1 successfully transfected UCB-MSCs over-expressed pancreatic related genes as Ngn3, Nkx6.1. These results suggested that Pdx-1 transfected UCB-MSCs were successfully oriented PECs. Different to lentiviral vectors, electrotransfer is a safer method to transfer Pdx-1 to UCB-MSCs and a useful tool in translational research. [Biomed Res Ther 2014; 1(2.000: 50-56

  15. Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not

    Institute of Scientific and Technical Information of China (English)

    MinjunYu; ZhifengXiao; LiShen; LingsongLi

    2005-01-01

    Stem cell transplantation is a promising treatment for many conditions.Although stem cells can be isolated from many tissues, blood is the ideal source of these cells due to the ease of collection. Mesenchymal stem cells (MSCs) have been paid increased attention because of their powerful proliferation and pluripotent differentiating ability. But whether MSCs reside in blood (newborn umbilical cord blood and fetal or adult peripheral blood) is also debatable. The present study showed that MSC-like cells could be isolated and expanded from 16-26 weeks fetal blood but were not acquired efficiently from full-term infants' umbilical cord blood (UCB). Adherent cells separated from postnatal UCB were heterogeneous in cell morphology. Their proliferation capacity was limited and they were mainly CD45+, which indicated their haematopoietic derivation. On the contrary, MSC-like cells shared a similar phenotype to bone marrow MSCs. They were CD34- CD45- CD44+ CD71+ CD90+ CD105+. They could be induced to differentiate into osteogenic, adipogenic and neural lineage cells. Single cell clones also showed similar phenotype and differentiation ability. Our results suggest that early fetal blood is rich in MSCs but term UCB is not.

  16. Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived fibrin: a preliminary study.

    Science.gov (United States)

    Baba, Kyoko; Yamazaki, Yasuharu; Ishiguro, Masashi; Kumazawa, Kenichi; Aoyagi, Kazuya; Ikemoto, Shigehiro; Takeda, Akira; Uchinuma, Eiju

    2013-12-01

    This study examined the potential for osteogenesis via regenerative medicine using autologous tissues (umbilical cord (UC) and umbilical cord blood (UCB)) in nude mice. The study was designed to provide the three elements required for regenerative medicine (cell, scaffold, and growth factor) and autoserum for culture by means of autologous tissues. Mesenchymal stromal cells were obtained from UC (UC-MSCs). Fibrin, platelet-rich-plasma, and autoserum were obtained from UCB as scaffold, growth factor and serum for culture respectively. UC-MSCs were obtained from Wharton jelly and cultured with UCB-derived fibrin (UCB-fibrin) for 3-4 weeks to induce their differentiation into osteoblasts. They were implanted subcutaneously into the dorsum of male nude mice for 6 weeks prior to undergoing assessment. The assessments performed were haematoxylin and eosin, and alizarin red staining, immunohistochemical staining of human mitochondria, scanning electron microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry and real-time reverse transcriptase-polymerase chain reaction to assess the expressions of osteoblast markers. Consequently, the differentiation of UC-MSCs into osteoblasts and the production of hydroxyapatite were verified. This study suggested the possible formation of bone tissue using biomedical materials obtained from UC and UCB.

  17. Cord blood testing

    Science.gov (United States)

    ... is born. The umbilical cord is the cord connecting the baby to the mother's womb. Cord blood ... ADAM Health Solutions. About MedlinePlus Site Map FAQs Customer Support Get email updates Subscribe to RSS Follow ...

  18. Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Huaijuan Ren

    2016-01-01

    Full Text Available Although mesenchymal stem cells (MSCs based therapy has been considered as a promising tool for tissue repair and regeneration, the optimal cell source remains unknown. Umbilical cord (UC, dental pulp (DP, and menstrual blood (MB are easily accessible sources, which make them attractive candidates for MSCs. The goal of this study was to compare the biological characteristics, including morphology, proliferation, antiapoptosis, multilineage differentiation capacity, and immunophenotype of UC-, DP-, and MB-MSCs in order to provide a theoretical basis for clinical selection and application of these cells. As a result, all UC-, DP-, and MB-MSCs have self-renewal capacity and multipotentiality. However, the UC-MSCs seemed to have higher cell proliferation ability, while DP-MSCs may have significant advantages for osteogenic differentiation, lower cell apoptosis, and senescence. These differences may be associated with the different expression level of cytokines, including vascular endothelial growth factor, fibroblast growth factor, keratinocyte growth factor, and hepatocyte growth factor in each of the MSCs. Comprehensively, our results suggest DP-MSCs may be a desired source for clinical applications of cell therapy.

  19. Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design.

    Science.gov (United States)

    Fan, Xiubo; Liu, Tianqing; Liu, Yang; Ma, Xuehu; Cui, Zhanfeng

    2009-01-01

    Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20-30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB-MSC-like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 x 10(6) cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL-3, and 5 ng/mL Granulocyte-macrophage colony-stimulating factor (GM-CSF). Moreover, the UCB-MSC-like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens-DR (HLA-DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB-MSCs by adding suitable cytokines into the culture system.

  20. Human umbilical cord blood-derived mesenchymal stromal cells display a novel interaction between P-selectin and galectin-1.

    Science.gov (United States)

    Suila, H; Hirvonen, T; Kotovuori, A; Ritamo, I; Kerkelä, E; Anderson, H; Natunen, S; Tuimala, J; Laitinen, S; Nystedt, J; Räbinä, J; Valmu, L

    2014-07-01

    Human multipotent mesenchymal stromal/stem cells (MSCs) have been shown to exert immunomodulatory properties that have great potential in therapies for various inflammatory and autoimmune disorders. However, intravenous delivery of these cells is followed by massive cell entrapment in the lungs and insufficient homing to target tissues or organs. In targeting to tissues, MSCs and other therapeutic cells employ similar mechanisms as leucocytes, including a cascade of rolling and adhesion steps mediated by selectins, integrins and their ligands. However, the mechanisms of MSCs homing are not well understood. We discovered that P-selectin (CD62P) binds to umbilical cord blood (UCB)-derived MSCs independently of the previously known sialyl Lewis x (sLex)-containing ligands such as P-selectin glycoprotein ligand-1 (PSGL-1, CD162). By biochemical assays, we identified galectin-1 as a novel ligand for P-selectin. Galectin-1 has previously been shown to be a key mediator of the immunosuppressive effects of human MSCs. We conclude that this novel interaction is likely to play a major role in the immunomodulatory targeting of human UCB-derived MSCs.

  1. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model.

    Science.gov (United States)

    Park, Yong-Beom; Song, Minjung; Lee, Choong-Hee; Kim, Jin-A; Ha, Chul-Won

    2015-11-01

    This study was carried out to assess the feasibility of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in articular cartilage repair and to further determine a suitable delivering hydrogel in a rat model. Critical sized full thickness cartilage defects were created. The hUCB-MSCs and three different hydrogel composites (hydrogel A; 4% hyaluronic acid/30% pluronic (1:1, v/v), hydrogel B; 4% hyaluronic acid, and hydrogel C; 4% hyaluronic acid/30% pluronic/chitosan (1:1:2, v/v)) were implanted into the experimental knee (right knee) and hydrogels without hUCB-MSCs were implanted into the control knee (left knee). Defects were evaluated after 8 weeks. The hUCB-MSCs with hydrogels composites resulted in a better repair as seen by gross and histological evaluation compared with hydrogels without hUCB-MSCs. Among the three different hydrogels, the 4% hyaluronic acid hydrogel composite (hydrogel B) showed the best result in cartilage repair as seen by the histological evaluation compared with the other hydrogel composites (hydrogel A and C). The results of this study suggest that hUCB-MSCs may be a promising cell source in combination with 4% hyaluronic acid hydrogels in the in vivo repair of cartilage defects.

  2. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    Directory of Open Access Journals (Sweden)

    Eun Sung Kim

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  3. Neuroprotective Effects of Transplanted Mesenchymal Stromal Cells-derived Human Umbilical Cord Blood Neural Progenitor Cells in EAE

    Directory of Open Access Journals (Sweden)

    Hassan Rafieemehr

    2015-11-01

    Full Text Available Multiple Sclerosis (MS is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC derived neural progenitor cell (MDNPC in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6 as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases. 

  4. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Chang, Jong Wook [Research Institute for Future Medicine Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul 137-710 (Korea, Republic of); Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Kim, Jae-Sung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709 (Korea, Republic of); Jeon, Hong Bae, E-mail: jhb@medi-post.co.kr [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of)

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  5. Umbilical cord blood transplantation.

    Science.gov (United States)

    Koo, Hong Hoe; Ahn, Hyo Seop

    2012-07-01

    Since the first umbilical cord blood transplantation (CBT) in 1998, cord blood (CB) has now become one of the most commonly used sources of hematopoietic stem cells for transplantation. CBT has advantages of easy procurement, no risk to donor, low risk of transmitting infections, immediate availability and immune tolerance allowing successful transplantation despite human leukocyte antigen disparity. Several studies have shown that the number of cells transplanted is the most important factor for engraftment in CBT, and it limits the wide use of CB in adult patients. New strategies for facilitating engraftment and reducing transplantation-related mortality are ongoing in the field of CBT and include the use of a reduced-intensity conditioning regimen, double-unit CBT, ex vivo expansion of CB, and co-transplantation of CB and mesenchymal stem cells. Recently, the results of two international studies with large sample sizes showed that CB is an acceptable alternative source of hematopoietic stem cells for adult recipients who lack human leukocyte antigen-matched adult donors. Along with the intensive researches, development in banking process of CB will amplify the use of CB and offer the chance for cure in more patients.

  6. Umbilical cord blood transplantation

    Directory of Open Access Journals (Sweden)

    Hong Hoe Koo

    2012-07-01

    Full Text Available Since the first umbilical cord blood transplantation (CBT in 1998, cord blood (CB has now become one of the most commonly used sources of hematopoietic stem cells for transplantation. CBT has advantages of easy procurement, no risk to donor, low risk of transmitting infections, immediate availability and immune tolerance allowing successful transplantation despite human leukocyte antigen disparity. Several studies have shown that the number of cells transplanted is the most important factor for engraftment in CBT, and it limits the wide use of CB in adult patients. New strategies for facilitating engraftment and reducing transplantation-related mortality are ongoing in the field of CBT and include the use of a reduced-intensity conditioning regimen, double-unit CBT, ex vivo expansion of CB, and co-transplantation of CB and mesenchymal stem cells. Recently, the results of two international studies with large sample sizes showed that CB is an acceptable alternative source of hematopoietic stem cells for adult recipients who lack human leukocyte antigen-matched adult donors. Along with the intensive researches, development in banking process of CB will amplify the use of CB and offer the chance for cure in more patients.

  7. Mesenchymal Stem Cells and Mononuclear Cells From Cord Blood: Cotransplantation Provides a Better Effect in Treating Myocardial Infarction.

    Science.gov (United States)

    Chen, Gecai; Yue, Aihuan; Yu, Hong; Ruan, Zhongbao; Yin, Yigang; Wang, Ruzhu; Ren, Yin; Zhu, Li

    2016-03-01

    The aim of this study was to evaluate the effect of cotransplanting mononuclear cells from cord blood (CB-MNCs) and mesenchymal stem cells (MSCs) as treatment for myocardial infarction (MI). Transplanting CD34+ cells or MSCs separately has been shown effective in treating MI, but the effect of cotransplanting CB-MNCs and MSCs is not clear. In this study, MSCs were separated by their adherence to the tissue culture. The morphology, immunophenotype, and multilineage potential of MSCs were analyzed. CB-MNCs were separated in lymphocyte separation medium 1.077. CD34+ cell count and viability were analyzed by flow cytometry. Infarcted male Sprague-Dawley rats in a specific-pathogen-free grade were divided into four treatment groups randomly: group I, saline; group II, CB-MNCs; group III, MSCs; and group IV, CB-MNCs plus MSCs. The saline, and CB-MNCs and/or MSCs were injected intramyocardially in infarcted rats. Their cardiac function was evaluated by echocardiography. The myocardial capillary density was analyzed by immunohistochemistry. Both cell types induced an improvement in the left ventricular cardiac function and increased tissue cell proliferation in myocardial tissue and neoangiogenesis. However, CB-MNCs plus MSCs were more effective in reducing the infarct size and preventing ventricular remodeling. Scar tissue was reduced significantly in the CB-MNCs plus MSCs group. MSCs facilitate engraftment of CD34+ cells and immunomodulation after allogeneic CD34+ cell transplantation. Cotransplanting MSCs and CB-MNCs might be more effective than transplanting MSCs or CB-MNCs separately for treating MI. This study contributes knowledge toward effective treatment strategies for MI.

  8. Therapy for Cerebral Palsy by Human Umbilical Cord Blood Mesenchymal Stem Cells Transplantation Combined With Basic Rehabilitation Treatment

    Directory of Open Access Journals (Sweden)

    Che Zhang MD

    2015-03-01

    Full Text Available Background. Cerebral palsy (CP is the most common cause leading to childhood disability. Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs transplantation is a promising alternative considering the safety and efficacy in current reports. This report represents a case of hUCB-MSCs transplantation combined with basic rehabilitation treatment beginning as early as age 6 months with follow-up as long as 5 years. Methods. A 6-year-old female patient was diagnosed with CP at age 6 months. The patient accepted 4 infusions of intravenous hUCB-MSCs in each course and received 4 courses of transplantation totally. A series of assessments were performed before the first transplantation, including laboratory tests, CDCC Infant Mental Development Scale, and Gross Motor Function Measure-88 (GMFM-88. Then annual assessments using the GMFM-88, Ashworth spasm assessment, and comprehensive function assessment scale were made in addition to the annual laboratory tests. In addition, electroencephalography and brain magnetic resonance imaging were conducted before transplantation and in the follow-up phase. Rehabilitation and safety follow-up have been ongoing for 5 years up to date. Results. There was no complaint about adverse effects during hospitalization or postoperative follow-up. Motor function recovered to normal level according to the evaluation of scales. Language function improved significantly. Linguistic rehabilitation therapy was enhanced for further improvement. Conclusions. The clinical application of hUC-MSCs combined with basic rehabilitation treatment was effective and safe for improving motor and comprehensive function in a patient with CP.

  9. Efficient generation of multipotent mesenchymal stem cells from umbilical cord blood in stroma-free liquid culture.

    Directory of Open Access Journals (Sweden)

    Rowayda Peters

    Full Text Available BACKGROUND: Haematopoiesis is sustained by haematopoietic (HSC and mesenchymal stem cells (MSC. HSC are the precursors for blood cells, whereas marrow, stroma, bone, cartilage, muscle and connective tissues derive from MSC. The generation of MSC from umbilical cord blood (UCB is possible, but with low and unpredictable success. Here we describe a novel, robust stroma-free dual cell culture system for long-term expansion of primitive UCB-derived MSC. METHODS AND FINDINGS: UCB-derived mononuclear cells (MNC or selected CD34(+ cells were grown in liquid culture in the presence of serum and cytokines. Out of 32 different culture conditions that have been tested for the efficient expansion of HSC, we identified one condition (DMEM, pooled human AB serum, Flt-3 ligand, SCF, MGDF and IL-6; further denoted as D7 which, besides supporting HSC expansion, successfully enabled long-term expansion of stromal/MSC from 8 out of 8 UCB units (5 MNC-derived and 3 CD34(+ selected cells. Expanded MSC displayed a fibroblast-like morphology, expressed several stromal/MSC-related antigens (CD105, CD73, CD29, CD44, CD133 and Nestin but were negative for haematopoietic cell markers (CD45, CD34 and CD14. MSC stemness phenotype and their differentiation capacity in vitro before and after high dilution were preserved throughout long-term culture. Even at passage 24 cells remained Nestin(+, CD133(+ and >95% were positive for CD105, CD73, CD29 and CD44 with the capacity to differentiate into mesodermal lineages. Similarly we show that UCB derived MSC express pluripotency stem cell markers despite differences in cell confluency and culture passages. Further, we generated MSC from peripheral blood (PB MNC of 8 healthy volunteers. In all cases, the resulting MSC expressed MSC-related antigens and showed the capacity to form CFU-F colonies. CONCLUSIONS: This novel stroma-free liquid culture overcomes the existing limitation in obtaining MSC from UCB and PB enabling so far unmet

  10. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  11. Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats.

    Science.gov (United States)

    Hill, Andrew J; Zwart, Isabel; Tam, Henry H; Chan, Jane; Navarrete, Cristina; Jen, Ling-Sun; Navarrete, Roberto

    2009-04-01

    This study investigated the ability of mesenchymal stem cells (MSCs) derived from full-term human umbilical cord blood to survive, integrate and differentiate after intravitreal grafting to the degenerating neonatal rat retina following intracranial optic tract lesion. MSCs survived for 1 week in the absence of immunosuppression. When host animals were treated with cyclosporin A and dexamethasone to suppress inflammatory and immune responses, donor cells survived for at least 3 weeks, and were able to spread and cover the entire vitreal surface of the host retina. However, MSCs did not significantly integrate into or migrate through the retina. They also maintained their human antigenicity, and no indication of neural differentiation was observed in retinas where retinal ganglion cells either underwent severe degeneration or were lost. These results have provided the first in vivo evidence that MSCs derived from human umbilical cord blood can survive for a significant period of time when the host rat response is suppressed even for a short period. These results, together with the observation of a lack of neuronal differentiation and integration of MSCs after intravitreal grafting, has raised an important question as to the potential use of MSCs for neural repair through the replacement of lost neurons in the mammalian retina and central nervous system.

  12. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  13. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    Science.gov (United States)

    van den Berk, Lieke C J; Roelofs, Helene; Huijs, Tonnie; Siebers-Vermeulen, Kim G C; Raymakers, Reinier A; Kögler, Gesine; Figdor, Carl G; Torensma, Ruurd

    2009-12-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord blood an immature MSC population was identified. Remarkably, these immature stem cells modulated DCs in a different way. Marker expression was unchanged during the differentiation of monocytes towards immature DCs (iDCs) when cocultured with cord blood MSC [unrestricted somatic stem cells (USSCs)]. The maturation to mature DCs (mDCs) was enhanced when DCs were co-cultured with USSC, as evidenced by the up-regulation of costimulatory molecules. Endocytosis of dextran by iDCs was hampered in the presence of USSCs, which is indicative for the maturation of iDCs. Despite this maturation, the migration of iDCs cocultured with USSCs appeared to be identical to iDCs cultured alone. However, USSCs increased the migration of mDCs towards CCL21 and boosted interleukin-12 production. So, USSCs mature iDCs, thereby redirecting the antigen-uptake phenotype towards a mature phenotype. Furthermore, DC maturation by lipopolysaccharide (LPS) or USSCs reflects two distinct pathways because migration was unaffected when iDCs were matured by coculture with USSCs, while it was strongly enhanced in the presence of LPS. DCs are able to discriminate the different MSC subtypes, resulting in diverse differentiation programmes.

  14. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil

    2015-01-01

    Full Text Available Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs. Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  15. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Science.gov (United States)

    Perea-Gil, Isaac; Monguió-Tortajada, Marta; Gálvez-Montón, Carolina; Bayes-Genis, Antoni; Borràs, Francesc E.; Roura, Santiago

    2015-01-01

    Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells. PMID:25861626

  16. Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer's disease transgenic mouse after a single intravenous injection.

    Science.gov (United States)

    Park, Sang Eon; Lee, Na Kyung; Lee, Jeongmin; Hwang, Jung Won; Choi, Soo Jin; Hwang, Hyeri; Hyung, Brian; Chang, Jong Wook; Na, Duk L

    2016-03-02

    The aim of this study was to track the migration of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered through a single intravenous injection and to observe the consequential therapeutic effects in a transgenic Alzheimer's disease mouse model. Ten-month-old APP/PS1 mice received a total injection of 1×10 cells through the lateral tail vein and were killed 1, 4, and 7 days after administration. On the basis of immunohistochemical analysis, hUCB-MSCs were not detected in the brain at any of the time points. Instead, most of the injected mesenchymal stem cells were found to be distributed in the lung, heart, and liver. In terms of the molecular effects, statistically significant differences in the amyloid β protein, neprilysin, and SOX2 levels were not observed among the groups. On the basis of the results from this study, we suggest that single intravenously administered hUCB-MSCs are not delivered to the brain and also do not have a significant influence on Alzheimer's disease pathology.

  17. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available Mesenchymal stem cells (MSCs have multilineage differentiation potential which includes cell lineages of the central nervous system; hence MSCs might be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Although mesenchymal stem cells have been shown to differentiate into the neural lineage, there is still little knowledge about the underlying mechanisms of differentiation particularly towards specialized neurons such as dopaminergic neurons. Here, we show that MSCs derived from human umbilical cord blood (MSC(hUCBs are capable of expressing tyrosine hydroxylase (TH and Nurr1, markers typically associated with DA neurons. We also found differential phosphorylation of TH isoforms indicating the presence of post-translational mechanisms possibly activating and modifying TH in MSC(hUCB. Furthermore, functional dissection of components in the differentiation medium revealed that dibutyryl-cAMP (db-cAMP, 3-isobutyl-1-methylxanthine (IBMX and retinoic acid (RA are involved in the regulation of Nurr1 and Neurofilament-L expression as well as in the differential phosphorylation of TH. We also demonstrate a possible inhibitory role of the protein kinase A signaling pathway in the phosphorylation of specific TH isoforms.

  18. Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac pro-genitor cells in a myocardial injury mouse model

    Directory of Open Access Journals (Sweden)

    Truc Le-Buu Pham

    2015-12-01

    Full Text Available Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Animal models injected with phosphate-buffered saline (PBS and healthy mice were used as controls. Cell grafting was assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demonstrated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained damaged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate significant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most importantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation produced a positive effect in a mouse model of myocardial ischemia. [Biomed Res Ther 2015; 2(12.000: 435-445

  19. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  20. Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34+ Transplants

    Science.gov (United States)

    van der Garde, Mark; van Pel, Melissa; Millán Rivero, Jose Eduardo; de Graaf-Dijkstra, Alice; Slot, Manon C.; Kleinveld, Yoshiko; Watt, Suzanne M.; Roelofs, Helene

    2015-01-01

    Cotransplantation of CD34+ hematopoietic stem and progenitor cells (HSPCs) with mesenchymal stromal cells (MSCs) enhances HSPC engraftment. For these applications, MSCs are mostly obtained from bone marrow (BM). However, MSCs can also be isolated from the Wharton's jelly (WJ) of the human umbilical cord. This source, regarded to be a waste product, enables a relatively low-cost MSC acquisition without any burden to the donor. In this study, we evaluated the ability of WJ MSCs to enhance HSPC engraftment. First, we compared cultured human WJ MSCs with human BM-derived MSCs (BM MSCs) for in vitro marker expression, immunomodulatory capacity, and differentiation into three mesenchymal lineages. Although we confirmed that WJ MSCs have a more restricted differentiation capacity, both WJ MSCs and BM MSCs expressed similar levels of surface markers and exhibited similar immune inhibitory capacities. Most importantly, cotransplantation of either WJ MSCs or BM MSCs with CB CD34+ cells into NOD SCID mice showed similar enhanced recovery of human platelets and CD45+ cells in the peripheral blood and a 3-fold higher engraftment in the BM, blood, and spleen 6 weeks after transplantation when compared to transplantation of CD34+ cells alone. Upon coincubation, both MSC sources increased the expression of adhesion molecules on CD34+ cells, although stromal cell-derived factor-1 (SDF-1)-induced migration of CD34+ cells remained unaltered. Interestingly, there was an increase in CFU-GEMM when CB CD34+ cells were cultured on monolayers of WJ MSCs in the presence of exogenous thrombopoietin, and an increase in BFU-E when BM MSCs replaced WJ MSCs in such cultures. Our results suggest that WJ MSC is likely to be a practical alternative for BM MSC to enhance CB CD34+ cell engraftment. PMID:26414086

  1. Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium.

    Science.gov (United States)

    Zeng, Yu; Rong, Mingqiang; Liu, Yunsheng; Liu, Jingfang; Lu, Ming; Tao, Xiaoyu; Li, Zhenyan; Chen, Xin; Yang, Kui; Li, Chuntao; Liu, Zhixiong

    2013-12-01

    Umbilical cord blood-derived marrow stromal cells (UCB-MSCs) with high proliferation capacity and immunomodulatory properties are considered to be a good candidate for cell-based therapies. But until now, little work has been focused on the differentiation of UCB-MSCs. In this work, UCB-MSCs were demonstrated to be negative for CD34 and CD45 expression but positive for CD90 and CD105 expression. The gate values of UCB-MSCs for CD90 and CD105 were 99.3 and 98.6 %, respectively. Two weeks after treatment, the percentage of neuron-like cells differentiated from UCB-MSCs was increased to 84 ± 12 % in the experimental group [treated with olfactory ensheathing cells (OECs)-conditioned medium] and they were neuron-specific enolase positive; few neuron-like cells were found in the control group (without OECs-conditioned medium). Using whole-cell recording, sodium and potassium currents were recorded in UCB-MSCs after differentiation by OECs. Thus, human UCB-MSCs could be differentiated to neural cells by secreted secretion from OECs and exhibited electrophysiological properties similar to mature neurons after 2 weeks post-induction. These results imply that OECs can be used as a new strategy for stem cell differentiation and provide an alternative neurogenesis pathway for generating sufficient numbers of neural cells for cell therapy.

  2. Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34+ hematopoietic stem cells and for chondrogenic differentiation

    Institute of Scientific and Technical Information of China (English)

    JIN-FUWANG; LI-JUANWANG; YI-FANWU; YINGXIANG; CHUN-GANGXIE; BING-BINGJIA; JENNYHARRINGTON; IANK.MCNIECE

    2005-01-01

    Background and Objectives. Human mesenchymal stem/progenitor cells (MSPC) ar pluripotent, being the precursors for marrow stroma, bone, cartilage, muscle and connective tissues. Although the presence of hematopoietic stem/progenitor cells (HSPC) in umbilical cord blood (UCB) is well known, that of MSPC has been not fully evaluated. Design and Methods. In this study, we examined the immunophenotype, the supporting function in relation to exvivo expansion of hematopoietic stem progenitor cells and the chondrogenic differentiation of cultured cells with characteristics of MSPC from UCB. When UCB nucleated cells were isolated and 107 cells cultured in IMDM with 20% fetal bovine serum, the mean number of adherent fibroblastlike colonies was 3.5±0.7/106 monuclear cells. Results. UCB-derived MSPC could be expanded for at least 15 passages. In their undifferentiated state, UCB-derived MSPC were CD 13+, CD29+, CD90+, CD105+, CD166+, SH2+,SH3+, SH4+, CD45-, CD34-, and CD14-; they produced stem cell factor, interleukin 6 and tumor necrosis factor α.UCB-derived MSPC cultured in chondrogenic media differentiated into chondrogenic cells. UCB-derived MSPC supported the proliferation and differentiation of CD34+ cells from UCB in vitro. Interpretation and Conclusions. UCB-derived MSPC have the potential to support ex vivo expansion of HSPC and chondrogenic differentiation. UCB should not be regarded as medical waste. It can serve as an alternative source of mesenchymal stem cells and may provide a unique source of fetal cells for cellular and gene therapy.

  3. Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells.

    Science.gov (United States)

    Kadekar, Darshana; Rangole, Sonal; Kale, Vaijayanti; Limaye, Lalita

    2016-01-01

    The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer's disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells. CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them. Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability.

  4. Post-thaw non-cultured and post-thaw cultured equine cord blood mesenchymal stromal cells equally suppress lymphocyte proliferation in vitro.

    Directory of Open Access Journals (Sweden)

    Lynn B Williams

    Full Text Available Multipotent mesenchymal stromal cells (MSC are receiving increased attention for their non-progenitor immunomodulatory potential. Cryopreservation is commonly used for long-term storage of MSC. Post-thaw MSC proliferation is associated with a lag-phase in vitro. How this lag-phase affect MSC immunomodulatory properties is unknown. We hypothesized that in vitro there is no difference in lymphocyte suppression potential between quick-thawed cryopreserved equine cord blood (CB MSC immediately included in mixed lymphocyte reaction (MLR and same MSC allowed post-thaw culture time prior to inclusion in MLR. Cryopreserved CB-MSC from five unrelated foals were compared using two-way MLR. For each of the five unrelated MSC cultures, paired MLR assays of MSC allowed five days of post-thaw culture and MSC included in MLR assay immediately post-thawing were evaluated. We report no difference in the suppression of lymphocyte proliferation by CB-MSC that had undergone post-thaw culture and MSC not cultured post-thaw (p<0.0001. Also, there was no inter-donor variability between the lymphocyte suppressive properties of MSC harvested from the five different donors (p = 0.13. These findings suggest that cryopreserved CB-MSC may have clinical utility immediately upon thawing. One implication hereof is the possibility of using cryopreserved CB-MSC at third party locations without the need for cell culture equipment or competencies.

  5. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer's disease mouse model through modulation of neuroinflammation.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Carter, Janet E; Chang, Jong Wook; Oh, Wonil; Yang, Yoon Sun; Suh, Jun-Gyo; Lee, Byoung-Hee; Jin, Hee Kyung; Bae, Jae-Sung

    2012-03-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) have a potential therapeutic role in the treatment of neurological disorders, but their current clinical usage and mechanism of action has yet to be ascertained in Alzheimer's disease (AD). Here we report that hUCB-MSC transplantation into amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice significantly improved spatial learning and memory decline. Furthermore, amyloid-β peptide (Aβ) deposition, β-secretase 1 (BACE-1) levels, and tau hyperphosphorylation were dramatically reduced in hUCB-MSC transplanted APP/PS1 mice. Interestingly, these effects were associated with reversal of disease-associated microglial neuroinflammation, as evidenced by decreased microglia-induced proinflammatory cytokines, elevated alternatively activated microglia, and increased anti-inflammatory cytokines. These findings lead us to suggest that hUCB-MSC produced their sustained neuroprotective effect by inducing a feed-forward loop involving alternative activation of microglial neuroinflammation, thereby ameliorating disease pathophysiology and reversing the cognitive decline associated with Aβ deposition in AD mice.

  6. Inhibition by miR-410 facilitates direct retinal pigment epithelium differentiation of umbilical cord blood-derived mesenchymal stem cells

    Science.gov (United States)

    Choi, Soon Won; Kim, Jae-Jun; Seo, Min-Soo; Park, Sang-Bum; Shin, Tae-Hoon; Shin, Ji-Hee; Seo, Yoojin; Kim, Hyung-Sik

    2017-01-01

    Retinal pigment epithelium (RPE) is a major component of the eye. This highly specialized cell type facilitates maintenance of the visual system. Because RPE loss induces an irreversible visual impairment, RPE generation techniques have recently been investigated as a potential therapeutic approach to RPE degeneration. The microRNA-based technique is a new strategy for producing RPE cells from adult stem cell sources. Previously, we identified that antisense microRNA-410 (anti-miR-410) induces RPE differentiation from amniotic epithelial stem cells. In this study, we investigated RPE differentiation from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via anti-miR-410 treatment. We identified miR-410 as a RPE-relevant microRNA in UCB-MSCs from among 21 putative human RPE-depleted microRNAs. Inhibition of miR-410 induces overexpression of immature and mature RPE-specific factors, including MITF, LRAT, RPE65, Bestrophin, and EMMPRIN. The RPE-induced cells were able to phagocytize microbeads. Results of our microRNA-based strategy demonstrated proof-of-principle for RPE differentiation in UCB-MSCs by using anti-miR-410 treatment without the use of additional factors or exogenous transduction. PMID:27297412

  7. Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy

    Directory of Open Access Journals (Sweden)

    Yoon Sun Yang

    2013-09-01

    Full Text Available Various source-derived mesenchymal stem cells (MSCs have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM, adipose tissue (AT, and umbilical cord blood-derived MSCs (UCB-MSCs for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α, IL-6, and IL-8 via angiopoietin-1 (Ang-1. Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA, we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.

  8. Nursing for patients with multiple system atrophy treated with mesenchymal stem cells in umbilical cord blood therapy%脐血间充质干细胞治疗多系统萎缩患者的护理

    Institute of Scientific and Technical Information of China (English)

    许梅

    2011-01-01

    目的 观察护理对脐血间充质干细胞治疗多系统萎缩疗效的作用.方法 脐血间充质干细胞治疗(静脉输注结合鞘内注射)2例多系统萎缩患者,辅以心理护理、专科护理、健康宣教等.结果 2例患者脐血间充质干细胞治疗后,临床症状显著改善.结论 脐血间充质干细胞治疗是一种新型有效的治疗多系统萎缩的方法,而护理在其中起重要作用.%Objective To observe the effect of nursing for patients with multiple system atrophy treated with mesenchymal stem cells in umbilical cord blood therapyMethods Two patients with multiple system atrophy were treated by mesenchymal stem cells in umbilical cord blood (intravenous and intrathecal injection). Results The mesenchymal stem cell therapy improved clinical symptoms. Conclusion The mesenchymal stem cell therapy is a novel and effective therapy for multiple system atrophy. Nursing plays a key role in the process.

  9. Preliminary evaluation of intravenous infusion and intrapancreatic injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of diabetic mice

    Directory of Open Access Journals (Sweden)

    Ngoc Kim Phan

    2014-03-01

    Full Text Available Type 1 diabetes mellitus is characterized by the destruction of pancreatic islet beta cells, which leads to insulin insufficiency, hyperglycemia, and reduced metabolic glucose level. Insulin replacement is the current standard therapy for type 1 diabetes mellitus but has several limitations. Pancreatic islet transplantation can result in the production of exogenous insulin, but its use is limited by immune-rejection and donor availability. Recent studies have shown that mesenchymal stem cells (MSCs can transdifferentiate into insulin-producing cells (IPCs, which could be utilized for diabetes mellitus treatment. Previously published reports have demonstrated that MSC or IPC transplantation could produce significant improvement in mouse models of diabetes mellitus. This study was aimed at determining the effects of two different methods of MSC transplantation on the efficacy of diabetes mellitus treatment in mouse models. The MSCs were isolated from umbilical cord blood and were proliferated following a previously published procedure. Diabetes mellitus was induced in mice by streptozotocin (STZ injection. Thirty days after transplantation, the weight of the mice treated by intra-venous infusion and intra-pancreatic injection was found to be 22% and 14% higher than that of the un-treated mice. The blood glucose concentrations in both intra-venous infusion and intra-pancreatic injection groups decreased and remained more stable than those in the control group. Moreover, insulin was detected in the serum of the treated mice, and the pancreas also showed gradual recovery. Based on the results of this preliminary investigation, intra-venous infusion seems more suitable than intra-pancreatic injection for MSC transplantation for diabetes mellitus treatment. [Biomed Res Ther 2014; 1(3.000: 98-105

  10. The Role of Amnion Membrane-Derived Mesenchymal Stem Cells on Differentiation and Expansion of Natural Killer Cell Progenitors Originated From Umbilical Cord Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Ahmadi

    2015-11-01

    Full Text Available Background Natural killer (NK cells are members of the innate immune system. Their unique properties, including recognition of viral infected and tumor cells without major histocompatibility complex (MHC restriction or prior sensitization, make them a suitable choice for immunotherapy. Low numbers of NK cells in circulating blood is the most important obstacle for this goal. Objectives The aim of this study was to make an optimum in vitro condition to proliferate and differentiate cord blood (CB-NK cell progenitors to mature NK cells, which can be used for cell therapy. Materials and Methods In our study, CB-Mononuclear Cells’ (MNCs CD3+ lymphocytes were positive depleted using immunomagnetic microbeads. This CD3-depleted (CD3-dep CB - MNCs compartment was used for in vitro expansion with or without a layer of amnion membrane mesenchymal stem cells (MSCs in combination with cytokines that are essential for NK cells expansion (IL-2, IL-3, IL-15, and FLT3 ligand. The expansion period lasted for one week. On day seven, immunophenotype and fold expansion of differentiated cells were measured. Results Combination of cytokines and MSC layer yielded significant fold expansion in comparison with cytokines without feeder conditions (day 7: 5.2 ± 1.12 and 2 ± 0.78, respectively, P < 0.05. CD3-/CD56+ cells percentage increased during the culture period in MSCs/with cytokine and cytokine/without feeder, respectively (day 0: 4.4 ± 0.42% and day 7: 22.9 ± 3.6% and 13.9 ± 1.92 % for MSC/with cytokine and cytokine without feeder, respectively. Conclusions Our results suggested that CB-NK cells progenitors could proliferate and differentiate on feeder layer of amnion membrane MSCs in combination with specific cytokines to produce NK cells for immunotherapy.

  11. Ex vivo expansion of hematopoietic stem- and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton's jelly, amniotic fluid, cord blood, and bone marrow.

    Science.gov (United States)

    Klein, Caroline; Strobel, Julian; Zingsem, Jürgen; Richter, Richard H; Goecke, Tamme W; Beckmann, Matthias W; Eckstein, Reinhold; Weisbach, Volker

    2013-12-01

    In most cases, the amount of hematopoietic stem and progenitor cells (HSPCs) in a single cord blood (CB) unit is not sufficient for allogenic transplantation of adults. Therefore, two CB units are usually required. The ex vivo expansion of HSPCs from CB in coculture with mesenchymal stroma cells (MSCs) might be an alternative. It was investigated, whether bone marrow-derived MSCs, which have to be obtained in an invasive procedure, introduce a further donor and increases the risk of transmissible infectious diseases for the patient can be replaced by MSCs from amnion, chorion, Wharton's jelly, amniotic fluid, and CB, which can be isolated from placental tissue which is readily available when CB is sampled. In a two-step ex vivo coculture mononuclear cells from cryopreserved CB were cultured with different MSC-feederlayers in a medium supplemented with cytokines (stem cell factor, thrombopoietin [TPO], and granulocyte colony-stimulating factor). Expansion rates were analyzed as well, by long-term culture-initiating cell (LTC-IC) and colony-forming unit (CFU) assays, as by measuring CD34(+)- and CD45(+)-cells. Due to the comparably low number of 5×10(2) to 1×10(4) CD34(+)-cells per cm(2) MSC-monolayer, we observed comparably high expansion rates from 80 to 391,000 for CFU, 70 to 313,000 for CD34(+)-, and 200 to 352,000 for CD45(+)-cells. Expansion of LTC-IC was partly observed. Compared to the literature, we found a better expansion rate of CD34(+)-cells with MSCs from all different sources. This is probably due to the comparably low number of 5×10(2) to 1×10 CD34(+)-cells per cm(2) MSC-monolayer we used. Comparably, high expansion rates were observed from 80 to 391,000 for CFUs, 70 to 313,000 for CD34(+)-, and 200 to 352,000 for CD45(+)-cells. However, the expansion of CD34(+)-cells was significantly more effective with MSCs from bone marrow compared to MSCs from amnion, chorion, and Wharton's jelly. The comparison of MSCs from bone marrow with MSCs from CB and

  12. [Effects of human mesenchymal stem cells and fibroblastoid cell line as feeder layers on expansion of umbilical cord blood CD34(+) cells in vitro].

    Science.gov (United States)

    Ma, Li-Jun; Gao, Lei; Zhou, Hong; Qiu, Hui-Ying; Hu, Xiao-Xia; Xie, Lin-Na; Wang, Jian-Min

    2006-10-01

    To investigate the effects of human mesenchymal stem cells (MSC) and human fibroblastoid cell line (HFCL) as feeder layer on expansion of umbilical cord blood CD34(+) cells in vitro, (60)Co gamma-ray irradiated MSC and HFCL were used as feeder layer to expand cord blood CD34(+) cells in culture. The efficiencies of MSC and HFCL on expansion of CD34(+) cells in culture with or without cytokines were compared. The results showed that no matter whether cytokines (rhFL, rhSCF, rhTPO) were added, the proliferation of nucleated cells after expansion for 12 days in HFCL group was statistically higher than that in MSC group, i.e. with cytokines (9797 +/- 361)% vs (7061 +/- 418)%; without cytokines (5305 +/- 354)% vs (1992 +/- 247)%, when the cell numbers at day 0 was accounted as 100%), P 0.05. However, in the presence of cytokines, the propagating rate of MSC group was lower than that of HFCL group (939 +/- 212)% vs (1617 +/- 222)%, P < 0.01. MSC was better than HFCL in maintaining the LTC-IC of UCB CD34(+) cells, i.e. the number of CFU-GM colonies in the fifth week was (129.95 +/- 8.73) /10(5) seeded cells vs (89.81 +/- 10.29) colonies/10(5) cells, P < 0.05; with addition of cytokines, the effect was more obvious, i.e. the number of CFU-GM colonies in the fifth week (192.93 +/- 4.95)/10(5) seeded cells vs (90.47 +/- 14.28) colonies/10(5) seeded cells, P < 0.01. MSC mixed with a certain proportion of HFCL facilitated maintaining the LTC-IC of UCB CD34(+) cells. When the proportion was 4:1, the number of CFU-GM colonies was the highest (186.89 +/- 11.11)/10(5) seeded cells, which was higher than that of both 3:2 group [(138.92 +/- 14.84) colonies/10(5) seeded cells] and MSC only group, i.e. (64.63 +/- 6.11) colonies/10(5) seeded cells, both P < 0.01. It is concluded that HFCL is better than MSC in maintaining the expansion of CD34(+) cells and cytokines can enhance this effect, while MSC are stronger than HFCL in maintaining the LTC-IC of UCB CD34(+) cells in vitro. MSC

  13. Fibroblast growth factor-4 and hepatocyte growth factor induce differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Xin-Qin Kang; Wei-Jin Zang; Li-Jun Bao; Dong-Ling Li; Tu-Sheng Song; Xiao-Li Xu; Xiao-Jiang Yu

    2005-01-01

    AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth factor (HGF), and to find a new source of cell types for therapies of hepatic diseases.METHODS: vSCs were isolated by combining gradient density centrifugation with plastic adherence. When HUCB-derived MSCs reached 70% confluence, they were cultured in Iscove modified Dulbecco medium (IMDM) supplemented with 10 mL/L FBS, 20 ng/mL HGF and 10 ng/mL FGF-4. The medium was changed every 4 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Expression of CK-18 was detected by immunocytochemistry. Glycogen storage in hepatocytes was determined by PAS staining.RESULTS: By combining gradient density centrifugation with plastic adherence, we could isolate MSCs from 25.6% of human umbilical cord blood. When MSCs were cultured with FGF-4 and HGF, approximately 63.6% of cells became small, round and epithelioid on d 28 by morphology. Compared with the control, the level of AFP increased significantly from d 12 to 18.20±1.16 μg/L (t = 2.884, P<0.05) in MSCs cultured with FGF-4 and HGF, and was higher (54.28±3.11 μg/L) on d 28 (t = 13.493, P<0.01). Albumin increased significantly on d 16 (t = 6.68, P<0.01) to 1.02±0.15 μg/mL, and to 3.63±0.30 μg/mL on d 28 (t = 11.748, P<0.01). Urea(4.72±1.03 μmol/L) was detected on d 20 (t = 4.272,P<0.01), and continued to increase to 10.28±1.06 μmol/L on d 28 (t = 9.276, P<0.01). Cells expressed CK-18 on d 16. Glycogen storage was observed on d 24. CONCLUSION: HUCB-derived MSCs can differentiate into hepatocytes by induction of FGF-4 and HGF. HUCBderived MSCs are a new source of cell types for cell transplantation therapy of hepatic diseases.

  14. Immunoregulation and human umbilical cord blood-derived mesenchymal stem cells transplantation%脐血间充质干细胞移植与免疫调节

    Institute of Scientific and Technical Information of China (English)

    焦保良; 王景川; 高炳华; 王新生

    2012-01-01

    BACKGROUND: Research in recent years suggests that the self-renewal and multi-directional differentiation potency of human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) offer basic condition to cell transplantation treatment. Moreover, their immunoloregulation function enormously expands the direction and limits cell transplantation treatment. OBJECTIVE: To retrospectively analyze the immunoloregulation and human UCB-MSCs transplantation. METHODS: The key word "umbilical cord blood-derived mesenchymal stem cells" was used to search in Pubmed database and CNKI database from January 2008 to June 2011 in English and Chinese using computer. The preliminary screening was made through reading the title and abstract. The articles with unrelated contents, repetitive and Meta analysis were excluded. 30 papers of pertinent literature to be published in the near future or published in the authority magazine were selected to review. RESULTS AND CONCLUSION: Human UCB-MSCs have the similar self-renewal and multi-directional differentiation potency with the bone marrow derived mesenchymal stem cells. Through cell transplantation technique, human UCB-MSCs show powerful potentiality in diabetes mellitus treatment, neural degeneration disease like Alzheimer's disease and Parkinson's disease and injury of nerve retreatment. Meanwhile, human UCB-MSCs have immunoregulatory ettects, they can lower immune reaction through down regulation of T-cells. We also get some advancements on several immunological diseases such as cell therapy of graft versus host disease and lupus nephritis.%背景:近年研究显示,脐血间充质干细胞的自我更新和多向分化潜能为细胞移植治疗提供了基础条件,而其免疫调节功能也极大地拓展了细胞治疗的方向和范围. 目的:就近期脐血间充质干细胞的免疫调节和细胞移植研究进行回顾分析. 摘要进行初筛,排除研究内容与此文无关的文献、重复性研究及Meta分析,

  15. Response to intravenous allogeneic equine cord-blood-derived mesenchymal stromal cells administered from chilled or frozen state in serum and protein free media

    Directory of Open Access Journals (Sweden)

    Lynn Brandon Williams

    2016-07-01

    Full Text Available Equine Mesenchymal stromal cells (MSC are commonly transported, chilled or frozen, to veterinary clinics. These MSC must remain viable and minimally affected by culture, transport, or injection processes. The safety of two carrier solutions developed for optimal viability and excipient use were evaluated in ponies, with and without allogeneic cord blood-derived (CB MSC. We hypothesized that neither the carrier solutions nor CB-MSC would elicit measurable changes in clinical, hematological, or biochemical parameters. In 9 ponies (study 1 a bolus of HypoThermosol® FRS (HTS-FRS, CryoStor® CS10 (CS10 or saline was injected IV (n=3/treatment. Study 2, following a one week washout period 5x107 pooled allogeneic CB-MSC were administered IV in HTS-FRS following 24h simulated chilled transport. Study 3, following another one week washout period 5x107 pooled allogeneic CB-MSC were administered IV in CS10 immediately after thawing. Nine ponies received CB-MSCs in study 2 and 3 and three ponies received the cell carrier media without cells. CB-MSCs were pooled in equal numbers from five unrelated donors. In all studies ponies were monitored with physical examination, and blood collection for 7 days following injection. CD4 and CD8 lymphocyte populations were also evaluated in each blood sample.In all three studies, physical exam, complete blood cell count, serum biochemistry, and coagulation panel did not deviate from established normal ranges. Proportions of CD4+ and CD8+ lymphocytes increased at 168h post injection in CB-MSC treatment groups regardless of the carrier solution. Decreases in CD4+/CD8+ double positive populations were observed at 24 h and 72 h in CB-MSC treated animals. There was no difference in viability between CB-MSC suspended in HTS-FRS or CS10.HTS-FRS and CS10 used for low volume excipient injection of MSC suspensions was not associated with short-term adverse reactions. HTS-FRS and CS10 both adequately maintain CB-MSC viability

  16. Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood.

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Kim

    Full Text Available Toll-like receptors (TLRs and Nod-like receptors (NLRs are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs, little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs. The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3CSK(4 for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2 led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3CSK(4 and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor restored osteogenic differentiation enhanced by Pam(3CSK(4. Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3CSK(4 and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.

  17. Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    GAO Feng; WU De-quan; HU Yan-hua; JIN Guang-xin

    2008-01-01

    Background Pancreatic islet cell transplantation is an effective approach to treat type 1 diabetes. However, this therapy is not widely used because of the severe shortage of transplantable donor islets. This study investigated whether mesenchymal stem cells (MSCs) derived from human umbilical cord blood (UCB) could be transdifferentiated into insulin producing cells in vitro and the role of extracellular matrix (ECM) gel in this procedure.Methods Human UCB samples were collected and MSCs were isolated. MSCs specific marker proteins were analyzed by a flow cytometer. The capacities of osteoblast and adipocyte to differentiate were tested. Differentiation into islet like cell was induced by a 15-day protocol with or without ECM gel. Pancreatic characteristics were evaluated with immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. Insulin content and release in response to glucose stimulation were detected with chemiluminescent immunoassay system.Results Sixteen MSCs were isolated from 42 term human UCB units (38%). Human UCB-MSCs expressed MSCs specific markers and could be induced in vitro into osteoblast and adipocyte. Islet like cell clusters appeared about 9 days after pancreatic differentiation in the inducing system with ECM gel. The insulin positive cells accounted for (25.2±3.4)% of the induced cells. The induced cells expressed islet related genes and hormones, but were not very responsive to glucose challenge. When MSCs were induced without ECM gel, clusters formation and secretion of functional islet proteins could not be observed.Conclusions Human UCB-MSCs can differentiate into islet like cells in vitro and ECM gel plays an important role in pancreatic endocrine cell maturation and formation of three dimensional structures.

  18. Mesenchymal stem cells promote a primitive phenotype CD34+c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion.

    Science.gov (United States)

    Rodríguez-Pardo, Viviana M; Vernot, Jean Paul

    2013-03-01

    The purpose of this study was to evaluate the influence of bone marrow-mesenchymal stem cells (BM-MSC) and exogenously added cytokines on the proliferation, primitive cell subpopulation maintenance (including the c-kit+ marker) and clonogenic capacity of hematopoietic stem cells (HSC). BM-MSC were collected from volunteer donors, isolated and characterized. Umbilical cord blood (UCB) samples were collected from healthy full-term deliveries. UCB-CD34+ cells were cultured in the presence or absence of BM-MSC and/or cytokines for 3 and 7 days. CD34+ cell proliferation was evaluated using the CSFE method and cell phenotype was determined by CD34, c-kit, CD33, CD38, HLA-DR, cyCD22 and cyCD3 detection. Cell clonogenic ability was also assessed. Exogenously added SCF, TPO and FLT3L increased CD34+ cell proliferation in the presence or absence of BM-MSC, but with concomitant cell differentiation. Without any added cytokines, BM-MSC are able to increase the percentage of primitive progenitors as evaluated by c-kit expression and CFU-GEMM increase. Interestingly, this latter effect was dependent on both cell-cell interactions and secreted factors. A 7-day co-culture period will be optimal for obtaining an increased primitive HSC level. Including c-kit as a marker for primitive phenotype evaluation has shown the relevance of BM-MSC and their secreted factors on UCB-HSC stemness function. This effect could be dissociated from that of the addition of exogenous cytokines, which induced cellular differentiation instead.

  19. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model.

    Science.gov (United States)

    Kim, Dong Hyun; Lee, Dahm; Chang, Eun Hyuk; Kim, Ji Hyun; Hwang, Jung Won; Kim, Ju-Yeon; Kyung, Jae Won; Kim, Sung Hyun; Oh, Jeong Su; Shim, Sang Mi; Na, Duk Lyul; Oh, Wonil; Chang, Jong Wook

    2015-10-15

    Our previous studies demonstrated that transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the hippocampus of a transgenic mouse model of Alzheimer's disease (AD) reduced amyloid-β (Aβ) plaques and enhanced cognitive function through paracrine action. Due to the limited life span of hUCB-MSCs after their transplantation, the extension of hUCB-MSC efficacy was essential for AD treatment. In this study, we show that repeated cisterna magna injections of hUCB-MSCs activated endogenous hippocampal neurogenesis and significantly reduced Aβ42 levels. To identify the paracrine factors released from the hUCB-MSCs that stimulated endogenous hippocampal neurogenesis in the dentate gyrus, we cocultured adult mouse neural stem cells (NSCs) with hUCB-MSCs and analyzed the cocultured media with cytokine arrays. Growth differentiation factor-15 (GDF-15) levels were significantly increased in the media. GDF-15 suppression in hUCB-MSCs with GDF-15 small interfering RNA reduced the proliferation of NSCs in cocultures. Conversely, recombinant GDF-15 treatment in both in vitro and in vivo enhanced hippocampal NSC proliferation and neuronal differentiation. Repeated administration of hUBC-MSCs markedly promoted the expression of synaptic vesicle markers, including synaptophysin, which are downregulated in patients with AD. In addition, in vitro synaptic activity through GDF-15 was promoted. Taken together, these results indicated that repeated cisterna magna administration of hUCB-MSCs enhanced endogenous adult hippocampal neurogenesis and synaptic activity through a paracrine factor of GDF-15, suggesting a possible role of hUCB-MSCs in future treatment strategies for AD.

  20. Therapy for Cerebral Palsy by Human Umbilical Cord Blood Mesenchymal Stem Cells Transplantation Combined With Basic Rehabilitation Treatment: A Case Report.

    Science.gov (United States)

    Zhang, Che; Huang, Li; Gu, Jiaowei; Zhou, Xihui

    2015-01-01

    Background. Cerebral palsy (CP) is the most common cause leading to childhood disability. Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) transplantation is a promising alternative considering the safety and efficacy in current reports. This report represents a case of hUCB-MSCs transplantation combined with basic rehabilitation treatment beginning as early as age 6 months with follow-up as long as 5 years. Methods. A 6-year-old female patient was diagnosed with CP at age 6 months. The patient accepted 4 infusions of intravenous hUCB-MSCs in each course and received 4 courses of transplantation totally. A series of assessments were performed before the first transplantation, including laboratory tests, CDCC Infant Mental Development Scale, and Gross Motor Function Measure-88 (GMFM-88). Then annual assessments using the GMFM-88, Ashworth spasm assessment, and comprehensive function assessment scale were made in addition to the annual laboratory tests. In addition, electroencephalography and brain magnetic resonance imaging were conducted before transplantation and in the follow-up phase. Rehabilitation and safety follow-up have been ongoing for 5 years up to date. Results. There was no complaint about adverse effects during hospitalization or postoperative follow-up. Motor function recovered to normal level according to the evaluation of scales. Language function improved significantly. Linguistic rehabilitation therapy was enhanced for further improvement. Conclusions. The clinical application of hUC-MSCs combined with basic rehabilitation treatment was effective and safe for improving motor and comprehensive function in a patient with CP.

  1. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles.

    Science.gov (United States)

    Markov, Vladimir; Kusumi, Kenro; Tadesse, Mahlet G; William, Dilusha A; Hall, Dorian M; Lounev, Vitali; Carlton, Arlene; Leonard, Jay; Cohen, Rick I; Rappaport, Eric F; Saitta, Biagio

    2007-02-01

    Phenotypic heterogeneity has been observed among mesenchymal stem/stromal cell (MSC) populations, but specific genes associated with this variability have not been defined. To study this question, we analyzed two distinct isogenic MSC populations isolated from umbilical cord blood (UCB1 and UCB2). The use of isogenic populations eliminated differences contributed by genetic background. We characterized these UCB MSCs for cell morphology, growth kinetics, immunophenotype, and potential for differentiation. UCB1 displayed faster growth kinetics, higher population doublings, and increased adipogenic lineage differentiation compared to UCB2. However, osteogenic differentiation was stronger for the UCB2 population. To identify MSC-specific genes and developmental genes associated with observed phenotypic differences, we performed expression analysis using Affymetrix microarrays and compared them to bone marrow (BM) MSCs. We compared UCB1, UCB2, and BM and identified distinct gene expression patterns. Selected clusters were analyzed demonstrating that genes of multiple developmental pathways, such as transforming growth factor-beta (TGF-beta) and wnt genes, and markers of early embryonic stages and mesodermal differentiation displayed significant differences among the MSC populations. In undifferentiated UCB1 cells, multiple genes were significantly up-regulated (p < 0.0001): peroxisome proliferation activated receptor gamma (PPARG), which correlated with adipogenic differentiation capacities, hepatocyte growth factor (HGF), and stromal-derived factor 1 (SDF1/CXCL12), which could both potentially contribute to the higher growth kinetics observed in UCB1 cells. Overall, the results confirmed the presence of two distinct isogenic UCB-derived cell populations, identified gene profiles useful to distinguish MSC types with different lineage differentiation potentials, and helped clarify the heterogeneity observed in these cells.

  2. Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34(+) cells improves the maintenance and proliferative capacity of hematopoietic stem cells.

    Science.gov (United States)

    Hammoud, Mohammad; Vlaski, Marija; Duchez, Pascale; Chevaleyre, Jean; Lafarge, Xavier; Boiron, Jean-Michel; Praloran, Vincent; Brunet De La Grange, Philippe; Ivanovic, Zoran

    2012-06-01

    The physiological approach suggests that an environment associating the mesenchymal stromal cells (MSC) and low O(2) concentration would be most favorable for the maintenance of hematopoietic stem cells (HSCs) in course of ex vivo expansion of hematopoietic grafts. To test this hypothesis, we performed a co-culture of cord blood CD34(+) cells with or without MSC in presence of cytokines for 10 days at 20%, 5%, and 1.5% O(2) and assessed the impact on total cells, CD34(+) cells, committed progenitors (colony-forming cells-CFC) and stem cells activity (pre-CFC and Scid repopulating cells-SRC). Not surprisingly, the expansion of total cells, CD34(+) cells, and CFC was higher in co-culture and at 20% O(2) compared to simple culture and low O(2) concentrations, respectively. However, co-culture at low O(2) concentrations provided CD34(+) cell and CFC amplification similar to classical culture at 20% O(2) . Interestingly, low O(2) concentrations ensured a better pre-CFC and SRC preservation/expansion in co-culture. Indeed, SRC activity in co-culture at 1.5% O(2) was higher than in freshly isolated CD34(+) cells. Interleukin-6 production by MSC at physiologically low O(2) concentrations might be one of the factors mediating this effect. Our data demonstrate that association of co-culture and low O(2) concentration not only induces sufficient expansion of committed progenitors (with respect to the classical culture), but also ensures a better maintenance/expansion of hematopoietic stem cells (HSCs), pointing to the oxygenation as a physiological regulatory factor but also as a cell engineering tool.

  3. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells

    Institute of Scientific and Technical Information of China (English)

    YiZhanga; ChangdongLi; XiaoxiaJiang; ShuangxiZhang; YingWu; BingLiu; PeihsienTang; NingMao

    2005-01-01

    Objective. Allogeneic transplantation with umbilical cord blood (UCB) in adult recipients is limited mainly by a low CD34+ cell dose. To overcome this shortcoming, human placenta as a novel source of human mesenchymal progenitor cell (MPC) was incorporated in an attempt to expand CD34+ ceils from UCB in vitro.Materials and Methods. Human placenta MPC was isolated and characterized by morphologic,immunophenotypical, and functional analysis. UCB CD34+ cells were expanded by coculturewith placeutal MPC. Suitable aliquots of cells were used to monitor cell production, elonogenie activity, and tong-term culture-initiating culture (LTC-IC) output. Finally, the immunoregulatory effect of placental MPC was evaluated by T-cell proliferation assay.Results. In its undifferentiated state, placental MPC displayed fibroblastoid morphology; was CD73, CD105, CD29, CD44, HLA-ABC, and CD166 positive; produced fibronectin, laminin,and vimentin; but was negative for CD14, CD31, CD34, CD45, HLA-DR, and α-smooth muscle actin. Functionally, it could be induced into adipocytes, osteocytes, and chondrocytes.In vitro expansion of UCB hematopoietic cells, when cocultured with placental MPC in the presence of eytokines, was significantly enhanced: CD34+ cells by 14.89±2.32 fold; colonyforming cell (CFC) by 36.73±5.79 told; and LTC-IC by 7.43±2.66 fold. Moreover, placental MPC could suppress T-cell proliferation induced by cellular stimuli.Conclusion. These results strongly suggest that human placental MPC may be a suitable feeder layer for expansion of hematopoietic progenitors from UCB in vitro.

  4. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunge [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Qian, Yufeng [Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway, Austin, TX 78712 (United States); Zhao, Shuang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Yin, Yuji, E-mail: yinyuji@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Li, Junjie, E-mail: li41308@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850 (China)

    2016-07-01

    Porous microcarriers are increasingly used to expand and harvest stem cells. Generally, the cells are harvested via proteolytic enzyme treatment, which always leads to damages to stem cells. To address this disadvantage, a series of alginate/PEG (AL/PEG) semi-interpenetrating network microcarriers are prepared in this study. In this AL/PEG system, the chemically cross-linked alginate networks are formed via the reaction between carboxylic acid group of alginate and di-terminated amine groups of cystamine. PEG is introduced to modulate the degradation of microcarriers, which does not participate in this cross-linked reaction, while it interpenetrates in alginate network via physical interactions. In addition, chitosan are coated on the surface of AL/PEG to improve the mechanical strength via the electrostatic interactions. Biocompatible fibronectin are also coated on these microcarriers to modulate the biological behaviors of cells seeded in microcarriers. Results suggest that the size of AL/PEG microcarriers can be modulated via adjusting the contents and molecular weight of PEG. Moreover, the microcarriers are designed to be degraded with cleavage of disulfide crosslinkage. By changing the type and concentration of reductant, the ratio of AL to PEG, and the magnitude of chitosan coating, the degradation ability of AL/PEG microcarriers can be well controlled. In addition, AL/PEG microcarriers can support the attachment and proliferation of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). More importantly, the expanded hUCB-MSCs can be detached from microcarriers after addition of reductant, which indeed reduce the cell damage caused by proteolytic enzyme treatment. Therefore, it is convinced that AL/PEG based microcarriers will be a promising candidate for large-scale expansion of hUCB-MSCs. - Graphical abstract: Alginate/PEG IPN microcarriers can support the attachment and expansion of hUCB-MSCs. More importantly, the expanded cells can be harvested

  5. Optimal Route for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation to Protect Against Neonatal Hyperoxic Lung Injury: Gene Expression Profiles and Histopathology.

    Directory of Open Access Journals (Sweden)

    Dong Kyung Sung

    Full Text Available The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (i.t. versus intravenous (i.v. MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the i.t. (5×10(5 or i.v. (2×10(6 route at postnatal day (P 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV, indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both i.t. and i.v. transplantations. However, i.t. administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to i.v. administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the i.t. group, but not in the i.v. group. Although the i.t. group received only one fourth of the number of MSCs that the i.v. group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the i.t. group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the i.t. group, but not in the i.v. group. Thus

  6. Notch signaling: a novel regulating differentiation mechanism of human umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells in vitro

    Institute of Scientific and Technical Information of China (English)

    HU Yan-hua; WU De-quan; GAO Feng; LI Guo-dong; ZHANG Xin-chen

    2010-01-01

    Background Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) could be induced to differentiate into insulin producing cells (IPCs) in vitro, which have good application potential in the cell replacement treatment of type-1 diabetes. However, the mechanisms regulating this differentiation have remained largely unknown. Notch signaling is critical in cell differentiation. This study investigated whether Notch signaling could regulate the IPCs differentiation of human UCB-MSCs. Methods Using an interfering Notch signaling protocol in vitro, we studied the role of Notch signaling in differentiation of human UCB-MSCs into IPCs. In a control group the induction took place without interfering Notch signaling. Results Human UCB-MSCs expressed the genes of Notch receptors (Notch 1 and Notch 2) and ligands (Jagged 1 and Deltalike 1). Human UCB-MSCs with over-expressing Notch signaling in differentiation resulted in the down-regulation of insulin gene level, proinsulin protein expression, and insulin-positive cells percentage compared with the control group. These results showed that over-expressing Notch signaling inhibited IPCs differentiation. Conversely, when Notch signaling was attenuated by receptor inhibitor, the induced cells increased on average by 3.06-fold (n=4, P<0.001) in insulin gene level, 2.60-fold (n=3, P <0.02) in proinsulin protein expression, and 1.62-fold (n=6, P <0.001) in the rate of IPCs compared with the control group. Notch signaling inhibition significantly promoted IPCs differentiation with about 40% of human UCB-MSCs that converted to IPCs, but these IPCs were not responsive to glucose challenge very well both in vitro and in vivo. Hence, further research has to be carried out in the future. Conclusions Notch signaling may be an important mechanism regulating IPCs differentiation of human UCB-MSCs in vitro and Notch signaling inhibition may be an efficient way to increase the number of IPCs, which may resolve the shortage of

  7. Effect on umbilical cord blood platelet - rich plasma promoting proliferation of umbilical cord blood mesenchymal stem cells%脐血来源富血小板血浆对脐血间充质干细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    胡资兵; 孙杰聪; 刘田丰

    2016-01-01

    Objective To explore the best concentration of umbilical cord blood derived platelet rich plasma for promoting the proliferation and proliferation of umbilical cord blood mesenchymal stem cells. Method Umbilical cord blood was collected in term health cesarean selection newborn. Separation of umbilical cord blood mesenchymal stem cells was performed by using the tissue pieces culture. Platelet - rich plasma from umbilical cord blood was extracted with the use of secondary centrifuga-tion. Transforming growth factor - beta 1 in platelet - rich plasma was detected with the method of ELISA. In this experiment, platelet rich plasma combined 10% fetal bovine serum was used to cultivate umbilical cord blood mesenchymal stem cells. According to the concentration of TGF - beta 1 in platelet - rich plasma,the experiment was divided into 6 groups:2 000 pg/ ml,1 000 pg/ ml,750 pg/ ml,500 pg/ ml,250 pg/ ml,10% fetal bovine serum group. Umbilical cord blood mesenchy-mal stem cells were incubated in 96 - well plates,and cultured for 7 days. After 1,3,5,and 7 days later,CCK8 kit was used to determinate the proliferation effect of mesenchymal stem cells. Meanwhile,statistical analysis was performed to select the best concentration. Results Different concentrations of platelet - rich plasma combined 10% fetal bovine serum resulted in varied proliferation rate from umbilical cord blood mesenchymal stem cells. The findings suggested that the proliferation rate in 500 ~1 000 pg/ ml concentration groups was superior to that of other groups. It was not 5 - day cultured until there was statistically significant(P ﹤ 0. 05). Conclusion Platelet - rich plasma can improve proliferation of the umbilical cord blood mesenchymal stem cells. Furthermore,the activity shows a dose dependent.%目的:初步探讨脐血来源富血小板血浆促进脐血间充质干细胞增殖及增殖最佳浓度。方法:收集足月健康剖宫产新生儿脐带血,采用组织块培养法进行脐血间

  8. Pluripotent stem cells isolated from umbilical cord form embryonic like bodies in a mesenchymal layer culture.

    Science.gov (United States)

    Tsagias, Nikos; Kouzi-Koliakos, Kokkona; Karagiannis, Vasileios; Tsikouras, P; Koliakos, George G

    2015-03-01

    Recently the matrix of umbilical cord began to use as an alternative source of stem cells additionally to the blood of umbilical cord. Umbilical cord has been used mainly for mesenchymal stem cell banking. The immunological characteristics of mesenchymal stem cells in combination with their ability to avoid rejection make them an attractive biological material for transplantations. In this study the isolation of small in size pluripotent stem cells from umbilical cord expressing early transcription factors with characteristics that resemble to embryonic stem cells is investigated. Pluripotent stem cells were isolated from human umbilical cords, by a new strategy method based on unique characteristics such as the small size and the positivity on early transcription factors OCT and Nanog. An enriched population of CXCR4(+) OCT(+) Nanog(+) CD45(-) small stem cells from the cord was isolated. This fraction was able to create alkaline phosphatase positive like spheres forms in a mesenchymal layer with multilineage differentiation capacity. Our results were assessed by RT PCR and electophoresis for the pluripotent genes. These data suggest that umbilical cord provides an attractive source not only of mesenchymal stem cells but moreover of pluripotent stem cells. The method described herein should be applied in the field of stem cell banking in addition to the classical umbilical cord harvesting method. Isolation of a population of cells with pluripotent characteristics from umbilical cord. Adoption of a second centrifugation step for the pluripotent stem isolation. Increasing the value of the cord and explaining the pluripotency. This work will enhance the value of umbilical cord harvesting.

  9. Percutaneous umbilical cord blood sampling - slideshow

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/presentations/100196.htm Percutaneous umbilical cord blood sampling - series—Normal anatomy To use the ... or blood disorder, your doctor may recommend percutaneous umbilical cord blood sampling (PUBS), which is performed at 18 ...

  10. Cotransplantation of human umbilical cord-derived mesenchymal stem cells and umbilical cord blood-derived CD34⁺ cells in a rabbit model of myocardial infarction.

    Science.gov (United States)

    Li, Tong; Ma, Qunxing; Ning, Meng; Zhao, Yue; Hou, Yuelong

    2014-02-01

    The objective of the study is to investigate the effect of hypoxic preconditioning on the immunomodulatory properties of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and the effect of cotransplantation of hUC-MSCs and human umbilical cord blood (hUCB)-derived CD34(+) cells in a rabbit model of myocardial infarction. hUC-MSCs with or without hypoxic preconditioning by cobalt chloride were plated in a 24-well plate, and then cocultured with hUCB-CD34(+) cells and PBMCs for 96 h at 37 °C in a 5% CO₂ incubator. For the negative control, hUC-MSCs were omitted. The groups were divided as follows: A1 = HP-MSCs + hUCB-CD34(+) cells + PBMC, A2 = hUC-MSCs + hUCB-CD34(+) cells + PBMC, Negative Control = hUCB-CD34(+) cells + PBMC. Culture supernatants of each group were collected, and the IL-10 and IFN-γ levels were measured by ELISA. A rabbit model of MI was established using a modified Fujita method. The animals were then randomized into three groups and received intramyocardial injections of 0.4 ml of PBS alone (n = 8, PBS group), hUC-MSCs in PBS (n = 8, hUC-MSCs group), or hUC-MSCs + CD34(+) cells in PBS (n = 8, Cotrans group), at four points in the infarct border zone. Echocardiography was performed at baseline, 4 weeks after MI induction, and 4 weeks after cell transplantation, respectively. Stem cell differentiation and neovascularization in the infracted area were characterized for the presence of cardiac Troponin I (cTnI) and CD31 by immunohistochemical staining, and the extent of myocardial fibrosis was evaluated by hematoxylin and eosin (H&E) and Masson's trichrome. IFN-γ was 27.00 ± 1.11, 14.20 ± 0.81, and 7.22 ± 0.14 pg/ml, and IL-10 was 31.68 ± 3.08, 61.42 ± 1.08, and 85.85 ± 1.80 pg/ml for the Control, A1 and A2 groups, respectively, which indicated that hUCB-CD34(+) cells induced immune reaction of peripheral blood mononuclear cells, whereas both hUC-MSCs and HP-MSCs showed an immunosuppressive effect, which, however, was attenuated

  11. Effect of Single and Double Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Focal Cerebral Ischemia in Rats

    Science.gov (United States)

    Park, Hyung Woo; Kim, Yona; Chang, Jong Wook; Yang, Yoon Sun; Oh, Wonil; Lee, Jae Min; Park, Hye Ran; Kim, Dong Gyu

    2017-01-01

    Stem cell therapies are administered during the acute phase of stroke to preserve the penumbral tissues from ischemic injury. However, the effect of repeated cell therapy during the acute phase remains unclear. In this study, we investigated and compared the functional outcome of single (two days post-injury) and repeated (two and nine days post-injury) treatment with human umbilical cord derived mesenchymal stem cells (hUCB-MSCs) after middle cerebral artery occlusion (MCAO). The rotarod and limb placement tests were utilized to investigate functional outcomes, while infarct volume and tissue damage were measured by immunofluorescent staining for neovascularization, neurogenesis, apoptosis, and inflammation in the penumbral zones. We observed notable motor dysfunction and a significant decrease in infarcted brain volume, as well as increases in neurons and vessels in both single and repeated hUCB-MSC treatments compared to the control group. Interestingly, repeated administration of hUCB-MSCs was not found to elicit additional or synergistic improvements over monotherapy. This study suggests that a clearer understanding of the therapeutic window after stroke will facilitate the development of more efficient treatment protocols in the clinical application of stem cell therapy. PMID:28243167

  12. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo

    2012-01-01

    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use.

  13. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; FENG Shi-qing

    2009-01-01

    Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury, Data sources Published articles (1983-2007) about hUCMSCs and spinal cord injury were selected using Medline. Study selection Articles selected were relevant to development of mesenchymal stem cells (MSCs) for transplantation in spinal cord injury therapy. Of 258 originally identifiied arises 51 were selected that specifically addressed the stated purpose. Results Recent work has revealed that hUCMSCs share most of the characteristics with MSCs derived from bone marrow and are more appropriate to transplantation for cell based therapies. Conclusions Human umbilical cord could be regarded as a source of MSCs for experimental and clinical needs. In addition, as a peculiar source of stem cells, hUCMSCs may play an important role in the treatment of spinal cord injury.

  14. Cord-Blood Banking

    Science.gov (United States)

    ... blood banks may capitalize on the fears of vulnerable new parents by providing misleading information about the statistics of stem cell transplants. Parents of children of ethnic or racial minorities, adopted children, or ...

  15. File list: His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiovascular Umbilical cord.../hg19/assembled/His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  16. File list: His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiovascular Umbilical cord.../hg19/assembled/His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  17. File list: His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiovascular Umbilical cord.../hg19/assembled/His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  18. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation.

    Science.gov (United States)

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Simeon, Vittorio; Calice, Giovanni; Raimondo, Stefania; Podestà, Marina; Santodirocco, Michele; Di Mauro, Lazzaro; La Rocca, Francesco; Caivano, Antonella; Morano, Annalisa; Frassoni, Francesco; Cilloni, Daniela; Del Vecchio, Luigi; Musto, Pellegrino

    2016-02-01

    Hematopoietic stem cells (HSC), including umbilical cord blood CD34+ stem cells (UCB-CD34+), are used for the treatment of several diseases. Although different studies suggest that bone marrow mesenchymal stem cells (BM-MSC) support hematopoiesis, the exact mechanism remains unclear. Recently, extracellular vesicles (EVs) have been described as a novel avenue of cell communication, which may mediate BM-MSC effect on HSC. In this work, we studied the interaction between UCB-CD34+ cells and BM-MSC derived EVs. First, by sequencing EV derived miRNAs and piRNAs we found that EVs contain RNAs able to influence UCB-CD34+ cell fate. Accordingly, a gene expression profile of UCB-CD34+ cells treated with EVs, identified about 100 down-regulated genes among those targeted by EV-derived miRNAs and piRNAs (e.g. miR-27b/MPL, miR-21/ANXA1, miR-181/EGR2), indicating that EV content was able to modify gene expression profile of receiving cells. Moreover, we demonstrated that UCB-CD34+ cells, exposed to EVs, significantly changed different biological functions, becoming more viable and less differentiated. UCB-CD34+ gene expression profile also identified 103 up-regulated genes, most of them codifying for chemokines, cytokines and their receptors, involved in chemotaxis of different BM cells, an essential function of hematopoietic reconstitution. Finally, the exposure of UCB-CD34+ cells to EVs caused an increased expression CXCR4, paralleled by an in vivo augmented migration from peripheral blood to BM niche in NSG mice. This study demonstrates the existence of a powerful cross talk between BM-MSC and UCB-CD34+ cells, mediated by EVs, providing new insight in the biology of cord blood transplantation.

  19. Expression of neurotrophic factors in injured spinal cord after transplantation of human-umbilical cord blood stem cells in rats.

    Science.gov (United States)

    Chung, Hyo-jin; Chung, Wook-hun; Lee, Jae-Hoon; Chung, Dai-Jung; Yang, Wo-Jong; Lee, A-Jin; Choi, Chi-Bong; Chang, Hwa-Seok; Kim, Dae-Hyun; Suh, Hyun Jung; Lee, Dong-Hun; Hwang, Soo-Han; Do, Sun Hee; Kim, Hwi-Yool

    2016-03-01

    We induced percutaneous spinal cord injuries (SCI) using a balloon catheter in 45 rats and transplanted human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) at the injury site. Locomotor function was significantly improved in hUCB-MSCs transplanted groups. Quantitative ELISA of extract from entire injured spinal cord showed increased expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3). Our results show that treatment of SCI with hUCB-MSCs can improve locomotor functions, and suggest that increased levels of BDNF, NGF and NT-3 in the injured spinal cord were the main therapeutic effect.

  20. Cord blood stem cell banking and transplantation.

    Science.gov (United States)

    Dhot, P S; Nair, V; Swarup, D; Sirohi, D; Ganguli, P

    2003-12-01

    Stem cells have the ability to divide for indefinite periods in culture and to give rise to specialized cells. Cord blood as a source of hematopoietic stem cells (HSC) has several advantages as it is easily available, involves non-invasive collection procedure and is better tolerated across the HLA barrier. Since the first cord blood transplant in 1988, over 2500 cord blood HSC transplants have been done world wide. Since then, the advantages of cord blood as a source of hematopietic stem cells for transplantation have become clear. Firstly, the proliferative capacity of HSC in cord blood is superior to that of cells in bone marrow or blood from adults. A 100 ml unit of cord blood contains 1/10th the number of nucleated cells and progenitor cells (CD34+ cells) present in 1000 ml of bone marrow, but because they proliferate rapidly, the stem cell in a single unit of cord blood can reconstitute the entire haematopoietic system. Secondly, the use of cord blood reduces the risk of graft vs host disease. Cord Blood Stem Cell banks have been established in Europe and United States to supply HSC for related and unrelated donors. Currently, more than 65,000 units are available and more than 2500 patients have received transplants of cord blood. Results in children have clearly shown that the number of nucleated cells in the infused cord blood influences the speed of recovery of neutrophils and platelets after myeloablative chemotherapy. The optimal dose is about 2 x 10(7) nucleated cells/kg of body weight. The present study was carried out for collection, separation, enumeration and cryopreservation of cord blood HSC and establishing a Cord Blood HSC Bank. 172 samples of cord blood HSC were collected after delivery of infant prior to expulsion of placenta. The average cord blood volume collected was 101.20 ml. Mononuclear cell count ranged from 7.36 to 25.6 x 10(7)/ml. Viability count of mononuclear cells was 98.1%. After 1 year of cryopreservation, the viability count on

  1. 脐血干细胞和脐带间充质干细胞联合移植治疗自闭症%Umbilical blood stem cell and umbilical cord mesenchymal stem cell combination transplantation on autism

    Institute of Scientific and Technical Information of China (English)

    杨华强; 张荣环; 李贞艳; 杜玲; 李东升; 张琼

    2012-01-01

    目的 探讨干细胞移植治疗自闭症的可行性、疗效和安全性.方法 将脐血干细胞和脐带间充质干细胞分别通过静脉输注和腰穿鞘内注射途径移植到自愿接受干细胞移植的2例自闭症患者体内.术后随访6个月定期观察患者临床症状及各项指标的变化,并采用儿童自闭症评定量表(CARS)和临床总体评定量表(CGIS)进行综合分析.结果 治疗后患者临床症状较治疗前明显好转,并且随访半年症状持续缓解无复发.2例患者CARS较治疗前明显降低、CGIS较治疗前明显好转,移植过程中及治疗后未出现严重的并发症和明显的不良反应.结论 脐血干细胞和脐带间充质干细胞联合移植治疗自闭症患者是一种值得借鉴的方法.%Objective It is to approach the feasibility, clinical effect and safety of stem cell transplantation in the treatment of autism. Methods Two patients with autism were received umbilical blood stem cell and umbilical cord mesenchymal stem cell combination transplantation by intravenous infusion and lumbar puncture intrathecal injections respectively. The patients were followed up for six months after transplantation, and the clinical symptoms and various indexes were observed. Childhood Autism Rating Scale ( CARS ) and Clinical Global Impression Scale ( CGIS ) were employed to assess the children of autism. Results The clinical symptoms of the two patients were improved obviously after transplantation treatment, and the patient ' s conditions were continuously relieved and no recurrence after six months was followed up. CARS were markedly decreased and CGIS were markedly improved than before treatment for all two patients. Various biochemical indicators were normal and the patient had no severe complications and clear side effects after transplantation. Conclusion The combination transplantation of umbilical blood stem cell and umbilical cord mesenchymal stem cell can be a new hope for autism

  2. Family-directed umbilical cord blood banking

    Science.gov (United States)

    Gluckman, Eliane; Ruggeri, Annalisa; Rocha, Vanderson; Baudoux, Etienne; Boo, Michael; Kurtzberg, Joanne; Welte, Kathy; Navarrete, Cristina; van Walraven, Suzanna M.

    2011-01-01

    Umbilical cord blood transplantation from HLA-identical siblings provides good results in children. These results support targeted efforts to bank family cord blood units that can be used for a sibling diagnosed with a disease which can be cured by allogeneic hematopoietic stem cell transplantation or for research that investigates the use of allogeneic or autologous cord blood cells. Over 500 patients transplanted with related cord blood units have been reported to the Eurocord registry with a 4-year overall survival of 91% for patients with non-malignant diseases and 56% for patients with malignant diseases. Main hematologic indications in children are leukemia, hemoglobinopathies or inherited hematologic, immunological or metabolic disorders. However, family-directed cord blood banking is not widely promoted; many cord blood units used in sibling transplantation have been obtained from private banks that do not meet the necessary criteria required to store these units. Marketing by private banks who predominantly store autologous cord blood units has created public confusion. There are very few current validated indications for autologous storage but some new indications might appear in the future. Little effort is devoted to provide unbiased information and to educate the public as to the distinction between the different types of banking, economic models and standards involved in such programs. In order to provide a better service for families in need, directed-family cord blood banking activities should be encouraged and closely monitored with common standards, and better information on current and future indications should be made available. PMID:21750089

  3. Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix.

    Science.gov (United States)

    Kumar, Kuldeep; Agarwal, Pranjali; Das, Kinsuk; Mili, Bhabesh; Madhusoodan, A P; Kumar, Ajay; Bag, Sadhan

    2016-12-01

    Cord tissue fills the umbilical cord around the blood vessels and contains types of stem cells (mesenchymal stem cells or MSCs) that are not generally found in cord blood. MSCs are the stem cells that give rise to many of the "support tissues" in the body, including bone, cartilage, fat and muscle. Umbilical Cord Tissue cells (UCTs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes and adipocytes have been previously isolated from different species including human, canine, murine, avian species etc. The present study documents the existence of similar multipotential stem cells in caprine UCTs having similar growth and morphological characteristics. The cells were isolated from caprine umbilical cord and cultivated in DMEM (low glucose) supplemented with 15% FBS, L-glutamine and antibiotics. Primary culture achieved confluence in 5-7days having spindle shaped morphology. The cells were morphologically homogeneous, showed robust proliferation ability with a population doubled time of 92.07h as well as normal karyotype. In vitro self-renewal capacity was demonstrated by colony-forming unit assay (CFU). The cells expressed MSC specific markers and showed multi-differentiation capability into adipogenic and osteogeneic. The results indicated that caprine UCTs (cUCTs) were isolated and characterized from umbilical cord tissue which can be used for tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Cord blood banking: 'providing cord blood banking for a nation'.

    Science.gov (United States)

    Querol, Sergio; Rubinstein, Pablo; Marsh, Steven G E; Goldman, John; Madrigal, Jose Alejandro

    2009-10-01

    Transplantation of cord blood (CB) is increasingly used as therapy for patients whose own marrow is affected by genetic mutations that prevent the development of normal cells of the blood or immune tissues, or for patients whose marrow has been destroyed in the course of treatment for leukaemia and other malignancies. CB is a rich source of haematopoietic stem cells, can be easily harvested and stored in frozen aliquots in a CB bank. The first public CB bank was established in 1993 allowing unrelated CB transplantation to become an option for patients lacking a suitable adult donor. Today, the results of CB transplantation are comparable to those of bone marrow transplants with several important advantages: the graft is available 'off the shelf', thereby reducing the waiting time, and the requirements of human lecucoyte antigen (HLA) matching are less restrictive than those of adult sources. The reduced requirement for HLA matching allows transplants between incompletely matched donors and recipients, thus reducing the size of the inventory required at the national level. This also mitigates the disadvantage encountered by persons of rare HLA genotypes or those who do not belong to populations of North Western European descent. Finally, national CB programmes can easily make available for research individual surplus units not meeting minimal criteria for clinical use.

  5. Preliminary evaluation of intravenous infusion and intrapancreatic injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of diabetic mice

    OpenAIRE

    Ngoc Kim Phan; Thuy Thanh Duong; Truc Le-Buu Pham; Loan Thi-Tung Dang; Anh Nguyen-Tu Bui; Vuong Minh Pham; Nhat Chau Truong; and Phuc Van Pham

    2014-01-01

    Type 1 diabetes mellitus is characterized by the destruction of pancreatic islet beta cells, which leads to insulin insufficiency, hyperglycemia, and reduced metabolic glucose level. Insulin replacement is the current standard therapy for type 1 diabetes mellitus but has several limitations. Pancreatic islet transplantation can result in the production of exogenous insulin, but its use is limited by immune-rejection and donor availability. Recent studies have shown that mesenchymal stem cells...

  6. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  7. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  8. Mesenchymal stem cells from human umbilical cord ameliorate testicular dysfunction in a male rat hypogonadism model

    Directory of Open Access Journals (Sweden)

    Zhi-Yuan Zhang

    2017-01-01

    Full Text Available Androgen deficiency is a physical disorder that not only affects adults but can also jeopardize children′s health. Because there are many disadvantages to using traditional androgen replacement therapy, we have herein attempted to explore the use of human umbilical cord mesenchymal stem cells for the treatment of androgen deficiency. We transplanted CM-Dil-labeled human umbilical cord mesenchymal stem cells into the testes of an ethane dimethanesulfonate (EDS-induced male rat hypogonadism model. Twenty-one days after transplantation, we found that blood testosterone levels in the therapy group were higher than that of the control group (P = 0.037, and using immunohistochemistry and flow cytometry, we observed that some of the CM-Dil-labeled cells expressed Leydig cell markers for cytochrome P450, family 11, subfamily A, polypeptide 1, and 3-β-hydroxysteroid dehydrogenase. We then recovered these cells and observed that they were still able to proliferate in vitro. The present study shows that mesenchymal stem cells from human umbilical cord may constitute a promising therapeutic modality for the treatment of male hypogonadism patients.

  9. File list: InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  10. File list: Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  11. File list: DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardiovascular Umbilical cord...-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  12. File list: ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831249,SRX831250,SRX831253,SRX831252,SRX831247

  13. File list: Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  14. File list: Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. File list: DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardiovascular Umbilical cord...-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  16. File list: ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831252,SRX831249,SRX831251

  17. File list: NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  18. File list: ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831249,SRX831252,SRX831247

  19. File list: NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  20. File list: NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  1. File list: Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  2. File list: Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  3. File list: ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831250,SRX831253,SRX831254,SRX831248,SRX831252

  4. File list: Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  5. File list: DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardiovascular Umbilical cord...-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  6. File list: Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  7. File list: Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  8. File list: Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  9. File list: InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  10. File list: InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  11. File list: InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  12. File list: NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  13. File list: Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  14. File list: Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. File list: Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  16. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LI Dong-rui; CAI Jian-hui

    2012-01-01

    Objective This literature review aims to summarize the methods of isolation,expansion,differentiation and preservation of human umbilical cord mesenchymal stem cells (hUCMSCs),for comprehensive understanding and practical use in preclinical research and clinical trials.Data sources All the literature reviewed was published over the last 10 years and is listed in PubMed and Chinese National Knowledge Infrastructure (CNKI).Studies were retrieved using the key word "human umbilical cord mesenchymal stem cells".Results Explants culture and enzymatic digestion are two methods to isolate hUCMSCs from WJ and there are modifications to improve these methods.Culture conditions may affect the expansion and differentiating orientations of hUCMSCs.In addition,hUCMSCs can maintain their multi-potential effects after being properly frozen and thawed.Conclusion Considering their multi-potential,convenient and non-invasive accessibility,low immunogenicity and the reported therapeutic effects in several different preclinical animal models,hUCMSCs have immense scope in regeneration medicine as a substitute for MSCs derived from bone marrow or umbilical cord blood.

  17. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    Science.gov (United States)

    Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2011-01-01

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290

  18. Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and β-catenin phosphorylation and following transplantation into the developing brain.

    Science.gov (United States)

    Lim, Jung Yeon; Park, Sang In; Kim, Seong Muk; Jun, Jin Ae; Oh, Ji Hyeon; Ryu, Chung Hun; Jeong, Chang Hyun; Park, Sun Hwa; Park, Soon A; Oh, Wonil; Chang, Jong Wook; Jeun, Sin-Soo

    2011-01-01

    The ability of mesenchymal stem cells (MSCs) to differentiate into neural cells makes them potential replacement therapeutic candidates in neurological diseases. Presently, overexpression of brain-derived neurotrophic factor (BDNF), which is crucial in the regulation of neural progenitor cell differentiation and maturation during development, was sufficient to convert the mesodermal cell fate of human umbilical cord blood-derived MSCs (hUCB-MSCs) into a neuronal fate in culture, in the absence of specialized induction chemicals. BDNF overexpressing hUCB-MSCs (MSCs-BDNF) yielded an increased number of neuron-like cells and, surprisingly, increased the expression of neuronal phenotype markers in a time-dependent manner compared with control hUCB-MSCs. In addition, MSCs-BDNF exhibited a decreased labeling for MSCs-related antigens such as CD44, CD73, and CD90, and decreased potential to differentiate into mesodermal lineages. Phosphorylation of the receptor tyrosine kinase B (TrkB), which is a receptor of BDNF, was increased significantly in MSC-BDNF. BDNF overexpression also increased the phosphorylation of β-catenin and extracellular signal-regulated kinases (ERKs). Inhibition of TrkB availability by treatment with the TrkB-specific inhibitor K252a blocked the BDNF-stimulated phosphorylation of β-catenin and ERKs, indicating the involvement of both the β-catenin and ERKs signals in the BDNF-stimulated and TrkB-mediated neural differentiation of hUCB-MSCs. Reduction of β-catenin availability using small interfering RNA-mediated gene silencing inhibited ERKs phosphorylation. However, β-catenin activation was maintained. In addition, inhibition of β-catenin and ERKs expression levels abrogated the BDNF-stimulated upregulation of neuronal phenotype markers. Furthermore, MSC-BDNF survived and migrated more extensively when grafted into the lateral ventricles of neonatal mouse brain, and differentiated significantly into neurons in the olfactory bulb and

  19. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane.

    Science.gov (United States)

    Lim, Ivor J; Phan, Toan Thang

    2014-01-01

    mesenchymal and epithelial stem cells can be isolated from the umbilical cord lining membrane, usefully regenerating not only mesenchymal tissue, such as bone, cartilage, and cardiac and striated muscle, but also epithelial tissue, such as skin, cornea, and liver. Both mesenchymal and epithelial CLSCs are immune privileged and resist rejection. Clinically, CLSCs have proved effective in the treatment of difficult-to-heal human wounds, such as diabetic ulcers, recalcitrant chronic wounds, and even persistent epithelial defects of the cornea. Heart and liver regeneration has been shown to be successful in animal studies and await human trials. CLSCs have also been shown to be an effective feeder layer for cord blood hematopoietic stem cells and, more recently, has been recognized as an abundant and high-quality source of cells for iPSC production. Banking of CLSCs by cord blood banks in both private and public settings is now available in many countries, so that individuals may have their personal stores of CLSCs for future translational applications for both themselves and their families. Cord lining stem cells are strongly positioned to be the future of cell therapy and regenerative medicine.

  20. Cultivo de células mesenquimais do sangue de cordão umbilical com e sem uso do gradiente de densidade Ficoll-Paque Blood mesenchymal stem cell culture from the umbilical cord with and without Ficoll-Paque density gradient method

    Directory of Open Access Journals (Sweden)

    Rosa Sayoko Kawasaki-Oyama

    2008-03-01

    Full Text Available OBJETIVOS: Implantação de técnicas de isolamento e cultivo de células-tronco mesenquimais do sangue de cordão umbilical humano, com e sem uso de gradiente de densidade Ficoll-Paque (d=1,077g/ml. MÉTODOS: Dez amostras de sangue de cordão umbilical humano de gestação a termo foram submetidas a dois procedimentos de cultivo de células-tronco mesenquimais: sem gradiente de densidade Ficoll-Paque e com gradiente de densidade. As células foram semeadas em frascos de 25cm² a uma densidade de 1x10(7células nucleadas/cm² (sem Ficoll e 1,0x10(6 células mononucleares/cm² (com Ficoll. As células aderentes foram submetidas a marcação citoquímica com fosfatase ácida e reativo de Schiff. RESULTADOS: No procedimento sem gradiente de densidade Ficoll, foram obtidas 2,0-13,0x10(7 células nucleadas (mediana=2,35x10(7 e, no procedimento com gradiente de densidade Ficoll, foram obtidas 3,7-15,7x10(6 células mononucleares (mediana=7,2x10(6. Em todas as culturas foram observadas células aderentes 24 horas após o início de cultivo. As células apresentaram morfologias fibroblastóides ou epitelióides. Na maioria das culturas houve proliferação celular nas primeiras semanas de cultivo, mas após a segunda semana, somente três culturas provenientes do método sem gradiente de densidade Ficoll-Paque mantiveram crescimento celular, formando focos confluentes de células. Essas culturas foram submetidas a várias etapas de tripsinização para espalhamento ou subdivisão e permaneceram em cultivo por períodos que variaram de dois a três meses. CONCLUSÃO: Nas amostras estudadas, o isolamento e cultivo de células-tronco mesenquimais do sangue de cordão umbilical humano pelo método sem gradiente de densidade Ficoll-Paque foi mais eficiente do que o método com gradiente de densidade Ficoll-Paque.OBJECTIVES: Implantation of cell separation and mesenchymal stem cell culture techniques from human umbilical cord blood with and without using the

  1. 脐血干细胞移植对帕金森病大鼠旋转行为的影响%Effect of human umbilical cord blood mesenchymal stem cells transplantation on rotational behavior of Parkinson's disease rats

    Institute of Scientific and Technical Information of China (English)

    樊志刚; 刘芳

    2012-01-01

    背景:目前帕金森病的临床治疗还是以药物为主,细胞移植实验也多见于骨髓间充质干细胞,脐血来源干细胞移植能否改善帕金森病的旋转行为报道较少.目的:观察脐血间充质干细胞移植对帕金森病大鼠旋转行为的影响.方法:帕金森病模型大鼠随机分成实验组和对照组.实验组大鼠纹状体内植入用Hoechst33258标记的第4代脐血间充质干细胞,对照组注射PBS.此后每周腹腔注射阿扑吗啡以观察大鼠的旋转行为;并在移植后3,6,9周用免疫荧光双标法检测间充质干细胞的存活、迁移情况以及胶质纤维酸性蛋白、神经元特异性烯醇化酶、酪氨酸羟化酶和突触素的表达.结果与结论:移植脐血间充质干细胞后大鼠的旋转行为与对照组相比有明显改善(P < 0.05);间充质干细胞可在大鼠脑内存活,随时间延长迁移范围扩大,分布于纹状体、胼胝体和皮质;胶质纤维酸性蛋白、神经元特异性烯醇化酶、酪氨酸羟化酶都有表达,突触素无表达.结果可见移植脐血间充质干细胞后能明显改善帕金森病大鼠旋转行为,有望成为治疗帕金森病的种子细胞.%BACKGROUND: To date, the clinical treatment of Parkinson's disease (PD) mainly depends on drug, and as for celltransplantation experiment, bone marrow mesenchymal stem cells (BMSCs) transplantation is the common method. The reportsabout whether umbilical cord blood mesenchymal stem cells (UCBMSCs) transplantation can improve the rotational behavior arerare.OBJECTIVE: To explore the effect of human UCBMSCs transplantation on rotational behavior of PD rats.METHODS: The PD rat models were divided into the experimental group (n=20) and the control group (n=20). The fourthgeneration of MSCs were marked by Hoechst33258 and then transplanted into rat striatum in experimental group, and the rats incontrol group were given PBS. Apomorphine was injected intraperitoneally to examine the rotational

  2. Ethical considerations in umbilical cord blood banking.

    Science.gov (United States)

    Fox, Nathan S; Chervenak, Frank A; McCullough, Laurence B

    2008-01-01

    Pregnant patients have the option at delivery of having their cord blood collected and stored for future use. At many hospitals, they have the option of donating their cord blood to the public banking system for future use by anyone who is an appropriate match (public banking). Patients also have the option of having their cord blood stored for a fee with a commercial/private company for future use within their family (private banking). Currently, private banking is not recommended by major obstetric and pediatric professional organizations. We applied current evidence of the risks and benefits of private and public cord blood banking and accepted ethical principles to answer the following two related questions: 1) Do obstetricians have an ethical obligation to comply with a request for private banking? and 2) Do obstetricians have an ethical obligation to routinely offer private banking to women who do not request it? The only situation where there is a known benefit to private banking is when public banking is not available and the patient currently has an affected family member who may benefit from cord blood therapy. We conclude that when presented with a request for private banking, obstetricians have an ethical obligation to explain the lack of proven benefit of this procedure. If the patient still requests private banking, it would be appropriate to comply, because there is minimal or no risk to the procedure. However, obstetricians are not ethically obligated to offer private banking, even when public banking is not available, except in the limited circumstance when the patient currently has an affected family member who may benefit from cord blood therapy.

  3. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xueyuan Liu; Dehua Li; Dong Jiang; Yan Fang

    2013-01-01

    Umbilical cord mesenchymal stem cel s were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cel s was induced with heparin and/or basic fi-broblast growth factor. Results confirmed that cel morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtu-bule-associated protein-2 expression and acetylcholine levels increased fol owing induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl-transferase expression was high fol owing inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen-tiation of umbilical cord mesenchymal stem cel s into motor neuron-like cel s. Simultaneously, um-bilical cord mesenchymal stem cel s could secrete acetylcholine.

  4. Repair of calvarial defects with human umbilical cord blood derived mesenchymal stem cells and demineralized bone matrix in athymic rats%人脐血间充质干细胞修复颅骨缺损的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘广鹏; 李宇琳; 孙剑; 崔磊; 张文杰; 曹谊林

    2010-01-01

    Objective To investigate the feasibility of using human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) and demineralized bone matrix (DBM) scaffolds to repair critical-sized calvarial defects in athymic rats. Methods Human UCB-MSCs were isolated, expanded and osteogenically induced in vitro. Osteogenic differentiation of UCB-MSCs was evaluated by Alizarin Red staining and measurement of calcium content respectively, and then the cells were seeded onto DBM scaffolds. Bilateral full-thickness defects (5 mm in diameter) of parietal bone were created in an athymic rat model. The defects were either repaired with UCB-MSC/DBM constructs (experimental group) or with DBM scaffolds alone (control group). Animals were harvested at 6 and 12 weeks post-implantation respectively, and defect repair was evaluated with gross observation, micro-CT measurement and histological analysis. Results Micro-CT showed that new bone was formed in the experimental group at 6 weeks post-implantation, while no sign of new bone formation was observed in the control group. At 12 weeks post-transplantation, scaffolds had been degraded almost completely in both sides. It was shown that an average of (78.19±6.45)% of each defect volume had been repaired in experimental side; while in the control side, only limited bone formed at the periphery of the defect. Histological examination revealed that the defect was repaired by trabecular bone tissue in experimental side at 12 weeks, while only fibrous connection was observed in the control group. Conclusions Tissue-engineered bone composed of osteogenically-induced human UCB-MSCs on DBM scaffolds could successfully repair the critical-sized calvarial defects in athymic rat models.%目的 应用人脐血间充质干细胞(umbilical cord blood derived mesenchymal stem cells,UCB-MSCs)复合脱钙骨材料构建组织工程化骨,修复裸大鼠颅骨标准缺损.方法 体外扩增培养、成骨诱导人UCB-MSCs,采用Alizarin Red染色

  5. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

    Directory of Open Access Journals (Sweden)

    Irina Arutyunyan

    2016-01-01

    Full Text Available The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria.

  6. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

    Science.gov (United States)

    2016-01-01

    The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria. PMID:27651799

  7. Umbilical cord blood transplantation: the first 25 years and beyond.

    Science.gov (United States)

    Ballen, Karen K; Gluckman, Eliane; Broxmeyer, Hal E

    2013-07-25

    Umbilical cord blood is an alternative hematopoietic stem cell source for patients with hematologic diseases who can be cured by allogeneic hematopoietic cell transplantation. Initially, umbilical cord blood transplantation was limited to children, given the low cell dose infused. Both related and unrelated cord blood transplants have been performed with high rates of success for a variety of hematologic disorders and metabolic storage diseases in the pediatric setting. The results for adult umbilical cord blood transplantation have improved, with greater emphasis on cord blood units of sufficient cell dose and human leukocyte antigen match and with the use of double umbilical cord blood units and improved supportive care techniques. Cord blood expansion trials have recently shown improvement in time to engraftment. Umbilical cord blood is being compared with other graft sources in both retrospective and prospective trials. The growth of the field over the last 25 years and the plans for future exploration are discussed.

  8. Histamine release from cord blood basophils

    DEFF Research Database (Denmark)

    Nielsen, Bent Windelborg; Damsgaard, Tine Engberg; Herlin, Troels

    1990-01-01

    The histamine release (HR) after challenge with anti-IgE, concanavalin A, N-formyl-met-leu-phe and the calcium ionophore A23187 from 97 cord blood samples was determined by a microfiber-based assay. Maximum HR with anti-IgE showed great inter-individual variation (median: 20.5; range: 1-104 ng...

  9. Histamine release from cord blood basophils

    DEFF Research Database (Denmark)

    Nielsen, Bent Windelborg; Damsgaard, Tine Engberg; Herlin, Troels

    1990-01-01

    The histamine release (HR) after challenge with anti-IgE, concanavalin A, N-formyl-met-leu-phe and the calcium ionophore A23187 from 97 cord blood samples was determined by a microfiber-based assay. Maximum HR with anti-IgE showed great inter-individual variation (median: 20.5; range: 1-104 ng...

  10. Arrest—Individual Treatment with Cord Blood

    Directory of Open Access Journals (Sweden)

    A. Jensen

    2013-01-01

    Full Text Available Each year, thousands of children incur brain damage that results in lifelong sequelae. Therefore, based on experimental evidence, we explored the therapeutic potential of human cord blood, known to contain stem cells, to examine the functional neuroregeneration in a child with cerebral palsy after cardiac arrest. The boy, whose cord blood was stored at birth, was 2.5 years old and normally developed when global ischemic brain damage occurred resulting in a persistent vegetative state. Nine weeks later, he received autologous cord blood (91.7 mL, cryopreserved, 5.75×10e8 mononuclear cells intravenously. Active rehabilitation (physio- and ergotherapy was provided daily, follow-up at 2, 5, 12, 24, 30, and 40 months. At 2-months follow-up the boy’s motor control improved, spastic paresis was largely reduced, and eyesight was recovered, as did the electroencephalogram. He smiled when played with, was able to sit and to speak simple words. At 40 months, independent eating, walking in gait trainer, crawling, and moving from prone position to free sitting were possible, and there was significantly improved receptive and expressive speech competence (four-word sentences, 200 words. This remarkable functional neuroregeneration is difficult to explain by intense active rehabilitation alone and suggests that autologous cord blood transplantation may be an additional and causative treatment of pediatric cerebral palsy after brain damage.

  11. Pathogens in Maternal Blood and Fetal Cord Blood Using Q-Pcr Assay

    Directory of Open Access Journals (Sweden)

    Guang Qiong Hou

    2006-06-01

    Conclusion: Our results revealed an unexpectedly high incidence of pathogens in fetal cord blood. Screening for the above pathogens in donor cord blood in cord blood banks using Q-PCR is strongly urged to decrease morbidity and mortality rates in fetal cord blood stem cell transplant recipients.

  12. ACOG Committee Opinion No. 648: Umbilical Cord Blood Banking.

    Science.gov (United States)

    2015-12-01

    Once considered a waste product that was discarded with the placenta, umbilical cord blood is now known to contain potentially life-saving hematopoietic stem cells. When used in hematopoietic stem cell transplantation, umbilical cord blood offers several distinct advantages over bone marrow or peripheral stem cells. However, umbilical cord blood collection is not part of routine obstetric care and is not medically indicated. Umbilical cord blood collection should not compromise obstetric or neonatal care or alter routine practice for the timing of umbilical cord clamping. If a patient requests information on umbilical cord blood banking, balanced and accurate information regarding the advantages and disadvantages of public and private umbilical cord blood banking should be provided. The routine storage of umbilical cord blood as "biologic insurance" against future disease is not recommended.

  13. Committee Opinion No. 648 Summary: Umbilical Cord Blood Banking.

    Science.gov (United States)

    2015-12-01

    Once considered a waste product that was discarded with the placenta, umbilical cord blood is now known to contain potentially life-saving hematopoietic stem cells. When used in hematopoietic stem cell transplantation, umbilical cord blood offers several distinct advantages over bone marrow or peripheral stem cells. However, umbilical cord blood collection is not part of routine obstetric care and is not medically indicated. Umbilical cord blood collection should not compromise obstetric or neonatal care or alter routine practice for the timing of umbilical cord clamping. If a patient requests information on umbilical cord blood banking, balanced and accurate information regarding the advantages and disadvantages of public and private umbilical cord blood banking should be provided. The routine storage of umbilical cord blood as "biologic insurance" against future disease is not recommended.

  14. Umbilical cord blood graft enhancement strategies: has the time come to move these into the clinic?

    Science.gov (United States)

    Norkin, M; Lazarus, H M; Wingard, J R

    2013-07-01

    Umbilical cord blood (UCB) is an attractive stem cell graft option for patients who need allogeneic hematopoietic stem cell support, but lack a suitable HLA-matched donor. However, the limited number of hematopoietic progenitor cells in a single cord blood unit can lead to an increased risk of graft failure, delayed hematological recovery and prolonged immunosuppression, particularly in adult patients. Several strategies to overcome these potential limitations are being evaluated. In this review, we discuss promising ex vivo manipulations to enhance cord blood engraftment capacity such as culture of UCB cells with stimulatory cytokines and growth factors, mesenchymal cells, Notch ligand, copper chelators, prostaglandins, complement components, nicotinamide and CD26/DPPIV inhibitors. All these approaches are now in early clinical trials. However, despite the fact that several cord blood enhancement strategies have resulted in increased numbers of progenitor cells and faster neutrophil recovery, the ability of these techniques to significantly shorten engraftment time and permit the use of cord units with low numbers of total nucleated cells, or accomplish reliable engraftment with a single cord, have yet to be convincingly demonstrated. The ultimate clinical value of ex vivo cord blood expansion or manipulation has not been defined yet, and the current data do not permit predicting which technology will prove to be the optimal strategy. Nevertheless, expectations remain high that eventually ex vivo enhancement will be able to improve clinical outcomes and significantly extend the applicability of UCB transplantation.

  15. Hypoxic chondrogenic differentiation of human cord blood stem cells in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Søballe, Kjeld; Ulrich-Vinther, Michael

    Background: Articular chondrocytes and bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the favoured cells for cartilage tissue engineering. Umbilical cord blood has proven an alternative source of MSCs and moreover they may be more potent chondroprogenitor cells than bonemarrow...... MSCs. Purpose / Aim of Study: Multilineage progenitor cells (MLPCs) are clonal cord blood-derived MSCs and may therefore provide a cell source with more reproducible outcomes compared to heterogeneous primary MSC cultures. Materials and Methods: We evaluated the chondrogenic potency of MLPCs...

  16. Characterization of Adherent Nonhematopoietic Cells Derived from Human Umbilical Cord Blood

    Institute of Scientific and Technical Information of China (English)

    安小惠; 蔡国平

    2003-01-01

    To confirm and characterize the adherent fibroblast-like progenitors in human umbilical cord blood, we isolated mononuclear cells from human umbilical cord blood by Ficoll-Hypaque.Two main morphologically different kinds of cells were formed by culturing the cells in collagen-coated 24-well plastic dishes and flasks.One type was the adherent fibroblast-like cells, while the other was loosely adherent clonally expanded round cells.Our experiments demonstrate that the adherent fibroblast-like cells possess multilineage potential, including the ability to differentiate into endothelial-like cells and to express the mesenchymal cell marker.

  17. Effects of human umbilical cord mesenchymal stem cells therapy on CD61,CD62P and CD54 in elderly patients with old myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    李侠

    2013-01-01

    Objective To study the effects of human umbilical cord mesenchymal stem cells (hUCM-SCs) therapy on peripheral blood CD61,CD62P and CD54 in elderly patients with old myocardial infarction.Methods From July2010 to August 2012,30 elderly patients with old myocardial infarction were randomly selected.Patients were

  18. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Cunping Yin

    2016-01-01

    Full Text Available Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  19. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews.

    Science.gov (United States)

    Yin, Cunping; Liang, Yuan; Zhang, Jian; Ruan, Guangping; Li, Zian; Pang, Rongqing; Pan, Xinghua

    2016-01-01

    Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs) in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  20. 脐血间充质干细胞移植治疗低血糖昏迷1例%Umbilical cord blood mesenchymal stem cells transplantation for treating hypoglycemic coma in one case

    Institute of Scientific and Technical Information of China (English)

    李平; 周瑞; 晏小琼; 余勇飞; 阮清源

    2011-01-01

    背景:成体干细胞可以跨系跨胚层分化为所有的组织细胞类型,在特定的条件下,可分化为骨、软骨、脂肪、肌肉和神经细胞等,替代、修复已受损的组织、细胞,达到功能修复的目的.目的:观察脐血间充质干细胞治疗低血糖昏迷并发缺氧缺血性脑病的疗效.方法:对收治的1 例低血糖昏迷并发缺氧缺血性脑病及肺部感染的患者,给予抗自由基、营养神经、促醒、抗感染、康复理疗等综合治疗的同时,从静脉滴注进行脐血间充质干细胞治疗.观察住院期间意识恢复情况、脑电图、日常生活能力评分及随访结果.结果与结论:治疗近1个月后患者运动、认知功能明显恢复,复查脑电图可及a波,日常生活活动能力评分50分,70 d后随访,患者未出现不良反应,表明干细胞治疗近期疗效安全.提示脐血间充质干细胞治疗低血糖昏迷并发缺氧缺血性脑病安全有效.%BACKGROUND: Adult stem cells can differentiate into all kinds of cell type. Under special conditions, adult stem cells can differentiate into osteoblasts, chond rocytes, adipocytes, muscle cells and neural cells to replace and to repair damaged tissues and cells, to achieve functional recovery purposes.OBJECTIVE: To observe the effect of umbilical cord blood mesenchymal stem cells (UCB-MSCs) therapy in hypoglycemic coma combined with hypoxic ischemic encephalopathy.METHODS: One case of hypoglycemic coma combined with hypoxic ischemic encephalopathy and pulmonary infection was admitted. This patient received a combined treatment, including anti-free radical, nerve-nurturing, consciousness-regaining,anti-infective therapy, rehabilitation and physiotherapy. At the same time, we also gave him the UCB-MSCs therapy by intravenous infusion. The recovery of consciousness, electroencephalogram, activity of daily living and follow-up results were observed during hospital stay.RESULTS AND CONCLUSION: One month later, the

  1. 脐血间充质干细胞移植治疗儿童型脊肌萎缩症1例%Umbilical cord blood mesenchymal stem cell transplantation for treatment of a child with spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    杜玲; 杨华强; 王娜; 罗国君

    2011-01-01

    BACKGROUND: Many animal and clinical studies have reported that the safe and effective usage of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) transplantation for treatment of neurological genetic diseases.OBJECTIVE: To investigate the feasibility and effect of UCB-MSCs transplantation in the treatment of spinal muscular atrophy (SMA).METHODS: A child admitted at January 2010 had been confirmed as having SMA, and drug and rehabilitation therapies were invalid. Then, the child received UCB-MSCs transplantation via the first intravenous infusion and three times of subarachnoid injection, once a week, (4-6)×107 cells once and four times as a course. Neurological physical examination, biochemical test, muscle enzymes detection, FIM scoring and electromyography (EMG) examination were conducted. RESULTS AND CONCLUSION: Compared with prior to transplantation, the level of muscle enzymes decreased, FIM scores were increased from 68 to 93 points, EMG results showed that the motor units with re-contraction in each 10.0 ms were increased that the motor function was improved, the lower extremity muscle strength elevated, and the self-care ability was improved in the SMA child at 6 months after transplantation. During the 10-month follow-up, the child had no adverse effects. It is indicated that UCB-MSCs transplantation is effective to treat SMA, and the neurological function has a remarkable restoration.%背景:国内外已有实验动物和临床应用脐血间充质干细胞移植治疗神经系统遗传性疾病安全、有效的诸多报道.目的:探讨脐血间充质干细胞移植治疗儿童进行性脊髓性肌肉萎缩症的可行性及效果.方法:2010-01收治1例确诊为儿童进行性脊髓性肌肉萎缩症患儿,经药物及康复治疗无效,行脐血间充质干细胞移植治疗.移植途径采取首次静脉输注,后3次蛛网膜下腔注入,1次/周,每次细胞数量达(4~6)×107个,4次为1个疗程.治疗前和治疗后半年均需

  2. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  3. Percutaneous ultrasound guided umbilical cord blood sampling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Hyup; Choi, B. I.; Kim, C. W.; Youn, B. H.; Shin, H. C.; Kim, S. O. [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1989-12-15

    This report describes a technique and the result of percutaneous ultrasound-guided umbilical cord blood sampling and its potential use in the management of diagnostic problems in the second and third trimester of pregnancy. This method has been employed in the prenatal assessment of 19 fetuses at risk for chromosomal disorders, fetal hypoxia and hematologic disorders. This simple and rapid procedure offers a safe access to the fetal circulation

  4. Umbilical cord blood mercury levels in China

    Institute of Scientific and Technical Information of China (English)

    Meiqin Wu,; Chonghuai Yan; Jian Xu; Wei Wu; Hui Li; Xin Zhou

    2013-01-01

    Mercury (Hg) is a well-known neurotoxicant.Hg exposure at high levels can harm individuals of all ages.Even low level exposure to Hg can damage the brain of fetuses and young children,and affect their central nervous system and cognitive development.The aims of our study were to measure total Hg levels in infant umbilical cord blood and to investigate the risk factors associated with total Hg cord blood levels in various cities in China.Our goal was to provide clues for the prevention of Hg exposure in utero.The results indicated that the average cord blood mercury levels (CBMLs) were (1.81 ± 1.93) μg/L,which were lower than those found in most previous studies.The concentrations also differed according to geographic region.The CBMLs were not only associated with family economic and living conditions,but also with diet in pregnant women,especially the intake of marine fish,shellfish,poultry,formula milk and fruits.

  5. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  6. Umbilical cord blood transplantation: A review of atricles

    OpenAIRE

    1999-01-01

    Interest in umbilical cord blood as an alternative source of hematopietic stem cells is growing rapidly. Umbilical cord blood offers the clinician a source of hematopoietic stem cells that are readily available and rarely contaminated by latent viruses. Moreover, the collection of umbilical cord blood poses no risk to the donor. There is no need for general anesthesia or blood replacement and the procedure causes no discomfort. Current clinical experience suggests that the incidence of GVHD i...

  7. Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

    Directory of Open Access Journals (Sweden)

    Claire Mennan

    2013-01-01

    Full Text Available Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs sourced from several different cord regions, including artery, vein, cord lining, and Wharton’s jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics.

  8. Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

    Science.gov (United States)

    Wright, Karina; Bhattacharjee, Atanu; Balain, Birender; Richardson, James; Roberts, Sally

    2013-01-01

    Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs) sourced from several different cord regions, including artery, vein, cord lining, and Wharton's jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics. PMID:23984420

  9. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.

    Science.gov (United States)

    Liu, Jia; Chen, Jian; Liu, Bin; Yang, Cuilan; Xie, Denghui; Zheng, Xiaochen; Xu, Song; Chen, Tianyu; Wang, Liang; Zhang, Zhongmin; Bai, Xiaochun; Jin, Dadi

    2013-02-15

    The stem cell-based experimental therapies are partially successful for the recovery of spinal cord injury (SCI). Recently, acellular spinal cord (ASC) scaffolds which mimic native extracellular matrix (ECM) have been successfully prepared. This study aimed at investigating whether the spinal cord lesion gap could be bridged by implantation of bionic-designed ASC scaffold alone and seeded with human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) respectively, and their effects on functional improvement. A laterally hemisected SCI lesion was performed in adult Sprague-Dawley (SD) rats (n=36) and ASC scaffolds seeded with or without hUCB-MSCs were implanted into the lesion immediately. All rats were behaviorally tested using the Basso-Beattie-Bresnahan (BBB) test once a week for 8weeks. Behavioral analysis showed that there was significant locomotor recovery improvement in combined treatment group (ASC scaffold and ASC scaffold+hUCB-MSCs) as compared with the SCI only group (pspinal cord cavity and promote long-distance axon regeneration and functional recovery in SCI rats.

  10. Umbilical cord blood transplantation: A review of atricles

    Directory of Open Access Journals (Sweden)

    Asadi Amoly F

    1999-08-01

    Full Text Available Interest in umbilical cord blood as an alternative source of hematopietic stem cells is growing rapidly. Umbilical cord blood offers the clinician a source of hematopoietic stem cells that are readily available and rarely contaminated by latent viruses. Moreover, the collection of umbilical cord blood poses no risk to the donor. There is no need for general anesthesia or blood replacement and the procedure causes no discomfort. Current clinical experience suggests that the incidence of GVHD in umbilical cord blood transplantation is low. These results and associated laboratory findings pose intriguing possibilities for the future of umbilical cord blood stem cells in the setting of unrelated donor transplantation. There are other intriguing possibilities for example cord blood may be an optimal source of pluripotential stem cells for use in genetherapy.

  11. Cord blood transplantation: can we make it better?

    Directory of Open Access Journals (Sweden)

    Leland eMetheny

    2013-09-01

    Full Text Available Umbilical cord blood is an established source of hematopoietic stem cells for transplantation. It enjoys several advantages over bone marrow or peripheral blood, including increased tolerance for Human Leukocyte Antigen mismatches, decreased incidence of graft-versus-host disease, and easy availability. Unrelated cord blood does have limitations, however, especially in the treatment of adults. In the 24 years since the first umbilical cord blood transplant was performed, significant progress has been made, but delayed hematopoietic engraftment and increased treatment related mortality remain obstacles to widespread use. Here we summarize the latest results of unrelated cord blood transplants, and review strategies under investigation to improve clinical outcomes.

  12. Umbilical cord mesenchymal stem cell transplantation for the treatment of Duchenne muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Yang; Yanxiang Wu; Xinping Liu; Yifeng Xu; Naiwu Lü; Yibin Zhang; Hongmei Wang; Xin Lü; Jiping Cui; Jinxu Zhou; Hong Shan

    2011-01-01

    Due to their relative abundance, stable biological properties and excellent reproductive activity,umbilical cord mesenchymal stem cells have previously been utilized for the treatment of Duchenne muscular dystrophy, which is a muscular atrophy disease. Three patients who were clinically and pathologically diagnosed with Duchenne muscular dystrophy were transplanted with umbilical cord mesenchymal stem cells by intravenous infusion, in combination with multi-point intramuscular injection. They were followed up for 12 months after cell transplantation. Results showed that clinical symptoms significantly improved, daily living activity and muscle strength were enhanced,the sero-enzyme, electromyogram, and MRI scans showed improvement, and dystrophin was expressed in the muscle cell membrane. Hematoxylin-eosin staining of a muscle biopsy revealed that muscle fibers were well arranged, fibrous degeneration was alleviated, and fat infiltration was improved. These pieces of evidence suggest that umbilical cord mesenchymal stem cell transplantation can be considered as a new regimen for Duchenne muscular dystrophy.

  13. Free erythrocyte porphyrins in cord blood.

    Science.gov (United States)

    Gottuso, M A; Oski, B F; Oski, F A

    1978-05-01

    Red cell free erythrocyte porphyrin determinations were performed on cord blood specimens from 236 term infants and on capillary blood specimens from 63 preterm infants weighing less than 1,500 gm, during the first week of life. These results were contrasted with those obtained from 398 normal infants and children ages 1 to 6 years. The mean FEP value for the infants was significantly higher than that observed in the normal control subjects. In 10.5% of the term infants and 15.9% of the preterm infants, values in excess of 120 microgram/dl RBCs, the highest value recorded in the normal subjects, were observed. Elevations in FEP values were not related to either blood lead concentration or hematocrit levels in the infants. Infants with elevated FEP values were found to have lower serum iron and transferrin saturation values than did infants with low FEP values. These findings suggest that elevations in cord blood FEP values may indicate a state of relative iron deficiency present at birth.

  14. Quality of Red Blood Cells Isolated from Umbilical Cord Blood Stored at Room Temperature

    Directory of Open Access Journals (Sweden)

    Mariia Zhurova

    2012-01-01

    Full Text Available Red blood cells (RBCs from cord blood contain fetal hemoglobin that is predominant in newborns and, therefore, may be more appropriate for neonatal transfusions than currently transfused adult RBCs. Post-collection, cord blood can be stored at room temperature for several days before it is processed for stem cells isolation, with little known about how these conditions affect currently discarded RBCs. The present study examined the effect of the duration cord blood spent at room temperature and other cord blood characteristics on cord RBC quality. RBCs were tested immediately after their isolation from cord blood using a broad panel of quality assays. No significant decrease in cord RBC quality was observed during the first 65 hours of storage at room temperature. The ratio of cord blood to anticoagulant was associated with RBC quality and needs to be optimized in future. This knowledge will assist in future development of cord RBC transfusion product.

  15. Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells by Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Shirin FARIVAR*

    2015-01-01

    chick embryos. J Exp Zool A Comp Exp Biol 2004 Apr 1;301(4:280-9.Mitchell KE, Weiss ML. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 2003;21(1:50-60.Marcus AJ, Woodbury D. Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 2008 Jun;12(3:730-42. doi: 10.1111/j.1582- 4934.2008.00221.x. Epub 2008 Jan 11.Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Quian H, Zhang X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 2006 Sep;30(9:681-7. Epub 2006 Apr 22.In ‘tAnker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FHJ, Willemze R, Fibbe WE, Kanhai HHH. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003;102(4:1548-49.Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 2008 Jan;26(1:182-92. Epub 2007 Sep 27.Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL, Yu XJ. Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int 2006 Jul;30(7:569-75. Epub 2006 Mar 6.Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006 May;24(5:1294-301. Epub 2006 Jan 12.Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005 Nov;33(11:1402-16.Jackson JS, Golding JP, Chapon C, Jones WA, Bhakoo KK: Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 2010 Jun 15;1(2:17. doi: 10.1186/scrt17.Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative

  16. Cost-effectiveness of private umbilical cord blood banking.

    Science.gov (United States)

    Kaimal, Anjali J; Smith, Catherine C; Laros, Russell K; Caughey, Aaron B; Cheng, Yvonne W

    2009-10-01

    To investigate the cost-effectiveness of private umbilical cord blood banking. A decision-analytic model was designed comparing private umbilical cord blood banking with no umbilical cord blood banking. Baseline assumptions included a cost of $3,620 for umbilical cord blood banking and storage for 20 years, a 0.04% chance of requiring an autologous stem cell transplant, a 0.07% chance of a sibling requiring an allogenic stem cell transplant, and a 50% reduction in risk of graft-versus-host disease if a sibling uses banked umbilical cord blood. Private cord blood banking is not cost-effective because it cost an additional $1,374,246 per life-year gained. In sensitivity analysis, if the cost of umbilical cord blood banking is less than $262 or the likelihood of a child needing a stem cell transplant is greater than 1 in 110, private umbilical cord blood banking becomes cost-effective. Currently, private umbilical cord blood banking is cost-effective only for children with a very high likelihood of needing a stem cell transplant. Patients considering private blood banking should be informed of the remote likelihood that a unit will be used for a child or another family member. III.

  17. visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnet-ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cordvia the subarachnoid space. An outer magnetic ifeld was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen-chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunolfuorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid-ance. Our data conifrm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic ifeld guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively trackedin vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  18. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Wei Zhao; Wei Liu; Ye Zhou; Jingqiao Jia; Lifeng Yang

    2014-01-01

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the ifeld of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the resto-ration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  19. Human umbilical cord-derived mesenchymal stem cells can secrete insulin in vitro and in vivo.

    Science.gov (United States)

    Boroujeni, Zahra Niki; Aleyasin, Ahmad

    2014-01-01

    Diabetes mellitus is characterized by autoimmune destruction of pancreatic beta cells, leading to decreased insulin production. Differentiation of mesenchymal stem cells (MSCs) into insulin-producing cells offers novel ways of diabetes treatment. MSCs can be isolated from the human umbilical cord tissue and differentiate into insulin-secreting cells. Human umbilical cord-derived stem cells (hUDSCs) were obtained after birth, selected by plastic adhesion, and characterized by flow cytometric analysis. hUDSCs were transduced with nonintegrated lentivirus harboring PDX1 (nonintegrated LV-PDX1) and was cultured in differentiation medium in 21 days. Pancreatic duodenum homeobox protein-1 (PDX1) is a transcription factor in pancreatic development. Significant expressions of PDX1, neurogenin3 (Ngn3), glucagon, glucose transporter2 (Glut2), and somatostatin were detected by quantitative RT-PCR (P insulin proteins were shown by immunocytochemistry analysis. Insulin secretion of hUDSCs(PDX1+) in the high-glucose medium was 1.8 μU/mL. They were used for treatment of diabetic rats and could decrease the blood glucose level from 400 mg/dL to a normal level in 4 days. In conclusion, our results demonstrated that hUDSCs are able to differentiate into insulin-producing cells by transduction with nonintegrated LV-PDX1. These hUDSCs(PDX1+) have the potential to be used as a viable resource in cell-based gene therapy of type 1 diabetes.

  20. The problem of cord blood banking

    Directory of Open Access Journals (Sweden)

    Shved A. D.

    2013-03-01

    Full Text Available The review considers the literature data on issues of cord blood (CB banking in different countries and regions. The existing forms of banks are private, mixed and public, the latter is preferred by most clinicians who are experienced in stem cell transplantation. All the researchers admit the need for development of CB banks, but they note that the progress depends on several factors: the deficit of government financial support and poor people’s awareness of the possibilities of stem cell therapy, the appropriateness and relevance of public resources of CB units in National Banks.

  1. Cord blood banking activity in Iran National Cord Blood Bank: a two years experience.

    Science.gov (United States)

    Jamali, Mostafa; Atarodi, Kamran; Nakhlestani, Mozhdeh; Abolghasemi, Hasan; Sadegh, Hosein; Faranoosh, Mohammad; Golzade, Khadije; Fadai, Razieh; Niknam, Fereshte; Zarif, Mahin Nikougoftar

    2014-02-01

    Today umbilical cord blood (UCB) has known as a commonly used source of hematopoietic stem cells for allogeneic transplantation and many cord blood banks have been established around the world for collection and cryopreservation of cord blood units. Herein, we describe our experience at Iran National Cord Blood Bank (INCBB) during 2 years of activity. From November 2010 to 2012, UCBs were collected from 5 hospitals in Tehran. All the collection, processing, testing, cryopreservation and storage procedures were done according to standard operation procedures. Total nucleated cells (TNC) count, viability test, CD34+ cell count, colony forming unit (CFU) assay, screening tests and HLA typing were done on all banked units. Within 3770 collected units, only 32.9% fulfilled banking criteria. The mean volume of units was 105.2 ml and after volume reduction the mean of TNC, viability, CD34+ cells and CFUs was 10.76×10(8), 95.2%, 2.99×10(6) and 7.1×10(5), respectively. One unit was transplanted at Dec 2012 to a 5-year old patient with five of six HLA compatibilities. In our country banking of UCB is new and high rate of hematopoietic stem cell transplants needs expanding CB banks capacity to find more matching units, optimization of methods and sharing experiences to improve biological characterization of units.

  2. Cord Blood Transplantation Study (COBLT): cord blood bank standard operating procedures.

    Science.gov (United States)

    Fraser, J K; Cairo, M S; Wagner, E L; McCurdy, P R; Baxter-Lowe, L A; Carter, S L; Kernan, N A; Lill, M C; Slone, V; Wagner, J E; Wallas, C H; Kurtzberg, J

    1998-12-01

    In 1995, the National Heart Lung and Blood Institute (NHLBI) solicited requests for a proposal (RFP) entitled "Transplant Centers for Clinical Research on Transplantation of Umbilical Cord Stem and Progenitor Cells." Three banks, six transplant centers, and one medical coordinating center (MCC) (Table 1) were funded with the overall goal of banking cord blood units (CBU) using a single manual of operations. Furthermore, the clinical protocols to evaluate the transplant outcome for adult and pediatric recipients of these well-characterized CBU would be analyzed in a uniform fashion. Because of the intense interest of the transplantation community in the policies and procedures for cord blood collection and processing, the principal investigators of the cord blood banks (CBB) and NHLBI elected to submit for publication the rationale and an abridged, but detailed, version of the standard operating procedures (SOP) developed between October 1996 and July 1998 prior to the initiation of the clinical protocols to be performed with these CBU. As the SOP will be refined over time, the complete SOP and subsequent amendments will be published and continually updated on the websites from the MCC-The EMMES Corporation (www.EMMES.com). All forms referred to in this document may be obtained from the EMMES website. It is hoped that the publication of this document will lay down a framework that will not only facilitate the development of other CBB but also help us more rapidly define what constitutes an "acceptable" CBU product.

  3. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats.

    Science.gov (United States)

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a description of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury.

  4. [Marrow donor registration and cord blood banking: current issues].

    Science.gov (United States)

    Takanashi, Minoko

    2016-03-01

    Marrow donor registration and cord blood banking are essential components of the infrastructure required for unrelated haemopoietic stem cell transplantations. We now have a new law to support and regulate the Marrow Donor Coordination Agency, Cord Blood Banks and the Haematopoietic Stem Cell Provision Support Organization. We also need to have a specific goal for bone marrow and peripheral blood stem cell donor registration, a minimum cord blood bank size, and the demographic data to back the medical needs for unrelated haemopoietic stem cell transplantations. To improve bone marrow and peripheral blood stem cell transplantations, we need to recruit younger adults for marrow registration and make greater efforts to shorten the coordinating period. For cord blood transplantations, uniting and empowering the cord blood collection sites is needed, to encourage and motivate obstetricians and other staff, as the quality of cord blood units is primarily determined during collection. Also, the cord blood banks must work cooperatively to provide cord blood internationally, which includes coordinating with international agencies and their regulations.

  5. Safety and efficacy of cord blood mononuclear cells and umbilical cord mesenchymal stem cells therapy for childhood autism%脐血单个核细胞和脐带间充质干细胞治疗儿童孤独症的安全性与有效性

    Institute of Scientific and Technical Information of China (English)

    刘敏; 罗朝霞; 安蕾; 吕涌涛; 郇英; 葛汝村; 张隽; 姜舒; 郭传琴; 胡祥; 陈兴旺

    2011-01-01

    背景:目前国内外尚没有治疗儿童孤独症的金标准,康复治疗效果不佳.目的:评价脐血单个核细胞和脐带间充质干细胞治疗儿童孤独症的临床安全性和有效性.方法:37例儿童孤独症患者非随机分为脐血组、混合组和对照组.脐血组应用脐血单个核细胞加康复训练治疗;混合组联合应用脐血单个核细胞和脐带间充质干细胞加康复训练治疗;对照组单纯行康复训练治疗.脐血组和混合组患者在干细胞治疗前和首次治疗后1,2,6个月分别行相关指标实验室检查,并观察有无不良反应发生.3组患者在治疗前和首次治疗后1,2,6个月分别行儿童孤独症评定量表(CARS)和异常行为量表(ABC)评估.结果与结论:脐血组和混合组患者在干细胞治疗前和首次治疗后1,2,6个月相关指标实验室检查未发现有意义异常变化,干细胞治疗后无严重不良反应发生;根据CARS和ABC评分,3组治疗均有效,其疗效比较:混合组优于脐血组,脐血组优于对照组.%BACKGROUND: There is no clear standard for curing autism, and the effect of rehabilitation treatment is not satisfied. OBJECTIVE: To evaluate the safety and efficacy of cord blood mononuclear cells (MNCs) and umbilical cord mesenchymal stem cells (MSCs) in treating autistic children.METHODS: Thirty-seven children with autism were divided into MNCs treatment (MNCs plus rehabilitation treatment), MNCs combined with MSCs treatment (MNCs combined with MSCs plus rehabilitation treatment) and control (rehabilitation treatment alone) groups. Related laboratory examinations were performed for each group before treatment, 1, 2 and 6 months after treatment to observe adverse effects. Childhood Autism Rating Scale and Aberrant Behavior Checklist were employed to assess the children of autism.RESULTS AND CONCLUSION: There was no statistical difference between MNCs treatment group and MNCs combined with MSCs treatment group in laboratory

  6. How to improve cord blood engraftment?

    Directory of Open Access Journals (Sweden)

    Meral eBeksac

    2016-02-01

    Full Text Available Various factors make cord blood (CB a significant source of hematopoietic stem cells (HSC, including ease of procurement and lack of donor attrition, with the ability to process and store the donor cells long term. Importantly, high proliferative potential of the immature HSCs allows one log less use of cells compared to bone marrow (BM or peripheral blood stem cells. As total nucleated cell (TNC and CD34 + cell content of CB grafts are correlated with engraftment rate and speed, strategies to expand HSC and homing have been developed. This chapter will focus on modalities such as intra-bone administration, fucosylation, CD26 inhibition, Prostaglandin G2 derivative or complement 3 exposure and SDF-1/CXCR4/CXCL-12 pathway interventions that have been experimented successfully. Furthermore increasing evidence in line with better recognition of CB progenitors that are involved in engraftment and homing will also be addressed.

  7. Maternal predictors and quality of umbilical cord blood units.

    Science.gov (United States)

    Bielec-Berek, Beata; Jastrzębska-Stojko, Żaneta; Drosdzol-Cop, Agnieszka; Jendyk, Cecylia; Boruczkowski, Dariusz; Ołdak, Tomasz; Nowak-Brzezińska, Agnieszka; Stojko, Rafał

    2017-08-19

    The aim of the study was to determine the relationship between the maternal age at delivery and selected properties of the cord blood stem cells. The study included 50 pregnant women aged between 18 and 38 years in which spontaneous labors or elective cesarean sections were performed. Umbilical cord blood was collected immediately after the women were delivered of newborns. The samples were analyzed in the Polish Stem Cells Bank in Warsaw. The highest mean WBC level (p umbilical blood collected from patients aged 35 years and more. Similarly, the highest mean cell viability was observed in the umbilical cord blood collected from patients aged 35 and more. There were no statistically significant correlations between the CD34+ cells count and mean cell viability in the umbilical cord blood and the maternal age. With the significance level at p umbilical cord blood of patients aged 35 and more after spontaneous labors. In the same group, the umbilical cord blood was also characterized by the highest mean cell viability (98.72%). The number of nucleated cells in the umbilical cord blood collected in the perinatal period increases together with the maternal age. In the course of physiological spontaneous labors, the collected umbilical cord blood has more nucleated cells as compared with elective caesarian sections.

  8. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo*

    Institute of Scientific and Technical Information of China (English)

    Cungang Fan; Dongliang Wang; Qingjun Zhang; Jingru Zhou

    2013-01-01

    High-grade glioma is the most common malignant primary brain tumor in adults. The poor prognosis of glioma, combined with a resistance to currently available treatments, necessitates the ment of more effective tumor-selective therapies. Stem cel-based therapies are emerging as novel cel-based delivery vehicle for therapeutic agents. In the present study, we successful y isolated human umbilical cord mesenchymal stem cel s by explant culture. The human umbilical cord senchymal stem cel s were adherent to plastic surfaces, expressed specific surface phenotypes of mesenchymal stem cel s as demonstrated by flow cytometry, and possessed multi-differentiation potentials in permissive induction media in vitro. Furthermore, human umbilical cord mesenchymal stem cel s demonstrated excel ent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo. The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cel s indicate that they may serve as a novel cel ular vehicle for delivering the-rapeutic molecules in glioma therapy.

  9. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Xijing He; Haopeng Li; Guoyu Wang

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.

  10. An experimental study of preventing and treating acute radioactive enteritis with human umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Rui Wang; Wei Yuan; Qiang Zhao; Peng Song; Ji Yue; Shi-De Lin; Ting-Bao Zhao

    2013-01-01

    Objective:To test the curative effect of human umbilical cord-derived mesenchymal stem cells on rat acute radioactive enteritis and thus to provide clinical therapeutic basis for radiation sickness.Methods:Human umbilical cord-derived mesenchymal stem cells were cultivatedin vitro and the model of acute radioactive enteritis of rats was established.Then, the umbilical cord mesenchymal stem cells were injected into the rats via tail vein.Visual and histopathological changes of the experimental rats were observed.Results:After the injection, the rats in the prevention group and treatment group had remarkably better survival status than those in the control group.The histological observations revealed that the former also had better intestinal mucosa structure, more regenerative cells and stronger proliferation activity than the latter.Conclusions:Human umbilical cord-derived mesenchymal stem cells have a definite therapeutic effect on acute radioactive enteritis in rats.

  11. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Dong; Libin Yang; Lin Yang; Hongxing Zhao; Chao Zhang; Dapeng Wu

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen-chymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  12. Intracerebral transplantation of mesenchymal stem cells derived from human umbilical cord blood for improving the behavioural deficits in rats with Parkinson disease%人脐血间充质干细胞脑内移植改善帕金森病大鼠行为缺陷的研究

    Institute of Scientific and Technical Information of China (English)

    许予明; 邢莹; 杨红旗; 马杰; 孙玲

    2004-01-01

    BACKGROUND: Many researches have proved that cord blood cells can differentiate into neurons, and moreover, there are also reports regarding the successful application of cord blood in the treatments of cerebral apoplexy and other diseases of nervous system. However, it is still unknown whether cord blood stem cells can be used in the treatment of neurodegenerative diseases or not.OBJECTIVE: To investigate the feasibility and the mechanism of mesenchymal stem cells(MSCs) derived from human umbilical cord blood (HUCB) in the treatment of rats with Parkinson disease(PD).DESIGN: A randomized controlled trial.SETTING and MATERIALS: Eighteen healthy Sprague-Dawley (SD) rats of cleanness grade with a body mass from 220 g to 260 g were selected. Cord blood samples were obtained from the Department of Obstetrics and Gynecology of the Third Affiliated Hospital of Zhenzhou University. Each sample had 60 mL to 120 mL of cord blood.INTERVENTION: Lateral PD rat model induced by 6-hydroxydopamine was prepared. Rats were randomly divided into three groups: ① control group (n=6) . ② PBS group (n=6): injection of 10 μL PBS into the right striatum. ③ MSCs group( n = 6): injection of 3 × 106 MSCs( 10 μL) marked with BradU into the right striatum, apomorphine induced rotational behavior was tested after 4 weeks of transplantation, and immunohistochemistry assay was carried out to trace the survival of MSCs and the tyrosine hydroxylase (TH)-immucoreactive cells in the striatum as well.MAIN OUTCOME MEASURES: ① rotation rounds in rats of each group after transplantation. ② the results of immunohistochemistry.RESULTS: MSCs survived in the striatum. The rotational behavior induced by apomorphine in rats of MSCs group[ (212 ± 60) rounds/30 minutes] was significantly improved compared with that of control group[(340±30)rounds/minutes ] ( P < 0.05 ); However, the number of TH-positive cells in the right striatum had no statistical difference between MSCs and control group (P

  13. Collagen-Coated Polytetrafluoroethane Membrane Inserts Enhances Chondrogenic Differentiation of Human Cord Blood Multi-Lineage Progenitor Cells

    DEFF Research Database (Denmark)

    Munir, Samir; Søballe, Kjeld; Ulrich-Vinther, Michael

    Background: Articular chondrocytes and bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the favoured cells for cartilage tissue engineering. Umbilical cord blood has proven an alternative source of MSCs and moreover they may be more potent chondroprogenitor cells than bonemarrow...... MSCs. Purpose / Aim of Study: Multilineage progenitor cells (MLPCs) are clonal cord blood-derived MSCs and may therefore provide a cell source with more reproducible outcomes compared to heterogeneous primary MSC cultures. Materials and Methods: We evaluated the chondrogenic potency of MLPCs...

  14. Umbilical cord blood banking: implications for perinatal care providers.

    Science.gov (United States)

    Armson, B Anthony

    2005-03-01

    To evaluate the risks and benefits of umbilical cord blood banking for future stem cell transplantation and to provide guidelines for Canadian perinatal care providers regarding the counselling, procedural, and ethical implications of this potential therapeutic option. Selective or routine collection and storage of umbilical cord blood for future autologous (self) or allogenic (related or unrelated) transplantation of hematopoietic stem cells to treat malignant and nonmalignant disorders in children and adults. Maternal and perinatal morbidity, indications for umbilical cord blood transplantation, short- and long-term risks and benefits of umbilical cord blood transplantation, burden of umbilical cord blood collection on perinatal care providers, parental satisfaction, and health care costs. MEDLINE and PubMed searches were conducted from January 1970 to October 2003 for English-language articles related to umbilical cord blood collection, banking, and transplantation; the Cochrane library was searched; and committee opinions of the Royal College of Obstetricians and Gynaecologists, the American Academy of Pediatrics, and the American College of Obstetricians and Gynecologists were obtained. The evidence collected was reviewed and evaluated by the Maternal/Fetal Medicine Committee of the Society of Obstetricians and Gynaecologists of Canada (SOGC), and recommendations were made using the evaluation of evidence guidelines developed by the Canadian Task Force on the Periodic Health Exam. Umbilical cord blood is a readily available source of hematopoietic stem cells used with increasing frequency as an alternative to bone marrow or peripheral stem cells for transplantation in the treatment of malignant and nonmalignant conditions in children and adults. Umbilical cord blood transplantation provides a rich source of hematopoietic stem cells with several advantages, including prompt availability, decreased risk of transmissible viral infections and graft

  15. Time related variations in stem cell harvesting of umbilical cord blood

    Science.gov (United States)

    Mazzoccoli, Gianluigi; Miscio, Giuseppe; Fontana, Andrea; Copetti, Massimiliano; Francavilla, Massimo; Bosi, Alberto; Perfetto, Federico; Valoriani, Alice; De Cata, Angelo; Santodirocco, Michele; Totaro, Angela; Rubino, Rosa; di Mauro, Lazzaro; Tarquini, Roberto

    2016-01-01

    Umbilical cord blood (UCB) contains hematopoietic stem cells and multipotent mesenchymal cells useful for treatment in malignant/nonmalignant hematologic-immunologic diseases and regenerative medicine. Transplantation outcome is correlated with cord blood volume (CBV), number of total nucleated cells (TNC), CD34+ progenitor cells and colony forming units in UCB donations. Several studies have addressed the role of maternal/neonatal factors associated with the hematopoietic reconstruction potential of UCB, including: gestational age, maternal parity, newborn sex and birth weight, placental weight, labor duration and mode of delivery. Few data exist regarding as to how time influences UCB collection and banking patterns. We retrospectively analyzed 17.936 cord blood donations collected from 1999 to 2011 from Tuscany and Apulia Cord Blood Banks. Results from generalized multivariable linear mixed models showed that CBV, TNC and CD34+ cell were associated with known obstetric and neonatal parameters and showed rhythmic patterns in different time domains and frequency ranges. The present findings confirm that volume, total nucleated cells and stem cells of the UCB donations are hallmarked by rhythmic patterns in different time domains and frequency ranges and suggest that temporal rhythms in addition to known obstetric and neonatal parameters influence CBV, TNC and CD34+ cell content in UBC units. PMID:26906327

  16. Cord blood banking and transplantation: advances and controversies.

    Science.gov (United States)

    Yoder, Mervin C

    2014-04-01

    A review of articles published since January 2012 on the topic of cord blood banking and cord blood stem cell transplantation was conducted for this the 25th anniversary year of the first cord blood transplant performed in a human. Cord blood banking is performed throughout the world. Umbilical cord blood (UCB) transplantation is recognized as an acceptable alternative stem cell source for paediatric and adults requiring a haematopoietic transplant, particularly for patients of racial and ethnic minorities. To further advance the use of UCB, methods to enhance UCB stem cell expansion, engraftment and maintenance may be required. Controversy on the most effective and economically sustainable model for banking and storing an optimal UCB product continues to persist. Cord blood banking and transplantation of cord blood stem cells has advanced rapidly over the initial 25 years, as more than 30 ,000 patients have benefited from the therapy. New concepts on the use of methods to expand UCB stem cells for transplantation and use for nonhaematopoietic indications may increase demand for UCB over the next few decades.

  17. Bilirubin dosage in cord blood: could it predict neonatal hyperbilirubinemia?

    Directory of Open Access Journals (Sweden)

    Adélia Jeha Nasser Bernaldo

    Full Text Available CONTEXT: With early discharge, many newborns have to be readmitted to hospital for hyperbilirubinemia to be treated, and this has been held responsible for the reappearance of kernicterus. OBJECTIVE: To evaluate whether bilirubin levels in cord blood could predict neonatal hyperbilirubinemia that would require treatment, in full-term newborns up to their third day of life. TYPE OF STUDY: Prospective study. SETTING: Neonatal Unit of Hospital Israelita Albert Einstein, São Paulo, Brazil. PARTICIPANTS: 380 full-term newborns considered normal: with or without ABO/Rh blood group incompatibility and without other complications. PROCEDURES: Blood was taken from the umbilical cord for analysis of conjugated, unconjugated and total bilirubin serum levels. The newborns were followed up until discharge, and unconjugated bilirubin that required phototherapy was compared to the cord bilirubin assay. Discriminant analysis was used to classify newborns: with or without risk of needing phototherapy by the third day of life. MAIN MEASUREMENTS: Bilirubin assay in cord blood; mother's and newborn's blood groups; phototherapy indication. RESULTS: The mean value for unconjugated bilirubin in cord blood was significantly higher in newborns whose unconjugated bilirubin required phototherapy. The presence of ABO blood group incompatibility was a significant variable in relation to unconjugated bilirubin that required phototherapy. The most useful cutoff point for unconjugated bilirubin in cord blood was 2.0 mg/100 ml. DISCUSSION: Cord blood could be collected, stored and used for further analysis of unconjugated bilirubin levels as a means for considering whether or not to discharge a moderately jaundiced child from hospital, in association with other resources. CONCLUSIONS: Blood incompatibility between mother and child was a predictor for the appearance of hyperbilirubinemia that required treatment. Considering a cutoff point of 2.0 mg/100 ml, it could be concluded

  18. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-01-01

    Full Text Available This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC- derived exosomes (hucMSC-exosomes have a protective effect on acute myocardial infarction (AMI. Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein were intravenously administrated immediately following ligation of the left anterior descending (LAD coronary artery in rats. Cardiac function was evaluated by echocardiography and apoptotic cells were counted using TUNEL staining. The cardiac fibrosis was assessed using Masson’s trichrome staining. The Ki67 positive cells in ischemic myocardium were determined using immunohistochemistry. The effect of hucMSC-exosomes on blood vessel formation was evaluated through tube formation and migration of human umbilical vein endothelial cells (EA.hy926 cells. The results indicated that ligation of the LAD coronary artery reduced cardiac function and induced cardiomyocyte apoptosis. Administration of hucMSC-exosomes significantly improved cardiac systolic function and reduced cardiac fibrosis. Moreover, hucMSC-exosomes protected myocardial cells from apoptosis and promoted the tube formation and migration of EA.hy926 cells. It is concluded that hucMSC-exosomes improved cardiac systolic function by protecting myocardial cells from apoptosis and promoting angiogenesis. These effects of hucMSC-exosomes might be associated with regulating the expression of Bcl-2 family.

  19. The role of biologically active peptides in tissue repair using umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Cabrera, Carlos; Carriquiry, Gabriela; Pierinelli, Chiara; Reinoso, Nancy; Arias-Stella, Javier; Paino, Javier

    2012-10-01

    The role of bioactive compounds in wound repair is critical. The preliminary work described herein includes the study of the effects of second degree burns in a Rex rabbit model and the action of human umbilical cord cells on the regulation and secretion of bioactive compounds. When applied on blood scaffolds as heterograft matrices, fibroblasts proliferate from these primary cultures and release biologically active peptides under tight control. Our work in progress indicates that mesenchymal stem cell (MSC)-mediated therapy provides better quality and more efficient burn reepithelialization of injured tissues by controlling the release of these peptides. Improvement of wound aesthetics is achieved in less time than without MSC-mediated therapy. Well-organized epidermal regeneration and overall better quality of reepithelialization, with no rejection, can be demonstrated consistently with periodic biopsies. Our studies indicate that MSCs have the capacity to produce, regulate, and deliver biologically active peptides that result in superior regeneration, compared with conventional treatments. © 2012 New York Academy of Sciences.

  20. Procedure for action in the donation of umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Antonio Herrera Gómez

    2012-05-01

    Full Text Available Stem cells are candidates for donation and transplantation in certain diseases, such as treatment of choice. Stem cells from umbilical cord blood are of particular interest as a gift, for many reasons. It should be noted that the umbilical cord blood is a single, limited source of hematopoietic progenitor cells, and the eventual success of a transplant, cellular viability and retained sample are critical, so the extraction process transport and cryopreservation must be performed under strict quality control criteria. Objective: To describe the procedure extacción umbilical cord blood to be carried out in units of delivery, to ensure quality results.

  1. Hypoxic chondrogenic differentiation of human cord blood stem cells in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Søballe, Kjeld; Ulrich-Vinther, Michael;

    Background: Articular chondrocytes and bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the favoured cells for cartilage tissue engineering. Umbilical cord blood has proven an alternative source of MSCs and moreover they may be more potent chondroprogenitor cells than bonemarrow...... MSCs. Purpose / Aim of Study: Multilineage progenitor cells (MLPCs) are clonal cord blood-derived MSCs and may therefore provide a cell source with more reproducible outcomes compared to heterogeneous primary MSC cultures. Materials and Methods: We evaluated the chondrogenic potency of MLPCs...... in standard micromass pellet system, layered on calcium polyphosphate (CPP), and on semi-permeable polytetrafluoroethane membranes with and without collagen type I, II or IV pre-coating. Findings / Results: The MPLC cell line used in this study possessed poor chondrogenic potency overall, but membrane...

  2. Delayed clamping of the umbilical cord after delivery and implications for public cord blood banking.

    Science.gov (United States)

    Allan, David S; Scrivens, Nicholas; Lawless, Tiffany; Mostert, Karen; Oppenheimer, Lawrence; Walker, Mark; Petraszko, Tanya; Elmoazzen, Heidi

    2016-03-01

    Public banking of umbilical cord blood units (CBUs) containing higher numbers of cells ensures timely engraftment after transplantation for increasing numbers of patients. Delayed clamping of the umbilical cord after birth may benefit some infants by preventing iron deficiency. Implications of delayed cord clamping for public cord blood banking remains unclear. CBUs collected by Canadian Blood Services at one collection site between November 1, 2014, and March 17, 2015, were analyzed. The delay in cord clamping after birth was timed and classified as "no delay," 20 to 60 seconds, more than 60 seconds, or more than 120 seconds. Of 367 collections, 100 reported no delay in clamping while clamping was delayed by 20 to 60 seconds (n = 69), more than 60 seconds (n = 98), or more than 120 seconds (n = 100) in the remaining cases. The mean volume and total nucleated cells (TNCs) in units with no delay in clamping were significantly greater than mean volumes for all categories of delayed clamping (Tukey's test, p clamping was delayed (p = 5.5 × 10(-8) ). The difference was most marked for cords that were clamped more than 120 seconds after delivery (6.2% compared with 39%). Delayed cord clamping greatly diminishes the volume and TNC count of units collected for a public cord blood bank. Creating an inventory of CBUs with high TNC content may take more time than expected. © 2015 AABB.

  3. Cord Blood Banking Standards: Autologous Versus Altruistic.

    Science.gov (United States)

    Armitage, Sue

    2015-01-01

    Cord blood (CB) is either donated to public CB banks for use by any patient worldwide for whom it is a match or stored in a private bank for potential autologous or family use. It is a unique cell product that has potential for treating life-threatening diseases. The majority of CB products used today are for hematopoietic stem cell transplantation and are accessed from public banks. CB is still evolving as a hematopoietic stem cell source, developing as a source for cellular immunotherapy products, such as natural killer, dendritic, and T-cells, and fast emerging as a non-hematopoietic stem cell source in the field of regenerative medicine. This review explores the regulations, standards, and accreditation schemes that are currently available nationally and internationally for public and private CB banking. Currently, most of private banking is under regulated as compared to public banking. Regulations and standards were initially developed to address the public arena. Early responses from the medical field regarding private CB banking was that at the present time, because of insufficient scientific data to support autologous banking and given the difficulty of making an accurate estimate of the need for autologous transplantation, private storage of CB as "biological insurance" should be discouraged (1, 2, 3). To ensure success and the true realization of the full potential of CB, whether for autologous or allogeneic use, it is essential that each and every product provided for current and future treatments meets high-quality, international standards.

  4. Toxoplasmosis in cord blood transplantation recipients.

    Science.gov (United States)

    Bautista, G; Ramos, A; Forés, R; Regidor, C; Ruiz, E; de Laiglesia, A; Navarro, B; Bravo, J; Portero, F; Sanjuan, I; Fernández, M N; Cabrera, R

    2012-10-01

    Toxoplasmosis is a devastating opportunistic infection that can affect immunocompromised patients such as cord blood transplantation (CBT) recipients. The clinical characteristics of 4 toxoplasmosis CBT patients treated at our institution are reviewed, together with 5 cases collected from the literature. The rate of toxoplasmosis in our hospital was 6% in CBT recipients and 0.2% in other types of allogeneic hematopoietic stem cell transplantation (P < 0.001). Five patients (56%) presented disseminated toxoplasmosis and 4 patients (44%) had localized infection in the central nervous system. In 5 of the 9 patients considered (56%), cytomegalovirus viral replication had been detected before the clinical onset of toxoplasmosis. Seven patients (78%) had previously developed graft-versus-host disease. All patients who exhibited disseminated disease died due to Toxoplasma infection. Pre-transplant serology was positive in 1 patient, negative in 3 patients, and not performed in another. Only 1 of these 5 patients with disseminated disease had received Toxoplasma prophylaxis with cotrimoxazole. It could be concluded that mortality in CBT patients with disseminated toxoplasmosis is unacceptably high. The negative results of serology in the majority of these cases, and its unspecific clinical presentation, makes diagnosis exceedingly difficult. Better diagnostic tests and prophylaxis strategy are needed in CBT recipients.

  5. Therapeutic Potential of Umbilical Cord Mesenchymal Stromal Cells Transplantation for Cerebral Palsy: A Case Report

    OpenAIRE

    Liming Wang; Haijie Ji; Jianjun Zhou,; Jiang Xie; Zhanqiang Zhong; Ming Li; Wen Bai; Na Li; Zijia Zhang; Xuejun Wang; Delin Zhu; Yongjun Liu; Mingyuan Wu

    2013-01-01

    Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs) transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enha...

  6. Cord blood banking in France: reorganising the national network.

    Science.gov (United States)

    Katz, Gregory; Mills, Antonia

    2010-06-01

    Paradoxically, France is one of the leading exporters of cord blood units worldwide, but ranks only 17th in terms of cord blood units per inhabitant, and imports 64% of cord blood grafts to meet national transplantation demands. With three operational banks in 2008, the French allogeneic cord blood network is now entering an important phase of development with the creation of seven new banks collecting from local clusters of maternities. Although the French network of public banks is demonstrating a strong commitment to reorganise and scale up its activities, the revision of France's bioethics law in 2010 has sparked a debate concerning the legalisation of commercial autologous banking. The paper discusses key elements for a comprehensive national plan that would strengthen the allogeneic banking network through which France could meet its national medical needs and guarantee equal access to healthcare. Copyright 2010. Published by Elsevier Ltd.

  7. [A Nude Mouse Model for Human Umbilical Cord Blood Transplantation

    Science.gov (United States)

    Lan, Jiongcai; Liu, Hongyu; Chen, Qiang; Yang, Chongli; Zhang, Zhimei

    2000-03-01

    To evaluate the hematopoietic potentiality and the migration and homing routine of separated as well as cryopreserved umbilical cord blood hematopoietic cells, the BALB/cnu(+) mice were used to establish a murine model. This can prepare for the clinical transplantation and the establishment of a large-scale cord blood bank. The result indicated that the hydroxyethyl starch (HES) sedimentation and DMSO step-by-step cryopreservation procedure resulted in only less losses of hematopoietic progenitor cells and also unharmful to the hematopietic potentiality. We can found evidence for successful transplantation in each mouse which received (1.0 - 2.0) x 10(7) separated or cryopresered hematopoietic cells from cord blood, which lasted for about fifty days. The results demonstrated that (1) HES sedimentation and DMSO cryopreservation procedure can keep the hematopoietic potentiality of cord blood, and so can be used to clinical transplantation or establishment of a cord blood bank; (2) Rich hematopoietic stem cells in human cord blood can cross the xenogenetic barriers and successfully engraft mice; (3) The hematopoietic cells migrated among bone marrow, liver, spleen, lung and kidney in the mice and homed to bone marrow by the end. Cryopreservation may influence the adhesion molecule on the hematopoietic cells and the homing behaviour, but not influence their hematopoietic potentiality.

  8. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy.

    Science.gov (United States)

    Ding, Dah-Ching; Chang, Yu-Hsun; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2015-01-01

    The human umbilical cord is a promising source of mesenchymal stem cells (HUCMSCs). Unlike bone marrow stem cells, HUCMSCs have a painless collection procedure and faster self-renewal properties. Different derivation protocols may provide different amounts and populations of stem cells. Stem cell populations have also been reported in other compartments of the umbilical cord, such as the cord lining, perivascular tissue, and Wharton's jelly. HUCMSCs are noncontroversial sources compared to embryonic stem cells. They can differentiate into the three germ layers that promote tissue repair and modulate immune responses and anticancer properties. Thus, they are attractive autologous or allogenic agents for the treatment of malignant and nonmalignant solid and soft cancers. HUCMCs also can be the feeder layer for embryonic stem cells or other pluripotent stem cells. Regarding their therapeutic value, storage banking system and protocols should be established immediately. This review critically evaluates their therapeutic value, challenges, and future directions for their clinical applications.

  9. Saving the leftovers: models for banking cord blood stem cells.

    Science.gov (United States)

    Cogdell, Kimberly J

    2009-01-01

    Each year there are over four million live births in the United States. Each birth produces umbilical cord blood stem cells, which are usually discarded. The author argues that rather than discarding the umbilical cord, this valuable resource of cord blood should be banked and used for research and therapeutic purposes. Umbilical cord blood could provide a solution to the critical need to find matching donors for hematopoietic transplants in patients who have no matching bone marrow donors. Creating a system of universal donation to a public bank will greatlyincrease the number of donors and therefore, the number of matches for patients. Such a system will facilitate the development and use of new technologies and transplant procedures, while providing an opportunity for treatment to individuals who would otherwise not be able to find suitable donors.

  10. Effect of delayed umbilical cord clamping on blood gas analysis.

    Science.gov (United States)

    Valero, Javier; Desantes, Domingo; Perales-Puchalt, Alfredo; Rubio, Juan; Diago Almela, Vicente J; Perales, Alfredo

    2012-05-01

    To ascertain if there are differences in umbilical cord blood gas analysis between immediate and delayed cord clamping. In a prospective observational study on 60 vaginally delivered healthy term newborns, we sampled umbilical cord blood immediately after delivery and at the time umbilical cord pulsation spontaneously ceased. There were significant decreases in pH, oxygen saturation (sO(2)), glycemia, oxygen content (ctO(2)), bicarbonate (HCO(3)(-)) and base excess (BE). Lactate and [Formula: see text] increased. Delayed cord clamping pH correlated with immediate cord clamping pH, [Formula: see text] , ctHb, sO(2) and time (r(2)=0.77, pcord clamping lactate was associated with immediate cord clamping lactate and time (r(2)=0.83, pcord clamping alters acid-base parameters and lactate values compared to immediate cord clamping. Those variations depend mainly on time, prior pH and lactate. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. [Allogenic hematopoietic stem cell transplantation with unrelated cord blood: report of three cases from the Chilean cord blood bank].

    Science.gov (United States)

    Barriga, Francisco; Wietstruck, Angélica; Rojas, Nicolás; Bertin, Pablo; Pizarro, Isabel; Carmona, Amanda; Guilof, Alejandro; Rojas, Iván; Oyarzún, Enrique

    2013-08-01

    Public cord blood banks are a source of hematopoietic stem cells for patients with hematological diseases who lack a family donor and need allogeneic transplantation. In June 2007 we started a cord blood bank with units donated in three maternity wards in Santiago, Chile. We report the first three transplants done with cord blood units form this bank. Cord blood units were obtained by intrauterine collection at delivery. They were depleted of plasma and red cells and frozen in liquid nitrogen. Tests for total nucleated cells, CD34 cell content, viral serology, bacterial cultures and HLA A, B and DRB1 were done. Six hundred cord blood units were stored by March 2012. Three patients received allogeneic transplant with cord blood from our bank, two with high risk lymphoblastic leukemia and one with severe congenital anemia. They received conditioning regimens according to their disease and usual supportive care for unrelated donor transplantation until full hematopoietic and immune reconstitution was achieved. The three patients had early engraftment of neutrophils and platelets. The child corrected his anemia and the leukemia patients remain in complete remission. The post-transplant course was complicated with Epstein Barr virus, cytomegalovirus and BK virus infection. Two patients are fully functional 24 and 33 months after transplant, the third is still receiving immunosuppression.

  12. Different strategies to improve the use of the umbilical cord and cord blood for hematopoietic and other regenerative cell therapies

    NARCIS (Netherlands)

    Garde, Mark Paul van der

    2016-01-01

    The umbilical cord and cord blood contain stem cells that can be used for regenerative cell therapies such as hematopoietic stem cell transplantation. However, the application of cord blood is hindered by the slow engraftment of the cells and delayed immune reconstitution compared to stem cells of

  13. Spinal Cord Blood Flow after Ischemic Preconditioning in a Rat Model of Spinal Cord Ischemia

    Directory of Open Access Journals (Sweden)

    David Zvara

    2004-01-01

    Full Text Available Spinal cord blood flow after ischemic preconditioning is poorly characterized. This study is designed to evaluate spinal cord blood flow patterns in animals after acute ischemic preconditioning. Experiment 1: After a laminectomy and placement of a laser Doppler probe over the lumbar spinal cord to measure spinal cord blood flow, 16 male Sprague-Dawley rats were randomized into two groups: ischemic preconditioning (IPC, n = 8, and control (CTRL, n = 8. Rats in the CTRL and the IPC groups were subjected to 12 min of ischemia directly followed by 60 min of reperfusion. IPC rats received 3 min of IPC and 30 min of reperfusion prior to the 12-min insult period. Experiment 2: After instrumentation, the rats were randomized into three groups: control (CTRL, n = 7, ischemic preconditioning (IPC, n = 7, and time control (TC, n = 4. Rats in the CTRL and the IPC groups were subjected to the same ischemia and reperfusion protocol as above. The TC group was anesthetized for the same time period as the CTRL and the IPC groups, but had no ischemic intervention. Microspheres were injected at baseline and at 15 and 60 min into the final reperfusion. All rats were euthanized and tissue harvested for spinal cord blood flow analysis. In Experiment 1, there was a slight, significant difference in spinal cord blood flow during the ischemic period; however, this difference soon disappeared during reperfusion. In experiment 2, there was no difference in blood flow at any experimental time. The results of these experiments demonstrate that IPC slightly enhances blood flow to the spinal cord during ischemia; however, this effect is not sustained during the reperfusion period.

  14. 胰岛干细胞和脐血间充质干细胞体外分离培养的形态学特征观察%Morphological observation of pancreatic stem cells and umbilical cord blood mesenchymal stem cells cultured in vitro

    Institute of Scientific and Technical Information of China (English)

    刘素芳; 李长生; 鄢文海; 韩雪飞; 邢莹

    2006-01-01

    在体外分离和培养,用于进一步相关实验工作.%BACKGROUND: Stem cells are relatively primitive cells possessing the capabilities of self-renewal, high proliferation and multi-potential differentiation in vivo under certain conditions. Pancreatic stem cells and umbilical cord blood mesenchymal stem cells (MSCs) may serve therapeutic purpose clinically, but they are still difficult to culture in vitro at present.OBJECTIVE: To explore the method for isolation, purification and culture of pancreatic stem cells and umbilical cord blood MSCs in vitro and observe their morphological changes during culture in vitro.DESIGN: Completely randomized experiment with repeated measurement.SETTING: Stem Cell Research Center, Teaching and Research Division of Physiology, Medical School of Zhengzhou University.MATERIALS: This experiment was conducted in the Stem Cell Research Center, Teaching and Research Division of Physiology, Medical College of Zhengzhou University, between April 2004 and January 2005. Ten to fifteen newborn SD rats (1-3 days) were selected for culture in vitro of pancreatic stem cells, and fresh umbilical cord blood was collected from healthy woman (24-35 years old, with informed consent) at full-term delivery for culture in vitro of umbilical blood SMCs.METHODS: The abdomen of the newborn SD rat was opened under aseptic condition to obtain the pancreas, which was cut into small tissue blocks and digested with type-V collagenase for islet isolation. The isolated islets were purified in continuous roller-bottle culture. Umbilical cord blood was freshly collected for isolating the monocytes by means of density gradient centrifugation in lymphocyte separation medium (with density of 1.077 g/cm3). The islet cells and umbilical cord blood monocytes were cultured in the incubator at 37 ℃ with 5% CO2. The morphological changes of the cells were observed at designed time points and flow cytometry was used to determine the expression of cell surface molecules.MAIN OUTCOME MEASURES: The

  15. 脐血间充质干细胞移植治疗糖尿病足二例并文献复习%Literature review on treatment of type 2 diabetic foot cases with umbilical cord blood mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    杨华强; 李东升; 杜玲; 袁亚红; 姜铧

    2010-01-01

    目的 观察脐血间充质干细胞移植治疗糖尿病足的疗效和安全性.方法 将脐血间充质干细胞多点注射到自愿接受干细胞移植的2例患者病变下肢,细胞数(3~7)×107/L,每点0.3~0.5 ml,每,点间距3 cm×3 cm,肌肉组织丰富的部位可分层注射.术后第1天至3个月定期观察患者临床症状及各项指标的变化并进行综合分析.结果 脐血间充质干细胞移植后3个月进行评价,2例患者下肢疼痛均明显缓解、皮温升高、皮肤凉感消失、间歇性跛行明显改善和足部溃疡愈合.踝肱指数、经皮氧分压较前有明显升高,血管造影显示治疗后病变下肢均有丰富的侧支血管生成.移植后2例患者均未出现严重并发症和明显不良反应,均未行截肢术.结论 脐血间充质干细胞移植治疗糖尿病下肢缺血性血管病是一种安全、有效的手段,可使一部分患者免除截肢,改善其生活质量.%Objective To observe the clinical effect and safety of umbilical cord blood mesenchymal stem cell(UCB-MSC) transplantation in the treatment of diabetic foot. Methods UCB-MSC suspension (cell concentration (3 -7) × 107/L,0.3 -0.5 ml per point) was injected into multiple spots on affected lower limb with a 3 cm × 3 cm istance among each point. Demixing injection could be performed in regions with multilayer muscles. Clinical symptoms and related index were routinely observed from the first day to three months after operation. Results After three months of UCB-MSC transplantation, pain of patients was relieved, skin temperature increased, intermittent claudication ameliorated, ulcer healed, ankle-brachial index and transcutaneous partial pressure of oxygen increased. The lower extremity lesions showed an abundant collateral vessel formation after the treatment in 2 patients by angiography. Both patients had no severe complications and adverse reactions, none underwent amputation. Conclusions Umbilical cord blood mesenchymal

  16. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications.

    Science.gov (United States)

    Van Pham, Phuc; Truong, Nhat Chau; Le, Phuong Thi-Bich; Tran, Tung Dang-Xuan; Vu, Ngoc Bich; Bui, Khanh Hong-Thien; Phan, Ngoc Kim

    2016-06-01

    Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC-MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC-MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1-2 mm(2)) of UC membrane and Wharton's jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic-antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC-MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC-MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC-MSCs cultured in DMEM/F12 plus 1 % antibiotic-antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC-MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC-MSCs maintained

  17. [Pooled Umbilical Cord Blood Plasma for Culturing UCMSC and Ex Vivo Expanding Umbilical Cord Blood CD34⁺ Cells].

    Science.gov (United States)

    Wu, Jie-Ying; Lu, Yan; Chen, Jin-Song; Wu, Shao-Qing; Tang, Xue-Wei; Li, Yan

    2015-08-01

    To investigate the feasibility of umbilical cord blood plasma (UCP) as a replacement for fetal bovine serum (FBS) for culturing mesenchymal stem cells (MSC) derived from umbilical cord, and to observe the supporting effects of these cells (served as a feeder layer) on ex vivo expanding of human umbilical cord blood CD34(+) cells. Umbilical cord blood (UCB) units were suitable if the Guangzhou cord blood bank donor selection criteria strictly were fulfilled. UCP were ready to use after the collection from the plasma depletion/reduction during the processing and pooling of suitable UCB units (at least 30 units were screened for pathogens and microorganisms, and qualified). Umbilical cord mesenchymal stem cells (UCMSC) were harvested from the umbilical cord tissue of health full-term newborns after delivery by enzyme digestion and divided into 3 groups: group 1 and 2 were cultured in the presence of DMEM/F12 containing either FBS or UCP; and group 3 was cultured in serum-free medium (StemPro® MSC SFM CTS™). Morphology, proliferation and surface marker expression were examined by flow cytometry, and the differentiation toward adipogenic and osteogenic lineages was used for investigating the effect of media on UCMSC after 3-5 passages. Next, the cells cultured in the three different media were cryopreserved and thawed, then prepared as feeder layers with the name of UCMSC(FBS), UCMSC(UCP), and UCMSC(SFM), respectively. The CD34⁺ cells were separated from UCB by magnetic activated cell sorting (MACS) and divided into 4 groups cultured in StemPro(-34) SFM medium added with hematopoietic cytokine combination (StemSpan® CC100). The control group included only CD34⁺ cells as group A (blank control) and experimental groups included UCMSC(FBS) + CD34⁺ cells as group B, UCMSC(UCP) + CD34⁺ cells as group C, UCMSC(SFM) + CD34⁺ cells as group D, and cells in all groups were cultured ex vivo for 7 days. The nucleated cell (NC) number was counted by cell counter, CD34

  18. Neuron-specific enolase: reference values in cord blood.

    Science.gov (United States)

    Kintzel, K; Sonntag, J; Strauss, E; Obladen, M

    1998-04-01

    With foetal sonography prenatal detection of tumours has become more frequent. To evaluate and treat these infants it is necessary to identify the tumour postnatally. Elevated neuron-specific enolase is a biochemical marker of neuroblastoma. Since conditions during birth may influence neuron-specific enolase concentration in foetal serum, specific reference values in cord blood are required. Cord blood samples were taken from 192 healthy term newborns and concentration of neuron-specific enolase was measured by enzyme immunoassay (EIA). Median neuron-specific enolase concentration in the reference group was 8.0 micrograms/l and the 5th-95th percentiles were 4.8-19.4 micrograms/l. No differences between male and female newborns were detected (p = 0.13). Measurement of neuron-specific enolase in cord blood, in comparison with our reference values, offers an early postnatal possibility of confirming the diagnosis of neuroblastoma.

  19. Purified umbilical cord derived mesenchymal stem cell treatment in a case of systemic lupus erythematosus.

    Science.gov (United States)

    Phillips, Christopher D; Wongsaisri, Pornpatcharin; Htut, Thein; Grossman, Terry

    2017-12-01

    Systemic lupus erythematosus (SLE) is a multiple organ system autoimmune disorder for which there is no known cure. We report a case of a young adult lady with SLE and Sjogren's with diagnostic and clinical resolution following purified umbilical cord derived mesenchymal stem cell (MSC) and globulin component protein macrophage activating factor (GcMAF) therapy in a combined multidisciplinary integrative medicine protocol. Our patient had complete reversal of all clinical and laboratory markers. We recommend a prospective randomized double blind study to assess the sustained efficacy of MSC and GcMAF in the treatment of autoimmune connective tissue diseases such as systemic lupus erythematosus.

  20. File list: ALL.Bld.05.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Umbilical_cord_blood hg19 All antigens Blood Umbilical cord blood ...X1047363,SRX1047362,SRX1047361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.05.AllAg.Umbilical_cord_blood.bed ...

  1. File list: Oth.Bld.50.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Umbilical_cord_blood hg19 TFs and others Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.50.AllAg.Umbilical_cord_blood.bed ...

  2. File list: Pol.Bld.20.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Umbilical_cord_blood hg19 RNA polymerase Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.20.AllAg.Umbilical_cord_blood.bed ...

  3. File list: His.Bld.20.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Umbilical_cord_blood hg19 Histone Blood Umbilical cord blood http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.20.AllAg.Umbilical_cord_blood.bed ...

  4. File list: DNS.Bld.50.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.50.AllAg.Umbilical_cord_blood hg19 DNase-seq Blood Umbilical cord blood htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.50.AllAg.Umbilical_cord_blood.bed ...

  5. File list: Pol.Bld.05.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Umbilical_cord_blood hg19 RNA polymerase Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.05.AllAg.Umbilical_cord_blood.bed ...

  6. File list: ALL.Bld.20.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.20.AllAg.Umbilical_cord_blood hg19 All antigens Blood Umbilical cord blood ...X1047362,SRX1047361,SRX1047344 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.20.AllAg.Umbilical_cord_blood.bed ...

  7. File list: His.Bld.05.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Umbilical_cord_blood hg19 Histone Blood Umbilical cord blood http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.05.AllAg.Umbilical_cord_blood.bed ...

  8. File list: Unc.Bld.10.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Umbilical_cord_blood hg19 Unclassified Blood Umbilical cord blood ...X1047363,SRX1047361,SRX1047362 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.10.AllAg.Umbilical_cord_blood.bed ...

  9. File list: Pol.Bld.10.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.10.AllAg.Umbilical_cord_blood hg19 RNA polymerase Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.10.AllAg.Umbilical_cord_blood.bed ...

  10. File list: DNS.Bld.20.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Umbilical_cord_blood hg19 DNase-seq Blood Umbilical cord blood htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.20.AllAg.Umbilical_cord_blood.bed ...

  11. File list: Oth.Bld.10.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Umbilical_cord_blood hg19 TFs and others Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.10.AllAg.Umbilical_cord_blood.bed ...

  12. File list: Unc.Bld.05.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Umbilical_cord_blood hg19 Unclassified Blood Umbilical cord blood ...X1047363,SRX1047362,SRX1047361 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.05.AllAg.Umbilical_cord_blood.bed ...

  13. File list: His.Bld.50.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Umbilical_cord_blood hg19 Histone Blood Umbilical cord blood http:...//dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Bld.50.AllAg.Umbilical_cord_blood.bed ...

  14. File list: DNS.Bld.05.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Umbilical_cord_blood hg19 DNase-seq Blood Umbilical cord blood htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.05.AllAg.Umbilical_cord_blood.bed ...

  15. File list: Oth.Bld.20.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Umbilical_cord_blood hg19 TFs and others Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.20.AllAg.Umbilical_cord_blood.bed ...

  16. File list: ALL.Bld.10.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Umbilical_cord_blood hg19 All antigens Blood Umbilical cord blood ...X1047363,SRX1047361,SRX1047362 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.10.AllAg.Umbilical_cord_blood.bed ...

  17. File list: DNS.Bld.10.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Umbilical_cord_blood hg19 DNase-seq Blood Umbilical cord blood htt...p://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Bld.10.AllAg.Umbilical_cord_blood.bed ...

  18. File list: Unc.Bld.20.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Umbilical_cord_blood hg19 Unclassified Blood Umbilical cord blood ...X1047362,SRX1047361,SRX1047344 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Umbilical_cord_blood.bed ...

  19. File list: Unc.Bld.50.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Umbilical_cord_blood hg19 Unclassified Blood Umbilical cord blood ...X1047362,SRX1047361,SRX1047344 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Umbilical_cord_blood.bed ...

  20. File list: Pol.Bld.50.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Umbilical_cord_blood hg19 RNA polymerase Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Bld.50.AllAg.Umbilical_cord_blood.bed ...

  1. File list: Oth.Bld.05.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Umbilical_cord_blood hg19 TFs and others Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Bld.05.AllAg.Umbilical_cord_blood.bed ...

  2. File list: ALL.Bld.50.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Umbilical_cord_blood hg19 All antigens Blood Umbilical cord blood ...X1047362,SRX1047361,SRX1047344 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Bld.50.AllAg.Umbilical_cord_blood.bed ...

  3. Umbilical Cord Blood Lead Levels and Neonatal Behaviour

    Directory of Open Access Journals (Sweden)

    M. L. de Cáceres

    1995-01-01

    Full Text Available Negative correlations have been found between cord blood lead levels and scores on the Brazelton Neonatal Behaviour Assessment in 30 otherwise healthy newborns. Items in the Habituation, Orientation and Regulation of state clusters, particularly those items related to self-regulatory, self-quieting and auditory habituation, showed lower scores (worse performance in those newborns with higher cord blood lead levels. These disturbances are potentially important since this type of behavior may interfere with the normal process of adaptation to their environment, leading to a less than optimal bonding between newborns and their carers.

  4. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure.

    Science.gov (United States)

    Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong

    2017-01-23

    At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.

  5. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Directory of Open Access Journals (Sweden)

    Lingying Liu

    Full Text Available BACKGROUND: Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs could on wound healing in a rat model of severe burn and its potential mechanism. METHODS: Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI, and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. RESULTS: We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. CONCLUSION: The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  6. The Myocardial Detection of Acute Myocardial Infarction rats Transplant into Human Umbilical cord Blood Derived Mesenchymal stem cell%急性心肌梗死大鼠移植入人脐带血间充质干细胞后心肌组织检测

    Institute of Scientific and Technical Information of China (English)

    何志裕; 陆东风

    2015-01-01

    目的探讨经尾静脉脐血间充质干细胞(mesenchymal stem cells,MSCs)移植到急性心肌梗死大鼠体内,观察其是否可以存活及是否向心肌组织分化。方法无菌条件下采集健康育龄产妇正常分娩胎儿脐带血,通过Mesen-cult培养基条件培养,取P2代细胞用流式细胞仪检测细胞表面CD29、CD34、CD45、CD105标志。将36只SD大鼠随机分成MSCs移植组、假手术组和心肌梗死植组各12只,结扎左冠状动脉前降支制备大鼠心肌梗死模型。1周后,经尾静脉注射带DAPI标记的脐血MSCs。4周后行免疫组织化学检测移植细胞存活与分化情况及检测梗死组织中FactorⅧ表达来比较三组微血管密度。结果流式细胞仪检测第2代的脐血MSCs 结果显示, P2代MSCs 不表达或极弱表达CD34,CD45造血细胞标志,稳定地高表达CD29,CD105间充质细胞相关的表面抗原标记。这与骨髓MSCs的表面抗原标志相一致。移植后4周,移植组心肌组织中可以观察到DAPI标记细胞存在,但标记细胞并未表达Troponin-T及con-nexin43,免疫组化染色检测示MSCs移植组心肌微血管密度(MVD)明显高于心梗组和假手术组。结论将脐血单个核细胞接种在mesencult培养基中可以在体外成功的培养出较纯化的脐血MSCs,脐血MSCs的免疫表型符合间充质干细胞特征,脐血MSCs移植能刺激梗死部位血管生成,但未向心肌细胞分化。%Objective To investigate the human umbilical cord blood mesenchymal stem cells was transplanted into the rats of acute myocardial infarction ( AMI) to observe the mesenchymal stem cells whether it can survive and whether to myocardial tissue differentiation .Methods Human umbilical cord blood sam-ples were collected from healthy mothers .ALL samples was culture medium consisted of Mesencult ( a kind of medium special for stem cell cultured),detected the second generation of MSCs'immunophenotypes(CD29, CD44

  7. Good practices in collecting umbilical cord and placental blood

    Directory of Open Access Journals (Sweden)

    Lauren Auer Lopes

    Full Text Available Abstract Objective: to identify the factors related to the quality of umbilical cord and placental blood specimens, and define best practices for their collection in a government bank of umbilical cord and placental blood. Method: this was a descriptive study, quantitative approach, performed at a government umbilical cord and placental blood bank, in two steps: 1 verification of the obstetric, neonatal and operational factors, using a specific tool for gathering data as non-participant observers; 2 definition of best practices by grouping non-conformities observed before, during and after blood collection. The data was analyzed using descriptive statistics and the following statistical software: Statistica(r and R(r. Results: while there was a correlation with obstetrical and neonatal factors, there was a larger correlation with operational factors, resulting in the need to adjust the professional practices of the nursing staff and obstetrical team involved in collecting this type of blood. Based on these non-conformities we defined best practices for nurses before, during and after blood collection. Conclusion: the best practices defined in this study are an important management tool for the work of nurses in obtaining blood specimens of high cell quality.

  8. Pharmacokinetic studies on fenoterol in maternal and cord blood.

    Science.gov (United States)

    von Mandach, U; Huch, A; Huch, R

    1989-04-01

    Fenoterol plasma concentrations were measured by radioimmunoassay in 38 pregnant women at different stages of preterm labor and in cord blood. Eight women were treated intravenously until delivery with 1.0 to 4 micrograms/min of fenoterol for periods ranging from 27 hours to 27 days; blood samples were taken at the same time as cord blood. In these women the fenoterol concentrations in cord blood ranged from 18 to 53% of the maternal concentrations. In eight women treated intravenously with 1.2 to 4.0 micrograms/min for 2 to 15 days, the infusion was stopped 1.3 to 38 hours before delivery. In these instances the concentrations in cord blood reached as much as 90% of the maternal, meaning that the rate of elimination from fetal plasma is lower than that from maternal plasma. Five women were treated daily with 20 to 30 mg per os for 3 to 17 days (three of these women had also had intravenous treatment before). The ratio of cord to maternal blood concentrations was higher than in women receiving the drug intravenously, the relative times of sampling being the same. The findings suggest that: (1) the placental transfer of fenoterol is higher than that found in previous studies in humans and animals with tritium-labeled substances; (2) the rate of fenoterol elimination from fetal plasma after intravenous and oral long-term therapy is lower than that from maternal plasma; (3) after oral administration, the ratios of fetal to maternal fenoterol concentrations are higher than after intravenous infusion.

  9. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson's disease.

    Science.gov (United States)

    Xiong, N; Zhang, Z; Huang, J; Chen, C; Zhang, Z; Jia, M; Xiong, J; Liu, X; Wang, F; Cao, X; Liang, Z; Sun, S; Lin, Z; Wang, T

    2011-04-01

    The umbilical cord provides a rich source of primitive mesenchymal stem cells (human umbilical cord mesenchymal stem cells (HUMSCs)), which have the potential for transplantation-based treatments of Parkinson's Disease (PD). Our pervious study indicated that adenovirus-associated virus-mediated intrastriatal delivery of human vascular endothelial growth factor 165 (VEGF 165) conferred molecular protection to the dopaminergic system. As both VEGF and HUMSCs displayed limited neuroprotection, in this study we investigated whether HUMSCs combined with VEGF expression could offer enhanced neuroprotection. HUMSCs were modified by adenovirus-mediated VEGF gene transfer, and subsequently transplanted into rotenone-lesioned striatum of hemiparkinsonian rats. As a result, HUMSCs differentiated into dopaminergic neuron-like cells on the basis of neuron-specific enolase (NSE) (neuronal marker), glial fibrillary acidic protein (GFAP) (astrocyte marker), nestin (neural stem cell marker) and tyrosine hydroxylase (TH) (dopaminergic marker) expression. Further, VEGF expression significantly enhanced the dopaminergic differentiation of HUMSCs in vivo. HUMSC transplantation ameliorated apomorphine-evoked rotations and reduced the loss of dopaminergic neurons in the lesioned substantia nigra (SNc), which was enhanced significantly by VEGF expression in HUMSCs. These findings present the suitability of HUMSC as a vector for gene therapy and suggest that stem cell engineering with VEGF may improve the transplantation strategy for the treatment of PD.

  10. SCREENING CORD BLOOD FOR HEMOGLOBINOPATHIES AND THALASSEMIA BY HPLC

    NARCIS (Netherlands)

    VANDERDIJS, FPL; VANDENBERG, GA; SCHERMER, JG; MUSKIET, FD; LANDMAN, H; MUSKIET, FAJ

    1992-01-01

    We evaluated the use of an HPLC method for screening hemoglobins in cord blood. We studied the genotype frequencies of the structural hemoglobin variants HbS and HbC and the synthesis variants alpha- and beta+-thalassemia in babies born on Curacao. During three months, 67.2% of all (748) newborns we

  11. Cord blood transplants for SCID: better B-cell engraftment?

    Science.gov (United States)

    Chan, Wan-Yin; Roberts, Robert Lloyd; Moore, Theodore B; Stiehm, E Richard

    2013-01-01

    Hematopoietic stem-cell transplantation is the treatment of choice for severe combined immunodeficiency (SCID). Despite successful T-cell engraftment in transplanted patients, B-cell function is not always achieved; up to 58% of patients require immunoglobulin therapy after receiving haploidentical transplants. We report 2 half-sibling males with X-linked γ-chain SCID treated with different sources of stem cells. Sibling 1 was transplanted with T-cell-depleted haploidentical maternal bone marrow and sibling 2 was transplanted with 7/8 human leukocyte antigen-matched unrelated umbilical cord blood. Both patients received pretransplant conditioning and posttransplant graft-versus-host-disease prophylaxis. B-cell engraftment and function was achieved in sibling 1 but not in sibling 2. This disparate result is consistent with a review of 19 other SCID children who received cord blood transplants. B-cell function, as indicated by no need for immunoglobulin therapy, was restored in 42% of patients given haploidentical transplants and in 68% of patients given matched unrelated donor transplants compared with 80% of patients given cord blood transplants. Cord blood is an alternative source of stem cells for transplantation in children with SCID and has a higher likelihood of B-cell reconstitution.

  12. SCREENING CORD BLOOD FOR HEMOGLOBINOPATHIES AND THALASSEMIA BY HPLC

    NARCIS (Netherlands)

    VANDERDIJS, FPL; VANDENBERG, GA; SCHERMER, JG; MUSKIET, FD; LANDMAN, H; MUSKIET, FAJ

    We evaluated the use of an HPLC method for screening hemoglobins in cord blood. We studied the genotype frequencies of the structural hemoglobin variants HbS and HbC and the synthesis variants alpha- and beta+-thalassemia in babies born on Curacao. During three months, 67.2% of all (748) newborns

  13. Expansion of human cord blood hematopoietic stem cells for transplantation.

    Science.gov (United States)

    Chou, Song; Chu, Pat; Hwang, William; Lodish, Harvey

    2010-10-08

    A recent Science paper reported a purine derivative that expands human cord blood hematopoietic stem cells in culture (Boitano et al., 2010) by antagonizing the aryl hydrocarbon receptor. Major problems need to be overcome before ex vivo HSC expansion can be used clinically.

  14. CD34+ stem cells from umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Alfio D’Agati

    2011-09-01

    Full Text Available We describe the relation between umbilical cord clamping time and two different enrichment system of CD34+ stem cells from umbilical cord blood with the proliferative ability and bone marrow reconstitution of the stem cells obtained. After an obstetrician performed the cord blood collection, the purification of stem cells was performed either with a combination of monoclonal antibodies (negative selections using the Stem Sep method, or with a positive cells selection based on their surface CD34 antigens using the Mini Macs system. An excellent recovery of haematopoietic progenitors [Burst Forming Unit Erythroids (BFUE; Colony Forming Unit Granulocytes and Macrophages (CFU-GM; and Colony Forming Unit Granulocytes, Erythroids, Monocytes and Macrophages (CFU-GME], inversely related to the increase in clamping time, was performed with the Mini Macs system (54% of colonies, with 90% purity. With Stem Sep method, haematopoietic progenitor’s recovery was 35% (with 80% purity. By applying early clamping of umbilical cord blood we obtained a greater number of CD34+ cells and their clonogenic activity was increased with enrichment. This is a useful technique considering that the number of CD34+ stem cells usually contained from a unit of placental blood is enough for the transplant to a child, but not for an adult. Thus, using these methods, we can get a larger number of CD34+ stem cells which reduces the risk of Graft versus Host Disease also in adult patients, producing survival rates similar to those obtained with transplantation of bone marrow from unrelated donors.

  15. CD34+ stem cells from umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Carlo Pafumi

    2011-10-01

    Full Text Available We describe the relation between umbilical cord clamping time and two different enrichment system of CD34+ stem cells from umbilical cord blood with the proliferative ability and bone marrow reconstitution of the stem cells obtained. After an obstetrician performed the cord blood collection, the purification of stem cells was performed either with a combination of monoclonal antibodies (negative selections using the Stem Sep method, or with a positive cells selection based on their surface CD34 antigens using the Mini Macs system. An excellent recovery of haematopoietic progenitors [Burst Forming Unit Erythroids (BFUE; Colony Forming Unit Granulocytes and Macrophages (CFU-GM; and Colony Forming Unit Granulocytes, Erythroids, Monocytes and Macrophages (CFU-GME], inversely related to the increase in clamping time, was performed with the Mini Macs system (54% of colonies, with 90% purity. With Stem Sep method, haematopoietic progenitor’s recovery was 35% (with 80% purity. By applying early clamping of umbilical cord blood we obtained a greater number of CD34+ cells and their clonogenic activity was increased with enrichment. This is a useful technique considering that the number of CD34+ stem cells usually contained from a unit of placental blood is enough for the transplant to a child, but not for an adult. Thus, using these methods, we can get a larger number of CD34+ stem cells which reduces the risk of Graft versus Host Disease also in adult patients, producing survival rates similar to those obtained with transplantation of bone marrow from unrelated donors.

  16. Transplantation of Ex Vivo Expanded Umbilical Cord Blood (NiCord) Decreases Early Infection and Hospitalization.

    Science.gov (United States)

    Anand, Sarah; Thomas, Samantha; Hyslop, Terry; Adcock, Janet; Corbet, Kelly; Gasparetto, Cristina; Lopez, Richard; Long, Gwynn D; Morris, Ashley K; Rizzieri, David A; Sullivan, Keith M; Sung, Anthony D; Sarantopoulos, Stefanie; Chao, Nelson J; Horwitz, Mitchell E

    2017-07-01

    Delayed hematopoietic recovery contributes to increased infection risk following umbilical cord blood (UCB) transplantation. In a Phase 1 study, adult recipients of UCB stem cells cultured ex vivo for 3 weeks with nicotinamide (NiCord) had earlier median neutrophil recovery compared with historical controls. To evaluate the impact of faster neutrophil recovery on clinically relevant early outcomes, we reviewed infection episodes and hospitalization during the first 100 days in an enlarged cohort of 18 NiCord recipients compared with 86 standard UCB recipients at our institution. The median time to neutrophil engraftment was shorter in NiCord recipients compared with standard UCB recipients (12.5 days versus 26 days; P < .001). Compared with standard UCB recipients, NiCord recipients had a significantly reduced risk for total infection (RR, 0.69; P = .01), grade 2-3 (moderate to severe) infection (RR, 0.36; P < .001), bacterial infection (RR, 0.39; P = .003), and grade 2-3 bacterial infection (RR, 0.21; P = .003) by Poisson regression analysis; this effect persisted after adjustment for age, disease stage, and grade II-IV acute GVHD. NiCord recipients also had significantly more time out of the hospital in the first 100 days post-transplantation after adjustment for age and Karnofsky Performance Status (69.9 days versus 49.7 days; P = .005). Overall, transplantation of NiCord was associated with faster neutrophil engraftment, fewer total and bacterial infections, and shorter hospitalization in the first 100 days compared with standard UCB transplantation. In conclusion, rapid hematopoietic recovery from an ex vivo expanded UCB transplantation approach is associated with early clinical benefit. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Culturing mesenchymal stem cells from canine umbilical cord blood in endothelial basal medium using different methods%以内皮细胞基础培养液复合不同方法培养犬脐血间充质干细胞的比较

    Institute of Scientific and Technical Information of China (English)

    马金本; 单根法

    2008-01-01

    BACKGRoUND:Endothelial basal medium is mainly used to culture endothelial progenitor cells.Studies on mesenchymal stem cells (MSCs) cultured in this medium are few. OBJECTIVE:To compare the outcome of MSCs cultured in different mediums including endothelial basal medium. DESiGN.TIME AND SETTING:The control eell experiment was performed at the Muniopal Key Laboratory of Xinhua Hospital of Shanghai.China from September 2005 to May 2006. MATERIALS:Eight pregnant mongrel dogs were selected to obtain umbilical cord blood for isolation and culture of stem cells. Endothelial eell basal medium and endothelial cell medium were bought from Clonetics.USA.Mouse anti-CDlla monoclonal andbody,mouse anti-CDllb monoclonal antibody.mouse anti-CD29 monoclenal antibody and mouse anti-CD7l monoclonal antibody Were purchased from Antibody diagnostica,USA.Mouse anti-CD34 monoclonal antibody was obtained from Lab Vision Corporation.USA.METHODS:Umbilical cord blood stem cells were divided into four groups.Umbilical cord blood steTn cells in the group A were incubated in the endothellal basal medium.Umbilical cord blood steHl cells in the group B were incubated in the endothelial basal medium containing microvascular endothelial cells in a 6-well plate.Umbilical cord blood stem cells in the group C were incubated in the endothelial basal medium containing endotheliaI medium in a 6-well plate coated with fibronectin.Umbilical cord blood stelrn cells in the group D were incubated in the endothelial basal medium containing endothelial medium in a 25 cm2 ctdturing flask.MAIN OUTCOME MEASURES:Cell morphology and population doublings were observed.CDlla,CDllb,CD34,CD29 and CD71 expression was detected by immunohistochemistry. RESULTS:Fibroblast-like cells were measured in each group.The celIs grew badly in morphology and proliferated slowly in the group A,while cells proliferated rapidlyinthe group B.The cell clones were instable and inclined to aging in the group C,with a new cell clone was

  18. Preterm Cord Blood Contains a Higher Proportion of Immature Hematopoietic Progenitors Compared to Term Samples.

    Directory of Open Access Journals (Sweden)

    Marina Podestà

    Full Text Available Cord blood contains high number of hematopoietic cells that after birth disappear. In this paper we have studied the functional properties of the umbilical cord blood progenitor cells collected from term and preterm neonates to establish whether quantitative and/or qualitative differences exist between the two groups.Our results indicate that the percentage of total CD34+ cells was significantly higher in preterm infants compared to full term: 0.61% (range 0.15-4.8 vs 0.3% (0.032-2.23 p = 0.0001 and in neonates <32 weeks of gestational age (GA compared to those ≥32 wks GA: 0.95% (range 0.18-4.8 and 0.36% (0.15-3.2 respectively p = 0.0025. The majority of CD34+ cells co-expressed CD71 antigen (p<0.05 preterm vs term and grew in vitro large BFU-E, mostly in the second generation. The subpopulations CD34+CD38- and CD34+CD45- resulted more represented in preterm samples compared to term, conversely, Side Population (SP did not show any difference between the two group. The absolute number of preterm colonies (CFCs/10microL resulted higher compared to term (p = 0.004 and these progenitors were able to grow until the third generation maintaining an higher proportion of CD34+ cells (p = 0.0017. The number of colony also inversely correlated with the gestational age (Pearson r = -0.3001 p<0.0168.We found no differences in the isolation and expansion capacity of Endothelial Colony Forming Cells (ECFCs from cord blood of term and preterm neonates: both groups grew in vitro large number of endothelial cells until the third generation and showed a transitional phenotype between mesenchymal stem cells and endothelial progenitors (CD73, CD31, CD34 and CD144The presence, in the cord blood of preterm babies, of high number of immature hematopoietic progenitors and endothelial/mesenchymal stem cells with high proliferative potential makes this tissue an important source of cells for developing new cells therapies.

  19. The in Vitro Assessment of Biochemical Factors in Hepatocyte like Cells Derived from Umbilical Cord Blood Stem Cells

    Directory of Open Access Journals (Sweden)

    A KHoramroodi

    2009-10-01

    Full Text Available Introduction & Objective: Umbilical cord blood (UCB is a source of Hematopoietic Stem Cells (HSC and progenitor cells that can reconstitute the hematopoietic system in patients with malignant and nonmalignant disorders. Mesenchymal stem cell-derived from umbilical cord blood (UCB have been differentiated to some kind of cells, such as osteobblast, adipoblast and chondroblast in Vitro. This study examined the differentiation of Umbilical Cord Blood (UCB derived stem cells to functional hepatocytes. Materials & Methods: The present study was an experimental study which was carried out in the Payam-e-Noor University of Tehran in cooperation with Hamedan University of Medical Sciences in 2008. Umbilical cord blood (UCB was obtained from Fatemieh hospital (Hamadan, Iran. Stem cells were isolated from the cord blood by combining density gradient centrifugation with plastic adherence. When the isolated cells reached 80% confluence, they differentiated to hepatocyte like cells. The medium which was used was consists of DMEM and 10% Fetal Bovine Serum (FBS supplemented with 20 ng/mL Hepatocyte Growth Factor (HGF, 10 ng/mL basic Fibroblast Growth Factor (bFGF and 20 ng/mL Oncostatin M (OSM.The medium was changed every 3 days and stored for Albumin (ALB, Alpha Fetoprotein (AFP, Alkaline Phosphatase (ALP, and urea assay. Finally PAS stain was done to study Glycogen storage in the differentiated cell. Results: Measurement of biochemical factors in different days showed that concentration of albumin (ALB, alpha fetoprotein (AFP, alkaline phosphatase (ALP, and Urea gradually increased. Also, PAS staining showed the storage of glycogen in these cells. Conclusion: Stem cell-derived from human umbilical cord blood (HUCB is a new source of cell types for cell transplantation therapy of hepatic diseases and under certain conditions these cells can differentiate into liver cells.

  20. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yanfu [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Chai, Jiake, E-mail: cjk304@126.com [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Sun, Tianjun; Li, Dongjie; Tao, Ran [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China)

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. In this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue

  1. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  2. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants.

  3. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shaoqiang Chen; Bilian Wu; Jianhua Lin

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated,purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method.Passages 3-5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein.Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks).Expressions of choline acetyltransferase,glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation,determined by immunofluorescence staining and laser confocal scanning microscopy.Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase,glutamic acid decarboxylase and synapsins,3 weeks after transplantation.The Basso-Beattie-Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins.Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats,promote expression of choline acetyltransferase,glutamic acid decarboxylase and synapsins,and improve nerve function in rats with spinal cord injury.

  4. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Institute of Scientific and Technical Information of China (English)

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modiifed biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantationin vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial ifbrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve ifbers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our ifndings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi-ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  5. Umbilical Cord Blood: Counselling, Collection, and Banking.

    Science.gov (United States)

    Armson, B Anthony; Allan, David S; Casper, Robert F

    2015-09-01

    Objectif : Analyser les données probantes actuelles sur le counseling, le prélèvement et la mise en banque, en ce qui a trait au sang de cordon ombilical, et fournir des lignes directrices aux professionnels canadiens de la santé en ce qui concerne la sensibilisation des patientes, le consentement éclairé, les aspects techniques et les options pour la mise en banque de sang de cordon au Canada. Options : Prélèvement sélectif ou systématique et mise en banque du sang de cordon ombilical, en vue de futures greffes autologues (chez le patient même) ou allogéniques (lien de parenté ou non) de cellules souches visant la prise en charge de troubles malins et bénins chez les enfants et les adultes. Le sang de cordon peut être prélevé au moyen de techniques in utero ou ex utero. Issues : Counseling, prélèvement et mise en banque en ce qui a trait au sang de cordon ombilical, formation des professionnels de la santé, indications du prélèvement de sang de cordon, risques et avantages à court et à long terme, morbidité maternelle et périnatale, satisfaction parentale et coûts de santé. Résultats : La littérature publiée a été récupérée par l’intermédiaire de recherches menées dans Medline et PubMed à partir de septembre 2013, au moyen d’un vocabulaire contrôlé (p. ex. « fetal blood », « pregnancy », « transplantation », « ethics ») et de mots clés (p. ex. « umbilical cord blood », « banking », « collection », « pregnancy », « transplantation », « ethics », « public », « private ») MeSH appropriés. Les résultats ont été restreints aux analyses systématiques, aux études observationnelles et aux essais comparatifs randomisés / essais cliniques comparatifs. Aucune limite n’a été imposée en matière de date, mais les résultats ont été limités aux articles publiés en anglais ou en français. Les recherches ont été mises à jour de façon régulière et int

  6. 人脐血间充质干细胞修复大鼠坐骨神经损伤的实验研究%Experiment research of the function of human umbilical cord blood mesenchymal stem cells in the regeneration of rat's sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    王忠仁; 杨波; 王利民; 李恩

    2009-01-01

    Objective To evaluate the efectiveness of using mesenchymal stem cells(MSCs)derived from HUCB(human umbilical cord blood)to a tissue engineered bioartificial nerve on bridging a 1 0 mm sciatic nerve gap.Methods The cord blood mononuclear cells were isolated by lymphocyte separation medium,purified and expanded with MesencultTM medium and acidic environment to produce adherent layer(MSCs).Thirty SD female rats were randomly divided into three groups.Group A:Human amnion tubes were seeded by HUCBMSCs together with fibrin sealant.Group B:Human amnion tubes were seeded only with fibrin sealant.group C:autografts.9 weeks later,a series of examinations were performed which included morphological,sciatic nerve function index,weight of gastrocnemius,histological staining and immunostaining of S100.Results The HUCB-derived mononuclear cells,when seeded in specific medium,gave rise to adherent cells (MSCs).At 9 weeks after the operations,all the examinations of group A was better than group B(P<0.05).Conclusion HUCBMSCs can be isolated,purified, cultivated and expanded Mesencult~(TM) medium.HUCBMSCs can promote the nerve to regenerate in reparing the sciatic nerve gap.%目的 评价用人脐血间充质干细胞(HUCBMSCs)构建组织工程化人工神经修复大鼠坐骨神经10 mm缺损的治疗效果. 方法 用淋巴细胞分离液分离脐血的单个核细胞,以偏酸性的MesencultTM进行培养获得MSCs.30只SD大鼠随机分为3组,每组10只.A组:将HUCBMSCs与生物蛋白胶混合,种植于羊膜管中修复坐骨神经缺损;B组:仅将生物蛋白胶种植于羊膜管中:C组:坐骨神经切下后再将其缝合.9周后,行大体观察、坐骨神经功能指数、腓肠肌湿重测定、组织学染色,S100免疫组化染色等检查. 结果 32份脐血18份可培养出MSCs,但传代培养大量扩增只有4份.HUCBMSCs植人手术后9周检查结果显示,坐骨神经功能指数、腓肠肌湿重测定A组(-64.2234±2.9461、41.29524±3.88421)

  7. 人脐血间充质干细胞体外诱导分化为类雪旺细胞的初步研究%Experimental Study on the Differentiation of Human Umbilical Cord Blood Mesenchymal Stem Cells into Schwann Cell-like in Vitro

    Institute of Scientific and Technical Information of China (English)

    仇大鹏; 肖玉周

    2011-01-01

    目的:体外定向诱导人脐血间充质干细胞(HUCBMSCs),分化为类雪旺细胞(SC-like).方法:(1)采用Ficoll密度梯度离心法分离健康产妇脐带血中单个核细胞进行体外培养,用流式细胞术检测细胞表达的表面抗原CD90,SH2,CD34和CD45.(2)第3次传代所得的HUCBMSCs,加入加有β-巯基乙醇(β-ME)、全反式黄酸(RA)、Forskolin、b-FGF、PDGF、HRG的含10%胎牛血清(FBS)的低糖DMEM培养基(L-DMEM)诱导,7 d后免疫组织化学染色法检测.结果:(1)HUCBMSCs在体外培养以梭形细胞为主;流式细胞仪检测显示,细胞高表达表面抗原CD90和SH2,低表达表面抗原CD34和CD45.(2)诱导7 d后,细胞免疫组化显示,GFAP阳性率为81.88%±2.43%.结论:在一定条件下,HUCBMSCs可以在体诱导分化为SC-like,组成人工神经,移植修复周围神经缺损.%Objective:To induce the human umbilical cord blood mesenchymal stem cells (HUCBMSCs) to differentiate into schwann cell-like (SC-like) in vitro. Methods: ( 1 ) Mononuclear cells were separated from umbilical cord blood of healthy parturients by Ficoll density gradient centrifugation and cultured in vitro.The expression of surface antigens CD90, SH2, CD34 and CI45 were detected by flow cytometry (FCM). (2)The third passage cells were cultured in low carbohydrates~Dulbecco's modified eagle's medium ( L-DMEM )containing 10% fetal bovine serum(FBS), β-mercaptoethanol (β-ME), retinoic acid(RA), forskolin, basic fibroblast growth factor (b-FGF), platelet-derived growth factor(PDGF) and beregulin(HRG). On 7th day,the cells were identified by immunocytocbemistry. Results: ( 1 )The majority of HUCBMSCs cultured in vitro displayed a spindle shaped appearance. FCM showed that the surface antigens CD90 and SH2 were highly expressed in these cells, while the CD34 and CD45 were very low. (2) On 7th day, the results of immunocytochemistry showed that the cells were positive for GFAP. The positive percentageswere 81.88% ± 2.43

  8. Private Cord Blood Banking: Experiences And Views Of Pediatric Hematopoietic Cell Transplantation Physicians

    Science.gov (United States)

    Thornley, Ian; Eapen, Mary; Sung, Lillian; Lee, Stephanie J.; Davies, Stella M.; Joffe, Steven

    2011-01-01

    Objective Private cord blood banks are for-profit companies that facilitate storage of umbilical cord blood for personal or family use. Pediatric hematopoietic cell transplantation (HCT) physicians are currently best situated to use cord blood therapeutically. We sought to describe the experiences and views of these physicians regarding private cord blood banking. Participants and Methods Emailed cross-sectional survey of pediatric HCT physicians in the United States and Canada. 93/152 potentially eligible physicians (93/130 confirmed survey recipients) from 57 centers responded. Questions addressed the number of transplants performed using privately banked cord blood, willingness to use banked autologous cord blood in specific clinical settings, and recommendations to parents regarding private cord blood banking. Results Respondents reported having performed 9 autologous and 41 allogeneic transplants using privately banked cord blood. In 36/40 allogeneic cases for which data were available, the cord blood had been collected because of a known indication in the recipient. Few respondents would choose autologous cord blood over alternative stem cell sources for treatment of acute lymphoblastic leukemia in second remission. In contrast, 55% would choose autologous cord blood to treat high-risk neuroblastoma, or to treat severe aplastic anemia in the absence of an available sibling donor. No respondent would recommend private cord blood banking for a newborn with one healthy sibling when both parents were of Northern European descent; 11% would recommend banking when parents were of different minority ethnicities. Conclusions Few transplants have been performed using cord blood stored in the absence of a known indication in the recipient. Willingness to use banked autologous cord blood varies depending on disease and availability of alternative stem cell sources. Few pediatric HCT physicians endorse private cord blood banking in the absence of an identified recipient

  9. Protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model

    Institute of Scientific and Technical Information of China (English)

    Peng Xie; Wen-Hui Ruan

    2016-01-01

    Objective:To study the protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model.Methods: SD rats were selected as experimental animals, spinal cord injury rat model was built by striking spinal cord with Hatteras Instruments PCI3000, and model rats were divided into control group, bone marrow mesenchymal stem cells (BMSCs) group, erythropoietin (EPO) group and BMSCs combined with EPO group according to different treatment methods. Then number of apoptotic cells in spinal cord tissue, contents of neural markers and neurotrophic factors as well as expression of apoptosis and injury molecules was detected.Results:Number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs group, EPO group and BMSCs+EPO group was lower than those of control group, and number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs+EPO group were lower than those of BMSCs group and EPO group; mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs group, EPO group and BMSCs+EPO group were higher than those of control group, and mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs+EPO group were higher than those of BMSCs group and EPO group.Conclusions:Bone marrow mesenchymal stem cells combined with erythropoietin therapy can inhibit cell apoptosis in the injured spinal cord tissue, increase neurotrophic factor levels and inhibit apoptosis and injury molecule expression; it has protective effect on spinal cord injury.

  10. Collagen-Coated Polytetrafluoroethane Membrane Inserts Enhances Chondrogenic Differentiation of Human Cord Blood Multi-Lineage Progenitor Cells

    DEFF Research Database (Denmark)

    Munir, Samir; Søballe, Kjeld; Ulrich-Vinther, Michael;

    Background: Articular chondrocytes and bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the favoured cells for cartilage tissue engineering. Umbilical cord blood has proven an alternative source of MSCs and moreover they may be more potent chondroprogenitor cells than bonemarrow...... MSCs. Purpose / Aim of Study: Multilineage progenitor cells (MLPCs) are clonal cord blood-derived MSCs and may therefore provide a cell source with more reproducible outcomes compared to heterogeneous primary MSC cultures. Materials and Methods: We evaluated the chondrogenic potency of MLPCs...... in standard micromass pellet system, layered on calcium polyphosphate (CPP), and on semi-permeable polytetrafluoroethane membranes with and without collagen type I, II or IV pre-coating. Findings / Results: The MPLC cell line used in this study possessed poor chondrogenic potency overall, but membrane...

  11. Transplante de sangue de cordão umbilical - SCU Umbilical cord blood transplantation

    Directory of Open Access Journals (Sweden)

    Celso A. Rodrigues

    2010-05-01

    Full Text Available A frequente utilização de sangue de cordão umbilical - SCU como fonte de células- tronco hematopoéticas - CTH, tanto em crianças, como em adultos, que não dispõem de doador na família, tem levado ao estabelecimento da padronização de critérios em sua seleção, objetivando a obtenção de melhores resultados. A escolha da unidade de SCU deve basear-se no número total de células nucleadas e no número de diferenças de antígenos leucocitários humanos (HLA. Diante de uma unidade com celularidade mínima, deve-se considerar a possibilidade da utilização de duplo cordão. Frente a mais de uma unidade com características semelhantes, a realização da contagem de células CD34 e da compatibilidade ABO, assim como a qualidade e a rapidez para obtenção da unidade, podem definir a escolha.The frequent use of umbilical cord blood as the source of hematopoietic stem cells, both in children and adults who do not have related donors, has led to the establishment of a better standardization of selection criteria aiming at improving the results. The choice of the umbilical cord blood unit should be based on the total number of nucleated cells and the number of differences in the human leukocyte antigen (HLA system. When a unit has minimal cellularity, the use of a double cord blood transplant should be considered. When two or more units have similar characteristics, the choice may be determined by the CD34 count, ABO compatibility and the quality and speed to obtain the unit.

  12. Comparison of Umbilical Cord Milking and Delayed Cord Clamping on Cerebral Blood Flow in Term Neonates.

    Science.gov (United States)

    Jaiswal, Prateek; Upadhyay, Amit; Gothwal, Sunil; Chaudhary, Hema; Tandon, Ashutosh

    2015-10-01

    To compare the effect of umbilical cord milking (UCM) and delayed cord clamping (DCC) on cerebral blood flow in term neonates. This randomized controlled trial was conducted at a teaching hospital in India during 2012 to 2013. Two hundred newborns (>36wk) were randomized to UCM and DCC groups. UCM was done on 25cm of cord length. In DCC group, clamping was delayed by 60 to 90s. Resistive Index (RI), Pulsatility Index (PI) and cerebral blood flow velocities of middle cerebral artery (MCA) were measured at 24 to 48h of life. Baseline characteristics and hemodynamic parameters were comparable. Mean PI [1.18 (0.26)] and RI [0.65 (0.08)] in UCM group was comparable to mean PI [1.18 (0.25)] and RI [0.65 (0.08)] in DCC group. The peak systolic velocity and end diastolic velocity (cm/s) of blood flow in MCA for UCM group were 34.94 (11.82) and 11.71 (4.75) respectively, while in DCC group they were 37.24 (12.63) and 13.07 (4.78) (p 0.23 and 0.07) respectively. Indices among growth retarded babies were not different. DCC and UCM had similar effect on cerebral blood flow velocities and Doppler indices in MCA, in term neonates.

  13. Functional improvement of patients with progressive muscular dystrophy by bone marrow and umbilical cord blood mesenchymal stem cell transplantations%骨髓和脐血间充质干细胞改善肌营养不良患者肌力的临床观察

    Institute of Scientific and Technical Information of China (English)

    杨晓凤; 阎杨; 周金旭; 许忆峰; 张轶斌; 王红梅; 吕乃武; 吴雁翔; 吕欣; 崔激萍; 单鸿

    2009-01-01

    Objective To investigate the feasibility of employing double transplantations of autologous bone marrow mesenchymal stem cells (BMSC) and umbilical cord mesenchymal stem cells (UMSC) in the treatment of progressive muscular dystrophy (PMD). Methods A total of 82 cases were treated by the double transplantations of BMSC and CB-MSC. They were diagnosed by clinical manifestations, CK, LDH, genetic analysis, electromyography, MRI and pathologic examination of biopsied muscle specimens from July 2007 to July 2008. Control group was self-made at before and after treatment and cases were followed up for 3-12 months, treatment method: Eighty-two patients underwent the double transplantations of bone mesenchymal stem cell (BMSC) and human umbilical cord blood MSC(CB-MSC). ① BMSC:80-150ml bone marrow sample was collected through a puncture at bilateral posterior superior lilac spine. Ficoll density gradient centrifuge was employed to separate individual monocyte for induced differentiation. ② CB-MSC: 80-160ml umbilical cord blood was harvested and processed likewise as above. ③Stem cell transplantation: Both BMSC and CB-MSC were collected and prepared into 1×108/ml and 1×107/ml cell suspension respectively. They were transplanted in divided does into the extremity muscle and vein. The clinical and laboratory parameters were monitored at 3, 6, 9 and 12 months. Results It was found that 31 cases(37.8%)obtained a remarkable efficacy, 37 cases(45.1%)were effective and 14 cases (17.1%)had no change. Total effective rate was 82.9%. Seventy patients(85.4%)felt limbs warmly, appetite improved, gained weight, had better appetite and action were nimble. Activity of daily living scale (ADL) in 72 patients (87.8%) increased as compared with pre-treatment (P < 0.01). LDH decreased at post-treatment [(475±223) u/L vs (410±216) u/L, P < 0.05, t = 6.650]. Creatine kinase [(2952±2259) u/L vs(2841±2092) u/L,P =0.223,t = 1.094] and creatine [(26±12) μmol/L vs(25±11) μmol/L,P=0

  14. Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Curley, Gerard F; Jerkic, Mirjana; Dixon, Steve; Hogan, Grace; Masterson, Claire; O'Toole, Daniel; Devaney, James; Laffey, John G

    2017-02-01

    Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. Randomized animal study. University research laboratory. Male Sprague-Dawley rats. Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory

  15. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients.

    Science.gov (United States)

    Zhang, Zheng; Lin, Hu; Shi, Ming; Xu, Ruonan; Fu, Junliang; Lv, Jiyun; Chen, Liming; Lv, Sa; Li, Yuanyuan; Yu, Shuangjie; Geng, Hua; Jin, Lei; Lau, George K K; Wang, Fu-Sheng

    2012-03-01

    Decompensated liver cirrhosis (LC), a life-threatening complication of chronic liver disease, is one of the major indications for liver transplantation. Recently, mesenchymal stem cell (MSC) transfusion has been shown to lead to the regression of liver fibrosis in mice and humans. This study examined the safety and efficacy of umbilical cord-derived MSC (UC-MSC) in patients with decompensated LC. A total of 45 chronic hepatitis B patients with decompensated LC, including 30 patients receiving UC-MSC transfusion, and 15 patients receiving saline as the control, were recruited; clinical parameters were detected during a 1-year follow-up period. No significant side-effects and complications were observed in either group. There was a significant reduction in the volume of ascites in patients treated with UC-MSC transfusion compared with controls (P decompensated LC. UC-MSC transfusion, therefore, might present a novel therapeutic approach for patients with decompensated LC.

  16. Therapeutic potential of umbilical cord mesenchymal stromal cells transplantation for cerebral palsy: a case report.

    Science.gov (United States)

    Wang, Liming; Ji, Haijie; Zhou, Jianjun; Xie, Jiang; Zhong, Zhanqiang; Li, Ming; Bai, Wen; Li, Na; Zhang, Zijia; Wang, Xuejun; Zhu, Delin; Liu, Yongjun; Wu, Mingyuan

    2013-01-01

    Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs) transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enhanced immunity, increased physical strength, and adjusted speech and comprehension. Temporary low-grade fever was the only side effect during the treatment. MSCs may be a safe and effective therapy to improve symptoms in children with cerebral palsy.

  17. Distinguish on the viability of human umbilical cord mesenchymal stem cells using delayed luminescence

    Science.gov (United States)

    Chen, Ping; Li, Xing; Wang, Yan; Bai, Hua; Lin, Lie

    2014-09-01

    In this paper, we report the discrimination of the viability of human umbilical cord mesenchymal stem cells (hUC-MSCs) with photo-induced delayed luminescence (DL). We measure the DL decay kinetics of hUC-MSCs using an ultraweak luminescence detection system, and find the significant difference in the weight distributions of the decay rate for hUC-MSCs with high and low viabilities. Spectral discrimination of hUC-MSCs with high and low viabilities is thus carried out by comparing the DL kinetics parameters, including the initial intensity, the peak decay rate and the peak weight value. Our results show that the novel optical method for the viability diagnosis of hUC-MSCs has a promising prospect.

  18. Therapeutic Potential of Umbilical Cord Mesenchymal Stromal Cells Transplantation for Cerebral Palsy: A Case Report

    Directory of Open Access Journals (Sweden)

    Liming Wang

    2013-01-01

    Full Text Available Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enhanced immunity, increased physical strength, and adjusted speech and comprehension. Temporary low-grade fever was the only side effect during the treatment. MSCs may be a safe and effective therapy to improve symptoms in children with cerebral palsy.

  19. Therapeutic Potential of Umbilical Cord Mesenchymal Stromal Cells Transplantation for Cerebral Palsy: A Case Report

    Science.gov (United States)

    Wang, Liming; Ji, Haijie; Zhou, Jianjun; Xie, Jiang; Zhong, Zhanqiang; Li, Ming; Bai, Wen; Li, Na; Zhang, Zijia; Wang, Xuejun; Zhu, Delin; Liu, Yongjun; Wu, Mingyuan

    2013-01-01

    Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs) transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enhanced immunity, increased physical strength, and adjusted speech and comprehension. Temporary low-grade fever was the only side effect during the treatment. MSCs may be a safe and effective therapy to improve symptoms in children with cerebral palsy. PMID:23533920

  20. Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives.

    Science.gov (United States)

    Dalous, Jérémie; Larghero, Jérome; Baud, Olivier

    2012-04-01

    The prevention of perinatal neurological disabilities remains a major challenge for public health, and no neuroprotective treatment to date has proven clinically useful in reducing the lesions leading to these disabilities. Efforts are, therefore, urgently needed to test other neuroprotective strategies including cell therapies. Although stem cells have raised great hopes as an inexhaustible source of therapeutic products that could be used for neuroprotection and neuroregeneration in disorders affecting the brain and spinal cord, certain sources of stem cells are associated with potential ethical issues. The human umbilical cord (hUC) is a rich source of stem and progenitor cells including mesenchymal stem cells (MSCs) derived either from the cord or from cord blood. hUC MSCs (hUC-MSCs) have several advantages as compared to other types and sources of stem cells. In this review, we will summarize the most recent findings regarding the technical aspects and the preclinical investigation of these promising cells in neuroprotection and neuroregeneration, and their potential use in the developing human brain. However, extensive studies are needed to optimize the administration protocol, safety parameters, and potential preinjection cell manipulations before designing a controlled trial in human neonates.

  1. Umbilical Cord Blood Stem Cells. Who has the right word?

    Directory of Open Access Journals (Sweden)

    Gisela Laporta

    2014-12-01

    Full Text Available In this article we analyze bioethical and legal aspects related to the cryopreservation of cord blood stem cells in Argentina. To unify definitions, the concept and variety of stem cells, together with the understanding of the means to obtain and store umbilical cord blood stem cells, are provided.  Options that arise in our country, mainly analyzing the conceptual differences underlying legal body and parts by public and private biobanks, are described. Additionally, the current Argentinean legislation and circumstances arising from a resolution which INCUCAI sought to regulate private biobanks, is analyzed. This analysis leads to thoughts on the way conflicts are solved when the health and life of people are judicialized. In this particular case, the appearance of a complex new topic which gives rise to new social and healthcare scenarios, must be further understood.

  2. Cesarean section imprints cord blood immune cell distributions

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Larsen, Jeppe Madura; Rasmussen, Mette Annelie;

    2014-01-01

    Immune programming in early life may affect the risk of developing immune-related diseases later in life. Children born by cesarean section seem to be at higher risk of asthma, allergic rhinitis, and type-1 diabetes. We hypothesized that delivery by cesarean section may affect immune maturation...... in newborns. The objective of the study was to profile innate and adaptive immune cell subsets in cord blood of children born by cesarean section or natural birth....

  3. Propitious Therapeutic Modulators to Prevent Blood-Spinal Cord Barrier Disruption in Spinal Cord Injury.

    Science.gov (United States)

    Kumar, Hemant; Ropper, Alexander E; Lee, Soo-Hong; Han, Inbo

    2016-05-18

    The blood-spinal cord barrier (BSCB) is a specialized protective barrier that regulates the movement of molecules between blood vessels and the spinal cord parenchyma. Analogous to the blood-brain barrier (BBB), the BSCB plays a crucial role in maintaining the homeostasis and internal environmental stability of the central nervous system (CNS). After spinal cord injury (SCI), BSCB disruption leads to inflammatory cell invasion such as neutrophils and macrophages, contributing to permanent neurological disability. In this review, we focus on the major proteins mediating the BSCB disruption or BSCB repair after SCI. This review is composed of three parts. Section 1. SCI and the BSCB of the review describes critical events involved in the pathophysiology of SCI and their correlation with BSCB integrity/disruption. Section 2. Major proteins involved in BSCB disruption in SCI focuses on the actions of matrix metalloproteinases (MMPs), tumor necrosis factor alpha (TNF-α), heme oxygenase-1 (HO-1), angiopoietins (Angs), bradykinin, nitric oxide (NO), and endothelins (ETs) in BSCB disruption and repair. Section 3. Therapeutic approaches discusses the major therapeutic compounds utilized to date for the prevention of BSCB disruption in animal model of SCI through modulation of several proteins.

  4. 脐血间充质干细胞移植对急性心肌梗死模型犬残存心肌组织的影响%Effect of umbilical cord blood mesenchymal stem cell transplantation on remaining myocardial tissues of dogs with acute myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    马南; 钟竑; 陈德海; 金誉; 单根法

    2007-01-01

    BACKGROUND: Cell apoptosis and ventricle reconstitution following myocardial infarction are of mutual cause-effect, and they cause vicious cycle. How to reduce the apoptosis events following myocardial infarction is one of keys to saving heart function.OBJECTIVE: To observe the effect of umbilical cord blood mesenchymal stem cell (UCBSMC) transplantation on remaining myocardial tissue of dogs with acute myocardial infarction.DESIGN: A randomized controlled observation.SETTING: Department of Cardiothoracic Surgery, Xinhua Hospital.MATERIALS: This study was carried out in the Central Laboratory of Xinhua Hospital from October 2005 to May 2007.Thirty-six adult hybrid dogs, male and female in half, were provided by the Animal Experimental Center of Xinhua Hospital.METHODS: Thirty-six dogs were divided into cell transplantation group and control group, with 18 dogs in each according to table of random digit. Mesenchymal stem cells were isolated from the umbilical cord blood of full-term pregnant hybrid dogs, cultured and amplified. Then, they were labeled with Laz gene, in vitro induced with 5-azacytidine, and transplanted into the dogs with acute myocardial infarction in the cell transplantation group. Rats in the control group were injected with the same amount of normal saline. Each dog was euthanized by anesthesia for harvesting myocardial specimen 1,4 and 8 weeks after transplantation.MAIN OUTCOME MEASURES: ① Remaining and apoptosis index detected by TUNEL method. ② Myocardial cell volume and histomorphology detected by confocal microscopy. ③ Histological change of myocardial collagen network detected by haematoxylin-basic fuchsin-picric acid staining.RESULTS: Thirty-six involved experimental dogs all entered the stage of final analysis. ①The apoptosis index in the cell transplantation group was significantly lower than that in the control group 1, 4 and 8 weeks after cell transplantation (P <0.05). ② Myocardial cell volume in the cell transplantation

  5. Immunophenotypic characterisation and cytogenetic analysis of mesenchymal stem cells from equine bone marrow and foal umbilical cords during in vitro culture

    Directory of Open Access Journals (Sweden)

    Mazurkevych Anatoliy

    2016-09-01

    Full Text Available Introduction: The objective of the study was immunophenotypic and cytogenetic analysis of mesenchymal stem cells from equine bone marrow and foal umbilical cords during in vitro culture.

  6. Occurrence and transport of synthetic musks in paired maternal blood, umbilical cord blood, and breast milk.

    Science.gov (United States)

    Zhang, Xiaolan; Jing, Ye; Ma, Li; Zhou, Jing; Fang, Xiangming; Zhang, Xinyu; Yu, Yingxin

    2015-01-01

    Although early exposure to environmental pollutants may have important toxicological consequences, the mechanisms of transplacental transfer of synthetic musks are still not well understood. The objective of the present study was to learn the musk contaminations in three matrices, including maternal blood, umbilical cord blood, and breast milk; and investigate their placental transfer mechanisms. The concentrations of eight commonly used synthetic musks were measured in 42 paired samples (126 individual samples in total) of maternal serum, umbilical cord serum, and breast milk from Chinese women living in Shanghai. Musks were ubiquitously detected, especially galaxolide (HHCB) and musk xylene (MX). The total lipid-based concentrations were higher in umbilical cord sera (87.3ng/g), but lower in breast milk (35.2ng/g), compared with maternal serum concentrations (71.2ng/g). There were significant correlations between maternal serum concentrations of HHCBs (HHCB and HHCB-lactone) and umbilical cord serum concentrations, and between maternal serum concentrations and breast milk concentrations (Spearman's rho=0.338-0.597, pumbilical cord sera were >1. And the HHCB-lactone/HHCB ratio in maternal sera was higher compared with umbilical cord sera. Contamination levels were low compared with other regions and HHCBs were found to be the predominant constituents. No regional differences or age-related accumulations were observed. Our study suggests that prenatal exposure to HHCBs occurs and that transplacental transfer is the main route of exposure. Preferential accumulation in umbilical cord blood was observed. The results showed that transplacental transfer of HHCB did not correspond to passive diffusion since the transfer ratios were significantly different from 1. The transfer ratio for HHCB was also larger than that of HHCB-lactone, although HHCB has higher lipid solubility. Low fetal metabolism of HHCB was suggested by the HHCB-lactone/HHCB ratio in maternal and

  7. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl;

    2007-01-01

    staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion: We here report...

  8. Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells

    Institute of Scientific and Technical Information of China (English)

    MA Lian; FENG Xue-yong; CUI Bing-lin; Frieda Law; JIANG Xue-wu; YANG Li-ye; XIE Qing-dong; HUANG Tian-hua

    2005-01-01

    Background The two most basic properties of mesenchymal stem cells (MSCs) are the capacities to self-renew indefinitely and differentiate into multiple cells and tissue types. The cells from human umbilical cord Wharton's Jelly have properties of MSCs and represent a rich source of primitive cells. This study was conducted to explore the possibility of inducing human umbilical cord Wharton's Jelly-derived MSCs to differentiate into nerve-like cells.Methods MSCs were cultured from the Wharton's Jelly taken from human umbilical cord of babies delivered after full-term normal labor. Salvia miltiorrhiza and β-mercaptoethanol were used to induce the human umbilical cord-derived MSCs to differentiate. The expression of neural protein markers was shown by immunocytochemistry. The induction process was monitored by phase contrast microscopy, electron microscopy (EM), and laser scanning confocal microscopy (LSCM) .The pleiotrophin and nestin genes were measured by reverse transcription-polymerase chain reaction (RT-PCR). Results MSCs in the Wharton's Jelly were easily attainable and could be maintained and expanded in culture. They were positive for markers of MSCs, but negative for markers of hematopoietic cells and graft-versus-host disease (GVHD)-related cells. Treatment with Salvia miltiorrhiza caused Wharton's Jelly cells to undergo profound morphological changes. The induced MSCs developed rounded cell bodies with multiple neurite-like extensions. Eventually they developed processes that formed networks reminiscent of primary cultures of neurons. Salvia miltiorrhiza and β-mercaptoethanol also induced MSCs to express nestin, β-tubulinⅢ, neurofilament (NF) and glial fibrillary acidic protein (GFAP). It was confirmed by RT-PCR that MSCs could express pleiotrophin both before and after induction by Salvia miltiorrhiza. The expression was markedly enhanced after induction and the nestin gene was also expressed.Conclusions MSCs could be isolated from human umbilical

  9. Family cord blood banking for sickle cell disease: a twenty-year experience in two dedicated public cord blood banks.

    Science.gov (United States)

    Rafii, Hanadi; Bernaudin, Françoise; Rouard, Helene; Vanneaux, Valérie; Ruggeri, Annalisa; Cavazzana, Marina; Gauthereau, Valerie; Stanislas, Aurélie; Benkerrou, Malika; De Montalembert, Mariane; Ferry, Christele; Girot, Robert; Arnaud, Cecile; Kamdem, Annie; Gour, Joelle; Touboul, Claudine; Cras, Audrey; Kuentz, Mathieu; Rieux, Claire; Volt, Fernanda; Cappelli, Barbara; Maio, Karina T; Paviglianiti, Annalisa; Kenzey, Chantal; Larghero, Jerome; Gluckman, Eliane

    2017-06-01

    Efforts to implement family cord blood banking have been developed in the past decades for siblings requiring stem cell transplantation for conditions such as sickle cell disease. However, public banks are faced with challenging decisions about the units to be stored, discarded, or used for other endeavors. We report here 20 years of experience in family cord blood banking for sickle cell disease in two dedicated public banks. Participants were pregnant women who had a previous child diagnosed with homozygous sickle cell disease. Participation was voluntary and free of charge. All mothers underwent mandatory serological screening. Cord blood units were collected in different hospitals, but processed and stored in two public banks. A total of 338 units were stored for 302 families. Median recipient age was six years (11 months-15 years). Median collected volume and total nucleated cell count were 91 mL (range 23-230) and 8.6×10(8) (range 0.7-75×10(8)), respectively. Microbial contamination was observed in 3.5% (n=12), positive hepatitis B serology in 25% (n=84), and homozygous sickle cell disease in 11% (n=37) of the collections. Forty-four units were HLA-identical to the intended recipient, and 28 units were released for transplantation either alone (n=23) or in combination with the bone marrow from the same donor (n=5), reflecting a utilization rate of 8%. Engraftment rate was 96% with 100% survival. Family cord blood banking yields good quality units for sibling transplantation. More comprehensive banking based on close collaboration among banks, clinical and transplant teams is recommended to optimize the use of these units. Copyright© Ferrata Storti Foundation.

  10. Family cord blood banking for sickle cell disease: a twenty-year experience in two dedicated public cord blood banks

    Science.gov (United States)

    Rafii, Hanadi; Bernaudin, Françoise; Rouard, Helene; Vanneaux, Valérie; Ruggeri, Annalisa; Cavazzana, Marina; Gauthereau, Valerie; Stanislas, Aurélie; Benkerrou, Malika; De Montalembert, Mariane; Ferry, Christele; Girot, Robert; Arnaud, Cecile; Kamdem, Annie; Gour, Joelle; Touboul, Claudine; Cras, Audrey; Kuentz, Mathieu; Rieux, Claire; Volt, Fernanda; Cappelli, Barbara; Maio, Karina T.; Paviglianiti, Annalisa; Kenzey, Chantal; Larghero, Jerome; Gluckman, Eliane

    2017-01-01

    Efforts to implement family cord blood banking have been developed in the past decades for siblings requiring stem cell transplantation for conditions such as sickle cell disease. However, public banks are faced with challenging decisions about the units to be stored, discarded, or used for other endeavors. We report here 20 years of experience in family cord blood banking for sickle cell disease in two dedicated public banks. Participants were pregnant women who had a previous child diagnosed with homozygous sickle cell disease. Participation was voluntary and free of charge. All mothers underwent mandatory serological screening. Cord blood units were collected in different hospitals, but processed and stored in two public banks. A total of 338 units were stored for 302 families. Median recipient age was six years (11 months-15 years). Median collected volume and total nucleated cell count were 91 mL (range 23–230) and 8.6×108 (range 0.7–75×108), respectively. Microbial contamination was observed in 3.5% (n=12), positive hepatitis B serology in 25% (n=84), and homozygous sickle cell disease in 11% (n=37) of the collections. Forty-four units were HLA-identical to the intended recipient, and 28 units were released for transplantation either alone (n=23) or in combination with the bone marrow from the same donor (n=5), reflecting a utilization rate of 8%. Engraftment rate was 96% with 100% survival. Family cord blood banking yields good quality units for sibling transplantation. More comprehensive banking based on close collaboration among banks, clinical and transplant teams is recommended to optimize the use of these units. PMID:28302713

  11. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    Science.gov (United States)

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  12. Surfactant Protein D Levels in Umbilical Cord Blood and Capillary Blood of Premature Infants

    DEFF Research Database (Denmark)

    Dahl, Marianne; Holmskov, Uffe; Husby, Steffen

    2006-01-01

    of SP-D in capillary blood day 1 was 1,466 ng/mL (range 410-5,051 ng/mL), with lowest values in infants born with ROM and delivered vaginally. High SP-D levels in umbilical cord blood and capillary blood on day 1 were found to be more likely in infants in need for respiratory support or surfactant...

  13. Cord blood IgE. I. IgE screening in 2814 newborn children

    DEFF Research Database (Denmark)

    Hansen, L G; Høst, A; Halken, S;

    1992-01-01

    Screening of total IgE in 2814 cord blood samples was analysed by Phadebas IgE PRIST in 2 1-year birth cohorts (1983-1984 and 1985-1986) in Denmark (n = 1189 + 1625). 48.6% of the sera contained less IgE than the detection limit 0.1 kU/l. Cord blood IgE values greater than or equal to 0.5 kU/l were......E values in the autumn was found. No correlation between cord blood IgE and birth weight or gestational age was demonstrated. Only few newborns had cord blood IgA values greater than 0.014 g/l, calculated as geometric mean cord blood IgA + 2 SD among children with no detectable cord blood IgE, indicating...

  14. Blood gas values in clamped and unclamped umbilical cord at birth.

    Science.gov (United States)

    Di Tommaso, Mariarosaria; Seravalli, Viola; Martini, Irene; La Torre, Pasquale; Dani, Carlo

    2014-09-01

    To determine the reliability of the cord blood gas analysis on the unclamped cord compared to the standard technique of sampling on double clamped cord. Prospective observational study conducted on 46 singleton neonates vaginally delivered at term. Matched pairs of umbilical artery and vein blood samples were collected from unclamped cord within 90s after birth and from the same cord after clamping, with the clamping occurring immediately after the first blood collection. A blood gas analysis was performed on each collected sample. Arterial and venous blood samples were analyzed for pH, PO2, pCO2, SaO2, hemoglobin concentration (ctHb) and base excess (BE). The values were compared between the two groups (clamped vs unclamped) using a Wilcoxon test. No significant difference was found in pH, PO2, pCO2, SaO2 and ctHb values on arterial blood between unclamped and clamped cord. The only significant difference was related to BE (pblood, the values of pH, PO2, pCO2 were comparable between unclamped and clamped cord, while the values of SaO2, ctHb and BE were significantly different (pblood gas parameters and in the main venous blood gas parameters between unclamped and clamped cord. Sampling of cord blood for gas analysis may be performed on the unclamped cord right after birth without reducing the accuracy of the analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Cost effectiveness of cord blood versus bone marrow and peripheral blood stem cells

    Directory of Open Access Journals (Sweden)

    Thomas Bart

    2010-10-01

    Full Text Available Thomas BartSwiss Blood Stem Cells, Bern, SwitzerlandAbstract: Umbilical cord blood (CB has become, since its first successful use more than two decades ago, an increasingly important source of blood stem cells. In this light, an overview of current usage of CB in the field of unrelated hematopoietic blood stem cell transplantation (HSCT is given. The three main sources of hematopoietic stem cells: bone marrow (BM, peripheral blood stem cells (PBSC, and cord blood (CB are compared as regards their current quantitative usage in HSCT. A cost analysis of the named three hematopoietic blood stem cell (HSC sources, taking into account various factors, is undertaken. The health economical comparison shows significant differences between CB on the one side, and BM and PBSC on the other. The consequences for the public health side and propositions for a possible health care policy, especially regarding future resource allocation towards the different choices for HSCT products, are discussed. An outlook on the possible future usage of BM, PBSC, and CB and its implications on health systems, donor registries, and CB banks is given.Keywords: health economy, cord blood, hematopoietic stem cell transplantation

  16. Lamotrigine in pregnancy - therapeutic drug monitoring in maternal blood, amniotic fluid, and cord blood.

    Science.gov (United States)

    Paulzen, Michael; Lammertz, Sarah E; Veselinovic, Tanja; Goecke, Tamme W; Hiemke, Christoph; Gründer, Gerhard

    2015-09-01

    This study is the first to measure and correlate lamotrigine concentrations in maternal blood, amniotic fluid, and umbilical cord blood and account for distribution of the drug between these three compartments. Concentrations of lamotrigine were measured in six mother-infant pairs at the time of delivery. Daily doses of lamotrigine ranged between 200 and 650 mg. Daily doses were correlated with maternal serum and umbilical cord blood concentrations, and serum levels were correlated with levels in amniotic fluid. Lamotrigine levels in serum correlated strongly with the lamotrigine levels in amniotic fluid (r=+0.986, Pamniotic fluid was in a range between 0.31 and 0.75 (mean 0.58, SD 0.17); the penetration ratio into the fetal circulation, calculated on the basis of umbilical cord blood levels, was found to be in a range between 0.48 and 1.27 (mean 0.81, SD 0.28). Lamotrigine concentrations in amniotic fluid provided evidence that maternally administered lamotrigine is accessible to the fetus in a manner not previously appreciated. Furthermore, the penetration ratio into umbilical cord blood calculated here is in line with the largest study carried out so far to explore transplacental transfer.

  17. Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Hanjiao Qin; Zishan Feng; Wei Liu; Ye Zhou; Lifeng Yang; Wei Zhao; Youjun Li

    2013-01-01

    In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cellon the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cellsuspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 × 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after celltransplantation, more than 80%of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improve-ments were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electro-physiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After celltransplantation, no immunological rejec-tions were observed. These findings suggest that human umbilical cord mesenchymal stem cel-loaded amniotic membrane can be used for the repair of radial nerve injury.

  18. Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment

    Institute of Scientific and Technical Information of China (English)

    Xianying Wang; Honghai Wu; Gai Xue; Yanning Hou

    2012-01-01

    In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vaginal delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 μM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 μM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment.

  19. Peptide-Tethered Hydrogel Scaffold Promotes Recovery from Spinal Cord Transection via Synergism with Mesenchymal Stem Cells.

    Science.gov (United States)

    Li, Li-Ming; Han, Min; Jiang, Xin-Chi; Yin, Xian-Zhen; Chen, Fu; Zhang, Tian-Yuan; Ren, Hao; Zhang, Ji-Wen; Hou, Ting-Jun; Chen, Zhong; Ou-Yang, Hong-Wei; Tabata, Yasuhiko; Shen, You-Qing; Gao, Jian-Qing

    2017-02-01

    Spinal cord injury (SCI) is one of the most devastating injuries. Treatment strategies for SCI are required to overcome comprehensive issues. Implantation of biomaterial scaffolds and stem cells has been demonstrated to be a promising strategy. However, a comprehensive recovery effect is difficult to achieve. In the comprehensive treatment process, the specific roles of the implanted scaffolds and of stem cells in combined strategy are usually neglected. In this study, a peptide-modified scaffold is developed based on hyaluronic acid and an adhesive peptide PPFLMLLKGSTR. Synchrotron radiation micro computed tomography measurement provides insights to the three-dimensional inner topographical property and perspective porous structure of the scaffold. The modified scaffold significantly improves cellular survival and adhesive growth of mesenchymal stem cells during 3D culture in vitro. After implantation in transected spinal cord, the modified scaffold and mesenchymal stems are found to function in synergy to restore injured spinal cord tissue, with respective strengths. Hindlimb motor function scores exhibit the most significant impact of the composite implant at 2 weeks post injury, which is the time secondary injury factors begin to take hold. Investigation on the secondary injury factors including inflammatory response and astrocyte overactivity at 10 days post injury reveals the possible underlying reason. Implants of the scaffold, cells, and especially the combination of both elicit inhibitory effects on these adverse factors. The study develops a promising implant for spinal cord tissue engineering and reveals the roles of the scaffold and stem cells. More importantly, the results provide the first understanding of the bioactive peptide PPFLMLLKGSTR concerning its functions on mesenchymal stem cells and spinal cord tissue restoration.

  20. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  1. Cord blood 25(OH)-vitamin D deficiency and childhood asthma, allergy and eczema

    DEFF Research Database (Denmark)

    Chawes, Bo L; Bønnelykke, Klaus; Jensen, Pia F

    2014-01-01

    with respiratory infections or asthma. We saw no association between cord blood 25(OH)-Vitamin D level and lung function, sensitization, rhinitis or eczema. The effects were unaffected from adjusting for multiple lifestyle factors. CONCLUSION: Cord blood 25(OH)-Vitamin D deficiency associated with increased risk...... function and sensitization were performed repeatedly from birth. RESULTS: After adjusting for season of birth, deficient cord blood 25(OH)-Vitamin D level (

  2. The characteristics of mesenchymal stem cells derived from human umbilical cord blood and its chemotaxis in ovarian cancer cells%人脐带血来源的间充质干细胞特性及对卵巢癌细胞趋化作用的研究

    Institute of Scientific and Technical Information of China (English)

    李佩玲; 时小丁; 庄如锦; 刘倩

    2011-01-01

    目的 为人脐带血(HUCD)可成为间充质干细胞(MSCs)重要新来源提供依据,着重研究时人卵巢癌细胞的趋化作用,为临床靶向治疗卵巢癌提供新的载体.方法 征求足月健康的自然产孕妇同意,获得脐带血,从中提取MSCs.获得稳定增殖传代的MSCs后,鉴定其生物特性和抗原表型,将其与人卵巢癌HO-8910细胞共培养,探讨其对卵巢癌细胞的趋化作用.结果 成功从HUCD中提取MSCs,筛选出稳定传代的细胞系.其生物学特性与骨髓来源的MSCs-样具有多向细胞分化潜能,可诱导分化成脂肪细胞、成骨细胞;同时还具有相同的免疫表型,CD29、CD44、CD105阳性表达,CD13、CD14、CD34、CD45阴性表达,并且其免疫表型不随着细胞传代而改变.HUCD来源的MSCs与HO-8910细胞共培养时发现,MSCs对其有趋化作用.结论 证实HUCD可以作为MSCs的新的重要来源.实验发现MSCs时人卵巢癌细胞株HO一8910有明显趋化作用,这一发现可能为卵巢肿瘤靶向治疗提供了新的有效载体.%Objective: To provide evidence on human umbilical cord blood (HUCD) that can be a new important origin of mesenchymal stem cells (MSCs). Mainly research the MSCs's ability of the chemotaxis to ovarian cancer cells, which can become the new target - vector of ovarian cancers on clinical therapy. Methods: We obtain HUCD from mature and healthy pregnant woman who agreed as parturition. Isolate, purify and culture MSCs, till MSCs have a stable proliferation, identify biology characteristic and phenotypic characterization. Then have a co- culture with the human ovarian carcinoma cell lines HO- 8910, the tropism capacity of MSCs was quantitatively assayed in vitro using the Millicell system. Results: MSCs obtained from HUCD, which have the same biology characteristic and phenotypic characterization with that originated from bone marrow. HUCD MSCs can differentiate into lipocyte and osteoblast. HUCD MSCs don't expressed hematopoietic

  3. Cord Blood as a Source of Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Rohtesh S Mehta

    2016-01-01

    Full Text Available Cord blood (CB offers several unique advantages as a graft source for hematopoietic stem cell transplantation (HSCT. The risk of relapse and graft-versus-host disease (GVHD after cord blood transplantation (CBT are lower than what is typically observed after other graft sources with a similar degree of human leukocyte antigen (HLA mismatch. Natural killer (NK cells have a well-defined role in both innate and adaptive immunity and as the first lymphocytes to reconstitute after HSCT and CBT, they play a significant role in protection against early relapse. In this article, we highlight the uses of CB NK cells in transplantation and adoptive immunotherapy. First, we will describe differences in the phenotype and functional characteristics of NK cells in CB as compared with peripheral blood. Then, we will review some of the obstacles we face in using resting CB NK cells for adoptive immunotherapy, and discuss methods to overcome them. We will review the current literature on killer-cell immunoglobulin-like receptors (KIR-ligand mismatch and outcomes after CBT. Finally, we will touch on current strategiesfor the use of CB NK cells in cellular immunotherapy.

  4. Double cord blood transplantation: co-operation or competition?

    Directory of Open Access Journals (Sweden)

    Nikolaos Neokleous

    2011-06-01

    Full Text Available Over the last two decades umbilical cord blood (UCB transplantation (UCBT is increasingly used for a variety of malignant and benign hematological and other diseases. The main factor that limits the use of UCB to low weight recipients, mainly children and adolescents, is its low progenitor cell content. Various alternatives have been exploited to overcome this difficulty, including the transplantation of two UCB units (double umbilical cord blood transplantation, dUCBT. Following dUCBT, donor(s hematopoietic stem cells (HSC can be detected in the peripheral blood of the recipient as soon as 14 days post-transplantation. Sustained engraftment of HSC from one or both donors can be observed- dominance or mixed chimerism respectively, although single donor unit dominance has been observed in over 85% of patients. The underlying biology, which accounts for the interactions both between the two infused UCB units- cooperative or competitive, and with the recipient’s immune system, has not been elucidated.

  5. Cord Blood as a Source of Natural Killer Cells

    Science.gov (United States)

    Mehta, Rohtesh S.; Shpall, Elizabeth J.; Rezvani, Katayoun

    2016-01-01

    Cord blood (CB) offers several unique advantages as a graft source for hematopoietic stem cell transplantation (HSCT). The risk of relapse and graft vs. host disease after cord blood transplantation (CBT) is lower than what is typically observed after other graft sources with a similar degree of human leukocyte antigen mismatch. Natural killer (NK) cells have a well-defined role in both innate and adaptive immunity and as the first lymphocytes to reconstitute after HSCT and CBT, and they play a significant role in protection against early relapse. In this article, we highlight the uses of CB NK cells in transplantation and adoptive immunotherapy. First, we will describe differences in the phenotype and functional characteristics of NK cells in CB as compared with peripheral blood. Then, we will review some of the obstacles we face in using resting CB NK cells for adoptive immunotherapy, and discuss methods to overcome them. We will review the current literature on killer-cell immunoglobulin-like receptors ligand mismatch and outcomes after CBT. Finally, we will touch on current strategies for the use of CB NK cells in cellular immunotherapy. PMID:26779484

  6. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  7. Are globoseries glycosphingolipids SSEA-3 and -4 markers for stem cells derived from human umbilical cord blood?

    Institute of Scientific and Technical Information of China (English)

    Heli Suila; Jari Natunen; Saara Laitinen; Leena Valmu; Virve Pitk(a)nen; Tia Hirvonen; Annamari Heiskanen; Heidi Anderson; Anita Laitinen; Suvi Natunen; Halina Miller-Podraza; Tero Satomaa

    2011-01-01

    Umbilical cord blood (UCB) is an efficient and valuable source of hematopoietic stem cells (HSCs) for transplantation. In addition to HSCs it harbours low amounts of mesenchymal stem cells (MSCs). No single marker to identify cord blood-derived stem cells, or to indicate their multipotent phenotype, has been characterized so far. SSEA-3 and -4 are cell surface globoseries glycosphingolipid epitopes that are commonly used as markers for human embryonic stem cells, where SSEA-3 rapidly disappears when the cells start to differentiate. Lately SSEA-3 and -4 have also been observed in MSCs. As there is an ongoing discussion and variation of stem-cell markers between laboratories, we have now comprehensively characterized the expression of these epitopes in both the multipotent stem-cell types derived from UCB. We have performed complementary analysis using gene expression analysis, mass spectrometry and immunochemical methods, including both flow cytometry and immunofluoresence microscopy. SSEA-4, but not SSEA-3, was expressed on MSCs but absent from HSCs. Our findings indicate that SSEA-3 and/or -4 may not be optimal markers for multipotency in the case of stem cells derived from cord blood, as their expression may be altered by cell-culture conditions.

  8. [Marrow mesenchymal stem cell transplantation with sodium alginate gel for repair of spinal cord injury in mice].

    Science.gov (United States)

    Shi, Chen-yue; Ruan, Ling-qin; Feng, Yi-hui; Fang, Jia-lin; Song, Chen-jiao; Yuan, Zhang-gen; Ding, Yue-min

    2011-07-01

    To investigate the effects of sodium alginate gels on marrow mesenchymal stem cell transplantation for repair of spinal cord injury (SCI) in mice. In the present study, effects of different sterilization methods and concentrations of sodium alginate gels were examined. Marrow mesenchymal stem cells (mMSCs) were isolated from mice and cultured. Cells were cultured with sodium alginate gels and MTT assay was applied to determine the cell viability. Mice spinal cord injury was induced by spinal cord transection. mMSCs were transplanted into the cavity of injured spinal cord with sodium alginate gels. The effects of sodium alginate gel were assessed by BMS scales and immunofluorescence staining for NF-200. Compared with liquid form, solid form sodium alginate gel prepared with high pressure vapor sterilization had a better effect on cell viability. SCI mice treated with 10 % sodium alginate gel and mMSCs achieved higher score in BMS scale as well as higher expression of NF-200 compared with the untreated SCI group. Sodium alginate gel prepared with solid form sterilization induces mMSCs proliferation and thus can be used as the carrier of stem cell in treatment of SCI.

  9. [EXPERIMENTAL STUDY ON HUMAN UMBILICAL CORD MESENCHYMAL STEM CELLS-ALGINATE WOUND DRESSING].

    Science.gov (United States)

    Wang, Song; Su, Meilan; Yang, Huachao; Long, Gang; Tang, Zhenrui; Huang, Wen

    2015-09-01

    To observe the growth characteristics of human umbilical cord mesenchymal stem cells (hUCMSCs) cultured on the alginate gel scaffolds and to explore the feasibility of hUCMSCs-alginate dressing for wound healing. hUCMSCs were separated from human umbilical cords and cultured in vitro. After the 4th passage cells were co-cultured with alginate gel (experimental group), the cell growth characteristics were observed under the inverted phase contrast microscope. Vascular endothelial growth factor (VEGF) content was measured and the number of cells was counted at 0, 3, 6, and 9 days after culture; and the cell migration capacity was observed. The hUCMSCs were cultured without alginated gel as control. The model of full-thickness skin defects was established in 32 8-week-old Balb/c male mice and they were randomly divided into 4 groups (n=8): wounds were covered with hUCMSCs-alginate gel compound (MSC-gel group), cell supernatants-alginate gel compound (CS-gel group), 10% FBS-alginate gel compound (FBS-gel group), and 0.01 mol/L PBS-alginate compound (PBS-gel group), respectively. Wound healing rates at 5, 10, and 15 days were observed and calculated; and the wound tissues were harvested for histological and immunohistochemical staining to assess new skin conditions at 15 days after operation. hUCMSCs grew well with grape-like proliferation on the alginate gel, but no cell migration was observed at 7 days after cultivation. VEGF expression and cell number in experimental group were significantly less than those in control group at 3 days (P0.05). hUCMSCs can continuously express VEGF in alginate gel, which is necessary for wound healing. The hUCMSCs-alginate compound is probably a good wound dressing.

  10. Pregnancy hypertension and umbilical cord blood lead levels

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, M.; Bellinger, D.; Leviton, A. (Children' s Hospital, Boston, MA (USA)); Needleman, H. (Children' s Hospital, Pittsburgh, PA (USA)); Schoenbaum, S. (Harvard Community Health Plan, Brookline Village, MA (USA))

    Pregnancy hypertension, blood pressure during labor, and the umbilical cord blood lead concentration were assessed in 3,851 women for whom additional demographic, medical, and personal information was available. Lead levels correlated with both systolic and diastolic blood pressure during labor. The incidence of clinically defined pregnancy hypertension, nearly 11% overall, increased with lead level. A series of multivariate models of pregnancy hypertension and of systolic blood pressure as a function of maternal age, parity, hematocrit, ponderal index, race, season, and diabetes were improved by including lead as a predictor variable. These other risk factors are not affected by the lead term. The relative risk for pregnancy hypertension doubles when lead increases from 2 to 15 {mu}g/dl. The effect is statistically strong, with a magnitude of about 3 mm for a 10 {mu}g/dl range, about the same magnitude associated with diabetes. At these observed levels (mean blood lead = 6.0 {mu}g/dl, SD = 3.3, range 0 > 35), not currently recognized as overtly toxic, lead has a small but demonstrable association with pregnancy hypertension and blood pressure at the time of delivery, but not with pre-eclampsia nor toxemia. Although this association is not likely to influence the clinical management of hypertension, it indicates that lead at typical contemporary urban levels, does effect multiple physiological functions.

  11. A comparative study of the protein C system in mother's blood, cord blood and amniotic fluid.

    OpenAIRE

    Ewa Zekanowska; Waldemar Uszyński; Mieczysław Uszyński; Jarosław Kuczyński; Marek Szymański

    2010-01-01

    Activated protein C (APC) is an important anticoagulant which plays a role in pathophysiology of pregnancy, e.g. in maintenance of the uteroplacental circulation and development of the fetus as well as in pathogenesis of preeclampsia. The study objective was to compare the levels of the respective components of the protein C system (protein C, PC; protein S, PS; thrombomodulin, TM) as well as thrombin activatable fibrinolysis inhibitor - TAFI in mother's blood, cord blood and amniotic fluid. ...

  12. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis.

    Science.gov (United States)

    Hou, Zong-liu; Liu, Ying; Mao, Xi-Hong; Wei, Chuan-yu; Meng, Ming-yao; Liu, Yun-hong; Zhuyun Yang, Zara; Zhu, Hongmei; Short, Martin; Bernard, Claude; Xiao, Zhi-cheng

    2013-01-01

    There is currently great interest in the use of mesenchymal stem cells as a therapy for multiple sclerosis with potential to both ameliorate inflammatory processes as well as improve regeneration and repair. Although most clinical studies have used autologous bone marrow-derived mesenchymal stem cells, other sources such as allogeneic umbilical cord-derived cells may provide a more accessible and practical supply of cells for transplantation. In this case report we present the treatment of aggressive multiple sclerosis with multiple allogenic human umbilical cord-derived mesenchymal stem cell and autologous bone marrow-derived mesenchymal stem cells over a 4 y period. The treatments were tolerated well with no significant adverse events. Clinical and radiological disease appeared to be suppressed following the treatments and support the expansion of mesenchymal stem cell transplantation into clinical trials as a potential novel therapy for patients with aggressive multiple sclerosis.

  13. Good practices in collecting umbilical cord and placental blood.

    Science.gov (United States)

    Lopes, Lauren Auer; Bernardino, Elizabeth; Crozeta, Karla; Guimarães, Paulo Ricardo Bittencourt

    2016-08-18

    to identify the factors related to the quality of umbilical cord and placental blood specimens, and define best practices for their collection in a government bank of umbilical cord and placental blood. this was a descriptive study, quantitative approach, performed at a government umbilical cord and placental blood bank, in two steps: 1) verification of the obstetric, neonatal and operational factors, using a specific tool for gathering data as non-participant observers; 2) definition of best practices by grouping non-conformities observed before, during and after blood collection. The data was analyzed using descriptive statistics and the following statistical software: Statistica(r) and R(r). while there was a correlation with obstetrical and neonatal factors, there was a larger correlation with operational factors, resulting in the need to adjust the professional practices of the nursing staff and obstetrical team involved in collecting this type of blood. Based on these non-conformities we defined best practices for nurses before, during and after blood collection. the best practices defined in this study are an important management tool for the work of nurses in obtaining blood specimens of high cell quality. identificar fatores relacionados à qualidade das amostras do sangue de cordão umbilical e placentário e definir boas práticas para sua coleta em um banco público de sangue de cordão umbilical e placentário. pesquisa descritiva, abordagem quantitativa, realizada em um banco público de sangue de cordão umbilical e placentário, desenvolvida em duas etapas: 1) verificação dos fatores obstétricos, neonatais e operacionais, obtidos por coleta em instrumento próprio e observação não participante; 2) definição das boas práticas, por meio do agrupamento de não-conformidades observadas antes, durante e após a coleta do sangue. Os dados foram analisados por meio da estatística descritiva, utilizando-se dos softwares Statistica(r) e R(r). houve

  14. Human Umbilical Cord Blood for Transplantation Therapy in Myocardial Infarction.

    Science.gov (United States)

    Acosta, Sandra A; Franzese, Nick; Staples, Meaghan; Weinbren, Nathan L; Babilonia, Monica; Patel, Jason; Merchant, Neil; Simancas, Alejandra Jacotte; Slakter, Adam; Caputo, Mathew; Patel, Milan; Franyuti, Giorgio; Franzblau, Max H; Suarez, Lyanne; Gonzales-Portillo, Chiara; Diamandis, Theo; Shinozuka, Kazutaka; Tajiri, Naoki; Sanberg, Paul R; Kaneko, Yuji; Miller, Leslie W; Borlongan, Cesar V

    2013-07-01

    Cell-based therapy is a promising therapy for myocardial infarction. Endogenous repair of the heart muscle after myocardial infarction is a challenge because adult cardiomyocytes have a limited capacity to proliferate and replace damaged cells. Pre-clinical and clinical evidence has shown that cell based therapy may promote revascularization and replacement of damaged myocytes after myocardial infarction. Adult stem cells can be harvested from different sources including bone marrow, skeletal myoblast, and human umbilical cord blood cells. The use of these cells for the repair of myocardial infarction presents various advantages over other sources of stem cells. Among these are easy harvesting, unlimited differentiation capability, and robust angiogenic potential. In this review, we discuss the milestone findings and the most recent evidence demonstrating the therapeutic efficacy and safety of the transplantation of human umbilical cord blood cells as a stand-alone therapy or in combination with gene therapy, highlighting the importance of optimizing the timing, dose and delivery methods, and a better understanding of the mechanisms of action that will guide the clinical entry of this innovative treatment for ischemic disorders, specifically myocardial infarction.

  15. Improving engraftment and immune reconstitution in umbilical cord blood transplantation

    Directory of Open Access Journals (Sweden)

    Robert eDanby

    2014-02-01

    Full Text Available Umbilical cord blood (UCB is an important source of haematopoietic stem cells (HSC for allogeneic transplantation when HLA-matched sibling and unrelated donors (MUD are unavailable. Although the overall survival rates of UCB transplantation are comparable to the results with MUD, UCB transplants are associated with slow engraftment, delayed immune reconstitution, and increased opportunistic infections. While this may be a consequence of the lower cell dose in UCB grafts, it also reflects the relative immaturity of cellular immunity within cord blood. Furthermore, the limited number of cells and the non-availability of donor lymphocyte infusions (DLI currently prevent the use of post-transplant cellular immunotherapy to boost donor-derived immunity to treat infection, mixed chimerism and disease relapse. Therefore, to further develop UCB transplantation, many strategies to enhance engraftment and immune reconstitution are currently under investigation. This review summarises our current understanding of engraftment and immune recovery following UCB transplantation and why this differs from allogeneic transplants using other sources of HSC. It also provides an comprehensive overview of the promising techniques being used to improve myeloid and lymphoid recovery, including expansion, homing, and delivery of UCB HSC; combined use of UCB with third party donors; isolation and expansion of NK cells, pathogen specific T cells, and regulatory T cells; methods to protect and/or improve thymopoiesis. As many of these strategies are now in clinical trials, it is anticipated that UCB transplantation will continue to advance, further expanding our understanding of UCB biology and HSC transplantation.

  16. Umbilical Cord Derived Mesenchymal Stem Cells Useful in Insulin Production - Another Opportunity in Cell Therapy

    Science.gov (United States)

    Sarang, Shabari; Viswanathan, Chandra

    2016-01-01

    Background and Objectives Type 1 Diabetes Mellitus (T1DM) is an autoimmune disorder resulting out of T cell mediated destruction of pancreatic beta cells. Immunomodulatory properties of mesenchymal stem cells may help to regenerate beta cells and/or prevent further destruction of remnant, unaffected beta cells in diabetes. We have assessed the ability of umbilical cord derived MSCs (UCMSCs) to differentiate into functional islet cells in vitro. Methods and Results We have isolated UCMSCs and allowed sequential exposure of various inducing agents and growth factors. We characterized these cells for confirmation of the presence of islet cell markers and their functionality. The spindle shaped undifferentiated UCMSCs, change their morphology to become triangular in shape. These cells then come together to form the islet like structures which then grow in size and mature over time. These cells express pancreatic and duodenal homeobox −1 (PDX-1), neurogenin 3 (Ngn-3), glucose transporter 2 (Glut 2) and other pancreatic cell markers like glucagon, somatostatin and pancreatic polypeptide and lose expression of MSC markers like CD73 and CD105. They were functionally active as demonstrated by release of physiological insulin and C-peptide in response to elevated glucose concentrations. Conclusions Pancreatic islet like cells with desired functionality can thus be obtained in reasonable numbers from undifferentiated UCMSCs invitro. This could help in establishing a “very definitive source” of islet like cells for cell therapy. UCMSCs could thus be a game changer in treatment of diabetes. PMID:27426087

  17. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges.

    Science.gov (United States)

    Li, Yingchen; Hu, Guoheng; Cheng, Qilai

    2015-03-01

    Ischemic stroke is a focal cerebral insult that often leads to many adverse neurological complications severely affecting the quality of life. The prevalence of stroke is increasing throughout the world, while the efficacy of current pharmacological therapies remains unclear. As a neuroregenerative therapy, the implantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) has shown great possibility to restore function after stroke. This review article provides an update role of hUC-MSCs implantation in the treatment of ischemic stroke. With the unique "immunosuppressive and immunoprivilege" property, hUC-MSCs are advised to be an important candidate for allogeneic cell treatment. Nevertheless, most of the treatments are still at primary stage and not clinically feasible at the current time. Several uncertain problems, such as culture conditions, allograft rejection, and potential tumorigenicity, are the choke points in this cellular therapy. More preclinical researches and clinical studies are needed before hUC-MSCs implantation can be used as a routinely applied clinical therapy.

  18. Human umbilical cord mesenchymal stem cells promote peripheral nerve repairvia paracrine mechanisms

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan Guo; Xun Sun; Xiao-long Xu; Qing Zhao; Jiang Peng; Yu Wang

    2015-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  19. Experimental treatment of radiation pneumonitis with human umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Rui Wang; Chang-zheng Zhu; Ping Qiao; Jian Liu; Qiang Zhao; Kui-jie Wang; Ting-bao Zhao

    2014-01-01

    Objective: To evaluate of the curative effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) on rat acute radiation pneumonitis. Methods: Fourty rats were randomly divided into control group, radiation group, stem cell prevention group, stem cell treatment group and prednisone treatment group. All rats except those in the control group were radiated with X ray to establish the acute radiation pneumonitis damage model. The hUC-MSCs cultured in vitro was administrated to the rats of the prevention group via tail vein (1×106 cells/kg BW) 24 h before the radiation, while the same administration was performed in the rats of the treatment group 24 h after the radiation. After 24 h post the radiation, the rats in the radiation group were given 0.4 mL physiological saline, and those in the prednisone group were given 1 mg/kg prednisone. All rats were observed and executed 72 h after the radiation to detect lung histological changes. Results:After the administration of hUC-MSCs, the survival status of the rats in the prevention group and treatment group was obviously better than that in the control group. As shown by the histological staining, the morphology, proliferation activity and bronchial state of lung tissues were better in the prevention group and treatment group than in the control group. Conclusion: The hUC-MSCs have definite therapeutic effects on acute radiation pneumonitis in rats.

  20. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Science.gov (United States)

    Chen, Hongli; Wang, Hong; Li, Yingxin; Liu, Weichao; Wang, Chao; Chen, Zhuying

    2016-04-01

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm2 and 12 J/cm2, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  1. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  2. Umbilical cord as a mesenchymal stem cell source for treating joint pathologies.

    Science.gov (United States)

    Arufe, Maria Carmen; De la Fuente, Alexandre; Fuentes, Isaac; Toro, Francisco Javier De; Blanco, Francisco Javier

    2011-06-18

    Articular cartilage disorders and injuries often result in life-long chronic pain and compromised quality of life. Regrettably, the regeneration of articular cartilage is a continuing challenge for biomedical research. One of the most promising therapeutic approaches is cell-based tissue engineering, which provides a healthy population of cells to the injured site but requires differentiated chondrocytes from an uninjured site. The use of healthy chondrocytes has been found to have limitations. A promising alternative cell population is mesenchymal stem cells (MSCs), known to possess excellent proliferation potential and proven capability for differentiation into chondrocytes. The "immunosuppressive" property of human MSCs makes them an important candidate for allogeneic cell therapy. The use of allogeneic MSCs to repair large defects may prove to be an alternative to current autologous and allogeneic tissue-grafting procedures. An allogeneic cell-based approach would enable MSCs to be isolated from any donor, expanded and cryopreserved in allogeneic MSC banks, providing a readily available source of progenitors for cell replacement therapy. These possibilities have spawned the current exponential growth in stem cell research in pharmaceutical and biotechnology communities. Our objective in this review is to summarize the knowledge about MSCs from umbilical cord stroma and focus mainly on their applications for joint pathologies.

  3. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  4. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    D. J. Griffon

    2016-01-01

    Full Text Available Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression of Sox2, Oct4, and Nanog was 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation.

  5. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Hass Ralf

    2010-07-01

    Full Text Available Abstract Following cultivation of distinct mesenchymal stem cell (MSC populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O2 revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O2. A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 μmol/L at 1.5% O2 to 196 μmol/L at normoxic 21% O2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1α and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.

  6. Human Umbilical Cord Mesenchymal Stem Cells Therapy in Cyclophosphamide-Induced Premature Ovarian Failure Rat Model

    Directory of Open Access Journals (Sweden)

    Dan Song

    2016-01-01

    Full Text Available Premature ovarian failure (POF is one of the most common causes of infertility in women. In our present study, we established cyclophosphamide- (CTX- induced POF rat model and elucidated its effect on ovarian function. We detected the serum estrogen, follicle stimulating hormone, and anti-Müllerian hormone of mice models by ELISA and evaluated their folliculogenesis by histopathology examination. Our study revealed that CTX administration could severely disturb hormone secretion and influence folliculogenesis in rat. This study also detected ovarian cells apoptosis by deoxy-UTP-digoxigenin nick end labeling (TUNEL and demonstrated marked ovarian cells apoptosis in rat models following CTX administration. In order to explore the potential of human umbilical cord mesenchymal stem cells (UCMSCs in POF treatment, the above indexes were used to evaluate ovarian function. We found that human UCMSCs transplantation recovered disturbed hormone secretion and folliculogenesis in POF rat, in addition to reduced ovarian cell apoptosis. We also tracked transplanted UCMSCs in ovaries by fluorescence in situ hybridization (FISH. The results manifested that the transplanted human UCMSCs could reside in ovarian tissues and could survive for a comparatively long time without obvious proliferation. Our present study provides new insights into the great clinical potential of human UCMSCs in POF treatment.

  7. Detecting viability transitions of umbilical cord mesenchymal stem cells by Raman micro-spectroscopy

    Science.gov (United States)

    Bai, H.; Chen, P.; Fang, H.; Lin, L.; Tang, G. Q.; Mu, G. G.; Gong, W.; Liu, Z. P.; Wu, H.; Zhao, H.; Han, Z. C.

    2011-01-01

    Recent research suggests that human umbilical cord derived mesenchymal stem cells (hUC-MSCs) can be promising candidates for cell-based therapy. Since large population and high viability are generally required, detecting viability transitions of these cells is crucial for their population expansion and quality control. Here, as a non-invasive method, Raman micro-spectroscopy is applied to examine hUC-MSCs with different viability. Using peak fitting and statistic t-test, the Raman peaks with obvious differences between the cells with high viability (> 90%) and low viability (< 20%) are extracted. It is found that the C=O out of plane bending in thymine at 744 cm-1, symmetric stretching of C-C in lipids at 877 cm-1 and CH deformation in proteins at 1342 cm-1 show the most significant changes (p < 0.001). When the cell viability decreases, the intensities of the former two peaks are both about doubled while that of the latter peak reduces by about 30%. Based on these results, we propose that the viability of hUC-MSCs can be characterized by these three peaks. And their intensity changes can be understood from the model of excessive reactive oxygen species interacting with the bio-macromolecules.

  8. Umbilical Cord Mesenchymal Stem Cells Combined With a Collagenfibrin Double-layered Membrane Accelerates Wound Healing.

    Science.gov (United States)

    Nan, Wenbin; Liu, Rui; Chen, Hongli; Xu, Zhihao; Chen, Jiannan; Wang, Manman; Yuan, Zhiqing

    2015-05-01

    The aim of this study was to examine the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) in combination with a collagen-fibrin double-layered membrane on wound healing in mice. A collagen-fibrin double-layered membrane was prepared, and the surface properties of the support material were investigated using a scanning electron microscope. Twenty-four mice were prepared for use as full-thickness skin wound models and randomly divided into 3 groups: group A, a control group in which the wounds were bound using a conventional method; group B, a group treated with hUCMSCs combined with a collagen membrane; and group C, a group treated with hUCMSCs combined with a collagen-fibrin double-layered membrane. The postoperative concrescence of the wounds was observed daily to evaluate the effects of the different treatments. Scanning electron microscope observation showed the collagen-fibrin scaffolds exhibited a highly porous and interconnected structure, and wound healing in the double-layered membrane group was better than in groups A or B. Treatment with hUCMSCs combined with a collagen-fibrin double-layered membrane accelerated wound healing.

  9. Human Umbilical Cord Mesenchymal Stem Cells: A New Therapeutic Option for Tooth Regeneration.

    Science.gov (United States)

    Chen, Yuanwei; Yu, Yongchun; Chen, Lin; Ye, Lanfeng; Cui, Junhui; Sun, Quan; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-01-01

    Tooth regeneration is considered to be an optimistic approach to replace current treatments for tooth loss. It is important to determine the most suitable seed cells for tooth regeneration. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been regarded as a promising candidate for tissue regeneration. However, it has not been reported whether hUCMSCs can be employed in tooth regeneration. Here, we report that hUCMSCs can be induced into odontoblast-like cells in vitro and in vivo. Induced hUCMSCs expressed dentin-related proteins including dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP-1), and their gene expression levels were similar to those in native pulp tissue cells. Moreover, DSP- and DMP-1-positive calcifications were observed after implantation of hUCMSCs in vivo. These findings reveal that hUCMSCs have an odontogenic differentiation potency to differentiate to odontoblast-like cells with characteristic deposition of dentin-like matrix in vivo. This study clearly demonstrates hUCMSCs as an alternative therapeutic cell source for tooth regeneration.

  10. Clinical Observation of Employment of Umbilical Cord Derived Mesenchymal Stem Cell for Juvenile Idiopathic Arthritis Therapy

    Directory of Open Access Journals (Sweden)

    Liming Wang

    2016-01-01

    Full Text Available Juvenile idiopathic arthritis (JIA, known as Juvenile rheumatoid arthritis, is the most common type of arthritis in children aged under 17. It may cause sequelae due to lack of effective treatment. The goal of this study is to explore the therapeutic effect of umbilical cord mesenchymal stem cells (UC-MSCs for JIA. Ten JIA patients were treated with UC-MSCs and received second infusion three months later. Some key values such as 28-joint disease activity score (DAS28, TNF-α, IL-6, and regulatory T cells (Tregs were evaluated. Data were collected at 3 months and 6 months after first treatment. DAS28 score of 10 patients was between 2.6 and 3.2 at three months after infusion. WBC, ESR, and CRP were significantly decreased while Tregs were remarkably increased and IL-6 and TNF-α were declined. Similar changes of above values were found after 6 months. At the same time, the amount of NSAIDS and steroid usage in patients was reduced. However, no significant changes were found comparing the data from 3 and 6 months. These results suggest that UC-MSCs can reduce inflammatory cytokines, improve immune network effects, adjust immune tolerance, and effectively alleviate the symptoms and they might provide a safe and novel approach for JIA treatment.

  11. Induction of pluripotency in human umbilical cord mesenchymal stem cells in feeder layer-free condition.

    Science.gov (United States)

    Daneshvar, Nasibeh; Rasedee, Abdullah; Shamsabadi, Fatemeh Tash; Moeini, Hassan; Mehrboud, Parvaneh; Rahman, Heshu Sulaiman; Boroojerdi, Mohadeseh Hashem; Vellasamy, Shalini

    2015-12-01

    Induced Pluripotent Stem Cells (iPSCs) has been produced by the reprogramming of several types of somatic cells through the expression of different sets of transcription factors. This study consists of a technique to obtain iPSCs from human umbilical cord mesenchymal stem cells (UC-MSCs) in a feeder layer-free process using a mini-circle vector containing defined reprogramming genes, Lin28, Nanog, Oct4 and Sox2. The human MSCs transfected with the minicircle vector were cultured in iPSCs medium. Human embryonic stem cell (ESC)-like colonies with tightly packed domelike structures appeared 7-10 days after the second transfection. In the earliest stages, the colonies were green fluorescence protein (GFP)-positive, while upon continuous culture and passage, genuine hiPSC clones expressing GFP were observed. The induced cells, based on the ectopic expression of the pluripotent markers, exhibited characteristics similar to the embryonic stem cells. These iPSCs demonstrated in vitro capabilities for differentiation into the three main embryonic germ layers by embryoid bodies formation. There was no evidence of transgenes integration into the genome of the iPSCs in this study. In conclusion, this method offers a means of producing iPSCs without viral delivery that could possibly overcome ethical concerns and immune rejection in the use of stem cells in medical applications.

  12. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Wang, Hong; Li, Yingxin, E-mail: yingxinli2005@126.com; Liu, Weichao; Chen, Zhuying [Key Laboratory of Laser Medicine of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192 (China); Wang, Chao [Biomedical Engineering and Technology College, Tianjin Medical University, Tianjin, 300070 (China)

    2016-04-15

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm{sup 2} and 12 J/cm{sup 2}, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  13. [Human umbilical cord mesenchymal stem cells reduce the sensitivity of HL-60 cells to cytarabine].

    Science.gov (United States)

    Cui, Jun-Jie; Chi, Ying; Du, Wen-Jing; Yang, Shao-Guang; Li, Xue; Chen, Fang; Ma, Feng-Xia; Lu, Shi-Hong; Han, Zhong-Chao

    2013-06-01

    This study was purposed to investigate the impact of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) on the sensitivity of HL-60 cells to therapeutic drugs so as to provide more information for exploring the regulatory effect of hUC-MSC on leukemia cells. Transwell and direct co-culture systems of HL-60 and hUC-MSC were established. The apoptosis and cell cycle of HL-60 cells were detected by flow cytometry. RT-PCR and Western blot were used to detect the mRNA and protein levels of Caspase 3, respectively. The results showed that the apoptosis of HL-60 induced by cytarabine (Ara-C) decreased significantly after direct co-cultured with hUC-MSC cycle mRNA (P HL-60 cells were arrested at G0/G1 phase and did not enter into S phase (P HL-60 cells were reduced (P HL-60 from Arc-C induced apoptosis through regulating the cell cycle and down-regulating expression of Caspase 3 in HL-60 cells. In addition, this effect is caused by the soluble factors from hUC-MSC.

  14. Sangue de cordão umbilical para uso autólogo ou grupo de pacientes especiais The potential therapeutic use of cord blood in autologous transplants or in special patients: a review and update

    Directory of Open Access Journals (Sweden)

    Luis Eduardo Cruz

    2009-05-01

    Full Text Available O sangue de cordão umbilical e placentário (SCUP é uma rica fonte de células-tronco (CT hematopoéticas e é amplamente utilizado como substituto da medula óssea em casos de transplante. As células do SCUP possuem vantagens sobre as células da medula óssea (MO, principalmente por serem mais jovens e apresentarem maior taxa proliferativa. Além dos progenitores hematopoéticos, o sangue de cordão umbilical contém progenitores endoteliais e mesenquimais, sugerindo sua possível aplicação nos novos protocolos de terapia celular para diferentes tecidos. Na presente revisão, discutimos a importância do armazenamento do sangue de cordão umbilical autólogo e as pesquisas desenvolvidas para a sua aplicação em doenças degenerativas.Umbilical Cord Blood is a rich source of hematopoietic stem cells widely used as a substitute of bone marrow (BM in transplants. Cells from umbilical cord blood present advantages over BM cells, mainly as they are younger and a have higher proliferative rate. Besides hematopoietic stem cells, umbilical cord blood contains endothelial and mesenchymal progenitor cells, suggesting their possible application in cell therapy protocols for different tissues. In this paper, we discuss the importance of autologous umbilical cord blood storage and the research on stem cell transplantation for degenerative diseases.

  15. Umbilical cord blood banks. Ethical aspects. Public versus private banks.

    Science.gov (United States)

    Aznar Lucea, Justo

    2012-01-01

    The creation of umbilical cord blood (UCB) banks raises interesting medical, social, economic and ethical issues. This paper reviews the ethical problems specifically. In this respect, it evaluates: a) whether there are advantages to the use of UCB compared to bone marrow, b) whether or not it is ethical to create UCB banks, c) whether their creation is ethically acceptable in terms of their clinical usefulness or d) the use made of them for therapeutic purposes, and finally e) whether their creation is ethically justified from a cost/profitability point of view. We focus primarily on evaluating the ethical controversy between public and private banks, particularly on whether it is ethical to bank autologous blood in private UCB banks, on the basis of its limited possibilities for use by the cord blood donor. We can conclude that, from an ethical point of view, autologous blood banks have limited acceptance among specialised researchers, scientific societies and other public institutions. Therefore, we believe that it is ethically more acceptable to support the creation of public UCB banks for medical and social reasons and, above all, based on the principle of justice and human solidarity. Nevertheless, there is no definitive ethical argument why a couple, according to their autonomy and freedom, cannot bank their child's UCB in a private bank. An equally acceptable solution could be the creation of mixed banks, such as that proposed by the Virgin Health Bank or like the Spanish system where autologous samples can be stored in public banks but with the proviso that if at any time the stored sample is required by any person other than the donor, it would have to be given to them.

  16. Cord blood transplantation for the treatment of acute leukemia

    Institute of Scientific and Technical Information of China (English)

    Meerim Park; Young-ho Lee

    2013-01-01

    Objective This review discussed the available data on treatment outcomes of cord blood transplantation (CBT) for acute leukemia.Data sources The data cited in this review were obtained from articles listed in Medline and Pubmed.Study selection We reviewed the articles of clinical results from various registries and institutions,as well as our experiences with CBT in children,adolescents and adults.Results This research has clearly shown that cord blood (CB) has several unique characteristics resulting in distinct advantage and disadvantages when compared to transplantation with unrelated donor bone marrow or peripheral blood stem cells.The field of CBT has advanced from investigating its safety and feasibility to addressing more specific issues such as accelerating engraftment,extending access,and examining outcomes in specific subgroups of patients.Many approaches have been investigated in the attempt to improve engraftment and survival.Variable factors have been identified,such as factors related to donor choice (human leukocyte antigen (HLA) compatibility,cell dose,and others) and transplantation (conditioning and graft-versus-host disease prophylaxis regimen).Data support that CB should be considered a reasonable option in those that do not have HLA matched sibling donor and for those in whom the time to transplant is critical.Conclusions CB is a reasonable alternative to unrelated donor bone marrow or peripheral blood progenitor cells for transplantation.Recently developed strategies aimed at improving hematopoietic recovery and reducing early transplantation-related mortality could further improve treatment outcomes of CBT for patients with acute leukemia.

  17. 3-D refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood

    CERN Document Server

    Park, HyunJoo; Kim, Kyoohyun; Lee, Sangyun; Kook, Songyi; Lee, Dongheon; Suh, In Bum; Nab, Sunghun; Park, YongKeun

    2015-01-01

    Red blood cells (RBCs) from the cord blood of newborn infants have distinctive functions for fetal and infant development. To systematically investigate the biophysical characteristics of individual cord RBCs in newborn infants, a comparative study was performed of RBCs from cord blood of newborn infants, and of adult RBCs from mothers or non-pregnant women, employing optical holographic micro-tomography. Optical measurements of 3-D refractive index distributions, and of dynamic membrane fluctuations of individual RBCs, enabled retrieval of the morphological, biochemical, and mechanical properties of cord, maternal, and adult RBCs at the individual cell level. The volume and surface area of the cord RBCs were significant larger than those of RBCs from non-pregnant women, and cord RBCs have more flattened shapes than RBCs in adults. In addition, the Hb content in the cord RBCs of newborns was significantly greater. The Hb concentration in cord RBCs was higher than for non-pregnant women or maternal RBCs, but t...

  18. Institutional Knots: A Comparative Analysis of Cord Blood Policy in Canada and the United States.

    Science.gov (United States)

    Denburg, Avram

    2016-02-01

    Umbilical cord blood is a rich source of blood stem cells, which are of critical clinical importance in the treatment of a variety of malignant and genetic conditions requiring stem cell transplantation. Many countries have established national public cord blood banks; such banks often coexist with a panoply of private options for cord blood banking. Until recently, Canada was the only G8 country without a national cord blood bank. This differs markedly from the United States, which years ago established a national cord blood bank policy and inventory. This article investigates potential reasons for this discrepancy through a comparative analysis of the evolution of programs and policies on national cord blood banking in Canada and the United States. My analysis suggests that cross-national discrepancies in policy on public cord blood banking were determined primarily by institutional factors, principal among them formal governmental structure and the legacy of past policies. Institutional entrepreneurialism in the health sector played a constitutive role in the earlier evolution of national cord blood policy in the United States as compared to Canada.

  19. File list: InP.Bld.10.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Umbilical_cord_blood hg19 Input control Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Umbilical_cord_blood.bed ...

  20. File list: NoD.Bld.10.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.Umbilical_cord_blood hg19 No description Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.10.AllAg.Umbilical_cord_blood.bed ...

  1. File list: NoD.Bld.20.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.Umbilical_cord_blood hg19 No description Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.20.AllAg.Umbilical_cord_blood.bed ...

  2. File list: NoD.Bld.05.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.Umbilical_cord_blood hg19 No description Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.05.AllAg.Umbilical_cord_blood.bed ...

  3. File list: InP.Bld.20.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Umbilical_cord_blood hg19 Input control Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.20.AllAg.Umbilical_cord_blood.bed ...

  4. File list: InP.Bld.05.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Umbilical_cord_blood hg19 Input control Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.05.AllAg.Umbilical_cord_blood.bed ...

  5. File list: InP.Bld.50.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.50.AllAg.Umbilical_cord_blood hg19 Input control Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.50.AllAg.Umbilical_cord_blood.bed ...

  6. File list: NoD.Bld.50.AllAg.Umbilical_cord_blood [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.Umbilical_cord_blood hg19 No description Blood Umbilical cord blood... http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Bld.50.AllAg.Umbilical_cord_blood.bed ...

  7. Mercury concentrations in human placenta, umbilical cord, cord blood and amniotic fluid and their relations with body parameters of newborns.

    Science.gov (United States)

    Kozikowska, Iwona; Binkowski, Łukasz J; Szczepańska, Katarzyna; Sławska, Helena; Miszczuk, Katarzyna; Śliwińska, Magdalena; Łaciak, Tomasz; Stawarz, Robert

    2013-11-01

    Studies were conducted on samples taken from giving birth women (n = 40) living in Poland, representing three age groups: 19-25, 26-30 and 31-38 years old. Mercury concentrations were measured with CV-AAS in placenta, umbilical cord, cord blood and amniotic fluid. The placentas weight did not exceed the 750 g value and was heavier than 310 g. Mean values of Hg concentrations in blood, placenta and umbilical cord were similar (c.a. 9 μg/g). High levels of mercury were noted in cord blood which in 75% of all observations exceeded (up to 17 μg/L) the safe dose set by US EPA (5.8 μg/L). No statistically significant differences in medium level of Hg in all the studied tissues among age groups of women were observed. Positive correlations between Hg concentrations in placenta and umbilical cord and cord blood were revealed as well as some negative ones between mercury concentrations and pregnancy parameters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells.

    Science.gov (United States)

    Sanberg, Paul R; Eve, David J; Willing, Alison E; Garbuzova-Davis, Svitlana; Tan, Jun; Sanberg, Cyndy D; Allickson, Julie G; Cruz, L Eduardo; Borlongan, Cesar V

    2011-01-01

    Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.

  9. Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions.

    Science.gov (United States)

    Hatlapatka, Tim; Moretti, Pierre; Lavrentieva, Antonina; Hass, Ralf; Marquardt, Nicole; Jacobs, Roland; Kasper, Cornelia

    2011-04-01

    First isolated from bone marrow, mesenchymal stem or stromal cells (MSC) were shown to be present in several postnatal and extraembryonic tissues as well as in a large variety of fetal tissues (e.g., fatty tissue, dental pulp, placenta, umbilical cord blood, and tissue). In this study, an optimized protocol for the expansion of MSC-like cells from whole umbilical cord tissue under xeno-free culture conditions is proposed. Different fetal calf sera and human serum (HS) were compared with regard to cell proliferation and MSC marker stability in long-term expansion experiments, and HS was shown to support optimal growth conditions. Additionally, the optimal concentration of HS during the cultivation was determined. With regard to cell proliferative potential, apoptosis, colony-forming unit fibroblast frequency, and cell senescence, our findings suggest that an efficient expansion of the cells is carried out best in media supplemented with 10% HS. Under our given xeno-free culture conditions, MSC-like cells were found to display in vitro immunoprivileged and immunomodulatory properties, which were assessed by co-culture and transwell culture experiments with carboxyfluorescein diacetate succinimidyl ester-labeled peripheral blood mononuclear cells. These findings may be of great value for the establishment of biotechnological protocols for the delivery of sufficient cell numbers of high quality for regenerative medicine purposes.

  10. Inhibitory Effect of Human Umbilical Cord-derived Mesenchymal Stem Cells on Interleukin-17 Production in Peripheral Blood T Cells from Spondyloarthritis Patients%人脐带间充质干细胞对脊柱关节炎患者外周血T细胞产生IL-17的抑制作用

    Institute of Scientific and Technical Information of China (English)

    黄志芳; 朱剑; 吕双红; 张江林; 陈显达; 杜丽欣; 杨志岗; 宋亚昆; 吴东颖

    2013-01-01

    本研究通过观察人脐带间充质干细胞(hUCMSC)对脊柱关节炎(SpA)患者外周血T细胞产生IL-17的抑制作用,初步探索hUCMSC在SpA治疗领域的应用前景.体外分离SpA患者及健康志愿者外周血单个核细胞(PBMNC),PBMNC单独培养或与hUCMSC共培养,应用流式细胞仪检测T细胞中CD3+ CD4+ IL-17+(Th17)及CD3+ γδTCR+ IL-17+细胞比例;应用ELISA检测细胞培养上清中IL-17的浓度.结果表明,SpA患者外周血T细胞中Th17细胞占(3.42±0.82)%,CD3+ γδTCR+ IL-17+细胞占(0.30±0.10)%,分别是健康对照组(0.75±0.25)%和(0.06±0.02)%的4.5倍及5倍(P<0.01);SpA患者PBMNC与hUCMSC共培养后,T细胞中Th17细胞下降为(1.81±0.59)%,CD3+ γδTCR+ IL-17+细胞下降为(0.16±0.06)%(P<0.01);ELISA检测结果表明,SpA患者PBMNC培养上清IL-17的浓度显著高于健康对照组[(573.95±171.68) pg/ml vs(115.53±40.41) pg/ml (P<0.01)];SPA患者PBMNC与hUCMSC共培养后,细胞上清IL-17的浓度下降至(443.20±147.94) pg/ml(P<0.01).结论:hUCMSC能够抑制SpA患者外周血T细胞产生IL-17,在SpA临床治疗中具有应用前景.%In this study, the inhibitory effect of human umbilical cord-derived mesenchymal stem cells (hUCMSC) on interleukin-17(IL-17) production in peripheral blood T cells from patients with spondyloarthritis (SpA) were investigated, in order to explore the therapeutic potential of hUCMSC in the SpA. Peripheral blood mononuclear cells (PBMNC) were isolated from patients with SpA(n = 12) and healthy subjects(n =6). PBMNC were cultured in vitro with hUCMSC or alone. The expression of IL-17 in CD4+ T cells or γ/δ T cells were determined in each subject group by flow cytometry. IL-17 concentrations in PBMNC culture supernatantes were measured by ELISA. The results indicated that the proportion of IL-17-producing CD4+ T cells and IL-17-producing γ/δ T cells of SpA patients were 4.5 folds and 5 folds of healthy controls[CD3 +CD4+ IL-17+ cells (3.42 ±0

  11. Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke.

    Science.gov (United States)

    Zhao, Qiuchen; Hu, Jinxia; Xiang, Jie; Gu, Yuming; Jin, Peisheng; Hua, Fang; Zhang, Zunsheng; Liu, Yonghai; Zan, Kun; Zhang, Zuohui; Zu, Jie; Yang, Xinxin; Shi, Hongjuan; Zhu, Jienan; Xu, Yun; Cui, Guiyun; Ye, Xinchun

    2015-10-22

    Stem cell-based treatments have been reported to be a potential strategy for stroke. However, tumorigenic potential and low survival rates of transplanted cells could attenuate the efficacy of the stem cell-based treatments. The application of stem cell-condition medium (CM) may be a practicable approach to conquer these limitations. In this study, we investigated whether intranasal administration of human umbilical cord mesenchymal stem cells (hUCMSCs)-CM has the therapeutic effects in rats after stroke. Adult male rats were subjected to middle cerebral artery occlusion (MCAo) and were treated by intranasal routine with or without hUCMSCs-CM (1 ml/kg/d), starting 24h after MCAo and daily for 14 days. Neurological functional tests, blood brain barrier (BBB) leakage, were measured. Angiogenesis and angiogenic factor expression were measured by immunohistochemistry, and Western blot, respectively. hUCMSCs-CM treatment of stroke by intranasal routine starting 24h after MCAo in rats significantly enhances BBB functional integrity and promotes functional outcome but does not decrease lesion volume compared to rats in DMEM/F12 medium control group and saline control group. Treatment of ischemic rats with hUCMSCs-CM by intranasal routine also significantly decreases the levels of Ang2 and increases the levels of both Ang1 and Tie2 in the ischemic brain. To take together, increased expression of Ang1 and Tie2 and decreased expression of Ang2, induced by hUCMSCs-CM treatment, contribute to vascular remodeling in the ischemic brain which plays an important role in functional outcome after stroke.

  12. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.

    Science.gov (United States)

    Wang, Ping; Liu, Xian; Zhao, Liang; Weir, Michael D; Sun, Jirun; Chen, Wenchuan; Man, Yi; Xu, Hockin H K

    2015-05-01

    Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (mean±sd; n=6) were (30.4±5.8)%, (27.4±9.7)% and (22.6±4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0±6.3)% for control (pcells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (pcells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration. Published by Elsevier Ltd.

  13. Sibling cord blood donor program for hematopoietic cell transplantation: the 20-year experience in the Rome Cord Blood Bank.

    Science.gov (United States)

    Screnci, Maria; Murgi, Emilia; Valle, Veronica; Tamburini, Anna; Pellegrini, Maria Grazia; Strano, Sabrina; Corona, Francesca; Ambrogi, Eleonora Barbacci; Girelli, Gabriella

    2016-03-01

    Umbilical cord blood (UCB) represents a source of hematopoietic stem cells for patients lacking a suitably matched and readily available related or unrelated stem cell donor. As UCB transplantation from compatible sibling provides good results in children therefore directed sibling UCB collection and banking is indicated in family who already have a child with a disease potentially treatable with an allogeneic hematopoietic stem cell transplantation. Particularly, related UCB collection is recommended when the patients urgently need a transplantation. To provide access to all patients in need, we developed a "Sibling cord blood donor program for hematopoietic cell transplantation". Here we report results of this project started 20years ago. To date, in this study a total of 194 families were enrolled, a total of 204 UCB samples were successfully collected and 15 pediatric patients have been transplanted. Recently, some authors have suggested novel role for UCB other than in the transplantation setting. Therefore, future studies in the immunotherapy and regenerative medicine areas could expand indication for sibling directed UCB collection.

  14. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injur y by promoting axonal growth and anti-autophagy

    Institute of Scientific and Technical Information of China (English)

    Fei Yin; Chunyang Meng; Rifeng Lu; Lei Li; Ying Zhang; Hao Chen; Yonggang Qin; Li Guo

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans-plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunolfuorescence with subsequent quantiifcation revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as-sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur-thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was signiifcantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro-iflament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes-enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  15. Toxic trace elements in maternal and cord blood and social determinants in a Bolivian mining city.

    Science.gov (United States)

    Barbieri, Flavia L; Gardon, Jacques; Ruiz-Castell, María; Paco V, Pamela; Muckelbauer, Rebecca; Casiot, Corinne; Freydier, Rémi; Duprey, Jean-Louis; Chen, Chih-Mei; Müller-Nordhorn, Jacqueline; Keil, Thomas

    2016-01-01

    This study assessed lead, arsenic, and antimony in maternal and cord blood, and associations between maternal concentrations and social determinants in the Bolivian mining city of Oruro using the baseline assessment of the ToxBol/Mine-Niño birth cohort. We recruited 467 pregnant women, collecting venous blood and sociodemographic information as well as placental cord blood at birth. Metallic/semimetallic trace elements were measured using inductively coupled plasma mass spectrometry. Lead medians in maternal and cord blood were significantly correlated (Spearman coefficient = 0.59; p toxic elements in maternal blood were associated with maternal smoking, low educational level, and partner involved in mining.

  16. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Luigi Aloe; Patrizia Bianchi; Alberto De Bellis; Marzia Soligo; Maria Luisa Rocco

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.

  17. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    Science.gov (United States)

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine.

  18. US Public Cord Blood Banking Practices: Recruitment, Donation, and the Timing of Consent

    Science.gov (United States)

    Broder, Sherri; Ponsaran, Roselle; Goldenberg, Aaron

    2012-01-01

    BACKGROUND Cord blood has moved rapidly from an experimental stem cell source to an accepted and important source of hematopoietic stem cells. There has been no comprehensive assessment of US public cord blood banking practices since the Institute of Medicine study in 2005. STUDY DESIGN AND METHODS Of 34 US public cord blood banks identified, 16 participated in our qualitative survey of public cord blood banking practices. Participants took part in in-depth telephone interviews in which they were asked structured and open-ended questions regarding recruitment, donation, and the informed consent process at these banks. RESULTS 13 of 16 participants reported a variably high percentage of women who consented to public cord blood donation. 15 banks offered donor registration at the time of hospital admission for labor and delivery. 7 obtained full informed consent and medical history during early labor and 8 conducted some form of phased consent and/or phased medical screening and history. 9 participants identified initial selection of the collection site location as the chief mode by which they recruited minority donors. CONCLUSION Since 2005, more public banks offer cord blood donor registration at the time of admission for labor and delivery. That, and the targeted location of cord blood collection sites, are the main methods used to increase access to donation and HLA diversity of banked units. Currently, the ability to collect and process donations, rather than donor willingness, is the major barrier to public cord blood banking. PMID:22803637

  19. Umbilical cord blood lactate: a valuable tool in the assessment of fetal metabolic acidosis

    DEFF Research Database (Denmark)

    Gjerris, Anne Cathrine Roslev; Staer-Jensen, Jette; Jørgensen, Jan Stener

    2008-01-01

    The aim of the present study was (1) to evaluate the relationship between umbilical cord arterial blood lactate and pH, standard base excess (SBE), and actual base excess (ABE) at delivery and (2) to suggest a cut-off level of umbilical cord arterial blood lactate in predicting fetal asphyxia using...

  20. The relationship between fetal biophysical profile and cord blood PH

    Directory of Open Access Journals (Sweden)

    Valadan M

    2009-02-01

    Full Text Available "nBackground: The Biophysical Profile (BPP is a noninvasive test that predicts the presence or absence of fetal asphyxia and, ultimately, the risk of fetal death in the antenatal period. Intervention on the basis of an abnormal biophysical profile result has been reported to yield a significant reduction in prenatal mortality, and an association exists between biophysical profile scoring and a decreased cerebral palsy rate in a given population. The BPP evaluates five characteristics: fetal movement, tone, breathing, heart reactivity, and amniotic fluid (AF volume estimation. The purpose of study was to determine whether there are different degree of acidosis at which the biophysical activity (acute marker are affected. "nMethods: In a prospective study of 140 patients undergoing cesarean section before onset of labor, the fetal biophysical profile was performed 24h before the time of cesarean and was matched with cord arterial PH that was obtained from a cord segment (10-20cm that was double clamped after delivery of newborn. (using cord arterial PH less than 7.20 for the diagnosis of acidosis. "nResults: The fetal biophysical profile was found to have a significant relationship with umbilical blood PH. The sensitivity, specificity, positive predictive value, negative predictive value of fetal biophysical profile score were: 88.9%, 88.6%, 50%, 98.1%. "nConclusion: The first manifestations of fetal acidosis are nonreactive nonstress testing and fetal breathing loss; in advanced acidemia fetal movements and fetal tone are compromised. A protocol of antepartum fetal evaluation is suggested based upon the individual biophysical components rather than the score alone.

  1. Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co‐ordination after spinal cord injury

    Science.gov (United States)

    Lindsay, Susan L.; Toft, Andrew; Griffin, Jacob; M. M. Emraja, Ahmed

    2017-01-01

    Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for P0, showed a more extensive distribution in transplanted compared with control animals. In addition to the typical distribution in the dorsal columns (common to all animals), in transplanted animals only, P0 immunolabelling was consistently detected in white matter lateral and ventral to the injury site. Transplanted animals also showed reduced cavitation. Several functional outcome measures including end‐point electrophysiological testing of dorsal column conduction and weekly behavioural testing of BBB, weight bearing and pain, showed no difference between transplanted and control animals. However, gait analysis revealed an earlier recovery of co‐ordination between forelimb and hindlimb stepping in transplanted animals. This improvement in gait may be associated with the enhanced myelination in ventral and lateral white matter, where fibre tracts important for locomotion reside. Autologous transplantation of mesenchymal stromal cells from the olfactory mucosa may therefore be therapeutically beneficial in the treatment of spinal cord injury. GLIA 2017 GLIA 2017;65:639–656 PMID:28144983

  2. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord

    Directory of Open Access Journals (Sweden)

    Majore Ingrida

    2009-03-01

    Full Text Available Abstract Background A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC, lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations – beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE as a novel strategy to successfully address this question. Results UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells. Conclusion Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the

  3. Feasibility of trialling cord blood stem cell treatments for cerebral palsy in Australia.

    Science.gov (United States)

    Crompton, Kylie E; Elwood, Ngaire; Kirkland, Mark; Clark, Pamela; Novak, Iona; Reddihough, Dinah

    2014-07-01

    Umbilical cord blood may have therapeutic benefit in children with cerebral palsy (CP), but further studies are required. On first appearance it seems that Australia is well placed for such a trial because we have excellence in CP research backed by extensive CP registers, and both public and private cord blood banks. We aimed to examine the possibilities of conducting a trial of autologous umbilical cord blood cells (UCBCs) as a treatment for children with CP in Australia. Data linkages between CP registers and cord blood banks were used to estimate potential participant numbers for a trial of autologous UCBCs for children with CP. As of early 2013, one Victorian child with CP had cord blood stored in the public bank, and between 1 and 3 children had their cord blood stored at Cell Care Australia (private cord blood bank). In New South Wales, we counted two children on the CP register who had their stored cord blood available in early 2013. We estimate that there are between 10 and 24 children with CP of any type who have autologous cord blood available across Australia. In nations with small populations like Australia, combined with Australia's relatively low per capita cord blood storage to date, it is not currently feasible to conduct trials of autologous UCBCs for children with CP. Other options must be explored, such as allogeneic UCBCs or prospective trials for neonates at risk of CP. © 2014 The Authors. Journal of Paediatrics and Child Health © 2014 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  4. Salvianolic acid B promotes survival of transplanted mesenchymal stem cells in spinal cord-injured rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-bin BI; Yu-bin DENG; Dan-hui GAN; Ya-zhu WANG

    2008-01-01

    Aim: Stem cells hold great promise for brain and spinal cord injuries (SCI), but cell survival following transplantation to adult central nervous system has been poor. Salvianolic acid B (Sal B) has been shown to improve functional recovery in brain-injured rats. The present study was designed to determine whether Sal B could improve transplanted mesenchymal stem cell (MSC) survival in SCI rats. Methods: SCI rats were treated with Sal B. The Basso-Beatie-Bresnahan (BBB) scale was used to test the functional recovery. Sal B was used to protect MSC from being damaged by TNF-α in vitro. Bromodeoxyuridine-labeled MSC were transplanted into SCI rats with Sal B intraperitoneal injection, simul-taneously. MSC were examined, and the functional recovery of the SCI rats was tested. Results: Sal B treatment significantly reduced the lesion area from 0.26±0.05 mm2 to 0.15±0.03 mm2 (P<0.01) and remarkably raised the BBB scores on d 28, post-injury, from 7.3±0.9 to 10.5±1.3 (P<0.05), compared with the phosphate-buffered saline (PBS) control group. MSC were protected from the damage of TNF-α by Sal B. The number of surviving MSC in the MSC plus Sal B groups were 1143.3± 195.6 and 764.0±81.3 on d 7 and 28, post-transplantation, more than those in the MSC group, which was 569.3±72.3 and 237.0±61.3, respectively (P<0.05). Rats with MSC trans-planted and Sal B injected obtained higher BBB scores than those with MSC transplanted alone (P<0.05) and PBS (P<0.01). Conclusion: Sal B provides neuroprotection to SCI and promotes the survival of MSC in vitro and after cell transplantation to the injured spinal cord in vivo.

  5. Human Umbilical Cord Blood Cell Transplantation in Neuroregenerative Strategies

    Directory of Open Access Journals (Sweden)

    Luisa R. Galieva

    2017-09-01

    Full Text Available At present there is no effective treatment of pathologies associated with the death of neurons and glial cells which take place as a result of physical trauma or ischemic lesions of the nervous system. Thus, researchers have high hopes for a treatment based on the use of stem cells (SC, which are potentially able to replace dead cells and synthesize neurotrophic factors and other molecules that stimulate neuroregeneration. We are often faced with ethical issues when selecting a source of SC. In addition to precluding these, human umbilical cord blood (hUCB presents a number of advantages when compared with other sources of SC. In this review, we consider the key characteristics of hUCB, the results of various studies focused on the treatment of neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, ischemic (stroke and traumatic injuries of the nervous system and the molecular mechanisms of hUCB-derived mononuclear and stem cells.

  6. Generation of induced pluripotent stem cells from human cord blood.

    Science.gov (United States)

    Haase, Alexandra; Olmer, Ruth; Schwanke, Kristin; Wunderlich, Stephanie; Merkert, Sylvia; Hess, Christian; Zweigerdt, Robert; Gruh, Ina; Meyer, Johann; Wagner, Stefan; Maier, Lars S; Han, Dong Wook; Glage, Silke; Miller, Konstantin; Fischer, Philipp; Schöler, Hans R; Martin, Ulrich

    2009-10-02

    Induced pluripotent stem cells (iPSCs) may represent an ideal cell source for future regenerative therapies. A critical issue concerning the clinical use of patient-specific iPSCs is the accumulation of mutations in somatic (stem) cells over an organism's lifetime. Acquired somatic mutations are passed onto iPSCs during reprogramming and may be associated with loss of cellular functions and cancer formation. Here we report the generation of human iPSCs from cord blood (CB) as a juvenescent cell source. CBiPSCs show characteristics typical of embryonic stem cells and can be differentiated into derivatives of all three germ layers, including functional cardiomyocytes. For future therapeutic production of autologous and allogeneic iPSC derivatives, CB could be routinely harvested for public and commercial CB banks without any donor risk. CB could readily become available for pediatric patients and, in particular, for newborns with genetic diseases or congenital malformations.

  7. Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes

    Directory of Open Access Journals (Sweden)

    Nicolette A. Hodyl

    2016-12-01

    Full Text Available Adverse environmental exposures in pregnancy can significantly alter the development of the fetus resulting in impaired child neurodevelopment. Such exposures can lead to epigenetic alterations like DNA methylation, which may be a marker of poor cognitive, motor and behavioral outcomes in the infant. Here we review studies that have assessed DNA methylation in cord blood following maternal exposures that may impact neurodevelopment of the child. We also highlight some key studies to illustrate the potential for DNA methylation to successfully identify infants at risk for poor outcomes. While the current evidence is limited, in that observations to date are largely correlational, in time and with larger cohorts analyzed and longer term follow-up completed, we may be able to develop epigenetic biomarkers that not only indicate adverse early life exposures but can also be used to identify individuals likely to be at an increased risk of impaired neurodevelopment even in the absence of detailed information regarding prenatal environment.

  8. Cesarean section imprints cord blood immune cell distributions

    DEFF Research Database (Denmark)

    Thysen, Anna Hammerich; Larsen, Jeppe Madura; Rasmussen, Mette Annelie

    2014-01-01

    Immune programming in early life may affect the risk of developing immune-related diseases later in life. Children born by cesarean section seem to be at higher risk of asthma, allergic rhinitis, and type-1 diabetes. We hypothesized that delivery by cesarean section may affect immune maturation i...... in newborns. The objective of the study was to profile innate and adaptive immune cell subsets in cord blood of children born by cesarean section or natural birth.......Immune programming in early life may affect the risk of developing immune-related diseases later in life. Children born by cesarean section seem to be at higher risk of asthma, allergic rhinitis, and type-1 diabetes. We hypothesized that delivery by cesarean section may affect immune maturation...

  9. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  10. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    L.P. Rodrigues

    2012-01-01

    Full Text Available Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a 1 h after surgery, into the injury site at a concentration of 5 x 10(6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group; b into the cisterna magna, 9 days after lesion at a concentration of 5 x 10(6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group. The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day. The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05. The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  11. Perfluorinated compounds in umbilical cord blood and adverse birth outcomes.

    Directory of Open Access Journals (Sweden)

    Mei-Huei Chen

    Full Text Available BACKGROUND: Previous animal studies have shown that perfluorinated compounds (PFCs have adverse impacts on birth outcomes, but the results have been inconclusive in humans. We investigated associations between prenatal exposure to perfluorooctanoic acid (PFOA, perfluorooctyl sulfonate (PFOS, perfluorononanoic acid (PFNA, and perfluoroundecanoic acid (PFUA and birth outcomes. METHODS: In total, 429 mother-infant pairs were recruited from the Taiwan Birth Panel Study (TBPS. Demographic data were obtained by interviewing mothers using a structured questionnaire and birth outcomes were extracted from medical records. Cord blood was collected for PFOA, PFOS, PFNA, and PFUA analysis by ultra-high-performance liquid chromatography/tandem mass spectrometry. RESULTS: The geometric mean (standard deviation levels of PFOA, PFOS, PFNA, and PFUA in cord blood plasma were 1.84 (2.23, 5.94 (1.95, 2.36(4.74, and 10.26 (3.07 ng/mL, respectively. Only PFOS levels were found to be inversely associated with gestational age, birth weight, and head circumference [per ln unit: adjusted β (95% confidence interval, CI = -0.37 (-0.60, -0.13 wks, -110.2 (-176.0, -44.5 gm and -0.25 (-0.46, -0.05 cm]. Additionally, the odds ratio of preterm birth, low birth weight, and small for gestational age increased with PFOS exposure [per ln unit: adjusted odds ratio (OR (95%CI = 2.45 (1.47, 4.08, 2.61(0.85, 8.03 and 2.27 (1.25, 4.15]. When PFOS levels were divided into quartiles, a dose-response relation was observed. However, PFOA, PFNA, and PFUA were not observed to have any convincing impact on birth outcomes. CONCLUSIONS: An adverse dose-dependent association was observed between prenatal PFOS exposure and birth outcomes. However, no associations were found for the other examined PFCs.

  12. Analysis of risk factors of cord blood transplantation for children.

    Science.gov (United States)

    Goldstein, Gal; Bielorai, Bella; Stein, Jerry; Stepensky, Polina; Elhasid, Ronit; Zaidman, Irena; Chetrit, Angela; Yaniv, Isaac; Nagler, Arnon; Toren, Amos

    2013-12-01

    As cord blood (CB) is being used frequently as a source for heamtopoetic stem cell transplantation defining risk factors for transplantation outcome is an important issue. The data of all single unit CB transplantation preformed in Israel from 1992 to 2011 were collected. The risk factors for myeloid engraftment, event free survival (EFS) and overall survival (OS) were studied in 87 children. There were 49 children with hematological malignancies and 38 with non-malignant diseases. Cumulative rate of neutrophil recovery was 78.3%, while median time to myeloid recovery was 26 days. The incidence of platelet engraftment at 150 days was 53%, and the median time to platelet recovery was 36 days. ABO blood group matching between CB unit and recipient was associated with superior myeloid engraftment. Acute graft versus host disease of grades II-IV occurred in 33% of the patients. Chronic graft versus host disease occurred in 16% of patients. Probabilities of EFS and OS at 1 year were 45% and 57%, respectively. Factors associated with inferior OS were Rh major mismatch versus matched Rh and transplantation from unrelated donor versus related donor. These results indicate that matching of ABO blood groups is an important factor that affects engraftment, and also that Rh matching seem to have an impact on OS, which was not previously described in the setting of CB transplantation. © 2013 Wiley Periodicals, Inc.

  13. Conditioned medium: a new alternative for cryopreservation of equine umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Maia, Leandro; Dias, Marianne Camargos; de Moraes, Carolina Nogueira; de Paula Freitas-Dell'Aqua, Camila; da Mota, Ligia S L Silveira; Santiloni, Valquíria; da Cruz Landim-Alvarenga, Fernanda

    2017-03-01

    Cryopreservation is a feasible alternative to maintaining several cell lines, particularly for immediate therapeutic use, transportation of samples, and implementation of new in vitro studies. This work parts from the hypothesis that the medium of cryopreservation composed by 90% of conditioned medium (CM) supports cryopreservation of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs), allowing the maintenance of the biological properties for the establishment of cell banks intended for therapeutic use and in vitro studies. Thus, we evaluated the viability, apoptosis/necrosis rates, immunophenotypic profile (IP), chromosomal stability, clonicity, and differentiation potential of UCIM-MSCs cryopreserved with four different mediums (with FBS: M1, M3, M4 and without FBS: M2). After 3 months of cryopreservation, samples were thawed and analyzed. The potential of differentiation in the mesodermal lineages, clonicity, and the chromosomal stability were maintained after cryopreservation of UCIM-MSCs with medium containing FBS. Changes (P cells cryopreserved with medium M1-M3. Only the UCIM-MSCs cryopreserved with the CM (M4) had similar viability post-thaw (P = 0.23) when compared with fresh cells. We proved the hypothesis that the medium of cryopreservation containing CM supports the cryopreservation of UCIM-MSCs, at the experimental conditions, being the medium that better maintains the biological characteristics observed at fresh cells. Thus, future studies of UCIM-MSCs secretome should be conducted to better understand the beneficial and protective effects of the CM during the freezing process. © 2017 International Federation for Cell Biology.

  14. Hypoxic pretreatment of human umbilical cord mesenchymal stem cells regulating macrophage polarization

    Directory of Open Access Journals (Sweden)

    Chuan TONG

    2016-08-01

    Full Text Available Objective  To investigate the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs on macrophage polarization under hypoxia. Methods  hUC-MSCs were obtained by explants adherent culture and cultured under normoxia (21% O2 and hypoxia (5% O2. The multi-directional differentiation of hUC-MSCs was observed by osteogenic and adipogenic differentiation induction. Live/death staining was performed to detect the cell viability, and ELISA was executed to detect the protein content in supernatant of hUC-MSCs. Transwell chamber was employed to co-culture the hUC-MSCs cultured under normoxia and hypoxia and macrophage (THP-1 stimulated by lipopolysaccharide (IPS, then the polarization of THP-1 was detected by immunofluorescence, and the secretions of inflammatory factor and anti-inflammatory factor of THP-1 were detected by ELISA. Results  hUC-MSCs cultured under hypoxia showed the ability of osteogenic and adipogenic multi-directional differentiation. Live/death staining showed the high cell viability of hUC-MSCs cultured under normoxia and hypoxia. The expression levels of prostaglandin E2 (PGE2 and indoleamine 2,3-dioxygenase (IDO were significantly higher in the hUC-MSCs cultured under hypoxia than in those cultured under normoxia. hUCMSCs cultured under hypoxia promoted the polarization of THP-1 to M2, obviously reduced the expression of TNF-α and IL-1β, and increased the expression of IL-10 significantly. Conclusion hUC-MSCs cultured under hypoxia may promote the polarization of THP-1 to M2 and improve the viability of anti-inflammatory. DOI: 10.11855/j.issn.0577-7402.2016.07.01

  15. Suspension Culture Alters Insulin Secretion in Induced Human Umbilical Cord Matrix-Derived Mesenchymal Cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Seyedi

    2016-04-01

    Full Text Available Objective: Worldwide, diabetes mellitus (DM is an ever-increasing metabolic disorder. A promising approach to the treatment of DM is the implantation of insulin producing cells (IPC that have been derived from various stem cells. Culture conditions play a pivotal role in the quality and quantity of the differentiated cells. In this experimental study, we have applied various culture conditions to differentiate human umbilical cord matrix-derived mesenchymal cells (hUCMs into IPCs and measured insulin production. Materials and Methods: In this experimental study, we exposed hUCMs cells to pancreatic medium and differentiated them into IPCs in monolayer and suspension cultures. Pancreatic medium consisted of serum-free Dulbecco’s modified eagle’s medium Nutrient mixture F12 (DMEM/F12 medium with 17.5 mM glucose supplemented by 10 mM nicotinamide, 10 nM exendin-4, 10 nM pentagastrin, 100 pM hepatocyte growth factor, and B-27 serum-free supplement. After differentiation, insulin content was analyzed by gene expression, immunocytochemistry (IHC and the chemiluminesence immunoassay (CLIA. Results: Reverse transcription-polymerase chain reaction (RT-PCR showed efficient expressions of NKX2.2, PDX1 and INSULIN genes in both groups. IHC analysis showed higher expression of insulin protein in the hanging drop group, and CLIA revealed a significant higher insulin production in hanging drops compared with the monolayer group following the glucose challenge test. Conclusion: We showed by this novel, simple technique that the suspension culture played an important role in differentiation of hUCMs into IPC. This culture was more efficient than the conventional culture method commonly used in IPC differentiation and cultivation.

  16. Lead Level in Umbilical Cord Blood and its Effects on Newborns Anthropometry.

    Science.gov (United States)

    Neda, Akbari-Nassaji; Fahimeh, Sabeti; Tahereh, Ziaei Kajbaf; Leila, Fakharzadeh; Zahra, Nazari; Bahman, Cheraghian; Narges, Cham Kouri

    2017-06-01

    High concentration of blood lead is accompanied by adverse health effects on growth of foetus and the newborn. The aim of this study was to determine umbilical cord blood lead level and its relationship with birth weight, length and head circumference of the newborns in Abadan, Iran. In this cross-sectional study, 3 ml blood was collected from the umbilical cord vein in 147 newborns, immediately after the birth. Blood lead was measured using atomic absorption spectrophotometry. Data collection instruments included demographic questionnaire (age of mother, gestational age, newborn gender, job and education of mother) and also data registration form (umbilical cord blood lead concentration, weight, length, and head circumference of newborn). Data was analyzed with SPSS software version 16.0. The mean of umbilical cord blood lead was determined 0.65±0.32 µg/dl (0.3-1.35 µg/dl). The decrease of birth weight with increased blood lead level was small and was not statistically significant. There was reverse significant correlation between umbilical cord blood lead level and birth length and head circumference. There was no significant correlation between blood lead and other variables such as age, weight, education and job of mother and gestational age. Umbilical blood lead level was determined umbilical cord blood lead caused decreasing birth weight, length and head circumference of the newborns.

  17. Dexmedetomidine Attenuates Blood-Spinal Cord Barrier Disruption Induced by Spinal Cord Ischemia Reperfusion Injury in Rats

    Directory of Open Access Journals (Sweden)

    Bo Fang

    2015-05-01

    Full Text Available Background/Aims: Dexmedetomidine has beneficial effects on ischemia reperfusion (I/R injury to the spinal cord, but the underlying mechanisms are not fully understood. This study investigated the effects and possible mechanisms of dexmedetomidine on blood-spinal cord barrier (BSCB disruption induced by spinal cord I/R injury. Methods: Rats were intrathecally pretreated with dexmedetomidine or PBS control 30 minutes before undergoing 14-minute occlusion of aortic arch. Hind-limb motor function was assessed using Tarlov criteria, and motor neurons in the ventral gray matter were counted by histological examination. The permeability of the BSCB was examined using Evans blue (EB as a vascular tracer. The spinal cord edema was evaluated using the wet-dry method. The expression and localization of matrix metalloproteinase-9 (MMP-9, Angiopoietin-1 (Ang1 and Tie2 were assessed by western blot, real-time polymerase chain reaction, and immunofluorescence. Results: Intrathecal preconditioning with dexmedetomidine minimized the neuromotor dysfunction and histopathological deficits, and attenuated EB extravasation after spinal cord I/R injury. In addition, dexmedetomidine preconditioning suppressed I/R-induced increase in MMP-9. Finally, Dexmedetomidine preconditioning enhanced the Ang1-Tie2 system activity after spinal cord I/R injury. Conclusions: Dexmedetomidine preconditioning stabilized the BSCB integrity against spinal cord I/R injury by inhibition of MMP-9, and enhancing the Ang1-Tie2 system.

  18. Inhibitory effects of human umbilical cord-derived mesenchymal stem cells on proliferation of peripheral blood mononuclear cells from spondyloarthritis patients%人脐带间充质干细胞对脊柱关节炎患者外周血单个核细胞体外增殖的抑制作用

    Institute of Scientific and Technical Information of China (English)

    黄志芳; 吕双红; 朱剑; 杨志岗; 宋亚昆; 杜丽欣; 陈显达; 胡海旭; 吴东颖

    2013-01-01

    目的 探讨人脐带间充质干细胞(hUCMSC)对脊柱关节炎(SpA)患者外周血单个核细胞(PBMC)体外增殖的抑制作用.方法 采用随机区组设计或配对设计,将12例SpA患者的PBMC与hUCMSC共培养或单独培养,CCK-8法检测PBMC增殖,并以流式细胞术检测其细胞周期分布;同时将hUCMSC的作用与SpA患者临床资料进行相关分析.结果 hUCMSC抑制SpA患者PBMC体外增殖,比例越大抑制作用越强(P<0.01),直接接触共培养的抑制作用强于Transwell小室培养(57%±17%比32%±12%),两组比较差异有统计学意义(P<0.01);hUCMSC使处于G1期的PBMC增多(86%±3%比68%±5%),处于(S+G2)期的PBMC减少(8%±3%比26%±5%),两组比较差异有统计学意义(P<0.01);hUCMSC的抑制作用与SpA患者的临床资料无相关性.结论 hUCMSC能够抑制SpA患者PBMC的体外增殖,在SpA的临床治疗中具有潜在的应用前景.%Objective To explore the inhibitory effects of human umbilical cord-derived mesenchymal stem cells (hUCMSC) on the proliferation of peripheral blood mononuclear cells (PBMC) from spondyloarthritis (SpA) patients.Methods A total of 12 SpA patients at Chinese PLA General Hospital were recruited from May 2012 to October 2012.Information on demographic characteristics,disease and functional activity was collected.Isolated PBMC were stimulated by phytohemagglutinin (PHA,1 μg/ml) in the presence or absence of hUCMSC.The proliferation of hUCMSC was suppressed by irradiation with Co60(30 Gy) before co-culturing with PBMC.The proliferation of PBMC was determined by Cell Counting Kit-8(CCK-8).Cell cycle profiles of PBMC were analyzed by flow cytometry.The association of inhibitory effect of hUCMSC with the disease and functional activity of SpA patients was examined.Results After coculturing with hUCMSC by cell-to-cell contact for 5 days,the proliferation of PBMC stimulated by PHA (1 μg/ml)was significantly inhibited by hUCMSC in a dose

  19. Comparisons of polybrominated diphenyl ethers levels in paired South Korean cord blood, maternal blood, and breast milk samples.

    Science.gov (United States)

    Kim, Tae Hyung; Bang, Du Yeon; Lim, Hyun Jung; Won, A Jin; Ahn, Mee Young; Patra, Nabanita; Chung, Ki Kyung; Kwack, Seung Jun; Park, Kui Lea; Han, Soon Young; Choi, Wahn Soo; Han, Jung Yeol; Lee, Byung Mu; Oh, Jeong-Eun; Yoon, Jeong-Hyun; Lee, Jaewon; Kim, Hyung Sik

    2012-03-01

    Polybrominated diphenyl ethers (PBDEs), commonly used flame retardants, have been reported as potential endocrine disruptor and neurodevelopmental toxicants, thus giving rise to the public health concern. The goal of this study was to investigate the relationship between umbilical cord blood, maternal blood, and breast milk concentrations of PBDEs in South Korean. We assessed PBDE levels in paired samples of umbilical cord blood, maternal blood, and breast milk. The levels of seven PBDE congeners were measured in 21 paired samples collected from the Cheil Woman's Hospital (Seoul, Korea) in 2008. We also measured thyroid hormones levels in maternal and cord blood to assess the association between PBDEs exposure and thyroid hormone levels. However, there was no correlation between serum thyroxin (T4) and total PBDEs concentrations. The total PBDEs concentrations in the umbilical cord blood, maternal blood, and breast milk were 10.7±5.1 ng g(-1) lipid, 7.7±4.2 ng g(-1) lipid, and 3.0±1.8 ng g(-1) lipid, respectively. The ranges of total PBDE concentrations observed were 2.28-30.94 ng g(-1) lipid in umbilical cord blood, 1.8-17.66 ng g(-1) lipid in maternal blood, and 1.08-8.66 ng g(-1) lipid in breast milk. BDE-47 (45-73% of total PBDEs) was observed to be present dominantly in all samples, followed by BDE-153. A strong correlation was found for major BDE-congeners between breast milk and cord blood or maternal blood and cord blood samples. The measurement of PBDEs concentrations in maternal blood or breast milk may help to determine the concentration of PBDEs in infant.

  20. High Harvest Yield, High Expansion, and Phenotype Stability of CD146 Mesenchymal Stromal Cells from Whole Primitive Human Umbilical Cord Tissue

    Directory of Open Access Journals (Sweden)

    Rebecca C. Schugar

    2009-01-01

    Full Text Available Human umbilical cord blood is an excellent primitive source of noncontroversial stem cells for treatment of hematologic disorders; meanwhile, new stem cell candidates in the umbilical cord (UC tissue could provide therapeutic cells for nonhematologic disorders. We show novel in situ characterization to identify and localize a panel of some markers expressed by mesenchymal stromal cells (MSCs; CD44, CD105, CD73, CD90 and CD146 in the UC. We describe enzymatic isolation and purification methods of different UC cell populations that do not require manual separation of the vessels and stroma of the coiled, helical-like UC tissue. Unique quantitation of in situ cell frequency and stromal cell counts upon harvest illustrate the potential to obtain high numerical yields with these methods. UC stromal cells can differentiate to the osteogenic and chondrogenic lineages and, under specific culturing conditions, they exhibit high expandability with unique long-term stability of their phenotype. The remarkable stability of the phenotype represents a novel finding for human MSCs, from any source, and supports the use of these cells as highly accessible stromal cells for both basic studies and potentially therapeutic applications such as allogeneic clinical use for musculoskeletal disorders.

  1. Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.

    Directory of Open Access Journals (Sweden)

    Abel Torres-Espín

    Full Text Available Transplantation of bone marrow derived mesenchymal stromal cells (MSC or olfactory ensheathing cells (OEC have demonstrated beneficial effects after spinal cord injury (SCI, providing tissue protection and improving the functional recovery. However, the changes induced by these cells after their transplantation into the injured spinal cord remain largely unknown. We analyzed the changes in the spinal cord transcriptome after a contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting. The gene profiles were analyzed by clustering and functional enrichment analysis based on the Gene Ontology database. We found that both MSC and OEC transplanted acutely after injury induce an early up-regulation of genes related to tissue protection and regeneration. In contrast, cells transplanted at 7 days after injury down-regulate genes related to tissue regeneration. The most important change after MSC or OEC transplant was a marked increase in expression of genes associated with foreign body response and adaptive immune response. These data suggest a regulatory effect of MSC and OEC transplantation after SCI regarding tissue repair processes, but a fast rejection response to the grafted cells. Our results provide an initial step to determine the mechanisms of action and to optimize cell therapy for SCI.

  2. Effects of Co-grafts Mesenchymal Stem Cells and Nerve Growth Factor Suspension in the Repair of Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    FANG Huang; WANG Junfang; CHEN Anmin

    2006-01-01

    To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubecco-modified Eagles medium (DMEM , Group Ⅰ), MSCs (Group Ⅱ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunocytochemical staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunocytochemical staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P<0.05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astrocytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.

  3. Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options.

    Science.gov (United States)

    McDonald, Courtney A; Fahey, Michael C; Jenkin, Graham; Miller, Suzanne L

    2017-09-22

    Cerebral palsy is the most common cause of physical disability in children, and there is no cure. Umbilical cord blood (UCB) cell therapy for the treatment of children with cerebral palsy is currently being assessed in clinical trials. While there is much interest in the use of UCB stem cells for neuroprotection and neuroregeneration, the mechanisms of action are not fully understood. Further, UCB contains many stem and progenitor cells of interest, and we will point out that individual cell types within UCB may elicit specific effects. UCB is a clinically proven source of hemotopoietic stem cells (HSCs). It also contains mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) and immunosupressive cells such as regulatory T cells (Tregs) and monocyte-derived supressor cells. Each of these cell types may be individual candidates for the prevention of brain injury following hypoxic and inflammatory events in the perinatal period. We will discuss specific properties of cell types in UCB, with respect to their therapeutic potential and the importance of optimal timing of administration. We propose that tailored cell therapy and targeted timing of administration will optimise results for future clinical trials in the neuroprotective treatment of perinatal brain injury.Pediatric Research accepted article preview online, 22 September 2017. doi:10.1038/pr.2017.236.

  4. Age, Sex, and Religious Beliefs Impact the Attitude towards Cord Blood Banking.

    Science.gov (United States)

    Sundell, Inger Birgitta; Setzer, Teddi J

    2015-01-01

    In this study, a self-administered questionnaire was used to assess opinions about stem cell research and cord blood banking. Three attitudes were examined: willingness to accept cord blood banking, willingness to accept embryonic stem cell research, and religious belief system. A total of 90 Wayne State University students enrolled in the study in response to an invitation posted on a web page for the university. Sex distribution among study participants was 79 females and eight males; three declined to state their sex. Support for cord blood banking was high (> 70%) among students. Students over the age of 25 years of age were more (85%) positive than students 18 to 24 years old (57%). They prefered a public cord blood bank over a private cord blood bank. Atheist/agnostic or spiritual/not religious students (> 90%), Catholic students (78%) and Christian students (58%) support cord blood banking. Age, sex and religion seems influence the student's attitude towards stem cell research and cord blood banking.

  5. Umbilical Cord Blood NOS1 as a Potential Biomarker of Neonatal Encephalopathy.

    Science.gov (United States)

    Lei, Jun; Paules, Cristina; Nigrini, Elisabeth; Rosenzweig, Jason M; Bahabry, Rudhab; Farzin, Azadeh; Yang, Samuel; Northington, Frances J; Oros, Daniel; McKenney, Stephanie; Johnston, Michael V; Graham, Ernest M; Burd, Irina

    2017-01-01

    There are no definitive markers to aid in diagnosis of neonatal encephalopathy (NE). The purpose of our study was (1) to identify and evaluate the utility of neuronal nitric oxide synthase (NOS1) in umbilical cord blood as a NE biomarker and (2) to identify the source of NOS1 in umbilical cord blood. This was a nested case-control study of neonates >35 weeks of gestation. ELISA for NOS1 in umbilical cord blood was performed. Sources of NOS1 in umbilical cord were investigated by immunohistochemistry, western blot, ELISA, and quantitative PCR. Furthermore, umbilical cords of full-term neonates were subjected to 1% hypoxia ex vivo. NOS1 was present in umbilical cord blood and increased in NE cases compared with controls. NOS1 was expressed in endothelial cells of the umbilical cord vein, but not in artery or blood cells. In ex vivo experiments, hypoxia was associated with increased levels of NOS1 in venous endothelial cells of the umbilical cord as well as in ex vivo culture medium. This is the first study to investigate an early marker of NE. NOS1 is elevated with hypoxia, and further studies are needed to investigate it as a valuable tool for early diagnosis of neonatal brain injury.

  6. Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier

    Directory of Open Access Journals (Sweden)

    Dorota Sulejczak

    2016-12-01

    Full Text Available An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB. This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an ‘empty’ (i.e., carrying no glutamate nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuo­lization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less

  7. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    Directory of Open Access Journals (Sweden)

    Yue-xin Wang

    2015-01-01

    Full Text Available The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  8. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy

    Institute of Scientific and Technical Information of China (English)

    Yue-xin Wang; Jing-jing Sun; Mei Zhang; Xiao-hua Hou; Jun Hong; Ya-jing Zhou; Zhi-yong Zhang

    2015-01-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantationvia tail vein injection and/or propofol injectionvia tail vein using an infusion pump. Four weeks after cell transplan-tation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve ifbers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electro-physiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  9. Effect of hemoglobin adjustment on the precision of mercury concentrations in maternal and cord blood

    DEFF Research Database (Denmark)

    Kim, Byung-Mi; Choi, Anna L; Ha, Eun-Hee

    2014-01-01

    and structural equation model (SEM) analyses were used to ascertain interrelationships between the exposure biomarkers and the possible impact of hemoglobin as well as selenium. Both methods showed a significant dependence of the cord-blood concentration on hemoglobin, also after adjustment for other exposure...... biomarkers. In the SEM, the cord blood measurement was a less imprecise indicator of the latent methylmercury exposure variable than other exposure biomarkers available, and the maternal hair concentration had the largest imprecision. Adjustment of mercury concentrations both in maternal and cord blood...

  10. Umbilical cord blood lactate: a valuable tool in the assessment of fetal metabolic acidosis

    DEFF Research Database (Denmark)

    Gjerris, A.C.; Staer-Jensen, J.; Jorgensen, J.S.

    2008-01-01

    OBJECTIVE: The aim of the present study was (1) to evaluate the relationship between umbilical cord arterial blood lactate and pH, standard base excess (SBE), and actual base excess (ABE) at delivery and (2) to suggest a cut-off level of umbilical cord arterial blood lactate in predicting fetal...... asphyxia using ROC-curves, where an ABE value less than -12 was used as "gold standard" for significant intrapartum asphyxia. STUDY DESIGN: This is a descriptive study of umbilical cord arterial blood samples from 2554 singleton deliveries. The deliveries took place at the Department of Obstetrics...... and Gynaecology, Hvidovre University Hospital, Copenhagen, Denmark where umbilical cord blood sampling and blood gas analysis is part of the routine assessment of all newborns. RESULTS: We found significant correlations between lactate and pH (r=-0.73), lactate and SBE (r=-0.76), and lactate and ABE (r=-0...

  11. Umbilical Cord Blood Use for Admission Blood Tests of VLBW (Very Low Birth Weight) Preterm Neonates: A Multi-center Randomized Clinical Trial

    Science.gov (United States)

    2016-09-12

    collection of information if it does not display a currently valid OMB control number. Umbilical Cord Blood Use for Admission Blood Tests of VLBW Preterm...to help decrease the risk of anemia and the need for transfusion. These include delayed cord clamping , cord stripping, erythropoiesis stimulating...transcutaneous measurements[3, 6]. Another approach used to decrease the risk of anemia and need for transfusion is the use of umbilical cord blood

  12. Study of differentiated human umbilical cord-derived mesenchymal stem cells transplantation on rat model of advanced parkinsonism.

    Science.gov (United States)

    Wang, Zhaowei; Chen, Aimin; Yan, Shengjuan; Li, Chengyan

    2016-08-01

    The aim of this study was to explore the curative effect of differentiated human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation on rat of advanced Parkinson disease (PD) model. Human umbilical cord-derived mesenchymal stem cells were cultured and induced differentiation in vitro. The PD rats were established and allocated randomly into 2 groups: differentiated hUC-MSCs groups and physiological saline groups (the control group). Rotation test and immunofluorescence double staining were done. The result showed that hUC-MSCs could differentiate into mature dopamine neurons. Frequency of rotation was significantly less in differentiated hUC-MSCs groups than in normal saline group. After we transplanted these cells into the unilateral lesioned substantia nigra induced by striatal injection of 6-hydroxydopamine and performed in the medial forebrain bundle and ventral tegmental area, nigral tyrosine hydroxylase-positive cells were observed and survival of at least 2 months. In addition, transplantation of hUC-MSCs could make an obviously therapeutic effect on PD rats. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Effect of Prenatal Selenium Supplementation on Cord Blood Selenium and Lipid Profile

    Directory of Open Access Journals (Sweden)

    Hassan Boskabadi

    2012-12-01

    Conclusion: Our findings suggest that selenium supplementation in pregnant women may be associated with an increased cord-blood triglyceride level, although total cholesterol, low-density lipoprotein and high-density lipoprotein cholesterol levels did not change significantly. The clinical significance of the increased cord triglyceride concentration needs to be evaluated.

  14. Cord Blood-Derived Hematopoietic Stem/Progenitor Cells: Current Challenges in Engraftment, Infection, and Ex Vivo Expansion

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kita

    2011-01-01

    Full Text Available Umbilical cord blood has served as an alternative to bone marrow for hematopoietic transplantation since the late 1980s. Numerous clinical studies have proven the efficacy of umbilical cord blood. Moreover, the possible immaturity of cells in umbilical cord blood gives more options to recipients with HLA mismatch and allows for the use of umbilical cord blood from unrelated donors. However, morbidity and mortality rates associated with hematopoietic malignancies still remain relatively high, even after cord blood transplantation. Infections and relapse are the major causes of death after cord blood transplantation in patients with hematopoietic diseases. Recently, new strategies have been introduced to improve these major problems. Establishing better protocols for simple isolation of primitive cells and ex vivo expansion will also be very important. In this short review, we discuss several recent promising findings related to the technical improvement of cord blood transplantation.

  15. Umbilical cord blood acid-base and gas analysis after early versus delayed cord clamping in neonates at term.

    Science.gov (United States)

    De Paco, Catalina; Florido, Jesús; Garrido, Mari Carmen; Prados, Sonia; Navarrete, Luis

    2011-05-01

    To compare umbilical cord acid-base status and blood gas analysis between umbilical cords clamped within 10 s and at 2 min of delivery. A total of 158 healthy full-term mothers were randomly assigned to an early clamping (clamping (2 min post-delivery, n = 79) group. After application of inclusion criteria, umbilical vein blood acid-base status and gases were analyzed in 65 early clamped and 51 delayed clamped cords. Fewer cases could be examined in the umbilical artery: 55 cords in the early clamping group and 44 in the delayed one. Acid-base and gas analysis results did not significantly differ between the groups in the umbilical vein or umbilical artery, with the exception of a higher (p umbilical artery pO(2) value in the delayed versus early clamping group. No significant differences in umbilical vein or artery pCO(2) or HCO(3) (-) values were observed between the early and delayed clamp groups. A delay of 2 min before umbilical cord clamping does not significantly change acid-base and gas analysis results, with the exception of a higher mean umbilical artery pO(2) value in the delayed clamping group.

  16. Evaluating perfusion of thoracic spinal cord blood using CEUS during thoracic spinal stenosis decompression surgery.

    Science.gov (United States)

    Ling, J; Jinrui, W; Ligang, C; Wen, C; Xiaoguang, L; Liang, J

    2015-01-13

    Study design:A clinical study in human spinal cord.Objectives:To evaluate changes in spinal cord blood perfusion in patients with thoracic spinal stenosis using contrast-enhanced ultrasonography and to semiquantitatively analyze blood perfusion changes in compressed spinal cord before and after ventral decompression.Setting:Ultrasound department of a university hospital.Methods:Twelve patients with confirmed thoracic spinal stenosis who needed decompression surgery participated. They underwent an intravenous injection of a contrast agent before and after ventral decompression. Quantitative analysis software (Philips Healthcare, Bothell, WA, USA) was used to perform time-intensity curve (TIC) analysis. The enhanced intensity (ΔI), rise time (ΔT) and slope of the TIC (β) were separately calculated; t-tests of the independent samples were performed on the indicators.Results:The TICs showed no significant differences between compressed spinal cord and normal spinal cord in ΔT, enhanced ΔI and β (P= 0.46, P=0.23 and P=0.16, respectively). After ventral decompression, ΔI of the originally compressed spinal cord increased substantially (P= 0.04) compared with ΔI of the normal spinal cord; however, the ΔT and β showed no significant differences (P= 0.18 and P=0.09, respectively). Comparison of the blood perfusion parameters (that is, ΔT and ΔI) of the compressed spinal cords before and after ventral decompression showed no significant differences (P=0.14 and P=0.12, respectively), but β showed significant difference (P=0.02).Conclusion:Contrast-enhanced ultrasonography can dynamically display spinal cord blood perfusion. The characteristics of blood perfusion can be semiquantitatively analyzed using a software technique.Spinal Cord advance online publication, 13 January 2015; doi:10.1038/sc.2014.213.

  17. Developing Educational Resources to Advance Umbilical Cord Blood Banking and Research: A Canadian Perspective.

    Science.gov (United States)

    Beak, Carla Pereira; Chargé, Sophie B; Isasi, Rosario; Knoppers, Bartha M

    2015-05-01

    In 2013 Canadian Blood Services (CBS) launched the National Public Cord Blood Bank (NPCBB), a program to collect, process, test, and store cord blood units donated for use in transplantation. A key component of the creation of the NPCBB is the establishment of a program that enables cord blood not suitable for banking or transplantation to be used for biomedical research purposes. Along with the development of processes and policies to manage the NPCBB and the cord blood research program, CBS-in collaboration with researchers from the Stem Cell Network-have also developed educational tools to provide relevant information for target audiences to aid implementation and operation. We describe here one of these tools, the REB Primer on Research and Cord Blood Donation (the Primer), which highlights key ethical and legal considerations and identifies Canadian documents that are relevant to the use of cord blood in biomedical research. The Primer also introduces the NPCBB and describes the systems CBS is implementing to address ethical issues. The Primer is intended to assist research ethics boards in evaluating the ethical acceptability of research protocols, to facilitate harmonized decision-making by providing a common reference, and to highlight the role of research ethics boards in governance frameworks. With the Primer we hope to illustrate how the development of such educational tools can facilitate the ethical implementation and governance of programs related to stem cell research in Canada and abroad.

  18. Association of food consumption during pregnancy with mercury and lead levels in cord blood.

    Science.gov (United States)

    Kim, Jin Hee; Lee, Su Jin; Kim, Su Young; Choi, Gyuyeon; Lee, Jeong Jae; Kim, Hai-Joong; Kim, Sungjoo; Park, Jeongim; Moon, Hyo-Bang; Choi, Kyungho; Kim, Sungkyoon; Choi, Soo Ran

    2016-09-01

    In utero exposure to mercury and lead has been linked to various adverse health effects related to growth and development. However, there was no evidence on the relationship between food consumption during pregnancy and mercury or lead level in cord blood. Therefore we measured mercury and lead levels in bloods, urines, and cord bloods obtained from 302 pregnant women and estimated relationships between food consumption during pregnancy and mercury or lead level in cord blood to identify perinatal mercury and lead exposures originated from foods during pregnancy. Relationship between food consumption and mercury or lead level was estimated using a generalized linear model after adjustment for body mass index (BMI), delivery experience, income, recruitment year, and other dietary factors for mercury and age, BMI, cesarean section, delivery experience, recruitment year, and other dietary factors for lead. Fish consumption was positively associated with mercury level in cord blood (p=0.0135), while cereal and vegetable consumptions were positively associated with lead level in cord blood (p=0.0517 for cereal and p=0.0504 for vegetable). Furthermore, tea consumption restrained increase of lead level in cord blood (p=0.0014). Our findings support that mercury or lead exposure in Korean pregnant women may come from frequent fish and cereal or vegetable consumption while tea consumption may decrease lead exposure in pregnant women. Therefore, careful intervention through food consumption should be considered.

  19. Transplantation? Peripheral Stem Cell/Bone Marrow/Cord Blood

    Directory of Open Access Journals (Sweden)

    Itır Sirinoglu Demiriz

    2012-01-01

    Full Text Available The introduction of peripheral stem cell (PSC and cord blood (CB as an alternative to bone marrow (BM recently has caused important changes on hematopoietic stem cell transplantation (HSCT practice. According to the CIBMTR data, there has been a significant decrease in the use of bone marrow and increase in the use of PSC and CB as the stem cell source for HSCT performed during 1997–2006 period for patients under the age of 20. On the other hand, the stem cell source in 70% of the HSCT procedures performed for patients over the age of 20 was PSC and the second most preferred stem cell source was bone marrow. CB usage is very limited for the adult population. Primary disease, stage, age, time and urgency of transplantation, HLA match between the patient and the donor, stem cell quantity, and the experience of the transplantation center are some of the associated factors for the selection of the appropriate stem cell source. Unfortunately, there is no prospective randomized study aimed to facilitate the selection of the correct source between CB, PSC, and BM. In this paper, we would like to emphasize the data on stem cell selection in light of the current knowledge for patient populations according to their age and primary disease.

  20. Respiratory syncytial virus neutralizing antibodies in cord blood, respiratory syncytial virus hospitalization, and recurrent wheeze

    DEFF Research Database (Denmark)

    Stensballe, Lone Graff; Ravn, Henrik; Kristensen, Kim

    2008-01-01

    BACKGROUND: Respiratory syncytial virus (RSV) hospitalization is associated with wheeze. OBJECTIVE: To examine the influence of maternally derived RSV neutralizing antibodies in cord blood on RSV hospitalization and recurrent wheeze in infancy. METHODS: Among children from the Danish National Bir...

  1. Total and antigen-specific Ige levels in umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Sybilski AJ

    2009-12-01

    Full Text Available Abstract The present study was conducted to learn whether the perinatal and environmental factors could influence the total and antigen-specific IgE levels in umbilical cord blood. Retrospective data were obtained from 173 mother-infant pairs. Total and specific (for children's food, wheat/grass and house dust mite-HDM cord blood IgE levels were determined using the immunoassay test. The total cord blood IgE was between 0.0-23.08 IU/ml (mean 0.55 ± 2.07 IU/ml; median 0.16 IU/ml. Total IgE levels were significantly higher in boys compared with girls (OR = 2.2; P = 0.007, and in newborns with complicated pregnancy (OR = 2.7; P = 0.003. A greater number of siblings correlated with increases in the total cord blood IgE (P

  2. Novel Techniques for Ex Vivo Expansion of Cord Blood: Clinical Trials

    Directory of Open Access Journals (Sweden)

    Rohtesh S Mehta

    2015-12-01

    Full Text Available Cord blood (CB provides an excellent alternative source of hematopoietic progenitor cells (HPC for patients lacking human leukocyte antigen (HLA-matched peripheral blood or bone marrow graft for transplantation. However, due to the limited cell dose in CB graft, it is associated with prolonged time to engraftment, risk of graft rejection, infections and treatment-related mortality. To increase the cell dose, a variety of ex vivo expansion techniques have been developed. Results of traditional methods of CB expansion using cytokines alone were disappointing. Expanding CB cells with mesenchymal progenitor cells led to sizeable increase in graft content and improved engraftment. Other methods used HPC-differentiation blockers, such as nicotinamide analogs, copper chelators, inducing constitutive Notch signaling, or an aryl hydrocarbon receptor antagonist (StemReginin1. Many of these methods lead to substantial expansions of total nucleated cells and CD34+ cells, and significantly improved time to neutrophil or platelet engraftment in patients transplanted with the expanded products compared to the recipients of unmanipulated CBT. These studies differ not only in the expansion method, but also with regards to the cytokines used, patient population, conditioning regimens and transplantation practices, to name a few. Some of these methods employed expansion of a portion of CB unit in the setting of single CBT, while others in the setting of double CBT. Here, we review various procedures used for CB expansion and highlight some of the key differences. Novel methods of improving engraftment that aim at improving bone marrow homing potential of CB cells are not reviewed.

  3. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    Science.gov (United States)

    Penha, Euler Moraes; Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Mendonça, Marcus Vinícius Pinheiro; Gravely, Faye Alice; Pinheiro, Cláudia Maria Bahia; Pinheiro, Taiana Maria Bahia; Barrouin-Melo, Stella Maria; Ribeiro-dos-Santos, Ricardo; Soares, Milena Botelho Pereira

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury. PMID:24723956

  4. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    Directory of Open Access Journals (Sweden)

    Euler Moraes Penha

    2014-01-01

    Full Text Available The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.

  5. Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs.

    Science.gov (United States)

    Penha, Euler Moraes; Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Mendonça, Marcus Vinícius Pinheiro; Gravely, Faye Alice; Pinheiro, Cláudia Maria Bahia; Pinheiro, Taiana Maria Bahia; Barrouin-Melo, Stella Maria; Ribeiro-Dos-Santos, Ricardo; Soares, Milena Botelho Pereira

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.

  6. Mesenchymal stem cells promote augmented response of endogenous neural stem cells in spinal cord injury of rats

    Directory of Open Access Journals (Sweden)

    Marta Rocha Araujo

    2016-06-01

    Full Text Available Traumatic spinal cord injury results in severe neurological deficits, mostly irreversible. The cell therapy represents a strategy for treatment particularly with the use of stem cells with satisfactory results in several experimental models. The aim of the study was to compare the treatment of spinal cord injury (SCI with and without mesenchymal stem cells (MSC, to investigate whether MSCs migrate and/or remain at the site of injury, and to analyze the effects of MSCs on inflammation, astrocytic reactivity and activation of endogenous stem cells. Three hours after SCI, animals received bone marrow-derived MSCs (1×107 in 1mL PBS, IV. Animals were euthanized 24 hours, 7 and 21 days post-injury. The MSC were not present in the site of the lesion and the immunofluorescent evaluation showed significant attenuation of inflammatory response with reduction in macrophages labeled with anti-CD68 antibody (ED1, decreased immunoreactivity of astrocytes (GFAP+ and greater activation of endogenous stem cells (nestin+ in the treated groups. Therefore, cell transplantation have a positive effect on recovery from traumatic spinal cord injury possibly due to the potential of MSCs to attenuate the immune response.

  7. Ethical and legal issues raised by cord blood banking - the challenges of the new bioeconomy.

    Science.gov (United States)

    Stewart, Cameron L; Aparicio, Lorena C; Kerridge, Ian H

    2013-08-19

    Cord blood banking raises ethical and legal issues which highlight the need for careful regulatory approaches to the emerging bioeconomy. • Consent processes for both private and public banking should be inclusive and representative of the different familial interests in the cord blood. • Property law is a potentially useful way of understanding the mechanisms for donation to both public and private banks. • Increasing tensions between public and private models of banking may require the adoption of hybrid forms of banking.

  8. Cord Blood Metabolome Is Highly Associated with Birth Weight, but Less Predictive for Later Weight Development

    Directory of Open Access Journals (Sweden)

    Christian Hellmuth

    2017-04-01

    Full Text Available Background/Aims: Fetal metabolism may be changed by the exposure to maternal factors, and the route to obesity may already set in utero. Cord blood metabolites might predict growth patterns and later obesity. We aimed to characterize associations of cord blood with birth weight, postnatal weight gain, and BMI in adolescence. Methods: Over 700 cord blood samples were collected from infants participating in the German birth cohort study LISAplus. Glycerophospholipid fatty acids (GPL-FA, polar lipids, non-esterified fatty acids (NEFA, and amino acids were analyzed with a targeted, liquid chromatography-tandem mass spectrometry based metabolomics platform. Cord blood metabolites were related to growth factors by linear regression models adjusted for confounding variables. Results: Cord blood metabolites were highly associated with birth weight. Lysophosphatidylcholines C16:1, C18:1, C20:3, C18:2, C20:4, C14:0, C16:0, C18:3, GPL-FA C20:3n-9, and GPL-FA C22:5n-6 were positively related to birth weight, while higher cord blood concentrations of NEFA C22:6, NEFA C20:5, GPL-FA C18:3n-3, and PCe C38:0 were associated with lower birth weight. Postnatal weight gain and BMI z-scores in adolescents were not significantly associated with cord blood metabolites after adjustment for multiple testing. Conclusion: Potential long-term programming effects of the intrauterine environment and metabolism on later health cannot be predicted with profiling of the cord blood metabolome.

  9. Relation between Cord Blood Mercury Levels and Early Child Development in a World Trade Center Cohort

    OpenAIRE

    Lederman, Sally Ann; Jones, Robert L.; Caldwell, Kathleen L.; Rauh, Virginia; Sheets, Stephen E.; Tang, Deliang; Viswanathan, Sheila; Becker, Mark; Stein, Janet L.; Wang, Richard Y; Perera, Frederica P.

    2008-01-01

    Objective This study was designed to determine whether prenatal mercury exposure, including potential releases from the World Trade Center (WTC) disaster, adversely affects fetal growth and child development. Methods We determined maternal and umbilical cord blood total mercury of nonsmoking women who delivered at term in lower Manhattan after 11 September 2001, and measured birth outcomes and child development. Results Levels of total mercury in cord and maternal blood were not significantly...

  10. Prevalence of Medical Conditions Potentially Amenable to Cellular Therapy among Families Privately Storing Umbilical Cord Blood.

    Science.gov (United States)

    Mazonson, Peter; Kane, Mark; Colberg, Kelin; Harris, Heather; Brown, Heather; Mohr, Andrew; Ziman, Alyssa; Santas, Chris

    2017-01-01

    Introduction Little is known about the prevalence of conditions potentially amenable to cellular therapy among families storing umbilical cord blood in private cord blood banks. Methods A cross-sectional study of families with at least one child who stored umbilical cord blood in the largest private cord blood bank in the United States was performed. Respondent families completed a questionnaire to determine whether children with stored cord blood or a first-degree relative had one or more of 16 conditions amenable primarily to allogeneic stem cell transplant ("transplant indications") or 16 conditions under investigation for autologous stem cell infusion ("regenerative indications"), regardless of whether they received a transplant or infusion. Results 94,803 families responded, representing 33.3 % of those surveyed. Of respondent families, 16.01 % indicated at least one specified condition. 1.64 % reported at least one first-degree member with a transplant indication potentially treatable with an allogeneic stem cell transplant. The most common transplant indications reported among first-degree family members were Non-Hodgkin's Lymphoma (0.33 %), Hodgkin's Lymphoma (0.30 %), and Acute Lymphoblastic Leukemia (0.28 %). 4.23 % reported at least one child with a regenerative indication potentially treatable with an autologous stem cell infusion. The most common regenerative indications among children with stored umbilical cord blood were Autism/Autism Spectrum Disorder/Apraxia (1.93 %), Other Developmental Delay (1.36 %), and Congenital Heart Defect (0.87 %). Discussion Among families storing umbilical cord blood in private cord blood banks, conditions for which stem cell transplant or infusion may be indicated, or are under investigation, appear to be prevalent, especially for regenerative medicine indications.

  11. Placental and cord blood brain derived neurotrophic factor levels are decreased in nondiabetic macrosomia.

    Science.gov (United States)

    Cai, Qian-Ying; Zhang, Heng-Xin; Wang, Chen-Chen; Sun, Hao; Sun, Shu-Qiang; Wang, Yu-Huan; Yan, Hong-Tao; Yang, Xin-Jun

    2017-08-01

    To measure levels of placental brain derived neurotrophic factor (BDNF) gene expression and umbilical cord blood BDNF in neonates with nondiabetic macrosomia and determine associations between these levels and macrosomia. This case-control study included 58 nondiabetic macrosomic and 59 normal birth weight mother-infant pairs. Data were collected from interviews and our hospital's database. BDNF gene expression was quantified in placental tissues using quantitative real-time polymerase chain reaction (n = 117). Umbilical cord blood BDNF levels were measured by enzyme-linked immunosorbent assay (n = 90). Multivariate logistic regression models were used to evaluate associations between BDNF levels and macrosomia. Placental BDNF gene expression (P = 0.026) and cord blood BDNF (P = 0.008) were lower in neonates with nondiabetic macrosomia than in normal birth weight controls. Cord blood BDNF was significantly lower in vaginally delivered macrosomic neonates than vaginally delivered controls (P = 0.014), but cord BDNF did not differ between vaginal and cesarean section delivery modes in macrosomic neonates. Cord blood BDNF was positively associated with gestational age in control neonates (r = 0.496, P macrosomia (adjusted odds ratio 0.992; 95% confidence interval 0.986-0.998). Both placental BDNF gene expression and cord blood BDNF were downregulated in neonates with nondiabetic macrosomia compared with normal birth weight neonates. Cord BDNF may partly derive from BDNF secreted by the placenta. Higher cord plasma BDNF levels protected against nondiabetic macrosomia.

  12. Comparative Study on the Differentiation of Mesenchymal Stem Cells Between Fetal and Postnatal Rat Spinal Cord Niche.

    Science.gov (United States)

    Cao, Songying; Wei, Xiaowei; Li, Hui; Miao, Jianing; Zhao, Guifeng; Wu, Di; Liu, Bo; Zhang, Yi; Gu, Hui; Wang, Lili; Fan, Yang; An, Dong; Yuan, Zhengwei

    2016-01-01

    In a previous study, we established a prenatal surgical approach and transplanted mesenchymal stem cells (MSCs) into the fetal rat spinal column to treat neural tube defects (NTDs). We found that the transplanted MSCs survived and differentiated into neural lineage cells. Various cytokines and extracellular signaling systems in the spinal cord niche play an important role in cell differentiation. In this study, we observed the differentiation of transplanted MSCs in different spinal cord niches and further observed the expression of neurotrophic factors and growth factors in the spinal cord at different developmental stages to explore the mechanism of MSC differentiation in different spinal cord niches. The results showed that transplanted MSCs expressed markers of neural precursor cells (nestin), neurogliocytes (GFAP), and neurons (β-tubulin). The percentages of GFP(+)/nestin(+) double-positive cells in transplanted MSCs in E16, P1, and P21 rats were 18.31%, 12.18%, and 5.06%, respectively. The percentages of GFP(+)/GFAP(+) double-positive cells in E16, P1, and P21 rats were 32.01%, 15.35%, and 12.56%, respectively. The percentages of GFP(+)/β-tubulin(+) double-positive cells in E16, P1, and P21 were 11.76%, 7.62%, and 4.88%, respectively. The differentiation rates of MSCs in embryonic spinal cords were significantly higher than in postnatal spinal cords (p < 0.05). We found that the transplanted MSCs expressed synapsin-1 at different developmental stages. After MSC transplantation, we observed that neurotrophic factor-3 (NT-3), fibroblast growth factor-2 (FGF-2), FGF-8, transforming growth factor-α (TGF-α), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) significantly increased in the MSC transplantation group compared with the blank injection group. Furthermore, FGF-2 and VEGF expression were positively correlated with the number of surviving MSCs. In addition, we found that the expression of brain

  13. In vitro susceptibilities in lymphocytes from mothers and cord blood to the monofunctional alkylating agent EMS

    DEFF Research Database (Denmark)

    Wyatt, N P; Falque-Gonzalez, C; Farrar, D;

    2007-01-01

    at the Bradford Royal Infirmary collected venous blood samples from mothers at the time of birth and venous cord blood post-delivery. Lymphocytes were isolated from both blood types and examined in the alkaline comet assay using the monofunctional alkylating agent ethyl methanesulphonate (EMS). There were...

  14. Concentration of Lead, Mercury, Cadmium, Aluminum, Arsenic and Manganese in Umbilical Cord Blood of Jamaican Newborns

    Directory of Open Access Journals (Sweden)

    Mohammad H. Rahbar

    2015-04-01

    Full Text Available The objective of this study was to characterize the concentrations of lead, mercury, cadmium, aluminum, and manganese in umbilical cord blood of Jamaican newborns and to explore the possible association between concentrations of these elements and certain birth outcomes. Based on data from 100 pregnant mothers and their 100 newborns who were enrolled from Jamaica in 2011, the arithmetic mean (standard deviation concentrations of cord blood lead, mercury, aluminum, and manganese were 0.8 (1.3 μg/dL, 4.4 (2.4 μg/L, 10.9 (9.2 μg/L, and 43.7 (17.7 μg/L, respectively. In univariable General Linear Models, the geometric mean cord blood aluminum concentration was higher for children whose mothers had completed their education up to high school compared to those whose mothers had any education beyond high school (12.2 μg/L vs. 6.4 μg/L; p < 0.01. After controlling for maternal education level and socio-economic status (through ownership of a family car, the cord blood lead concentration was significantly associated with head circumference (adjusted p < 0.01. Our results not only provide levels of arsenic and the aforementioned metals in cord blood that could serve as a reference for the Jamaican population, but also replicate previously reported significant associations between cord blood lead concentrations and head circumference at birth in other populations.

  15. Pre-birth selection of umbilical cord blood donors

    Science.gov (United States)

    Urciuoli, Patrizia; Passeri, Simona; Ceccarelli, Francesca; Luchetti, Barbara; Paolicchi, Aldo; Lapi, Simone; Nocchi, Francesca; Lamanna, Roberta; Iorio, Mariacarla; Vanacore, Renato; Mazzoni, Alessandro; Scatena, Fabrizio

    2010-01-01

    Background . The fact that only a small percentage of cord blood units (CBU) stored are actually used for transplantation contributes to raising the already high costs of their processing and cryopreservation. The identification of predictors allowing the early identification of suitable CBU would allow a reduction of costs for the collection, storage and characterisation of CBU with insufficient volume or cell numbers. In our bank we have adopted a cut-off value for using CBU of 8 × 108 nucleated cells and a volume ≥ 60 mL. Materials and methods In 365 banked CBU, we evaluated the correlation between neonatal/gestational parameters and laboratory data used to assess their quality. Results Biparietal diameter (BPD) and abdominal circumference were significantly and positively correlated with CBU volume (r2=0.12, p=0.0011 and r2=0.092, p=0.0063, respectively). Receiver operating characteristic (ROC) analysis showed that both parameters can be used to identify CBU with insufficient volume (BPD: area under the curve 0.69, 95% CI=0.57–0.82, p=0.004; abdominal circumference: area under the curve 0.67, 95% CI=0.54–0.79, p<0.01). BPD and head circumference, but not abdominal circumference or femoral length, were positively correlated with white blood cell (WBC) count (r2=0.215, p=0.031, and r2=0.299, p=0.015, respectively). Abdominal circumference, but not BPD, head circumference or femoral length, was statistically significantly correlated with the number of CD34+ cells in the CBU. Weight at birth and placental weight were positively correlated with WBC count, blood volume, CD34+ cell count, total colony-forming units and burst-forming units. Conclusion . Pre-birth assessment of BPD might allow the selection of donors who would yield CBU of sufficient volume and WBC count and avoid the costs of collecting, transferring, storing and analysing CBU with a high probability of resulting unsuitable for transplantation. PMID:20104277

  16. Occurrences of major polybrominated diphenyl ethers (PBDEs) in maternal and fetal cord blood sera in Korea.

    Science.gov (United States)

    Choi, Gyuyeon; Kim, Sungjoo; Kim, Sunmi; Kim, Sungkyoon; Choi, Youngeun; Kim, Hai-Joong; Lee, Jeong Jae; Kim, Su Young; Lee, Sunggyu; Moon, Hyo-Bang; Choi, Sooran; Choi, Kyungho; Park, Jeongim

    2014-09-01

    Polybrominated diphenyl ethers (PBDEs) are of growing public health concern because of their potential toxicities which range from endocrine disruption to neurodevelopment. However, information on their exposure among sensitive human populations is limited. The objectives of this study were to determine the levels of major PBDEs in blood sera of pregnant women and their matching newborn infants. For this purpose, a total of 198 maternal blood samples and 118 matching umbilical cord blood samples were collected from four regions of South Korea in 2011, and were determined for 19 PBDE congeners. Various demographic, dietary, and behavioral characteristics were asked in a questionnaire survey. Average concentration of total PBDEs in maternal blood serum was 3.34 ± 8.42 ng/g lipid weight (lw) at delivery and 3.14 ± 7.46 ng/g lw at 6 months of pregnancy, respectively. In cord blood serum, an average of 9.37 ± 12.60 ng/g lw was detected. Among the measured PBDE congeners, BDE-47, BDE-99 and BDE-153 were most dominant in both maternal and cord blood sera. Relatively higher levels of BDE-99 were detected in cord blood serum. Strong positive correlations were detected between maternal and cord blood serum samples, indicating the importance of maternal transfer. Health consequences of transplacental exposure to PBDEs among fetuses and newborn infants warrant further investigation.

  17. Potential use of cord blood for Hb E hemoglobinopathy screening programme using capillary electrophoresis.

    Science.gov (United States)

    Wan Mohd Saman, W A; Hassan, R; Mohd Yusoff, S; Che Yaakob, C A; Abdullah, N A F; Ghazali, S; Mohd Radzi, M A R; Bahar, R

    2016-12-01

    Thalassemia and hemoglobinopathies are inherited red blood cell disorders found worldwide. Hemoglobin (Hb) E disorder is one of the hemoglobinopathies known to have the high prevalence in South East Asia. Most of transfusion-dependent thalassemias were genotypically compound heterozygous Hb E/ β-thalassemia. In Malaysia, the national screening program for thalassemia was implemented for early pregnancy or secondary school girls; however many participants do not turn-up and missed the screening test. Screening for thalassemia using samples from cord blood is an alternative choice as it is a readily available source of blood and hence early detection of the disease. The purpose of this study was to determine the potential use of cord blood for the screening of HbE hemoglobinopathy by using capillary electrophoresis (CE). Cord blood samples were collected from 300 newborns of healthy mothers. Hematological parameters were determined and hemoglobin quantitation for all cord blood samples were performed using capillary electrophoresis system (CES) and high performance liquid chromatography (HPLC). Majority of cord blood samples (63%) revealed Hb AF followed by Hb AFA2 (20%). Hb AFE was detected in 10.7% with the mean value of Hb E ranging from 2.3%-11.1%. Hemoglobin E was detected in cord blood using capillary electrophoresis system. It can be recommended in areas where Hb E/β is prevalent. Implementation of a screening strategy using CE on cord blood sampling will identify the disease early. With regular follow-up on these patients, the status of their disease can be determined earlier and appropriate management implemented.

  18. Enhanced Engraftment of a Very Low-Dose Cord Blood Unit in an Adult Haemopoietic Transplant by Addition of Six Mismatched Viable Cord Units

    Directory of Open Access Journals (Sweden)

    Stephen J. Proctor

    2010-01-01

    , supported by six mismatched cord blood units (one unit per 10 kg recipient weight. No adverse reaction occurred following the infusion of mismatched units and engraftment of the suboptimal-dose matched unit occurred rapidly, with no molecular evidence of engraftment of mismatched cords. Early molecular remission of ALL was demonstrated using a novel PCR for a mitochondrial DNA mutation in the leukaemic clone. The cell dose of the matched cord was well below that recommended to engraft a 70 kg recipient. We suggest that a factor or factors in the mismatched cords enhanced/supported engraftment of the matched cord.

  19. Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair.

    Directory of Open Access Journals (Sweden)

    Kuan-Min Fang

    Full Text Available The aim of this study is to understand if human mesenchymal stem cells (hMSCs and neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP have synergistic protective effect that promotes functional recovery in rats with severe spinal cord injury (SCI. To evaluate the effect of delayed combinatorial therapy of PACAP and hMSCs on spinal cord tissue repair, we used the immortalized hMSCs that retain their potential of neuronal differentiation under the stimulation of neurogenic factors and possess the properties for the production of several growth factors beneficial for neural cell survival. The results indicated that delayed treatment with PACAP and hMSCs at day 7 post SCI increased the remaining neuronal fibers in the injured spinal cord, leading to better locomotor functional recovery in SCI rats when compared to treatment only with PACAP or hMSCs. Western blotting also showed that the levels of antioxidant enzymes, Mn-superoxide dismutase (MnSOD and peroxiredoxin-1/6 (Prx-1 and Prx-6, were increased at the lesion center 1 week after the delayed treatment with the combinatorial therapy when compared to that observed in the vehicle-treated control. Furthermore, in vitro studies showed that co-culture with hMSCs in the presence of PACAP not only increased a subpopulation of microglia expressing galectin-3, but also enhanced the ability of astrocytes to uptake extracellular glutamate. In summary, our in vivo and in vitro studies reveal that delayed transplantation of hMSCs combined with PACAP provides trophic molecules to promote neuronal cell survival, which also foster beneficial microenvironment for endogenous glia to increase their neuroprotective effect on the repair of injured spinal cord tissue.

  20. Relationship between leptin levels in maternal blood,amniotic fluid,arterial and venous cord blood and fetal growth

    Institute of Scientific and Technical Information of China (English)

    林丽莎; 薛昭卿; 宋岩峰; 何晓宇

    2003-01-01

    Objective:To study the relationship between leptin concentration and fetal growth.Methods: Levels of leptin in maternal serum, amniotic fluid, arterial and venouscord blood of 65 normal parturients (gestational age 37-42weeks) were measured by ra-dioimmunoassay (RIA) method. At the same time, maternal blood lipids were detected.Neonates were divided into three groups: small for gestational age (SGA) group (n=10), appropriate for gestational age (AGA) group (n=45), large for gestational age(LGA) group (n= 10). Statistical analysis was performed by t test, variance analysisand correlation analysis.Results: (1) There was no obvious correlation between leptin concentrations in ma-ternal serum and arterial/ venous cord blood, amniotic fluid, and also no correlationwith birth weight and placental weight (P>0.05). Maternal body mass index signifi-cantly correlated with birth weight and neonatal length and leptin levels in arterial andvenous cord blood (P<0.01). Leptin levels in arterial and venous cord blood positivelycorrelated significantly with placental and neonatal weight and body length (P<0.01)and negatively correlated with high density lipoprotein (P<0. 01). There was no obvi-ous correlation between fetal gender and leptin concentrations in maternal serum, arteri-al and venous cord blood and amniotic fluid; (2) Leptin levels in arterial and venouscord blood , placental weight in LGA group were significantly higher than those in SGAand AGA group (P<0.05). Among three groups, leptin concentrations in maternalblood were significantly higher than those in arterial and venous cord blood (P<0.05).Conclusions: (1)Fetal leptin is synthesized in uterus, born of itself and placenta.Leptin levels in arterial and venous cord blood are related to the intrauterine growthpattern. It might positively regulate birth weight and body fat content. (2)Either mater-nal or fetal leptin was not correlated with fetal gender. There is no gender difference infetal leptin

  1. Could cord blood cell therapy reduce preterm brain injury?

    Science.gov (United States)

    Li, Jingang; McDonald, Courtney A; Fahey, Michael C; Jenkin, Graham; Miller, Suzanne L

    2014-01-01

    Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP). Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB) contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia-ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia-ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB-derived from preterm and term infants for use in clinical applications.

  2. Could cord blood cell therapy reduce preterm brain injury?

    Directory of Open Access Journals (Sweden)

    Jingang eLi

    2014-10-01

    Full Text Available Major advances in neonatal care have led to significant improvements in survival rates for preterm infants, but this occurs at a cost, with a strong causal link between preterm birth and neurological deficits, including cerebral palsy (CP. Indeed, in high-income countries, up to 50% of children with CP were born preterm. The pathways that link preterm birth and brain injury are complex and multifactorial, but it is clear that preterm birth is strongly associated with damage to the white matter of the developing brain. Nearly 90% of preterm infants who later develop spastic CP have evidence of periventricular white matter injury. There are currently no treatments targeted at protecting the immature preterm brain. Umbilical cord blood (UCB contains a diverse mix of stem and progenitor cells, and is a particularly promising source of cells for clinical applications, due to ethical and practical advantages over other potential therapeutic cell types. Recent studies have documented the potential benefits of UCB cells in reducing brain injury, particularly in rodent models of term neonatal hypoxia-ischemia. These studies indicate that UCB cells act via anti-inflammatory and immuno-modulatory effects, and release neurotrophic growth factors to support the damaged and surrounding brain tissue. The etiology of brain injury in preterm-born infants is less well understood than in term infants, but likely results from episodes of hypoperfusion, hypoxia-ischemia, and/or inflammation over a developmental period of white matter vulnerability. This review will explore current knowledge about the neuroprotective actions of UCB cells and their potential to ameliorate preterm brain injury through neonatal cell administration. We will also discuss the characteristics of UCB derived from preterm and term infants for use in clinical applications.

  3. In vitro umbilical cord wrapping and torsion: possible cause of umbilical blood flow occlusion.

    Science.gov (United States)

    Bendon, Robert W; Brown, Shawn P; Ross, Michael G

    2014-09-01

    Intrapartum fetal heart rate decelerations and bradycardia are often attributed to umbilical cord occlusion without knowing the anatomic basis of that occlusion. We hypothesized that umbilical cord twisting while looped around fetal parts could occlude blood flow. Using an in vitro preparation, human umbilical cord veins were perfused at one end with water at approximately 40 cm H2O. The cords were looped around pipes that approximated the diameter of fetal body or limb parts, after which the perfused segment of cord was twisted until water flow stopped. The number of rotations needed to stop perfusion was recorded for each length of twisted cord (4, 6 and 8 cm) and for each pipe diameter. There were 21 completed studies. All cords demonstrated that a decreasing number of twists were needed to stop venous flow as the segment twisted became shorter (from 8 to 4 cm). For each segment length, the number of twists required to stop flow decreased as the pipe diameter narrowed. This model demonstrates that a wrapped umbilical cord, particularly with a short segment between the placental insertion and the fetal body part, may be predisposed to cord occlusion in response to fetal rotation.

  4. Use of cost-effectiveness analysis to determine inventory size for a national cord blood bank.

    Science.gov (United States)

    Howard, David H; Meltzer, David; Kollman, Craig; Maiers, Martin; Logan, Brent; Gragert, Loren; Setterholm, Michelle; Horowitz, Mary M

    2008-01-01

    Transplantation with stem cells from stored umbilical cord blood units is an alternative to living unrelated bone marrow transplantation. The larger the inventory of stored cord units, the greater the likelihood that transplant candidates will match to a unit, but storing units is costly. The authors present the results of a study, commissioned by the Institute of Medicine, as part of a report on the establishment of a national cord blood bank, examining the optimal inventory level. They emphasize the unique challenges of undertaking cost-effectiveness analysis in this field and the contribution of the analysis to policy. The authors estimate the likelihood that transplant candidates will match to a living unrelated marrow donor or a cord blood unit as a function of cord blood inventory and then calculate the life-years gained for each transplant type by match level using historical data. They develop a model of the cord blood inventory level to estimate total costs as a function of the number of stored units. The cost per life-year gained associated with increasing inventory from 50,000 to 100,000 units is $44,000 to $86,000 and from 100,000 to 150,000 units is $64,000 to $153,000, depending on the assumption about the degree to which survival rates for cord transplants vary by match quality. Expanding the cord blood inventory above current levels is cost-effective by conventional standards. The analysis helped shape the Institute of Medicine's report, but it is difficult to determine the extent to which the analysis influenced subsequent congressional legislation.

  5. Relationship between the telomerase activity and the growth kinetics of the human umbilical cord derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Leila Hosseinzadeh Anvar

    2016-08-01

    Full Text Available Background: Telomerase as an enzyme with reverse transcriptase activity has an essential role in telomere maintenance by adding a telomere repeat sequence to the 3' end of chromosome and is important for regulating of many processes in embryonic development including cell proliferation and differentiation. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs with a self-renewal capacity are cells that can differentiate into various germ layer derivatives including neural cells and cardiomyocytes, and undergo biological changes during long-term cultivation. Hence, the passage number in which the cells expanded seems to be very important for proliferating and differentiating. This study was aimed at investigating the relationship between the telomerase activity and the growth rate of (hUC-MSCs at different passages. Methods: This experimental study was performed in Ardabil University of Medical Sciences, Iran, from March 2014 to December 2014. The umbilical cord samples were obtained from full-term neonate hospitalized in Alavi’s Hospital in Ardabil under sterile conditions. The umbilical vessels were clear off and the small pieces of the umbilical cord were cultured in Dulbecco's modified eagle's medium (DMEM supplemented with 20% fetal bovine serum (FBS. Then, the hUC-MSCs were harvested from passage one to three to calculate the population doubling time (PDT and extract proteins by using CHAPS lysis buffer. Finally, the telomerase activity of the cells at different passages was measured by telomeric repeat amplification protocol (TRAP and qRT-TRAP assays. Results: The hUC-MSCs population doubling time at passage from 1 to 3 were calculated as the average of 54.68±1.92, 55.03±1.71 and 69.41±2.54 hours, respectively, suggesting the higher cell passage number, the more extended PDT. The threshold cycles (CTs for the telomerase activity also showed 30.58±0.51, 27.24±0.74 and 32.13±0.75 for the cell passage from one to three

  6. Banking cord blood stem cells: attitude and knowledge of pregnant women in five European countries.

    Science.gov (United States)

    Katz, Gregory; Mills, Antonia; Garcia, Joan; Hooper, Karen; McGuckin, Colin; Platz, Alexander; Rebulla, Paolo; Salvaterra, Elena; Schmidt, Alexander H; Torrabadella, Marta

    2011-03-01

    This study explores pregnant women's awareness of cord blood stem cells and their attitude regarding banking options in France, Germany, Italy, Spain, and the UK. Questionnaires were distributed in six maternities. This anonymous and self-completed questionnaire included 29 multiple-choice questions based on: 1) sociodemographic factors, 2) awareness and access to information about cord blood banking, 3) banking option preferences, and 4) donating cord blood units (CBUs) to research. A total of 79% of pregnant women had little awareness of cord blood banking (n = 1620). A total of 58% of women had heard of the therapeutic benefits of cord blood, of which 21% received information from midwives and obstetricians. A total of 89% of respondents would opt to store CBUs. Among them, 76% would choose to donate CBUs to a public bank to benefit any patient in need of a cord blood transplant. Twelve percent would choose a mixed bank, and 12%, a private bank. A total of 92% would donate their child's CBU to research when it is not suitable for transplantation. The study reveals a strong preference for public banking in all five countries, based on converging values such as solidarity. Attitudes of pregnant women are not an obstacle to the rapid expansion of allogeneic banking in these EU countries. Banking choices do not appear to be correlated with household income. The extent of commercial marketing of cord blood banks in mass media highlights the importance for obstetric providers to play a central role in raising women's awareness early during their pregnancy with evidence-based medical information about banking options. © 2010 American Association of Blood Banks.

  7. Results of the Cord Blood Transplantation Study (COBLT) : clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies

    NARCIS (Netherlands)

    Kurtzberg, Joanne; Prasad, Vinod K.; Carter, Shelly L.; Wagner, John E.; Baxter-Lowe, Lee Ann; Wall, Donna; Kapoor, Neena; Guinan, Eva C.; Feig, Stephen A.; Wagner, Elizabeth L.; Kernan, Nancy A.

    2008-01-01

    Outcomes of unrelated donor cord blood transplantation in 191 hematologic malignancy children (median age, 7.7 years; median weight, 25.9 kg) enrolled between 1999 and 2003 were studied (median follow-up, 27.4 months) in a prospective phase 2 multicenter trial. Human leukocyte antigen (HLA) matching

  8. Results of the Cord Blood Transplantation Study (COBLT) : clinical outcomes of unrelated donor umbilical cord blood transplantation in pediatric patients with hematologic malignancies

    NARCIS (Netherlands)

    Kurtzberg, Joanne; Prasad, Vinod K.; Carter, Shelly L.; Wagner, John E.; Baxter-Lowe, Lee Ann; Wall, Donna; Kapoor, Neena; Guinan, Eva C.; Feig, Stephen A.; Wagner, Elizabeth L.; Kernan, Nancy A.

    2008-01-01

    Outcomes of unrelated donor cord blood transplantation in 191 hematologic malignancy children (median age, 7.7 years; median weight, 25.9 kg) enrolled between 1999 and 2003 were studied (median follow-up, 27.4 months) in a prospective phase 2 multicenter trial. Human leukocyte antigen (HLA) matching

  9. Collection, processing and testing of bone, corneas, umbilical cord blood and haematopoietic stem cells by European Blood Alliance members

    DEFF Research Database (Denmark)

    Närhi, M; Natri, O; Desbois, I;

    2013-01-01

    A questionnaire study was carried out in collaboration with the European Blood Alliance (EBA) Tissues and Cells (T&C) working group. The aim was to assess the level of involvement and commonality of processes on the procurement, testing and storage of bone, corneas, umbilical cord blood (UCB...

  10. Transactivating-transduction protein-polyethylene glycol modified liposomes traverse the blood-spinal cord and blood-brain barriers

    Institute of Scientific and Technical Information of China (English)

    Xianhu Zhou; Chunyuan Wang; Shiqing Feng; Jin Chang; Xiaohong Kong; Yang Liu; Shijie Gao

    2012-01-01

    Naive liposomes can cross the blood-brain barrier and blood-spinal cord barrier in small amounts. Liposomes modified by a transactivating-transduction protein can deliver antibiotics for the treatment of acute bacterial infection-induced brain inflammation. Liposomes conjugated with polyethylene glycol have the capability of long-term circulation. In this study we prepared transactivating-transduction protein-polyethylene glycol-modified liposomes labeled with fluorescein isothiocyanate. Thus, liposomes were characterized by transmembrane, long-term circulation and fluorescence tracing. Uptake, cytotoxicity, and the ability of traversing blood-spinal cord and blood-brain barriers were observed following coculture with human breast adenocarcinoma cells (MCF-7). Results demonstrated that the liposomes had good biocompatibility, and low cytotoxicity when cocultured with human breast adenocarcinoma cells. Liposomes could traverse cell membranes and entered the central nervous system and neurocytes through the blood-spinal cord and blood-brain barriers of rats via the systemic circulation. These results verified that fluorescein isothiocyanate-modified transactivating-transduction protein-polyethylene glycol liposomes have the ability to traverse the blood-spinal cord and blood-brain barriers.

  11. Certain Red Blood Cell Indices of Maternal and Umbilical Cord ...

    African Journals Online (AJOL)

    Uche

    umbilical cord packed cell volume and haemoglobin concentration in our locality. Keywords: Umbilical ... parasitaemia, or had premature delivery, history of haemorheological ... labour (immediately after delivery) by clamping and cutting the ...

  12. Transfer of maternal IgE can be a common cause of increased IgE levels in cord blood

    DEFF Research Database (Denmark)

    Bønnelykke, Klaus; Pipper, Christian Bressen; Bisgaard, Hans

    2010-01-01

    IgE in cord blood is thought to be a product of the fetus. A high level of total IgE is therefore used as a measure of atopic propensity in the newborn. We recently found strong evidence that allergen-specific IgE in cord blood was the result of transfer of maternal IgE to fetal blood or cord blood...... (maternofetal transfer) rather than fetal production. This also suggests that total IgE in cord blood might primarily be a maternal product....

  13. Human umbilical cord blood stem cell transplantation for the treatment of chronic spinal cord injury Electrophysiological changes and long-term efficacy

    Institute of Scientific and Technical Information of China (English)

    Liqing Yao; Chuan He; Ying Zhao; Jirong Wang; Mei Tang; Jun Li; Ying Wu; Lijuan Ao; Xiang Hu

    2013-01-01

    Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury.

  14. Ethical issues relating the the banking of umbilical cord blood in Mexico

    Directory of Open Access Journals (Sweden)

    Valdez-Martinez Edith

    2009-08-01

    Full Text Available Abstract Background Umbilical cord banks are a central component, as umbilical cord tissue providers, in both medical treatment and scientific research with stem cells. But, whereas the creation of umbilical cord banks is seen as successful practice, it is perceived as a risky style of play by others. This article examines and discusses the ethical, medical and legal considerations that arise from the operation of umbilical cord banks in Mexico. Discussion A number of experts have stated that the use of umbilical cord goes beyond the mere utilization of human tissues for the purpose of treatment. This tissue is also used in research studies: genetic studies, studies to evaluate the effectiveness of new antibiotics, studies to identify new proteins, etc. Meanwhile, others claim that the law and other norms for the functioning of cord banks are not consistent and are poorly defined. Some of these critics point out that the confidentiality of donor information is handled differently in different places. The fact that private cord banks offer their services as "biological insurance" in order to obtain informed consent by promising the parents that the tissue that will be stored insures the health of their child in the future raises the issue of whether the consent is freely given or given under coercion. Another consideration that must be made in relation to privately owned cord banks has to do with the ownership of the stored umbilical cord. Summary Conflicts between moral principles and economic interests (non-moral principles cause dilemmas in the clinical practice of umbilical cord blood storage and use especially in privately owned banks. This article presents a reflection and some of the guidelines that must be followed by umbilical cord banks in order to deal with these conflicts. This reflection is based on the fundamental notions of ethics and public health and seeks to be a contribution towards the improvement of umbilical cord banks

  15. Manufacturing of Human Umbilical Cord Mesenchymal Stromal Cells on Microcarriers in a Dynamic System for Clinical Use

    Directory of Open Access Journals (Sweden)

    Florian Petry

    2016-01-01

    Full Text Available The great properties of human mesenchymal stromal cells (hMSCs make these cells an important tool in regenerative medicine. Because of the limitations of hMSCs derived from the bone marrow during isolation and expansion, hMSCs derived from the umbilical cord stroma are a great alternative to overcome these issues. For a large expansion of these cells, we performed a process transfer from static culture to a dynamic system. For this reason, a microcarrier selection out of five microcarrier types was made to achieve a suitable growth surface for the cells. The growth characteristics and metabolite consumption and production were used to compare the cells growth in 12-well plate and spinner flask. The goal to determine relevant process parameters to transfer the expansion process into a stirred tank bioreactor was achieved.

  16. Mesenchymal Stem or Stromal Cells from Amnion and Umbilical Cord Tissue and Their Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Heinz Redl

    2012-11-01

    Full Text Available Mesenchymal stem or stromal cells (MSC have proven to offer great promise for cell-based therapies and tissue engineering applications, as these cells are capable of extensive self-renewal and display a multilineage differentiation potential. Furthermore, MSC were shown to exhibit immunomodulatory properties and display supportive functions through parakrine effects. Besides bone marrow (BM, still today the most common source of MSC, these cells were found to be present in a variety of postnatal and extraembryonic tissues and organs as well as in a large variety of fetal tissues. Over the last decade, the human umbilical cord and human amnion have been found to be a rich and valuable source of MSC that is bio-equivalent to BM-MSC. Since these tissues are discarded after birth, the cells are easily accessible without ethical concerns.

  17. Manufacturing of Human Umbilical Cord Mesenchymal Stromal Cells on Microcarriers in a Dynamic System for Clinical Use

    Science.gov (United States)

    Petry, Florian; Smith, J. Robert; Leber, Jasmin; Salzig, Denise; Czermak, Peter; Weiss, Mark L.

    2016-01-01

    The great properties of human mesenchymal stromal cells (hMSCs) make these cells an important tool in regenerative medicine. Because of the limitations of hMSCs derived from the bone marrow during isolation and expansion, hMSCs derived from the umbilical cord stroma are a great alternative to overcome these issues. For a large expansion of these cells, we performed a process transfer from static culture to a dynamic system. For this reason, a microcarrier selection out of five microcarrier types was made to achieve a suitable growth surface for the cells. The growth characteristics and metabolite consumption and production were used to compare the cells growth in 12-well plate and spinner flask. The goal to determine relevant process parameters to transfer the expansion process into a stirred tank bioreactor was achieved. PMID:26977155

  18. Comparison of Maternal and Umbilical Cord Blood Selenium Levels in Low and Normal Birth Weight Neonates

    Directory of Open Access Journals (Sweden)

    Lyly Nazemi

    2015-10-01

    Full Text Available Objective:To compare the maternal and umbilical cord serum selenium concentrations in Low and normal birth weight neonates.Materials and methods:A case-control study was carried out in Vali-Asr and Akbarabadi Hospitals (Jan. to Dec. 2013. Two groups; case group; 91 mothers who delivered a low birth weight (LBW neonate and control group; 86 subjects who delivered a normal birth weight neonate were selected. Immediately after birth, 5 ml of maternal blood and umbilical cord blood were collected, and sent to laboratory to assay Se concentrations. To compare both groups' blood Se concentration, data were analyzed in SPSS 16.0.Results:Eighty six (48.6% mothers with normal birth weight neonates and 91 (51.4% mothers with low birth weight infants entered the study. Mean maternal mothers' age and mean maternal blood Se were 28.55+5.90 years and 79.3756+26.46915. A significant association was seen between maternal blood and cord blood Se level in control and case group (P value<0.0001, r = 0.69 and(P value<0.001, r = 0.79. On the other hand no differences were seen between 2 groups' maternal blood Se level (P Value = 0.65. Umbilical Cord blood Se concentration was not also different between case and control group (P value = 0.46.Conclusion:We found that maternal and umbilical cord blood Se concentrations were not different in low and adequate birth weight infants, however; umbilical cord Se concentrations were positively correlated with maternal blood Se concentrations.

  19. Residual blood volume in the umbilical cord of extremely premature infants.

    Science.gov (United States)

    Hosono, Shigeharu; Hine, Kotaro; Nagano, Nobuhiko; Taguchi, Yosuke; Yoshikawa, Kayo; Okada, Tomoo; Mugishima, Hideo; Takahashi, Shigeru; Takahashi, Shori

    2015-01-01

    The aim of this study was to investigate residual blood volume in the umbilical cord of extremely premature infants. Twenty extremely premature infants were held at or below the placenta while the umbilical cord was clamped and cut at approximately 2-3 cm from the umbilicus within 30 s after birth. The umbilical cord was then clamped near the placenta to obtain a length of approximately 30 cm and cut. The residual blood volume in the segment of cord was drained and measured in milliliters. Mean birthweight was 846 ± 172 g (range, 587-1180 g). The average length of the clamped segment of umbilical cord was 29.8 ± 1.5 cm (range, 27-32 cm). Total residual blood volume and residual blood volume per cm were 15.5 ± 6.7 mL (range, 6-25 mL) and 0.5 ± 0.2 mL/cm (range, 0.2-0.8 mL/cm), respectively. The residual cord blood volume per kilogram of infant weight per 30 cm was 17.7 ± 5.5 mL/kg/30 cm (range, 8.9-29.0 mL/kg/30 cm). Infants could receive approximately 18 mL/kg of whole blood by one-time milking of 30 cm umbilical cord. With an average hematocrit of 40%, this volume is equivalent to approximately 13 mL of packed red blood cells (hematocrit 55%). © 2014 Japan Pediatric Society.

  20. Lead, mercury, and organochlorine compound levels in cord blood in Québec, Canada.

    Science.gov (United States)

    Rhainds, M; Levallois, P; Dewailly, E; Ayotte, P

    1999-01-01

    We conducted this study to evaluate blood levels of lead, mercury, and organochlorine compounds in newborns in the Province of Quebec. During 1993 to 1995, we carried out a survey in 10 hospitals located in southern Quebec. During that time, umbilical cord blood samples were obtained from 1109 newborns, and we analyzed each for lead, mercury, 14 polychlorinated biphenyl congeners, and 11 chlorinated pesticides. We used the geometric mean and 95% confidence interval (CI) to describe the results. Mean concentrations of lead and mercury in cord blood were 0.076 micromol/l (95% CI = 0.074, 0.079) and 4.82 nmol/l (95% CI = 4.56, 5.08), respectively. The mean concentrations of total polychlorinated biphenyls (Aroclor 1260) and dichlorodiphenyl dichloroethylene were 0.514 microg/I (95% CI = .493, 0.536) and 0.412 microg/l (95% CI = 0.390, 0.435), respectively. We observed a statistically significant relationship between maternal age and cord blood concentrations of (a) lead, (b) mercury, (c) polychlorinated biphenyls, and (d) dichlorodiphenyl dichloroethylene. In addition, maternal smoking during pregnancy was associated with cord blood lead levels. The cord blood concentrations of lead, mercury, polychlorinated biphenyls, and dichlorodiphenyl dichloroethylene we measured in our study were the lowest levels recently reported in industrialized countries. The results of this study underline the role of public health authorities in the evaluation of biological levels of environmental contaminants among children for the assessment of risk of adverse health effects.

  1. Evaluation of Tissue Homogenization to Support the Generation of GMP-Compliant Mesenchymal Stromal Cells from the Umbilical Cord

    Directory of Open Access Journals (Sweden)

    Ryan J. Emnett

    2016-01-01

    Full Text Available Recent studies have demonstrated that the umbilical cord (UC is an excellent source of mesenchymal stromal cells (MSCs. However, current protocols for extracting and culturing UC-MSCs do not meet current good manufacturing practice (cGMP standards, in part due to the use of xenogeneic reagents. To support the development of a cGMP-compliant method, we have examined an enzyme-free isolation method utilizing tissue homogenization (t-H followed by culture in human platelet lysate (PL supplemented media. The yield and viability of cells after t-H were comparable to those obtained after collagenase digestion (Col-D. Importantly, kinetic analysis of cultured cells showed logarithmic growth over 10 tested passages, although the rate of cell division was lower for t-H as compared to Col-D. This slower growth of t-H-derived cells was also reflected in their longer population doubling time. Interestingly, there was no difference in the expression of mesenchymal markers and trilineage differentiation potential of cells generated using either method. Finally, t-H-derived cells had greater clonogenic potential compared to Col-D/FBS but not Col-D/PL and were able to maintain CFU-F capacity through P7. This bench scale study demonstrates the possibility of generating therapeutic doses of good quality UC-MSCs within a reasonable length of time using t-H and PL.

  2. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation

    Science.gov (United States)

    Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong

    2016-09-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.

  3. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    Full Text Available Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs and umbilical cord-derived MSCs (UCMSCs showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis.

  4. Manganese concentration in the spinal cords and blood corpuscles of amyotrophic lateral sclerosis patients

    Energy Technology Data Exchange (ETDEWEB)

    Miyata, Satoru; Toyoshima, Masanori; Otsuki, Yuzo; Nagata, Hiroshi; Nakamura, Shigenobu (Kyoto Univ. (Japan). Faculty of Medicine)

    1981-11-01

    Manganese concentration in the spinal cord tissues and the blood corpuscles from patients with amyotrophic lateral sclerosis (ALS) and other diseases were measured by neutron activation analysis. The mean manganese concentration in the spinal cord from ALS patients was significantly higher than that from control subjects, especially in the anterior horn of the cervical cord. In order to determine the manganese concentration in blood corpuscles by neutron activation analysis, it was necessary to subtract /sup 56/Mn derived from the /sup 56/Fe(n, p)/sup 56/Mn reaction. The mean Mn concentration in the blood corpuscles from ALS patients seems to be lower than that from patients with other diseases. Fe, Se, Rb and Zn concentrations in the blood corpuscles from ALS patients were not different from those of patients with other diseases.

  5. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.

  6. Mesenchymal stem cell isolation from human umbilical cord tissue: understanding and minimizing variability in cell yield for process optimization.

    Science.gov (United States)

    Iftimia-Mander, Andreea; Hourd, Paul; Dainty, Roger; Thomas, Robert J

    2013-10-01

    Human tissue banks are a potential source of cellular material for the nascent cell-based therapy industry; umbilical cord (UC) tissue is increasingly privately banked in such facilities as a source of mesenchymal stem cells for future therapeutic use. However, early handling of UC tissue is relatively uncontrolled due to the clinical demands of the birth environment and subsequent transport logistics. It is therefore necessary to develop extraction methods that are robust to real-world operating conditions, rather than idealized operation. Cell yield, growth, and differentiation potential of UC tissue extracted cells was analyzed from tissue processed by explant and enzymatic digestion. Variability of cell yield extracted with the digestion method was significantly greater than with the explant method. This was primarily due to location within the cord tissue (higher yield from placental end) and time delay before tissue processing (substantially reduced yield with time). In contrast, extraction of cells by explant culture was more robust to these processing variables. All cells isolated showed comparable proliferative and differentiation functionality. In conclusion, given the challenge of tightly controlled operating conditions associated with isolation and shipping of UC tissue to banking facilities, explant extraction of cells offers a more robust and lower-variability extraction method than enzymatic digestion.

  7. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zeng Hui-Lan

    2011-08-01

    Full Text Available Abstract Background The therapeutic efficacy of human mesenchymal stem cells (hMSCs for the treatment of hypoxic-ischemic diseases is closely related to level of hypoxia in the damaged tissues. To elucidate the potential therapeutic applications and limitations of hMSCs derived from human umbilical cords, the effects of hypoxia on the morphology and proliferation of hMSCs were analyzed. Results After treatment with DFO and CoCl2, hMSCs were elongated, and adjacent cells were no longer in close contact. In addition, vacuole-like structures were observed within the cytoplasm; the rough endoplasmic reticulum expanded, and expanded ridges were observed in mitochondria. In addition, DFO and CoCl2 treatments for 48 h significantly inhibited hMSCs proliferation in a concentration-dependent manner (P Conclusions The hypoxia-mimetic agents, DFO and CoCl2, alter umbilical cord-derived hMSCs morphology and inhibit their proliferation through influencing the cell cycle.

  8. Longitudinal tracking of triple labeled umbilical cord derived mesenchymal stromal cells in a mouse model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Martina Bruna Violatto

    2015-07-01

    Full Text Available The translational potential of cell therapy to humans requires a deep knowledge of the interaction between transplanted cells and host tissues. In this study, we evaluate the behavior of umbilical cord mesenchymal stromal cells (UC-MSCs, labeled with fluorescent nanoparticles, transplanted in healthy or early symptomatic transgenic SOD1G93A mice (a murine model of Amyotrophic Lateral Sclerosis. The double labeling of cells with nanoparticles and Hoechst-33258 enabled their tracking for a long time in both cells and tissues. Whole-body distribution of UC-MSCs was performed by in-vivo and ex-vivo analyses 1, 7, 21 days after single intravenous or intracerebroventricular administration. By intravenous administration cells were sequestered by the lungs and rapidly cleared by the liver. No difference in biodistribution was found among the two groups. On the other hand, UC-MSCs transplanted in lateral ventricles remained on the choroid plexus for the whole duration of the study even if decreasing in number. Few cells were found in the spinal cord of SOD1G93A mice exclusively. No migration in brain parenchyma was observed. These results suggest that the direct implantation in brain ventricles allows a prolonged permanence of cells close to the damaged areas and makes this method of tracking reliable for future studies of efficacy.

  9. Study on the induction and differentiation of megakaryocyte progenitor cell derived from umbilical cord blood

    Institute of Scientific and Technical Information of China (English)

    陈琳

    2014-01-01

    Objective To build a protocol of separation and induction of megakaryocytes derived from cord blood mononuclear cells.Methods Red blood cells were precipitated by hydroxyethyl starch(HES).Mononuclear cells were obtained by density gradient centrifugation with Ficoll.The inducing efficiencies of megakaryocytes using different cytokine cocktails and culture media were analyzed.Results The best choice for erythrocyte sedimenta-

  10. Thrombopoietin concentration in umbilical cord blood of healthy term newborns is higher than in adult controls.

    Science.gov (United States)

    Walka, M M; Sonntag, J; Dudenhausen, J W; Obladen, M

    1999-01-01

    Thrombopoietin (TPO) concentrations were determined in umbilical cord plasma of 121 healthy term newborns. The lower detection limit of the enzyme immunoassay employed was 32.5 pg/ml. Median cord plasma TPO concentration was 78 (interquartile range 55-107) pg/ml. 95th percentile was 255 pg/ml. In only 8% (10/121), TPO was below the detection limit compared to 81% of healthy adults (25/31). In cord blood and adult controls, there were no significant correlations of TPO with platelet count or mass.

  11. Umbilical blood flow patterns directly after birth before delayed cord clamping.

    Science.gov (United States)

    Boere, I; Roest, A A W; Wallace, E; Ten Harkel, A D J; Haak, M C; Morley, C J; Hooper, S B; te Pas, A B

    2015-03-01

    Delayed umbilical cord clamping (DCC) affects the cardiopulmonary transition and blood volume in neonates immediately after birth. However, little is known of blood flow in the umbilical vessels immediately after birth during DCC. The objective is to describe the duration and patterns of blood flow through the umbilical vessels during DCC. Arterial and venous umbilical blood flow was measured during DCC using Doppler ultrasound in uncomplicated term vaginal deliveries. Immediately after birth, the probe was placed in the middle of the umbilical cord, pattern and duration of flow in vein and arteries were evaluated until cord clamping. Thirty infants were studied. Venous flow: In 10% no flow was present, in 57% flow stopped at 4:34 (3:03-7:31) (median (IQR) min:sec) after birth, before the cord was clamped. In 33%, flow continued until cord clamping at 5:13 (2:56-9:15) min:sec. Initially, venous flow was intermittent, increasing markedly during large breaths or stopping and reversing during crying, but then became continuous. Arterial flow: In 17% no flow was present, in 40% flow stopped at 4:22 (2:29-7:17) min:sec, while cord pulsations were still palpable. In 43% flow continued until the cord was clamped at 5:16 (3:32-10:10) min:sec. Arterial flow was pulsatile, unidirectional towards placenta or bidirectional to/from placenta. In 40% flow became continuous towards placenta later on. During delayed umbilical cord clamping, venous and arterial umbilical flow occurs for longer than previously described. Net placental transfusion is probably the result of several factors of which breathing could play a major role. Umbilical flow is unrelated to cessation of pulsations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Optical measurement of blood flow changes in spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A [Biomedical Engineering Research Group, City University London, Northampton Square, London (United Kingdom); George, K J [Neuroscience Centre, Queen Mary, University of London, Mile End, London (United Kingdom); Langford, R M, E-mail: justin.phillips.1@city.ac.u [Pain and Anaesthesia Research Centre, St Bartholomew' s Hospital, West Smithfield, London (United Kingdom)

    2010-07-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  13. Standardizing Umbilical Cord Mesenchymal Stromal Cells for Translation to Clinical Use: Selection of GMP-Compliant Medium and a Simplified Isolation Method

    Science.gov (United States)

    Smith, J. Robert; Pfeifer, Kyle; Petry, Florian; Powell, Natalie; Delzeit, Jennifer; Weiss, Mark L.

    2016-01-01

    Umbilical cord derived mesenchymal stromal cells (UC-MSCs) are a focus for clinical translation but standardized methods for isolation and expansion are lacking. Previously we published isolation and expansion methods for UC-MSCs which presented challenges when considering good manufacturing practices (GMP) for clinical translation. Here, a new and more standardized method for isolation and expansion of UC-MSCs is described. The new method eliminates dissection of blood vessels and uses a closed-vessel dissociation following enzymatic digestion which reduces contamination risk and manipulation time. The new method produced >10 times more cells per cm of UC than our previous method. When biographical variables were compared, more UC-MSCs per gram were isolated after vaginal birth compared to Caesarian-section births, an unexpected result. UC-MSCs were expanded in medium enriched with 2%, 5%, or 10% pooled human platelet lysate (HPL) eliminating the xenogeneic serum components. When the HPL concentrations were compared, media supplemented with 10% HPL had the highest growth rate, smallest cells, and the most viable cells at passage. UC-MSCs grown in 10% HPL had surface marker expression typical of MSCs, high colony forming efficiency, and could undergo trilineage differentiation. The new protocol standardizes manufacturing of UC-MSCs and enables clinical translation. PMID:26966439

  14. Standardizing Umbilical Cord Mesenchymal Stromal Cells for Translation to Clinical Use: Selection of GMP-Compliant Medium and a Simplified Isolation Method

    Directory of Open Access Journals (Sweden)

    J. Robert Smith

    2016-01-01

    Full Text Available Umbilical cord derived mesenchymal stromal cells (UC-MSCs are a focus for clinical translation but standardized methods for isolation and expansion are lacking. Previously we published isolation and expansion methods for UC-MSCs which presented challenges when considering good manufacturing practices (GMP for clinical translation. Here, a new and more standardized method for isolation and expansion of UC-MSCs is described. The new method eliminates dissection of blood vessels and uses a closed-vessel dissociation following enzymatic digestion which reduces contamination risk and manipulation time. The new method produced >10 times more cells per cm of UC than our previous method. When biographical variables were compared, more UC-MSCs per gram were isolated after vaginal birth compared to Caesarian-section births, an unexpected result. UC-MSCs were expanded in medium enriched with 2%, 5%, or 10% pooled human platelet lysate (HPL eliminating the xenogeneic serum components. When the HPL concentrations were compared, media supplemented with 10% HPL had the highest growth rate, smallest cells, and the most viable cells at passage. UC-MSCs grown in 10% HPL had surface marker expression typical of MSCs, high colony forming efficiency, and could undergo trilineage differentiation. The new protocol standardizes manufacturing of UC-MSCs and enables clinical translation.

  15. Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord.

    Science.gov (United States)

    Araújo, Anelise Bergmann; Salton, Gabrielle Dias; Furlan, Juliana Monteiro; Schneider, Natália; Angeli, Melissa Helena; Laureano, Álvaro Macedo; Silla, Lúcia; Passos, Eduardo Pandolfi; Paz, Ana Helena

    2017-05-01

    Mesenchymal stromal cells (MSCs) are being investigated as a potential alternative for cellular therapy. This study was designed to compare the biological characteristics of MSCs isolated from amniotic membrane (A-MSCs), chorionic membrane (C-MSCs), placental decidua (D-MSCs) and umbilical cord (UC-MSCs) to ascertain whether any one of these sources is superior to the others for cellular therapy purposes. MSCs were isolated from amniotic membrane, chorionic membrane, umbilical cord and placental decidua. Immunophenotype, differentiation ability, cell size, cell complexity, polarity index and growth kinetics of MSCs isolated from these four sources were analyzed. MSCs were successfully isolated from all four sources. Surface marker profile and differentiation ability were consistent with human MSCs. C-MSCs in suspension were the smallest cells, whereas UC-MSCs presented the greatest length and least width. A-MSCs had the lowest polarity index and UC-MSCs, as more elongated cells, the highest. C-MSCs, D-MSCs and UC-MSCs exhibited similar growth capacity until passage 8 (P8); C-MSCs presented better lifespan, whereas insignificant proliferation was observed in A-MSCs. Neonatal and maternal tissues can serve as sources of multipotent stem cells. Some characteristics of MSCs obtained from four neonatal tissues were compared and differences were observed. Amniotic membrane was the least useful source of MSCs, whereas chorionic membrane and umbilical cord were considered good options for future use in cell therapy because of the known advantages of immature cells. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  16. Therapeutic potential of umbilical cord blood cells for type 1 diabetes mellitus.

    Science.gov (United States)

    He, Binbin; Li, Xia; Yu, Haibo; Zhou, Zhiguang

    2015-11-01

    Type 1 diabetes mellitus (T1DM) is a chronic disorder that results from autoimmune-mediated destruction of pancreatic islet β-cells. However, to date, no conventional intervention has successfully treated the disease. The optimal therapeutic method for T1DM should effectively control the autoimmunity, restore immune homeostasis, preserve residual β-cells, reverse β-cell destruction, and protect the regenerated insulin-producing cells against re-attack. Umbilical cord blood is rich in regulatory T (T(reg)) cells and multiple types of stem cells that exhibit immunomodulating potential and hold promise in their ability to restore peripheral tolerance towards pancreatic islet β-cells through remodeling of immune responses and suppression of autoreactive T cells. Recently, reinfusion of autologous umbilical cord blood or immune cells from cord blood has been proposed as a novel therapy for T1DM, with the advantages of no risk to the donors, minimal ethical concerns, a low incidence of graft-versus-host disease and easy accessibility. In this review, we revisit the role of autologous umbilical cord blood or immune cells from cord blood-based applications for the treatment of T1DM.

  17. Cord blood dendritic cell subsets in African newborns exposed to Plasmodium falciparum in utero.

    Science.gov (United States)

    Breitling, Lutz P; Fendel, Rolf; Mordmueller, Benjamin; Adegnika, Ayola A; Kremsner, Peter G; Luty, Adrian J F

    2006-10-01

    Placental Plasmodium falciparum infection affects birth outcomes and sensitizes fetal lymphocytes to parasite antigens. We assessed the influence of maternal P. falciparum infection on fetal myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC), analyzing the cord blood of offspring of Gabonese mothers with different infection histories. Cord blood from newborns of mothers with malarial infection at delivery had significantly more mDC than that from nonexposed newborns (P = 0.028) but mDC and pDC HLA-DR expression was unrelated to maternal infection history. Independently of these findings, cord blood mDC and pDC numbers declined significantly as a function of increasing maternal age (P = 0.029 and P = 0.033, respectively). The inducible antigen-specific interleukin-10-producing regulatory-type T-cell population that we have previously detected in cord blood of newborns with prolonged in utero exposure to P. falciparum may directly reflect the altered DC numbers in such neonates, while the maintenance of cord blood DC HLA-DR expression contrasts with that of DC from P. falciparum malaria patients.

  18. Early human herpes virus type 6 reactivation in umbilical cord blood allogeneic stem cell transplantation.

    Science.gov (United States)

    Cirrone, Frank; Ippoliti, Cindy; Wang, Hanhan; Zhou, Xi Kathy; Gergis, Usama; Mayer, Sebastian; Shore, Tsiporah; van Besien, Koen

    2016-11-01

    Human herpes virus type 6 can reactivate in patients after allogeneic stem cell transplantation and has been associated with serious sequelae such as delayed engraftment and an increased risk of developing acute graft-versus-host disease (GVHD). This study investigated human herpes virus type 6 (HHV-6) reactivation within 60 days of transplantation in stem cell transplants utilizing single umbilical cord blood, double umbilical cord blood, or umbilical cord blood plus haploidentical stem cells. Of 92 patients, 60 (65%) had HHV-6 reactivation. Reactivation was not significantly influenced by any patient characteristics, disease characteristics, or by stem cell source (umbilical cord blood only versus haploidentical plus umbilical cord blood). We did not observe any impact of HHV-6 reactivation on neutrophil or platelet count recovery or on relapse-free survival. HHV-6 reactivation was associated with subsequent development of prerelapse acute GVHD (HR = 3.00; 95% CI, 1.4 to 6.4; p = 0.004).

  19. Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study.

    Science.gov (United States)

    Wang, Dandan; Niu, Lingying; Feng, Xuebing; Yuan, Xinran; Zhao, Shengnan; Zhang, Huayong; Liang, Jun; Zhao, Cheng; Wang, Hong; Hua, Bingzhu; Sun, Lingyun

    2016-06-07

    The aim of this study is to assess the long-term safety of allogeneic umbilical cord mesenchymal stem cells (UC MSCs) transplantation for patients with refractory systemic lupus erythematosus (SLE). Nine SLE patients, who were refractory to steroid and immunosuppressive drugs treatment and underwent MSCs transplantation in 2009, were enrolled. One million allogeneic UC MSCs per kilogram of body weight were infused intravenously at days 0 and 7. The possible adverse events, including immediately after MSCs infusions, as well as the long-term safety profiles were observed. Blood and urine routine test, liver function, electrocardiogram, chest radiography and serum levels of tumor markers, including alpha fetal protein (AFP), cancer embryo antigen (CEA), carbohydrate antigen 155 (CA155) and CA199, were assayed before and 1, 2, 4 and 6 years after MSCs transplantation. All the patients completed two times of MSCs infusions. One patient had mild dizzy and warm sensation 5 min after MSCs infusion, and the symptoms disappeared quickly. No other adverse event, including fluster, headache, nausea or vomit, was observed. There was no change in peripheral white blood cell count, red blood cell count and platelet number in these patients after followed up for 6 years. Liver functional analysis showed that serum alanine aminotransferase, glutamic-oxalacetic transaminase, total bilirubin and direct bilirubin remained in normal range after MSCs infusions. No newly onset abnormality was detected on electrocardiogram and chest radiography. Moreover, we found no rise of serum tumor markers, including AFP, CEA, CA125 and CA199, before and 6 years after MSCs infusions. Our long-term observational study demonstrated a good safety profile of allogeneic UC MSCs in SLE patients.

  20. Prenatal exposure to lead in Spain: Cord blood levels and associated factors

    Energy Technology Data Exchange (ETDEWEB)

    Llop, Sabrina, E-mail: llop_sab@gva.es [Centre of Public Health Research (CSISP), Av Catalunya 21, 46020, Valencia (Spain); Carlos III Health Institute (ISCIII), 20220 Majadahonda, Madrid (Spain); CIBER de Epidemiologia y Salud Publica (CIBERESP), Doctor Aiguader 88, 8003 Barcelona (Spain); Aguinagalde, Xabier [Public Health Laboratory of Alava, Direccion de Salud Publica, Gobierno Vasco, Santiago 11, 01002, Vitoria-Gasteiz, Basque Country (Spain); Vioque, Jesus [CIBER de Epidemiologia y Salud Publica (CIBERESP), Doctor Aiguader 88, 8003 Barcelona (Spain); Universidad Miguel Hernandez, Av de Alicante KM 87, 03550, Sant Joan d' Alacant (Spain); Ibarluzea, Jesus [CIBER de Epidemiologia y Salud Publica (CIBERESP), Doctor Aiguader 88, 8003 Barcelona (Spain); Departamento de Sanidad Gobierno Vasco, Subdireccion de Salud Publica de Gipuzkoa, Avenida de Navarra 4, 20013 San Sebastian (Spain); Biodonostia, Instituto de Investigacion Biomedica, San Sebastian (Spain); Guxens, Monica [CIBER de Epidemiologia y Salud Publica (CIBERESP), Doctor Aiguader 88, 8003 Barcelona (Spain); Centre for Research of Environmental Epidemiology (CREAL), Doctor Aiguader 88, 8003 Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Doctor Aiguader 88, 8003 Barcelona (Spain); Casas, Maribel [Centre for Research of Environmental Epidemiology (CREAL), Doctor Aiguader 88, 8003 Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Doctor Aiguader 88, 8003 Barcelona (Spain); Murcia, Mario [Centre of Public Health Research (CSISP), Av Catalunya 21, 46020, Valencia (Spain); CIBER de Epidemiologia y Salud Publica (CIBERESP), Doctor Aiguader 88, 8003 Barcelona (Spain); Ruiz, Maria [Centre for Research of Environmental Epidemiology (CREAL), Doctor Aiguader 88, 8003 Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Doctor Aiguader 88, 8003 Barcelona (Spain); and others

    2011-05-01

    Introduction and Objective: Lead is a known neurotoxic. Fetuses and infants are very vulnerable to lead exposure, since their blood-brain barrier is not completely formed. Hence, there is an importance for monitoring of blood lead levels prenatally and during early infancy. The aim of this study is to evaluate the prenatal exposure to lead and its association with maternal factors in four population based mother-child cohorts in Spain. The present research was carried out within the framework of the INMA project INfancia y Medio Ambiente (Environment and Childhood). Methods: A total of 1462 pregnant women were recruited between 2004 and 2008. Lead was analyzed in a sample of cord blood by thermal decomposition, amalgation, and Atomic Absorption Spectrometry. Maternal sociodemographic, lifestyle and dietary factors were obtained by questionnaires during pregnancy. A multivariate logistic regression model was constructed. The dependent variable was a dichotomous lead level variable (detected vs no detected, i.e. {>=} vs < 2 {mu}g/dL). Results: A low percentage of cord blood samples with lead levels {>=} 2 {mu}g/dL were found (5.9%). Geometric mean and maximum were 1.06 {mu}g/dL and 19 {mu}g/dL, respectively. Smoking at the beginning of pregnancy, age, social class, weight gain during pregnancy, gravidity, and place of residence were the maternal factors associated with detectable cord blood lead levels. Mother's diet does not appear to be a determining factor of lead exposure. Nevertheless, daily intake of iron and zinc may act as a protective factor against having cord blood lead levels {>=} 2 {mu}g/dL. Conclusion: In the different regions of Spain taking part in this study, lead levels to which newborns are exposed are low. Mobilization of lead from bones may be the main contributor to the cord blood levels. - Research Highlights: {yields} Pb is a ubiquitous environmental pollutant with harmful effects on neurodevelopment. {yields} Cord blood Pb levels in

  1. Comparison of Stored Umbilical Cord Blood and Adult Donor Blood: Transfusion Feasibility

    Directory of Open Access Journals (Sweden)

    Rola Sahyoun-tokan

    2012-09-01

    Full Text Available OBJECTIVE: This study aimed to compare the storage properties of red blood cell (RBC concentrates of umbilical cord blood (UCB and adult donor blood (ADB, and to evaluate the feasibility of UCB-RBC concentrate as an autologous source for blood transfusion in very low birth weight (VLBW preterm neonates. METHODS: In all, 30 newborn (10 preterm, 20 full term UCB and 31 ADB units were collected. RBC concentrates were stored and compared with regard to pH, potassium (K+, 2,3-biphosphoglycerate (2-3-BPG, adenosine tri-phosphate (ATP, plasma Hb, and bacterial contamination on d 1, 21, and 35 of storage. RESULTS: The K+ level increased with time and differed significantly between storage d 1 and 21, and between storage d 1 and 35 in both the UCB and ADB units. Initial and d 21 K+ levels were higher in the UCB units than in the ADB units. The 2,3-BPG level did not differ significantly between the UCB-PRC and ADB-PRC samples. After 35 d of storage both UCB-PRC and ADB-PRC samples exhibited significant differences from the initial free Hb, intracellular ATP, and pH values. Significant differences in intracellular ATP and pH were also observed between the UCB-PRC and ADB-PRC samples. CONCLUSION: The volume of harvested and prepared UCB-PRC can be used for some of the blood transfusions required during the neonatal period and thus may decrease the number of allogeneic transfusions, especially in preterm newborns. The hematological and biochemical changes that occurred in UCB during storage were comparable with those observed in ADB, and do not pose a risk to the immature metabolism of neonates. UCB-RPC prepared and stored under standard conditions can be a safe alternative RBC source for transfusions in VLBW newborns.

  2. Umbilical cord mesenchymal stem cells promote angiogenesis of ischemic lower limbs%脐带间充质干细胞促血管新生在治疗下肢缺血中的研究与应用

    Institute of Scientific and Technical Information of China (English)

    李晓玲; 朱旅云; 宋光耀

    2015-01-01

    BACKGROUND:Under certain conditions, stem cel s can be induced to differentiate into vascular endothelial cel s, which can promote the angiogenesis of ischemic lower limbs and the establishment of effective circulation and improve distal blood supply of the ischemic limbs. OBJECTIVE:To review the biological characteristics and pro-angiogenesis mechanism of umbilical cord mesenchymal stem cel s and to investigate the current status of umbilical cord mesenchymal stem cel s in the repair of neuropathy and chronic wounds. METHODS:PubMed, VIP and Wanfang databases were searched for relevant articles published from 2000 to 2015 using the keywords of“stem cel s transplantation, umbilical cord mesenchymal stem cel , diabetic angiopathies”in English and Chinese, respectively. RESULTS AND CONCLUSION:Compared with peripheral blood stem cel s and bone marrow mesenchymal stem cel s, umbilical cord mesenchymal stem cel s are characterized as more widespread sources, easy col ection, stronger amplification ability, no immunogenicity, and no ethical controversy, which have become ideal target and seed cel s for pro-angiogenesis and gene therapy in ischemic diseases. Umbilical cord mesenchymal stem cel s can differentiate into vascular endothelial cel s and fibroblasts involved in wound healing. In addition, these cel s can promote the production and expression of neurotrophic factors, promote nerve regeneration in ischemic tissues, and participate in tissue repair and accelerate healing of ulcers by paracrine and autocrine cytokines, anti-inflammation and immunomodulation. Therefore, umbilical cord mesenchymal stem cel s have a broad prospect in the improvement of diabetic lower limb ischemia, repair of diabetic peripheral neuropathy and promotion of chronic ulcer healing. Compared with stem cel transplantation alone, umbilical cord mesenchymal stem cel s transplantation combined with gene therapy can further enhance cel survival and pro-angiogenesis.%背景:干细胞在

  3. Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs.

    Science.gov (United States)

    Morin, Alexander M; Gatev, Evan; McEwen, Lisa M; MacIsaac, Julia L; Lin, David T S; Koen, Nastassja; Czamara, Darina; Räikkönen, Katri; Zar, Heather J; Koenen, Karestan; Stein, Dan J; Kobor, Michael S; Jones, Meaghan J

    2017-01-01

    Cord blood is a commonly used tissue in environmental, genetic, and epigenetic population studies due to its ready availability and potential to inform on a sensitive period of human development. However, the introduction of maternal blood during labor or cross-contamination during sample collection may complicate downstream analyses. After discovering maternal contamination of cord blood in a cohort study of 150 neonates using Illumina 450K DNA methylation (DNAm) data, we used a combination of linear regression and random forest machine learning to create a DNAm-based screening method. We identified a panel of DNAm sites that could discriminate between contaminated and non-contaminated samples, then designed pyrosequencing assays to pre-screen DNA prior to being assayed on an array. Maternal contamination of cord blood was initially identified by unusual X chromosome DNA methylation patterns in 17 males. We utilized our DNAm panel to detect contaminated male samples and a proportional amount of female samples in the same cohort. We validated our DNAm screening method on an additional 189 sample cohort using both pyrosequencing and DNAm arrays, as well as 9 publically available cord blood 450K data sets. The rate of contamination varied from 0 to 10% within these studies, likely related to collection specific methods. Maternal blood can contaminate cord blood during sample collection at appreciable levels across multiple studies. We have identified a panel of markers that can be used to identify this contamination, either post hoc after DNAm arrays have been completed, or in advance using a targeted technique like pyrosequencing.

  4. Ex Vivo Expansion or Manipulation of Stem Cells to Improve Outcome of Umbilical Cord Blood Transplantation.

    Science.gov (United States)

    Horwitz, Mitchell E

    2016-02-01

    The outcome of umbilical cord blood transplantation for adult patients with hematologic malignancies now rivals that of matched unrelated donor transplantation. However, delayed hematopoietic and immunologic recovery remains a source of significant morbidity and mortality. Multiple strategies are now being studied to overcome these limitations. One strategy involves ex vivo expansion of the umbilical cord blood unit prior to transplantation. A second strategy involves exposure of the umbilical cord blood graft to compounds aimed at improving homing and engraftment following transplantation. Such a strategy may also address the problem of slow hematopoietic recovery as well as the increased risk of graft failure. Many of these strategies are now being tested in late phase multi-center clinical trials. If proven cost-effective and efficacious, they may alter the landscape of donor options for allogeneic stem cell transplantation.

  5. [Knockdown of Puma protects cord blood CD34(+) cells against γ- irradiation].

    Science.gov (United States)

    Zhao, Lei; Zhang, Hong-Yan; Pang, Ya-Kun; Gu, Hai-Hui; Xu, Jing; Yuan, Wei-Ping; Cheng, Tao

    2014-04-01

    Puma (P53 upregulated modulator of apoptosis) is a BCL-2 homology 3 (BH3)-only BCL-1 family member and a critical mediator of P53-dependent and -independent apoptosis. Puma plays an essential role in the apoptosis of hematopoietic stem cells exposed to irradiation without an increased risk of malignancies. This study was purposed to develop an effective lentiviral vector to target Puma in human hematopoietic cells and to investigate the effect of Puma gene knockdown on the biological function of human cord blood CD34(+) cells. SF-LV-shPuma-EGFP and control vectors were constructed, and packaged with the pSPAX2/pMD2.G packaging plasmids via 293T cells to produce pseudo-type lentiviruses. SF-LV-shPuma-EGFP or control lentiviruses were harvested within 72 hours after transfection and then were used to transduce human cord blood CD34(+) cells. GFP(+) transduced cells were sorted by flow cytometry (FCM) for subsequent studies. Semi-quantitative real time RT PCR, Western blot, FCM with Annexin V-PE/7-AAD double staining, Ki67 staining, colony forming cell assay (CFC), CCK-8 assay and BrdU incorporation were performed to determine the expression of Puma and its effect on the cord blood CD34(+) cells. The results showed that Puma was significantly knocked down in cord blood CD34(+) cells and the low expression of Puma conferred a radio-protective effect on the cord blood CD34(+) cells. This effect was achieved through reduced apoptosis and sustained quiescence after irradiation due to Puma knockdown. It is concluded that knockdown of puma gene in CD34(+) hematopoietic stem cells of human cord blood possesses the radioprotective effect, maintains the cells in silence targeting Puma in human hematopoietic cells may have a similar effect with that on mouse hematopoietic cells as previously shown, and our lentiviral targeting system for Puma provides a valuable tool for future translational studies with human cells.

  6. Impaired function of regulatory T cells in cord blood of children of allergic mothers.

    Science.gov (United States)

    Hrdý, J; Kocourková, I; Prokešová, L

    2012-10-01

    Allergy is one of the most common diseases with constantly increasing incidence. The identification of prognostic markers pointing to increased risk of allergy development is of importance. Cord blood represents a suitable source of cells for searching for such prognostic markers. In our previous work, we described the increased reactivity of cord blood cells of newborns of allergic mothers in comparison to newborns of healthy mothers, which raised the question of whether or not this was due to the impaired function of regulatory T cells (T(regs)) in high-risk children. Therefore, the proportion and functional properties of T(regs) in cord blood of children of healthy and allergic mothers were estimated by flow cytometry. The proportion of T(regs) [CD4(+)CD25(high)CD127(low) forkhead box protein 3 (FoxP3(+))] in cord blood of children of allergic mothers tends to be higher while, in contrast, the median of fluorescence intensity of FoxP3 was increased significantly in the healthy group. Intracellular presence of regulatory cytokines interleukin (IL)-10 and transforming growth factor (TGF)-beta was also higher in T(regs) of children of healthy mothers. Although we detected an increased proportion of T(regs) in cord blood of children of allergic mothers, the functional indicators (intracellular presence of regulatory cytokines IL-10 and TGF-beta, median of fluorescence intensity of FoxP3) of those T(regs) were lower in comparison to the healthy group. We can conclude that impaired function of T(regs) in cord blood of children of allergic mothers could be compensated partially by their increased number. Insufficient function of T(regs) could facilitate allergen sensitization in high-risk individuals after subsequent allergen encounter. © 2012 The Authors. Clinical and Experimental Immunology © 2012 British Society for Immunology.

  7. Lactation-Related MicroRNA Expression in Microvesicles of Human Umbilical Cord Blood.

    Science.gov (United States)

    Wang, De-Jing; Wang, Chen-Meiyi; Wang, Yi-Ting; Qiao, Hai; Fang, Liao-Qiong; Wang, Zhi-Biao

    2016-11-24

    BACKGROUND The complex process by which lactation is initiated upon neonate delivery remains incompletely understood. Microvesicles (MVs) can transmit microRNAs (miRNAs) into recipient cells to influence cell function, and recent studies have identified miRNAs essential for mammary gland development and lactation. This study aimed to investigate the expression of lactation-related miRNAs in MVs isolated from human umbilical cord blood immediately after delivery. MATERIAL AND METHODS Umbilical cord blood samples were collected from 70 healthy pregnant women, and MVs were isolated through differential centrifugation and characterized by transmission electron microscopy, Western blotting, and nanoparticle tracking analysis. Lactation-related miRNAs were screened using bioinformatics tools for miRNA target prediction, gene ontology, and signaling pathway analyses. miRNA PCR arrays were used for miRNA expression analysis, and the results were validated by real-time PCR. Upon exposure of HBL-100 human mammary epithelial cells to MVs, MV uptake was examined by fluorescence confocal microscopy and b-casein secretion was detected by ELISA. RESULTS Spherical MVs extracted from umbilical cord blood expressed CD63 and had an average diameter of 167.0±77.1 nm. We profiled 337 miRNAs in human umbilical cord blood MVs and found that 85 were related to lactation by bioinformatics analysis. The 25 most differentially expressed lactation-related miRNAs were validated by real-time PCR. MV uptake by HBL-100 cells was after 4 h in culture, and significantly increased secretion of β-casein was observed after 96 h from cells exposed to MVs (PUmbilical cord blood MVs contain many lactation-related miRNAs and can induce β-casein production by HBL-100 cells in vitro. Thus, umbilical cord blood MVs may mediate secretion of β-casein through miRNAs, thereby playing an important role in fetal-maternal crosstalk.

  8. Contribution of gestational exposure to ambient traffic air pollutants to fetal cord blood manganese.

    Science.gov (United States)

    Lin, Ying-Ying; Hwang, Yaw-Huei; Chen, Pau-Chung; Chen, Bing-Yu; Wen, Hui-Ju; Liu, Jyung-Hung; Guo, Yue Leon

    2012-01-01

    Motor vehicle emissions have become a major source of air pollution. Contributions of motor vehicle emissions to exposure to toxic metals such as manganese remain inconclusive. This study investigates the relationship between the concentration of manganese in cord blood and exposure to criteria air pollutants during pregnancy. A total of 1526 mother-newborn pairs were recruited by stratified sampling between April, 2004 and July, 2005. The newborns' mothers completed questionnaires that collected information on their demographic characteristics, medical histories, and living environments. Cord blood samples were collected at birth and analyzed by inductively coupled plasma mass spectrometry for manganese. Information about criteria air pollutants which included CO, NO(2), ozone, SO(2), and PM(10) was obtained from monitoring stations run by the Taiwan Environmental Agency. Using the Arc9 Geographic Information System's kriging method, the concentration of each criteria pollutant was estimated at each newborn's residence. The geometric mean for cord blood manganese concentrations was 47.0 μg/L (GSD=1.4). After adjusting for confounding factors such as family income, maternal education, maternal smoking, alcohol drinking during pregnancy, maternal age, child gender, parity, gestational age, and birth season, the results of a multiple linear regression model indicated that cord blood manganese concentration was significantly associated with NO(2) concentration in each trimester, as well as the whole duration of gestation. Between the pregnant women exposed to the highest and those to the lowest quartile of NO(2), a 6 μg/L difference in cord blood manganese concentration was found. This finding suggests that despite other sources of manganese exposure, maternal exposure to ambient NO(2), a surrogate for traffic emission, significantly contributed to fetal cord blood manganese level. Further study is warranted to determine whether the contribution of manganese due to

  9. Maternal and cord blood levels of aldrin and dieldrin in Delhi population.

    Science.gov (United States)

    Mustafa, Md; Pathak, Rahul; Tripathi, A K; Ahmed, Rafat S; Guleria, Kiran; Banerjee, B D

    2010-12-01

    Aldrin and dieldrin, structurally similar organochlorine pesticides belong to cyclodiene family and were widely used for agriculture and public health program in India. Although the manufacturing, use and import of aldrin and dieldrin have been banned in India since 2003, these pesticides are still persistent in environment and may be associated with adverse neurological and reproductive effects. The aim of this study is to assess the recent exposure level of aldrin and dieldrin and their placental transfer to fetus in normal healthy full-term pregnant women belonging to north Indian population undergoing normal delivery at Obstetrics and Gynecology department of UCMS and GTB hospital, Delhi. Quantitative analysis of aldrin and dieldrin residues in maternal and cord blood samples were carried out by gas chromatography system equipped with electron capture detector. The results of our study clearly revealed that maternal and cord blood levels of aldrin and dieldrin of pregnant women are age and dietary habit dependent. The aldrin level in maternal blood and dieldrin level in cord blood are higher in women in the age group 25-30 years than in women in age group of 19-24 years. Similarly, aldrin level in maternal blood is significantly higher in women with non-vegetarian dietary habit than in women with vegetarian dietary habit. No significant association is found for maternal and cord blood level. The results of the present study clearly demonstrate prenatal uptake of aldrin and dieldrin and provide recent information on the subsequent transplacental transfer.

  10. Maternal systemic or cord blood inflammation is associated with birth anthropometry in a Tanzanian prospective cohort.

    Science.gov (United States)

    Wilkinson, A L; Pedersen, S H; Urassa, M; Michael, D; Andreasen, A; Todd, J; Kinung'hi, S M; Changalucha, J; McDermid, J M

    2017-01-01

    HIV infection is associated with chronic systemic inflammation, with or without antiretroviral therapy. Consequences for foetal growth are not understood, particularly in settings where multiple maternal infections and malnutrition are common. The study was designed to examine maternal systemic circulating and umbilical cord blood cytokine concentrations in relation to birth anthropometry in a Tanzanian prospective cohort. A 9-plex panel of maternal plasma cytokines in HIV-positive (n = 44) and HIV-negative (n = 70) mothers and the same cytokines in umbilical cord blood collected at delivery was assayed. Linear regression modelled associations between maternal or cord blood cytokines and birth anthropometry. Health indicators (haemoglobin, mid-upper-arm circumference, body mass index) in HIV-positive mothers without considerable immunosuppression did not differ from HIV-negative women. Despite this, HIV-exposed infants had lower birthweight and length. Subgroup analyses indicated that HIV management using HAART was associated with lower plasma TNF-α, as were longer durations of any antiretroviral therapy (≥2 months). Greater maternal plasma TNF-α was associated with earlier delivery (-1.7 weeks, P = 0.039) and lower birthweights (-287 g; P = 0.020), while greater umbilical cord TNF-α (-1.43 cm; P = 0.036) and IL-12p70 (-2.4 cm; P = 0.008) were associated with shorter birth length. Birthweight was inversely associated with cord IL-12p70 (-723 g; P = 0.001) and IFN-γ (-482 g, P = 0.007). Maternal cytokines during pregnancy did not correlate with umbilical cord cytokines at delivery. Systemic inflammation identified in maternal plasma or umbilical cord blood was associated with poorer birth anthropometrics in HIV-exposed and HIV-unexposed infants. Controlling maternal and/or foetal systemic inflammation may improve birth anthropometry. © 2016 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.

  11. Maternal-Cord Blood Vitamin D Correlations Vary by Maternal Levels

    OpenAIRE

    2016-01-01

    Vitamin D levels of pregnant women and their neonates tend to be related; however, it is unknown whether there are any subgroups in which they are not related. 25-Hydroxyvitamin D [25(OH)D] was measured in prenatal maternal and child cord blood samples of participants (n = 241 pairs) in a birth cohort. Spearman correlations were examined within subgroups defined by prenatal and delivery factors. Cord blood as a percentage of prenatal 25(OH)D level was calculated and characteristics compared b...

  12. High quality cord blood banking is feasible with delayed clamping practices. The eight-year experience and current status of the national Swedish Cord Blood Bank.

    Science.gov (United States)

    Frändberg, Sofia; Waldner, Berit; Konar, Jan; Rydberg, Lennart; Fasth, Anders; Holgersson, Jan

    2016-09-01

    The National Swedish Cord Blood Bank (NS-CBB) is altruistic and publicly funded. Herein we describe the status of the bank and the impact of delayed versus early clamping on cell number and volume. Cord Blood Units (CBUs) were collected at two University Hospitals in Sweden. Collected volume and nucleated cell content (TNC) were investigated in 146 consecutive Cord Blood (CB) collections sampled during the first quarter of 2012 and in 162 consecutive CB collections done in the first quarter of 2013, before and after clamping practices were changed from immediate to late (60 s) clamping. NS-CBB now holds close to 5000 units whereof 30 % are from non-Caucasian or mixed origins. Delayed clamping had no major effect on collection efficiency. The volume collected was slightly reduced (mean difference, 8.1 ml; 95 % CI, 1.3-15.0 ml; p = 0.02), while cell recovery was not (p = 0.1). The proportion of CBUs that met initial total TNC banking criteria was 60 % using a TNC threshold of 12.5 × 10(8), and 47 % using a threshold of 15 × 10(8) for the early clamping group and 52 and 37 % in the late clamping group. Following implementation of delayed clamping practices at NS-CBB; close to 40 % of the collections in the late clamping group still met the high TNC banking threshold and were eligible for banking, implicating that that cord blood banking is feasible with delayed clamping practices.

  13. Mercury levels in cord blood and meconium of healthy newborns and venous blood of their mothers: Clinical, prospective cohort study

    Energy Technology Data Exchange (ETDEWEB)

    Unuvar, Emin [Istanbul University, Istanbul Medical Faculty, Department of Pediatrics, Istanbul (Turkey)]. E-mail: Eunuvar@superonline.com; Ahmadov, Hasan [Istanbul University, Istanbul Medical Faculty, Department of Pediatrics, Istanbul (Turkey); Kiziler, Ali Riza [Istanbul University, Istanbul Medical Faculty, Department of Pediatrics, Istanbul (Turkey); Istanbul University, Cerrahpasa Medical Faculty, Department of Biophysics, Istanbul (Turkey); Aydemir, Birsen [Istanbul University, Istanbul Medical Faculty, Department of Pediatrics, Istanbul (Turkey); Istanbul University, Cerrahpasa Medical Faculty, Department of Biophysics, Istanbul (Turkey); Toprak, Sadik [Gazi Osman Pasa University, Department of Forensic Pathology, Tokat (Turkey); Ulker, Volkan [Bakirkoy Government Hospital, Istanbul (Turkey); Ark, Cemal [Bakirkoy Government Hospital, Istanbul (Turkey)

    2007-03-01

    Objectives: The purpose of this study is to investigate the chronic mercury intoxication in pregnant women and newborns living in Istanbul, Turkey. Methods: The research was carried out as a prospective with 143 pregnant women and their newborns. Venous blood from the mother, cord blood from the neonate, and meconium were collected for mercury analysis. Frequency of fish and vegetable-eating and the number of teeth filled were investigated. Analyses were made in cold vapor Atomic Absorption Spectrophotometer (AAS, {mu}g/L). Results: Mercury levels were 0.38 {+-} 0.5 {mu}g/L (0-2.34) in venous blood of pregnant women, 0.50 {+-} 0.64 {mu}g/L (0-2.36) in umbilical cord blood and 9.45 {+-} 13.8 {mu}g/g (0-66.5) in meconium. Maternal blood mercury level was lower than the known toxic limit for humans (EPA, 5 {mu}g/L). Mercury levels of the maternal venous blood were significantly correlated with umbilical cord blood. The primary risk factors affecting mercury levels were eating fishmeals more than twice a week and having filled teeth more than five. The fact that the mother had a regular vegetable diet everyday reduced the mercury levels. Increased levels of mercury in the mother and umbilical cord blood could lead to retarded newborns' weight and height. Conclusion: Pregnant women living in Istanbul may be not under the risk of chronic mercury intoxication. Fish consumption more than twice per week and tooth-filling of mother more than five may increase mercury level. On the contrary, regular diet rich in vegetable decreases the mercury level.

  14. Human umbilical cord mesenchymal stem cells derived from Wharton's jelly differentiate into insulin-producing cells in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-wu; LIN Li-min; HE Hong-yan; YOU Fang; LI Wei-zhong; HUANG Tian-hua; MA Gui-xia; MA Lian

    2011-01-01

    Background Islet transplantation is an effective way of reversing type Ⅰ diabetes. However, islet transplantation is hampered by issues such as immune rejection and shortage of donor islets. Mesenchymal stem cells can differentiate into insulin-producing cells. However, the potential of human umbilical cord mesenchymal stem cells (huMSCs) to become insulin-producing cells remains undetermined.Methods We isolated and induced cultured huMSCs under islet cell culture conditions. The response of huMSCs were monitored under an inverted phase contrast microscope. Immunocytochemical and immunofluorescence staining methods were used to measure insulin and glucagon protein levels. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect gene expression of human insulin and PDX-1. Dithizone-staining was employed to determine the zinc contents in huMSCs. Insulin secretion was also evaluated through radioimmunoassay.Results HuMSCs induced by nicotinamide and β-mercaptoethanol or by neurogenic differentiation 1 gene (NeuroD1)transfection gradually changed morphology from typically elongated fibroblast-shaped cells to round cells. They had a tendency to form clusters. Immunocytochemical studies showed positive expression of human insulin and glucagon in these cells in response to induction. RT-PCR experiments found that huMSCs expressed insulin and PDX-1 genes following induction and dithizone stained the cytoplasm of huMSCs a brownish red color after induction. Insulin secretion in induced huMSCs was significantly elevated compared with the control group (t=6.183, P<0.05).Conclusions HuMSCs are able to differentiate into insulin-producing cells in vitro. The potential use of huMSCs in βcell replacement therapy of diabetes needs to be studied further.

  15. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions

    Directory of Open Access Journals (Sweden)

    Zhang Henggui

    2011-06-01

    Full Text Available Abstract Background It is of growing interest to develop novel approaches to initiate differentiation of mesenchymal stem cells (MSCs into cardiomyocytes. The purpose of this investigation was to determine if Sphingosine-1-phosphate (S1P, a native circulating bioactive lipid metabolite, plays a role in differentiation of human umbilical cord mesenchymal stem cells (HUMSCs into cardiomyocytes. We also developed an engineered cell sheet from these HUMSCs derived cardiomyocytes by using a temperature-responsive polymer, poly(N-isopropylacrylamide (PIPAAm cell sheet technology. Methods Cardiomyogenic differentiation of HUMSCs was performed by culturing these cells with either designated cardiomyocytes conditioned medium (CMCM alone, or with 1 μM S1P; or DMEM with 10% FBS + 1 μM S1P. Cardiomyogenic differentiation was determined by immunocytochemical analysis of expression of cardiomyocyte markers and patch clamping recording of the action potential. Results A cardiomyocyte-like morphology and the expression of α-actinin and myosin heavy chain (MHC proteins can be observed in both CMCM culturing or CMCM+S1P culturing groups after 5 days' culturing, however, only the cells in CMCM+S1P culture condition present cardiomyocyte-like action potential and voltage gated currents. A new approach was used to form PIPAAm based temperature-responsive culture surfaces and this successfully produced cell sheets from HUMSCs derived cardiomyocytes. Conclusions This study for the first time demonstrates that S1P potentiates differentiation of HUMSCs towards functional cardiomyocytes under the designated culture conditions. Our engineered cell sheets may provide a potential for clinically applicable myocardial tissues should promote cardiac tissue engineering research.

  16. Differentiation of Human Cord Blood and Stromal Derived Stem Cells into Neuron Cells

    Directory of Open Access Journals (Sweden)

    Özlem Pamukçu Baran

    2007-01-01

    Full Text Available The most basic properties of stem cells are the capacities to self-renew indefinitely and to differentiate into multiple cell or tissue types. Umbilical cord blood has been utilized for human hematopoietic stem cell transplantation as an alternative source to bone marrow.The experiments show that Wharton’s jelly cells are easily attainable and can be expanded in vitro, maintained in culture, and induced to differentiate into neural cells. Almost recent studies it has been discovered that the cord blood-derived cells can differantiate not only to blood cells but also to various somatic cells like neuron or muscle cell with the signals taken from the envoirenment.Interestingly, neural cells obtained from umbilical cord blood show a relatively high spontaneous differentiation into oligodendrocytes, Embryonic stem cells proliferate indefinitely and can differentiate spontaneously into all