WorldWideScience

Sample records for coral disease development

  1. How microbial community composition regulates coral disease development.

    Directory of Open Access Journals (Sweden)

    Justin Mao-Jones

    2010-03-01

    Full Text Available Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community-which is critical to the healthy functioning of the coral holobiont-is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model's assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.

  2. How microbial community composition regulates coral disease development.

    Science.gov (United States)

    Mao-Jones, Justin; Ritchie, Kim B; Jones, Laura E; Ellner, Stephen P

    2010-03-30

    Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts) and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community-which is critical to the healthy functioning of the coral holobiont-is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model's assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.

  3. Corals diseases are a major cause of coral death

    Science.gov (United States)

    Corals, like humans, are susceptible to diseases. Some coral diseases are associated with pathogenic bacteria; however, the causes of most remain unknown. Some diseases trigger rapid and extensive mortality, while others slowly cause localized color changes or injure coral tiss...

  4. Microbial disease and the coral holobiont

    Science.gov (United States)

    Bourne, David G.; Garren, Melissa; Work, Thierry M.; Rosenberg, Eugene; Smith, Garriet W.; Harvell, C. Drew

    2009-01-01

    Tropical coral reefs harbour a reservoir of enormous biodiversity that is increasingly threatened by direct human activities and indirect global climate shifts. Emerging coral diseases are one serious threat implicated in extensive reef deterioration through disruption of the integrity of the coral holobiont – a complex symbiosis between the coral animal, endobiotic alga and an array of microorganisms. In this article, we review our current understanding of the role of microorganisms in coral health and disease, and highlight the pressing interdisciplinary research priorities required to elucidate the mechanisms of disease. We advocate an approach that applies knowledge gained from experiences in human and veterinary medicine, integrated into multidisciplinary studies that investigate the interactions between host, agent and environment of a given coral disease. These approaches include robust and precise disease diagnosis, standardised ecological methods and application of rapidly developing DNA, RNA and protein technologies, alongside established histological, microbial ecology and ecological expertise. Such approaches will allow a better understanding of the causes of coral mortality and coral reef declines and help assess potential management options to mitigate their effects in the longer term.

  5. Viruses: agents of coral disease?

    Science.gov (United States)

    Davy, S K; Burchett, S G; Dale, A L; Davies, P; Davy, J E; Muncke, C; Hoegh-Guldberg, O; Wilson, W H

    2006-03-23

    The potential role of viruses in coral disease has only recently begun to receive attention. Here we describe our attempts to determine whether viruses are present in thermally stressed corals Pavona danai, Acropora formosa and Stylophora pistillata and zoanthids Zoanthus sp., and their zooxanthellae. Heat-shocked P. danai, A. formosa and Zoanthus sp. all produced numerous virus-like particles (VLPs) that were evident in the animal tissue, zooxanthellae and the surrounding seawater; VLPs were also seen around heat-shocked freshly isolated zooxanthellae (FIZ) from P. danai and S. pistillata. The most commonly seen VLPs were tail-less, hexagonal and about 40 to 50 nm in diameter, though a diverse range of other VLP morphotypes (e.g. rounded, rod-shaped, droplet-shaped, filamentous) were also present around corals. When VLPs around heat-shocked FIZ from S. pistillata were added to non-stressed FIZ from this coral, they resulted in cell lysis, suggesting that an infectious agent was present; however, analysis with transmission electron microscopy provided no clear evidence of viral infection. The release of diverse VLPs was again apparent when flow cytometry was used to enumerate release by heat-stressed A. formosa nubbins. Our data support the infection of reef corals by viruses, though we cannot yet determine the precise origin (i.e. coral, zooxanthellae and/or surface microbes) of the VLPs seen. Furthermore, genome sequence data are required to establish the presence of viruses unequivocally.

  6. Natural disease resistance in threatened staghorn corals.

    Directory of Open Access Journals (Sweden)

    Steven V Vollmer

    Full Text Available Disease epidemics have caused extensive damage to tropical coral reefs and to the reef-building corals themselves, yet nothing is known about the abilities of the coral host to resist disease infection. Understanding the potential for natural disease resistance in corals is critically important, especially in the Caribbean where the two ecologically dominant shallow-water corals, Acropora cervicornis and A. palmata, have suffered an unprecedented mass die-off due to White Band Disease (WBD, and are now listed as threatened under the US Threatened Species Act and as critically endangered under the IUCN Red List criteria. Here we examine the potential for natural resistance to WBD in the staghorn coral Acropora cervicornis by combining microsatellite genotype information with in situ transmission assays and field monitoring of WBD on tagged genotypes. We show that six percent of staghorn coral genotypes (3 out of 49 are resistant to WBD. This natural resistance to WBD in staghorn corals represents the first evidence of host disease resistance in scleractinian corals and demonstrates that staghorn corals have an innate ability to resist WBD infection. These resistant staghorn coral genotypes may explain why pockets of Acropora have been able to survive the WBD epidemic. Understanding disease resistance in these corals may be the critical link to restoring populations of these once dominant corals throughout their range.

  7. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    Science.gov (United States)

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  8. Investigating Coral Disease Spread Across the Hawaiian Archipelago

    Science.gov (United States)

    Sziklay, Jamie

    Coral diseases negatively impact reef ecosystems and they are increasing worldwide; yet, we have a limited understanding of the factors that influence disease risk and transmission. My dissertation research investigated coral disease spread for several common coral diseases in the Hawaiian archipelago to understand how host-pathogenenvironment interactions vary across different spatial scales and how we can use that information to improve management strategies. At broad spatial scales, I developed forecasting models to predict outbreak risk based on depth, coral density and temperature anomalies from remotely sensed data (chapter 1). In this chapter, I determined that host density, total coral density, depth and winter temperature variation were important predictors of disease prevalence for several coral diseases. Expanding on the predictive models, I also found that colony size, wave energy, water quality, fish abundance and nearby human population size altered disease risk (chapter 2). Most of the model variation occurred at the scale of sites and coastline, indicating that local coral composition and water quality were key determinants of disease risk. At the reef scale, I investigated factors that influence disease transmission among individuals using a tissue loss disease outbreak in Kane'ohe Bay, O'ahu, Hawai'i as a case study (chapter 3). I determined that host size, proximity to infected neighbors and numbers of infected neighbors were associated with disease risk. Disease transmission events were very localized (within 15 m) and rates changed dramatically over the course of the outbreak: the transmission rate initially increased quickly during the outbreak and then decreased steadily until the outbreak ended. At the colony scale, I investigated disease progression between polyps within individual coral colonies using confocal microscopy (chapter 4). Here, I determined that fragmented florescent pigment distributions appeared adjacent to the disease front

  9. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  10. THE CONDITION OF CORAL REEFS IN SOUTH FLORIDA (2000) USING CORAL DISEASE AND BLEACHING AS INDICATORS

    Science.gov (United States)

    The destruction for coral reef habitats is occurring at unprecedented levels. Coral disease epizootics in the Southwestern Atlantic have lead to coral replacement by turf algae, prompting a call to classify some coral species as endangered. In addition, a massive bleaching event ...

  11. Arnfried Antonius, coral diseases, and the AMLC

    Directory of Open Access Journals (Sweden)

    Laurie L. Richardson

    2012-03-01

    Full Text Available The study of coral diseases, coral pathogens, and the effects of diseases on tropical and subtropical coral reefs are all current, high-profile research areas. This interest has grown steadily since the first report of a coral disease in 1973. The author of this report was Arnfried Antonius and the publication was an abstract in the proceedings of a scientific meeting of the Association of Marine Laboratories of the Caribbean, or AMLC (then known as the Association of Island Marine Laboratories of the Caribbean. Since Antonius’ pioneering communication he continued working on coral diseases on reefs throughout the world, often documenting the first observation of a novel pathology in a novel location. Each of the coral diseases Antonius first described, in particular black band disease, is the subject of current and ongoing investigations addressing pathogens, etiology, and their effects on coral reefs. Many of the points and observations he made in his early papers are highly relevant to research today. This paper reviews aspects of Antonius’ early work, highlighting contributions he made that include the first in situ experimental studies aimed at discerning coral epizootiology and the first quantitative assessments of the role of environmental factors in coral disease. Antonius’ early findings are discussed in terms of relevant current controversies in this research areaEl estudio de las enfermedades de los corales, los patogenos de los corales y los efectos de estas enfermedades sobre los arrecifes tropicales y subtropicales son actualmente areas importantes de investigacion. El interés en este tema ha crecido continuamente desde el primer informe sobre una enfermedad de coral que se publico en 1973. El autor de este informe fue Arnfried Antonius y la publicacion fue un resumen en el Libro de Programa y Resumenes de la Decima Reunion de la Asociacion de Laboratorios Marinos Islenos del Caribe (conocida ahora como la Asociacion de

  12. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  13. Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome

    KAUST Repository

    Roder, C.

    2014-01-29

    Coral diseases are characterized by microbial community shifts in coral mucus and tissue, but causes and consequences of these changes are vaguely understood due to the complexity and dynamics of coral-associated bacteria. We used 16S rRNA gene microarrays to assay differences in bacterial assemblages of healthy and diseased colonies displaying White Plague Disease (WPD) signs from two closely related Caribbean coral species, Orbicella faveolata and Orbicella franksi. Analysis of differentially abundant operational taxonomic units (OTUs) revealed strong differences between healthy and diseased specimens, but not between coral species. A subsequent comparison to data from two Indo-Pacific coral species (Pavona duerdeni and Porites lutea) revealed distinct microbial community patterns associated with ocean basin, coral species and health state. Coral species were clearly separated by site, but also, the relatedness of the underlying bacterial community structures resembled the phylogenetic relationship of the coral hosts. In diseased samples, bacterial richness increased and putatively opportunistic bacteria were consistently more abundant highlighting the role of opportunistic conditions in structuring microbial community patterns during disease. Our comparative analysis shows that it is possible to derive conserved bacterial footprints of diseased coral holobionts that might help in identifying key bacterial species related to the underlying etiopathology. Furthermore, our data demonstrate that similar-appearing disease phenotypes produce microbial community patterns that are consistent over coral species and oceans, irrespective of the putative underlying pathogen. Consequently, profiling coral diseases by microbial community structure over multiple coral species might allow the development of a comparative disease framework that can inform on cause and relatedness of coral diseases. 2013 The Authors Molecular Ecology John Wiley & Sons Ltd.

  14. Diseases of corals with particular reference to Indian reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Raghukumar, C.

    Diseases are one of the factors that change the structure and functioning of coral-reef communities as they cause irreversible damage to the corals Reports on coral diseases describe the etiological agents responsible for the disease and in a few...

  15. Potential role of viruses in white plague coral disease.

    Science.gov (United States)

    Soffer, Nitzan; Brandt, Marilyn E; Correa, Adrienne M S; Smith, Tyler B; Thurber, Rebecca Vega

    2014-02-01

    White plague (WP)-like diseases of tropical corals are implicated in reef decline worldwide, although their etiological cause is generally unknown. Studies thus far have focused on bacterial or eukaryotic pathogens as the source of these diseases; no studies have examined the role of viruses. Using a combination of transmission electron microscopy (TEM) and 454 pyrosequencing, we compared 24 viral metagenomes generated from Montastraea annularis corals showing signs of WP-like disease and/or bleaching, control conspecific corals, and adjacent seawater. TEM was used for visual inspection of diseased coral tissue. No bacteria were visually identified within diseased coral tissues, but viral particles and sequence similarities to eukaryotic circular Rep-encoding single-stranded DNA viruses and their associated satellites (SCSDVs) were abundant in WP diseased tissues. In contrast, sequence similarities to SCSDVs were not found in any healthy coral tissues, suggesting SCSDVs might have a role in WP disease. Furthermore, Herpesviridae gene signatures dominated healthy tissues, corroborating reports that herpes-like viruses infect all corals. Nucleocytoplasmic large DNA virus (NCLDV) sequences, similar to those recently identified in cultures of Symbiodinium (the algal symbionts of corals), were most common in bleached corals. This finding further implicates that these NCLDV viruses may have a role in bleaching, as suggested in previous studies. This study determined that a specific group of viruses is associated with diseased Caribbean corals and highlights the potential for viral disease in regional coral reef decline.

  16. Antibacterial Activity of Hawaiian Corals: Possible Protection from Disease?

    Science.gov (United States)

    Gochfeld, D. J.; Aeby, G. S.; Miller, J. D.

    2006-12-01

    Reports of coral diseases in the Caribbean have appeared with increasing frequency over the past two decades; however, records of coral diseases in the Pacific have lagged far behind. Recent surveys of coral disease in the Hawaiian Islands indicate relatively low, but consistent, levels of disease throughout the inhabited Main and uninhabited Northwestern Hawaiian Islands, and demonstrate variation in levels of disease among the major genera of Hawaiian corals. Although little is known about immune defense to disease in corals, one potential mechanism of defense is the production of antimicrobial compounds that protect corals from pathogens. A preliminary survey of antibacterial chemical defenses among three dominant species of Hawaiian corals was undertaken. Crude aqueous extracts of Porites lobata, Pocillopora meandrina and Montipora capitata were tested against nine strains of bacteria in a growth inhibition assay. Inhibitory extracts were further tested to determine whether their effects were cytostatic or cytotoxic. The bacteria selected included known coral pathogens, potential marine pathogens found in human waste and strains previously identified from the surfaces of Hawaiian corals. Extracts from all three species of coral exhibited a high degree of antibacterial activity, but also a high degree of selectivity against different bacterial strains. In addition, some extracts were stimulatory to some bacteria. In addition to interspecific variability, extracts also exhibited intraspecific variability, both within and between sites. Hawaiian corals have significant antibacterial activity, which may explain the relatively low prevalence of disease in these corals; however, further characterization of pathogens specifically responsible for disease in Hawaiian corals is necessary before we can conclude that antibacterial activity protects Hawaiian corals from disease.

  17. Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs.

    Science.gov (United States)

    Séré, Mathieu G; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2015-06-03

    Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean. Surveys conducted at multiple sites in Reunion, South Africa and Mayotte between August 2010 and June 2012 revealed the presence of 6 main coral diseases: black band disease (BBD), white syndrome (WS), pink line syndrome (PLS), growth anomalies (GA), skeleton eroding band (SEB) and Porites white patch syndrome (PWPS). Overall, disease prevalence was higher in Reunion (7.5 ± 2.2%; mean ± SE) compared to South Africa (3.9 ± 0.8%) and Mayotte (2.7 ± 0.3%). Across locations, Acropora and Porites were the genera most susceptible to disease. Spatial variability was detected in both Reunion and South Africa, with BBD and WS more prevalent on shallow than deep reefs. There was also evidence of seasonality in 2 diseases: the prevalence of BBD and WS was higher in summer than winter. This was the first study to investigate the ecology of coral diseases, providing both qualitative and quantitative data, on Western Indian Ocean reefs, and surveys should be expanded to confirm these patterns.

  18. A Framework for Responding to Coral Disease Outbreaks that Facilitates Adaptive Management

    Science.gov (United States)

    Beeden, Roger; Maynard, Jeffrey A.; Marshall, Paul A.; Heron, Scott F.; Willis, Bette L.

    2012-01-01

    Predicted increases in coral disease outbreaks associated with climate change have implications for coral reef ecosystems and the people and industries that depend on them. It is critical that coral reef managers understand these implications and have the ability to assess and reduce risk, detect and contain outbreaks, and monitor and minimise impacts. Here, we present a coral disease response framework that has four core components: (1) an early warning system, (2) a tiered impact assessment program, (3) scaled management actions and (4) a communication plan. The early warning system combines predictive tools that monitor the risk of outbreaks of temperature-dependent coral diseases with in situ observations provided by a network of observers who regularly report on coral health and reef state. Verified reports of an increase in disease prevalence trigger a tiered response of more detailed impact assessment, targeted research and/or management actions. The response is scaled to the risk posed by the outbreak, which is a function of the severity and spatial extent of the impacts. We review potential management actions to mitigate coral disease impacts and facilitate recovery, considering emerging strategies unique to coral disease and more established strategies to support reef resilience. We also describe approaches to communicating about coral disease outbreaks that will address common misperceptions and raise awareness of the coral disease threat. By adopting this framework, managers and researchers can establish a community of practice and can develop response plans for the management of coral disease outbreaks based on local needs. The collaborations between managers and researchers we suggest will enable adaptive management of disease impacts following evaluating the cost-effectiveness of emerging response actions and incrementally improving our understanding of outbreak causation.

  19. Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs.

    Science.gov (United States)

    Pollock, F Joseph; Lamb, Joleah B; Field, Stuart N; Heron, Scott F; Schaffelke, Britta; Shedrawi, George; Bourne, David G; Willis, Bette L

    2014-01-01

    In recent decades, coral reef ecosystems have declined to the extent that reefs are now threatened globally. While many water quality parameters have been proposed to contribute to reef declines, little evidence exists conclusively linking specific water quality parameters with increased disease prevalence in situ. Here we report evidence from in situ coral health surveys confirming that chronic exposure to dredging-associated sediment plumes significantly increase the prevalence of white syndromes, a devastating group of globally important coral diseases. Coral health surveys were conducted along a dredging-associated sediment plume gradient to assess the relationship between sedimentation, turbidity and coral health. Reefs exposed to the highest number of days under the sediment plume (296 to 347 days) had two-fold higher levels of disease, largely driven by a 2.5-fold increase in white syndromes, and a six-fold increase in other signs of compromised coral health relative to reefs with little or no plume exposure (0 to 9 days). Multivariate modeling and ordination incorporating sediment exposure level, coral community composition and cover, predation and multiple thermal stress indices provided further confirmation that sediment plume exposure level was the main driver of elevated disease and other compromised coral health indicators. This study provides the first evidence linking dredging-associated sedimentation and turbidity with elevated coral disease prevalence in situ. Our results may help to explain observed increases in global coral disease prevalence in recent decades and suggest that minimizing sedimentation and turbidity associated with coastal development will provide an important management tool for controlling coral disease epizootics.

  20. Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease

    KAUST Repository

    Daniels, Camille Arian

    2015-09-11

    White Plague Disease (WPD) is implicated in coral reef decline in the Caribbean and is characterized by microbial community shifts in coral mucus and tissue. Studies thus far have focused on assessing microbial communities or the identification of specific pathogens, yet few have addressed holobiont response across metaorganism compartments in coral disease. Here, we report on the first metatranscriptomic assessment of the coral host, algal symbiont, and microbial compartment in order to survey holobiont structure and function in healthy and diseased samples from Orbicella faveolata collected at reef sites off Puerto Rico. Our data indicate holobiont-wide as well as compartment-specific responses to WPD. Gene expression changes in the diseased coral host involved proteins playing a role in innate immunity, cytoskeletal integrity, cell adhesion, oxidative stress, chemical defense, and retroelements. In contrast, the algal symbiont showed comparatively few expression changes, but of large magnitude, of genes related to stress, photosynthesis, and metal transport. Concordant with the coral host response, the bacterial compartment showed increased abundance of heat shock proteins, genes related to oxidative stress, DNA repair, and potential retroelement activity. Importantly, analysis of the expressed bacterial gene functions establishes the participation of multiple bacterial families in WPD pathogenesis and also suggests a possible involvement of viruses and/or phages in structuring the bacterial assemblage. In this study, we implement an experimental approach to partition the coral holobiont and resolve compartment- and taxa-specific responses in order to understand metaorganism function in coral disease.

  1. Metatranscriptome analysis of the reef-buidling coral Orbicella faveolata indicates holobiont response to coral disease

    Directory of Open Access Journals (Sweden)

    Camille eDaniels

    2015-09-01

    Full Text Available White Plague Disease (WPD is implicated in coral reef decline in the Caribbean and is characterized by microbial community shifts in coral mucus and tissue. Studies thus far have focused on assessing microbial communities or the identification of specific pathogens, yet few have addressed holobiont response across metaorganism compartments in coral disease. Here, we report on the first metatranscriptomic assessment of the coral host, algal symbiont, and microbial compartment in order to survey holobiont structure and function in healthy and diseased samples from Orbicella faveolata collected at reef sites off Puerto Rico. Our data indicate metaorganism-wide as well as compartment-specific responses to WPD. Gene expression changes in the diseased coral host involved proteins playing a role in innate immunity, cytoskeletal integrity, cell adhesion, oxidative stress, chemical defense, and retroelements. In contrast, the algal symbiont showed comparatively few expression changes, but of large magnitude, of genes related to stress, photosynthesis, and metal transport. Concordant with the coral host response, the bacterial compartment showed increased abundance of heat shock proteins, genes related to oxidative stress, DNA repair, and potential retroelement activity. Importantly, analysis of the expressed bacterial gene functions establishes the participation of multiple bacterial families in WPD pathogenesis and also suggests a possible involvement of viruses and/or phages in structuring the bacterial assemblage. In this study, we implement an experimental approach to partition the coral holobiont and resolve compartment- and taxa-specific responses in order to understand metaorganism function in coral disease.

  2. Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease

    KAUST Repository

    Daniels, Camille Arian; Baumgarten, Sebastian; Yum, Lauren; Michell, Craig; Bayer, Till; Arif, Chatchanit; Roder, Cornelia; Weil, Ernesto; Voolstra, Christian R.

    2015-01-01

    White Plague Disease (WPD) is implicated in coral reef decline in the Caribbean and is characterized by microbial community shifts in coral mucus and tissue. Studies thus far have focused on assessing microbial communities or the identification of specific pathogens, yet few have addressed holobiont response across metaorganism compartments in coral disease. Here, we report on the first metatranscriptomic assessment of the coral host, algal symbiont, and microbial compartment in order to survey holobiont structure and function in healthy and diseased samples from Orbicella faveolata collected at reef sites off Puerto Rico. Our data indicate holobiont-wide as well as compartment-specific responses to WPD. Gene expression changes in the diseased coral host involved proteins playing a role in innate immunity, cytoskeletal integrity, cell adhesion, oxidative stress, chemical defense, and retroelements. In contrast, the algal symbiont showed comparatively few expression changes, but of large magnitude, of genes related to stress, photosynthesis, and metal transport. Concordant with the coral host response, the bacterial compartment showed increased abundance of heat shock proteins, genes related to oxidative stress, DNA repair, and potential retroelement activity. Importantly, analysis of the expressed bacterial gene functions establishes the participation of multiple bacterial families in WPD pathogenesis and also suggests a possible involvement of viruses and/or phages in structuring the bacterial assemblage. In this study, we implement an experimental approach to partition the coral holobiont and resolve compartment- and taxa-specific responses in order to understand metaorganism function in coral disease.

  3. Mapping Prevalence and Incidence of Coral Disease in reef-building corals at two Natural Reserves of the Southwest Puerto Rico

    Science.gov (United States)

    Sanchez Viruet, I.; Irizarry-Soto, E.; Ruiz-Valentín, I.

    2016-02-01

    Coral diseases seems to be the main cause of coral reef decline in the Caribbean. Before the bleaching event of 2005, coral reefs in Puerto Rico were dominated by the reef-building taxa: Orbicella annularis, Porites astreoides, Montastrea cavernosa, Agaricia agaracites and Colpophyllia natans. After the event, live-coral cover significantly declined and more than 90% of the scleractinian corals in the U.S. Virgin Islands and Puerto Rico showed signals of thermal stressors. The prevalence of coral diseases in five reef-building coral (Orbicella annularis, Orbicella franksi, Orbicella faveolata, Porites porites and Pseudiploria strigosa) species was assessed by tagging, photographing, and mapping all diseased and healthy colonies within 10 permanent 40m2 band transects at each inshore and mid-shelf reefs of Belvedere and Punta Guaniquilla Natural Reserves using a random stratified sampling method. Maximum and perpendicular diameter was used to assess coral size using Coral Point Count with Excel Extension. Corals were classified into three size class populations (class I: 0-50cm, class II: 50-100cm and class III: >100 cm). Data was used to develop a GIS-based map containing coral species, size and disease presence. Preliminary results of the inshore area showed a higher disease prevalence in Belvedere natural reserve and for P. strigosa (17.1%) and O. annularis (9.3%). Frequency distribution analysis showed a dominance of O. faveolata at Punta Guaniquilla and Belvedere (127 and 88 individuals respectively). Size class I dominates the distribution of each species within the natural reserves with a higher disease prevalence. Future work include continue prevalence surveys of the outer reef shelf on both natural reserves, monitoring and GIS-based mapping of incidence and resilience through time. This study will help in the assessment of the status of the coral reef of the southwest insular platform.

  4. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae under bleaching and disease stress expands models of coral innate immunity

    Directory of Open Access Journals (Sweden)

    David A. Anderson

    2016-02-01

    Full Text Available Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system.

  5. Thermal stress and coral cover as drivers of coral disease outbreaks.

    Directory of Open Access Journals (Sweden)

    John F Bruno

    2007-06-01

    Full Text Available Very little is known about how environmental changes such as increasing temperature affect disease dynamics in the ocean, especially at large spatial scales. We asked whether the frequency of warm temperature anomalies is positively related to the frequency of coral disease across 1,500 km of Australia's Great Barrier Reef. We used a new high-resolution satellite dataset of ocean temperature and 6 y of coral disease and coral cover data from annual surveys of 48 reefs to answer this question. We found a highly significant relationship between the frequencies of warm temperature anomalies and of white syndrome, an emergent disease, or potentially, a group of diseases, of Pacific reef-building corals. The effect of temperature was highly dependent on coral cover because white syndrome outbreaks followed warm years, but only on high (>50% cover reefs, suggesting an important role of host density as a threshold for outbreaks. Our results indicate that the frequency of temperature anomalies, which is predicted to increase in most tropical oceans, can increase the susceptibility of corals to disease, leading to outbreaks where corals are abundant.

  6. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.

    Science.gov (United States)

    Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P

    2012-06-01

    Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change. © 2012 Blackwell Publishing Ltd/CNRS.

  7. Coral diseases and their research in Colombian reefs

    International Nuclear Information System (INIS)

    Gil A, Diego L; Navas C, Raul; RodrIguez, Alberto; Reyes, Maria C

    2009-01-01

    Coral reefs are one of the most beautiful and important ecosystems in the planet. These ecosystems have existed for over 200 million years and have survived extreme episodes such as glaciation and mass extinctions during their history. Nonetheless, during the last three decades, these ecosystems have registered sudden and dramatic changes that, according to some researchers, endanger their survival and persistence. One of the major problems coral reefs are facing nowadays is the outbreak of diseases that affect corals, which constitute the basic unit of this ecosystem. There is no consensus regarding whether these disease outbreaks are recent episodes; but what seems to be true is that some of these diseases have favored unprecedented changes in coral reefs. Coral reefs in Colombia have also been affected by disease events, and since the 1980, several coral diseases have been observed and studied, and even one of them was first described in Colombian reefs. This work presents a compendium of the main coral diseases registered around the world and is meant to serve as a guide for new studies in this topic. Similarly, a summary of coral disease research carried out in Colombia is presented as well as a discussion on current perspectives for the study of this field in the country.

  8. Words matter: Recommendations for clarifying coral disease nomenclature and terminology

    Science.gov (United States)

    Rogers, Caroline S.

    2010-01-01

    Coral diseases have caused significant losses on Caribbean reefs and are becoming a greater concern in the Pacific. Progress in coral disease research requires collaboration and communication among experts from many different disciplines. The lack of consistency in the use of terms and names in the recent scientific literature reflects the absence of an authority for naming coral diseases, a lack of consensus on the meaning of even some of the most basic terms as they apply to corals, and imprecision in the use of descriptive words. The lack of consensus partly reflects the complexity of this newly emerging field of research. Establishment of a nomenclature committee under the Coral Disease and Health Consortium (CDHC) could lead to more standardized definitions and could promote use of appropriate medical terminology for describing and communicating disease conditions in corals. This committee could also help to define disease terminology unique to corals where existing medical terminology is not applicable. These efforts will help scientists communicate with one another and with the general public more effectively. Scientists can immediately begin to reduce some of the confusion simply by explicitly defining the words they are using. In addition, digital photographs can be posted on the CDHC website and included in publications to document the macroscopic (gross) signs of the conditions observed on coral colonies along with precisely written characterizations and descriptions.

  9. Functionally diverse reef-fish communities ameliorate coral disease.

    Science.gov (United States)

    Raymundo, Laurie J; Halford, Andrew R; Maypa, Aileen P; Kerr, Alexander M

    2009-10-06

    Coral reefs, the most diverse of marine ecosystems, currently experience unprecedented levels of degradation. Diseases are now recognized as a major cause of mortality in reef-forming corals and are complicit in phase shifts of reef ecosystems to algal-dominated states worldwide. Even so, factors contributing to disease occurrence, spread, and impact remain poorly understood. Ecosystem resilience has been linked to the conservation of functional diversity, whereas overfishing reduces functional diversity through cascading, top-down effects. Hence, we tested the hypothesis that reefs with trophically diverse reef fish communities have less coral disease than overfished reefs. We surveyed reefs across the central Philippines, including well-managed marine protected areas (MPAs), and found that disease prevalence was significantly negatively correlated with fish taxonomic diversity. Further, MPAs had significantly higher fish diversity and less disease than unprotected areas. We subsequently investigated potential links between coral disease and the trophic components of fish diversity, finding that only the density of coral-feeding chaetodontid butterflyfishes, seldom targeted by fishers, was positively associated with disease prevalence. These previously uncharacterized results are supported by a second large-scale dataset from the Great Barrier Reef. We hypothesize that members of the charismatic reef-fish family Chaetodontidae are major vectors of coral disease by virtue of their trophic specialization on hard corals and their ecological release in overfished areas, particularly outside MPAs.

  10. Predictive modeling of coral disease distribution within a reef system.

    Directory of Open Access Journals (Sweden)

    Gareth J Williams

    2010-02-01

    Full Text Available Diseases often display complex and distinct associations with their environment due to differences in etiology, modes of transmission between hosts, and the shifting balance between pathogen virulence and host resistance. Statistical modeling has been underutilized in coral disease research to explore the spatial patterns that result from this triad of interactions. We tested the hypotheses that: 1 coral diseases show distinct associations with multiple environmental factors, 2 incorporating interactions (synergistic collinearities among environmental variables is important when predicting coral disease spatial patterns, and 3 modeling overall coral disease prevalence (the prevalence of multiple diseases as a single proportion value will increase predictive error relative to modeling the same diseases independently. Four coral diseases: Porites growth anomalies (PorGA, Porites tissue loss (PorTL, Porites trematodiasis (PorTrem, and Montipora white syndrome (MWS, and their interactions with 17 predictor variables were modeled using boosted regression trees (BRT within a reef system in Hawaii. Each disease showed distinct associations with the predictors. Environmental predictors showing the strongest overall associations with the coral diseases were both biotic and abiotic. PorGA was optimally predicted by a negative association with turbidity, PorTL and MWS by declines in butterflyfish and juvenile parrotfish abundance respectively, and PorTrem by a modal relationship with Porites host cover. Incorporating interactions among predictor variables contributed to the predictive power of our models, particularly for PorTrem. Combining diseases (using overall disease prevalence as the model response, led to an average six-fold increase in cross-validation predictive deviance over modeling the diseases individually. We therefore recommend coral diseases to be modeled separately, unless known to have etiologies that respond in a similar manner to

  11. Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios.

    Directory of Open Access Journals (Sweden)

    Assaf Zvuloni

    2015-06-01

    Full Text Available Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat (Israel, Red Sea, that documents the spatiotemporal dynamics of a White Plague Disease (WPD outbreak over the course of a full season. Based on modern statistical methodologies, we develop a novel spatial epidemiological model that uses a maximum-likelihood procedure to fit the data and assess the transmission pattern of WPD. We link the model to sea surface temperature (SST and test the possible effect of increasing temperatures on disease dynamics. Our results reveal that the likelihood of a susceptible coral to become infected is governed both by SST and by its spatial location relative to nearby infected corals. The model shows that the magnitude of WPD epidemics strongly depends on demographic circumstances; under one extreme, when recruitment is free-space regulated and coral density remains relatively constant, even an increase of only 0.5°C in SST can cause epidemics to double in magnitude. In reality, however, the spatial nature of transmission can effectively protect the community, restricting the magnitude of annual epidemics. This is because the probability of susceptible corals to become infected is negatively associated with coral density. Based on our findings, we expect that infectious diseases having a significant spatial component, such as Red-Sea WPD, will never lead to a complete destruction of the coral community under increased thermal stress. However, this also implies that signs of recovery of local coral communities may be misleading; indicative more of spatial dynamics than true rehabilitation of these communities. In contrast to earlier generic models, our approach captures dynamics of WPD both in space and time, accounting for

  12. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Kathryn Patterson Sutherland

    Full Text Available Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS, a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens to a marine invertebrate (A. palmata. These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.

  13. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata.

    Science.gov (United States)

    Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L; Porter, James W; Lipp, Erin K

    2011-01-01

    Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.

  14. Developing a multi-stressor gradient for coral reefs

    Science.gov (United States)

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be es...

  15. Coral Reef Genomics: Developing tools for functional genomics ofcoral symbiosis

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Jodi; Brokstein, Peter; Manohar, Chitra; Coffroth, MaryAlice; Szmant, Alina; Medina, Monica

    2005-03-01

    Symbioses between cnidarians and dinoflagellates in the genus Symbiodinium are widespread in the marine environment. The importance of this symbiosis to reef-building corals and reef nutrient and carbon cycles is well documented, but little is known about the mechanisms by which the partners establish and regulate the symbiosis. Because the dinoflagellate symbionts live inside the cells of their host coral, the interactions between the partners occur on cellular and molecular levels, as each partner alters the expression of genes and proteins to facilitate the partnership. These interactions can examined using high-throughput techniques that allow thousands of genes to be examined simultaneously. We are developing the groundwork so that we can use DNA microarray profiling to identify genes involved in the Montastraea faveolata and Acropora palmata symbioses. Here we report results from the initial steps in this microarray initiative, that is, the construction of cDNA libraries from 4 of 16 target stages, sequencing of 3450 cDNA clones to generate Expressed Sequenced Tags (ESTs), and annotation of the ESTs to identify candidate genes to include in the microarrays. An understanding of how the coral-dinoflagellate symbiosis is regulated will have implications for atmospheric and ocean sciences, conservation biology, the study and diagnosis of coral bleaching and disease, and comparative studies of animal-protest interactions.

  16. ROLE OF CORAL DISEASES AND ANTHROPOGENIC STRESSORS ON TROPIC MARINE CORAL REEFS

    Science.gov (United States)

    Stony (scleractinian) and soft (octocorals) corals throughout the Western Atlantic have been affected by several fatal diseases in the last two decades. In many locations the communities have not recovered from these diseases and the ecosystem has permanently changed. Several hyp...

  17. Anti-Pathogenic Activity of Coral Bacteria Againts White Plaque Disease of Coral Dipsastraea from Tengah Island, Karimunjawa

    Science.gov (United States)

    Imam Muchlissin, Sakti; Sabdono, Agus; Permata W, Diah

    2018-02-01

    Coral disease is main factor of degrading coral reefs, such as White Plaque (WP) disease that cause loss of epidermal tissue of corals. The purposes of this research were to identify the bacteria associated with White Plaque Disease of coral Dipsastraea and to investigate coral bacteria that have antipathogenic potency against White Plaque Disease by Coral Dipsastraea. Sampling was carried out by purposive method in Tengah Island, Karimunjawa on March 2015. Streak method was used to isolate and purify coral bacteria, while overlay and agar diffusion method were used to test antibacterial activity. Identification of selected bacteria was conducted by biochemical and molecular methods. Polyphasic identification of bacteria associated with diseased coral White Plague of Dipsastraea. It is found that TFWP1, TFWP2, TFWP3 and TFWP4 were closely related to Bacillus antracis, Virgibacillus olivae, Virgibacillus salarius and Bacillus mojavensis, respectively. While antipathogen activity bacterial isolates, NM1.3, NM1.8 and NM2.3 were closely related to Pseudoalteromonas flavipulchra, Pseudoalteromonas piscicida, and Vibrio azureus, respectively. Phylogenetic data on microbial community composition in coral will help with the knowledge in the biological control of coral diseases.

  18. Bacterial profiling of White Plague Disease in a comparative coral species framework.

    KAUST Repository

    Roder, Cornelia

    2014-01-01

    Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.

  19. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    Science.gov (United States)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  20. Disease and stress-induced mortality of corals in Indian reefs and observations on bleaching of corals in the Andamans

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Raghukumar, C.; Raghukumar, S.

    A study was carried out in the Lakshadweep and Andaman islands and the Gulf of Kutch to assess the health of corals in Indian reefs. Disease, predation and stress were the major factors of coral mortality. Death caused by diseases - the black band...

  1. Plastic waste associated with disease on coral reefs.

    Science.gov (United States)

    Lamb, Joleah B; Willis, Bette L; Fiorenza, Evan A; Couch, Courtney S; Howard, Robert; Rader, Douglas N; True, James D; Kelly, Lisa A; Ahmad, Awaludinnoer; Jompa, Jamaluddin; Harvell, C Drew

    2018-01-26

    Plastic waste can promote microbial colonization by pathogens implicated in outbreaks of disease in the ocean. We assessed the influence of plastic waste on disease risk in 124,000 reef-building corals from 159 reefs in the Asia-Pacific region. The likelihood of disease increases from 4% to 89% when corals are in contact with plastic. Structurally complex corals are eight times more likely to be affected by plastic, suggesting that microhabitats for reef-associated organisms and valuable fisheries will be disproportionately affected. Plastic levels on coral reefs correspond to estimates of terrestrial mismanaged plastic waste entering the ocean. We estimate that 11.1 billion plastic items are entangled on coral reefs across the Asia-Pacific and project this number to increase 40% by 2025. Plastic waste management is critical for reducing diseases that threaten ecosystem health and human livelihoods. Copyright © 2018, The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Analysis of the coral associated bacterial community structures in healthy and diseased corals from off-shore of southern Taiwan.

    Science.gov (United States)

    Chiou, Shu-Fen; Kuo, Jimmy; Wong, Tit-Yee; Fan, Tung-Yung; Tew, Kwee Siong; Liu, Jong-Kang

    2010-07-01

    The methods of denaturing gradient gel electrophoresis (DGGE) and DNA sequencing were used to analyze the ribotypes of microbial communities associated with corals. Both healthy and diseased coral of different species were collected at three locations off the southern coast of Taiwan. Ribotyping results suggested that the microbial communities were diverse. The microbial community profiles, even among the same species of corals from different geographical locations, differ significantly. The coral-associated bacterial communities contain many bacteria common to the habitants of various invertebrates. However, some bacteria were unexpected. The presence of some unusual species, such as Staphylococcus, Clostridium and Legionella, associated with corals that were likely the results of human activities. Human activities, such as thermal pollution from the nearby nuclear plant, active fishing and tourism industries in the region might have all contributed to the change in bacterial communities and the death of coral colonies around the region.

  3. Bacterial profiling of White Plague Disease in a comparative coral species framework.

    KAUST Repository

    Roder, Cornelia; Arif, Chatchanit; Bayer, Till; Aranda, Manuel; Daniels, Camille Arian; Shibl, Ahmed A.; Chavanich, Suchana; Voolstra, Christian R.

    2014-01-01

    agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies

  4. Hawaiʻi Coral Disease database (HICORDIS: species-specific coral health data from across the Hawaiian archipelago

    Directory of Open Access Journals (Sweden)

    Jamie M. Caldwell

    2016-09-01

    Full Text Available The Hawaiʻi Coral Disease database (HICORDIS houses data on colony-level coral health condition observed across the Hawaiian archipelago, providing information to conduct future analyses on coral reef health in an era of changing environmental conditions. Colonies were identified to the lowest taxonomic classification possible (species or genera, measured and assessed for visual signs of health condition. Data were recorded for 286,071 coral colonies surveyed on 1819 transects at 660 sites between 2005 and 2015. The database contains observations for 60 species from 22 genera with 21 different health conditions. The goals of the HICORDIS database are to: i provide open access, quality controlled and validated coral health data assembled from disparate surveys conducted across Hawaiʻi; ii facilitate appropriate crediting of data; and iii encourage future analyses of coral reef health. In this article, we describe and provide data from the HICORDIS database. The data presented in this paper were used in the research article “Satellite SST-based Coral Disease Outbreak Predictions for the Hawaiian Archipelago” (Caldwell et al., 2016 [1]. Keywords: Marine biology, Coral, Reefs, Disease, Hawaii

  5. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching.

    Science.gov (United States)

    Vega Thurber, Rebecca L; Burkepile, Deron E; Fuchs, Corinne; Shantz, Andrew A; McMinds, Ryan; Zaneveld, Jesse R

    2014-02-01

    Nutrient loading is one of the strongest drivers of marine habitat degradation. Yet, the link between nutrients and disease epizootics in marine organisms is often tenuous and supported only by correlative data. Here, we present experimental evidence that chronic nutrient exposure leads to increases in both disease prevalence and severity and coral bleaching in scleractinian corals, the major habitat-forming organisms in tropical reefs. Over 3 years, from June 2009 to June 2012, we continuously exposed areas of a coral reef to elevated levels of nitrogen and phosphorus. At the termination of the enrichment, we surveyed over 1200 scleractinian corals for signs of disease or bleaching. Siderastrea siderea corals within enrichment plots had a twofold increase in both the prevalence and severity of disease compared with corals in unenriched control plots. In addition, elevated nutrient loading increased coral bleaching; Agaricia spp. of corals exposed to nutrients suffered a 3.5-fold increase in bleaching frequency relative to control corals, providing empirical support for a hypothesized link between nutrient loading and bleaching-induced coral declines. However, 1 year later, after nutrient enrichment had been terminated for 10 months, there were no differences in coral disease or coral bleaching prevalence between the previously enriched and control treatments. Given that our experimental enrichments were well within the ranges of ambient nutrient concentrations found on many degraded reefs worldwide, these data provide strong empirical support to the idea that coastal nutrient loading is one of the major factors contributing to the increasing levels of both coral disease and coral bleaching. Yet, these data also suggest that simple improvements to water quality may be an effective way to mitigate some coral disease epizootics and the corresponding loss of coral cover in the future. © 2013 John Wiley & Sons Ltd.

  6. Assessing the Effects of Disease and Bleaching on Florida Keys Corals by Fitting Population Models to Data

    Science.gov (United States)

    Coral diseases have increased in frequency over the past few decades and have important influences on the structure and composition of coral reef communities. However, there is limited information on the etiologies of many coral diseases, and pathways via which coral diseases ar...

  7. Global coral disease prevalence associated with sea temperature anomalies and local factors.

    Science.gov (United States)

    Ruiz-Moreno, Diego; Willis, Bette L; Page, A Cathie; Weil, Ernesto; Cróquer, Aldo; Vargas-Angel, Bernardo; Jordan-Garza, Adán Guillermo; Jordán-Dahlgren, Eric; Raymundo, Laurie; Harvell, C Drew

    2012-09-12

    Coral diseases are taking an increasing toll on coral reef structure and biodiversity and are important indicators of declining health in the oceans. We implemented standardized coral disease surveys to pinpoint hotspots of coral disease, reveal vulnerable coral families and test hypotheses about climate drivers from 39 locations worldwide. We analyzed a 3 yr study of coral disease prevalence to identify links between disease and a range of covariates, including thermal anomalies (from satellite data), location and coral cover, using a Generalized Linear Mixed Model. Prevalence of unhealthy corals, i.e. those with signs of known diseases or with other signs of compromised health, exceeded 10% on many reefs and ranged to over 50% on some. Disease prevalence exceeded 10% on 20% of Caribbean reefs and 2.7% of Pacific reefs surveyed. Within the same coral families across oceans, prevalence of unhealthy colonies was higher and some diseases were more common at sites in the Caribbean than those in the Pacific. The effects of high disease prevalence are potentially extensive given that the most affected coral families, the acroporids, faviids and siderastreids, are among the major reef-builders at these sites. The poritids and agaricids stood out in the Caribbean as being the most resistant to disease, even though these families were abundant in our surveys. Regional warm temperature anomalies were strongly correlated with high disease prevalence. The levels of disease reported here will provide a much-needed local reference point against which to compare future change.

  8. Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis.

    Directory of Open Access Journals (Sweden)

    Silvia Libro

    Full Text Available Coral reefs are declining worldwide due to multiple factors including rising sea surface temperature, ocean acidification, and disease outbreaks. Over the last 30 years, White Band Disease (WBD alone has killed up to 95% of the Caribbean`s dominant shallow-water corals--the staghorn coral Acropora cervicornis and the elkhorn coral A. palmata. Both corals are now listed on the US Endangered Species Act, and while their recovery has been slow, recent transmission surveys indicate that more than 5% of staghorn corals are disease resistant. Here we compared transcriptome-wide gene expression between resistant and susceptible staghorn corals exposed to WBD using in situ transmission assays. We identified constitutive gene expression differences underlying disease resistance that are independent from the immune response associated with disease exposure. Genes involved in RNA interference-mediated gene silencing, including Argonaute were up-regulated in resistant corals, whereas heat shock proteins (HSPs were down-regulated. Up-regulation of Argonaute proteins indicates that post-transcriptional gene silencing plays a key, but previously unsuspected role in coral immunity and disease resistance. Constitutive expression of HSPs has been linked to thermal resilience in other Acropora corals, suggesting that the down-regulation of HSPs in disease resistant staghorn corals may confer a dual benefit of thermal resilience.

  9. Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis.

    Science.gov (United States)

    Libro, Silvia; Vollmer, Steven V

    2016-01-01

    Coral reefs are declining worldwide due to multiple factors including rising sea surface temperature, ocean acidification, and disease outbreaks. Over the last 30 years, White Band Disease (WBD) alone has killed up to 95% of the Caribbean`s dominant shallow-water corals--the staghorn coral Acropora cervicornis and the elkhorn coral A. palmata. Both corals are now listed on the US Endangered Species Act, and while their recovery has been slow, recent transmission surveys indicate that more than 5% of staghorn corals are disease resistant. Here we compared transcriptome-wide gene expression between resistant and susceptible staghorn corals exposed to WBD using in situ transmission assays. We identified constitutive gene expression differences underlying disease resistance that are independent from the immune response associated with disease exposure. Genes involved in RNA interference-mediated gene silencing, including Argonaute were up-regulated in resistant corals, whereas heat shock proteins (HSPs) were down-regulated. Up-regulation of Argonaute proteins indicates that post-transcriptional gene silencing plays a key, but previously unsuspected role in coral immunity and disease resistance. Constitutive expression of HSPs has been linked to thermal resilience in other Acropora corals, suggesting that the down-regulation of HSPs in disease resistant staghorn corals may confer a dual benefit of thermal resilience.

  10. Modeling the Impact of White-Plague Coral Disease in Climate Change Scenarios

    NARCIS (Netherlands)

    Zvuloni, A.; Artzy-Randrup, Y.; Katriel, G.; Loya, Y.; Stone, L.

    2015-01-01

    Coral reefs are in global decline, with coral diseases increasing both in prevalence and in space, a situation that is expected only to worsen as future thermal stressors increase. Through intense surveillance, we have collected a unique and highly resolved dataset from the coral reef of Eilat

  11. Cyanotoxins from black band disease of corals and from other coral reef environments.

    Science.gov (United States)

    Gantar, Miroslav; Sekar, Raju; Richardson, Laurie L

    2009-11-01

    Many cyanobacteria produce cyanotoxins, which has been well documented from freshwater environments but not investigated to the same extent in marine environments. Cyanobacteria are an obligate component of the polymicrobial disease of corals known as black band disease (BBD). Cyanotoxins were previously shown to be present in field samples of BBD and in a limited number of BBD cyanobacterial cultures. These toxins were suggested as one of the mechanisms contributing to BBD-associated coral tissue lysis and death. In this work, we tested nine cyanobacterial isolates from BBD and additionally nine isolated from non-BBD marine sources for their ability to produce toxins. The presence of toxins was determined using cell extracts of laboratory grown cyanobacterial cultures using ELISA and the PP2A assay. Based on these tests, it was shown that cyanobacterial toxins belonging to the microcystin/nodularin group were produced by cyanobacteria originating from both BBD and non-BBD sources. Several environmental factors that can be encountered in the highly dynamic microenvironment of BBD were tested for their effect on both cyanobacterial growth yield and rate of toxin production using two of the BBD isolates of the genera Leptolyngbya and Geitlerinema. While toxin production was the highest under mixotrophic conditions (light and glucose) for the Leptolyngbya isolate, it was highest under photoautotrophic conditions for the Geitlerinema isolate. Our results show that toxin production among marine cyanobacteria is more widespread than previously documented, and we present data showing three marine cyanobacterial genera (Phormidium, Pseudanabaena, and Spirulina) are newly identified as cyanotoxin producers. We also show that cyanotoxin production by BBD cyanobacteria can be affected by environmental factors that are present in the microenvironment associated with this coral disease.

  12. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands

    Science.gov (United States)

    Miller, J.; Muller, E.; Rogers, C.; Waara, R.; Atkinson, A.; Whelan, K.R.T.; Patterson, M.; Witcher, B.

    2009-01-01

    In the northeast Caribbean, doldrum-like conditions combined with elevated water temperatures in the summer/fall 2005 created the most severe coral bleaching event ever documented within this region. Video monitoring of 100 randomly chosen, permanent transects at five study sites in the US Virgin Islands revealed over 90% of the scleractinian coral cover showed signs of thermal stress by paling or becoming completely white. Lower water temperatures in October allowed some re-coloring of corals; however, a subsequent unprecedented regional outbreak of coral disease affected all sites. Five known diseases or syndromes were recorded; however, most lesions showed signs similar to white plague. Nineteen scleractinian species were affected by disease, with >90% of the disease-induced lesions occurring on the genus Montastraea. The disease outbreak peaked several months after the onset of bleaching at all sites but did not occur at the same time. The mean number of disease-induced lesions increased 51-fold and the mean area of disease-associated mortality increased 13-fold when compared with pre-bleaching disease levels. In the 12 months following the onset of bleaching, coral cover declined at all sites (average loss: 51.5%, range: 42.4-61.8%) reducing the five-site average from 21.4% before bleaching to 10.3% with most mortality caused by white plague disease, not bleaching. Continued losses through October 2007 reduced the average coral cover of the five sites to 8.3% (average 2-year loss: 61.1%, range: 53.0-79.3%). Mean cover by M. annularis (complex) decreased 51%, Colpophyllia natans 78% and Agaricia agaricites 87%. Isolated disease outbreaks have been documented before in the Virgin Islands, but never as widespread or devastating as the one that occurred after the 2005 Caribbean coral-bleaching event. This study provides insight into the effects of continued seawater warming and subsequent coral bleaching events in the Caribbean and highlights the need to

  13. A survey of cellular reactions to environmental stress and disease in Caribbean scleractinian corals

    Science.gov (United States)

    Peters, Esther C.

    1984-03-01

    Despite growing concern about the demise of coral reefs in many areas of the world, few studies have investigated the possibility that bacteria- or virus-caused diseases may be important agents in the disappearance of living coral tissue from reefs, and that their occurrence and transmission may be influenced by natural or man-made changes in water quality, particularly increased sedimentation and turbidity. One forereef site off St. Croix, U. S. Virgin Islands, and three shallow-water reef sites off Puerto Rico were examined for variations in coral composition, local environmental conditions, and the presence of possible diseases in the stony corals. Visual observations were supplemented with standard histopathological examination under the light microscope of tissues from 257 specimens (representing 9 genera and 13 species), along with additional samples obtained from the Netherlands Antilles, the Grenadines, the Florida Keys and the Smithsonian Coral Reef Microcosm. This procedure proved to be necessary to accurately determine the condition of the colony, to detect the presence of microorganisms, and to correlate tissue health and microparasite infestations with apparent symptoms. These lesions varied with the species and the site. For example, off Guayanilla Bay, three species showed increased or decreased mucosecretory cell development, and another exhibited an unusual microparasite, which may be related to the chronic sedimentation at this site. Although colonies of several species showed signs of “white band disease” at five locations, bacterial colonies composed of Gram-negative rods were present only in acroporid tissues from the relatively pristine St. Croix site and the Netherlands Antilles. The distribution and possible mode of occurrence of these and other diseases and microparasite infestations suggest that acute changes in microhabitat conditions or injuries to individual colonies may be as important to the development of some of these lesions as

  14. Identification of Antipathogenic Bacterial Coral Symbionts Against Porites Ulcerative White Spots Disease

    Science.gov (United States)

    Sa'adah, Nor; Sabdono, Agus; Diah Permata Wijayanti, dan

    2018-02-01

    Coral reef ecosystems are ecosystems that are vulnerable and susceptible to damage due to the exploitation of ocean resources. One of the factors that cause coral damage is the disease that attacks the coral. Porites Ulcerative White Spots (PUWS) is a coral disease found in Indonesia and attacks the coral genera Porites allegedly caused by pathogenic microbial attacks. The purpose of this study was to identify the symbiotic bacteria on healthy coral that have antipatogenic potency against PUWS. The method used in this research was descriptive explorative. Sampling was done in Kemujan Island, Karimunjawa. Bacteria were isolated from healthy coral and coral affected by PUWS disease. Streak method was used to purify coral bacteria, while overlay and agar diffusion were used to test antipathogenic activity. Bacterial identification was carried out based on polyphasic approach. The results of this study showed that coral bacterial symbionts have antipathogenic activity against PUWS disease. The selected bacteria NM 1.2, NM 1.3 and KPSH 5. NM1.2 were closely related to Pseudoalteromonas piscicida, Pseudoalteromonas flavipulchra and Bacillus flexus, respectively.

  15. Developing a multi-stressor gradient for coral reefs | Science ...

    Science.gov (United States)

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be established. Developing stressor gradients presents challenges including: stressors which co-occur but operate at different or unknown spatial and temporal scales, inconsistent data availability measuring stressor levels, and unknown effects on exposed reef biota. We are developing a generalized stressor model using Puerto Rico as case study location, to represent the cumulative spatial/temporal co-occurrence of multiple anthropogenic stressors. Our approach builds on multi-stressor research in streams and rivers, and focuses on three high-priority stressors identified by coral reef experts: land-based sources of pollution (LBSP), global climate change (GCC) related temperature anomalies, and fishing pressure. Landscape development intensity index, based on land use/land cover data, estimates human impact in watersheds adjacent to coral reefs and is proxy for LBSP. NOAA’s retrospective daily thermal anomaly data is used to determine GCC thermal anomalies. Fishing pressure is modeled using gear-specific and fishery landings data. Stressor data was adjusted to a common scale or weighted for relative importance, buffered to account for diminished impact further from source, and compared wit

  16. Genetic Susceptibility, Colony Size, and Water Temperature Drive White-Pox Disease on the Coral Acropora palmata

    OpenAIRE

    Muller, Erinn M.; van Woesik, Robert

    2014-01-01

    Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, g...

  17. Patterns of coral disease across the Hawaiian archipelago: relating disease to environment.

    Directory of Open Access Journals (Sweden)

    Greta S Aeby

    Full Text Available In Hawaii, coral reefs occur across a gradient of biological (host abundance, climatic (sea surface temperature anomalies and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI to the pristine reefs of the northwestern Hawaiian Islands (NWHI. Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora with Porites having the highest prevalence. Porites growth anomalies (PorGAs were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral. All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic. All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and Por

  18. Patterns of coral disease across the Hawaiian Archipelago: Relating disease to environment

    Science.gov (United States)

    Aeby, G.S.; Williams, G.J.; Franklin, E.C.; Kenyon, J.; Cox, E.F.; Coles, S.; Work, Thierry M.

    2011-01-01

    In Hawaii, coral reefs occur across a gradient of biological (host abundance), climatic (sea surface temperature anomalies) and anthropogenic conditions from the human-impacted reefs of the main Hawaiian Islands (MHI) to the pristine reefs of the northwestern Hawaiian Islands (NWHI). Coral disease surveys were conducted at 142 sites from across the Archipelago and disease patterns examined. Twelve diseases were recorded from three coral genera (Porites, Montipora, Acropora) with Porites having the highest prevalence. Porites growth anomalies (PorGAs) were significantly more prevalent within and indicative of reefs in the MHI and Porites trematodiasis (PorTrm) was significantly more prevalent within and indicative of reefs in the NWHI. Porites tissue loss syndrome (PorTLS) was also important in driving regional differences but that relationship was less clear. These results highlight the importance of understanding disease ecology when interpreting patterns of disease occurrence. PorTrm is caused by a parasitic flatworm that utilizes multiple hosts during its life cycle (fish, mollusk and coral). All three hosts must be present for the disease to occur and higher host abundance leads to higher disease prevalence. Thus, a high prevalence of PorTrm on Hawaiian reefs would be an indicator of a healthy coral reef ecosystem. In contrast, the high occurrence of PorGAs within the MHI suggests that PorGAs are related, directly or indirectly, to some environmental co-factor associated with increased human population sizes. Focusing on the three indicator diseases (PorGAs, PorTrm, PorTLS) we used statistical modeling to examine the underlying associations between disease prevalence and 14 different predictor variables (biotic and abiotic). All three diseases showed positive associations with host abundance and negative associations with thermal stress. The association with human population density differed among disease states with PorGAs showing a positive and PorTrm showing

  19. Pyrosequencing of the bacteria associated with Platygyra carnosus corals with skeletal growth anomalies reveals differences in bacterial community composition in apparently healthy and diseased tissues

    Directory of Open Access Journals (Sweden)

    Jenny Chun-Yee Ng

    2015-10-01

    Full Text Available Corals are rapidly declining globally due to coral diseases. Skeletal growth anomalies (SGA or coral tumors are a group of coral diseases that affect coral reefs worldwide, including Hong Kong waters in the Indo-Pacific region. To better understand how bacterial communities may vary in corals with SGA, for the first time, we examined the bacterial composition associated with the apparently healthy and the diseased tissues of SGA-affected Platgyra carnosus using 16S ribosomal rRNA gene pyrosequencing. Taxonomic analysis revealed Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria as the main phyla in both the apparently healthy and the diseased tissues. A significant difference in the bacterial community composition was observed between the two conditions at the OTU level. Diseased tissues were associated with higher abundances of Acidobacteria and Gemmatimonadetes, and a lower abundance of Spirochaetes. Several OTUs belonging to Rhodobacteraceae, Rhizobiales, Gammaproteobacteria, and Cytophaga-Flavobacterium-Bacteroidetes (CFB were strongly associated with the diseased tissues. These groups of bacteria may contain potential pathogens involved with the development of SGA or opportunistic secondary or tertiary colonizers that proliferated upon the health-compromised coral host. We suggest that these bacterial groups to be further studied based on inoculation experiments and testing of Koch’s postulates in efforts to understand the etiology and progression of SGA.

  20. Temporal Sampling of White Band Disease Infected Corals Reveals Complex and Dynamic Bacterial Communities

    Science.gov (United States)

    Gignoux-Wolfsohn, S.; Vollmer, S. V.; Aronson, F. M.

    2016-02-01

    White band disease (WBD) is a coral disease that is currently decimating populations of the endangered staghorn coral, Acropora cervicornis and elkhorn coral, A. palmata across the Caribbean. Since it was first reported in 1979, WBD has killed 95% of these critical reef-building Caribbean corals. WBD is infectious; it can be transmitted through the water column or by a corallivorous snail. While previous research shows that WBD is likely caused by bacteria, identification of a specific pathogen or pathogens has remained elusive. Much of the difficulty of understanding the etiology of the disease comes from a lack of information about how existing bacterial communities respond to disease and separating initial from secondary colonizers. In order to address this lack of information, we performed a fully-crossed tank infection experiment. We exposed healthy corals from two different sites to disease and healthy (control) homogenates from both sites, replicating genotype across tanks. We sampled every coral at three time points: before inoculation with the homogenate, after inoculation, and when the coral showed signs of disease. We then performed 16S rRNA gene sequencing on the Illumina HiSeq 2000. We saw significant differences between time points and disease state. Interestingly, at the first time point (time one) we observed differences between genotypes: every fragment from some genotypes was dominated by Endozoicomonas, while other genotypes were not dominated by one family. At time two we saw an increase in abundance of Alteromonadaceae and Flavobacteriaceae in all corals, and a larger increase in disease-exposed corals. At time three, we saw another increase in Flavobacteriaceae abundance in diseased corals, as well as an introduction of Francisella to diseased corals. While Flavobacteriaceae and Francisella were proposed as potential pathogens, their increase at time three suggests they may be secondary colonizers or opportunists. In genotypes that were

  1. Virus-host interactions and their roles in coral reef health and disease.

    Science.gov (United States)

    Thurber, Rebecca Vega; Payet, Jérôme P; Thurber, Andrew R; Correa, Adrienne M S

    2017-04-01

    Coral reefs occur in nutrient-poor shallow waters, constitute biodiversity and productivity hotspots, and are threatened by anthropogenic disturbance. This Review provides an introduction to coral reef virology and emphasizes the links between viruses, coral mortality and reef ecosystem decline. We describe the distinctive benthic-associated and water-column- associated viromes that are unique to coral reefs, which have received less attention than viruses in open-ocean systems. We hypothesize that viruses of bacteria and eukaryotes dynamically interact with their hosts in the water column and with scleractinian (stony) corals to influence microbial community dynamics, coral bleaching and disease, and reef biogeochemical cycling. Last, we outline how marine viruses are an integral part of the reef system and suggest that the influence of viruses on reef function is an essential component of these globally important environments.

  2. Assessing threats from coral and crustose coralline algae disease on the reefs of New Caledonia

    Science.gov (United States)

    Aeby, Greta S.; Tribollet, Aline; Lasne, Gregory; Work, Thierry M.

    2015-01-01

    The present study reports the results of the first quantitative survey of lesions on coral and crustose coralline algae (CCA) on reefs in the lagoon of New Caledonia. Surveys on inshore and offshore reefs were conducted at 13 sites in 2010, with 12 sites resurveyed in 2013. Thirty coral diseases affecting 15 coral genera were found, with low overall disease prevalence (<1%). This study extends the known distribution of growth anomalies to the coral genera Platygyraand Hydnophora, endolithic hypermycosis to Platygyra, Leptoria and Goniastrea and extends the geographic range of three CCA diseases. We found the first trematode infection in Porites outside of Hawaii. Disease prevalence differed among coral genera, with Porites having more lesions, and Acropora and Montipora fewer lesions, than expected on the basis of field abundance. Inshore reefs had a lower coral-colony density, species diversity and reduced CCA cover than did the offshore reefs. Disease prevalence was significantly higher on inshore reefs in 2013 than in 2010, but did not change on offshore reefs. The potential ecological impact of individual coral diseases was assessed using an integrative-scoring and relative-ranking scheme based on average frequency of occurrence, prevalence and estimated degree of virulence. The top-five ranked diseases were all tissue-loss diseases.

  3. Biomedical and veterinary science can increase our understanding of coral disease

    Science.gov (United States)

    Work, Thierry M.; Richardson, Laurie L.; Reynolds, T.L.; Willis, Bette L.

    2008-01-01

    A balanced approach to coral disease investigation is critical for understanding the global decline of corals. Such an approach should involve the proper use of biomedical concepts, tools, and terminology to address confusion and promote clarity in the coral disease literature. Investigating disease in corals should follow a logical series of steps including identification of disease, systematic morphologic descriptions of lesions at the gross and cellular levels, measurement of health indices, and experiments to understand disease pathogenesis and the complex interactions between host, pathogen, and the environment. This model for disease investigation is widely accepted in the medical, veterinary and invertebrate pathology disciplines. We present standard biomedical rationale behind the detection, description, and naming of diseases and offer examples of the application of Koch's postulates to elucidate the etiology of some infectious diseases. Basic epidemiologic concepts are introduced to help investigators think systematically about the cause(s) of complex diseases. A major goal of disease investigation in corals and other organisms is to gather data that will enable the establishment of standardized case definitions to distinguish among diseases. Concepts and facts amassed from empirical studies over the centuries by medical and veterinary pathologists have standardized disease investigation and are invaluable to coral researchers because of the robust comparisons they enable; examples of these are given throughout this paper. Arguments over whether coral diseases are caused by primary versus opportunistic pathogens reflect the lack of data available to prove or refute such hypotheses and emphasize the need for coral disease investigations that focus on: characterizing the normal microbiota and physiology of the healthy host; defining ecological interactions within the microbial community associated with the host; and investigating host immunity, host

  4. Direct and indirect effects of a new disease of alcyonacean soft corals

    Science.gov (United States)

    Slattery, M.; Renegar, D. A.; Gochfeld, D. J.

    2013-09-01

    Alcyonacean soft corals form major components of the biomass and biodiversity on many shallow Indo-Pacific reefs. In spite of the observed increase in marine diseases worldwide, disease has rarely been reported from this taxonomic group. Here, we describe a chronic tissue loss disease affecting soft corals of the genus Sinularia on reefs in Guam. The disease presents as a diffuse wrinkling of the otherwise smooth fingers, followed by tissue sloughing, necrosis, and disintegration. Until a cause has been confirmed, we propose the name Sinularia Tissue Loss Disease. This disease was first observed at low prevalence (Disease prevalence is now significantly greater in the hybrid (11-12 %) than in either parent species (2-3 %). Histological examination of healthy and affected tissues of hybrid soft corals demonstrates a loss of structural integrity, increased densities of amoebocytes and inclusion of unidentified foreign eukaryotic cells that resemble oocysts, in the diseased tissues. The presence of disease is associated with reduced concentrations of cellular protein levels, although lipids and carbohydrates were unaffected. Results from a common garden transplant experiment indicate that disease also has an indirect effect on hybrid soft corals by increasing rates of butterflyfish predation over the levels found on healthy hybrids or on healthy and diseased parent species. Our results indicate that interactions between the parent and hybrid soft coral populations are more dynamic than previously reported. Loss of hybrid soft corals on already degraded back-reefs of Guam could have significant repercussions for these reef communities.

  5. Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome

    KAUST Repository

    Roder, C.; Arif, C.; Daniels, C.; Weil, E.; Voolstra, Christian R.

    2014-01-01

    microarrays to assay differences in bacterial assemblages of healthy and diseased colonies displaying White Plague Disease (WPD) signs from two closely related Caribbean coral species, Orbicella faveolata and Orbicella franksi. Analysis of differentially

  6. Immunity to community: what can immune pathways tell us about disease patterns in corals?

    Science.gov (United States)

    Mydlarz, L. D.; Fuess, L.; Pinzon, J. C.; Weil, E.

    2016-02-01

    Predicting species composition and abundances is one of the most fundamental questions in ecology. This question is even more pressing in marine ecology and coral reefs since communities are changing at a rapid pace due to climate-related changes. Increases in disease prevalence and severity are just some of the consequences of these environmental changes. Particularly in coral reef ecosystems, diseases are increasing and driving region-wide population collapses. It has become clear, however, that not all reefs or coral species are affected by disease equally. In fact, the Caribbean is a concentrated area for diseases. The patterns in which disease manifests itself on an individual reef are also proving interesting, as not all coral species are affected by disease equally. Some species are host to different diseases, but seem to successfully fight them reducing mortality. Other species are disproportionately infected on any given reef and experience high mortality due to disease. We are interested in the role immunity can play in directing these patterns and are evaluating coral immunity using several novel approaches. We exposed 4 species of corals with different disease susceptibilities to immune stimulators and quantified of coral immunity using a combination of full transcriptome sequencing and protein activity assays for gene to phenotype analysis. We also mapped gene expression changes onto immune pathways (i.e. melanin-cascade, antimicrobial peptide synthesis, complement cascade, lectin-opsonization) to evaluate expression of immune pathways between species. In our preliminary data we found many immune genes in the disease susceptible Orbicella faveolata underwent changes in gene expression opposite of the predictions and may disply `dysfunctional' patterns of expression. We will present expression data for 4 species of coral and assess how these transcriptional and protein immune responses are related to disease susceptibility in nature, thus scaling up

  7. Multiple mechanisms of transmission of the Caribbean coral disease white plague

    Science.gov (United States)

    Clemens, E.; Brandt, M. E.

    2015-12-01

    White plague is one of the most devastating coral diseases in the Caribbean, and yet important aspects of its epidemiology, including how the disease transmits, remain unknown. This study tested potential mechanisms and rates of transmission of white plague in a laboratory setting. Transmission mechanisms including the transport of water, contact with macroalgae, and predation via corallivorous worms and snails were tested on the host species Orbicella annularis. Two of the tested mechanisms were shown to transmit disease: water transport and the corallivorous snail Coralliophila abbreviata. Between these transmission mechanisms, transport of water between a diseased coral and a healthy coral resulted in disease incidence significantly more frequently in exposed healthy corals. Transmission via water transport also occurred more quickly and was associated with higher rates of tissue loss (up to 3.5 cm d-1) than with the corallivorous snail treatment. In addition, water that was in contact with diseased corals but was filtered with a 0.22-μm filter prior to being introduced to apparently healthy corals also resulted in the transmission of disease signs, but at a much lower rate than when water was not filtered. This study has provided important information on the transmission potential of Caribbean white plague disease and highlights the need for a greater understanding of how these processes operate in the natural environment.

  8. CRED REA Coral Health and Disease Assessment at Hawaii Island, Main Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 17 sites at...

  9. CRED REA Coral Health and Disease Assessment at Saipan Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 8 sites at...

  10. CRED REA Coral Health and Disease Assessment at Kure Atoll, Northwestern Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 9 sites at Kure...

  11. CRED REA Coral Health and Disease Assessment at Johnston Atoll, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 6 sites at...

  12. CRED REA Coral Health and Disease Assessment at Asuncion Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 3 sites at...

  13. CRED REA Coral Health and Disease Assessment at Maug Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 9 sites at Maug...

  14. CRED REA Coral Health and Disease Assessment at Molokai Island, Main Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 3 sites at...

  15. CRED REA Coral Health and Disease Assessment at Midway Atoll, Northwestern Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 9 sites at...

  16. CRED REA Coral Health and Disease Assessment at Rose Island, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 12 sites at...

  17. CRED REA Coral Health and Disease Assessment at Rota Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 6 sites at Rota...

  18. CRED REA Coral Health and Disease Assessment at Oahu, Main Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 2 sites at Oahu...

  19. CRED REA Coral Health and Disease Assessment at Uracas Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 3 sites at...

  20. CRED REA Coral Health and Disease Assessment at Jarvis Island, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 9 sites at...

  1. CRED REA Coral Health and Disease Assessment at Wake Atoll, Pacific Remote Island Areas in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 12 sites at...

  2. CRED REA Coral Health and Disease Assessment at Sarigan Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 3 sites at...

  3. CRED REA Coral Health and Disease Assessment at Tinian Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 5 sites at...

  4. CRED REA Coral Health and Disease Assessment at Kingman Reef, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 11 sites at...

  5. CRED REA Coral Health and Disease Assessment at Guguan Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 3 sites at...

  6. CRED REA Coral Health and Disease Assessment at Ofu-Olosega Island, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 10 sites at...

  7. CRED REA Coral Health and Disease Assessment at Swains Atoll, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 8 sites at...

  8. CRED REA Coral Health and Disease Assessment at Ta'u Island, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 9 sites at Ta'u...

  9. CRED REA Coral Health and Disease Assessment at Lehua Rock, Main Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 3 sites at...

  10. CRED REA Coral Health and Disease Assessment at Maui Island, Main Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 11 sites at...

  11. CRED REA Coral Health and Disease Assessment at Guam, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 10 sites at...

  12. CRED REA Coral Health and Disease Assessment at Necker Island, Northwestern Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 2 sites at...

  13. CRED REA Coral Health and Disease Assessment at Pagan Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 9 sites at...

  14. CRED REA Coral Health and Disease Assessment at Lisianski Island, Northwestern Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 9 sites at...

  15. CRED REA Coral Health and Disease Assessment at Aguijan Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 1 sites at...

  16. CRED REA Coral Health and Disease Assessment at Alamagan Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 3 sites at...

  17. CRED REA Coral Health and Disease Assessment at Agrihan Island, Marianas Archipelago in 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 3 sites at...

  18. CRED REA Coral Health and Disease Assessment at Laysan Island, Northwestern Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 3 sites at...

  19. CRED REA Coral Health and Disease Assessment at Kaula Rock, Main Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 2 sites at...

  20. CRED REA Coral Health and Disease Assessment at Tutuila Island, American Samoa in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 23 sites at...

  1. CRED REA Coral Health and Disease Assessment at Niihau Island, Main Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 6 sites at...

  2. CRED REA Coral Health and Disease Assessment at French Frigate Shoals, Northwestern Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 10 sites at...

  3. CRED REA Coral Health and Disease Assessment at Lanai Island, Main Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 6 sites at...

  4. Link between sewage-derived nitrogen pollution and coral disease severity in Guam

    International Nuclear Information System (INIS)

    Redding, Jamey E.; Myers-Miller, Roxanna L.; Baker, David M.; Fogel, Marilyn; Raymundo, Laurie J.; Kim, Kiho

    2013-01-01

    Highlights: • We evaluated sources of nitrogen pollution in coastal waters of Guam. • Stable isotope analyses showed the dominance of sewage-derived nitrogen. • Nitrogen inputs correlated with coral disease severity. • Planned population increase on Guam will exacerbate impact of coral diseases. -- Abstract: The goals of this study were to evaluate the contribution of sewage-derived N to reef flat communities in Guam and to assess the impact of N inputs on coral disease. We used stable isotope analysis of macroalgae and a soft coral, sampled bimonthly, as a proxy for N dynamics, and surveyed Porites spp., a dominant coral taxon on Guam’s reefs, for white syndrome disease severity. Results showed a strong influence of sewage-derived N in nearshore waters, with δ 15 N values varying as a function of species sampled, site, and sampling date. Increases in sewage-derived N correlated significantly with increases in the severity of disease among Porites spp., with δ 15 N values accounting for more than 48% of the variation in changes in disease severity. The anticipated military realignment and related population increase in Guam are expected to lead to increased white syndrome infections and other coral diseases

  5. Corals hosting symbiotic hydrozoans are less susceptible to predation and disease

    KAUST Repository

    Montano, Simone

    2017-12-20

    In spite of growing evidence that climate change may dramatically affect networks of interacting species, whether-and to what extent-ecological interactions can mediate species\\' responses to disturbances is an open question. Here we show how a largely overseen association such as that between hydrozoans and scleractinian corals could be possibly associated with a reduction in coral susceptibility to ever-increasing predator and disease outbreaks. We examined 2455 scleractinian colonies (from both Maldivian and the Saudi Arabian coral reefs) searching for non-random patterns in the occurrence of hydrozoans on corals showing signs of different health conditions (i.e. bleaching, algal overgrowth, corallivory and different coral diseases). We show that, after accounting for geographical, ecological and co-evolutionary factors, signs of disease and corallivory are significantly lower in coral colonies hosting hydrozoans than in hydrozoan-free ones. This finding has important implications for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced by warming water temperatures.

  6. Spatio-temporal transmission patterns of black-band disease in a coral community.

    Directory of Open Access Journals (Sweden)

    Assaf Zvuloni

    Full Text Available BACKGROUND: Transmission mechanisms of black-band disease (BBD in coral reefs are poorly understood, although this disease is considered to be one of the most widespread and destructive coral infectious diseases. The major objective of this study was to assess transmission mechanisms of BBD in the field based on the spatio-temporal patterns of the disease. METHODOLOGY/PRINCIPAL FINDINGS: 3,175 susceptible and infected corals were mapped over an area of 10x10 m in Eilat (northern Gulf of Aqaba, Red Sea and the distribution of the disease was examined monthly throughout almost two full disease cycles (June 2006-December 2007. Spatial and spatio-temporal analyses were applied to infer the transmission pattern of the disease and to calculate key epidemiological parameters such as (basic reproduction number. We show that the prevalence of the disease is strongly associated with high water temperature. When water temperatures rise and disease prevalence increases, infected corals exhibit aggregated distributions on small spatial scales of up to 1.9 m. Additionally, newly-infected corals clearly appear in proximity to existing infected corals and in a few cases in direct contact with them. We also present and test a model of water-borne infection, indicating that the likelihood of a susceptible coral becoming infected is defined by its spatial location and by the relative spatial distribution of nearby infected corals found in the site. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence that local transmission, but not necessarily by direct contact, is likely to be an important factor in the spread of the disease over the tested spatial scale. In the absence of potential disease vectors with limited mobility (e.g., snails, fireworms in the studied site, water-borne infection is likely to be a significant transmission mechanism of BBD. Our suggested model of water-borne transmission supports this hypothesis. The spatio-temporal analysis also points

  7. SPATIAL HETEROGENEITY OF PHOTOSYNTHETIC ACTIVITY WITHIN DISEASED CORALS FROM THE GREAT BARRIER REEF

    DEFF Research Database (Denmark)

    Roff, George; Ulstrup, Karin Elizabeth; Fine, Maoz

    2008-01-01

    Morphological diagnosis and descriptions of seven disease-like syndromes affecting scleractinian corals were characterized from the southern Great Barrier Reef (GBR). Chl a fluorescence of PSII was measured using an Imaging-PAM (pulse amplitude modulated) fluorometer, enabling visualization...... with white patch syndrome appeared to impact primarily on the symbiotic dinoflagellates, as evidenced by declines in minimum fluorescence (F0) and maximum quantum yield (Fv/Fm), with no indication of degeneration in the host tissues. Our results suggest that for the majority of coral syndromes from the GBR......, pathogenesis occurs in the host tissue, while the impact on the zooxanthellae populations residing in affected corals is minimal....

  8. White plague disease outbreak in a coral reef at Los Roques National Park, Venezuela.

    Science.gov (United States)

    Croquer, Aldo; Pauls, Sheila M; Zubillaga, Ainhoa L

    2003-06-01

    Coral diseases have been reported as a major problem affecting Caribbean coral reefs. During August 2000, a coral mortality event of White Plague Disease-II (WPD-II) was observed at Madrizqui Reef in Los Roques National Park, Venezuela. This disease was identified as the major cause of coral mortality, affecting 24% of all colonies surveyed (n = 1 439). Other diseases such as Black Band Disease (BBD), Yellow Blotch Disease (YBD), Dark Spots Disease (DSD) and White Band Disease (WBD) were also recorded, but showed a lower incidence (0.14-0.97%). Two depth intervals, D1 (5.5-6.5 m) and D2 (9-9.5 m) were surveyed with two sets of three band transects 50 x 2 m long, placed parallel to the long axis of the reef. All healthy and injured corals, along each band transect, were counted and identified to species level. Additionally, all diseases and recent mortality that were still identifiable on each colony also were recorded. The incidence of colonies affected by WPD-II ranged from 12.8 to 33% among transects, where thirteen species of scleractinian corals showed several degrees of mortality. The species most affected were Montastraea annularis (39.13%), M. faveolata (26.67%), M. franksi (9.86%), Stephanocoenia intersepta (7.25%), Colpophyllia natans (6.96%), Diploria labyrinthiformis (2.99%), Mycetophyllia aliciae (2.03%), M. cavernosa (1.74%), and D. strigosa (1.45%). WPD-II was more common in the deeper strata (9-9.5 m), where 63% of the surveyed colonies were affected, although the disease was present along the entire reef. Presently, it is imperative to determine how fast the disease is spreading across the reef, how the disease spreads across the affected colonies and what the long-term effects on the reef will be.

  9. Do elevated nutrients and organic carbon on Philippine reefs increase the prevalence of coral disease?

    Science.gov (United States)

    Kaczmarsky, L.; Richardson, L. L.

    2011-03-01

    Characterizations of Philippine coral diseases are very limited. The two most common, ulcerative white spot disease (UWS) and massive Porites growth anomalies (MPGA), target the genus Porites, a dominant reef-building genus. This is the first investigation in the Philippines to detect positive correlations between coral disease, nutrient levels, and organic carbon. A total of 5,843 Porites colonies were examined. Water and sediment samples were collected for analyses of nutrients (total nitrogen and phosphorus) and total organic carbon at 15 sites along a 40.5 km disease gradient, which was previously shown to positively correlate with human population levels. Results suggest that outbreaks of UWS and MPGAs are driven by elevated nutrient and organic carbon levels. Although the variables analyzed could be proxies for other causative agents (e.g., high sediment levels), the results provide quantitative evidence linking relatively higher coral disease prevalence to an anthropogenically impacted environment.

  10. White plague-like coral disease in remote reefs of the Western Caribbean

    Directory of Open Access Journals (Sweden)

    Juan A Sánchez

    2010-05-01

    Full Text Available The health of coral reef communities has been decreasing over the last 50 years, due the negative effects of human activities combined with other natural processes. We present documentation of a White Plague Disease (WPD outbreak in the Serrana Bank, an isolated Western Caribbean atoll with presumably inexistent pollutant inputs from local human settlements. In addition, this study summarizes seven years of observations on diseased corals in the nearby island of San Andrés, which in contrast is one of the most populated islands of the Caribbean. There was a massive coral mortality in the atoll lagoon (14°27’53.24", 80°14’22.27" W, and 12m depth due to WPD on May 4 of 2003. Seventeen species were found dead or largely affected by the disease. The information resulting from GPS and manta-tow transects revealed that approximately 5.8ha of reticulate Montastraea spp. patch reefs were lethally affected by the disease in the atoll. On May 8 of the same year we observed and calculated a mean coral cover of 7.03% (SD± 2.44, a mean diseased coral tissue cover of 5.5% (SD± 1.1 and a 13.4% (SD± 8.05 of recently dead coral covered with a thin filamentous algae layer; approximately 73% of mortalities caused by the disease occurred before the end of the outbreak. A rough estimate of 18.9% in recent coral cover reduction can be attributed to WPD. This represents about 82% of the total coral cover decline since 1995. Semi-enclosed environments such as atoll lagoons and the reticulate patch-reefs of Montastraea spp. seem to be particularly vulnerable to this kind of coral disease, which constitute an alert to increase the monitoring of the same kind of atoll environments. The WPD has been present in the area of the nearby island of San Andrés at a low prevalence level, with sporadic increasing peaks of disease proliferation. The peaks observed during 1999 and 2004 comprised increases of 266% and 355% respectively, suggesting an alarming progression of

  11. Spatiotemporal patterns of coral disease prevalence on Heron Island, Great Barrier Reef, Australia

    Science.gov (United States)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2010-12-01

    Despite increasing research effort on coral diseases, little is known about factors driving disease dynamics on the Great Barrier Reef (GBR). This is the first study to investigate the temporal patterns of coral disease prevalence and potential drivers of disease around Heron Island, in the southern Capricorn Bunker sector of the GBR. Surveys were conducted in two austral summers and three winters between November 2007 and August 2009 on six sites around the island. Six diseases were detected: brown band syndrome (BrB), growth anomalies (GA), ulcerative white spots (UWS), white syndrome (WS), skeletal eroding band disease (SEB) and black band disease (BBD). The lowest overall mean disease prevalence was 1.87 ± 0.75% (mean ± SE) in November 2007 and the highest 4.22 ± 1.72% in August 2008. There was evidence of seasonality for two diseases: BrB and UWS. This is the first study to report a higher prevalence of BrB in the winter. BrB had a prevalence of 3.29 ± 0.58% in August 2008 and 1.53 ± 0.28% in August 2009, while UWS was the most common syndrome in the summer with a prevalence of 1.12 ± 0.31% in November 2007 and 2.67 ± 0.52% prevalence in January 2008. The prevalence of GAs and SEB did not depend on the season, although the prevalence of GAs increased throughout the study period. WS had a slightly higher prevalence in the summer, but its overall prevalence was low (disease prevalence (12% of Acropora and 3.3% of Montipora species were diseased respectively). These results highlight the correlations between coral disease prevalence, seasonally varying environmental parameters and coral community composition. Given that diseases are likely to reduce the resilience of corals, seasonal patterns in disease prevalence deserve further research.

  12. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions.

    Science.gov (United States)

    Thompson, Janelle R; Rivera, Hanny E; Closek, Collin J; Medina, Mónica

    2014-01-01

    In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health-not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.

  13. Disease outbreaks, bleaching and a cyclone drive changes in coral assemblages on an inshore reef of the Great Barrier Reef

    Science.gov (United States)

    Haapkylä, J.; Melbourne-Thomas, J.; Flavell, M.; Willis, B. L.

    2013-09-01

    Coral disease is a major threat to the resilience of coral reefs; thus, understanding linkages between disease outbreaks and disturbances predicted to increase with climate change is becoming increasingly important. Coral disease surveys conducted twice yearly between 2008 and 2011 at a turbid inshore reef in the central Great Barrier Reef spanned two disturbance events, a coral bleaching event in 2009 and a severe cyclone (cyclone `Yasi') in 2011. Surveys of coral cover, community structure and disease prevalence throughout this 4-yr study provide a unique opportunity to explore cumulative impacts of disturbance events and disease for inshore coral assemblages. The principal coral disease at the study site was atramentous necrosis (AtN), and it primarily affected the key inshore, reef-building coral Montipora aequituberculata. Other diseases detected were growth anomalies, white syndrome and brown band syndrome. Diseases affected eight coral genera, although Montipora was, by far, the genus mostly affected. The prevalence of AtN followed a clear seasonal pattern, with disease outbreaks occurring only in wet seasons. Mean prevalence of AtN on Montipora spp. (63.8 % ± 3.03) was three- to tenfold greater in the wet season of 2009, which coincided with the 2009 bleaching event, than in other years. Persistent wet season outbreaks of AtN combined with the impacts of bleaching and cyclone events resulted in a 50-80 % proportional decline in total coral cover. The greatest losses of branching and tabular acroporids occurred following the low-salinity-induced bleaching event of 2009, and the greatest losses of laminar montiporids occurred following AtN outbreaks in 2009 and in 2011 following cyclone Yasi. The shift to a less diverse coral assemblage and the concomitant loss of structural complexity are likely to have long-term consequences for associated vertebrate and invertebrate communities on Magnetic Island reefs.

  14. The ecology of 'Acroporid white syndrome', a coral disease from the southern Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    George Roff

    Full Text Available Outbreaks of coral disease have increased worldwide over the last few decades. Despite this, remarkably little is known about the ecology of disease in the Indo-Pacific Region. Here we report the spatiotemporal dynamics of a coral disease termed 'Acroporid white syndrome' observed to affect tabular corals of the genus Acropora on the southern Great Barrier Reef. The syndrome is characterised by rapid tissue loss initiating in the basal margins of colonies, and manifests as a distinct lesion boundary between apparently healthy tissue and exposed white skeleton. Surveys of eight sites around Heron Reef in 2004 revealed a mean prevalence of 8.1±0.9%, affecting the three common species (Acropora cytherea, A. hyacinthus, A. clathrata and nine other tabular Acropora spp. While all sizes of colonies were affected, white syndrome disproportionately affected larger colonies of tabular Acroporids (>80 cm. The prevalence of white syndrome was strongly related to the abundance of tabular Acroporids within transects, yet the incidence of the syndrome appears unaffected by proximity to other colonies, suggesting that while white syndrome is density dependant, it does not exhibit a strongly aggregated spatial pattern consistent with previous coral disease outbreaks. Acroporid white syndrome was not transmitted by either direct contact in the field or by mucus in aquaria experiments. Monitoring of affected colonies revealed highly variable rates of tissue loss ranging from 0 to 1146 cm(-2 week(-1, amongst the highest documented for a coral disease. Contrary to previous links between temperature and coral disease, rates of tissue loss in affected colonies increased threefold during the winter months. Given the lack of spatial pattern and non-infectious nature of Acroporid white syndrome, further studies are needed to determine causal factors and longer-term implications of disease outbreaks on the Great Barrier Reef.

  15. SIMAC: development and implementation of a coral reef monitoring network in Colombia.

    Science.gov (United States)

    Garzón-Ferreira, Jaime; Rodríguez-Ramírez, Alberto

    2010-05-01

    Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research") designed and implemented SIMAC (Sistema Nacional de Monitorco de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia") with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific), 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity) and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the Internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase).

  16. ETIOLOGY OF WHITE POX, A LETHAL DISEASE OF THE CARIBBEAN ELKHORN CORAL, ACROPORA PALMATA.

    Science.gov (United States)

    Populations of the shallow-water Caribbean elkhorn coral, Acropora palmata, are being decimated by white pox disease, with losses in the Florida Keys typically in excess of 70%. Tissue loss is rapid, averaging 2.5 cm2 day-1. A bacterium isolated from diseased A. palmata was shown...

  17. Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata

    KAUST Repository

    Closek, Collin J.

    2014-06-20

    Coral diseases impact reefs globally. Although we continue to describe diseases, little is known about the etiology or progression of even the most common cases. To examine a spectrum of coral health and determine factors of disease progression we examined Orbicella faveolata exhibiting signs of Yellow Band Disease (YBD), a widespread condition in the Caribbean. We used a novel combined approach to assess three members of the coral holobiont: the coral-host, associated Symbiodinium algae, and bacteria. We profiled three conditions: (1) healthy-appearing colonies (HH), (2) healthy-appearing tissue on diseased colonies (HD), and (3) diseased lesion (DD). Restriction fragment length polymorphism analysis revealed health state-specific diversity in Symbiodinium clade associations. 16S ribosomal RNA gene microarrays (PhyloChips) and O. faveolata complimentary DNA microarrays revealed the bacterial community structure and host transcriptional response, respectively. A distinct bacterial community structure marked each health state. Diseased samples were associated with two to three times more bacterial diversity. HD samples had the highest bacterial richness, which included components associated with HH and DD, as well as additional unique families. The host transcriptome under YBD revealed a reduced cellular expression of defense- and metabolism-related processes, while the neighboring HD condition exhibited an intermediate expression profile. Although HD tissue appeared visibly healthy, the microbial communities and gene expression profiles were distinct. HD should be regarded as an additional (intermediate) state of disease, which is important for understanding the progression of YBD. © 2014 International Society for Microbial Ecology. All rights reserved.

  18. Fungi in Porites lutea: Association with healthy and diseased corals

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Raghukumar, C.; Raghukumar, S.

    It is found that fungi to occur regularly in healthy, partially dead, bleached and pink-line syndrome (PLS)-affected scleractinian coral, Porites lutea, in the reefs of Lakshadweep Islands in the Arabian Sea. Mostly terrestrial species of fungi were isolated...

  19. Contemporary white-band disease in Caribbean corals driven by climate change

    Science.gov (United States)

    Randall, C. J.; van Woesik, R.

    2015-04-01

    Over the past 40 years, two of the dominant reef-building corals in the Caribbean, Acropora palmata and Acropora cervicornis, have experienced unprecedented declines. That loss has been largely attributed to a syndrome commonly referred to as white-band disease. Climate change-driven increases in sea surface temperature (SST) have been linked to several coral diseases, yet, despite decades of research, the attribution of white-band disease to climate change remains unknown. Here we hindcasted the potential relationship between recent ocean warming and outbreaks of white-band disease on acroporid corals. We quantified eight SST metrics, including rates of change in SST and contemporary thermal anomalies, and compared them with records of white-band disease on A. palmata and A. cervicornis from 473 sites across the Caribbean, surveyed from 1997 to 2004. The results of our models suggest that decades-long climate-driven changes in SST, increases in thermal minima, and the breach of thermal maxima have all played significant roles in the spread of white-band disease. We conclude that white-band disease has been strongly coupled with thermal stresses associated with climate change, which has contributed to the regional decline of these once-dominant reef-building corals.

  20. Disturbance driven colony fragmentation as a driver of a coral disease outbreak.

    Directory of Open Access Journals (Sweden)

    Marilyn E Brandt

    Full Text Available In September of 2010, Brewer's Bay reef, located in St. Thomas (U.S. Virgin Islands, was simultaneously affected by abnormally high temperatures and the passage of a hurricane that resulted in the mass bleaching and fragmentation of its coral community. An outbreak of a rapid tissue loss disease among coral colonies was associated with these two disturbances. Gross lesion signs and lesion progression rates indicated that the disease was most similar to the Caribbean coral disease white plague type 1. Experiments indicated that the disease was transmissible through direct contact between colonies, and five-meter radial transects showed a clustered spatial distribution of disease, with diseased colonies being concentrated within the first meter of other diseased colonies. Disease prevalence and the extent to which colonies were bleached were both significantly higher on unattached colony fragments than on attached colonies, and disease occurred primarily on fragments found in direct contact with sediment. In contrast to other recent studies, disease presence was not related to the extent of bleaching on colonies. The results of this study suggest that colony fragmentation and contact with sediment played primary roles in the initial appearance of disease, but that the disease was capable of spreading among colonies, which suggests secondary transmission is possible through some other, unidentified mechanism.

  1. From Citizen Science to Policy Development on the Coral Reefs of Jamaica

    Directory of Open Access Journals (Sweden)

    M. James C. Crabbe

    2012-01-01

    Full Text Available This paper explores the application of citizen science to help generation of scientific data and capacity-building, and so underpin scientific ideas and policy development in the area of coral reef management, on the coral reefs of Jamaica. From 2000 to 2008, ninety Earthwatch volunteers were trained in coral reef data acquisition and analysis and made over 6,000 measurements on fringing reef sites along the north coast of Jamaica. Their work showed that while recruitment of small corals is returning after the major bleaching event of 2005, larger corals are not necessarily so resilient and so need careful management if the reefs are to survive such major extreme events. These findings were used in the development of an action plan for Jamaican coral reefs, presented to the Jamaican National Environmental Protection Agency. It was agreed that a number of themes and tactics need to be implemented in order to facilitate coral reef conservation in the Caribbean. The use of volunteers and citizen scientists from both developed and developing countries can help in forging links which can assist in data collection and analysis and, ultimately, in ecosystem management and policy development.

  2. Rayleigh-based, multi-element coral thermometry: A biomineralization approach to developing climate proxies

    Science.gov (United States)

    Gaetani, G.A.; Cohen, A.L.; Wang, Z.; Crusius, John

    2011-01-01

    This study presents a new approach to coral thermometry that deconvolves the influence of water temperature on skeleton composition from that of “vital effects”, and has the potential to provide estimates of growth temperatures that are accurate to within a few tenths of a degree Celsius from both tropical and cold-water corals. Our results provide support for a physico-chemical model of coral biomineralization, and imply that Mg2+ substitutes directly for Ca2+ in biogenic aragonite. Recent studies have identified Rayleigh fractionation as an important influence on the elemental composition of coral skeletons. Daily, seasonal and interannual variations in the amount of aragonite precipitated by corals from each “batch” of calcifying fluid can explain why the temperature dependencies of elemental ratios in coral skeleton differ from those of abiogenic aragonites, and are highly variable among individual corals. On the basis of this new insight into the origin of “vital effects” in coral skeleton, we developed a Rayleigh-based, multi-element approach to coral thermometry. Temperature is resolved from the Rayleigh fractionation signal by combining information from multiple element ratios (e.g., Mg/Ca, Sr/Ca, Ba/Ca) to produce a mathematically over-constrained system of Rayleigh equations. Unlike conventional coral thermometers, this approach does not rely on an initial calibration of coral skeletal composition to an instrumental temperature record. Rather, considering coral skeletogenesis as a biologically mediated, physico-chemical process provides a means to extract temperature information from the skeleton composition using the Rayleigh equation and a set of experimentally determined partition coefficients. Because this approach is based on a quantitative understanding of the mechanism that produces the “vital effect” it should be possible to apply it both across scleractinian species and to corals growing in vastly different environments. Where

  3. Changes in Caribbean coral disease prevalence after the 2005 bleaching event.

    Science.gov (United States)

    Cróquer, Aldo; Weil, Ernesto

    2009-11-16

    Bleaching events and disease epizootics have increased during the past decades, suggesting a positive link between these 2 causes in producing coral mortality. However, studies to test this hypothesis, integrating a broad range of hierarchical spatial scales from habitats to distant localities, have not been conducted in the Caribbean. In this study, we examined links between bleaching intensity and disease prevalence collected from 6 countries, 2 reef sites for each country, and 3 habitats within each reef site (N = 6 x 2 x 3 = 36 site-habitat combinations) during the peak of bleaching in 2005 and a year after, in 2006. Patterns of disease prevalence and bleaching were significantly correlated (Rho = 0.58, p = 0.04). Higher variability in disease prevalence after bleaching occurred among habitats at each particular reef site, with a significant increase in prevalence recorded in 4 of the 10 site-habitats where bleaching was intense and a non-significant increase in disease prevalence in 18 out of the 26 site-habitats where bleaching was low to moderate. A significant linear correlation was found (r = 0.89, p = 0.008) between bleaching and the prevalence of 2 virulent diseases (yellow band disease and white plague) affecting the Montastraea species complex. Results of this study suggest that if bleaching events become more intense and frequent, disease-related mortality of Caribbean coral reef builders could increase, with uncertain effects on coral reef resilience.

  4. Natural variations in xenobiotic-metabolizing enzymes: developing tools for coral monitoring

    Science.gov (United States)

    Rougée, L. R. A.; Richmond, R. H.; Collier, A. C.

    2014-06-01

    The continued deterioration of coral reefs worldwide demonstrates the need to develop diagnostic tools for corals that go beyond general ecological monitoring and can identify specific stressors at sublethal levels. Cellular diagnostics present an approach to defining indicators (biomarkers) that have the potential to reflect the impact of stress at the cellular level, allowing for the detection of intracellular changes in corals prior to outright mortality. Detoxification enzymes, which may be readily induced or inhibited by environmental stressors, present such a set of indicators. However, in order to apply these diagnostic tools for the detection of stress, a detailed understanding of their normal, homeostatic levels within healthy corals must first be established. Herein, we present molecular and biochemical evidence for the expression and activity of major Phase I detoxification enzymes cytochrome P450 (CYP450), CYP2E1, and CYP450 reductase, as well as the Phase II enzymes UDP, glucuronosyltransferase (UGT), β-glucuronidase, glutathione- S-transferase (GST), and arylsulfatase C (ASC) in the coral Pocillopora damicornis. Additionally, we characterized enzyme expression and activity variations over a reproductive cycle within a coral's life history to determine natural endogenous changes devoid of stress exposure. Significant changes in enzyme activity over the coral's natural lunar reproductive cycle were observed for CYP2E1 and CYP450 reductase as well as UGT and GST, while β-glucuronidase and ASC did not fluctuate significantly. The data represent a baseline description of `health' for the expression and activity of these enzymes that can be used toward understanding the impact of environmental stressors on corals. Such knowledge can be applied to address causes of coral reef ecosystem decline and to monitor effectiveness of mitigation strategies. Achieving a better understanding of cause-and-effect relationships between putative stressors and biological

  5. Antibacterial Activity of Marine and Black Band Disease Cyanobacteria against Coral-Associated Bacteria

    Science.gov (United States)

    Gantar, Miroslav; Kaczmarsky, Longin T.; Stanić, Dina; Miller, Aaron W.; Richardson, Laurie L.

    2011-01-01

    Black band disease (BBD) of corals is a cyanobacteria-dominated polymicrobial disease that contains diverse populations of heterotrophic bacteria. It is one of the most destructive of coral diseases and is found globally on tropical and sub-tropical reefs. We assessed ten strains of BBD cyanobacteria, and ten strains of cyanobacteria isolated from other marine sources, for their antibacterial effect on growth of heterotrophic bacteria isolated from BBD, from the surface mucopolysaccharide layer (SML) of healthy corals, and three known bacterial coral pathogens. Assays were conducted using two methods: co-cultivation of cyanobacterial and bacterial isolates, and exposure of test bacteria to (hydrophilic and lipophilic) cyanobacterial cell extracts. During co-cultivation, 15 of the 20 cyanobacterial strains tested had antibacterial activity against at least one of the test bacterial strains. Inhibition was significantly higher for BBD cyanobacteria when compared to other marine cyanobacteria. Lipophilic extracts were more active than co-cultivation (extracts of 18 of the 20 strains were active) while hydrophilic extracts had very limited activity. In some cases co-cultivation resulted in stimulation of BBD and SML bacterial growth. Our results suggest that BBD cyanobacteria are involved in structuring the complex polymicrobial BBD microbial community by production of antimicrobial compounds. PMID:22073011

  6. Predation scars may influence host susceptibility to pathogens: evaluating the role of corallivores as vectors of coral disease.

    Science.gov (United States)

    Nicolet, K J; Chong-Seng, K M; Pratchett, M S; Willis, B L; Hoogenboom, M O

    2018-03-27

    Infectious diseases not regulated by host density, such as vector-borne diseases, have the potential to drive population declines and extinctions. Here we test the vector potential of the snail Drupella sp. and butterflyfish Chaetodon plebeius for two coral diseases, black band (BBD) and brown band (BrB) disease. Drupella transmitted BrB to healthy corals in 40% of cases immediately following feeding on infected corals, and even in 12% of cases 12 and 24 hours following feeding. However, Drupella was unable to transmit BBD in either transmission treatment. In a field experiment testing the vector potential of naturally-occurring fish assemblages, equivalent numbers of caged and uncaged coral fragments became infected with either BrB, BBD or skeletal eroding band, indicating that corallivorous fish were unlikely to have caused transmission. In aquaria, C. plebeius did not transmit either BBD or BrB, even following extended feeding on both infected and healthy nubbins. A literature review confirmed only four known coral disease vectors, all invertebrates, corroborating our conclusion that polyp-feeding fishes are unlikely to be vectors of coral diseases. This potentially because polyp-feeding fishes produce shallow lesions, not allowing pathogens to invade coral tissues. In contrast, corallivorous invertebrates that create deeper feeding scars increase pathogens transmission.

  7. The presence of the cyanobacterial toxin microcystin in black band disease of corals.

    Science.gov (United States)

    Richardson, Laurie L; Sekar, Raju; Myers, Jamie L; Gantar, Miroslav; Voss, Joshua D; Kaczmarsky, Longin; Remily, Elizabeth R; Boyer, Gregory L; Zimba, Paul V

    2007-07-01

    Black band disease (BBD) is a migrating, cyanobacterial dominated, sulfide-rich microbial mat that moves across coral colonies lysing coral tissue. While it is known that BBD sulfate-reducing bacteria contribute to BBD pathogenicity by production of sulfide, additional mechanisms of toxicity may be involved. Using HPLC/MS, the cyanotoxin microcystin was detected in 22 field samples of BBD collected from five coral species on nine reefs of the wider Caribbean (Florida Keys and Bahamas). Two cyanobacterial cultures isolated from BBD, Geitlerinema and Leptolyngbya sp. contained microcystin based on HPLC/MS, with toxic activity confirmed using the protein phosphatase inhibition assay. The gene mcyA from the microcystin synthesis complex was detected in two field samples and from both BBD cyanobacterial cultures. Microcystin was not detected in six BBD samples from a different area of the Caribbean (St Croix, USVI) and the Philippines, suggesting regional specificity for BBD microcystin. This is the first report of the presence of microcystin in a coral disease.

  8. Coral reefs as drivers of cladogenesis: expanding coral reefs, cryptic extinction events, and the development of biodiversity hotspots.

    Science.gov (United States)

    Cowman, P F; Bellwood, D R

    2011-12-01

    Diversification rates within four conspicuous coral reef fish families (Labridae, Chaetodontidae, Pomacentridae and Apogonidae) were estimated using Bayesian inference. Lineage through time plots revealed a possible late Eocene/early Oligocene cryptic extinction event coinciding with the collapse of the ancestral Tethyan/Arabian hotspot. Rates of diversification analysis revealed elevated cladogenesis in all families in the Oligocene/Miocene. Throughout the Miocene, lineages with a high percentage of coral reef-associated taxa display significantly higher net diversification rates than expected. The development of a complex mosaic of reef habitats in the Indo-Australian Archipelago (IAA) during the Oligocene/Miocene appears to have been a significant driver of cladogenesis. Patterns of diversification suggest that coral reefs acted as a refuge from high extinction, as reef taxa are able to sustain diversification at high extinction rates. The IAA appears to support both cladogenesis and survival in associated lineages, laying the foundation for the recent IAA marine biodiversity hotspot. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  9. Genetic susceptibility, colony size, and water temperature drive white-pox disease on the coral Acropora palmata.

    Science.gov (United States)

    Muller, Erinn M; van Woesik, Robert

    2014-01-01

    Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes.

  10. Genetic susceptibility, colony size, and water temperature drive white-pox disease on the coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Erinn M Muller

    Full Text Available Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes.

  11. SIMAC: Development and implementation of a coral reef monitoring network in Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Garzón-Ferreira

    2010-05-01

    Full Text Available Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research" designed and implemented SIMAC (Sistema Nacional de Monitoreo de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia" with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific, 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase. Rev. Biol. Trop. 58 (Suppl. 1: 67-80. Epub 2010 May 01.

  12. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience.

    Science.gov (United States)

    Peixoto, Raquel S; Rosado, Phillipe M; Leite, Deborah Catharine de Assis; Rosado, Alexandre S; Bourne, David G

    2017-01-01

    The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium . Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting

  13. CRED REA Coral Health and Disease Assessment at Howland Island, Phoenix Islands, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 5 sites around...

  14. CRED REA Coral Health and Disease Assessment at Baker Island, Phoenix Islands, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 4 sites around...

  15. CRED REA Coral Health and Disease Assessment at at Palmyra Atoll, Pacific Remote Island Areas in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 14 sites at...

  16. CRED REA Coral Health and Disease Assessment at Pearl and Hermes Atoll, Northwestern Hawaiian Islands in 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Coral health and disease assessments were conducted along 2 consecutively placed 25-m transects, as part of Rapid Ecological Assessments conducted at 13 sites at...

  17. Metatranscriptome Sequencing of a Reef-building Coral Elucidates Holobiont Community Gene Functions in Health and Disease

    Science.gov (United States)

    Timberlake, S.; Helbig, T.; Fernando, S.; Penn, K.; Alm, E.; Thompson, F.; Thompson, J. R.

    2012-12-01

    The coral reefs of the Abrolhos Bank of Brazil play a vital ecological role in the health of the Southern Atlantic Ocean, but accelerating rates of disease, particularly white plague, threaten this ecosystem. Thus, an understanding of white plague disease and diagnostic tests for it are urgently needed. The coral animal is associated with a distinct microbiome, a diverse assemblage of eukaryotes, bacteria, and viruses. That these microbes have a great influence on the health of the coral has been long known, however, most of their functions are still mysterious. While recent studies have contrasted healthy and white-plague-associated communities, the causative agents and mechanisms of the disease remain unknown. We collected fragments of healthy and diseased corals, as well as post-disease skeleton, from 12 colonies of the genus Mussismilia, the major component of the reef structure in the Abrolhos bank, and increasingly, a victim of white-plague disease. Fragments were flash-frozen in situ, and prepped for culture-free high throughput sequencing of gene transcripts with the Illumina II-G. While the membership of the microbial communities associated with coral has been previously described, the a coral holobiont community's gene function has, to date, never been assayed by this powerful approach. We designed a bioinformatics pipeline to analyze the short-read data from this complex sample: identifying the functions of genes expressed in the holobiont, and describing the active community's taxonomic composition. We show that gene functions expressed by the coral's bacterial assemblage are distinct from those of the underlying skeleton, and we highlight differences in the disease samples. We find that gene markers for the dissimilatory sulfate reduction pathway more abundant in the disease state, and we further quantify this difference with qPCR. Finally, we report the abundant expression of highly repetitive transcripts in the diseased coral samples, and highlight

  18. Adaptation of cyanobacteria to the sulfide-rich microenvironment of black band disease of coral.

    Science.gov (United States)

    Myers, Jamie L; Richardson, Laurie L

    2009-02-01

    Black band disease (BBD) is a cyanobacteria-dominated microbial mat that migrates across living coral colonies lysing coral tissue and leaving behind exposed coral skeleton. The mat is sulfide-rich due to the presence of sulfate-reducing bacteria, integral members of the BBD microbial community, and the sulfide they produce is lethal to corals. The effect of sulfide, normally toxic to cyanobacteria, on the photosynthetic capabilities of five BBD cyanobacterial isolates of the genera Geitlerinema (3), Leptolyngbya (1), and Oscillatoria (1) and six non-BBD cyanobacteria of the genera Leptolyngbya (3), Pseudanabaena (2), and Phormidium (1) was examined. Photosynthetic experiments were performed by measuring the photoincorporation of [(14)C] NaHCO(3) under the following conditions: (1) aerobic (no sulfide), (2) anaerobic with 0.5 mM sulfide, and (3) anaerobic with 0.5 mM sulfide and 10 microM 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). All five BBD cyanobacterial isolates tolerated sulfide by conducting sulfide-resistant oxygenic photosynthesis. Five of the non-BBD cyanobacterial isolates did not tolerate sulfide, although one Pseudanabaena isolate continued to photosynthesize in the presence of sulfide at a considerably reduced rate. None of the isolates conducted anoxygenic photosynthesis with sulfide as an electron donor. This is the first report on the physiology of a culture of Oscillatoria sp. found globally in BBD.

  19. PATHOGENECITY OF GROUPER SLEEPY DISEASE IRIDOVIRUS (GSDIV: Megalocytivirus, FAMILY Iridoviridae TO CORAL TROUT GROUPER Plectrophomus leopardus

    Directory of Open Access Journals (Sweden)

    Ketut Mahardika

    2009-12-01

    Full Text Available Grouper sleepy disease iridovirus (GSDIV, a member of the genus Megalocytivirus in the family Iridoviridae, has been known to cause large scale mortalities resulting in severe economic losses in grouper industries in south-east Asia including Indonesia. In this study, experimental infection of coral trout grouper Plectrophomus indicus with GSDIV was performed to evaluate the viral pathogenecity to this fish species. After virus exposure, the mortalities of coral trout grouper injected with primary and 10-1 dilution of spleen homogenates derived from tiger grouper Epinephelus fuscoguttatus were 100% and 90%, respectively. Histopathology revealed that moribund fish receiving GSDIV inoculum displayed massive formation of enlarged cells in the spleen and hematopoitic tissues. Under electron microscopy, the enlarged cells were observed as inclusion body bearing cells (IBCs and necrotic cells allowing virus propagation within an intracytoplasmic virus assembly site (VAS. GSDIV virions were 167-200 nm in size. These findings confirmed that GSDIV has severe pathogenicity to coral trout grouper and IBCs as well as necrotic cells were determined to be the pathognomonic sign of megalocytivirus-infected coral trout grouper.

  20. Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation

    Directory of Open Access Journals (Sweden)

    Sasano Masahiko

    2016-01-01

    Full Text Available A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.

  1. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck

    Directory of Open Access Journals (Sweden)

    Allan Joseph Bright

    2016-05-01

    Full Text Available Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI. At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over one year following a series of large swells in March 2008 that fragmented 30 to 93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01 with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006.

  2. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck)

    Science.gov (United States)

    Bright, Allan J.; Rogers, Caroline S.; Brandt, Marilyn E.; Muller, Erinn; Smith, Tyler B.

    2016-01-01

    Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI). At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over 1 year following a series of large swells in March 2008 that fragmented 30–93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01) with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006).

  3. Quantifying bamboo coral growth rate nonlinearity with the radiocarbon bomb spike: A new model for paleoceanographic chronology development

    Science.gov (United States)

    Frenkel, M. M.; LaVigne, M.; Miller, H. R.; Hill, T. M.; McNichol, A.; Gaylord, M. Lardie

    2017-07-01

    Bamboo corals, long-lived cold water gorgonin octocorals, offer unique paleoceanographic archives of the intermediate ocean. These Isididae corals are characterized by alternating gorgonin nodes and high Mg-calcite internodes, which synchronously extend radially. Bamboo coral calcite internodes have been utilized to obtain geochemical proxy data, however, growth rate uncertainty has made it difficult to construct precise chronologies for these corals. Previous studies have relied upon a single tie point from records of the anthropogenic Δ14C bomb spike preserved in the gorgonin nodes of live-collected corals to calculate a mean radial extension rate for the outer 50 years of skeletal growth. Bamboo coral chronologies are typically constructed by applying this mean extension rate to the entire coral record, assuming constant radial extension with coral age. In this study, we aim to test this underlying assumption by analyzing the organic nodes of six California margin bamboo corals at high enough resolution (bomb spike, including two tie points at 1957 and 1970, plus the coral collection date (2007.5) for four samples. Radial extension rates between tie points ranged from 10 to 204 μm/year, with a decrease in growth rate evident between the 1957-1970 and 1970-2007.5 periods for all four corals. A negative correlation between growth rate and coral radius (r =-0.7; p=0.04) was determined for multiple bamboo coral taxa and individuals from the California margin, demonstrating a decline in radial extension rate with specimen age and size. To provide a mechanistic basis for these observations, a simple mathematical model was developed based on the assumption of a constant increase in circular cross sectional area with time to quantify this decline in radial extension rate with coral size between chronological tie points. Applying the area-based model to our Δ14C bomb spike time series from individual corals improves chronology accuracy for all live-collected corals

  4. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis.

    Science.gov (United States)

    Sweet, M J; Croquer, A; Bythell, J C

    2014-08-07

    Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in all WBD samples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent of WBD via tests of Henle-Koch's postulates, it will be vital to experimentally control for populations

  5. Abundance and Multilocus Sequence Analysis of Vibrio Bacteria Associated with Diseased Elkhorn Coral (Acropora palmata) of the Florida Keys.

    Science.gov (United States)

    Kemp, Keri M; Westrich, Jason R; Alabady, Magdy S; Edwards, Martinique L; Lipp, Erin K

    2018-01-15

    The critically endangered elkhorn coral ( Acropora palmata ) is affected by white pox disease (WPX) throughout the Florida Reef Tract and wider Caribbean. The bacterium Serratia marcescens was previously identified as one etiologic agent of WPX but is no longer consistently detected in contemporary outbreaks. It is now believed that multiple etiologic agents cause WPX; however, to date, no other potential pathogens have been thoroughly investigated. This study examined the association of Vibrio bacteria with WPX occurrence from August 2012 to 2014 at Looe Key Reef in the Florida Keys, USA. The concentration of cultivable Vibrio was consistently greater in WPX samples than in healthy samples. The abundance of Vibrio bacteria relative to total bacteria was four times higher in samples from WPX lesions than in adjacent apparently healthy regions of diseased corals based on quantitative PCR (qPCR). Multilocus sequence analysis (MLSA) was used to assess the diversity of 69 Vibrio isolates collected from diseased and apparently healthy A. palmata colonies and the surrounding seawater. Vibrio species with known pathogenicity to corals were detected in both apparently healthy and diseased samples. While the causative agent(s) of contemporary WPX outbreaks remains elusive, our results suggest that Vibrio spp. may be part of a nonspecific heterotrophic bacterial bloom rather than acting as primary pathogens. This study highlights the need for highly resolved temporal sampling in situ to further elucidate the role of Vibrio during WPX onset and progression. IMPORTANCE Coral diseases are increasing worldwide and are now considered a major contributor to coral reef decline. In particular, the Caribbean has been noted as a coral disease hot spot, owing to the dramatic loss of framework-building acroporid corals due to tissue loss diseases. The pathogenesis of contemporary white pox disease (WPX) outbreaks in Acropora palmata remains poorly understood. This study investigates the

  6. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales.

    Science.gov (United States)

    Zaneveld, Jesse R; Burkepile, Deron E; Shantz, Andrew A; Pritchard, Catharine E; McMinds, Ryan; Payet, Jérôme P; Welsh, Rory; Correa, Adrienne M S; Lemoine, Nathan P; Rosales, Stephanie; Fuchs, Corinne; Maynard, Jeffrey A; Thurber, Rebecca Vega

    2016-06-07

    Losses of corals worldwide emphasize the need to understand what drives reef decline. Stressors such as overfishing and nutrient pollution may reduce resilience of coral reefs by increasing coral-algal competition and reducing coral recruitment, growth and survivorship. Such effects may themselves develop via several mechanisms, including disruption of coral microbiomes. Here we report the results of a 3-year field experiment simulating overfishing and nutrient pollution. These stressors increase turf and macroalgal cover, destabilizing microbiomes, elevating putative pathogen loads, increasing disease more than twofold and increasing mortality up to eightfold. Above-average temperatures exacerbate these effects, further disrupting microbiomes of unhealthy corals and concentrating 80% of mortality in the warmest seasons. Surprisingly, nutrients also increase bacterial opportunism and mortality in corals bitten by parrotfish, turning normal trophic interactions deadly for corals. Thus, overfishing and nutrient pollution impact reefs down to microbial scales, killing corals by sensitizing them to predation, above-average temperatures and bacterial opportunism.

  7. Akumal ’s reefs: Stony coral communities along the developing Mexican Caribbean coastline

    Directory of Open Access Journals (Sweden)

    Roshan E Roy

    2004-12-01

    Full Text Available Fringing coral reefs along coastlines experiencing rapid development and human population growth have declined worldwide because of human activity and of natural causes.The "Mayan Riviera "in Quintana Roo,México,attracts large numbers of tourists in part because it still retains some of the natural diversity and it is important to obtain baseline information to monitor changes over time in the area.In this paper,the condition of the stony corals in the developing coastline of the Akumal-area fore reefs is characterized at the start of the new millennium at two depths,and along an inferred sedimentation gradient.Transect surveys were conducted in five fringing reefs starting at haphazardly chosen points.with respect to species composition,live cover,colony density,relative exposure to TAS mats and,for one species (Diploria strigosa ,Dana,1848,tissue regression rates in the presence of TAS mats.Fish population density and herbivory rates are also assessed.Data from line intercept transects (n=74show that live stony coral cover,density and relative peripheral exposure of colonies to turf algal/sediment (TASmats were inversely related to an inferred sediment stress gradient at 13m.In 2000, live stony coral cover had decreased by 40-50%at two sites studied in 1990 by Muñoz-Chagín and de la Cruz- Agüero (1993.About half of this loss apparently occurred between 1998 and 2000 during an outbreak of white plague disease that mostly affected Montastraea faveolata ,and M.annularis .At a 13 m site,where inferred sedimentation rates are relatively high,time series photography of tagged Diploria strigosa ,(n=38showed an average loss of 70 cm 2 of live tissue/coral/year to encroachment by TAS mats during the same period.Whereas densities of carnivorous fishes and herbivores (echinoids,scarids,acanthurids and Microspathodon chrysurus in 2000 were low in belt transects at 10-19 m (n=106,turf-algal gardening pomacentrids were relatively common on these reefs

  8. Distribution and abundance of elkhorn coral, Acropora palmata, and prevalence of white-band disease at Buck Island Reef National Monument, St. Croix, US Virgin Islands

    Science.gov (United States)

    Mayor, Philippe A.; Rogers, Caroline S.; Hillis-Starr, Zandy M.

    2006-05-01

    In the 1970s and 1980s elkhorn coral, Acropora palmata, declined dramatically throughout the Caribbean primarily due to white-band disease (WBD). In 2005, elkhorn coral was proposed for listing as threatened under the US Endangered Species Act. WBD was first documented at Buck Island Reef National Monument (BIRNM). Together with hurricanes WBD reduced live elkhorn coral coverage by probably over 90%. In the past decade some recovery has been observed at BIRNM. This study assessed the distribution and abundance of elkhorn coral and estimated the prevalence of WBD at the monument. Within an area of 795 ha, we estimated 97,232 134,371 (95% confidence limits) elkhorn coral colonies with any dimension of connected live tissue greater than one meter, about 3% of which were infected by WBD. Despite some recovery, the elkhorn coral density remains low and WBD may continue to present a threat to the elkhorn coral population.

  9. The relationship between gorgonian coral (Cnidaria: Gorgonacea) diseases and African dust storms

    Science.gov (United States)

    Weir-Brush, J. R.; Garrison, V.H.; Smith, G.W.; Shinn, E.A.

    2004-01-01

    The number of reports of coral diseases has increased throughout the world in the last 20 years. Aspergillosis, which primarily affects Gorgonia ventalina and G. flabellum, is one of the few diseases to be characterized. This disease is caused by Aspergillus sydowii, a terrestrial fungus with a worldwide distribution. Upon infection, colonies may lose tissue, and ultimately, mortality may occur if the infection is not sequestered. The spores of A. sydowii are African dust storms transport and deposit pathogens, we collected air samples from both dust storms and periods of nondust in St. John, U.S. Virgin Islands. Because we focused on fungal pathogens and used A. sydowii as a model, we isolated and cultured fungi on various types of media. Fungi including Aspergillus spp. were isolated from air samples taken from dust events and non-dust events. Twenty-three separate cultures and seven genera were isolated from dust event samples whereas eight cultures from five genera were isolated from non-dust air samples. Three isolates from the Virgin Islands dust event samples morphologically identified as Aspergillus spp. produced signs of aspergillosis in seafans, and the original pathogens were re-isolated from those diseased seafans fulfilling Koch's Postulates. This research supports the hypothesis that African dust storms transport across the Atlantic Ocean and deposit potential coral pathogens in the Caribbean.

  10. Development and Validation of Computational Fluid Dynamics Models for Prediction of Heat Transfer and Thermal Microenvironments of Corals

    Science.gov (United States)

    Ong, Robert H.; King, Andrew J. C.; Mullins, Benjamin J.; Cooper, Timothy F.; Caley, M. Julian

    2012-01-01

    We present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies. A linear relationship between irradiance and coral surface warming was evident in both the simulation and experimental result agreeing with heat transfer theory. However, CFD models for the steady state simulation produced a better fit to the linear relationship than the experimental data, likely due to experimental error in the empirical measurements. The consistency of our modelling results with experimental observations demonstrates the applicability of CFD simulations, such as the models developed here, to coral bleaching studies. A study of the influence of coral skeletal porosity and skeletal bulk density on surface warming was also undertaken, demonstrating boundary layer behaviour, and interstitial flow magnitude and temperature profiles in coral cross sections. Our models compliment recent studies showing systematic changes in these parameters in some coral colonies and have utility in the prediction of coral bleaching. PMID:22701582

  11. Tissue mortality by Caribbean ciliate infection and white band disease in three reef-building coral species

    Directory of Open Access Journals (Sweden)

    Alejandra Verde

    2016-07-01

    Full Text Available Caribbean ciliate infection (CCI and white band disease (WBD are diseases that affect a multitude of coral hosts and are associated with rapid rates of tissue losses, thus contributing to declining coral cover in Caribbean reefs. In this study we compared tissue mortality rates associated to CCI in three species of corals with different growth forms: Orbicella faveolata (massive-boulder, O. annularis (massive-columnar and Acropora cervicornis (branching. We also compared mortality rates in colonies of A. cervicornis bearing WBD and CCI. The study was conducted at two locations in Los Roques Archipelago National Park between April 2012 and March 2013. In A. cervicornis, the rate of tissue loss was similar between WBD (0.8 ± 1 mm/day, mean ± SD and CCI (0.7 ± 0.9 mm/day. However, mortality rate by CCI in A. cervicornis was faster than in the massive species O. faveolata (0.5 ± 0.6 mm/day and O. annularis (0.3 ± 0.3 mm/day. Tissue regeneration was at least fifteen times slower than the mortality rates for both diseases regardless of coral species. This is the first study providing coral tissue mortality and regeneration rates associated to CCI in colonies with massive morphologies, and it highlights the risks of further cover losses of the three most important reef-building species in the Caribbean.

  12. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata

    KAUST Repository

    Portune, Kevin J.; Voolstra, Christian R.; Medina, Mó nica; Szmant, Alina M.

    2010-01-01

    that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28 °C) and further assessed the effects of two elevated temperatures (30 °C and 31.5 °C) on these expression patterns. Using cDNA

  13. Trade-offs in disease and bleaching susceptibility among two color morphs of the Hawaiian reef coral, Montipora capitata

    Science.gov (United States)

    Shore-Maggio, Amanda; Callahan, Sean M.; Aeby, Greta S.

    2018-06-01

    Two threats impacting coral reefs are bleaching and disease, and differential susceptibility to both exists among and within coral taxa. Bleaching resistance is commonly linked to the clade of endosymbiotic Symbiodinium, but may come at a cost to other biological traits. Montipora capitata is an Indo-Pacific reef-building coral with two color morphs, red and orange, which harbor different clades of Symbiodinium. We explored whether these color morphs displayed differences in bleaching/disease susceptibility and other biological traits (growth rate, reproductive output, and lipid content). We found a trade-off between disease and bleaching susceptibility. The orange morph had significantly higher disease prevalence, whereas the red morph had significantly higher bleaching prevalence. Thermal stress experiments found that bleaching and loss of photochemical efficiency occurred significantly faster in the red morph, but at normal temperatures, the red morph had a significantly higher growth rate. Higher abundance of the red morph in the field suggests that disease resistance is a more successful strategy in the absence of thermal stress events. The orange morph may better tolerate increases in sea temperatures, but may not persist due to decreased growth rate and increased disease susceptibility. Trade-offs in response to stressors highlight the need to consider local and global threats to coral reefs.

  14. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral.

    Science.gov (United States)

    Strader, Marie E; Aglyamova, Galina V; Matz, Mikhail V

    2018-01-04

    Molecular mechanisms underlying coral larval competence, the ability of larvae to respond to settlement cues, determine their dispersal potential and are potential targets of natural selection. Here, we profiled competence, fluorescence and genome-wide gene expression in embryos and larvae of the reef-building coral Acropora millepora daily throughout 12 days post-fertilization. Gene expression associated with competence was positively correlated with transcriptomic response to the natural settlement cue, confirming that mature coral larvae are "primed" for settlement. Rise of competence through development was accompanied by up-regulation of sensory and signal transduction genes such as ion channels, genes involved in neuropeptide signaling, and G-protein coupled receptor (GPCRs). A drug screen targeting components of GPCR signaling pathways confirmed a role in larval settlement behavior and metamorphosis. These results gives insight into the molecular complexity underlying these transitions and reveals receptors and pathways that, if altered by changing environments, could affect dispersal capabilities of reef-building corals. In addition, this dataset provides a toolkit for asking broad questions about sensory capacity in multicellular animals and the evolution of development.

  15. CRED and partners: Environmental Monitoring of Coral Bleaching and Disease in the Hawaiian Islands; Belt Surveys of Coral Population and Disease Assessments at Maui, Hawaii in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The field data described herein are part of a joint NESDIS-NMFS project aimed at advancing the understanding of the occurrence, abundance, and outbreak of coral...

  16. CRED and partners: Environmental Monitoring of Coral Bleaching and Disease in the Hawaiian Islands; belt Surveys of Coral Population and Disease Assessments at Hawaii, Hawaii in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The field data described herein are part of a joint NESDIS-NMFS project aimed at advancing the understanding of the occurrence, abundance, and outbreak of coral...

  17. CRED and partners: Environmental Monitoring of Coral Bleaching and Disease in the Hawaiian Islands; Belt Surveys of Coral Population and Disease Assessments at Maui, Hawaii in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The field data described herein are part of a joint NESDIS-NMFS project aimed at advancing the understanding of the occurrence, abundance, and outbreak of coral...

  18. CRED and partners: Environmental Monitoring of Coral Bleaching and Disease in the Hawaiian Islands; belt Surveys of Coral Population and Disease Assessments at Hawaii, Hawaii in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The field data described herein are part of a joint NESDIS-NMFS project aimed at advancing the understanding of the occurrence, abundance, and outbreak of coral...

  19. CRED and partners: Environmental Monitoring of Coral Bleaching and Disease in the Hawaiian Islands; Belt Surveys of Coral Population and Disease Assessments at Oahu, Hawaii in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The field data described herein are part of a joint NESDIS-NMFS project aimed at advancing the understanding of the occurrence, abundance, and outbreak of coral...

  20. CRED and partners: Environmental Monitoring of Coral Bleaching and Disease in the Hawaiian Islands; Belt Surveys of Coral Population and Disease Assessments at Oahu, Hawaii in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The field data described herein are part of a joint NESDIS-NMFS project aimed at advancing the understanding of the occurrence, abundance, and outbreak of coral...

  1. Repopulation of Zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching.

    Science.gov (United States)

    Toller, W W; Rowan, R; Knowlton, N

    2001-12-01

    Caribbean corals of the Montastraea annularis species complex associate with four taxa of symbiotic dinoflagellates (zooxanthellae; genus Symbiodinium) in ecologically predictable patterns. To investigate the resilience of these host-zooxanthella associations, we conducted field experiments in which we experimentally reduced the numbers of zooxanthellae (by transplanting to shallow water or by shading) and then allowed treated corals to recover. When depletion was not extreme, recovering corals generally contained the same types of zooxanthellae as they did prior to treatment. After severe depletion, however, recovering corals were always repopulated by zooxanthellae atypical for their habitat (and in some cases atypical for the coral species). These unusual zooxanthellar associations were often (but not always) established in experimentally bleached tissues even when adjacent tissues were untreated. Atypical zooxanthellae were also observed in bleached tissues of unmanipulated Montastraea with yellow-blotch disease. In colonies where unusual associations were established, the original taxa of zooxanthellae were not detected even 9 months after the end of treatment. These observations suggest that zooxanthellae in Montastraea range from fugitive opportunists and stress-tolerant generalists (Symbiodinium A and E) to narrowly adapted specialists (Symbiodinium B and C), and may undergo succession.

  2. Comparison of chemical compounds associated with sclerites from healthy and diseased sea fan corals (Gorgonia ventalina

    Directory of Open Access Journals (Sweden)

    Carlos Toledo-Hernández

    2017-08-01

    Full Text Available Background The roles of gorgonian sclerites as structural components and predator deterrents have been widely studied. Yet their role as barriers against microbes has only recently been investigated, and even less is known about the diversity and roles of the chemical compounds associated with sclerites. Methods Here, we examine the semi-volatile organic compound fraction (SVOCs associated with sclerites from healthy and diseased Gorgonia ventalina sea fan corals to understand their possible role as a stress response or in defense of infection. We also measured the oxidative potential of compounds from diseased and healthy G. ventalina colonies. Results The results showed that sclerites harbor a great diversity of SVOCs. Overall, 70 compounds were identified, the majority of which are novel with unknown biological roles. The majority of SVOCs identified exhibit multiple immune-related roles including antimicrobial and radical scavenging functions. The free radical activity assays further confirmed the anti-oxidative potential of some these compounds. The anti-oxidative activity was, nonetheless, similar across sclerites regardless of the health condition of the colony, although sclerites from diseased sea fans display slightly higher anti-oxidative activity than the healthy ones. Discussion Sclerites harbor great SVOCs diversity, the majority of which are novel to sea fans or any other corals. Yet the scientific literature consulted showed that the roles of compounds found in sclerites vary from antioxidant to antimicrobial compounds. However, this study fell short in determine the origin of the SVOCs identified, undermining our capacity to determine the biological roles of the SVOCs on sclerites and sea fans.

  3. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis

    Science.gov (United States)

    Lohr, Kathryn E.; Cameron, Caitlin M.; Williams, Dana E.; Peters, Esther C.

    2014-01-01

    The threatened status (both ecologically and legally) of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1) excision of apparently healthy branch tips from a diseased colony, and (2) placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL). Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys. PMID:25210660

  4. The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata.

    Science.gov (United States)

    Patterson, Kathryn L; Porter, James W; Ritchie, Kim B; Polson, Shawn W; Mueller, Erich; Peters, Esther C; Santavy, Deborah L; Smith, Garriet W

    2002-06-25

    Populations of the shallow-water Caribbean elkhorn coral, Acropora palmata, are being decimated by white pox disease, with losses of living cover in the Florida Keys typically in excess of 70%. The rate of tissue loss is rapid, averaging 2.5 cm2 x day(-1), and is greatest during periods of seasonally elevated temperature. In Florida, the spread of white pox fits the contagion model, with nearest neighbors most susceptible to infection. In this report, we identify a common fecal enterobacterium, Serratia marcescens, as the causal agent of white pox. This is the first time, to our knowledge, that a bacterial species associated with the human gut has been shown to be a marine invertebrate pathogen.

  5. SIMAC: Development and implementation of a coral reef monitoring network in Colombia

    Directory of Open Access Journals (Sweden)

    Jaime Garzón-Ferreira

    2010-05-01

    Full Text Available Significant coral reef decline has been observed in Colombia during the last three decades. However, due to the lack of monitoring activities, most of the information about health and changes was fragmentary or inadequate. To develop an expanded nation-wide reef-monitoring program, in 1998 INVEMAR (Instituto de Investigaciones Marinas y Costeras: "Colombian Institute of Marine and Coastal Research" designed and implemented SIMAC (Sistema Nacional de Monitoreo de Arrecifes Coralinos en Colombia: "National Monitoring System of Coral Reefs in Colombia" with the participation of other institutions. By the end of 2003 the SIMAC network reached more than twice its initial size, covering ten reef areas (seven in the Caribbean and three in the Pacific, 63 reef sites and 263 permanent transects. SIMAC monitoring continued without interruption until 2008 and should persist in the long-term. The SIMAC has a large database and consists basically of water quality measurements (temperature, salinity, turbidity and a yearly estimation of benthic reef cover, coral disease prevalence, gorgonian density, abundance of important mobile invertebrates, fish diversity and abundance of important fish species. A methods manual is available in the internet. Data and results of SIMAC have been widely circulated through a summary report published annually since 2000 for the Colombian environmental agencies and the general public, as well as numerous national and international scientific papers and presentations at meetings. SIMAC information has contributed to support regional and global reef monitoring networks and databases (i.e. CARICOMP, GCRMN, ReefBase. Rev. Biol. Trop. 58 (Suppl. 1: 67-80. Epub 2010 May 01.En respuesta al proceso de deterioro de los arrecifes coralinos colombianos en las últimas tres décadas, y con el propósito de establecer un sistema de vigilancia para el manejo apropiado de estos valiosos ecosistemas, el Instituto de Investigaciones Marinas y

  6. Complex interactions between potentially pathogenic, opportunistic, and resident bacteria emerge during infection on a reef-building coral.

    Science.gov (United States)

    Gignoux-Wolfsohn, Sarah A; Aronson, Felicia M; Vollmer, Steven V

    2017-07-01

    Increased bacterial diversity on diseased corals can obscure disease etiology and complicate our understanding of pathogenesis. To untangle microbes that may cause white band disease signs from microbes responding to disease, we inoculated healthy Acropora cervicornis corals with an infectious dose from visibly diseased corals. We sampled these dosed corals and healthy controls over time for sequencing of the bacterial 16S region. Endozoicomonas were associated with healthy fragments from 4/10 colonies, dominating microbiomes before dosing and decreasing over time only in corals that displayed disease signs, suggesting a role in disease resistance. We grouped disease-associated bacteria by when they increased in abundance (primary vs secondary) and whether they originated in the dose (colonizers) or the previously healthy corals (responders). We found that all primary responders increased in all dosed corals regardless of final disease state and are therefore unlikely to cause disease signs. In contrast, primary colonizers in the families Pasteurellaceae and Francisellaceae increased solely in dosed corals that ultimately displayed disease signs, and may be infectious foreign bacteria involved in the development of disease signs. Moving away from a static comparison of diseased and healthy bacterial communities, we provide a framework to identify key players in other coral diseases. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Comparative Profiling of coral symbiont communities from the Caribbean, Indo-Pacific, and Arabian Seas

    KAUST Repository

    Arif, Chatchanit

    2014-12-01

    Coral reef ecosystems are in rapid decline due to global and local anthropogenic factors. Being among the most diverse ecosystems on Earth, a loss will decrease species diversity, and remove food source for people along the coast. The coral together with its symbionts (i.e. Symbiodinium, bacteria, and other microorganisms) is called the ‘coral holobiont’. The coral host offers its associated symbionts suitable habitats and nutrients, while Symbiodinium and coral-associated bacteria provide the host with photosynthates and vital nutrients. Association of corals with certain types of Symbiodinium and bacteria confer coral stress tolerance, and lack or loss of these symbionts coincides with diseased or bleached corals. However, a detailed understanding of the coral holobiont diversity and structure in regard to diseases and health states or across global scales is missing. This dissertation addressed coral-associated symbiont diversity, specifically of Symbiodinium and bacteria, in various coral species from different geographic locations and different health states. The main aims were (1) to expand the scope of existing technologies, (2) to establish a standardized framework to facilitate comparison of symbiont assemblages over coral species and sites, (3) to assess Symbiodinium diversity in the Arabian Seas, and (4) to elucidate whether coral health states have conserved bacterial footprints. In summary, a next generation sequencing pipeline for Symbiodinium diversity typing of the ITS2 marker is developed and applied to describe Symbiodinium diversity in corals around the Arabian Peninsula. The data show that corals in the Arabian Seas are dominated by a single Symbiodinium type, but harbor a rich variety of types in low abundant. Further, association with different Symbiodinium types is structured according to geographic locations. In addition, the application of 16S rRNA gene microarrays to investigate how differences in microbiome structure relate to

  8. Human sewage identified as likely source of white pox disease of the threatened Caribbean elkhorn coral, Acropora palmata.

    Science.gov (United States)

    Sutherland, Kathryn Patterson; Porter, James W; Turner, Jeffrey W; Thomas, Brian J; Looney, Erin E; Luna, Trevor P; Meyers, Meredith K; Futch, J Carrie; Lipp, Erin K

    2010-05-01

    Caribbean elkhorn coral, Acropora palmata, has been decimated in recent years, resulting in the listing of this species as threatened under the United States Endangered Species Act. A major contributing factor in the decline of this iconic species is white pox disease. In 2002, we identified the faecal enterobacterium, Serratia marcescens, as an etiological agent for white pox. During outbreaks in 2003 a unique strain of S. marcescens was identified in both human sewage and white pox lesions. This strain (PDR60) was also identified from corallivorious snails (Coralliophila abbreviata), reef water, and two non-acroporid coral species, Siderastrea siderea and Solenastrea bournoni. Identification of PDR60 in sewage, diseased Acropora palmata and other reef invertebrates within a discrete time frame suggests a causal link between white pox and sewage contamination on reefs and supports the conclusion that humans are a likely source of this disease.

  9. Bacterial community structure associated with white band disease in the elkhorn coral Acropora palmata determined using culture-independent 16S rRNA techniques.

    Science.gov (United States)

    Pantos, Olga; Bythell, John C

    2006-03-23

    Culture-independent molecular (16S ribosomal RNA) techniques showed distinct differences in bacterial communities associated with white band disease (WBD) Type I and healthy elkhorn coral Acropora palmata. Differences were apparent at all levels, with a greater diversity present in tissues of diseased colonies. The bacterial community associated with remote, non-diseased coral was distinct from the apparently healthy tissues of infected corals several cm from the disease lesion. This demonstrates a whole-organism effect from what appears to be a localised disease lesion, an effect that has also been recently demonstrated in white plague-like disease in star coral Montastraea annularis. The pattern of bacterial community structure changes was similar to that recently demonstrated for white plague-like disease and black band disease. Some of the changes are likely to be explained by the colonisation of dead and degrading tissues by a micro-heterotroph community adapted to the decomposition of coral tissues. However, specific ribosomal types that are absent from healthy tissues appear consistently in all samples of each of the diseases. These ribotypes are closely related members of a group of alpha-proteobacteria that cause disease, notably juvenile oyster disease, in other marine organisms. It is clearly important that members of this group are isolated for challenge experiments to determine their role in the diseases.

  10. Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development

    Science.gov (United States)

    Chen, Tianran; Li, Shu; Yu, Kefu

    2013-03-01

    Bioerosion is an important limiting factor in carbonate accretion and reef framework development; however, few studies have quantified the direct impact of macroborers on high-latitude coral communities, which are viewed as potential refuge during a period of global warming. In this study, internal macrobioerosion of Porites corals was examined at Daya Bay, subtropical northern South China Sea. The principal borers were the bivalve Lithophaga spp. and the sponges Cliona spp. and Cliothosa spp. (≥80 %), while sipunculid and polychaete worms and barnacles accounted for small amounts of bioerosion (≤20 %). Porites corals were heavily bioeroded in areas impacted by aquacultural and urban activities (10.34-27.55 %) compared with corals in relatively unpolluted areas (2.18-6.76 %). High levels of bioerosion, especially boring bivalve infestation, significantly weaken the corals and increase their susceptibility to dislodgement and fragmentation in typhoons, limiting accumulation of limestone framework. This study implies that carbonate accretion and reef development for high-latitude coral communities may be limited in future high-CO2 and eutrophication-stressed environments.

  11. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    Directory of Open Access Journals (Sweden)

    Ciemon Frank Caballes

    Full Text Available Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides versus non-preferred coral prey (Porites rus and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure and quantity (coral abundance varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  12. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    Science.gov (United States)

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  13. The Role of Shipyard Pollutants in Structuring Coral Reef Microbial Communities: Monitoring Environmental Change and the Potential Causes of Coral Disease

    Science.gov (United States)

    2006-06-01

    718 plant cell wall polysaccharides and simplified quantitative determination of their 719 neutral monosaccharides by gas-liquid chromatography. JAgr...analyses of amino acid and monosaccharide composition were used to determine how coral mucus varied among the sampled coral colonies. The 615 N value of... polysaccharides , and lipids that comprise 52 coral mucus make it a suitable environment for microbial growth (Ducklow, 1979a, 53 1979b; Ferrier-Pages

  14. Bleaching, disease and recovery in the threatened scleractinian coral Acropora palmata in St. John, US Virgin Islands: 2003-2010

    Science.gov (United States)

    Rogers, C.S.; Muller, E.M.

    2012-01-01

    A long-term study of the scleractinian coral Acropora palmata in the US Virgin Islands (USVI) showed that diseases, particularly white pox, are limiting the recovery of this threatened species. Colonies of A. palmata in Haulover Bay, within Virgin Islands National Park, St. John, were examined monthly in situ for signs of disease and other stressors from January 2003 through December 2009. During the study, 89.9 % of the colonies (n = 69) exhibited disease, including white pox (87 %), white band (13 %), and unknown (9 %). Monthly disease prevalence ranged from 0 to 57 %, and disease was the most significant cause of complete colony mortality (n = 17). A positive correlation was found between water temperature and disease prevalence, but not incidence. Annual average disease prevalence and incidence remained constant during the study. Colonies generally showed an increase in the estimated amount of total living tissue from growth, but 25 (36.2 %) of the colonies died. Acropora palmata bleached in the USVI for the first time during the 2005 Caribbean bleaching event. Only one of the 23 colonies that bleached appeared to die directly from bleaching. In 2005, corals that bleached had greater disease prevalence than those that did not bleach. Just over half (52 %) of the colonies incurred some physical damage. Monitoring of fragments (broken branches) that were generated by physical damage through June 2007 showed that 46.1 % died and 28.4 % remained alive; the fragments that attached to the substrate survived longer than those that did not. Recent surveys showed an increase in the total number of colonies within the reef area, formed from both asexual and sexual reproduction. Genotype analysis of 48 of the originally monitored corals indicated that 43 grew from sexual recruits supporting the conclusion that both asexual and sexual reproduction are contributing to an increase in colony density at this site.

  15. Bleaching, disease and recovery in the threatened scleractinian coral Acropora palmata in St. John, US Virgin Islands: 2003-2010

    Science.gov (United States)

    Rogers, C. S.; Muller, E. M.

    2012-09-01

    A long-term study of the scleractinian coral Acropora palmata in the US Virgin Islands (USVI) showed that diseases, particularly white pox, are limiting the recovery of this threatened species. Colonies of A. palmata in Haulover Bay, within Virgin Islands National Park, St. John, were examined monthly in situ for signs of disease and other stressors from January 2003 through December 2009. During the study, 89.9 % of the colonies ( n = 69) exhibited disease, including white pox (87 %), white band (13 %), and unknown (9 %). Monthly disease prevalence ranged from 0 to 57 %, and disease was the most significant cause of complete colony mortality ( n = 17). A positive correlation was found between water temperature and disease prevalence, but not incidence. Annual average disease prevalence and incidence remained constant during the study. Colonies generally showed an increase in the estimated amount of total living tissue from growth, but 25 (36.2 %) of the colonies died. Acropora palmata bleached in the USVI for the first time during the 2005 Caribbean bleaching event. Only one of the 23 colonies that bleached appeared to die directly from bleaching. In 2005, corals that bleached had greater disease prevalence than those that did not bleach. Just over half (52 %) of the colonies incurred some physical damage. Monitoring of fragments (broken branches) that were generated by physical damage through June 2007 showed that 46.1 % died and 28.4 % remained alive; the fragments that attached to the substrate survived longer than those that did not. Recent surveys showed an increase in the total number of colonies within the reef area, formed from both asexual and sexual reproduction. Genotype analysis of 48 of the originally monitored corals indicated that 43 grew from sexual recruits supporting the conclusion that both asexual and sexual reproduction are contributing to an increase in colony density at this site.

  16. Corals hosting symbiotic hydrozoans are less susceptible to predation and disease

    KAUST Repository

    Montano, Simone; Fattorini, Simone; Parravicini, Valeriano; Berumen, Michael L.; Galli, Paolo; Maggioni, Davide; Arrigoni, Roberto; Seveso, Davide; Strona, Giovanni

    2017-01-01

    for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced

  17. The Biology and Economics of Coral Growth

    NARCIS (Netherlands)

    Osinga, R.; Schutter, M.; Griffioen, B.; Wijffels, R.H.; Verreth, J.A.J.; Shafit, S.; Henard, S.; Taruffi, M.; Gili, C.; Lavorano, S.

    2011-01-01

    To protect natural coral reefs, it is of utmost importance to understand how the growth of the main reef-building organisms-the zooxanthellate scleractinian corals-is controlled. Understanding coral growth is also relevant for coral aquaculture, which is a rapidly developing business. This review

  18. Using reefcheck monitoring database to develop the coral reef index of biological integrity

    DEFF Research Database (Denmark)

    Nguyen, Hai Yen T.; Pedersen, Ole; Ikejima, Kou

    2009-01-01

    The coral reef indices of biological integrity was constituted based on the reef check monitoring data. Seventy six minimally disturbed sites and 72 maximallv disturbed sites in shallow water and 39 minimally disturbed sites and 37 maximally disturbed sites in deep water were classified based...... on the high-end and low-end percentages and ratios of hard coral, dead coral and fieshy algae. A total of 52 candidate metrics was identified and compiled, Eight and four metrics were finally selected to constitute the shallow and deep water coral reef indices respectively. The rating curve was applied.......05) and coral damaged by other factors -0.283 (pcoral reef indices were sensitive responses to stressors and can be capable to use as the coral reef biological monitoring tool....

  19. Seasonal prevalence of white plague like disease on the endemic Brazilian reef coral Mussismilia braziliensis Prevalencia estacional de la enfermedad de la plaga blanca en el coral endémico de Brasil Mussismilia braziliensis

    Directory of Open Access Journals (Sweden)

    Ronaldo Francini-Filho

    2010-01-01

    Full Text Available The reef coral Mussismilia braziliensis Verril, 1968 is endemic to the eastern Brazilian coast, representing a major reef-building species in the region. This coral is threatened by extinction due to the recent proliferation of a white-plague like (WPL disease. Despite its severe impacts, the environmental factors leading to outbreaks of WPL disease are still poorly understood. This study describes the seasonal prevalence of WPL disease on M. braziliensis in the Abrolhos Bank, on the southern coast of Bahia Brazil. In situ estimates showed that WPL disease was about 4.5 times more prevalent in summer (January 2007, mean sea surface temperature 27.4°C than in winter (July 2007, 25.0°C. This result suggests that the prevalence of WPL disease in M. braziliensis is temperature-dependent, supporting the hypothesis that warmer oceans are facilitating the proliferation of coral diseases worldwide.El coral Mussismilia braziliensis Verril, 1968 es endémico de la costa este de Brasil y representa una de las principales especies constructoras de arrecifes coralinos en dicha region. Este coral se encuentra bajo la amenaza de extincion debido la reciente propagacion de la enfermedad llamada la plaga blanca (PB. Pese los fuertes impactos, los factores ambientales responsables por epidemias de la PB aún son poco conocidos. En este estudio se describe la prevalencia estacional de la PB en M. braziliensis en el Banco de Abrolhos, ubicado en la costa sur de Bahia, Brasil. Estimaciones in situ comprueban que la prevalencia de esta molestia ha sido cerca de 4,5 veces mayor en verano (enero de 2007, temperatura media del agua superficial del mar 27,4°C, que en invierno (julio de 2007; 25,0°C. Este resultado sugiere que la prevalencia de la enfermedad PB en M. braziliensis es dependiente de la temperatura, reforzando la hipótesis de que los océanos mas cálidos estén facilitando la propagacion de enfermedades coralígenas en todo el mundo.

  20. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata.

    Science.gov (United States)

    Portune, Kevin J; Voolstra, Christian R; Medina, Mónica; Szmant, Alina M

    2010-03-01

    Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28°C) and further assessed the effects of two elevated temperatures (30°C and 31.5°C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12h post-fertilization in 28°C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131h post-fertilization at 28°C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30°C and 31.5°C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28°C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata

    KAUST Repository

    Portune, Kevin J.

    2010-03-01

    Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28 °C) and further assessed the effects of two elevated temperatures (30 °C and 31.5 °C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12 h post-fertilization in 28 °C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131 h post-fertilization at 28 °C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30 °C and 31.5 °C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5 hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28 °C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. © 2010 Elsevier B.V. All rights reserved.

  2. Climate change impacts on coral reefs: synergies with local effects, possibilities for acclimation, and management implications.

    Science.gov (United States)

    Ateweberhan, Mebrahtu; Feary, David A; Keshavmurthy, Shashank; Chen, Allen; Schleyer, Michael H; Sheppard, Charles R C

    2013-09-30

    Most reviews concerning the impact of climate change on coral reefs discuss independent effects of warming or ocean acidification. However, the interactions between these, and between these and direct local stressors are less well addressed. This review underlines that coral bleaching, acidification, and diseases are expected to interact synergistically, and will negatively influence survival, growth, reproduction, larval development, settlement, and post-settlement development of corals. Interactions with local stress factors such as pollution, sedimentation, and overfishing are further expected to compound effects of climate change. Reduced coral cover and species composition following coral bleaching events affect coral reef fish community structure, with variable outcomes depending on their habitat dependence and trophic specialisation. Ocean acidification itself impacts fish mainly indirectly through disruption of predation- and habitat-associated behavior changes. Zooxanthellate octocorals on reefs are often overlooked but are substantial occupiers of space; these also are highly susceptible to bleaching but because they tend to be more heterotrophic, climate change impacts mainly manifest in terms of changes in species composition and population structure. Non-calcifying macroalgae are expected to respond positively to ocean acidification and promote microbe-induced coral mortality via the release of dissolved compounds, thus intensifying phase-shifts from coral to macroalgal domination. Adaptation of corals to these consequences of CO2 rise through increased tolerance of corals and successful mutualistic associations between corals and zooxanthellae is likely to be insufficient to match the rate and frequency of the projected changes. Impacts are interactive and magnified, and because there is a limited capacity for corals to adapt to climate change, global targets of carbon emission reductions are insufficient for coral reefs, so lower targets should be

  3. [Progress of heterotrophic studies on symbiotic corals].

    Science.gov (United States)

    Yang, Yang-Chu-Qiao; Hong, Wen Ting; Wang, Shu Hong

    2017-12-01

    Heterotrophy of zooxanthellae symbiotic corals refers to the nutrition directly coming from food absorption, not the nutrition obtained from photosynthesis. Most ex situ propagation of symbiotic corals focused on the effects of irradiation, flow rate and water quality on corals, few of them involved in the demand and supply of coral heterotrophic nutrition. This paper reviewed the significance of heterotrophic nutrient supply to symbiotic corals from the sources of coral heterotrophic nutrition, the factors affecting the supply of coral heterotrophic nutrient, and the methods of how to study the coral heterotrophy. In general, the research of coral heterotrophy is just at the beginning stage, and future studies should focus on the inherent mechanism of coral feeding selection and developing more effective research methods.

  4. Developing a Biological Condition Gradient for the Protection of Puerto Rico's Coral Reefs

    Science.gov (United States)

    We introduce the application of the Biological Condition Gradient (BCG) to coral reefs: a conceptual model that describes how biological attributes of coral reef ecosystems might change along a gradient of increasing anthropogenic stress. Under authority of the Clean Water Act, t...

  5. Temporal dynamics of black band disease affecting pillar coral ( Dendrogyra cylindrus) following two consecutive hyperthermal events on the Florida Reef Tract

    Science.gov (United States)

    Lewis, Cynthia L.; Neely, Karen L.; Richardson, Laurie L.; Rodriguez-Lanetty, Mauricio

    2017-06-01

    Black band disease (BBD) affects many coral species worldwide and is considered a major contributor to the decline of reef-building coral. On the Florida Reef Tract BBD is most prevalent during summer and early fall when water temperatures exceed 29 °C. BBD is rarely reported in pillar coral ( Dendrogyra cylindrus) throughout the Caribbean, and here we document for the first time the appearance of the disease in this species on Florida reefs. The highest monthly BBD prevalence in the D. cylindrus population were 4.7% in 2014 and 6.8% in 2015. In each year, BBD appeared immediately following a hyperthermal bleaching event, which raises concern as hyperthermal seawater anomalies become more frequent.

  6. [Occlusive aortic disease as coral reef aorta--experience in 80 cases].

    Science.gov (United States)

    Sagban, A T; Grotemeyer, D; Rehbein, H; Sandmann, W; Duran, M; Balzer, K M; Grabitz, K

    2010-10-01

    Coral reef aorta (CRA) is described as rock-hard calcifications in the visceral part of the aorta. These heavily calcified plaques grow into the lumen and can cause significant stenoses, leading to malperfusion of the lower limbs, visceral ischaemia or hypertension due to renal ischaemia. From 1/1984 to 11/2008, 80 patients (26 m, 54 f, mean age 61.6, range 14 to 86 years) underwent treatment in the Department of Vascular Surgery and Kidney Transplantation, Heinrich-Heine-University Hospital for CRA. The present study is based on a review of patient records and prospective follow-up in our outpatient clinic. The most frequent finding was renovascular hypertension (n=33, 41.3%) causing headache, vertigo and visual symptoms. Intermittent claudication due to peripheral arterial occlusive disease was found in 35 cases (43.8%). 15 patients (18.8%) presented with chronic visceral ischaemia causing diarrhoea, weight loss and abdominal pain. 79 patients (98.7%) underwent surgery; in 73 (93.7%) aortic reconstruction was achieved with thromboendarterectomy, on an isolated suprarenal segment in 7 (9.3%), an infrarenal segment in 21 (26.6%), and the supra- and infrarenal aorta in 45 cases (60%). Desobliteration of renal arteries was performed in 47 (one-sided n=8, 10.1%; both arteries n=39, 49.4%); the aortic bifurcation was desobliterated in 37 (46.8%), extension into iliac arteries was necessary in 29 cases (one-sided n=4, 5.1%; both arteries n=25, 31.6%). The coeliac trunk was desobliterated in 43% (n=34), the superior mesenteric artery in 44.3% (n=35) and the inferior mesenteric artery in 20.3% (n=16). In 15 cases additional revascularisation (bypass, transposition, graft interposition) was necessary. Surgical access was via a left-sided thoracoabdominal incision in 56.4% (n=45) and via laparotomy in 41.8% (n=33). The 30-day lethality was 8.7% (n=7). Postoperative complications requiring corrective surgery occurred in 11 patients (13.9%). Almost ⅓ of the patients (n=19

  7. CRED REA Belt Surveys of Coral Population and Disease Assessments at Molokai Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  8. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Kure, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  9. CRED REA Belt Surveys of Coral Population and Disease Assessments at Tutuila Island, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 17-28 February 2010,...

  10. CRED REA Belt Surveys of Coral Population and Disease Assessments at Midway Atoll, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  11. CRED REA Belt Surveys of Coral Population and Disease Assessments at Maug Islands, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  12. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Kauai, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  13. CRED REA Belt Surveys of Coral Population and Disease Assessments at Lanai Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  14. CRED REA Belt Surveys of Coral Population and Disease Assessments at Asuncion Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  15. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Niihau, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  16. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Oahu, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  17. CRED REA Belt Surveys of Coral Population and Disease Assessments at Saipan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 7 May 2009,...

  18. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Sarigan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  19. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Hawaii, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  20. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Guguan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  1. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Wake, Pacific Remote Island Areas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110310 to 20110402,...

  2. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Tinian, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  3. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Maui, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  4. CRED REA Belt Surveys of Coral Population and Disease Assessments at Maro Reef, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  5. CRED REA Belt Surveys of Coral Population and Disease Assessments at Oahu Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  6. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Agrihan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  7. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Aguijan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  8. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Maug, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  9. CRED REA Belt Surveys of Coral Population and Disease Assessments at Maui Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  10. CRED REA Belt Surveys of Coral Population and Disease Assessments at Wake Island, Pacific Remote Island Areas in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 March - 1 April...

  11. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Tutuila, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426,...

  12. CRED REA Belt Surveys of Coral Population and Disease Assessments at Alamagan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  13. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Rose, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426,...

  14. CRED REA Belt Surveys of Coral Population and Disease Assessments at Rose Atoll, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 3-5 March 2010, belt...

  15. CRED REA Belt Surveys of Coral Population and Disease Assessments at Tinian Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 14 April...

  16. CRED REA Belt Surveys of Coral Population and Disease Assessments at Rota Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 14 April...

  17. CRED REA Belt Surveys of Coral Population and Disease Assessments at Guam Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 5 April - 14 April...

  18. CRED REA Belt Surveys of Coral Population and Disease Assessments at Kauai Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  19. CRED REA Belt Surveys of Coral Population and Disease Assessments at Ta'u Island, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12-13, 20 March 2010,...

  20. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Saipan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  1. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Alamagan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  2. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at French Frigate, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  3. CRED REA Belt Surveys of Coral Population and Disease Assessments at Pagan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  4. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Pagan, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  5. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Pearl & Hermes, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  6. CRED REA Belt Surveys of Coral Population and Disease Assessments at Jarvis Island, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 1-5 April 2010, belt...

  7. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Kingman, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  8. CRED REA Belt Surveys of Coral Population and Disease Assessments at Kingman Reef, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 14-19 April 2010, belt...

  9. CRED REA Belt Surveys of Coral Population and Disease Assessments at Swains Island, American Samoa in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16-18 March 2010, belt...

  10. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Baker, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  11. CRED REA Belt Surveys of Coral Population and Disease Assessments at Laysan Island, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  12. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Lisianski, Northwestern Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20100904 to 20100929,...

  13. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Lanai, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  14. CRED REA Belt Surveys of Coral Population and Disease Assessments at Farallon De Pajaros Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  15. CRED REA Belt Surveys of Coral Population and Disease Assessments at Niihau Island, Main Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 16 October - 14...

  16. CRED REA Belt Surveys of Coral Population and Disease Assessments at Palmyra Atoll, Pacific Remote Island Areas in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 7-13 April 2010, belt...

  17. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Farallon de Pajaros, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  18. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Ofu & Olosega, American Samoa in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120401 to 20120426,...

  19. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Jarvis, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  20. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Guam, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  1. CRED REA Belt Surveys of Coral Population and Disease Assessments at Pearl And Hermes Atoll, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  2. CRED REA Belt Surveys of Coral Population and Disease Assessments at Guguan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  3. CRED REA Belt Surveys of Coral Population and Disease Assessments at Sarigan Island, Marianas Archipelago in 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 15 April - 7 May 2009,...

  4. CRED REA Belt Surveys of Coral Population and Disease Assessments at Lisianski Island, NW Hawaiian Islands in 2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 12 September - 12...

  5. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Howland, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120227 to 20120325,...

  6. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Palmyra, Pacific Remote Island Areas in 2012

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20120427 to 20120524,...

  7. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Molokai, Main Hawaiian Islands in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20101007 to 20101105,...

  8. CRED Rapid Ecological Assessment Belt Surveys of Coral Population and Disease Assessment at Asuncion, Marianas in 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 20110407 to 20110509,...

  9. Epimicrobiota associated with the decay and recovery of Orbicella corals exhibiting Dark Spot Syndrome

    Directory of Open Access Journals (Sweden)

    Julie L Meyer

    2016-06-01

    Full Text Available Dark Spot Syndrome (DSS is one of the most common diseases of boulder corals in the Caribbean. It presents as sunken brown lesions in coral tissue, which can spread quickly over coral colonies. With this study, we tested the hypothesis that similar to other coral diseases, DSS is a dysbiosis characterized by global shifts in the coral microbiome. Because Black Band Disease (BBD was sometimes found following DSS lesions, we also tested the hypothesis that DSS is a precursor of BBD. To track disease initiation and progression 24 coral colonies were tagged. Of them five Orbicella annularis corals and three O. faveolata corals exhibited DSS lesions at tagging. Microbiota of lesions and apparently healthy tissues from DSS-affected corals over the course of 18 months were collected. Final visual assessment showed that five of eight corals incurred substantial tissue loss while two corals remained stable and one appeared to recover from DSS lesions. Illumina sequencing of the V6 region of bacterial 16S rRNA genes demonstrated no significant differences in bacterial community composition associated with healthy tissue or DSS lesions. The epimicrobiomes of both healthy tissue and DSS lesions contained high relative abundances of Operational Taxonomic Units (OTUs assigned to Halomonas, an unclassified gammaproteobacterial genus, Moritella, an unclassified Rhodobacteraceae genus, Renibacterium, Pseudomonas, and Acinetobacter. The relative abundance of bacterial taxa was not significantly different between samples when grouped by tissue type (healthy tissue vs. DSS lesion, coral species, collection month, or the overall outcome of DSS-affected corals (substantial tissue loss vs. stable/recovered. Two of the tagged corals with substantial tissue loss also developed BBD during the 18-month sampling period. The bacterial community of the BBD layer was distinct from both healthy tissue and DSS lesions, with high relative abundances of the presumed BBD pathogen

  10. CRISPR-Cas Defense System and Potential Prophages in Cyanobacteria Associated with the Coral Black Band Disease.

    Science.gov (United States)

    Buerger, Patrick; Wood-Charlson, Elisha M; Weynberg, Karen D; Willis, Bette L; van Oppen, Madeleine J H

    2016-01-01

    Understanding how pathogens maintain their virulence is critical to developing tools to mitigate disease in animal populations. We sequenced and assembled the first draft genome of Roseofilum reptotaenium AO1, the dominant cyanobacterium underlying pathogenicity of the virulent coral black band disease (BBD), and analyzed parts of the BBD-associated Geitlerinema sp. BBD_1991 genome in silico . Both cyanobacteria are equipped with an adaptive, heritable clustered regularly interspaced short palindromic repeats (CRISPR)-Cas defense system type I-D and have potential virulence genes located within several prophage regions. The defense system helps to prevent infection by viruses and mobile genetic elements via identification of short fingerprints of the intruding DNA, which are stored as templates in the bacterial genome, in so-called "CRISPRs." Analysis of CRISPR target sequences (protospacers) revealed an unusually high number of self-targeting spacers in R. reptotaenium AO1 and extraordinary long CRIPSR arrays of up to 260 spacers in Geitlerinema sp. BBD_1991. The self-targeting spacers are unlikely to be a form of autoimmunity; instead these target an incomplete lysogenic bacteriophage. Lysogenic virus induction experiments with mitomycin C and UV light did not reveal an actively replicating virus population in R. reptotaenium AO1 cultures, suggesting that phage functionality is compromised or excision could be blocked by the CRISPR-Cas system. Potential prophages were identified in three regions of R. reptotaenium AO1 and five regions of Geitlerinema sp. BBD_1991, containing putative BBD relevant virulence genes, such as an NAD-dependent epimerase/dehydratase (a homolog in terms of functionality to the third and fourth most expressed gene in BBD), lysozyme/metalloendopeptidases and other lipopolysaccharide modification genes. To date, viruses have not been considered to be a component of the BBD consortium or a contributor to the virulence of R. reptotaenium AO1

  11. Emerging coral diseases in Kāne'ohe Bay, O'ahu, Hawai'i (USA): two major disease outbreaks of acute Montipora white syndrome.

    Science.gov (United States)

    Aeby, Greta S; Callahan, Sean; Cox, Evelyn F; Runyon, Christina; Smith, Ashley; Stanton, Frank G; Ushijima, Blake; Work, Thierry M

    2016-05-26

    In March 2010 and January 2012, we documented 2 widespread and severe coral disease outbreaks on reefs throughout Kāne'ohe Bay, Hawai'i (USA). The disease, acute Montipora white syndrome (aMWS), manifested as acute and progressive tissue loss on the common reef coral M. capitata. Rapid visual surveys in 2010 revealed 338 aMWS-affected M. capitata colonies with a disease abundance of (mean ± SE) 0.02 ± 0.01 affected colonies per m of reef surveyed. In 2012, disease abundance was significantly higher (1232 aMWS-affected colonies) with 0.06 ± 0.02 affected colonies m(-1). Prior surveys found few acute tissue loss lesions in M. capitata in Ka¯ne'ohe Bay; thus, the high number of infected colonies found during these outbreaks would classify this as an emerging disease. Disease abundance was highest in the semi-enclosed region of south Kāne'ohe Bay, which has a history of nutrient and sediment impacts from terrestrial runoff and stream discharge. In 2010, tagged colonies showed an average tissue loss of 24% after 1 mo, and 92% of the colonies continued to lose tissue in the subsequent month but at a slower rate (chronic tissue loss). The host-specific nature of this disease (affecting only M. capitata) and the apparent spread of lesions between M. capitata colonies in the field suggest a potential transmissible agent. The synchronous appearance of affected colonies on multiple reefs across Kāne'ohe Bay suggests a common underlying factor. Both outbreaks occurred during the colder, rainy winter months, and thus it is likely that some parameter(s) associated with winter environmental conditions are linked to the emergence of disease outbreaks on these reefs.

  12. Making a model meaningful to coral reef managers in a developing nation: a case study of overfishing and rock anchoring in Indonesia.

    Science.gov (United States)

    Maynard, Jeffrey A; Anthony, Kenneth R N; Afatta, Siham; Dahl-Tacconi, Nancy; Hoegh-Guldberg, Ove

    2010-10-01

    Most of the world's coral reefs line the coasts of developing nations, where impacts from intense and destructive fishing practices form critical conservation issues for managers. Overfishing of herbivorous fishes can cause phase shifts to macroalgal dominance, and fishers' use of rocks as anchors lowers coral cover, giving further competitive advantage to macroalgae. Overfishing and anchoring have been studied extensively, but the role of their interaction in lowering coral reef resilience has not been quantified formally. We analyzed the combined effects of overfishing and rock anchoring on a range of reef habitat types--varying from high coral and low macroalgae cover to low coral and high macroalgae cover--in a marine park in Indonesia. We parameterized a model of coral and algal dynamics with three intensities of anchoring and fishing pressure. Results of the model indicated that damage caused by rock anchoring was equal to or possibly more devastating to coral reefs in the area than the impact of overfishing. This is an important outcome for local managers, who usually have the funds to distribute less-damaging anchors, but normally are unable to patrol regularly and effectively enough to reduce the impact of overfishing. We translated model results into an interactive visual tool that allows managers to explore the benefits of reducing anchoring frequency and fishing pressure. The potential consequences of inaction were made clear: the likelihood that any of the reef habitats will be dominated in the future by macroalgae rather than corals depends on reducing anchoring frequency, fishing pressure, or both. The tool provides a platform for strengthened relationships between managers and conservationists and can facilitate the uptake of recommendations regarding resource allocation and management actions. Conservation efforts for coral reefs in developing nations are likely to benefit from transforming model projections of habitat condition into tools local

  13. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816).

    Science.gov (United States)

    Randall, Carly J; Szmant, Alina M

    2009-12-01

    Elevated seawater temperatures during the late summer have the potential to negatively affect the development and survivorship of the larvae of reef corals that are reproductive during that time of year. Acropora palmata, a major Caribbean hermatype, reproduces annually during August and September. A. palmata populations have severely declined over the past three decades, and recovery will require high recruitment rates. Such recruitment will be limited if larval supply is reduced by elevated temperatures. The effects of elevated temperatures on development, survival, and larval settlement of A. palmata were investigated by culturing newly fertilized eggs at temperatures ranging from 27.5 to 31.5 degrees C. Development was accelerated and the percentage of developmental abnormalities increased at higher temperatures. Embryo mortality peaked during gastrulation, indicating that this complex developmental process is particularly sensitive to elevated temperatures. Larvae cultured at 30 and 31.5 degrees C experienced as much as an 8-fold decrease in survivorship compared to those at 28 degrees C. Additionally, settlement was 62% at 28 degrees C compared to 37% at 31.5 degrees C. These results indicate that embryos and larvae of A. palmata will be negatively affected as sea surface temperatures continue to warm, likely reducing recruitment and the recovery potential of A. palmata on Caribbean reefs.

  14. The Presence of Biomarker Enzymes of Selected Scleractinian Corals of Palk Bay, Southeast Coast of India

    Science.gov (United States)

    Anithajothi, R.; Duraikannu, K.; Umagowsalya, G.; Ramakritinan, C. M.

    2014-01-01

    The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO) and peroxidases (POD)) and free radical scavenging enzymes (super oxide dismutase (SOD), catalase (CAT)) and glutathione peroxidase (Gpx) in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen. PMID:25215288

  15. The Presence of Biomarker Enzymes of Selected Scleractinian Corals of Palk Bay, Southeast Coast of India

    Directory of Open Access Journals (Sweden)

    R. Anithajothi

    2014-01-01

    Full Text Available The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO and peroxidases (POD and free radical scavenging enzymes (super oxide dismutase (SOD, catalase (CAT and glutathione peroxidase (Gpx in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen.

  16. The presence of biomarker enzymes of selected Scleractinian corals of Palk Bay, southeast coast of India.

    Science.gov (United States)

    Anithajothi, R; Duraikannu, K; Umagowsalya, G; Ramakritinan, C M

    2014-01-01

    The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO) and peroxidases (POD)) and free radical scavenging enzymes (super oxide dismutase (SOD), catalase (CAT)) and glutathione peroxidase (Gpx) in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen.

  17. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations

    KAUST Repository

    Schmidt, GM; Phongsuwan, N; Jantzen, C; Roder, Cornelia; Khokiattiwong, S; Richter, C

    2012-01-01

    The Similan Islands, a Thai archipelago in the Andaman Sea located near the shelf break, are subjected to frequent (up to several events per hour) and abrupt changes in physico-chemical conditions, particularly during the dry season (NE monsoon, January through April) and to an intense monsoon season with strong surface wave action (May to October). The exposed west slopes of the islands feature more coral species, but lack a carbonate reef framework. By contrast, the sheltered east sides show a complex reef framework dominated by massive Porites. Our results suggest that the sudden changes in temperature, pH and nutrients (drops of up to 10°C and 0.6 U and increases of up to 9.4 µmol NOx l−1, respectively) due to pulsed upwelling events may rival the importance of surface waves and storms in shaping coral distribution and reef development.

  18. Coral community composition and reef development at the Similan Islands, Andaman Sea, in response to strong environmental variations

    KAUST Repository

    Schmidt, GM

    2012-06-07

    The Similan Islands, a Thai archipelago in the Andaman Sea located near the shelf break, are subjected to frequent (up to several events per hour) and abrupt changes in physico-chemical conditions, particularly during the dry season (NE monsoon, January through April) and to an intense monsoon season with strong surface wave action (May to October). The exposed west slopes of the islands feature more coral species, but lack a carbonate reef framework. By contrast, the sheltered east sides show a complex reef framework dominated by massive Porites. Our results suggest that the sudden changes in temperature, pH and nutrients (drops of up to 10°C and 0.6 U and increases of up to 9.4 µmol NOx l−1, respectively) due to pulsed upwelling events may rival the importance of surface waves and storms in shaping coral distribution and reef development.

  19. Eye Disease and Development

    DEFF Research Database (Denmark)

    Andersen, Thomas Barnebeck; Dalgaard, Carl-Johan Lars; Selaya, Pablo

    This research advances the hypothesis that cross-country variation in the historical incidence of eye disease has influenced the current global distribution of per capita income. The theory is that pervasive eye disease diminished the incentive to accumulate skills, thereby delaying the fertility...... transition and the take-off to sustained economic growth. In order to estimate the influence from eye disease incidence empirically, we draw on an important fact from the field of epidemiology: Exposure to solar ultraviolet B radiation (UVB-R) is an underlying determinant of several forms of eye disease...

  20. The roles of temperature and light in black band disease (BBD) progression on corals of the genus Diploria in Bermuda.

    Science.gov (United States)

    Kuehl, Kristin; Jones, Ross; Gibbs, David; Richardson, Laurie

    2011-03-01

    On Bermuda reefs the brain coral Diploria labyrinthiformis is rarely documented with black band disease (BBD), while BBD-affected colonies of Diploria strigosa are common. D. labyrinthiformis on these reefs may be more resistant to BBD or less affected by prevailing environmental conditions that potentially diminish host defenses. To determine whether light and/or temperature influence BBD differently on these two species, infection experiments were conducted under the following experimental treatments: (1) 26 °C, ambient light; (2) 30 °C, ambient light; (3) 30 °C, low light; and (4) 30 °C, high light. A digital photograph of the affected area of each coral was taken each day for 7 days and analyzed with ImageJ image processing software. The final affected area was not significantly different between species in any of the four treatments. BBD lesions were smaller on both species infected under ambient light at 26 °C versus 30 °C. Low light at 30 °C significantly reduced the lesion size on both species when compared to colonies infected at the same temperature under ambient light. Under high light at 30 °C, BBD lesions were larger on colonies of D. strigosa and smaller on colonies of D. labyrinthiformis when compared to colonies infected under ambient light at the same temperature. The responses of both species suggests that BBD progression on both D. strigosa and D. labyrinthiformis is similarly influenced by a combination of light and temperature and that other factors present before infections become established likely contribute to the difference in BBD prevalence in Bermuda. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Molecular detection and ecological significance of the cyanobacterial genera Geitlerinema and Leptolyngbya in black band disease of corals.

    Science.gov (United States)

    Myers, Jamie L; Sekar, Raju; Richardson, Laurie L

    2007-08-01

    Black band disease (BBD) is a pathogenic, sulfide-rich microbial mat dominated by filamentous cyanobacteria that infect corals worldwide. We isolated cyanobacteria from BBD into culture, confirmed their presence in the BBD community by using denaturing gradient gel electrophoresis (DGGE), and demonstrated their ecological significance in terms of physiological sulfide tolerance and photosynthesis-versus-irradiance values. Twenty-nine BBD samples were collected from nine host coral species, four of which have not previously been investigated, from reefs of the Florida Keys, the Bahamas, St. Croix, and the Philippines. From these samples, seven cyanobacteria were isolated into culture. Cloning and sequencing of the 16S rRNA gene using universal primers indicated that four isolates were related to the genus Geitlerinema and three to the genus Leptolyngbya. DGGE results, obtained using Cyanobacteria-specific 16S rRNA primers, revealed that the most common BBD cyanobacterial sequence, detected in 26 BBD field samples, was related to that of an Oscillatoria sp. The next most common sequence, 99% similar to that of the Geitlerinema BBD isolate, was present in three samples. One Leptolyngbya- and one Phormidium-related sequence were also found. Laboratory experiments using isolates of BBD Geitlerinema and Leptolyngbya revealed that they could carry out sulfide-resistant oxygenic photosynthesis, a relatively rare characteristic among cyanobacteria, and that they are adapted to the sulfide-rich, low-light BBD environment. The presence of the cyanotoxin microcystin in these cultures and in BBD suggests a role in BBD pathogenicity. Our results confirm the presence of Geitlerinema in the BBD microbial community and its ecological significance, which have been challenged, and provide evidence of a second ecologically significant BBD cyanobacterium, Leptolyngbya.

  2. Fungi and their role in corals and coral reef ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Ravindran, J.

    fungal hyphae have on corals, their mechanism of penetration and the role their enzymes play in this process. 3.2. Fungi as pathogens in reef ecosystems Besides natural disasters and climate warming, diseases have contributed to coral decline... defence mechanisms against predation, biofouling, diseases, environmental perturbations and other stressors. These chemicals are either synthesized by the organisms themselves or their endobiontic microorganisms. If these valuable compounds...

  3. Caribbean yellow band disease compromises the activity of catalase and glutathione S-transferase in the reef-building coral Orbicella faveolata exposed to anthracene.

    Science.gov (United States)

    Montilla, Luis Miguel; Ramos, Ruth; García, Elia; Cróquer, Aldo

    2016-05-03

    Healthy and diseased corals are threatened by different anthropogenic sources, such as pollution, a problem expected to become more severe in the near future. Despite the fact that coastal pollution and coral diseases might represent a serious threat to coral reef health, there is a paucity of controlled experiments showing whether the response of diseased and healthy corals to xenobiotics differs. In this study, we exposed healthy and Caribbean yellow band disease (CYBD)-affected Orbicella faveolata colonies to 3 sublethal concentrations of anthracene to test if enzymatic responses to this hydrocarbon were compromised in CYBD-affected tissues. For this, a 2-factorial fully orthogonal design was used in a controlled laboratory bioassay, using tissue condition (2 levels: apparently healthy and diseased) and pollutant concentration (4 levels: experimental control, 10, 30 and 100 ppb concentration) as fixed factors. A permutation-based ANOVA (PERMANOVA) was used to test the effects of condition and concentration on the specific activity of 3 enzymatic biomarkers: catalase, glutathione S-transferase, and glutathione peroxidase. We found a significant interaction between the concentration of anthracene and the colony condition for catalase (Pseudo-F = 3.84, df = 3, p < 0.05) and glutathione S-transferase (Pseudo-F = 3.29, df = 3, p < 0.05). Moreover, our results indicated that the enzymatic response to anthracene in CYBD-affected tissues was compromised, as the activity of these enzymes decreased 3- to 4-fold compared to healthy tissues. These results suggest that under a potential scenario of increasing hydrocarbon coastal pollution, colonies of O. faveolata affected with CYBD might become more vulnerable to the deleterious effects of chemical pollution.

  4. Cyanotoxins are not implicated in the etiology of coral black band disease outbreaks on Pelorus Island, Great Barrier Reef.

    Science.gov (United States)

    Glas, Martin S; Motti, Cherie A; Negri, Andrew P; Sato, Yui; Froscio, Suzanne; Humpage, Andrew R; Krock, Bernd; Cembella, Allan; Bourne, David G

    2010-07-01

    Cyanobacterial toxins (i.e. microcystins) produced within the microbial mat of coral black band disease (BBD) have been implicated in disease pathogenicity. This study investigated the presence of toxins within BBD lesions and other cyanobacterial patch (CP) lesions, which, in some instances ( approximately 19%), facilitated the onset of BBD, from an outbreak site at Pelorus Island on the inshore, central Great Barrier Reef (GBR). Cyanobacterial species that dominated the biomass of CP and BBD lesions were cultivated and identified, based on morphology and 16S rRNA gene sequences, as Blennothrix- and Oscillatoria-affiliated species, respectively, and identical to cyanobacterial sequences retrieved from previous molecular studies from this site. The presence of the cyanotoxins microcystin, cylindrospermopsin, saxitoxin, nodularin and anatoxin and their respective gene operons in field samples of CP and BBD lesions and their respective culture isolations was tested using genetic (PCR-based screenings), chemical (HPLC-UV, FTICR-MS and LC/MS(n)) and biochemical (PP2A) methods. Cyanotoxins and cyanotoxin synthetase genes were not detected in any of the samples. Cyanobacterial species dominant within CP and BBD lesions were phylogenetically distinct from species previously shown to produce cyanotoxins and isolated from BBD lesions. The results from this study demonstrate that cyanobacterial toxins appear to play no role in the pathogenicity of CP and BBD at this site on the GBR.

  5. Developing the Biological Condition Gradient (BCG), as a Tool for Describing the Condition of US Coral Reefs

    Science.gov (United States)

    Understanding effects of human activity on coral reefs requires knowing what characteristics constitute a high quality coral reef and identifying measurable criteria. The BCG is a conceptual model that describes how biological attributes of coral reefs change along a gradient of ...

  6. Crowning corals

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    and build-awareness about the rich, diverse biological resources is warranted and a plea is made to manage the sewage, oil and thermal pollution to help preserve the biodiversity of coral and associated flora and fauna....

  7. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  8. Calibrating amino acid δ13C and δ15N offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives

    Science.gov (United States)

    McMahon, Kelton W.; Williams, Branwen; Guilderson, Thomas P.; Glynn, Danielle S.; McCarthy, Matthew D.

    2018-01-01

    Compound-specific stable isotopes of amino acids (CSI-AA) from proteinaceous deep-sea coral skeletons have the potential to improve paleoreconstructions of plankton community composition, and our understanding of the trophic dynamics and biogeochemical cycling of sinking organic matter in the Ocean. However, the assumption that the molecular isotopic values preserved in protein skeletal material reflect those of the living coral polyps has never been directly investigated in proteinaceous deep-sea corals. We examined CSI-AA from three genera of proteinaceous deep-sea corals from three oceanographically distinct regions of the North Pacific: Primnoa from the Gulf of Alaska, Isidella from the Central California Margin, and Kulamanamana from the North Pacific Subtropical Gyre. We found minimal offsets in the δ13C values of both essential and non-essential AAs, and in the δ15N values of source AAs, between paired samples of polyp tissue and protein skeleton. Using an essential AA δ13C fingerprinting approach, we show that estimates of the relative contribution of eukaryotic microalgae and prokaryotic cyanobacteria to the sinking organic matter supporting deep-sea corals are the same when calculated from polyp tissue or recently deposited skeletal tissue. The δ15N values of trophic AAs in skeletal tissue, on the other hand, were consistently 3-4‰ lower than polyp tissue for all three genera. We hypothesize that this offset reflects a partitioning of nitrogen flux through isotopic branch points in the synthesis of polyp (fast turnover tissue) and skeleton (slow, unidirectional incorporation). This offset indicates an underestimation, albeit correctable, of approximately half a trophic position from gorgonin protein-based deep-sea coral skeleton. Together, our observations open the door for applying many of the rapidly evolving CSI-AA based tools developed for metabolically active tissues in modern systems to archival coral tissues in a paleoceanographic context.

  9. Big Data Approaches To Coral-Microbe Symbiosis

    Science.gov (United States)

    Zaneveld, J.; Pollock, F. J.; McMinds, R.; Smith, S.; Payet, J.; Hanna, B.; Welsh, R.; Foster, A.; Ohdera, A.; Shantz, A. A.; Burkepile, D. E.; Maynard, J. A.; Medina, M.; Vega Thurber, R.

    2016-02-01

    Coral reefs face increasing challenges worldwide, threatened by overfishing and nutrient pollution, which drive growth of algal competitors of corals, and periods of extreme temperature, which drive mass coral bleaching. I will discuss two projects that examine how coral's complex relationships with microorganisms affect the response of coral colonies and coral species to environmental challenge. Microbiological studies have documented key roles for coral's microbial symbionts in energy harvest and defense against pathogens. However, the evolutionary history of corals and their microbes is little studied. As part of the Global Coral Microbiome Project, we are characterizing bacterial, archaeal, fungal, and Symbiodinium diversity across >1400 DNA samples from all major groups of corals, collected from 15 locations worldwide. This collection will allow us to ask how coral- microbe associations evolved over evolutionary time, and to determine whether microbial symbiosis helps predict the relative vulnerability of certain coral species to environmental stress. In the second project, we experimentally characterized how the long-term effects of human impacts such as overfishing and nutrient pollution influence coral-microbe symbiosis. We conducted a three-year field experiment in the Florida Keys applying nutrient pollution or simulated overfishing to reef plots, and traced the effects on reef communities, coral microbiomes, and coral health. The results show that extremes of temperature and algal competition destabilize coral microbiomes, increasing pathogen blooms, coral disease, and coral death. Surprisingly, these local stressors interacted strongly with thermal stress: the greatest microbiome disruption, and >80% of coral mortality happened in the hottest periods. Thus, overfishing and nutrient pollution may interact with increased climate-driven episodes of sub-bleaching thermal stress to increase coral mortality by disrupt reef communities down to microbial scales.

  10. The Effect of Filamentous Turf Algal Removal on the Development of Gametes of the Coral Orbicella annularis

    Science.gov (United States)

    Cetz-Navarro, Neidy P.; Carpizo-Ituarte, Eugenio J.; Espinoza-Avalos, Julio; Chee-Barragán, Guillermina

    2015-01-01

    Macroalgae and filamentous turf algae (FTA) are abundant on degraded coral reefs, and the reproductive responses of corals may indicate sub-lethal stress under these conditions. The percentage of gametogenic stages (PGS) and the maximum diameter of eggs (MDE; or egg size) of Orbicella annularis were used to evaluate the effect of long- (7–10 months) and short-term (2.5 months) FTA removal (treatments T1 and T2, respectively) at both the beginning (May) and the end (August) of gametogenesis. Ramets (individual lobes of a colony) surrounded by FTA (T3) or crustose coralline algae (CCA; T4) were used as controls. The removal of FTA enhanced the development of gametes (i.e., a larger and higher percentage of mature gametes (PMG)) of O. annularis for T1 vs. T3 ramets in May and T1 and T2 vs. T3 ramets in August. Similar values of PGS and MDE between gametes from T3 and T4 in both May and August were unexpected because a previous study had shown that the same ramets of T4 (with higher tissue thickness, chlorophyll a cm-2 and zooxanthellae density and lower mitotic index values) were less stressed than ramets of T3. Evaluating coral stress through reproduction can reveal more sensitive responses than other biological parameters; within reproductive metrics, PGS can be a better stress indicator than egg size. The presence of turf algae strongly impacted the development of gametes and egg size (e.g., PMG in ramets with FTA removal increased almost twofold in comparison with ramets surrounded by FTA in August), most likely exerting negative chronic effects in the long run due to the ubiquity and permanence of turf algae in the Caribbean. These algae can be considered a stressor that affects coral sexual reproduction. Although the effects of turf algae on O. annularis are apparently less severe than those of other stressors, the future of this species is uncertain because of the combined impacts of these effects, the decline of O. annularis populations and the almost

  11. The effect of filamentous turf algal removal on the development of gametes of the coral Orbicella annularis.

    Directory of Open Access Journals (Sweden)

    Neidy P Cetz-Navarro

    Full Text Available Macroalgae and filamentous turf algae (FTA are abundant on degraded coral reefs, and the reproductive responses of corals may indicate sub-lethal stress under these conditions. The percentage of gametogenic stages (PGS and the maximum diameter of eggs (MDE; or egg size of Orbicella annularis were used to evaluate the effect of long- (7-10 months and short-term (2.5 months FTA removal (treatments T1 and T2, respectively at both the beginning (May and the end (August of gametogenesis. Ramets (individual lobes of a colony surrounded by FTA (T3 or crustose coralline algae (CCA; T4 were used as controls. The removal of FTA enhanced the development of gametes (i.e., a larger and higher percentage of mature gametes (PMG of O. annularis for T1 vs. T3 ramets in May and T1 and T2 vs. T3 ramets in August. Similar values of PGS and MDE between gametes from T3 and T4 in both May and August were unexpected because a previous study had shown that the same ramets of T4 (with higher tissue thickness, chlorophyll a cm-2 and zooxanthellae density and lower mitotic index values were less stressed than ramets of T3. Evaluating coral stress through reproduction can reveal more sensitive responses than other biological parameters; within reproductive metrics, PGS can be a better stress indicator than egg size. The presence of turf algae strongly impacted the development of gametes and egg size (e.g., PMG in ramets with FTA removal increased almost twofold in comparison with ramets surrounded by FTA in August, most likely exerting negative chronic effects in the long run due to the ubiquity and permanence of turf algae in the Caribbean. These algae can be considered a stressor that affects coral sexual reproduction. Although the effects of turf algae on O. annularis are apparently less severe than those of other stressors, the future of this species is uncertain because of the combined impacts of these effects, the decline of O. annularis populations and the almost

  12. Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata

    KAUST Repository

    Closek, Collin J.; Sunagawa, Shinichi; DeSalvo, Michael K.; Piceno, Yvette M.; Desantis, Todd Z.; Brodie, Eoin L.; Weber, Michele X.; Voolstra, Christian R.; Andersen, Gary L.; Medina, Mó nica M.

    2014-01-01

    marked each health state. Diseased samples were associated with two to three times more bacterial diversity. HD samples had the highest bacterial richness, which included components associated with HH and DD, as well as additional unique families

  13. Coral disease physiology: the impact of Acroporid white syndrome on Symbiodinium

    DEFF Research Database (Denmark)

    Roff, G.; Kvennefors, E. C. E.; Ulstrup, Karin Elizabeth

    2008-01-01

    Acroporid white syndrome, a disease-like syndrome from the Great Barrier Reef, results from degenerative host tissue at lesion borders. Tissue preceding lesion borders appears visually healthy, but it is currently unclear whether the endosymbiotic zooxanthellae (Symbiodinium) are physiologically...

  14. Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosa

    Science.gov (United States)

    Chefaoui, Rosa M.; Casado-Amezúa, Pilar; Templado, José

    2017-12-01

    Cladocora caespitosa is the only Mediterranean scleractinian similar to tropical reef-building corals. While this species is part of the recent fossil history of the Mediterranean Sea, it is currently considered endangered due to its decline during the last decades. Environmental factors affecting the distribution and persistence of extensive bank reefs of this endemic species across its whole geographic range are poorly understood. In this study, we examined the environmental response of C. caespitosa and its main types of assemblages using ecological niche modeling and ordination analysis. We also predicted other suitable areas for the occurrence of the species and assessed the conservation effectiveness of Mediterranean marine protected areas (MPAs) for this coral. We found that phosphate concentration and wave height were factors affecting both the occurrence of this versatile species and the distribution of its extensive bioconstructions in the Mediterranean Sea. A set of factors (diffuse attenuation coefficient, calcite and nitrate concentrations, mean wave height, sea surface temperature, and shape of the coast) likely act as environmental barriers preventing the species from expansion to the Atlantic Ocean and the Black Sea. Uncertainties in our large-scale statistical results and departures from previous physiological and ecological studies are also discussed under an integrative perspective. This study reveals that Mediterranean MPAs encompass eight of the ten banks and 16 of the 21 beds of C. caespitosa. Preservation of water clarity by avoiding phosphate discharges may improve the protection of this emblematic species.

  15. Coral Diseases Following Massive Bleaching in 2005 Cause 60 Percent Decline in Coral Cover and Mortality of the Threatened Species, Acropora Palmata, on Reefs in the U.S. Virgin Islands

    Science.gov (United States)

    Rogers, Caroline S.

    2008-01-01

    Record-high seawater temperatures and calm seas in the summer of 2005 led to the most severe coral bleaching (greater than 90 percent bleached coral cover) ever observed in the U.S. Virgin Islands (USVI) (figs. 1 and 2). All but a few coral species bleached, including the threatened species, Acropora palmata. Bleaching was seen from the surface to depths over 20 meters.

  16. Relating Landscape Development Intensity to Coral Reef Condition in the Watersheds of St. Croix, U.S. Virgin Islands

    Science.gov (United States)

    Diagnosing the degree to which local landscape activities impact coral reef ecosystems and their ecological services is critically important to coastal and watershed decision-makers. We report, for the first time, a study that relates coral reef condition metrics to metrics of h...

  17. Evidence of initial coral community recovery at Discovery Bay on Jamaica’s North Coast

    Directory of Open Access Journals (Sweden)

    M. James C. Crabbe

    2014-09-01

    Full Text Available Current challenges to coral reef sustainability include overfishing, destructive fishing practices, bleaching, acidification, sea-level rise, starfish, algae, agricultural run-off, coastal and resort development, pollution, diseases, invasive species and hurricanes. We used SCUBA belt transects to record coral cover and digital image analysis in the Dairy Bull Reef off the north coast of Jamaica and found that it is a positive example of how reefs can recover after major environmental disturbance. Live coral cover increased from 13±5% in 2006 to 31±7% in 2008, while live Acropora cervicornis increased from 2±2% in 2006 to 22±7% in 2008. Coral cover levels were maintained until 2012.

  18. Coral reefs: threats and conservation in an era of global change.

    Science.gov (United States)

    Riegl, Bernhard; Bruckner, Andy; Coles, Steve L; Renaud, Philip; Dodge, Richard E

    2009-04-01

    Coral reefs are iconic, threatened ecosystems that have been in existence for approximately 500 million years, yet their continued ecological persistence seems doubtful at present. Anthropogenic modification of chemical and physical atmospheric dynamics that cause coral death by bleaching and newly emergent diseases due to increased heat and irradiation, as well as decline in calcification caused by ocean acidification due to increased CO(2), are the most important large-scale threats. On more local scales, overfishing and destructive fisheries, coastal construction, nutrient enrichment, increased runoff and sedimentation, and the introduction of nonindigenous invasive species have caused phase shifts away from corals. Already approximately 20% of the world's reefs are lost and approximately 26% are under imminent threat. Conservation science of coral reefs is well advanced, but its practical application has often been lagging. Societal priorites, economic pressures, and legal/administrative systems of many countries are more prone to destroy rather than conserve coral-reef ecosystems. Nevertheless, many examples of successful conservation exist from the national level to community-enforced local action. When effectively managed, protected areas have contributed to regeneration of coral reefs and stocks of associated marine resources. Local communities often support coral-reef conservation in order to raise income potential associated with tourism and/or improved resource levels. Coral reefs create an annual income in S-Florida alone of over $4 billion. Thus, no conflict between development, societal welfare, and coral-reef conservation needs to exist. Despite growing threats, it is not too late for decisive action to protect and save these economically and ecologically high-value ecosystems. Conservation science plays a critical role in designing effective strategies.

  19. Impact of herbivore identity on algal succession and coral growth on a Caribbean reef.

    Directory of Open Access Journals (Sweden)

    Deron E Burkepile

    2010-01-01

    Full Text Available Herbivory is an important top-down force on coral reefs that regulates macroalgal abundance, mediates competitive interactions between macroalgae and corals, and provides resilience following disturbances such as hurricanes and coral bleaching. However, reductions in herbivore diversity and abundance via disease or over-fishing may harm corals directly and may indirectly increase coral susceptibility to other disturbances.In two experiments over two years, we enclosed equivalent densities and masses of either single-species or mixed-species of herbivorous fishes in replicate, 4 m(2 cages at a depth of 17 m on a reef in the Florida Keys, USA to evaluate the effects of herbivore identity and species richness on colonization and development of macroalgal communities and the cascading effects of algae on coral growth. In Year 1, we used the redband parrotfish (Sparisoma aurofrenatum and the ocean surgeonfish (Acanthurus bahianus; in Year 2, we used the redband parrotfish and the princess parrotfish (Scarus taeniopterus. On new substrates, rapid grazing by ocean surgeonfish and princess parrotfish kept communities in an early successional stage dominated by short, filamentous algae and crustose coralline algae that did not suppress coral growth. In contrast, feeding by redband parrotfish allowed an accumulation of tall filaments and later successional macroalgae that suppressed coral growth. These patterns contrast with patterns from established communities not undergoing primary succession; on established substrates redband parrotfish significantly reduced upright macroalgal cover while ocean surgeonfish and princess parrotfish allowed significant increases in late successional macroalgae.This study further highlights the importance of biodiversity in affecting ecosystem function in that different species of herbivorous fishes had very different impacts on reef communities depending on the developmental stage of the community. The species

  20. CRED REA Belt Surveys of Coral Population and Disease Assessments at Baker Island, Phoenix Islands, Pacific Remote Islands Areas (PRIAs) in 2010

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 6-8 February 2010, belt...

  1. CRED REA Belt Surveys of Coral Population and Disease Assessments at Howland Island, Phoenix Islands, Pacific Remote Island Areas (PRIAs) in 2010.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To support a long-term NOAA Coral Reef Conservation Program (CRCP) for sustainable management and conservation of coral reef ecosystems, from 3-5 February 2010, belt...

  2. Biology of corals and coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Rajkumar, R.; Parulekar, A.H.

    on the systematic position is presented. The general structure is depicted with illustrations. Physiology part is updated to current knowledge on reproduction, nutrition and excretion of corals. The coral reefs section begins with status of world reefs...

  3. Coral reef degradation and metabolic performance of the scleractinian coral Porites lutea under anthropogenic impact along the NE coast of Hainan Island, South China Sea

    KAUST Repository

    Roder, Cornelia

    2013-04-01

    Hainan\\'s coast provides favorable climatic, geochemical and biogeographic conditions for the development of extensive coral reefs in China. Observations in five reefs along the NE coast of Hainan showed, however, that the overall density of mobile macrofauna is low and key functional groups such as browsing, scraping or excavating herbivore fish are missing altogether. Coral diseases, partial mortality or tissue degradation are abundant and growth of macroalgal space competitors extensive. Signs of eutrophication, siltation and destructive fishing practices are evident resulting in a strongly altered environment unfavorable for coral recruitment success and survival. Acclimation to the anthropogenically altered conditions in the massive coral Porites lutea occurs at the cost of a decreased photosynthesis: respiration ratio reducing the regenerative capacity of these key framebuilding organisms. Even though, on the organismal level, corals are able to cope with these stressful conditions, a shift is imminent on the ecosystem level from a coral reef to a macroalgae-dominated community if land-based disturbance prevails unabated. © 2012 Elsevier Ltd.

  4. Coral reef degradation and metabolic performance of the scleractinian coral Porites lutea under anthropogenic impact along the NE coast of Hainan Island, South China Sea

    KAUST Repository

    Roder, Cornelia; Wu, Zhongjie; Richter, Claudio; Zhang, Jing

    2013-01-01

    Hainan's coast provides favorable climatic, geochemical and biogeographic conditions for the development of extensive coral reefs in China. Observations in five reefs along the NE coast of Hainan showed, however, that the overall density of mobile macrofauna is low and key functional groups such as browsing, scraping or excavating herbivore fish are missing altogether. Coral diseases, partial mortality or tissue degradation are abundant and growth of macroalgal space competitors extensive. Signs of eutrophication, siltation and destructive fishing practices are evident resulting in a strongly altered environment unfavorable for coral recruitment success and survival. Acclimation to the anthropogenically altered conditions in the massive coral Porites lutea occurs at the cost of a decreased photosynthesis: respiration ratio reducing the regenerative capacity of these key framebuilding organisms. Even though, on the organismal level, corals are able to cope with these stressful conditions, a shift is imminent on the ecosystem level from a coral reef to a macroalgae-dominated community if land-based disturbance prevails unabated. © 2012 Elsevier Ltd.

  5. Utilization of mucus from the coral Acropora palmata by the pathogen Serratia marcescens and by environmental and coral commensal bacteria.

    Science.gov (United States)

    Krediet, Cory J; Ritchie, Kim B; Cohen, Matthew; Lipp, Erin K; Sutherland, Kathryn Patterson; Teplitski, Max

    2009-06-01

    In recent years, diseases of corals caused by opportunistic pathogens have become widespread. How opportunistic pathogens establish on coral surfaces, interact with native microbiota, and cause disease is not yet clear. This study compared the utilization of coral mucus by coral-associated commensal bacteria ("Photobacterium mandapamensis" and Halomonas meridiana) and by opportunistic Serratia marcescens pathogens. S. marcescens PDL100 (a pathogen associated with white pox disease of Acroporid corals) grew to higher population densities on components of mucus from the host coral. In an in vitro coculture on mucus from Acropora palmata, S. marcescens PDL100 isolates outgrew coral isolates. The white pox pathogen did not differ from other bacteria in growth on mucus from a nonhost coral, Montastraea faveolata. The ability of S. marcescens to cause disease in acroporid corals may be due, at least in part, to the ability of strain PDL100 to build to higher population numbers within the mucus surface layer of its acroporid host. During growth on mucus from A. palmata, similar glycosidase activities were present in coral commensal bacteria, in S. marcescens PDL100, and in environmental and human isolates of S. marcescens. The temporal regulation of these activities during growth on mucus, however, was distinct in the isolates. During early stages of growth on mucus, enzymatic activities in S. marcescens PDL100 were most similar to those in coral commensals. After overnight incubation on mucus, enzymatic activities in a white pox pathogen were most similar to those in pathogenic Serratia strains isolated from human mucosal surfaces.

  6. A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia.

    Directory of Open Access Journals (Sweden)

    Zoe T Richards

    Full Text Available The susceptibility of reef-building corals to climatic anomalies is well documented and a cause of great concern for the future of coral reefs. Reef corals are normally considered to tolerate only a narrow range of climatic conditions with only a small number of species considered heat-tolerant. Occasionally however, corals can be seen thriving in unusually harsh reef settings and these are cause for some optimism about the future of coral reefs. Here we document for the first time a diverse assemblage of 225 species of hard corals occurring in the intertidal zone of the Bonaparte Archipelago, north western Australia. We compare the environmental conditions at our study site (tidal regime, SST and level of turbidity with those experienced at four other more typical tropical reef locations with similar levels of diversity. Physical extremes in the Bonaparte Archipelago include tidal oscillations of up to 8 m, long subaerial exposure times (>3.5 hrs, prolonged exposure to high SST and fluctuating turbidity levels. We conclude the timing of low tide in the coolest parts of the day ameliorates the severity of subaerial exposure, and the combination of strong currents and a naturally high sediment regime helps to offset light and heat stress. The low level of anthropogenic impact and proximity to the Indo-west Pacific centre of diversity are likely to further promote resistance and resilience in this community. This assemblage provides an indication of what corals may have existed in other nearshore locations in the past prior to widespread coastal development, eutrophication, coral predator and disease outbreaks and coral bleaching events. Our results call for a re-evaluation of what conditions are optimal for coral survival, and the Bonaparte intertidal community presents an ideal model system for exploring how species resilience is conferred in the absence of confounding factors such as pollution.

  7. Release of hydrogen peroxide and antioxidants by the coral Stylophora pistillata to its external milieu

    Science.gov (United States)

    Armoza-Zvuloni, R.; Shaked, Y.

    2014-09-01

    Hydrogen peroxide (H2O2), a common reactive oxygen species, plays multiple roles in coral health and disease. Elevated H2O2 production by the symbiotic algae during stress may result in symbiosis breakdown and bleaching of the coral. We have recently reported that various Red Sea corals release H2O2 and antioxidants to their external milieu, and can influence the H2O2 dynamics in the reef. Here, we present a laboratory characterization of H2O2 and antioxidant activity release kinetics by intact, non-stressed Stylophora pistillata. Experimenting with bleached and non-bleached corals and different stirring speeds, we explored the sources and modes of H2O2 and antioxidant release. Since H2O2 is produced and degraded simultaneously, we developed a methodology for resolving the actual H2O2 concentrations released by the corals. H2O2 and antioxidant activity steadily increased in the water surrounding the coral over short periods of 1-2 h. Over longer periods of 5-7 h, the antioxidant activity kept increasing with time, while H2O2 concentrations were stabilized at ~ 1 μM by 1-3 h, and then gradually declined. Solving for H2O2 release, corals were found to release H2O2 at increasing rates over 2-4 h, and then to slow down and stop by 5-7 h. Stirring was shown to induce the release of H2O2, possibly since the flow reduces the thickness of the diffusive boundary layer of the coral, and thus increases H2O2 mass flux. Antioxidant activity was released at similar rates by bleached and non-bleached corals, suggesting that the antioxidants did not originate from the symbiotic algae. H2O2, however, was not released from bleached corals, implying that the symbiotic algae are the source of the released H2O2. The observed flow-induced H2O2 release may aid corals in removing some of the internal H2O2 produced by their symbiotic algae, and may possibly assist in preventing coral bleaching under conditions of elevated temperature and irradiance.

  8. Coral Reef Status of Navassa Island 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic and habitat data collected on the 2004 cruise to Navassa Islands National Wildlife Refuge. Parameters include benthic cover, coral disease prevalence,...

  9. Early development of zooxanthella-containing eggs of the corals Porites cylindrica and Montipora digitata: The endodermal localization of zooxanthellae.

    Science.gov (United States)

    Hirose, Mamiko; Hidaka, Michio

    2006-10-01

    We studied the early development of zooxanthellae-containing eggs of the scleractinian corals Porites cylindrica and Montipora digitata to elucidate how zooxanthellae become localized to the endoderm of planulae during the course of development. In both species, zooxanthellae were distributed evenly in the oocytes and delivered almost equally to the blastomeres during cleavage. In P. cylindrica, gastrulation occurred via delamination or ingression, and blastomeres containing zooxanthellae dropped into the blastocoel during gastrulation. Thus, zooxanthellae were restricted to the endodermal cells at the gastrula or early planula stage in P. cylindrica. In M. digitata, gastrulation occurred by a combination of invagination and epiboly to form a somewhat concave gastrula. Zooxanthellae were present in both endodermal and ectodermal cells of early planulae, but they disappeared from the ectoderm as the planulae matured. In our previous study on two species of Pocillopora, we found that zooxanthellae were localized in eggs as well as in embryos, and that blastomeres containing zooxanthellae later dropped into the blastocoel to become restricted to the endoderm (Hirose et al., 2000). The timing and mechanism of zooxanthella localization and types of gastrulation differed among species belonging to the three genera. These results suggest that zooxanthella localization in the embryos reflects the timing of the determination of presumptive endoderm cells and/or specificity of zooxanthellae toward presumptive endoderm cells.

  10. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-01-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  11. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-02-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  12. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  13. Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria

    Science.gov (United States)

    Lema, Kimberley A.; Willis, Bette L.

    2012-01-01

    The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium. PMID:22344646

  14. Drug development for airway diseases: looking forward

    NARCIS (Netherlands)

    Holgate, Stephen; Agusti, Alvar; Strieter, Robert M.; Anderson, Gary P.; Fogel, Robert; Bel, Elisabeth; Martin, Thomas R.; Reiss, Theodore F.

    2015-01-01

    Advancing drug development for airway diseases beyond the established mechanisms and symptomatic therapies requires redefining the classifications of airway diseases, considering systemic manifestations, developing new tools and encouraging collaborations

  15. Land-Sourced Pollution with an Emphasis on Domestic Sewage: Lessons from the Caribbean and Implications for Coastal Development on Indian Ocean and Pacific Coral Reefs

    Directory of Open Access Journals (Sweden)

    Andre DeGeorges

    2010-09-01

    Full Text Available This paper discusses land-sourced pollution with an emphasis on domestic sewage in the Caribbean in relation to similar issues in the Indian Ocean and Pacific. Starting on a large-scale in the 1980s, tropical Atlantic coastlines of Florida and Caribbean islands were over-developed to the point that traditional sewage treatment and disposal were inadequate to protect fragile coral reefs from eutrophication by land-sourced nutrient pollution. This pollution caused both ecological and public health problems. Coral reefs were smothered by macro-algae and died, becoming rapidly transformed into weedy algal lawns, which resulted in beach erosion, and loss of habitat that added to fisheries collapse previously caused by over-fishing. Barbados was one of the first countries to recognize this problem and to begin implementation of effective solutions. Eastern Africa, the Indian Ocean Islands, Pacific Islands, and South East Asia, are now starting to develop their coastlines for ecotourism, like the Caribbean was in the 1970s. Tourism is an important and increasing component of the economies of most tropical coastal areas. There are important lessons to be learned from this Caribbean experience for coastal zone planners, developers, engineers, coastal communities and decision makers in other parts of the world to assure that history does not repeat itself. Coral reef die-off from land-sourced pollution has been eclipsed as an issue since the ocean warming events of 1998, linked to global warming. Addressing ocean warming will take considerable international cooperation, but much of the land-sourced pollution issue, especially sewage, can be dealt with on a watershed by watershed basis by Indian Ocean and Pacific countries. Failure to solve this critical issue can adversely impact both coral reef and public health with dire economic consequences, and will prevent coral reef recovery from extreme high temperature events. Sewage treatment, disposal options

  16. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...

    Science.gov (United States)

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  17. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  18. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Directory of Open Access Journals (Sweden)

    Koty H Sharp

    Full Text Available Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  19. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Science.gov (United States)

    Sharp, Koty H; Ritchie, Kim B; Schupp, Peter J; Ritson-Williams, Raphael; Paul, Valerie J

    2010-05-28

    Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  20. Cold-water coral banks and submarine landslides: a review

    Science.gov (United States)

    de Mol, Ben; Huvenne, Veerle; Canals, Miquel

    2009-06-01

    This paper aims to review the relation between cold-water coral bank development and submarine landslides. Both are common features on continental margins, but so far it has not been reviewed which effect—if at all—they may have upon each other. Indirect and direct relations between coral banks and landslides are evaluated here, based on four case studies: the Magellan Mound Province in the Porcupine Seabight, where fossil coral banks appear partly on top of a buried slide deposit; the Sula Ridge Reef Complex and the Storegga landslide both off mid-Norway; and the Mauritania coral bank province, associated with the Mauritanian Slide Complex. For each of these locations, positive and negative relationships between both features are discussed, based on available datasets. Locally submarine landslides might directly favour coral bank development by creating substratum where corals can settle on, enhancing turbulence due to abrupt seabed morphological variations and, in some cases, causing fluid seepage. In turn, some of these processes may contribute to increased food availability and lower sedimentation rates. Landslides can also affect coral bank development by direct erosion of the coral banks, and by the instantaneous increase of turbidity, which may smother the corals. On the other hand, coral banks might have a stabilising function and delay or stop the headwall retrogradation of submarine landslides. Although local relationships can be deduced from these case studies, no general and direct relationship exists between submarine landslides and cold-water coral banks.

  1. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    Science.gov (United States)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  2. EPA Field Manual for Coral Reef Assessments

    Science.gov (United States)

    The Water Quality Research Program (WQRP) supports development of coral reef biological criteria. Research is focused on developing methods and tools to support implementation of legally defensible biological standards for maintaining biological integrity, which is protected by ...

  3. Chronic Disease and Childhood Development: Kidney Disease and Transplantation.

    Science.gov (United States)

    Klein, Susan D.; Simmons, Roberta G.

    As part of a larger study of transplantation and chronic disease and the family, 124 children (10-18 years old) who were chronically ill with kidney disease (n=72) or were a year or more post-transplant (n=52) were included in a study focusing on the effects of chronic kidney disease and transplantation on children's psychosocial development. Ss…

  4. Lectins stain cells differentially in the coral, Montipora capitata

    Science.gov (United States)

    Work, Thierry M.; Farah, Yael

    2014-01-01

    A limitation in our understanding of coral disease pathology and cellular pathogenesis is a lack of reagents to characterize coral cells. We evaluated the utility of plant lectins to stain tissues of a dominant coral, Montipora capitata, from Hawaii. Of 22 lectins evaluated, nine of these stained structures in the upper or basal body wall of corals. Specific structures revealed by lectins that were not considered distinct or evident on routine hematoxylin and eosin sections of coral tissues included apical and basal granules in gastrodermis and epidermis, cnidoglandular tract and actinopharynx cell surface membranes, capsules of mature holotrichous isorhizas, and perivitelline and periseminal cells. Plant lectins could prove useful to further our understanding of coral physiology, anatomy, cell biology, and disease pathogenesis.

  5. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Impact of anthropogenic disturbances on the diversity of shallow stony corals in the Veracruz Reef System National Park Impacto de perturbaciones antrópicas sobre la diversidad de corales pétreos superficiales en el Parque Nacional Sistema Arrecifal veracruzano

    Directory of Open Access Journals (Sweden)

    Carla V. Gutiérrez-Ruiz

    2011-03-01

    Full Text Available Anthropogenic disturbances may affect the development and maintenance of coral reefs by promoting diseases and other syndromes. In turn, this may cause local decreases in coral species diversity. In this study, we compared the prevalence of syndromes (including diseases and non-disease syndromes and the diversity of stony coral species between reefs located close (Sacrificios reef and far away (Santiaguillo reef of the port of Veracruz, Mexico. The prevalence of syndromes was higher at Sacrificios than at Santiaguillo, and it also increased with the abundance of coral colonies at the former reef. On the other hand, coral diversity was lower at Sacrificios than at Santiaguillo, suggesting that anthropogenic disturbances, besides promoting diseases and other syndromes, also lead to local decreases in species diversity.Las perturbaciones antropogénicas pueden afectar el desarrollo y mantenimiento de los arrecifes de coral mediante la promoción de las enfermedades y otros síndromes. A su vez, esto puede producir un descenso en la diversidad local de especies. En este estudio, se comparó la prevalencia de síndromes (tanto aquellos causados por enfermedades, como por otros factores y la diversidad de especies de corales pétreos entre arrecifes ubicados cerca (Sacrificios y lejos (Santiaguillo del puerto de Veracruz, México. La prevalencia de síndromes fue mayor en Sacrificios que en Santiaguillo, y también se incrementó con la abundancia de colonias de coral en Sacrificios. Por otra parte, la diversidad de corales fue menor en Sacrificios que en Santiaguillo, sugiriendo que las perturbaciones antropogénicas, además de promover las enfermedades y otros síndromes, también disminuyen localmente la diversidad de especies.

  7. Chronology of lead pollution contained in banded coral skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Dodge, R E; Gilbert, T R

    1984-08-01

    The possibility of the annual skeletal growth bands of reef-building corals containing a record of lead additions to the marine environment was investigated using coral skeletons from St. Croix, Virgin Islands. Concentrations of lead within a coral from a polluted reef averaged 395 ng/g, five fold higher than within a coral from a pristine site, 87 ng/g. The lead chronologies of both corals showed a significant increase in concentration towards the present during the past 26 yr. The increase in lead concentration in the coral from the pristine site is suggested to represent the increase in lead availability from global pollution. Coral skeletons offer the probability of development into tools for long term chemical recorders of levels of lead and possibly other metals or compounds in seawater. 50 references, 3 figures, 1 table.

  8. Development of the Wintertime Sr/Ca-SST Record from Red Sea Corals as a Proxy for the North Atlantic Oscillation

    Science.gov (United States)

    Bernstein, W. N.; Hughen, K. A.

    2009-12-01

    The North Atlantic Oscillation (NAO) is one of the most pronounced and influential patterns in winter atmospheric circulation variability. This meridional redistribution of atmospheric mass across the Atlantic Ocean produces large changes in the intensity, number and direction of storms generated within the basin, and the regional climate of surrounding continents. The NAO exerts a significant impact on society, through influences on agriculture, fisheries, water management, energy generation and coastal development. NAO effects on climate extend from eastern North America across Europe to the eastern Mediterranean and Middle East. Changes in NAO behavior during the late 20th century have been linked to global warming; yet despite its importance, the causes and long-term patterns of NAO variability in the past remain poorly understood. In order to better predict the influence of the NAO on climate in the future, it is critical to examine multi-century NAO variability. The Red Sea is an excellent location from which to generate long NAO records for two reasons. First, patterns of wintertime sea surface temperature (SST) and salinity (SSS) in the Red Sea are highly correlated with NAO variability (Visbeck et al. 2001; Hurrell et al. 2003). Second, the tropical/subtropical Red Sea region contains fast growing long-lived massive Porites spp. corals with annually banded skeletons. These corals are ideal for generating well-dated high-resolution paleoclimatic records that extend well beyond the instrumental period. Here we present a study of winter SST and NAO variability in the Red sea region based on coral Sr/Ca data. In 2008, we collected multiple drill cores ranging in length from 1 to 4.1 meters from Porites corals at six sites spanning a large SST gradient. Sr/Ca measurements from multiple corals will be regressed against 23 years of satellite SST data, expanding the SST range over which we calibrate. A sampling resolution of 0.5mm will yield greater than bi

  9. CORAL Server and CORAL Server Proxy: Scalable Access to Relational Databases from CORAL Applications

    International Nuclear Information System (INIS)

    Valassi, A; Kalkhof, A; Bartoldus, R; Salnikov, A; Wache, M

    2011-01-01

    The CORAL software is widely used at CERN by the LHC experiments to access the data they store on relational databases, such as Oracle. Two new components have recently been added to implement a model involving a middle tier 'CORAL server' deployed close to the database and a tree of 'CORAL server proxies', providing data caching and multiplexing, deployed close to the client. A first implementation of the two new components, released in the summer 2009, is now deployed in the ATLAS online system to read the data needed by the High Level Trigger, allowing the configuration of a farm of several thousand processes. This paper reviews the architecture of the software, its development status and its usage in ATLAS.

  10. The effects of coastal development on sponge abundance, diversity, and community composition on Jamaican coral reefs.

    Science.gov (United States)

    Stubler, Amber D; Duckworth, Alan R; Peterson, Bradley J

    2015-07-15

    Over the past decade, development along the northern coast of Jamaica has accelerated, resulting in elevated levels of sedimentation on adjacent reefs. To understand the effects of this development on sponge community dynamics, we conducted surveys at three locations with varying degrees of adjacent coastal development to quantify species richness, abundance and diversity at two depths (8-10 m and 15-18 m). Sediment accumulation rate, total suspended solids and other water quality parameters were also quantified. The sponge community at the location with the least coastal development and anthropogenic influence was often significantly different from the other two locations, and exhibited higher sponge abundance, richness, and diversity. Sponge community composition and size distribution were statistically different among locations. This study provides correlative evidence that coastal development affects aspects of sponge community ecology, although the precise mechanisms are still unclear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Lithifying Microbes Associated to Coral Rubbles

    Science.gov (United States)

    Beltran, Y.

    2015-12-01

    Microbial communities taking part in calcium carbonate lithification processes are particularly relevant to coral reef formation in as much as this lithification allows the stabilization of secondary reef structure. This second framework promotes long-term permanence of the reef, favoring the establishment of macro-reef builders, including corals. The reef-bacterial crusts formed by microbial communities are composed of magnesium calcite. Although prokaryotes are not proper calcifiers, carbonate precipitation can be induced by their metabolic activity and EPS production. Coral reefs are rapidly declining due to several variables associated to environmental change. Specifically in the Caribbean, stony coral Acropora palmata have suffered damage due to diseases, bleaching and storms. Some reports show that in highly disturbed areas wide ridges of reef rubbles are formed by biological and physical lithification. In this study we explore microbial diversity associated to lithified rubbles left after the great decline of reef-building A. palmata.

  12. Development of Graves' disease following radiation therapy in Hodgkin's disease

    International Nuclear Information System (INIS)

    Loeffler, J.S.; Tarbell, N.J.; Garber, J.R.; Mauch, P.

    1988-01-01

    Radiation-related thyroid dysfunction is a common occurrence in patients with Hodgkin's disease treated with mantle field radiation. Although chemical and clinical hypothyroidism are most commonly seen, Graves' disease has also been described. We have examined the records of 437 surgically staged patients who received mantle field irradiation between April 1969 and December 1980 to ascertain the frequency of manifestations of Graves' disease. Within this group, seven patients developed hyperthyroidism accompanied by ophthalmic findings typical of those seen in Graves' disease. The actuarial risk of developing Graves' disease at 10 years following mantle irradiation for Hodgkin's disease was 3.3% in female patients and 1% in male patients in this study. The observed/expected ratios were 5.9 and 5.1 for female and male patients, respectively. This observed risk significantly exceeded that seen in the general population

  13. Calcification by juvenile corals under heterotrophy and elevated CO2

    Science.gov (United States)

    Drenkard, E. J.; Cohen, A. L.; McCorkle, D. C.; de Putron, S. J.; Starczak, V. R.; Zicht, A. E.

    2013-09-01

    Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO3) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 μatm) or significantly elevated (1,311 μatm) CO2 conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO2 condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO2 level, fed corals accreted more CaCO3 than unfed corals, and fed corals reared under 1,311 μatm CO2 accreted as much CaCO3 as unfed corals reared under ambient CO2. However, feeding did not alter the sensitivity of calcification to increased CO2; ∆ calcification/∆Ω was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO3 production under OA than those in nutritionally limited environments.

  14. Coral Reef Remote Sensing: Helping Managers Protect Reefs in a Changing Climate

    Science.gov (United States)

    Eakin, C.; Liu, G.; Li, J.; Muller-Karger, F. E.; Heron, S. F.; Gledhill, D. K.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Skirving, W. J.; Nim, C.; Burgess, T.; Strong, A. E.

    2010-12-01

    Climate change and ocean acidification are already having severe impacts on coral reef ecosystems. Warming oceans have caused corals to bleach, or expel their symbiotic algae (zooxanthellae) with alarming frequency and severity and have contributed to a rise in coral infectious diseases. Ocean acidification is reducing the availability of carbonate ions needed by corals and many other marine organisms to build structural components like skeletons and shells and may already be slowing the coral growth. These two impacts are already killing corals and slowing reef growth, reducing biodiversity and the structure needed to provide crucial ecosystem services. NOAA’s Coral Reef Watch (CRW) uses a combination of satellite data, in situ observations, and models to provide coral reef managers, scientists, and others with information needed to monitor threats to coral reefs. The advance notice provided by remote sensing and models allows resource managers to protect corals, coral reefs, and the services they provide, although managers often encounter barriers to implementation of adaptation strategies. This talk will focus on application of NOAA’s satellite and model-based tools that monitor the risk of mass coral bleaching on a global scale, ocean acidification in the Caribbean, and coral disease outbreaks in selected regions, as well as CRW work to train managers in their use, and barriers to taking action to adapt to climate change. As both anthropogenic CO2 and temperatures will continue to rise, local actions to protect reefs are becoming even more important.

  15. Caribbean corals house shared and host-specific microbial symbionts over time and space.

    Science.gov (United States)

    Chu, Nathaniel D; Vollmer, Steven V

    2016-08-01

    The rise of coral diseases has triggered a surge of interest in coral microbial communities. But to fully understand how the coral microbiome may cause or respond to disease, we must first understand structure and variation in the healthy coral microbiome. We used 16S rRNA sequencing to characterize the microbiomes of 100 healthy coral colonies from six Caribbean coral species (Acropora cervicornis, A. palmata, Diploria labyrinthiformis, Diploria strigosa, Porites astreoides and P. furcata) across four reefs and three time points over 1 year. We found host species to be the strongest driver of coral microbiome structure across site and time. Analysis of the core microbiome revealed remarkable similarity in the bacterial taxa represented across coral hosts and many bacterial phylotypes shared across all corals sampled. Some of these widespread bacterial taxa have been identified in Pacific corals, indicating that a core coral microbiome may extend across oceans. Core bacterial phylotypes that were unique to each coral were taxonomically diverse, suggesting that different coral hosts provide persistent, divergent niches for bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Development of polymorphic microsatellite loci for conservation genetic studies of the coral reef fish Centropyge bicolor

    KAUST Repository

    Herrera Sarrias, Marcela

    2015-08-14

    A total of 23 novel polymorphic microsatellite marker loci were developed for the angelfish Centropyge bicolor through 454 sequencing, and further tested on two spatially separated populations (90 individuals each) from Kimbe Bay in Papua New Guinea. The mean ± s.e. number of alleles per locus was 14·65 ± 1·05, and mean ± s.e. observed (HO) and expected (HE) heterozygosity frequencies were 0·676 ± 0·021 and 0·749 ± 0·018, respectively. The markers reported here constitute the first specific set for this genus and will be useful for future conservation genetic studies in the Indo-Pacific region. © 2015 The Fisheries Society of the British Isles.

  17. Development of polymorphic microsatellite loci for conservation genetic studies of the coral reef fish Centropyge bicolor

    KAUST Repository

    Herrera Sarrias, Marcela; Saenz-Agudelo, P.; Nanninga, Gerrit B.; Berumen, Michael L.

    2015-01-01

    A total of 23 novel polymorphic microsatellite marker loci were developed for the angelfish Centropyge bicolor through 454 sequencing, and further tested on two spatially separated populations (90 individuals each) from Kimbe Bay in Papua New Guinea. The mean ± s.e. number of alleles per locus was 14·65 ± 1·05, and mean ± s.e. observed (HO) and expected (HE) heterozygosity frequencies were 0·676 ± 0·021 and 0·749 ± 0·018, respectively. The markers reported here constitute the first specific set for this genus and will be useful for future conservation genetic studies in the Indo-Pacific region. © 2015 The Fisheries Society of the British Isles.

  18. Development of twelve microsatellite loci in the red tree corals Primnoa resedaeformis and Primnoa pacifica

    Science.gov (United States)

    Morrison, Cheryl L.; Springmann, Marcus J.; Shroades, Kelsey; Stone, Robert P.

    2015-01-01

    A suite of tetra-, penta-, and hexa-nucleotide microsatellite loci were developed from Roche 454 pyrosequencing data for the cold-water octocorals Primnoa resedaeformis and P. pacifica. Twelve of 98 primer sets tested consistently amplified in 30 P. resedaeformis samples from Baltimore Canyon (western North Atlantic Ocean) and in 24 P. pacifica samples (Shutter Ridge, eastern Gulf of Alaska). The loci displayed moderate levels of allelic diversity (average 7.5 alleles/locus) and heterozygosity (average 47 %). Levels of genetic diversity were sufficient to produce unique multi-locus genotypes and to distinguish species. These common species are long-lived (hundreds of years) and provide essential fish habitat (P. pacifica), yet populations are provided little protection from human activities. These loci will be used to determine regional patterns of population connectivity to inform effective marine spatial planning and ecosystem-based fisheries management.

  19. Recent developments in biomarkers in Parkinson disease

    Science.gov (United States)

    Schapira, Anthony H.V.

    2013-01-01

    Purpose of review Parkinson disease is the second most common neurodegenerative disease after Alzheimer disease, and current demographic trends indicate a life-time risk approaching 4% and predict a doubling of prevalence by 2030. Strategies are being developed to apply recent advances in our understanding of the cause of Parkinson disease to the development of biomarkers that will enable the identification of at-risk individuals, enable early diagnosis and reflect the progression of disease. The latter will be particularly important for the testing of disease-modifying therapies. This review summarizes recent advances in Parkinson disease biomarker development. Recent findings Recent reports continue to reflect the application of a variety of clinical, imaging or biochemical measurements, alone or in combination, to general Parkinson disease populations. Probably the most promising is the assay of alpha-synuclein in the diagnosis and evolution of Parkinson disease. At present, detection techniques are still being refined, but once accurate and reproducible assays are available, it will be important to define the relationship of these to early diagnosis and progression. Alpha-synuclein concentrations may also be modulated by certain disease-modifying agents in development and so may represent a measure of their efficacy. It has to be accepted that no single measure currently fulfils all the necessary criteria for a biomarker in Parkinson disease, but combinations of measures are more likely to deliver benefit. Summary The Parkinson disease biomarker field is approaching a stage when certain combinations of clinical, imaging and biochemical measures may identify a proportion of individuals at risk for developing the disease. However, their general applicability may be limited. Attention is now turning to stratification of Parkinson disease into certain at-risk groups defined by genotype. The application of multimodal screening to these populations may be more

  20. Climate change, global warming and coral reefs: modelling the effects of temperature.

    Science.gov (United States)

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  1. The Porcupine Bank Canyon coral mounds: oceanographic and topographic steering of deep-water carbonate mound development and associated phosphatic deposition

    Science.gov (United States)

    Mazzini, A.; Akhmetzhanov, A.; Monteys, X.; Ivanov, M.

    2012-06-01

    . Evidently, slope breaks such as escarpments and deep-water canyon headwalls are important structural elements in the development of mature carbonate mounds induced by deep-water coral growth. Stable isotope data show no evidence of methane-derived carbon in the carbonates and lithified sediments of the Porcupine Bank Canyon mounds.

  2. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress

    Directory of Open Access Journals (Sweden)

    Jiayuan Liang

    2017-06-01

    Full Text Available It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on. In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.

  3. Chromatin remodeling, development and disease

    International Nuclear Information System (INIS)

    Ko, Myunggon; Sohn, Dong H.; Chung, Heekyoung; Seong, Rho H.

    2008-01-01

    Development is a stepwise process in which multi-potent progenitor cells undergo lineage commitment, differentiation, proliferation and maturation to produce mature cells with restricted developmental potentials. This process is directed by spatiotemporally distinct gene expression programs that allow cells to stringently orchestrate intricate transcriptional activation or silencing events. In eukaryotes, chromatin structure contributes to developmental progression as a blueprint for coordinated gene expression by actively participating in the regulation of gene expression. Changes in higher order chromatin structure or covalent modification of its components are considered to be critical events in dictating lineage-specific gene expression during development. Mammalian cells utilize multi-subunit nuclear complexes to alter chromatin structure. Histone-modifying complex catalyzes covalent modifications of histone tails including acetylation, methylation, phosphorylation and ubiquitination. ATP-dependent chromatin remodeling complex, which disrupts histone-DNA contacts and induces nucleosome mobilization, requires energy from ATP hydrolysis for its catalytic activity. Here, we discuss the diverse functions of ATP-dependent chromatin remodeling complexes during mammalian development. In particular, the roles of these complexes during embryonic and hematopoietic development are reviewed in depth. In addition, pathological conditions such as tumor development that are induced by mutation of several key subunits of the chromatin remodeling complex are discussed, together with possible mechanisms that underlie tumor suppression by the complex

  4. Recent developments in Alzheimer's disease therapeutics

    Directory of Open Access Journals (Sweden)

    Aisen Paul S

    2009-02-01

    Full Text Available Abstract Alzheimer's disease is a devastating neurological disorder that affects more than 37 million people worldwide. The economic burden of Alzheimer's disease is massive; in the United States alone, the estimated direct and indirect annual cost of patient care is at least $100 billion. Current FDA-approved drugs for Alzheimer's disease do not prevent or reverse the disease, and provide only modest symptomatic benefits. Driven by the clear unmet medical need and a growing understanding of the molecular pathophysiology of Alzheimer's disease, the number of agents in development has increased dramatically in recent years. Truly *disease-modifying' therapies that target the underlying mechanisms of Alzheimer's disease have now reached late stages of human clinical trials. Primary targets include beta-amyloid, whose presence and accumulation in the brain is thought to contribute to the development of Alzheimer's disease, and tau protein which, when hyperphosphorylated, results in the self-assembly of tangles of paired helical filaments also believed to be involved in the pathogenesis of Alzheimer's disease. In this review, we briefly discuss the current status of Alzheimer's disease therapies under study, as well the scientific context in which they have been developed.

  5. Coral reefs and eutrophication

    International Nuclear Information System (INIS)

    Stambler, N.

    1999-01-01

    Coral reefs are found in oligotrophic waters, which are poor in nutrients such as nitrogen, phosphate, and possibly iron. In spite of this, coral reefs exhibit high gross primary productivity rates. They thrive in oligotrophic conditions because of the symbiotic relationship between corals and dinoflagellate algae (zooxanthellae) embedded in the coral tissue. In their mutualistic symbiosis, the zooxanthellae contribute their photosynthetic capability as the basis for the metabolic energy of the whole association, and eventually of a great part of the entire reef ecosystem

  6. Coral health on reefs near mining sites in New Caledonia.

    Science.gov (United States)

    Heintz, T; Haapkylä, J; Gilbert, A

    2015-07-23

    Coral health data are poorly documented in New Caledonia, particularly from reefs chronically subject to anthropogenic and natural runoff. We investigated patterns of coral disease and non-disease conditions on reefs situated downstream of mining sites off the coast of New Caledonia. Surveys were conducted in March 2013 at 2 locations along the west coast and 2 locations along the east coast of the main island. Only 2 coral diseases were detected: growth anomalies and white syndrome. The most prevalent signs of compromised health at each location were sediment damage and algal overgrowth. These results support earlier findings that sedimentation and turbidity are major threats to in-shore reefs in New Caledonia. The Poritidae-dominated west coast locations were more subject to sediment damage, algal overgrowth and growth anomalies compared to the Acroporidae-dominated east coast locations. If growth form and resistance of coral hosts influence these results, differences in environmental conditions including hydro-dynamism between locations may also contribute to these outputs. Our results highlight the importance of combining coral health surveys with measurements of coral cover when assessing the health status of a reef, as reefs with high coral cover may have a high prevalence of corals demonstrating signs of compromised health.

  7. Agents of coral mortality on reef formations of the Colombian Pacific

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available The National Monitoring System for Coral Reefs of Colombia (SIMAC monitors the impact of some of the most important agents of coral tissue loss (bleaching and/or disease in the Colombian Pacific coral formations since 1998. Physiological bleaching is among the main results of stress in the area. Signs of coral diseases resembling bacterial bleaching such as White Plague and White Band, were observed in Malpelo and Gorgona islands. Damage to the Pacific gorgonian Pacifigorgia spp., similar to those produced by Aspergillosis in Caribbean corals, was detected in Utría Bay. The presence of tumors in colonies of massive corals was also recorded. Even though coral diseases are globally widespread, their occurrence in American Pacific reefs has been poorly documented to date. Rev. Biol. Trop. 58 (Suppl. 1: 133-138. Epub 2010 May 01.

  8. Agents of coral mortality on reef formations of the Colombian Pacific.

    Science.gov (United States)

    Navas-Camacho, Raúl; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina

    2010-05-01

    The National Monitoring System for Coral Reefs of Colombia (SIMAC) monitors the impact of some of the most important agents of coral tissue loss (bleaching and/or disease) in the Colombian Pacific coral formations since 1998. Physiological bleaching is among the main results of stress in the area. Signs of coral diseases resembling bacterial bleaching such as White Plague and White Band, were observed in Malpelo and Gorgona islands. Damage to the Pacific gorgonian Pacifigorgia spp., similar to those produced by Aspergillosis in Caribbean corals, was detected in Utria Bay. The presence of tumors in colonies of massive corals was also recorded. Even though coral diseases are globally widespread, their occurrence in American Pacific reefs has been poorly documented to date.

  9. Atlantis Modeled Output Data for the Coral Reef Ecosystems of Guam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A proof-of-concept Guam Atlantis Coral Reef Ecosystem Model has been developed and an added coral module to the Atlantis framework has been validated. The model is...

  10. Biogeography of azooxanthellate corals in the Caribbean and surrounding areas

    Science.gov (United States)

    Dawson, J.

    2002-04-01

    Biogeographic patterns for azooxanthellate corals are not as well known as those of zooxanthellate (primarily reef-building) corals. I analyzed occurrences of 129 species of azooxanthellate corals in 19 geopolitical regions in the Caribbean and surrounding areas. I performed an unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis using Bray-Curtis' similarity measure on the complete data set and shallow- and deep-water subsets of the data. The results indicate two provinces, each with a widespread (tropical and subtropical distributions) component to its fauna. One province has a tropical and primarily insular component to it, while the other has a subtropical and primarily continental component. By contrast, zooxanthellate corals have a uniform faunal composition throughout the Caribbean. Moreover, zooxanthellate corals have half as many species in the Caribbean as the azooxanthellate corals even though their global diversities are equal. These differences in diversity and geographic distribution patterns should be considered when developing conservation strategies.

  11. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral.

    Science.gov (United States)

    Pinzón, Jorge H; Kamel, Bishoy; Burge, Colleen A; Harvell, C Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D

    2015-04-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs.

  12. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral

    Science.gov (United States)

    Pinzón, Jorge H.; Kamel, Bishoy; Burge, Colleen A.; Harvell, C. Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D.

    2015-01-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs. PMID:26064625

  13. Cryobiology of coral fragments.

    Science.gov (United States)

    Hagedorn, Mary; Farrell, Ann; Carter, Virginia L

    2013-02-01

    Around the world, coral reefs are dying due to human influences, and saving habitat alone may not stop this destruction. This investigation focused on the biological processes that will provide the first steps in understanding the cryobiology of whole coral fragments. Coral fragments are a partnership of coral tissue and endosymbiotic algae, Symbiodinium sp., commonly called zooxanthellae. These data reflected their separate sensitivities to chilling and a cryoprotectant (dimethyl sulfoxide) for the coral Pocillopora damicornis, as measured by tissue loss and Pulse Amplitude Modulated fluorometry 3weeks post-treatment. Five cryoprotectant treatments maintained the viability of the coral tissue and zooxanthellae at control values (1M dimethyl sulfoxide at 1.0, 1.5 and 2.0h exposures, and 1.5M dimethyl sulfoxide at 1.0 and 1.5h exposures, P>0.05, ANOVA), whereas 2M concentrations did not (Pzooxanthellae. During the winter when the fragments were chilled, the coral tissue remained relatively intact (∼25% loss) post-treatment, but the zooxanthellae numbers in the tissue declined after 5min of chilling (Pzooxanthellae numbers declined in response to chilling alone (P0.05, ANOVA), but it did not protect against the loss of zooxanthellae (Pzooxanthellae are the most sensitive element in the coral fragment complex and future cryopreservation protocols must be guided by their greater sensitivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Coral Reefs: Beyond Mortality?

    Directory of Open Access Journals (Sweden)

    Charles Sheppard

    2000-01-01

    Full Text Available The scale of the collapse of coral reef communities in 1998 following a warming episode (Wilkinson, 2000 was unprecedented, and took many people by surprise. The Indian Ocean was the worst affected with a coral mortality over 75% in many areas such as the Chagos Archipelago (Sheppard, 1999, Seychelles (Spencer et al., 2000 and Maldives (McClanahan, 2000. Several other locations were affected at least as much, with mortality reaching 100% (to the nearest whole number; this is being compiled by various authors (e.g., CORDIO, in press. For example, in the Arabian Gulf, coral mortality is almost total across many large areas of shallow water (Sheppard, unpublished; D. George and D. John, personal communication. The mortality is patchy of course, depending on currents, location inside or outside lagoons, etc., but it is now possible to swim for over 200 m and see not one remaining living coral or soft coral on some previously rich reefs.

  15. Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2018-04-01

    Full Text Available Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal development, mining, aquaculture, shipping, and global warming. We calculated an index of the risk to cumulative impacts: (i assuming uniform sensitivity of coral reefs to stressors; and (ii using impact weights to reflect varying tolerance levels of coral reefs to each stressor. We also predicted the index in both the presence and absence of global warming. We found that 16% and 37% of coral reefs had high to very high risk of cumulative impacts, without and with information on sensitivity respectively, and 42% of reefs had low risk to cumulative impacts from both local and global stressors. Our outputs are the first comprehensive spatial dataset of cumulative impact on coral reefs in Brazil, and show that areas requiring attention mostly corresponded to those closer to population centres. We demonstrate how the relationships between risks from local and global stressors can be used to derive strategic management actions.

  16. [Influence of sediments and tungsten traces on the skeletal structure of Pseudodiploria: a reef building scleractinian coral from the Veracruz Reef System National Park, Mexico].

    Science.gov (United States)

    Colín-García, Norberto A; Campos, Jorge E; Tello-Musi, Jose Luis; Arias-González, Jesús E

    2016-09-01

    Coral reefs are under intense conditions of stress caused by the anthropogenic activities in coastal areas and the increase of human population. Water effluents from urban and industrial areas carry large amounts of sediments and pollutants affecting corals populations, inducing bioerosion, increasing diseases and promoting the development of algae that compete for space with corals. In the Veracruz Reef System National Park (VRSNP) coral reefs are strongly affected by human activities carried out in the area. Gallega and Galleguilla reefs are among the most affected by wastewater discharges from the industrial (petrochemical and metallurgical) and urban areas in their vicinity. To assess the potential impact of this contamination on corals in the VRSNP, a chemical composition and morphology study of 76 Pseudodiploria colonies collected in reefs Gallega, Galleguilla, Isla Verde and Isla de Enmedio, was performed. Fragments of ~10 cm2 were collected and boric acid at 0.5 % was used to remove tissue from the skeleton; once clean, the morphology of each sample was determined with a scanning electron microscope (SEM). Subsequently, to test the chemical composition, an energy dispersion spectroscopy of X-ray chemical microanalysis (EDSX) was performed in the SEM. We found that corals from Gallega and Galleguilla reefs, located closer to human populations, presented high levels of tungsten and the skeleton exhibited multiple perforations. In contrast, corals from the farthest offshore reefs (Isla Verde and Isla de Enmedio) exhibited lower levels of tungsten and fewer perforations in their skeleton. These results demonstrated that anthropogenic activities in the NPVRS are affecting corals skeleton, highly damaging and promoting their bioerosion. The presence of traces of tungsten in the skeleton of corals is an evidence of the damage that waste discharges are causing to coral reefs. Discharges of large amounts of contaminants promoted the growth of harmful species that

  17. U-series vs 14C ages of deep-sea corals from the southern Labrador Sea: Sporadic development of corals and geochemical processes hampering estimation of ambient water ventilation ages

    Science.gov (United States)

    Hillaire-Marcel, Claude; Maccali, Jenny; Ménabréaz, Lucie; Ghaleb, Bassam; Blénet, Aurélien; Edinger, Evan

    2017-04-01

    Deep-sea scleractinian corals were collected with the remotely operated ROPOS vehicle off Newfounland. Fossil specimens of Desmophyllum dianthus were raised from coral graveyards at Orphan Knoll (˜1700m depth) and Flemish cap (˜2200 m depth), while live specimens were collected directly in overlying steep rock slopes. D. dianthus has an aragonitic skeleton and is thus particularly suited for U-Th dating. We obtained > 70 U-series ages along with > 20 14C measurements. Results display a discrete age distribution with two age clusters: a Bølling-Allerød and Holocene cluster with > 20 samples, and a Marine Isotope Stage (MIS) 5c cluster with ˜50 samples. Only two samples lay outside these clusters, at ˜ 64 ka and at ˜181 ka. Contrary to the New England seamounts where coral presence seems to have been continue through the last 70 ka, Orphan Knoll and Flemish Cap graveyards are marked by the absence of preserved specimens from MIS 2 to MIS 4 and throughout MIS 6. For filter-feeding deep-sea corals, access to food-rich waters is essential. Hence the Holocene and MIS 5 clusters observed in the Labrador basin might represent intervals linked to high food availability, either through production in the overlying water column, more effectively in relation to particulate and dissolved organic carbon transport via an active Western Boundary Undercurrent. Comparison of 230Th-ages vs 14C-ages in order to document changes in ventilation ages of the ambient water masses is equivocal due to the presence of some diagenetic and/or initial 230Th-excess. In addition, discrete diagenetic U-fluxes can be documented from 234U/238U vs 230Th/238U data. They point to a recent winnowing of sediment overlying the fossil corals that we link to the Holocene intensification of the Western Boundary Undercurrent, which resulted in driving Fe-Mn coatings.

  18. Aura-biomes are present in the water layer above coral reef benthic macro-organisms

    Directory of Open Access Journals (Sweden)

    Kevin Walsh

    2017-08-01

    Full Text Available As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1 the coral Mussismilia braziliensis, (2 fleshy macroalgae (Stypopodium, Dictota and Canistrocarpus, (3 turf algae, and (4 the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific “aura-biome”. The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria, Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.

  19. Aura-biomes are present in the water layer above coral reef benthic macro-organisms.

    Science.gov (United States)

    Walsh, Kevin; Haggerty, J Matthew; Doane, Michael P; Hansen, John J; Morris, Megan M; Moreira, Ana Paula B; de Oliveira, Louisi; Leomil, Luciana; Garcia, Gizele D; Thompson, Fabiano; Dinsdale, Elizabeth A

    2017-01-01

    As coral reef habitats decline worldwide, some reefs are transitioning from coral- to algal-dominated benthos with the exact cause for this shift remaining elusive. Increases in the abundance of microbes in the water column has been correlated with an increase in coral disease and reduction in coral cover. Here we investigated how multiple reef organisms influence microbial communities in the surrounding water column. Our study consisted of a field assessment of microbial communities above replicate patches dominated by a single macro-organism. Metagenomes were constructed from 20 L of water above distinct macro-organisms, including (1) the coral Mussismilia braziliensis , (2) fleshy macroalgae ( Stypopodium , Dictota and Canistrocarpus ), (3) turf algae, and (4) the zoanthid Palythoa caribaeorum and were compared to the water microbes collected 3 m above the reef. Microbial genera and functional potential were annotated using MG-RAST and showed that the dominant benthic macro-organisms influence the taxa and functions of microbes in the water column surrounding them, developing a specific "aura-biome". The coral aura-biome reflected the open water column, and was associated with Synechococcus and functions suggesting oligotrophic growth, while the fleshy macroalgae aura-biome was associated with Ruegeria , Pseudomonas, and microbial functions suggesting low oxygen conditions. The turf algae aura-biome was associated with Vibrio, Flavobacterium, and functions suggesting pathogenic activity, while zoanthids were associated with Alteromonas and functions suggesting a stressful environment. Because each benthic organism has a distinct aura-biome, a change in benthic cover will change the microbial community of the water, which may lead to either the stimulation or suppression of the recruitment of benthic organisms.

  20. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    KAUST Repository

    Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R.

    2012-01-01

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).

  1. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    KAUST Repository

    Aranda, Manuel

    2012-09-21

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).

  2. Nitrogen cycling in corals: the key to understanding holobiont functioning?

    KAUST Repository

    Rädecker, Nils

    2015-04-01

    Corals are animals that form close mutualistic associations with endosymbiotic photosynthetic algae of the genus Symbiodinium. Together they provide the calcium carbonate framework of coral reef ecosystems. The importance of the microbiome (i.e., bacteria, archaea, fungi, and viruses) to holobiont functioning has only recently been recognized. Given that growth and density of Symbiodinium within the coral host is highly dependent on nitrogen availability, nitrogen-cycling microbes may be of fundamental importance to the stability of the coral–algae symbiosis and holobiont functioning, in particular under nutrient-enriched and -depleted scenarios. We summarize what is known about nitrogen cycling in corals and conclude that disturbance of microbial nitrogen cycling may be tightly linked to coral bleaching and disease.

  3. Nitrogen cycling in corals: the key to understanding holobiont functioning?

    KAUST Repository

    Rä decker, Nils; Pogoreutz, Claudia; Voolstra, Christian R.; Wiedenmann, Jö rg; Wild, Christian

    2015-01-01

    Corals are animals that form close mutualistic associations with endosymbiotic photosynthetic algae of the genus Symbiodinium. Together they provide the calcium carbonate framework of coral reef ecosystems. The importance of the microbiome (i.e., bacteria, archaea, fungi, and viruses) to holobiont functioning has only recently been recognized. Given that growth and density of Symbiodinium within the coral host is highly dependent on nitrogen availability, nitrogen-cycling microbes may be of fundamental importance to the stability of the coral–algae symbiosis and holobiont functioning, in particular under nutrient-enriched and -depleted scenarios. We summarize what is known about nitrogen cycling in corals and conclude that disturbance of microbial nitrogen cycling may be tightly linked to coral bleaching and disease.

  4. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.

    2015-12-08

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  5. From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen

    KAUST Repository

    Weynberg, Karen D.; Voolstra, Christian R.; Neave, Matthew J.; Buerger, Patrick; van Oppen, Madeleine J. H.

    2015-01-01

    Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.

  6. Unseen players shape benthic competition on coral reefs.

    Science.gov (United States)

    Barott, Katie L; Rohwer, Forest L

    2012-12-01

    Recent work has shown that hydrophilic and hydrophobic organic matter (OM) from algae disrupts the function of the coral holobiont and promotes the invasion of opportunistic pathogens, leading to coral morbidity and mortality. Here we refer to these dynamics as the (3)DAM [dissolved organic matter (DOM), direct contact, disease, algae and microbes] model. There is considerable complexity in coral-algae interactions; turf algae and macroalgae promote heterotrophic microbial overgrowth of coral, macroalgae also directly harm the corals via hydrophobic OM, whereas crustose coralline algae generally encourage benign microbial communities. In addition, complex flow patterns transport OM and pathogens from algae to downstream corals, and direct algal contact enhances their delivery. These invisible players (microbes, viruses, and OM) are important drivers of coral reefs because they have non-linear responses to disturbances and are the first to change in response to perturbations, providing near real-time trajectories for a coral reef, a vital metric for conservation and restoration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Ecological Processes and Contemporary Coral Reef Management

    Directory of Open Access Journals (Sweden)

    Angela Dikou

    2010-05-01

    Full Text Available Top-down controls of complex foodwebs maintain the balance among the critical groups of corals, algae, and herbivores, thus allowing the persistence of corals reefs as three-dimensional, biogenic structures with high biodiversity, heterogeneity, resistance, resilience and connectivity, and the delivery of essential goods and services to societies. On contemporary reefs world-wide, however, top-down controls have been weakened due to reduction in herbivory levels (overfishing or disease outbreak while bottom-up controls have increased due to water quality degradation (increase in sediment and nutrient load and climate forcing (seawater warming and acidification leading to algal-dominated alternate benthic states of coral reefs, which are indicative of a trajectory towards ecological extinction. Management to reverse common trajectories of degradation for coral reefs necessitates a shift from optimization in marine resource use and conservation towards building socio-economic resilience into coral reef systems while attending to the most manageable human impacts (fishing and water quality and the global-scale causes (climate change.

  8. Trend in coral-algal phase shift in the Mandapam group of islands, Gulf of Mannar Marine Biosphere Reserve, India

    Science.gov (United States)

    Machendiranathan, M.; Senthilnathan, L.; Ranith, R.; Saravanakumar, A.; Thangaradjou, T.; Choudhry, S. B.; Sasamal, S. K.

    2016-12-01

    The present study revealed proliferation of macro-algae modifying coral reef ecosystems in a different manner due to diseases and sedimentations in the Mandapam group of islands in the Gulf of Mannar. Benthic surveys were conducted with major attack of seven coral reefs diseases with high sedimentation rate, nine species of fleshy macro-algae ( Turbinaria ornata, Turbinaria conaides, Caulerpa scalpelliformis, Caulerpa racemosa, Kappaphycus alvarezii, Padina gymnosphora, Sargassum wightii, Ulva reticulata and Calurpa lentillifera) proliferation against major corals life forms (Acropora branching, Acropora digitate, Acropora tabulate, coral massive, coral submassive, coral foliose and coral encrusting). The results confirm that diseased corals most favor to macro-algae growth (15.27%) rather than the sedimentation covered corals (8.24 %). In the degradation of coral life forms, massive corals were more highly damaged (7.05%) than any other forms. Within a short period of time (May to September), coral coverage shrank to 17.4% from 21.9%, macro-algae increased 23.51% and the average sedimentation rate attained 77.52 mg cm-2d-1 with persisting coral reef diseases of 17.59%. The Pearson correlation showed that the coral cover decreased with increasing macro-algae growth, which was statistically significant ( r = -0.774, n = 100, P K. alvarezii, P. gymnosphora and C. lentillifera increased with percentages of 6.0, 5.8, 5.7, 4.9, 4.2, 3.7, 2.7 and 1.9, respectively. If this trend continues, the next generation of new recruit corals will undoubtedly lead to a phase shift in Gulf of Mannar corals.

  9. Heavy metal contents in growth bands of Porites corals: Record of anthropogenic and human developments from the Jordanian Gulf of Aqaba

    International Nuclear Information System (INIS)

    Al-Rousan, Saber A.; Al-Shloul, Rashid N.; Al-Horani, Fuad A.; Abu-Hilal, Ahmad H.

    2007-01-01

    In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925-2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba

  10. Heavy metal contents in growth bands of Porites corals: Record of anthropogenic and human developments from the Jordanian Gulf of Aqaba

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rousan, Saber A. [Marine Science Station, University of Jordan and Yarmouk University, P.O. Box 195, Aqaba 77110 (Jordan)], E-mail: s.rousan@ju.edu.jo; Al-Shloul, Rashid N. [Department of Earth and Environmental Science, Faculty of Science, Yarmouk University, Irbid 21163 (Jordan); Al-Horani, Fuad A. [Marine Science Station, University of Jordan and Yarmouk University, P.O. Box 195, Aqaba 77110 (Jordan); Abu-Hilal, Ahmad H. [Department of Earth and Environmental Science, Faculty of Science, Yarmouk University, Irbid 21163 (Jordan)

    2007-12-15

    In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925-2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba.

  11. Exploring individual- to population-level impacts of disease on coral reef sponges: using spatial analysis to assess the fate, dynamics, and transmission of Aplysina Red Band Syndrome (ARBS.

    Directory of Open Access Journals (Sweden)

    Cole G Easson

    Full Text Available Marine diseases are of increasing concern for coral reef ecosystems, but often their causes, dynamics and impacts are unknown. The current study investigated the epidemiology of Aplysina Red Band Syndrome (ARBS, a disease affecting the Caribbean sponge Aplysina cauliformis, at both the individual and population levels. The fates of marked healthy and ARBS-infected sponges were examined over the course of a year. Population-level impacts and transmission mechanisms of ARBS were investigated by monitoring two populations of A. cauliformis over a three year period using digital photography and diver-collected data, and analyzing these data with GIS techniques of spatial analysis. In this study, three commonly used spatial statistics (Ripley's K, Getis-Ord General G, and Moran's Index were compared to each other and with direct measurements of individual interactions using join-counts, to determine the ideal method for investigating disease dynamics and transmission mechanisms in this system. During the study period, Hurricane Irene directly impacted these populations, providing an opportunity to assess potential storm effects on A. cauliformis and ARBS.Infection with ARBS caused increased loss of healthy sponge tissue over time and a higher likelihood of individual mortality. Hurricane Irene had a dramatic effect on A. cauliformis populations by greatly reducing sponge biomass on the reef, especially among diseased individuals. Spatial analysis showed that direct contact between A. cauliformis individuals was the likely transmission mechanism for ARBS within a population, evidenced by a significantly higher number of contact-joins between diseased sponges compared to random. Of the spatial statistics compared, the Moran's Index best represented true connections between diseased sponges in the survey area. This study showed that spatial analysis can be a powerful tool for investigating disease dynamics and transmission in a coral reef ecosystem.

  12. The engine of the reef: Photobiology of the coral-algal symbiosis

    Directory of Open Access Journals (Sweden)

    Melissa Susan Roth

    2014-08-01

    Full Text Available Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis and recent advances in the field. Studies integrating physiology with the developing omics fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.

  13. Coral Reef Guidance

    Science.gov (United States)

    Guidance prepared by EPA and Army Corps of Engineers concerning coral reef protection under the Clean Water Act, Marine Protection, Research, and Sanctuaries Act, Rivers and Harbors Act, and Federal Project Authorities.

  14. All Framing Corals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data represent predicted habitat suitability for several taxa of deep-sea corals. Predictions were modeled using a statistical machine-learning algorithm called...

  15. Corals and Sclerosponges

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past climate and ocean environment derived from stable isotope, trace metal, and other measurements made on corals and sclerosponges. Parameter keywords...

  16. Overgrowth of fungi (endolithic hypermycosis) associated with multifocal to diffuse distinct amorphous dark discoloration of corals in the Indo-Pacific

    Science.gov (United States)

    Work, Thierry M.; Aeby, G.S.; Stanton, F.G.; Fenner, D.

    2008-01-01

    Coral disease surveys in American Samoa and Hawai‘i revealed colonies with a distinct dark discoloration affecting 20–60% of the colony surface (Fig. 1a). In some cases, tissue loss with algal infiltration was present within discolored areas. On microscopy, these lesions had marked overgrowth of the coral skeleton and tissues with septate branching structures that stained positive with Grocott’s Methenamine Silver (fungal hyphae) accompanied by necrosis and fragmentation of coral tissues (Fig. 1b). We have observed this condition grossly and microscopically in Pavona varians, Psammocora nierstraszi, and Montipora sp. in American Samoa and in Pavona maldivensis and P. varians in Hawai‘i. This condition resembles Dark Spots Disease from the Caribbean (Solano et al. 1993) that also shows endolithic hypermycosis (Galloway et al. 2007), suggesting that the association between dark discoloration of corals and overgrowth of endolithic fungi may be common (Western Atlantic, Indo-Pacific). Based on gross and microscopic morphology, tissue atrophy may precede overgrowth of endolithic fungi, but this awaits confirmation through systematic studies that monitor the development of lesions over time (pathogenesis). Using standardized terminology (Work and Aeby 2006) to describe lesions facilitates regional comparisons of coral disease.

  17. Metagenomic analysis indicates that stressors induce production of herpes-like viruses in the coral Porites compressa

    OpenAIRE

    Vega Thurber, Rebecca L.; Barott, Katie L.; Hall, Dana; Liu, Hong; Rodriguez-Mueller, Beltran; Desnues, Christelle; Edwards, Robert A.; Haynes, Matthew; Angly, Florent E.; Wegley, Linda; Rohwer, Forest L.

    2008-01-01

    During the last several decades corals have been in decline and at least one-third of all coral species are now threatened with extinction. Coral disease has been a major contributor to this threat, but little is known about the responsible pathogens. To date most research has focused on bacterial and fungal diseases; however, viruses may also be important for coral health. Using a combination of empirical viral metagenomics and real-time PCR, we show that Porites compressa corals contain a s...

  18. Occurrence of thraustochytrid fungi in corals and coral mucus

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Balasubramanian

    Occurrence of thraustochytrid fungi in corals, fresh coral mucus and floating and attached mucus detritus from the Lakshadweep Islands in the Arabian Sea was studied. Corallochytrium limacisporum Raghukumar, Thraustochytrium motivum Goldstein...

  19. A unique coral community in the mangroves of Hurricane Hole, St. John, US Virgin Islands

    Science.gov (United States)

    Rogers, Caroline S.

    2017-01-01

    Corals do not typically thrive in mangrove environments. However, corals are growing on and near the prop roots of red mangrove trees in Hurricane Hole, an area within the Virgin Islands Coral Reef National Monument under the protection of the US National Park Service in St. John, US Virgin Islands. This review summarizes current knowledge of the remarkable biodiversity of this area. Over 30 scleractinian coral species, about the same number as documented to date from nearby coral reefs, grow here. No other mangrove ecosystems in the Caribbean are known to have so many coral species. This area may be a refuge from changing climate, as these corals weathered the severe thermal stress and subsequent disease outbreak that caused major coral loss on the island’s coral reefs in 2005 and 2006. Shading by the red mangrove trees reduces the stress that leads to coral bleaching. Seawater temperatures in these mangroves are more variable than those on the reefs, and some studies have shown that this variability results in corals with a greater resistance to higher temperatures. The diversity of sponges and fish is also high, and a new genus of serpulid worm was recently described. Continuing research may lead to the discovery of more new species.

  20. Permanent 'phase shifts' or reversible declines in coral cover? Lack of recovery of two coral reefs in St. John, US Virgin Islands

    Science.gov (United States)

    Rogers, C.S.; Miller, J.

    2006-01-01

    Caribbean coral reefs have changed dramatically in the last 3 to 4 decades, with significant loss of coral cover and increases in algae. Here we present trends in benthic cover from 1989 to 2003 at 2 reefs (Lameshur Reef and Newfound Reef) off St. John, US Virgin Islands (USVI). Coral cover has declined in the fore-reef zones at both sites, and no recovery is evident. At Lameshur Reef, Hurricane Hugo (1989) caused significant physical damage and loss of coral. We suggest that macroalgae rapidly colonized new substrate made available by this storm and have hindered or prevented growth of adult corals, as well as settlement and survival of new coral recruits. Overfishing of herbivorous fishes in the USVI and loss of shelter for these fishes because of major storms has presumably reduced the levels of herbivory that formerly controlled algal abundance. Coral cover declined at Newfound Reef from 1999 to 2000, most likely because of coral diseases. The trends that we have documented, loss of coral followed by no evidence of recovery, appear similar to findings from other studies in the Caribbean. We need to focus on functional shifts in the resilience of coral reefs that result in their inability to recover from natural and human-caused stressors. ?? Inter-Research 2006.

  1. The Effect of Elevated CO2 and Increased Temperature on in Vitro Fertilization Success and Initial Embryonic Development of Single Male:Female Crosses of Broad-Cast Spawning Corals at Mid- and High-Latitude Locations

    Directory of Open Access Journals (Sweden)

    Miriam Schutter

    2015-05-01

    Full Text Available The impact of global climate change on coral reefs is expected to be most profound at the sea surface, where fertilization and embryonic development of broadcast-spawning corals takes place. We examined the effect of increased temperature and elevated CO2 levels on the in vitro fertilization success and initial embryonic development of broadcast-spawning corals using a single male:female cross of three different species from mid- and high-latitude locations: Lyudao, Taiwan (22° N and Kochi, Japan (32° N. Eggs were fertilized under ambient conditions (27 °C and 500 μatm CO2 and under conditions predicted for 2100 (IPCC worst case scenario, 31 °C and 1000 μatm CO2. Fertilization success, abnormal development and early developmental success were determined for each sample. Increased temperature had a more profound influence than elevated CO2. In most cases, near-future warming caused a significant drop in early developmental success as a result of decreased fertilization success and/or increased abnormal development. The embryonic development of the male:female cross of A. hyacinthus from the high-latitude location was more sensitive to the increased temperature (+4 °C than the male:female cross of A. hyacinthus from the mid-latitude location. The response to the elevated CO2 level was small and highly variable, ranging from positive to negative responses. These results suggest that global warming is a more significant and universal stressor than ocean acidification on the early embryonic development of corals from mid- and high-latitude locations.

  2. Mine waste disposal leads to lower coral cover, reduced species richness and a predominance of simple coral growth forms on a fringing coral reef in Papua New Guinea.

    Science.gov (United States)

    Haywood, M D E; Dennis, D; Thomson, D P; Pillans, R D

    2016-04-01

    A large gold mine has been operating at the Lihir Island Group, Papua New Guinea since 1997. The mine disposes of waste rock in nearshore waters, impacting nearby coral communities. During 2010, 2012 we conducted photographic surveys at 73 sites within 40 km of the mine to document impacts of mining operations on the hard coral communities. Coral communities close to the mine (∼2 km to the north and south of the mine) were depaurperate, but surprisingly, coral cover and community composition beyond this range appeared to be relatively similar, suggesting that the mine impacts were limited spatially. In particular, we found mining operations have resulted in a significant decrease in coral cover (4.4% 1.48 km from the disposal site c.f. 66.9% 10.36 km from the disposal site), decreased species richness and a predominance of less complex growth forms within ∼2 km to the north and south of the mine waste disposal site. In contrast to the two 'snapshot' surveys of corals performed in 2010 and 2012, long term data (1999-2012) based on visual estimates of coral cover suggested that impacts on coral communities may have been more extensive than this. With global pressures on the world's coral reefs increasing, it is vital that local, direct anthropogenic pressures are reduced, in order to help offset the impacts of climate change, disease and predation. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Physiological and biochemical performances of menthol-induced aposymbiotic corals.

    Directory of Open Access Journals (Sweden)

    Jih-Terng Wang

    Full Text Available The unique mutualism between corals and their photosynthetic zooxanthellae (Symbiodinium spp. is the driving force behind functional assemblages of coral reefs. However, the respective roles of hosts and Symbiodinium in this endosymbiotic association, particularly in response to environmental challenges (e.g., high sea surface temperatures, remain unsettled. One of the key obstacles is to produce and maintain aposymbiotic coral hosts for experimental purposes. In this study, a simple and gentle protocol to generate aposymbiotic coral hosts (Isopora palifera and Stylophora pistillata was developed using repeated incubation in menthol/artificial seawater (ASW medium under light and in ASW in darkness, which depleted more than 99% of Symbiodinium from the host within 4∼8 days. As indicated by the respiration rate, energy metabolism (by malate dehydrogenase activity, and nitrogen metabolism (by glutamate dehydrogenase activity and profiles of free amino acids, the physiological and biochemical performances of the menthol-induced aposymbiotic corals were comparable to their symbiotic counterparts without nutrient supplementation (e.g., for Stylophora or with a nutrient supplement containing glycerol, vitamins, and a host mimic of free amino acid mixture (e.g., for Isopora. Differences in biochemical responses to menthol-induced bleaching between Stylophora and Isopora were attributed to the former digesting Symbiodinium rather than expelling the algae live as found in the latter species. Our studies showed that menthol could successfully bleach corals and provided aposymbiotic corals for further exploration of coral-alga symbioses.

  4. Coral identity underpins architectural complexity on Caribbean reefs.

    Science.gov (United States)

    Alvarez-Filip, Lorenzo; Dulvy, Nicholas K; Côte, Isabelle M; Watkinson, Andrew R; Gill, Jennifer A

    2011-09-01

    The architectural complexity of ecosystems can greatly influence their capacity to support biodiversity and deliver ecosystem services. Understanding the components underlying this complexity can aid the development of effective strategies for ecosystem conservation. Caribbean coral reefs support and protect millions of livelihoods, but recent anthropogenic change is shifting communities toward reefs dominated by stress-resistant coral species, which are often less architecturally complex. With the regionwide decline in reef fish abundance, it is becoming increasingly important to understand changes in coral reef community structure and function. We quantify the influence of coral composition, diversity, and morpho-functional traits on the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef architectural complexity increases with coral cover and species richness, it is highest on sites that are low in taxonomic evenness and dominated by morpho-functionally important, reef-building coral genera, particularly Montastraea. Sites with similar coral community composition also tend to occur on reefs with very similar architectural complexity, suggesting that reef structure tends to be determined by the same key species across sites. Our findings provide support for prioritizing and protecting particular reef types, especially those dominated by key reef-building corals, in order to enhance reef complexity.

  5. Coral Reef Resilience, Tipping Points and the Strength of Herbivory.

    Science.gov (United States)

    Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J

    2016-11-02

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.

  6. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury.

    Science.gov (United States)

    Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle

    2017-01-01

    Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral- Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.

  7. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Mark C Ladd

    2016-12-01

    Full Text Available AbstractCoral restoration is gaining traction as a viable strategy to help restore degraded reefs. While the nascent field of coral restoration has rapidly progressed in the past decade, significant knowledge gaps remain regarding the drivers of restoration success that may impede our ability to effectively restore coral reef communities. Here, we conducted a field experiment to investigate the influence of coral density on the growth, habitat production, and survival of corals outplanted for restoration. We used nursery-raised colonies of Acropora cervicornis to experimentally establish populations of corals with either 3, 6, 12, or 24 corals within 4m2 plots, generating a gradient of coral densities ranging from 0.75 corals m-2 to 12 corals m-2. After 13 months we found that density had a significant effect on the growth, habitat production, and survivorship of restored corals. We found that coral survivorship increased as colony density decreased. Importantly, the signal of density dependent effects was context dependent. Our data suggest that positive density dependent effects influenced habitat production at densities of 3 corals m-2, but further increases in density resulted in negative density dependent effects with decreasing growth and survivorship of corals. These findings highlight the importance of density dependence for coral restoration planning and demonstrate the need to evaluate the influence of density for other coral species used for restoration. Further work focused on the mechanisms causing density dependence such as increased herbivory, rapid disease transmission, or altered predation rates are important next steps to advance our ability to effectively restore coral reefs.

  8. Osmoadjustment in the Coral Holobiont

    KAUST Repository

    Rö thig, Till

    2017-01-01

    and amino acids to be putatively involved in the osmoadjustment. Importantly, under high salinity the osmolyte floridoside was consistently increased. This could be corroborated in the coral model Aiptasia and in corals from the Persian/Arabian Gulf, where

  9. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  10. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    International Nuclear Information System (INIS)

    Nakata, Takashi; Omoto, Kunio; Koba, Motoharu

    1978-01-01

    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes. (Mori, K.)

  11. Holocene emerged coral reef in Takarajima and Kodakarajima, Ryukyu islands, Southwest Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, T; Omoto, K; Koba, M [Tohoku Univ., Sendai (Japan). Faculty of Science

    1978-06-01

    Due to the recent development of radiometric dating, coral reefs emerged in Holocene epoch are studied intensively worldwidely in relation to sea level change and coral reef formation. Attempt was made to determine the age, pattern and growth rate of coral reefs in the marginal area of coral sea in the Northwest Pacific. Field observation was made in the emerged coral reefs in Takarajima and Kodakarajima islands and the samples for radiocarbon dating were taken from geological sections across the emerged reefs. These islands are located at about 29 deg 10 min N, 129 deg 15 min E, where warm Kuroshio current pushes the margin of coral sea northward, and furnished with flourishing development of coral reefs emerged in both pleistocence and Holocene epochs. Though without earthquake records, it is assumed that Holocene reefs have been terraced due to sudden uplift associated with major earthquakes.

  12. Wnt Signaling in Kidney Development and Disease.

    Science.gov (United States)

    Wang, Yongping; Zhou, Chengji J; Liu, Youhua

    2018-01-01

    Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Early development of zooxanthella-containing eggs of the corals Pocillopora verrucosa and P. eydouxi with special reference to the distribution of zooxanthellae.

    Science.gov (United States)

    Hirose, M; Kinzie, R A; Hidaka, M

    2000-08-01

    Some hermatypic corals spawn eggs that contain zooxanthellae. We followed development of zooxanthella-containing eggs of two such species, Pocillopora verrucosa and P. eydouxi. We also documented changes in the distribution pattern of zooxanthellae during development. Oocytes of both species took up zooxanthellae 3 to 4 days before spawning. At first, zooxanthellae were evenly distributed in oocytes, but they later moved to the hemisphere that contained the germinal vesicle. After fertilization, early cleavage events were holoblastic, progressing by furrow formation. The first cleavage furrow started at the hemisphere that contained zooxanthellae, dividing the zooxanthellate complement of the zygote about equally into the two blastomeres. The second division divided each blastomere into one zooxanthellae-rich cell and one with few zooxanthellae. With continued cell division, blastomeres containing zooxanthellae moved into the blastocoel. The blastocoel disappeared at about 5 h after the first cleavage, and the central region of the embryo was filled with cells containing either zooxanthellae or lipid droplets, forming a stereogastrula. Our results suggest that only blastomeres that had been determined to develop into gastrodermal cells receive zooxanthellae during cleavage. This determination appears to take place, at the latest, by the second cell division at the four-cell stage.

  14. Vaccine development for emerging virulent infectious diseases.

    Science.gov (United States)

    Maslow, Joel N

    2017-10-04

    The recent outbreak of Zaire Ebola virus in West Africa altered the classical paradigm of vaccine development and that for emerging infectious diseases (EIDs) in general. In this paper, the precepts of vaccine discovery and advancement through pre-clinical and clinical assessment are discussed in the context of the recent Ebola virus, Middle East Respiratory Syndrome coronavirus (MERS-CoV), and Zika virus outbreaks. Clinical trial design for diseases with high mortality rates and/or high morbidity in the face of a global perception of immediate need and the factors that drive design in the face of a changing epidemiology are presented. Vaccines for EIDs thus present a unique paradigm to standard development precepts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A new, high-resolution global mass coral bleaching database.

    Directory of Open Access Journals (Sweden)

    Simon D Donner

    Full Text Available Episodes of mass coral bleaching have been reported in recent decades and have raised concerns about the future of coral reefs on a warming planet. Despite the efforts to enhance and coordinate coral reef monitoring within and across countries, our knowledge of the geographic extent of mass coral bleaching over the past few decades is incomplete. Existing databases, like ReefBase, are limited by the voluntary nature of contributions, geographical biases in data collection, and the variations in the spatial scale of bleaching reports. In this study, we have developed the first-ever gridded, global-scale historical coral bleaching database. First, we conducted a targeted search for bleaching reports not included in ReefBase by personally contacting scientists and divers conducting monitoring in under-reported locations and by extracting data from the literature. This search increased the number of observed bleaching reports by 79%, from 4146 to 7429. Second, we employed spatial interpolation techniques to develop annual 0.04° × 0.04° latitude-longitude global maps of the probability that bleaching occurred for 1985 through 2010. Initial results indicate that the area of coral reefs with a more likely than not (>50% or likely (>66% probability of bleaching was eight times higher in the second half of the assessed time period, after the 1997/1998 El Niño. The results also indicate that annual maximum Degree Heating Weeks, a measure of thermal stress, for coral reefs with a high probability of bleaching increased over time. The database will help the scientific community more accurately assess the change in the frequency of mass coral bleaching events, validate methods of predicting mass coral bleaching, and test whether coral reefs are adjusting to rising ocean temperatures.

  16. A new, high-resolution global mass coral bleaching database.

    Science.gov (United States)

    Donner, Simon D; Rickbeil, Gregory J M; Heron, Scott F

    2017-01-01

    Episodes of mass coral bleaching have been reported in recent decades and have raised concerns about the future of coral reefs on a warming planet. Despite the efforts to enhance and coordinate coral reef monitoring within and across countries, our knowledge of the geographic extent of mass coral bleaching over the past few decades is incomplete. Existing databases, like ReefBase, are limited by the voluntary nature of contributions, geographical biases in data collection, and the variations in the spatial scale of bleaching reports. In this study, we have developed the first-ever gridded, global-scale historical coral bleaching database. First, we conducted a targeted search for bleaching reports not included in ReefBase by personally contacting scientists and divers conducting monitoring in under-reported locations and by extracting data from the literature. This search increased the number of observed bleaching reports by 79%, from 4146 to 7429. Second, we employed spatial interpolation techniques to develop annual 0.04° × 0.04° latitude-longitude global maps of the probability that bleaching occurred for 1985 through 2010. Initial results indicate that the area of coral reefs with a more likely than not (>50%) or likely (>66%) probability of bleaching was eight times higher in the second half of the assessed time period, after the 1997/1998 El Niño. The results also indicate that annual maximum Degree Heating Weeks, a measure of thermal stress, for coral reefs with a high probability of bleaching increased over time. The database will help the scientific community more accurately assess the change in the frequency of mass coral bleaching events, validate methods of predicting mass coral bleaching, and test whether coral reefs are adjusting to rising ocean temperatures.

  17. Arterial innervation in development and disease.

    Science.gov (United States)

    Eichmann, Anne; Brunet, Isabelle

    2014-09-03

    Innervation of arteries by sympathetic nerves is well known to control blood supply to organs. Recent studies have elucidated the mechanisms that regulate the development of arterial innervation and show that in addition to vascular tone, sympathetic nerves may also influence arterial maturation and growth. Understanding sympathetic arterial innervation may lead to new approaches to treat peripheral arterial disease and hypertension. Copyright © 2014, American Association for the Advancement of Science.

  18. Development of formulation device for periodontal disease.

    Science.gov (United States)

    Sato, Yasuhiko; Oba, Takuma; Watanabe, Norio; Danjo, Kazumi

    2012-01-01

    In addition to providing standard surgical treatment that removes the plaque and infected tissues, medications that can regenerate periodontal tissue are also required in the treatment of periodontal disease. As a form of regenerative medication, various growth factors are expected to be used while treating periodontal disease. A protein-like growth factor is often developed as a lyophilized product with dissolution liquid, considering its instability in the solution state. We have clarified that the formulation for periodontal disease needs to be viscous. When the lyophilized product was dissolved using a sticky solution, various problems were encountered, difficulty in dissolving and air bubbles, for example, and some efforts were needed to prepare the formulation. In this research, to identify the problem of preparing a viscous formulation, a lyophilized product (placebo) and sticky liquid were prepared by using vial and ampoule as the conventional containers. Based on these problems, a prototype administration device was developed, and its functionality was confirmed. As a result, it was suggested that the device with a useful mixing system that could shorten the preparation time was developed.

  19. Coral lipids and environmental stress.

    Science.gov (United States)

    Harriott, V J

    1993-04-01

    Environmental monitoring of coral reefs is presently limited by difficulties in recognising coral stress, other than by monitoring coral mortality over time. A recent report described an experiment demonstrating that a measured lipid index declined in shaded corals. The technique described might have application in monitoring coral health, with a decline in coral lipid index as an indicator of coral stress. The application of the technique as a practical monitoring tool was tested for two coral species from the Great Barrier Reef. Consistent with the previous results, lipid index for Pocillopora damicornis initially declined over a period of three weeks in corals maintained in filtered seawater in the dark, indicating possible utilization of lipid stored as energy reserves. However, lipid index subsequently rose to near normal levels. In contrast, lipid index of Acropora formosa increased after four weeks in the dark in filtered seawater. The results showed considerable variability in lipid content between samples from the same colony. Results were also found to be dependent on fixation times and sample weight, introducing potential error into the practical application of the technique. The method as described would be unsuitable for monitoring environmental stress in corals, but the search for a practical method to monitor coral health should continue, given its importance in coral reef management.

  20. Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery.

    Directory of Open Access Journals (Sweden)

    Guillermo Diaz-Pulido

    Full Text Available Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance.In 2006, mass bleaching of corals on inshore reefs of the Great Barrier Reef caused high coral mortality. Here we show that this coral mortality was followed by an unprecedented bloom of a single species of unpalatable seaweed (Lobophora variegata, colonizing dead coral skeletons, but that corals on these reefs recovered dramatically, in less than a year. Unexpectedly, this rapid reversal did not involve reestablishment of corals by recruitment of coral larvae, as often assumed, but depended on several ecological mechanisms previously underestimated.These mechanisms of ecological recovery included rapid regeneration rates of remnant coral tissue, very high competitive ability of the corals allowing them to out-compete the seaweed, a natural seasonal decline in the particular species of dominant seaweed, and an effective marine protected area system. Our study provides a key example of the doom and boom of a highly resilient reef, and new insights into the variability and mechanisms of reef resilience under rapid climate change.

  1. Utilization of Mucus from the Coral Acropora palmata by the Pathogen Serratia marcescens and by Environmental and Coral Commensal Bacteria▿ †

    Science.gov (United States)

    Krediet, Cory J.; Ritchie, Kim B.; Cohen, Matthew; Lipp, Erin K.; Sutherland, Kathryn Patterson; Teplitski, Max

    2009-01-01

    In recent years, diseases of corals caused by opportunistic pathogens have become widespread. How opportunistic pathogens establish on coral surfaces, interact with native microbiota, and cause disease is not yet clear. This study compared the utilization of coral mucus by coral-associated commensal bacteria (“Photobacterium mandapamensis” and Halomonas meridiana) and by opportunistic Serratia marcescens pathogens. S. marcescens PDL100 (a pathogen associated with white pox disease of Acroporid corals) grew to higher population densities on components of mucus from the host coral. In an in vitro coculture on mucus from Acropora palmata, S. marcescens PDL100 isolates outgrew coral isolates. The white pox pathogen did not differ from other bacteria in growth on mucus from a nonhost coral, Montastraea faveolata. The ability of S. marcescens to cause disease in acroporid corals may be due, at least in part, to the ability of strain PDL100 to build to higher population numbers within the mucus surface layer of its acroporid host. During growth on mucus from A. palmata, similar glycosidase activities were present in coral commensal bacteria, in S. marcescens PDL100, and in environmental and human isolates of S. marcescens. The temporal regulation of these activities during growth on mucus, however, was distinct in the isolates. During early stages of growth on mucus, enzymatic activities in S. marcescens PDL100 were most similar to those in coral commensals. After overnight incubation on mucus, enzymatic activities in a white pox pathogen were most similar to those in pathogenic Serratia strains isolated from human mucosal surfaces. PMID:19395569

  2. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (south Florida): Reef-building corals. [Acropora cervicornis; Acropora palmata; Montastraea annularis; Montastraea cavernosa

    Energy Technology Data Exchange (ETDEWEB)

    Porter, J.W.

    1987-08-01

    Four species of reef-building corals are considered: elkhorn coral, staghorn coral, common star coral, and large star coral. All four species spawn annually in the fall during hurricane season. Juvenile recruitment is low in all four species. Rapid growth rates of species in the genus Acropora (10 to 20 cm/yr) contrast with slower growth rates of species in the genus Montastraea (1.0 to 2.0 cm/yr), but both species of Montastraea are also important in reef development due to their form and great longevity. Shallow-water colonies of Montastraea survive hurricanes; shallow colonies of Acropora do not. Because of their dependence on photosynthesis for all of their carbon acquisition, the Acropora species reviewed here have a more restricted depth distribution (0 to 30 m) than do the Montastraea species considered (0 to 70 m). All four species are subject to intense predation by the snail predator, Coralliophila. Species of Montastraea are susceptible to infection from blue-green algae, which produce ''black band disease;'' species of Acropora are susceptible to a different, as yet unidentified pathogen, that produces ''white-band'' disease. Increased water turbidity and sedimentation cause reduced growth rates and partial or whole mortality in all four species.

  3. CORAL CONDITION: HOW TO FATHOM THE DECLINE OF CORAL REEF ECOSYSTEMS

    Science.gov (United States)

    Coral reefs have experienced unprecedented levels of bleaching, disease and mortality during the last three decades. The goal of EPA-ORD research is to identify the culpable stressors in different species, reefs and regions using integrated field and laboratory studies.

  4. In situ Analysis of Coral Recruits Using Fluorescence Imaging

    Directory of Open Access Journals (Sweden)

    Adi Zweifler

    2017-09-01

    Full Text Available Recruitment is a fundamental process that influences coral population dynamics as well as reef community structure. To date, coral recruitment success rates are poorly quantified because survey methods are labor-intensive and require manual interpretation. Thus, they are prone to human errors and have low repeatability—a gap we aim to bridge in this research. Since both corals and their symbiotic algae contain fluorescent pigments (chlorophyll and fluorescent proteins, we used the non-invasive Fluorescence Imaging System (FluorIS and developed a methodology to acquire daytime fluorescent photographs and identify coral recruits in them. We tested our method by monitoring 20 random quadrats at two sites in the Gulf of Aqaba, Israel. The quadrats were surveyed once a month for 8 months in order to track the settlement, mortality and survival rates of new coral recruits. We demonstrate daytime imaging using our method and identification of coral recruits as small as 1 mm in diameter, in a 20 × 20 cm quadrat. Our results show that this photographic method reduces surveyor errors and improves precision. The surveys revealed that on average, there are ~2 new coral recruit settlements (<2 cm for a quadrat (40 cm2 per month and that 83% of them survive the first month. Our study suggests a relative stability in the Gulf of Aqaba coral population during the survey period. The ability to survey recruits during the day using low-cost, easy-to-use photographic equipment has the potential to contribute significantly to the standardization of coral reef monitoring and management tools, at a time when the world's coral reefs are declining due to local and global stressors.

  5. Satellite imaging coral reef resilience at regional scale. A case-study from Saudi Arabia.

    Science.gov (United States)

    Rowlands, Gwilym; Purkis, Sam; Riegl, Bernhard; Metsamaa, Liisa; Bruckner, Andrew; Renaud, Philip

    2012-06-01

    We propose a framework for spatially estimating a proxy for coral reef resilience using remote sensing. Data spanning large areas of coral reef habitat were obtained using the commercial QuickBird satellite, and freely available imagery (NASA, Google Earth). Principles of coral reef ecology, field observation, and remote observations, were combined to devise mapped indices. These capture important and accessible components of coral reef resilience. Indices are divided between factors known to stress corals, and factors incorporating properties of the reef landscape that resist stress or promote coral growth. The first-basis for a remote sensed resilience index (RSRI), an estimate of expected reef resilience, is proposed. Developed for the Red Sea, the framework of our analysis is flexible and with minimal adaptation, could be extended to other reef regions. We aim to stimulate discussion as to use of remote sensing to do more than simply deliver habitat maps of coral reefs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A novel method for coral explant culture and micropropagation.

    Science.gov (United States)

    Vizel, Maya; Loya, Yossi; Downs, Craig A; Kramarsky-Winter, Esti

    2011-06-01

    We describe here a method for the micropropagation of coral that creates progeny from tissue explants derived from a single polyp or colonial corals. Coral tissue explants of various sizes (0.5-2.5 mm in diameter) were manually microdissected from the solitary coral Fungia granulosa. Explants could be maintained in an undeveloped state or induced to develop into polyps by manipulating environmental parameters such as light and temperature regimes, as well as substrate type. Fully developed polyps were able to be maintained for a long-term in a closed sea water system. Further, we demonstrate that mature explants are also amenable to this technique with the micropropagation of second-generation explants and their development into mature polyps. We thereby experimentally have established coral clonal lines that maintain their ability to differentiate without the need for chemical induction or genetic manipulation. The versatility of this method is also demonstrated through its application to two other coral species, the colonial corals Oculina patigonica and Favia favus.

  7. Bacteria associated with the coral Echinopora lamellosa (Esper ...

    African Journals Online (AJOL)

    USER

    2007-12-10

    Dec 10, 2007 ... with diseased corals in the Indian Ocean. However ... Indian Ocean, mucus samples were collected from healthy and apparently diseased Echinopora ..... The rising tide of ocean diseases: unsolved problems and research priorities. Front. Ecol. Environ. 2: 375-382. Harvell D, Jordan-Dahlgren E, Merkel S, ...

  8. Possible effects of water pollution on the community structure of Red Sea corals

    Energy Technology Data Exchange (ETDEWEB)

    Loya, Y

    1975-02-28

    The community structure and species diversity of hermatypic corals was studied during 1969 to 1973, in 2 reef flats in the northern Gulf of Eilat, Red Sea: the reef flat of the mature reserve at Eilat, which is chronically polluted by oil and minerals, and a control reef, located 5 km further S, which is free of oil pollution. In 1969, the nature reserve and the control reef had similar coral community structure. In Sept. 1970, both reefs suffered approximately 90 percent mortality of corals, as a result of an unexpected and extremely low tide. In 1973 the control reef was blooming with a highly diverse coral community, while almost no signs of coral recolonization have been observed at the nature reserve, and it is significantly lower in diversity. Phosphate eutrophication and chronic oil pollution are probably the major man-made disturbances that interfere with coral colonization of the reef flat at the nature reserve. Although no direct evidence is provided that oil damages hermatypic corals, the data strongly suggest that chronic oil spills prevent normal settlement and development of coral larvae. Chronic oil pollution results in either one or a combination of the following: damage to the reproductive system of corals, decreased viability of coral larvae, or changes in some physical properties of the reef flat which interfere with normal settlement of coral larvae.

  9. Stomach development, stem cells and disease

    Science.gov (United States)

    Kim, Tae-Hee; Shivdasani, Ramesh A.

    2016-01-01

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms. PMID:26884394

  10. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    Science.gov (United States)

    Aranda, Manuel; DeSalvo, Michael K; Bayer, Till; Medina, Monica; Voolstra, Christian R

    2012-09-21

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization). Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than nuclear encoded genes in robust corals. Accordingly, this

  11. Evolutionary insights into scleractinian corals using comparative genomic hybridizations

    Directory of Open Access Journals (Sweden)

    Aranda Manuel

    2012-09-01

    Full Text Available Abstract Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization. Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than

  12. Comparative embryology of eleven species of stony corals (Scleractinia.

    Directory of Open Access Journals (Sweden)

    Nami Okubo

    Full Text Available A comprehensive understanding of coral reproduction and development is needed because corals are threatened in many ways by human activity. Major threats include the loss of their photosynthetic symbionts (Symbiodinium caused by rising temperatures (bleaching, reduced ability to calcify caused by ocean acidification, increased storm severity associated with global climate change and an increase in predators caused by runoff from human agricultural activity. In spite of these threats, detailed descriptions of embryonic development are not available for many coral species. The current consensus is that there are two major groups of stony corals, the "complex" and the "robust". In this paper we describe the embryonic development of four "complex" species, Pseudosiderastrea tayamai, Galaxea fascicularis, Montipora hispida, and Pavona Decussata, and seven "robust" species, Oulastrea crispata, Platygyra contorta, Favites abdita, Echinophyllia aspera, Goniastrea favulus, Dipsastraea speciosa (previously Favia speciosa, and Phymastrea valenciennesi (previously Montastrea valenciennesi. Data from both histologically sectioned embryos and whole mounts are presented. One apparent difference between these two major groups is that before gastrulation the cells of the complex corals thus far described (mainly Acropora species spread and flatten to produce the so-called prawn chip, which lacks a blastocoel. Our present broad survey of robust and complex corals reveals that prawn chip formation is not a synapomorphy of complex corals, as Pavona Decussata does not form a prawn chip and has a well-developed blastocoel. Although prawn chip formation cannot be used to separate the two clades, none of the robust corals which we surveyed has such a stage. Many robust coral embryos pass through two periods of invagination, separated by a return to a spherical shape. However, only the second of these periods is associated with endoderm formation. We have therefore

  13. Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific

    Science.gov (United States)

    Work, Thierry M.; Aeby, Greta S.

    2014-01-01

    Coral reefs are highly diverse ecosystems where symbioses play a pivotal role. Corals contain cell-associated microbial aggregates (CAMA), yet little is known about how widespread they are among coral species or the nature of the symbiotic relationship. Using histology, we found CAMA within 24 species of corals from 6 genera from Hawaii, American Samoa, Palmyra, Johnston Atoll, Guam, and Australia. Prevalence (%) of infection varied among coral genera: Acropora, Porites, and Pocillopora were commonly infected whereas Montipora were not. Acropora from the Western Pacific were significantly more likely to be infected with CAMA than those from the Central Pacific, whereas the reverse was true for Porites. Compared with apparently healthy colonies, tissues from diseased colonies were significantly more likely to have both surface and basal body walls infected. The close association of CAMA with host cells in numerous species of apparently healthy corals and lack of associated cell pathology reveals an intimate agent-host association. Furthermore, CAMA are Gram negative and in some corals may be related to chlamydia or rickettsia. We propose that CAMA in adult corals are facultative secondary symbionts that could play an important ecological role in some dominant coral genera in the Indo-Pacific. CAMA are important in the life histories of other animals, and more work is needed to understand their role in the distribution, evolution, physiology, and immunology of reef corals.

  14. African dust and the demise of Caribbean coral reefs

    Science.gov (United States)

    Shinn, E.A.; Smith, G.W.; Prospero, J.M.; Betzer, P.; Hayes, M.L.; Garrison, V.; Barber, R.T.

    2000-01-01

    The vitality of Caribbean coral reefs has undergone a continual state of decline since the late 1970s, a period of time coincidental with large increases in transatlantic dust transport. It is proposed that the hundreds of millions of tons/year of soil dust that have been crossing the Atlantic during the last 25 years could be a significant contributor to coral reef decline and may be affecting other ecosystems. Benchmark events, such as near synchronous Caribbean-wide mortalities of acroporid corals and the urchin Diadema in 1983, and coral bleaching beginning in 1987, correlate with the years of maximum dust flux into the Caribbean. Besides crustal elements, in particular Fe, Si, and aluminosilicate clays, the dust can serve as a substrate for numerous species of viable spores, especially the soil fungus Aspergillus. Aspergillus sydowii, the cause of an ongoing Caribbean-wide seafan disease, has been cultured from Caribbean air samples and used to inoculate sea fans.

  15. Deep Sea Coral National Observation Database, Northeast Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The national database of deep sea coral observations. Northeast version 1.0. * This database was developed by the NOAA NOS NCCOS CCMA Biogeography office as part of...

  16. Salinity information in coral δ18O records

    Science.gov (United States)

    Conroy, J. L.; Thompson, D. M.; Dassié, E. P.; Stevenson, S.; Konecky, B. L.; DeLong, K. L.; Sayani, H. R.; Emile-Geay, J.; Partin, J. W.; Abram, N. J.; Martrat, B.

    2017-12-01

    Coral oxygen isotopic ratios (δ18O) are typically utilized to reconstruct sea surface temperature (SST), or SST-based El Niño-Southern Oscillation metrics (e.g., NIÑO3.4), despite the influence of both SST and the oxygen isotopic composition of seawater (δ18Osw) on coral δ18O. The ideal way to isolate past δ18Osw variations is to develop independent and univariate SST and δ18Osw responders, for instance, via paired coral δ18O and Sr/Ca analyses. Nonetheless, many coral δ18O records without paired Sr/Ca records already exist in the paleoclimatic literature, and these may be able to provide some insight into past δ18Osw and salinity changes due to the nature of the significant positive relationship between instrumental salinity and δ18Osw. Here we use coral δ18O records from the new PAGES Iso2k database to assess the regions in which coral δ18O has the greatest potential to provide salinity information based on the strength of the relationship between instrumental salinity and coral δ18O values. We find from annual pseudocoral similations that corals in the western tropical Pacific share a substantial fraction of their variance with δ18Osw rather than SST. In contrast, in the Indian Ocean and eastern tropical Pacific it is SST that predominantly explains coral δ18O variance. In agreement with this variance decomposition, we find that coral δ18O time series from the western tropical Pacific are significantly correlated with mid to late 20th century salinity. However, variations in the strength of the δ18Osw-salinity relationship across the western tropical Pacific will likely have a significant influence on coral δ18O-based salinity reconstructions. Additionally, in some cases a strong, negative correlation between SST and δ18Osw might not allow their influences to be adequately separated in coral δ18O records without the use of coupled Sr/Ca estimates of the temperature contribution. Overall, we find a range of modern salinity and SST

  17. Nuclear Receptor TLX in Development and Diseases.

    Science.gov (United States)

    Sun, Guoqiang; Cui, Qi; Shi, Yanhong

    2017-01-01

    The nuclear receptor TLX (NR2E1) is a transcription factor that is critical for neural development and adult neurogenesis through its actions in regulating neural stem cell proliferation, self-renewal, and fate determination. These roles are primarily executed by regulating TLX downstream target genes involved in myriad pathways such as cell cycle progression, RNA processing, angiogenesis, and senescence. Recent studies suggest that dysregulation of TLX pathways plays an important role in the pathogenesis of human neurological disorders and brain tumors. Here, we will highlight recent progress in the roles of TLX in brain development and adult neurogenesis, and the relevance of TLX to neurological diseases and brain tumors. We will also discuss the potential of TLX as a therapeutic target for these disorders. © 2017 Elsevier Inc. All rights reserved.

  18. Influence of Eunice norvegica on feeding and calcification in the coral Lophelia pertusa

    Science.gov (United States)

    Mueller, C. E.; van Oevelen, D.; Middelburg, J. J.; Lundälv, T.

    2012-04-01

    Lophelia pertusa is the main framework building cold-water coral in the North Atlantic. It forms complex reef structures, extending up to several km in length and several meters in hight. Many species are attracted by the coral frame work, forming a highly diverse community within the reef. Although most work has focused on the corals, the functioning of the system also depends on interactions between corals and associated species. A particular example is the Polychaete Eunice norvegica that lives in close association with the coral host. The Polychaete builds a thin texture-tube between living coral branches and stimulates the coral to calcify the tube. This process strengthens the reef framwork by thickening and connecting coral brances and thereby acts as a positive feedback on the development of large reef structures. This comes however at an metabolic cost for the coral due to the enhanced calcificationrates. Another negative feedback for cold-water coral may be food related, since aquaria observations have shown that Eunice occasionally steels food from its host coral. In this study we investigated the interactions between the coral and polychaete related to calcification and food partitioning for two food types (algae and Artemia). The uptake of 13C and 15N labeled food sources by the worm and the coral was studied in chambers with only corals, only the polychaete and both species present. After 7 days, corals and worms were analyzed for isotope incorporation in bulk tissue and skeleton samples and specific fatty acids (13C) using GC-c-IRMS (gas-chromatography-combustion-isotope ratio mass spectrometry). Corals that were kept in the presence of Eunice indeed showed a higher calcification rates of 7.4 ug C (day* g dw coral)-1, evidencing the stimulation of calcification by Eunice. Interestingly, food uptake of algae and Artemia was higher in the coral-worm treatment for both species as compared to the single species treatments. These results shed new light on

  19. Reef fish and coral assemblages at Maptaput, Rayong Province

    Directory of Open Access Journals (Sweden)

    Voravit Cheevaporn

    2007-06-01

    Full Text Available This study describes the structure of coral and fish assemblages of a group of small islands and pinnacles in the vicinity of Maptaput deep sea port, Rayong Province, Thailand during 2002. The coral and fish assemblages at Saket Island and nearby pinnacle, Hin-Yai, which are located less than 1 km from the deep sea port, had changed. Living coral cover in 2002 was 8% at Hin-Yai and 4% at Saket Island which decreased from 33% and 64%, respectively in the previous report in 1992. Numbers of coral species at Saket Island decreased from 41 species to 13 species. Acropora spp. that previously dominated the area had nearly disappeared. For fishes, a total of 40 species were found in 2002 the numbers decreased to only 6 species at Saket Island and 36 species at Hin-Yai. Fishes that dominated the area are small pomacentrids. After 1997, the conditions of coral and fish assemblages at Saket Island and Hin-Yai had markedly changed, whereas, the conditions found in the nearby area are much better. Sediment load from port construction was the primary cause of the degradation. This should indicate the adverse effect of sedimentation on coral and reef fish assemblages at Maptaput. Coral communities developed on rock pinnacles west of Maptaput deep-sea port are reported and described herein for the first time.

  20. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals

    KAUST Repository

    Apprill, Amy

    2013-03-21

    Cultivation-based studies have demonstrated that yellow-band disease (YBD), a lesion-producing ailment affecting diverse species of coral, is caused by a consortium of Vibrio spp. This study takes the first cultivation-independent approach to examine the whole bacterial community associated with YBD-like lesioned corals. Two species of Fungiidae corals, Ctenactis crassa and Herpolitha limax, displaying YBD-like lesions were examined across diverse reefs throughout the Red Sea. Using a pyrosequencing approach targeting the V1-V3 regions of the SSU rRNA gene, no major differences in bacterial community composition or diversity were identified between healthy and lesioned corals of either species. Indicator species analysis did not find Vibrio significantly associated with the lesioned corals. However, operational taxonomic units belonging to the Ruegeria genus of Alphaproteobacteria and NS9 marine group of Flavobacteria were significantly associated with the lesioned corals. The most striking trend of this dataset was that reef location was found to be the most significant influence on the coral-bacterial community. It is possible that more pronounced lesion-specific bacterial signatures might have been concealed by the strong influence of environmental conditions on coral-bacteria. Overall, this study demonstrates inconsistencies between cultivation-independent and cultivation-based studies regarding the role of specific bacteria in coral diseases. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  1. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals

    KAUST Repository

    Apprill, Amy; Hughen, Konrad; Mincer, Tracy

    2013-01-01

    Cultivation-based studies have demonstrated that yellow-band disease (YBD), a lesion-producing ailment affecting diverse species of coral, is caused by a consortium of Vibrio spp. This study takes the first cultivation-independent approach to examine the whole bacterial community associated with YBD-like lesioned corals. Two species of Fungiidae corals, Ctenactis crassa and Herpolitha limax, displaying YBD-like lesions were examined across diverse reefs throughout the Red Sea. Using a pyrosequencing approach targeting the V1-V3 regions of the SSU rRNA gene, no major differences in bacterial community composition or diversity were identified between healthy and lesioned corals of either species. Indicator species analysis did not find Vibrio significantly associated with the lesioned corals. However, operational taxonomic units belonging to the Ruegeria genus of Alphaproteobacteria and NS9 marine group of Flavobacteria were significantly associated with the lesioned corals. The most striking trend of this dataset was that reef location was found to be the most significant influence on the coral-bacterial community. It is possible that more pronounced lesion-specific bacterial signatures might have been concealed by the strong influence of environmental conditions on coral-bacteria. Overall, this study demonstrates inconsistencies between cultivation-independent and cultivation-based studies regarding the role of specific bacteria in coral diseases. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  2. Coral Reef Biological Criteria

    Science.gov (United States)

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  3. Raiding the Coral Nurseries?

    Directory of Open Access Journals (Sweden)

    Alison M. Jones

    2011-08-01

    Full Text Available A recent shift in the pattern of commercial harvest in the Keppel Island region of the southern inshore Great Barrier Reef raises concern about the depletion of a number of relatively rare restricted range taxa. The shift appears to be driven by demand from the United States (US for corals for domestic aquaria. Data from the annual status reports from the Queensland Coral Fishery were compared with export trade data to the US from the Convention on International Trade in Endangered Species (CITES. Evidence was found of recent increases in the harvest of species from the Mussidae family (Acanthastrea spp. which appears to be largely driven by demand from the US. On present trends, the industry runs the risk of localized depletion of Blastomussa and Scolymia; evidenced by an increase in the harvest of small specimens and the trend of decreasing harvest despite a concurrent increase in demand. Considering their relatively high sediment tolerance compared to other reef-building species, and the current lack of information about their functional role in reef stability, the trend raises concerns about the impact of the harvest on local coral communities. The recent shift in harvest patterns could have impacts on slow-growing species by allowing harvest beyond the rate of population regeneration. In light of these factors, combined with the value of such species to local tourism, a commercial coral fishery based on uncommon but highly sought-after species may not be ecologically sustainable or economically viable in the Keppels.

  4. Coral reefs and the World Bank.

    Science.gov (United States)

    Hatziolos, M

    1997-01-01

    The World Bank¿s involvement in coral reef conservation is part of a larger effort to promote the sound management of coastal and marine resources. This involves three major thrusts: partnerships, investments, networks and knowledge. As an initial partner and early supporter of the International Coral Reef Initiative (ICRI), the Bank serves as the executive planning committee of ICRI. In partnership with the World Conservation Union and the Great Barrier Reef Marine Park Authority, the Bank promotes the efforts towards the establishment and maintenance of a globally representative system of marine protected areas. In addition, the Bank invested over $120 million in coral reef rehabilitation and protection programs in several countries. Furthermore, the Bank developed a ¿Knowledge Bank¿ that would market ideas and knowledge to its clients along with investment projects. This aimed to put the best global knowledge on environmentally sustainable development in the hands of its staff and clients. During the celebration of 1997, as the International Year of the Reef, the Bank planned to cosponsor an associated event that would highlight the significance of coral reefs and encourage immediate action to halt their degradation to conserve this unique ecosystem.

  5. The wicked problem of China's disappearing coral reefs.

    Science.gov (United States)

    Hughes, Terry P; Huang, Hui; Young, Matthew A L

    2013-04-01

    We examined the development of coral reef science and the policies, institutions, and governance frameworks for management of coral reefs in China in order to highlight the wicked problem of preserving reefs while simultaneously promoting human development and nation building. China and other sovereign states in the region are experiencing unprecedented economic expansion, rapid population growth, mass migration, widespread coastal development, and loss of habitat. We analyzed a large, fragmented literature on the condition of coral reefs in China and the disputed territories of the South China Sea. We found that coral abundance has declined by at least 80% over the past 30 years on coastal fringing reefs along the Chinese mainland and adjoining Hainan Island. On offshore atolls and archipelagos claimed by 6 countries in the South China Sea, coral cover has declined from an average of >60% to around 20% within the past 10-15 years. Climate change has affected these reefs far less than coastal development, pollution, overfishing, and destructive fishing practices. Ironically, these widespread declines in the condition of reefs are unfolding as China's research and reef-management capacity are rapidly expanding. Before the loss of corals becomes irreversible, governance of China's coastal reefs could be improved by increasing public awareness of declining ecosystem services, by providing financial support for training of reef scientists and managers, by improving monitoring of coral reef dynamics and condition to better inform policy development, and by enforcing existing regulations that could protect coral reefs. In the South China Sea, changes in policy and legal frameworks, refinement of governance structures, and cooperation among neighboring countries are urgently needed to develop cooperative management of contested offshore reefs. © 2012 Society for Conservation Biology.

  6. Calcite/aragonite-biocoated artificial coral reefs for marine parks

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2017-08-01

    Full Text Available Natural formation of the coral reefs is complicated by slow biomediated precipitation of calcium carbonate from seawater. Therefore, manufactured artificial coral reefs can be used for the formation of “underwater gardens” in marine parks for the recreational fishing and diving that will protect natural coral reefs from negative anthropogenic effects. Additionally, the coating of the concrete, plastic or wooden surfaces of artificial coral reef with calcium carbonate layer could promote attachment and growth of coral larvae and photosynthetic epibiota on these surfaces. Three methods of biotechnological coating of the artificial coral reefs have been tested: (1 microbially induced calcium carbonate precipitation from concentrated calcium chloride solution using live bacterial culture of Bacillus sp. VS1 or dead but urease-active cells of Yaniella sp. VS8; (2 precipitation from calcium bicarbonate solution; (3 precipitation using aerobic oxidation of calcium acetate by bacteria Bacillus ginsengi strain VSA1. The thickness of biotechnologically produced calcium carbonate coating layer was from 0.3 to 3 mm. Biocoating using calcium salt and urea produced calcite in fresh water and aragonite in seawater. The calcium carbonate-coated surfaces were colonized in aquarium with seawater and hard corals as inoculum or in aquarium with fresh water using cyanobacteria Chlorella sorokiana as inoculum. The biofilm on the light-exposed side of calcium carbonate-coated surfaces was formed after six weeks of incubation and developed up to the average thickness of 250 µm in seawater and about 150 µm in fresh water after six weeks of incubation. The biotechnological manufacturing of calcium carbonate-coated concrete, plastic, or wooden surfaces of the structures imitating natural coral reef is technologically feasible. It could be commercially attractive solution for the introduction of aesthetically pleasant artificial coral reefs in marine parks and

  7. Life on the edge: corals in mangroves and climate change

    Science.gov (United States)

    Rogers, Caroline S.; Herlan, James J.

    2012-01-01

    Coral diseases have played a major role in the degradation of coral reefs in the Caribbean, including those in the US Virgin Islands (USVI). In 2005, bleaching affected reefs throughout the Caribbean, and was especially severe on USVI reefs. Some corals began to regain their color as water temperatures cooled, but an outbreak of disease (primarily white plague) led to losses of over 60% of the total live coral cover. Montastraea annularis, the most abundant coral, was disproportionately affected, and decreased in relative abundance. The threatened species Acropora palmata bleached for the first time on record in the USVI but suffered less bleaching and less mortality from disease than M. annularis. Acropora palmata and M. annularis are the two most significant species in the USVI because of their structural role in the architecture of the reefs, the large size of their colonies, and their complex morphology. The future of the USVI reefs depends largely on their fate. Acropora palmata is more likely to recover than M. annularis for many reasons, including its faster growth rate, and its lower vulnerability to bleaching and disease.

  8. Characterizing the diversity of coral reef habitats and fish communities found in a UNESCO World Heritage Site: the strategy developed for Lagoons of New Caledonia.

    Science.gov (United States)

    Andréfouët, S; Wantiez, L

    2010-01-01

    Since 1972, the UNESCO "World Heritage Convention" offers an international canvas for conservation and management that targets areas of high cultural and environmental significance. To support the designation of areas within the 36.000 km(2) of New Caledonia coral reefs and lagoons as a World Heritage Site, the natural value and diversity of the proposed zones needed to be demonstrated. To exhaustively identify each configuration of shallow habitats, high resolution remote sensing images were used to select the sampling sites. This optimal scheme resulted in the selection of nearly 1300 sampling sites, and was then simplified to render its application realistic. In the final sampling plan, only the most common or the most remarkable coral zones were selected. Following this selection, in situ habitat and fish surveys were conducted in 2006-2008 in five large areas spanning a 600 km-long latitudinal gradient. Habitats were described using line-intercept transects in parallel with underwater visual census of indicator and commercial coral reef fish species. We report here on the results achieved in terms of: (i) the actual diversity of coral habitats captured by the remote sensing based sampling strategy, (ii) the different reef fish communities captured from the different sites, and (iii) how well they represent New Caledonia diversity. We discuss the possible generalization of this scheme to other sites, in the context of World Heritage Site selection and for other large-scale conservation planning activities. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. The continuing decline of coral reefs in Bahrain.

    Science.gov (United States)

    Burt, John A; Al-Khalifa, Khalifa; Khalaf, Ebtesam; Alshuwaikh, Bassem; Abdulwahab, Ahmed

    2013-07-30

    Historically coral reefs of Bahrain were among the most extensive in the southern basin of the Arabian Gulf. However, Bahrain's reefs have undergone significant decline in the last four decades as a result of large-scale coastal development and elevated sea surface temperature events. Here we quantitatively surveyed six sites including most major coral reef habitats around Bahrain and a reef located 72 km offshore. Fleshy and turf algae now dominate Bahrain's reefs (mean: 72% cover), and live coral cover is low (mean: 5.1%). Formerly dominant Acropora were not observed at any site. The offshore Bulthama reef had the highest coral cover (16.3%) and species richness (22 of the 23 species observed, 13 of which were exclusive to this site). All reefs for which recent and historical data are available show continued degradation, and it is unlikely that they will recover under continuing coastal development and projected climate change impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience.

    Directory of Open Access Journals (Sweden)

    Roberta M Bonaldo

    Full Text Available Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70-80% lower, macroalgal cover 4-9 fold higher, macroalgal-coral contacts 5-15 fold more frequent and 23-67 fold more extensive (measured as % of colony margin contacted by macroalgae, and coral cover 51-68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals.

  11. Live Coral Cover Index Testing and Application with Hyperspectral Airborne Image Data

    Directory of Open Access Journals (Sweden)

    Karen E. Joyce

    2013-11-01

    Full Text Available Coral reefs are complex, heterogeneous environments where it is common for the features of interest to be smaller than the spatial dimensions of imaging sensors. While the coverage of live coral at any point in time is a critical environmental management issue, image pixels may represent mixed proportions of coverage. In order to address this, we describe the development, application, and testing of a spectral index for mapping live coral cover using CASI-2 airborne hyperspectral high spatial resolution imagery of Heron Reef, Australia. Field surveys were conducted in areas of varying depth to quantify live coral cover. Image statistics were extracted from co-registered imagery in the form of reflectance, derivatives, and band ratios. Each of the spectral transforms was assessed for their correlation with live coral cover, determining that the second derivative around 564 nm was the most sensitive to live coral cover variations(r2 = 0.63. Extensive field survey was used to transform relative to absolute coral cover, which was then applied to produce a live coral cover map of Heron Reef. We present the live coral cover index as a simple and viable means to estimate the amount of live coral over potentially thousands of km2 and in clear-water reefs.

  12. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  13. The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation

    Science.gov (United States)

    Wienberg, Claudia; Titschack, Jürgen; Freiwald, André; Frank, Norbert; Lundälv, Tomas; Taviani, Marco; Beuck, Lydia; Schröder-Ritzrau, Andrea; Krengel, Thomas; Hebbeln, Dierk

    2018-04-01

    The largest coherent cold-water coral (CWC) mound province in the Atlantic Ocean exists along the Mauritanian margin, where up to 100 m high mounds extend over a distance of ∼400 km, arranged in two slope-parallel chains in 400-550 m water depth. Additionally, CWCs are present in the numerous submarine canyons with isolated coral mounds being developed on some canyon flanks. Seventy-seven Uranium-series coral ages were assessed to elucidate the timing of CWC colonisation and coral mound development along the Mauritanian margin for the last ∼120,000 years. Our results show that CWCs were present on the mounds during the Last Interglacial, though in low numbers corresponding to coral mound aggradation rates of 16 cm kyr-1. Most prolific periods for CWC growth are identified for the last glacial and deglaciation, resulting in enhanced mound aggradation (>1000 cm kyr-1), before mound formation stagnated along the entire margin with the onset of the Holocene. Until today, the Mauritanian mounds are in a dormant state with only scarce CWC growth. In the canyons, live CWCs are abundant since the Late Holocene at least. Thus, the canyons may serve as a refuge to CWCs potentially enabling the observed modest re-colonisation pulse on the mounds along the open slope. The timing and rate of the pre-Holocene coral mound aggradation, and the cessation of mound formation varied between the individual mounds, which was likely the consequence of vertical/lateral changes in water mass structure that placed the mounds near or out of oxygen-depleted waters, respectively.

  14. Restoration of critically endangered elkhorn coral (Acropora palmata populations using larvae reared from wild-caught gametes

    Directory of Open Access Journals (Sweden)

    Valérie F. Chamberland

    2015-07-01

    Full Text Available Elkhorn coral (Acropora palmata populations provide important ecological functions on shallow Caribbean reefs, many of which were lost when a disease reduced their abundance by more than 95% beginning in the mid-1970s. Since then, a lack of significant recovery has prompted rehabilitation initiatives throughout the Caribbean. Here, we report the first successful outplanting and long-term survival of A. palmata settlers reared from gametes collected in the field. A. palmata larvae were settled on clay substrates (substrate units and either outplanted on the reef two weeks after settlement or kept in a land-based nursery. After 2.5 years, the survival rate of A. palmata settlers outplanted two weeks after settlement was 6.8 times higher (3.4% than that of settlers kept in a land-based nursery (0.5%. Furthermore, 32% of the substrate units on the reef still harbored one or more well-developed recruit compared to 3% for substrate units kept in the nursery. In addition to increasing survival, outplanting A. palmata settlers shortly after settlement reduced the costs to produce at least one 2.5-year-old A. palmata individual from $325 to $13 USD. Thus, this study not only highlights the first successful long-term rearing of this critically endangered coral species, but also shows that early outplanting of sexually reared coral settlers can be more cost-effective than the traditional approach of nursery rearing for restoration efforts aimed at rehabilitating coral populations.

  15. [Imported diseases in Switzerland: development and perspectives].

    Science.gov (United States)

    Degrémont, A; Lorenz, N

    1990-10-01

    During the last years, imported diseases have become more frequent in Switzerland. This is easily explained by the enormous increase of tourism to tropical and subtropical countries. Immigration from these countries has equally seen an important augmentation. The principal imported diseases are still malaria and gastrointestinal infections. Viral infections are rarely diagnosed, with the exception of hepatitis and HIV infection. The prevalence of sexually transmitted diseases is most certainly underestimated. The differential diagnosis of imported skin diseases is still difficult. Rare tropical diseases will probably become more frequent in the coming years as travellers leave more and more the traditional tourist paths. Practitioners have to look out for such problems, and continuous training programmes for them will have to take these new problems into account. Referral centres of infectious diseases should be established in all regions of Switzerland. High priority should be given to the prevention of imported diseases.

  16. PhyloChip™ microarray comparison of sampling methods used for coral microbial ecology

    Science.gov (United States)

    Kellogg, Christina A.; Piceno, Yvette M.; Tom, Lauren M.; DeSantis, Todd Z.; Zawada, David G.; Andersen, Gary L.

    2012-01-01

    Interest in coral microbial ecology has been increasing steadily over the last decade, yet standardized methods of sample collection still have not been defined. Two methods were compared for their ability to sample coral-associated microbial communities: tissue punches and foam swabs, the latter being less invasive and preferred by reef managers. Four colonies of star coral, Montastraea annularis, were sampled in the Dry Tortugas National Park (two healthy and two with white plague disease). The PhyloChip™ G3 microarray was used to assess microbial community structure of amplified 16S rRNA gene sequences. Samples clustered based on methodology rather than coral colony. Punch samples from healthy and diseased corals were distinct. All swab samples clustered closely together with the seawater control and did not group according to the health state of the corals. Although more microbial taxa were detected by the swab method, there is a much larger overlap between the water control and swab samples than punch samples, suggesting some of the additional diversity is due to contamination from water absorbed by the swab. While swabs are useful for noninvasive studies of the coral surface mucus layer, these results show that they are not optimal for studies of coral disease.

  17. Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs?

    Science.gov (United States)

    Mumby, Peter J.

    2009-09-01

    With coral cover in decline on many Caribbean reefs, any process of coral mortality is of potential concern. While sparisomid parrotfishes are major grazers of Caribbean reefs and help control algal blooms, the fact that they also undertake corallivory has prompted some to question the rationale for their conservation. Here the weight of evidence for beneficial effects of parrotfishes, in terms of reducing algal cover and facilitating demographic processes in corals, and the deleterious effects of parrotfishes in terms of causing coral mortality and chronic stress, are reviewed. While elevated parrotfish density will likely increase the predation rate upon juvenile corals, the net effect appears to be positive in enhancing coral recruitment through removal of macroalgal competitors. Parrotfish corallivory can cause modest partial colony mortality in the most intensively grazed species of Montastraea but the generation and healing of bite scars appear to be in near equilibrium, even when coral cover is low. Whole colony mortality in adult corals can lead to complete exclusion of some delicate, lagoonal species of Porites from forereef environments but is only reported for one reef species ( Porites astreoides), for one habitat (backreef), and with uncertain incidence (though likely zooxanthellae after bleaching events may be retarded. The balance of evidence to date finds strong support for the herbivory role of parrotfishes in facilitating coral recruitment, growth, and fecundity. In contrast, no net deleterious effects of corallivory have been reported for reef corals. Corallivory is unlikely to constrain overall coral cover but contraints upon dwindling populations of the Montastraea annularis species complex are feasible and the role of parrotfishes as a vector of coral disease requires evaluation. However, any assertion that conservation practices should guard against protecting corallivorous parrotfishes appears to be unwarranted at this stage.

  18. Ex situ cultivation of the soft coral Sinularia flexibilis for biotechnological exploration

    OpenAIRE

    Khalesi, M.K.

    2008-01-01

    Many of the marine sessile invertebrates such as soft corals produce toxins that help protect the coral from competitors and predators. These toxins are of medical importance (e.g. in cancer treatment). In recent years, there has been a focus to make use of marine organisms for this purpose. As a result, marine biotechnology is developing to meet the increasing demand. This thesis deals with one of the biomedically useful symbiotic soft corals, Sinularia flexibilis that co-exists with dinofla...

  19. Towards a new paleotemperature proxy from reef coral occurrences.

    Science.gov (United States)

    Lauchstedt, Andreas; Pandolfi, John M; Kiessling, Wolfgang

    2017-09-05

    Global mean temperature is thought to have exceeded that of today during the last interglacial episode (LIG, ~ 125,000 yrs b.p.) but robust paleoclimate data are still rare in low latitudes. Occurrence data of tropical reef corals may provide new proxies of low latitude sea-surface temperatures. Using modern reef coral distributions we developed a geographically explicit model of sea surface temperatures. Applying this model to coral occurrence data of the LIG provides a latitudinal U-shaped pattern of temperature anomalies with cooler than modern temperatures around the equator and warmer subtropical climes. Our results agree with previously published estimates of LIG temperatures and suggest a poleward broadening of the habitable zone for reef corals during the LIG.

  20. Nitrification in reef corals

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; David, J.J.

    . An estimate of the density of nitrifying bacteria on living corals can be made by comparing the nitrifying rates of bacterial cells and the rate of production of NO,-. Kaplan (1983) summarized the growth con- stants of marine nitrifying bacteria... Reef Con=. 3: 395-399. -, C. R. WILKINSON, V. p. VICENTE, J. M. MORELL, AND E. OTERO. 1988. Nitrate release by Carib- bean reef sponges. Limnol. Oceanogr. 33: 114- 120. CROSSLAND, C. J., AND D. J. BARNES. 1983. Dissolved nutrients and organic...

  1. SOCS proteins in development and disease

    Science.gov (United States)

    Trengove, Monique C; Ward, Alister C

    2013-01-01

    Cytokine and growth factor signaling mediates essential roles in the differentiation, proliferation, survival and function of a number of cell lineages. This is achieved via specific receptors located on the surface of target cells, with ligand binding activating key intracellular signal transduction cascades to mediate the requisite cellular outcome. Effective resolution of receptor signaling is also essential, with excessive signaling having the potential for pathological consequences. The Suppressor of cytokine signaling (SOCS) family of proteins represent one important mechanism to extinguish cytokine and growth factor receptor signaling. There are 8 SOCS proteins in mammals; SOCS1-7 and the alternatively named Cytokine-inducible SH2-containing protein (CISH). SOCS1-3 and CISH are predominantly associated with the regulation of cytokine receptor signaling, while SOCS4-7 are more commonly involved in the control of Receptor tyrosine kinase (RTK) signaling. Individual SOCS proteins are typically induced by specific cytokines and growth factors, thereby generating a negative feedback loop. As a consequence of their regulatory properties, SOCS proteins have important functions in development and homeostasis, with increasing recognition of their role in disease, particularly their tumor suppressor and anti-inflammatory functions. This review provides a synthesis of our current understanding of the SOCS family, with an emphasis on their immune and hematopoietic roles. PMID:23885323

  2. Lower urinary tract development and disease

    Science.gov (United States)

    Rasouly, Hila Milo; Lu, Weining

    2013-01-01

    Congenital Anomalies of the Lower Urinary Tract (CALUT) are a family of birth defects of the ureter, the bladder and the urethra. CALUT includes ureteral anomalies such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUV). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, bladder, and urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, bladder and urethra and associated gene mutations are also presented. As we are entering the post-genomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families. PMID:23408557

  3. A dynamic bioenergetic model for coral-Symbiodinium symbioses and coral bleaching as an alternate stable state.

    Science.gov (United States)

    Cunning, Ross; Muller, Erik B; Gates, Ruth D; Nisbet, Roger M

    2017-10-27

    Coral reef ecosystems owe their ecological success - and vulnerability to climate change - to the symbiotic metabolism of corals and Symbiodinium spp. The urgency to understand and predict the stability and breakdown of these symbioses (i.e., coral 'bleaching') demands the development and application of theoretical tools. Here, we develop a dynamic bioenergetic model of coral-Symbiodinium symbioses that demonstrates realistic steady-state patterns in coral growth and symbiont abundance across gradients of light, nutrients, and feeding. Furthermore, by including a mechanistic treatment of photo-oxidative stress, the model displays dynamics of bleaching and recovery that can be explained as transitions between alternate stable states. These dynamics reveal that "healthy" and "bleached" states correspond broadly to nitrogen- and carbon-limitation in the system, with transitions between them occurring as integrated responses to multiple environmental factors. Indeed, a suite of complex emergent behaviors reproduced by the model (e.g., bleaching is exacerbated by nutrients and attenuated by feeding) suggests it captures many important attributes of the system; meanwhile, its modular framework and open source R code are designed to facilitate further problem-specific development. We see significant potential for this modeling framework to generate testable hypotheses and predict integrated, mechanistic responses of corals to environmental change, with important implications for understanding the performance and maintenance of symbiotic systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Evaluation of Stony Coral Indicators for Coral Reef Management.

    Science.gov (United States)

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for ...

  5. Assessing Coral Community Recovery from Coral Bleaching by ...

    African Journals Online (AJOL)

    The densities of small colonies were lowest at the northern sites, and small colonies of genera of corals that suffered from high bleaching and mortality during the El Niño Southern Oscillation in 1998 were less abundant in the north. These northern reefs are relatively isolated from sources of coral larvae from reefs in the ...

  6. Osmoadjustment in the Coral Holobiont

    KAUST Repository

    Röthig, Till

    2017-04-01

    Coral reefs are under considerable decline. The framework builders in coral reefs are scleractinian corals, which comprise so-called holobionts, consisting of cnidarian host, algal symbionts (genus Symbiodinium), and other associated microbes. Corals are commonly considered stenohaline osmoconformers, possessing limited capability to adjust to salinity changes. However, corals differ in their ability to cope with different salinities. The underlying mechanisms have not yet been addressed. To further understand putative mechanisms involved, I examined coral holobiont osmoregulation conducting a range of experiments on the coral Fungia granulosa. In my research F. granulosa from the Red Sea exhibited pronounced physiological reactions (decreased photosynthesis, cessation of calcification) upon short-term incubations (4 h) to high salinity (55). However, during a 29-day in situ salinity transect experiment, coral holobiont photosynthesis was unimpaired under high salinity (49) indicating acclimatization. F. granulosa microbiome changes after the 29-day high salinity exposure aligned with a bacterial community restructuring that putatively supports the coral salinity acclimatization (osmolyte synthesis, nutrient fixation/cycling). Long-term incubations (7 d) of cultured Symbiodinium exhibited cell growth even at ‘extreme’ salinity levels of 25 and 55. Metabolic profiles of four Symbiodinium strains exposed to increased (55) and decreased (25) salinities for 4 h indicated distinct carbohydrates and amino acids to be putatively involved in the osmoadjustment. Importantly, under high salinity the osmolyte floridoside was consistently increased. This could be corroborated in the coral model Aiptasia and in corals from the Persian/Arabian Gulf, where floridoside was also markedly increased upon short- (15 h) and long-term (>24 months) exposure to high salinity, confirming an important role of floridoside in the osmoadjustment of cnidarian holobionts. This thesis

  7. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    International Nuclear Information System (INIS)

    Corvianawatie, Corry; Putri, Mutiara R.; Cahyarini, Sri Y.

    2015-01-01

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth

  8. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    Energy Technology Data Exchange (ETDEWEB)

    Corvianawatie, Corry, E-mail: corvianawatie@students.itb.ac.id; Putri, Mutiara R., E-mail: mutiara.putri@fitb.itb.ac.id [Oceanography Study Program, Bandung Institute of Technology (ITB), Jl. Ganesha 10 Bandung (Indonesia); Cahyarini, Sri Y., E-mail: yuda@geotek.lipi.go.id [Research Center for Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung (Indonesia)

    2015-09-30

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.

  9. The burden of non communicable diseases in developing countries

    Directory of Open Access Journals (Sweden)

    Boutayeb Abdesslam

    2005-01-01

    Full Text Available Abstract Background By the dawn of the third millennium, non communicable diseases are sweeping the entire globe, with an increasing trend in developing countries where, the transition imposes more constraints to deal with the double burden of infective and non-infective diseases in a poor environment characterised by ill-health systems. By 2020, it is predicted that these diseases will be causing seven out of every 10 deaths in developing countries. Many of the non communicable diseases can be prevented by tackling associated risk factors. Methods Data from national registries and international organisms are collected, compared and analyzed. The focus is made on the growing burden of non communicable diseases in developing countries. Results Among non communicable diseases, special attention is devoted to cardiovascular diseases, diabetes, cancer and chronic pulmonary diseases. Their burden is affecting countries worldwide but with a growing trend in developing countries. Preventive strategies must take into account the growing trend of risk factors correlated to these diseases. Conclusion Non communicable diseases are more and more prevalent in developing countries where they double the burden of infective diseases. If the present trend is maintained, the health systems in low-and middle-income countries will be unable to support the burden of disease. Prominent causes for heart disease, diabetes, cancer and pulmonary diseases can be prevented but urgent (preventive actions are needed and efficient strategies should deal seriously with risk factors like smoking, alcohol, physical inactivity and western diet.

  10. Effects of ocean acidification and sea-level rise on coral reefs

    Science.gov (United States)

    Yates, K.K.; Moyer, R.P.

    2010-01-01

    U.S. Geological Survey (USGS) scientists are developing comprehensive records of historical and modern coral reef growth and calcification rates relative to changing seawater chemistry resulting from increasing atmospheric CO2 from the pre-industrial period to the present. These records will provide the scientific foundation for predicting future impacts of ocean acidification and sea-level rise on coral reef growth. Changes in coral growth rates in response to past changes in seawater pH are being examined by using cores from coral colonies.

  11. Using X-Ray Fluorescence Technique to Quantify Metal Concentration in Coral Cores from Belize

    Science.gov (United States)

    Kingsley, C.; Bhattacharya, A.; Hangsterfer, A.; Carilli, J.; Field, D. B.

    2016-12-01

    Caribbean coral reefs are some of the most threatened marine ecosystems in the world. Research appears to suggest that environmental stressors of local origin, such as sediment run off, can reduce the resilience of these reefs to global threats such as ocean warming. Sedimentation can stunt coral growth, reduce its resilience, and it is possible that trapped material could render coral skeletons brittle (personal discussions). Material trapped in coral skeletons can provide information on the sources of particulate matter in the ocean ecosystem. Despite the importance of quantifying sources and types of materials trapped in corals, the research community is yet to fully develop techniques that allow accurate representation of trapped matter, which is potentially a major source of metal content in reef building coral skeletons. The dataset presented here explores the usefulness of X-Ray Fluorescence (XRF), a widely used tool in environmental studies (but generally not in corals), to estimate metal content in coral cores collected from four locations near Belize, with varying degrees of impact from coastal processes. The coral cores together cover a period of 1862-2006. Trace, major, and minor metal content from these cores have been well-studied using solution-based ICP-MS, providing us with the unique opportunity to test the efficacy of XRF technique in characterizing metal content in these coral cores. We have measured more than 50 metals using XRF every two millimeters along slabs removed from the middle of a coral core to characterize materials present in coral skeletons. We compared the results from XRF to solution-based ICP-MS - that involves dissolving subsamples of coral skeleton to measure metal content. Overall, it appears that the non-destructive XRF technique is a viable supplement in determining sediment and metal content in coral cores, and may be particularly helpful for assessing resistant phases such as grains of sediment that are not fully

  12. Fungal invasion of massive corals

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Raghukumar, S.

    Five species of corals from the Andaman Islands in the Bay of Bengal (Indian Ocean) have been regularly found to have single or multiple necrotic patches. The occurrence of such corals with necrotic patches varied from 10-50% in the field. Sections...

  13. Coral reefs as eco-energy factories. Eco-energy kichi to shite no sangosho

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, K [Electrochemical Laboratory, Tsukuba (Japan)

    1993-05-01

    This paper gives an outline of basic problems related to possibilities of CO2 fixing technologies using coral reefs, and problems in their development. The paper describes that primary production (of organic matters) per unit area of a coral reef shows a value exceeding that with tropical rain forests. However, with respect to whether an effective CO2 fixing system could be structured, there are questions to be answered to CO2 fixing mechanisms in coral reefs and to where organic matters produced in coral reefs would go. For the latter problem, the following three cases may be assumed: Accumulation in coral bottom materials; flow-out from a coral reef and transfer to deep ocean layers; and decomposition into CO2 and water as a result of actions of microorganisms. As regards development of CO2 fixing technologies, the paper indicates necessity of discussions on the following matters: Utilization of ocean thermal energy conversion in addition to promoting CO2 fixation using coral reefs; dissolution of coral reef limestone by injecting liquefied CO2; and utilization of coral reefs as energy transportation relaying stations. 3 refs., 2 figs.

  14. Prioritizing land and sea conservation investments to protect coral reefs.

    Directory of Open Access Journals (Sweden)

    Carissa J Klein

    Full Text Available BACKGROUND: Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming and in the sea (e.g. overfishing. Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification. Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. METHODOLOGY/PRINCIPAL FINDINGS: Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. CONCLUSIONS/SIGNIFICANCE: Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.

  15. Prioritizing land and sea conservation investments to protect coral reefs.

    Science.gov (United States)

    Klein, Carissa J; Ban, Natalie C; Halpern, Benjamin S; Beger, Maria; Game, Edward T; Grantham, Hedley S; Green, Alison; Klein, Travis J; Kininmonth, Stuart; Treml, Eric; Wilson, Kerrie; Possingham, Hugh P

    2010-08-30

    Coral reefs have exceptional biodiversity, support the livelihoods of millions of people, and are threatened by multiple human activities on land (e.g. farming) and in the sea (e.g. overfishing). Most conservation efforts occur at local scales and, when effective, can increase the resilience of coral reefs to global threats such as climate change (e.g. warming water and ocean acidification). Limited resources for conservation require that we efficiently prioritize where and how to best sustain coral reef ecosystems. Here we develop the first prioritization approach that can guide regional-scale conservation investments in land- and sea-based conservation actions that cost-effectively mitigate threats to coral reefs, and apply it to the Coral Triangle, an area of significant global attention and funding. Using information on threats to marine ecosystems, effectiveness of management actions at abating threats, and the management and opportunity costs of actions, we calculate the rate of return on investment in two conservation actions in sixteen ecoregions. We discover that marine conservation almost always trumps terrestrial conservation within any ecoregion, but terrestrial conservation in one ecoregion can be a better investment than marine conservation in another. We show how these results could be used to allocate a limited budget for conservation and compare them to priorities based on individual criteria. Previous prioritization approaches do not consider both land and sea-based threats or the socioeconomic costs of conserving coral reefs. A simple and transparent approach like ours is essential to support effective coral reef conservation decisions in a large and diverse region like the Coral Triangle, but can be applied at any scale and to other marine ecosystems.

  16. Influence of oxidative stress on disease development

    Directory of Open Access Journals (Sweden)

    Božić Tatjana

    2013-01-01

    Full Text Available There is ever increasing data indicating the vmast contribution of oxidative stress to the pathogenesis of numerous diseases (atherosclerosis, hypertension, heart failure, diabetes mellitus, stroke, rheumatoid arthritis, and others. Thus, in the pathogenesis of atherosclerosis the primary role is held by reactive oxygen species that are synthetized by endothelial cells of arterial blood vessels, leukocytes and macrophages. Furthermore, native particles of lipoproteins of small density become atherogenic through oxidation caused by reactive oxygen species. The oxidation of small-density lipoproteins stimulates the inflammatory process, and it in turn steps up adhesion and the inflow of monocytes and affects the synthesis and release of numerous proinflammatory cytokines involved in the further course of the process. One of the reasons for the development of arterial hypertension is the simultaneous activation of NAD(PH oxidase and 12/15-lipoxygenase, since it results in the stepped up production of reactive oxygen species. These stimulate the production of matrix metalloproteinase 2, which lead to vascular remodelling and to increased apoptosis of heart muscle cells. Stepped up apoptosis is linked with myocardial infarction, cardiomyopathies and the development of heart failure. The sensitivity of β-cells of the endocrine part of the pancreas to reactive oxygen species favor the naturally low concentrations of the collectors of free radicals in them, as well as an increase in the concentration of proinflammatory cytokines, glucosis and lipids that induce a reduction in the mass and function of β-cells. Hyperglycemia in diabetes mellitus causes tissue damage through non-enzyme glycosylation of intracellular and extracellular proteins, which results in: reduced enzyme activity, damaged nucleic acid, disrupted natural decomposition of proteins, and activation of cytotoxic pathways. These processes are the basis of the pathogenesis of numerous

  17. Alzheimer's disease: A review of recent developments

    African Journals Online (AJOL)

    2011-06-15

    Jun 15, 2011 ... Keywords:Advancing age, Alzheimer's disease, cognitive dysfunction, dementia, neuropsychological testing, primary ..... of associated behavioral and neurologic problems. ... whether to continue therapy with a particular drug.

  18. Handling of network and database instabilities in CORAL

    International Nuclear Information System (INIS)

    Trentadue, R; Valassi, A; Kalkhof, A

    2012-01-01

    The CORAL software is widely used by the LHC experiments for storing and accessing data using relational database technologies. CORAL provides a C++ abstraction layer that supports data persistency for several back-ends and deployment models, direct client access to Oracle servers being one of the most important use cases. Since 2010, several problems have been reported by the LHC experiments in their use of Oracle through CORAL, involving application errors, hangs or crashes after the network or the database servers became temporarily unavailable. CORAL already provided some level of handling of these instabilities, which are due to external causes and cannot be avoided, but this proved to be insufficient in some cases and to be itself the cause of other problems, such as the hangs and crashes mentioned before, in other cases. As a consequence, a major redesign of the CORAL plugins has been implemented, with the aim of making the software more robust against these database and network glitches. The new implementation ensures that CORAL automatically reconnects to Oracle databases in a transparent way whenever possible and gently terminates the application when this is not possible. Internally, this is done by resetting all relevant parameters of the underlying back-end technology (OCI, the Oracle Call Interface). This presentation reports on the status of this work at the time of the CHEP2012 conference, covering the design and implementation of these new features and the outlook for future developments in this area.

  19. Coral seas in fifty years: Need for local policies

    Science.gov (United States)

    Longley, P.; Cheng, N. S.; Fontaine, R. M.; Horton, K.; Bhattacharya, A.

    2017-12-01

    Arising stressors from both global and local sources threaten coral reefs, with studies indicating that local and global sources might reduce coral resilience. Local sources include sediment stress and nutrient stress from fishing; global sources include increasing sea surface temperature and ocean acidification. Through an in-depth review and re-analysis of published work, conducted under the scope of a course in the spring of 2017 semester and follow up research over the summer of 2017 and fall of 2017, students in Environmental Studies Course, ENVS 4100: Coral reefs, at the University of Colorado Boulder have developed a framework to initiate a discussion of global and local policies focused on protection of coral reefs. The research aims to assess current threats and suggest mitigation efforts. The paper uses secondary research to analyze impact of ocean acidification on aragonite saturation levels, current thermal stress, nutrient stress, and sediment factors that influence the health of coral and its surrounding ecosystem over the Common Era. Case studies in this paper include the Caribbean and Red Sea coral reefs, due to the variation of the atmosphere, temperature, and human activity in these regions. This paper intends to offer sufficient evidence that will lead to appropriate policy decisions that pertain to reef conservation.

  20. Project Overview: A Reef Manager's Guide to Coral Bleaching ...

    Science.gov (United States)

    The purpose of this report is to provide the latest scientific knowledge and discuss available management options to assist local and regional managers in responding effectively to mass coral bleaching events. Background A Reef Manager’s Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) share the best available scientific information on climate-related coral bleaching; and (2) compile a tool kit of currently available strategies for adaptive management of coral reefs in a changing climate. The result is a compendium of current information, tools, and practical suggestions to aid managers in their efforts to protect reefs in a way that maximizes reef resilience in the face of continuing climate change. The Guide is a joint publication of the National Oceanic and Atmospheric Administration, the Great Barrier Reef Marine Park Authority, and The World Conservation Union, with author contributions from a variety of international partners from government agencies, non-governmental organizations, and academic institutions. EPA’s Office of Research and Development was a major contributor to the Guide through authorship and participation in the final review and editing process for the entire report. A Reef Manager’s Guide to Coral Bleaching is the result of a collaborative effort by over 50 scientists and managers to: (1) share the best available scientific information on climate-related coral blea

  1. Nuclear Positioning in Muscle Development and Disease

    OpenAIRE

    Eric eFolker; Mary eBaylies

    2013-01-01

    Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, th...

  2. Development of a vaccine for bacterial kidney disease in salmon

    International Nuclear Information System (INIS)

    Kaatari, S.; Turaga, P.; Wiens, G.

    1989-08-01

    This document is the executive summary and background review for the final report of ''Development of a Vaccine for Bacterial Kidney Disease in Salmon''. A description of the disease is provided, with microbiological characterization of the infective agent. A brief discussion of attempts to eradicate the disease is included. Recent progress in vaccine development and attempts to control the disease through pharmacological means are described, along with potential ways to break the cycle of infection. 80 refs

  3. Effects of indian coral tree, Erythrina indica lectin on eggs and larval development of melon fruit fly, Bactrocera cucurbitae.

    Science.gov (United States)

    Singh, Kuljinder; Kaur, Manpreet; Rup, Pushpinder J; Singh, Jatinder

    2009-07-01

    Present study was undertaken to investigate the influence of D-galactose binding lectin from Erythrina indica Lam. on the eggs and second instar larvae (64-72 hr) of melon fruit fly, Bactrocera cucurbitae (Coquillett). The lectin from E. indica seeds was extracted and purified by affinity chromatography using asilofetuin linked porous amino activated silica beads. The effects of various concentrations (0, 125, 250, 500 and 1000 microg ml(-1)) of lectin were studied on freshly laid eggs (0-8 hr) of B. cucurbitae which showed non-significant reduction in percent hatching of eggs. However, the treatment of second instar larvae (64-72 hr) with various test concentrations (0, 25, 50, 100 and 200 microg ml(-1)) of lectin significantly reduced the percent pupation and percent emergence of B. cucurbitae depicting a negative correlation with the lectin concentration. The LC50 (81 microg ml(-1)) treatment significantly decreased the pupal weight. Moreover, the treatment of larvae had also induced a significant increase in the remaining development duration. The activity of three hydrolase enzymes (esterases, acid and alkaline phosphatases), one oxidoreductase (catalase) and one group transfer enzyme (glutathione S-transferases) was assayed in second instar larvae under the influence of LC50 concentration of lectin for three exposure intervals (24, 48 and 72 hr). It significantly suppressed the activity of all the enzymes after all the three exposure intervals except for esterases which increased significantly.

  4. Coral reef bleaching: ecological perspectives

    Science.gov (United States)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  5. State of the Coral Triangle: Malaysia

    OpenAIRE

    Asian Development Bank (ADB)

    2014-01-01

    Malaysia has made a firm commitment to sustainable management and conservation of its coastal and marine resources, helping formulate and implement the Sulu–Sulawesi Marine Ecoregion Initiative and the Coral Triangle Initiative. Rapid economic growth, uncontrolled tourism development, unregulated fishing, and unsustainable use of marine resources have depleted the country’s fish stocks, lost nearly 36% of its mangrove forests, and increased the number of endangered species. Despite impressive...

  6. Nuclear Positioning in Muscle Development and Disease

    Directory of Open Access Journals (Sweden)

    Eric eFolker

    2013-12-01

    Full Text Available Muscle disease as a group is characterized by muscle weakness, muscle loss, and impaired muscle function. Although the phenotype is the same, the underlying cellular pathologies, and the molecular causes of these pathologies, are diverse. One common feature of many muscle disorders is the mispositioning of myonuclei. In unaffected individuals myonuclei are spaced throughout the periphery of the muscle fiber such that the distance between nuclei is maximized. However, in diseased muscles, the nuclei are often clustered within the center of the muscle cell. Although this phenotype has been acknowledged for several decades, it is often ignored as a contributor to muscle weakness. Rather, these nuclei are taken only as a sign of muscle repair. Here we review the evidence that mispositioned myonuclei are not merely a symptom of muscle disease but also a cause. Additionally, we review the working models for how myonuclei move from two different perspectives, from that of the nucleus and from that of the cytoskeleton. We further compare and contrast these mechanisms with the mechanisms of nuclear movement in other cell types both to draw general themes for nuclear movement and to identify muscle-specific considerations. Finally, we focus on factors that can be linked to muscle disease and find that genes that regulate myonuclear movement and positioning have been linked to muscular dystrophy. Although the cause-effect relationship is largely speculative, recent data indicate that the position of nuclei should no longer be considered only a means to diagnose muscle disease.

  7. Evaluation of Stony Coral Indicators for Coral Reef ...

    Science.gov (United States)

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for their response to gradients of human disturbance. The purpose of the study was to identify indicators that could be used for regulatory assessments under authority of the Clean Water Act--this requires that indicators distinguish anthropogenic disturbances from natural variation. Stony coral indicators were tested for correlation with human disturbance across gradients located on three different sides of the island. At the most intensely disturbed location, five of eight primary indicators were highly correlated with distance from the source of disturbance: Coral taxa richness, average colony size, the coefficient of variation of colony size (an indicator of colony size heterogeneity), total topographic coral surface area, and live coral surface area. An additional set of exploratory indicators related to rarity, reproductive and spawning mode, and taxonomic identity were also screened for association with disturbance at the same location. For the other two locations, there were no significant changes in indicator values and therefore no discernible effects of human activity. Coral indicators demonstrated sufficient precision to detect levels of change that would be applicable in a regio

  8. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    Science.gov (United States)

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  9. Mapping Coral Reef Resilience Indicators Using Field and Remotely Sensed Data

    Directory of Open Access Journals (Sweden)

    Stuart Phinn

    2013-03-01

    Full Text Available In the face of increasing climate-related impacts on coral reefs, the integration of ecosystem resilience into marine conservation planning has become a priority. One strategy, including resilient areas in marine protected area (MPA networks, relies on information on the spatial distribution of resilience. We assess the ability to model and map six indicators of coral reef resilience—stress-tolerant coral taxa, coral generic diversity, fish herbivore biomass, fish herbivore functional group richness, density of juvenile corals and the cover of live coral and crustose coralline algae. We use high spatial resolution satellite data to derive environmental predictors and use these in random forest models, with field observations, to predict resilience indicator values at unsampled locations. Predictions are compared with those obtained from universal kriging and from a baseline model. Prediction errors are estimated using cross-validation, and the ability to map each resilience indicator is quantified as the percentage reduction in prediction error compared to the baseline model. Results are most promising (percentage reduction = 18.3% for mapping the cover of live coral and crustose coralline algae and least promising (percentage reduction = 0% for coral diversity. Our study has demonstrated one approach to map indicators of coral reef resilience. In the context of MPA network planning, the potential to consider reef resilience in addition to habitat and feature representation in decision-support software now exists, allowing planners to integrate aspects of reef resilience in MPA network development.

  10. Dark production of extracellular superoxide by the coral Porites astreoides and representative symbionts

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2016-11-01

    Full Text Available The reactive oxygen species (ROS superoxide has been implicated in both beneficial and detrimental processes in coral biology, ranging from pathogenic disease resistance to coral bleaching. Despite the critical role of ROS in coral health, there is a distinct lack of ROS measurements and thus an incomplete understanding of underpinning ROS sources and production mechanisms within coral systems. Here, we quantified in situ extracellular superoxide concentrations at the surfaces of aquaria-hosted Porites astreoides during a diel cycle. High concentrations of superoxide (~10’s of nM were present at coral surfaces, and these levels did not change significantly as a function of time of day. These results indicate that the coral holobiont produces extracellular superoxide in the dark, independent of photosynthesis. As a short-lived anion at physiological pH, superoxide has a limited ability to cross intact biological membranes. Further, removing surface mucus layers from the P. astreoides colonies did not impact external superoxide concentrations. We therefore attribute external superoxide derived from the coral holobiont under these conditions to the activity of the coral host epithelium, rather than mucus-derived epibionts or internal sources such as endosymbionts (e.g., Symbiodinium. However, endosymbionts likely contribute to internal ROS levels via extracellular superoxide production. Indeed, common coral symbionts, including multiple strains of Symbiodinium (clades A to D and the bacterium Endozoicomonas montiporae LMG 24815, produced extracellular superoxide in the dark and at low light levels. Further, representative P. astreoides symbionts, Symbiodinium CCMP2456 (clade A and E. montiporae, produced similar concentrations of superoxide alone and in combination with each other, in the dark and low light, and regardless of time of day. Overall, these results indicate that healthy, non-stressed P. astreoides and representative symbionts produce

  11. Coral reproduction in Western Australia

    Science.gov (United States)

    Speed, Conrad W.; Babcock, Russ

    2016-01-01

    Larval production and recruitment underpin the maintenance of coral populations, but these early life history stages are vulnerable to extreme variation in physical conditions. Environmental managers aim to minimise human impacts during significant periods of larval production and recruitment on reefs, but doing so requires knowledge of the modes and timing of coral reproduction. Most corals are hermaphroditic or gonochoric, with a brooding or broadcast spawning mode of reproduction. Brooding corals are a significant component of some reefs and produce larvae over consecutive months. Broadcast spawning corals are more common and display considerable variation in their patterns of spawning among reefs. Highly synchronous spawning can occur on reefs around Australia, particularly on the Great Barrier Reef. On Australia’s remote north-west coast there have been fewer studies of coral reproduction. The recent industrial expansion into these regions has facilitated research, but the associated data are often contained within confidential reports. Here we combine information in this grey-literature with that available publicly to update our knowledge of coral reproduction in WA, for tens of thousands of corals and hundreds of species from over a dozen reefs spanning 20° of latitude. We identified broad patterns in coral reproduction, but more detailed insights were hindered by biased sampling; most studies focused on species of Acropora sampled over a few months at several reefs. Within the existing data, there was a latitudinal gradient in spawning activity among seasons, with mass spawning during autumn occurring on all reefs (but the temperate south-west). Participation in a smaller, multi-specific spawning during spring decreased from approximately one quarter of corals on the Kimberley Oceanic reefs to little participation at Ningaloo. Within these seasons, spawning was concentrated in March and/or April, and October and/or November, depending on the timing of

  12. Is Acropora palmata (elkhorn coral) making a comeback in the Virgin Islands?

    Science.gov (United States)

    Rogers, Caroline S.

    2000-01-01

    White band disease (WBD) ravaged Acropora palmata (elkhorn coral) on many coral reefs in the Caribbean in the late 1970’s and 1980’s, including those around St. John and St. Croix, U. S. Virgin Islands—USVI (Gladfelter 1982, Rogers 1985). Quantitative data, photographs, and anecdotal observations indicate WBD killed large stands of elkhorn coral in the USVI from about 1976 until sometime in the late 1980’s. Branching Acroporid species, which are most susceptible to WBD, are also the most vulnerable to storm damage (Rogers et al. 1982). Since 1979, eight hurricanes have passed near or over the USVI. Because elkhorn coral contributed most of the living coral and determined the physical structure of many shallow reef zones, its demise dramatically altered many areas. But now, some of the reefs in the Virgin Islands once again have large, actively growing colonies of this important, reef-building species.

  13. Coral reef ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.

    ), on submerged banks like Gave shani bank (13°24'N; 73°45'E) (Nair and Qasim 1978) andSidere~ko Bank (13°43.5' N; 73°42'E) (Rao 1972) and as stray individual units off Visakhapatnam (Bakus, G. personal communication) and Pondicherry (Ramesh, A. personal... communication). Fossil reefs, drowned as a result of the Holocene sea level rise, occur at 92, 85, 75 and 55 m depth along .. ~ !! ":2 0. ~ Figure 3.1 Graphical Representation of the SO-Box Model of a Caribbean Coral Reef Key: 1. Benthic producers. 2. Detritus...

  14. Extinction vulnerability of coral reef fishes.

    Science.gov (United States)

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-04-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. © 2011 Blackwell Publishing Ltd/CNRS.

  15. The ;Sardinian cold-water coral province; in the context of the Mediterranean coral ecosystems

    Science.gov (United States)

    Taviani, M.; Angeletti, L.; Canese, S.; Cannas, R.; Cardone, F.; Cau, A.; Cau, A. B.; Follesa, M. C.; Marchese, F.; Montagna, P.; Tessarolo, C.

    2017-11-01

    A new cold-water coral (CWC) province has been identified in the Mediterranean Sea in the Capo Spartivento canyon system offshore the southern coast of Sardinia. The 'Sardinia cold-water coral province' is characterized in the Nora canyon by a spectacular coral growth dominated by the branching scleractinian Madrepora oculata at a depth of 380-460 m. The general biohermal frame is strengthened by the common occurrence of the solitary scleractinian Desmophyllum dianthus and the occasional presence of Lophelia pertusa. As documented by Remotely Operated Vehicle survey, this area is a hotspot of megafaunal diversity hosting among other also live specimens of the deep oyster Neopycnodonte zibrowii. The new coral province is located between the central Mediterranean CWC provinces (Bari Canyon, Santa Maria di Leuca, South Malta) and the western and northern ones (Melilla, Catalan-Provençal-Ligurian canyons). As for all the best developed CWC situations in the present Mediterranean Sea, the new Sardinian province is clearly influenced by Levantine Intermediate Water which appears to be a main driver for CWC distribution and viability in this basin.

  16. Psychological Perspectives on the Development of Coronary Heart Disease

    Science.gov (United States)

    Matthews, Karen A.

    2005-01-01

    Psychological science has new opportunities to have major input into the understanding of the development of coronary heart disease. This article provides an overview of advances in understanding the etiology of heart disease, recently applied technologies for measuring early stages of heart disease, and an accumulating base of evidence on the…

  17. New perspectives on ecological mechanisms affecting coral recruitment on reefs

    NARCIS (Netherlands)

    Ritson-Williams, R.; Arnold, S.N.; Fogarty, N.D.; Steneck, R.S.; Vermeij, M.J.A.; Paul, V.J.

    2009-01-01

    Coral mortality has increased in recent decades, making coral recruitment more important than ever in sustaining coral reef ecosystems and contributing to their resilience. This review summarizes existing information on ecological factors affecting scleractinian coral recruitment. Successful

  18. Human activities threaten coral reefs

    International Nuclear Information System (INIS)

    Tveitdal, Svein; Bjoerke, Aake

    2002-01-01

    Research indicates that 58 per cent of the coral reefs of the world are threatened by human activities. Pollution and global heating represent some of the threats. Coral reefs just beneath the surface of the sea are very sensitive to temperature changes. Since 1979, mass death of coral reefs has been reported increasingly often. More than 1000 marine species live in the coral reefs, among these are one fourth of all marine species of fish. It is imperative that the coral reefs be preserved, as coastal communities all over the world depend on them as sources of food and as they are the raw materials for important medicines. The article discusses the threats to the coral reefs in general and does not single out any particular energy-related activity as the principal threat. For instance, the El-Nino phenomenon of the Pacific Ocean is probably involved in mass death of coral reefs and in the North Sea large parts of deep-water reefs have been crushed by heavy beam trawlers fishing for bottom fish

  19. Pink line syndrome (PLS) in the scleractinian coral Porites lutea

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Raghukumar, C.

    Reef sites Pink line syndrome (PLS) in the scleractinian coral Porites lutea Accepted: 10 May 2002 / Published online: 5 July 2002 C211 Springer-Verlag 2002 We describe here an unreport- ed diseased state of Porites lutea (Milne-Edwards and Haime...)ontheKavarattireefof the Lakshadweep group of is- lands (11C176 N; 71C176E). Pink line syndrome (PLS) causes partial mortality of the coral P. lutea around Kavaratti Island (Fig. 1), and about 10% of colonies were found to be af- fected by PLS. The dead patches were colonized by a...

  20. White syndrome on massive corals: A case study in Paiton power plant, East Java

    Science.gov (United States)

    Muzaki, Farid Kamal; Saptarini, Dian; Riznawati, Aida Efrini

    2017-06-01

    As a stenothermal organism, coral easily affected by high-temperature cooling water discharged by a power plant into surrounding waters; which may lead to a rapid spread and transmission of coral disease, including White Syndrome. This study aimed to measure the prevalence of WS on massive corals in Paiton Power Plant waters. Research was conductedduring May 2015 at three observation stations; west and east side of water discharge canal (DB and DT) and water intake canal (WI). Observed parameters including ambient environmental variables (sea surface and bottom temperature, salinity, dissolved oxygen/DO, pH, and visibility); the cover of life corals (percent and genera composition) and prevalence of coral disease at 5 m depth. One-way ANOVA (analysis of variance, p=0.05) was performed to test the difference of coral disease prevalence from different observation stations. As the results, Coral coverage percentage in WI (85.75%), DB (60.75%), and DT (40.8%). Prevalence of WS in DB was highest (40.49±2.12% in DB, 13.53±11.5% in DT and 6.44±3.6 %, respectively). It can be assumed that prevalence of White Syndrome in those locations may be correlated to temperature which highest average temperature occurred in DB stations.

  1. Hurricanes, Coral Reefs and Rainforests: Resistance, Ruin and Recovery in the Caribbean

    Science.gov (United States)

    A. E. Lugo; C. S. Rogers; S. W Nixon

    2000-01-01

    The coexistence of hurricanes, coral reefs, and rainforests in the Caribbean demonstrates that highly structured ecosystems with great diversity can flourish in spite of recurring exposure to intense destructive energy. Coral reefs develop in response to wave energy and resist hurricanes largely by virtue of their structural strength. Limited fetch also protects some...

  2. Gross and microscopic lesions in corals from Micronesia

    Science.gov (United States)

    Work, Thierry M.; Aeby, Greta S.; Hughen, Konrad A.

    2015-01-01

    The authors documented gross and microscopic morphology of lesions in corals on 7 islands spanning western, southern, and eastern Micronesia, sampling 76 colonies comprising 30 species of corals among 18 genera, with Acropora, Porites, and Montipora dominating. Tissue loss comprised the majority of gross lesions sampled (41%), followed by discoloration (30%) and growth anomaly (29%). Of 31 cases of tissue loss, most lesions were subacute (48%), followed by acute and chronic (26% each). Of 23 samples with discoloration, most were dark discoloration (40%), with bleaching and other discoloration each constituting 30%. Of 22 growth anomalies, umbonate growth anomalies composed half, with exophytic, nodular, and rugose growth anomalies composing the remainder. On histopathology, for 9 cases of dark discoloration, fungal infections predominated (77%); for 7 bleached corals, depletion of zooxanthellae from the gastrodermis made up a majority of microscopic diagnoses (57%); and for growth anomalies other than umbonate, hyperplasia of the basal body wall was the most common microscopic finding (63%). For the remainder of the gross lesions, no single microscopic finding constituted >50% of the total. Host response varied with the agent present on histology. Fragmentation of tissues was most often associated with algae (60%), whereas necrosis dominated (53%) for fungi. Two newly documented potentially symbiotic tissue-associated metazoans were seen in Porites and Montipora. Findings of multiple potential etiologies for a given gross lesion highlight the importance of incorporating histopathology in coral disease surveys. This study also expands the range of corals infected with cell-associated microbial aggregates.

  3. Energetic differences between bacterioplankton trophic groups and coral reef resistance.

    Science.gov (United States)

    McDole Somera, Tracey; Bailey, Barbara; Barott, Katie; Grasis, Juris; Hatay, Mark; Hilton, Brett J; Hisakawa, Nao; Nosrat, Bahador; Nulton, James; Silveira, Cynthia B; Sullivan, Chris; Brainard, Russell E; Rohwer, Forest

    2016-04-27

    Coral reefs are among the most productive and diverse marine ecosystems on the Earth. They are also particularly sensitive to changing energetic requirements by different trophic levels. Microbialization specifically refers to the increase in the energetic metabolic demands of microbes relative to macrobes and is significantly correlated with increasing human influence on coral reefs. In this study, metabolic theory of ecology is used to quantify the relative contributions of two broad bacterioplankton groups, autotrophs and heterotrophs, to energy flux on 27 Pacific coral reef ecosystems experiencing human impact to varying degrees. The effective activation energy required for photosynthesis is lower than the average energy of activation for the biochemical reactions of the Krebs cycle, and changes in the proportional abundance of these two groups can greatly affect rates of energy and materials cycling. We show that reef-water communities with a higher proportional abundance of microbial autotrophs expend more metabolic energy per gram of microbial biomass. Increased energy and materials flux through fast energy channels (i.e. water-column associated microbial autotrophs) may dampen the detrimental effects of increased heterotrophic loads (e.g. coral disease) on coral reef systems experiencing anthropogenic disturbance. © 2016 The Author(s).

  4. Marine protected areas increase resilience among coral reef communities.

    Science.gov (United States)

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. © 2016 John Wiley & Sons Ltd/CNRS.

  5. Enhanced susceptibility to predation in corals of compromised condition

    Directory of Open Access Journals (Sweden)

    Allan J. Bright

    2015-09-01

    Full Text Available The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  6. Enhanced susceptibility to predation in corals of compromised condition.

    Science.gov (United States)

    Bright, Allan J; Cameron, Caitlin M; Miller, Margaret W

    2015-01-01

    The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  7. Personality traits and chronic disease: implications for adult personality development.

    Science.gov (United States)

    Sutin, Angelina R; Zonderman, Alan B; Ferrucci, Luigi; Terracciano, Antonio

    2013-11-01

    Personality traits have been associated with chronic disease. Less is known about the longitudinal relation between personality and disease and whether chronic disease is associated with changes in personality. Method. Participants from the Baltimore Longitudinal Study of Aging (N = 2,008) completed the Revised NEO Personality Inventory and a standard medical interview at regularly scheduled visits; the Charlson Comorbidity Index, a weighted sum of 19 serious diseases, was derived from this interview. Using data from 6,685 visits, we tested whether personality increased risk of disease and whether disease was associated with personality change. Measured concurrently, neuroticism and conscientiousness were associated with greater disease burden. The impulsiveness facet of neuroticism was the strongest predictor of developing disease across the follow-up period: For every standard deviation increase in impulsiveness, there was a 26% increased risk of developing disease and a 36% increased risk of getting more ill. Personality traits changed only modestly with disease: As participants developed chronic illnesses, they became more conservative (decreased openness). Discussion. This research indicates that personality traits confer risk for disease, in part, through health-risk behaviors. These traits, however, were relatively resistant to the effect of serious disease.

  8. 75 FR 39917 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the...

    Science.gov (United States)

    2010-07-13

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the Southern Atlantic... regulations implementing the Fishery Management Plan for Coral, Coral Reefs, and Live/Hardbottom Habitat of... Cancer Institute (http:// [[Page 39918

  9. Identification of microRNAs in the coral Stylophora pistillata.

    KAUST Repository

    Liew, Yi Jin

    2014-03-21

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways.

  10. Coral skeletal geochemistry as a monitor of inshore water quality

    International Nuclear Information System (INIS)

    Saha, Narottam; Webb, Gregory E.; Zhao, Jian-Xin

    2016-01-01

    Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current ‘state of the art’ in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input

  11. Coral skeletal geochemistry as a monitor of inshore water quality

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Narottam, E-mail: n.saha@uq.edu.au; Webb, Gregory E.; Zhao, Jian-Xin

    2016-10-01

    Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current ‘state of the art’ in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input

  12. CORAL ASSEMBLAGES AND BIOCONSTRUCTIONS ADAPTED TO THE DEPOSITIONAL DYNAMICS OF A MIXED CARBONATE-SILICICLASTIC SETTING: THE CASE STUDY OF THE BURDIGALIAN BONIFACIO BASIN (SOUTH CORSICA

    Directory of Open Access Journals (Sweden)

    MARCO BRANDANO

    2016-03-01

    Full Text Available Coral bioconstructions associated with mixed carbonate-siliciclastic settings are known to be strongly controlled by coastal morphology and paleotopography. A striking example is represented by the different types of coral bioconstructions and coral-rich deposits of the Cala di Labra Formation deposited in the coastal environment of the Bonifacio Basin (Corsica, France during the Early Miocene. Detailed mapping on photomosaics allowed accurate documentation of the internal organization of coral deposits as well as lateral and vertical facies relationships. Four types of coral bioconstructions (CB  and one reworked coral deposits (RCD have been recognized. The CB are represented by sigmoidal cluster reefs, coral carpets and skeletal conglomerates rich in corals. The RCD occurs in lens-shaped bodies intercalated within clinoforms composed of bioclastic floatstones and coarse packstones. The investigated bioconstructions can be contextualised in a coastal environment. In the upper shoreface corals developed in association with the oyster Hyotissa, above bioclastic conglomerates sourced by ephemeral streams and erosion of the granitic coastline. In the lower shoreface corals formed sigmoidal bioconstructions interpreted as cluster reefs, whereas  coral carpets developed during a relative sea-level rise related to the middle Burdigalian transgressive phase. The reworked coral deposits can be interpreted as lobe-shaped deposits of coarse-grained bioclastic submarine fans formed at the base of the depositional slope of an infralittoral prograding wedge system.

  13. [Community structure of zooxanthellate corals (Anthozoa: Scleractinia) in Carrizales coral reef, Pacific coast, Mexico].

    Science.gov (United States)

    Reyes-Bonilla, Hector; Escobosa-González, Laura Elena; Cupul-Magaña, Amilcar L; Medina-Rosas, Pedro; Calderón-Aguilera, Luis E

    2013-06-01

    Coral reefs in the Mexican Pacific and notably those of the continental coastline of Colima state are still poorly studied. Fortunately, recent efforts have been carried out by researchers from different Mexican institutions to fill up these information gaps. The aim of this study was to determine the ecological structure of the rich and undisturbed coral building communities of Carrizales by using the point transect interception method (25m-long). For this, three survey expeditions were conducted between June and October 2005 and September 2006; and for comparison purposes, the reef was subdivided according to its position in the bay, and depth (0 to 5 m, and 6 to 10 m). Thirteen coral species were observed in the area, with Pocillopora verrucosa as the most abundant, contributing up to 32.8% of total cover, followed by Porites panamensis and Pocillopora capitata with 11% and 7%, respectively. Other species, Pocillopora damicornis, Pavona gigantea, Pocillopora eydouxi and Pocillopora inflata accounted for 1.5% to 2% of coral cover whereas the remaining five species had cover of less than 1%. Seven of the observed species represented new records for Colima state coastline: Pocillopora eydouxi, P inflata, P meandrina, Pavona duerdeni, P varians, Psammocora stellata and P contigua. This last species is a relevant record, because it has never been observed before in the Eastern Pacific. Although there was no significant difference (ANOVA, p = 0.478) neither in the abundance between the sides of the bay, nor between the depths considered, and the shallow zone observed the higher coral cover. Live coral cover was up to 61%, one of the highest ever reported for the Mexican Pacific, including the Gulf of California. The observed values of diversity (H' = 0.44 +/- 0.02), uniformity (J' = 0.76 +/- 0.02), and taxonomic distinctness index (delta* = 45.87 +/- 3.16), showed that currently this is the most important coral reef of Colima coastline. Currently, this region does not

  14. Local stressors reduce coral resilience to bleaching.

    Science.gov (United States)

    Carilli, Jessica E; Norris, Richard D; Black, Bryan A; Walsh, Sheila M; McField, Melanie

    2009-07-22

    Coral bleaching, during which corals lose their symbiotic dinoflagellates, typically corresponds with periods of intense heat stress, and appears to be increasing in frequency and geographic extent as the climate warms. A fundamental question in coral reef ecology is whether chronic local stress reduces coral resistance and resilience from episodic stress such as bleaching, or alternatively promotes acclimatization, potentially increasing resistance and resilience. Here we show that following a major bleaching event, Montastraea faveolata coral growth rates at sites with higher local anthropogenic stressors remained suppressed for at least 8 years, while coral growth rates at sites with lower stress recovered in 2-3 years. Instead of promoting acclimatization, our data indicate that background stress reduces coral fitness and resilience to episodic events. We also suggest that reducing chronic stress through local coral reef management efforts may increase coral resilience to global climate change.

  15. A physical theory of focus development in plant disease

    NARCIS (Netherlands)

    Zawolek, M.W.

    1989-01-01

    Chapter 1. The 'diffusion theory' of focus development in plant disease is introduced. Foci develop in space and time. The theory applies primarily to air-borne fungal diseases of the foliage.

    Chapter 2. The contents of the present volume are outlined.

    Chapter 3. The

  16. Coral Reef Protection Implementation Plan

    National Research Council Canada - National Science Library

    Lobel, Lisa

    2000-01-01

    This document identify policies and actions to implement the Department of Defense's responsibilities under Executive Order 13089 on Coral Reef Protection, and are a requirement of the interim Task...

  17. Advancing Ocean Monitoring Near Coral Reefs

    Science.gov (United States)

    Heron, Scott F.; Steinberg, Craig R.; Heron, Mal L.; Mantovanelli, Alessandra; Jaffrés, Jasmine B. D.; Skirving, William J.; McAllister, Felicity; Rigby, Paul; Wisdom, Daniel; Bainbridge, Scott

    2010-10-01

    Corals, the foundation of tropical marine ecosystems, exist in a symbiotic relationship with zooxanthellae (algae). The corals obtain much of their energy by consuming compounds derived from photosynthesis by these microorganisms; the microorganisms, which reside in the coral tissue, in turn use waste products from the corals to sustain photosynthesis. This symbiosis is very sensitive to subtle changes in environment, such as increased ocean acidity, temperature, and light. When unduly stressed, the colorful algae are expelled from the corals, causing the corals to “bleach” and potentially die [e.g., van Oppen and Lough, 2009].

  18. Axon Development in Health and Disease

    NARCIS (Netherlands)

    Battum, E.Y. van

    2016-01-01

    During embryonic development neurons migrate and grow their protrusions (neurites) over long distances in a strictly orchestrated manner to form complex neuronal networks. Subtle changes in neuronal network formation may lead to various neurological disorders ranging from congenital mirror

  19. Coral Sr-U Thermometry

    Science.gov (United States)

    DeCarlo, T. M.; Gaetani, G. A.; Cohen, A. L.; Foster, G. L.; Alpert, A.; Stewart, J.

    2016-12-01

    Coral skeletons archive the past two millennia of climate variability in the oceans with unrivaled temporal resolution. However, extracting accurate temperature information from coral skeletons is confounded by "vital effects", which often override the temperature dependence of geochemical proxies. Here, we present a new approach to coral paleothermometry based on results of abiogenic precipitation experiments interpreted within a framework provided by a quantitative model of the coral biomineralization process. We conducted laboratory experiments to test the temperature and carbonate chemistry controls on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater, and we modeled the sensitivity of skeletal composition to processes occurring at the site of calcification. The model predicts that temperature can be accurately reconstructed from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, Sr-U. We tested the model predictions with measured Sr/Ca and U/Ca ratios of fourteen Porites sp. corals collected from the tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron isotope (δ11B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and δ11B agree with model predictions, indicating that the model accounts for the key features of the coral biomineralization process. We calibrated Sr-U to instrumental temperature records and found that it captures 93% of mean annual variability (26-30 °C) and predicts temperature within 0.5 °C (1 σ). Conversely, Sr/Ca alone has an error of prediction of 1 °C and often diverges from observed temperature by 3 °C or more. Many of the problems afflicting Sr/Ca - including offsets among neighboring corals and decouplings from temperature during coral stress events - are reconciled by Sr-U. By accounting for the influence of the coral biomineralization process, the Sr-U thermometer may offer significantly improved reliability for reconstructing ocean temperatures from coral

  20. Neuromuscular rate of force development deficit in Parkinson disease.

    Science.gov (United States)

    Hammond, Kelley G; Pfeiffer, Ronald F; LeDoux, Mark S; Schilling, Brian K

    2017-06-01

    Bradykinesia and reduced neuromuscular force exist in Parkinson disease. The interpolated twitch technique has been used to evaluate central versus peripheral manifestations of neuromuscular strength in healthy, aging, and athletic populations, as well as moderate to advanced Parkinson disease, but this method has not been used in mild Parkinson disease. This study aimed to evaluate quadriceps femoris rate of force development and quantify potential central and peripheral activation deficits in individuals with Parkinson disease. Nine persons with mild Parkinson Disease (Hoehn & Yahr≤2, Unified Parkinson Disease Rating Scale total score=mean 19.1 (SD 5.0)) and eight age-matched controls were recruited in a cross-sectional investigation. Quadriceps femoris voluntary and stimulated maximal force and rate of force development were evaluated using the interpolated twitch technique. Thirteen participants satisfactorily completed the protocol. Individuals with early Parkinson disease (n=7) had significantly slower voluntary rate of force development (p=0.008; d=1.97) and rate of force development ratio (p=0.004; d=2.18) than controls (n=6). No significant differences were found between groups for all other variables. Persons with mild-to-moderate Parkinson disease display disparities in rate of force development, even without deficits in maximal force. The inability to produce force at a rate comparable to controls is likely a downstream effect of central dysfunction of the motor pathway in Parkinson disease. Copyright © 2017. Published by Elsevier Ltd.

  1. Distribution and structure of the southernmost Caribbean coral reefs: golfo de Urabá, Colombia

    Directory of Open Access Journals (Sweden)

    J. M. Díaz

    2000-09-01

    Full Text Available The Gulf of Urabá represents the southernmost portion of the Caribbean Sea. Due to the large amounts of sediment and freshwater discharged by the Atrato river and several minor streams, water conditions in the area are far from being optimal for coral settlement and growth. However, fringing and patch reefs are developed along the rocky shores of the northwest margin of the Gulf. Based on field observations performed at 44 sites (12 of them assessed quantitatively, interpretation of air photography of the area and depth profiles, the distribution, structure and zonation of the reefs are described. Classification analysis of the 12 sample sites yielded four coral assemblages: Diploria strigosa, crustose algae, Siderastrea siderea, Agaricia spp., and mixed massive corals. Other two assemblages, dominated respectively by Millepora complanata and thickets of Acropora palmata were noticed during reconnaissance dives. The distribution of these zones within the reef seems likely to be mainly controlled by wave exposure, bottom topography, sedimentation, and light penetration. Reef development, coral diversity and live coral cover increase along the coast in a SE-NW direction, with an evident maximum near to the cove of Sapzurro, suggesting an overall improvement of conditions for coral growth and settlement in that direction. A total of 33 species of hard corals were recorded during the survey. It is apparent that the live coral cover, particularly of foliose and branching species, has notably declined recently.

  2. Fibre intake and the development of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Andersen, Vibeke; Chan, Simon; Luben, Robert

    2018-01-01

    Background and Aims: Population-based prospective cohort studies investigating fibre intake and development of inflammatory bowel disease are lacking. Our aim was to investigate the association between fibre intake and the development of Crohn's disease [CD] and ulcerative colitis [UC] in a large...... for the development of inflammatory bowel disease. Each case was matched with four controls and odds ratios [ORs] for the exposures were calculated using conditional logistic regression. Sensitivity analyses according to smoking status were computed. Results: In total, 104 and 221 participants developed incident CD...

  3. Interspecific Hybridization May Provide Novel Opportunities for Coral Reef Restoration

    Directory of Open Access Journals (Sweden)

    Wing Yan Chan

    2018-05-01

    Full Text Available Climate change and other anthropogenic disturbances have created an era characterized by the inability of most ecosystems to maintain their original, pristine states, the Anthropocene. Investigating new and innovative strategies that may facilitate ecosystem restoration is thus becoming increasingly important, particularly for coral reefs around the globe which are deteriorating at an alarming rate. The Great Barrier Reef (GBR lost half its coral cover between 1985 and 2012, and experienced back-to-back heat-induced mass bleaching events and high coral mortality in 2016 and 2017. Here we investigate the efficacy of interspecific hybridization as a tool to develop coral stock with enhanced climate resilience. We crossed two Acropora species pairs from the GBR and examined several phenotypic traits over 28 weeks of exposure to ambient and elevated temperature and pCO2. While elevated temperature and pCO2 conditions negatively affected size and survival of both purebreds and hybrids, higher survival and larger recruit size were observed in some of the hybrid offspring groups under both ambient and elevated conditions. Further, interspecific hybrids had high fertilization rates, normal embryonic development, and similar Symbiodinium uptake and photochemical efficiency as purebred offspring. While the fitness of these hybrids in the field and their reproductive and backcrossing potential remain to be investigated, current findings provide proof-of-concept that interspecific hybridization may produce genotypes with enhanced climate resilience, and has the potential to increase the success of coral reef restoration initiatives.

  4. Using virtual reality to estimate aesthetic values of coral reefs

    Science.gov (United States)

    Clifford, Sam; Caley, M. Julian; Pearse, Alan R.; Brown, Ross; James, Allan; Christensen, Bryce; Bednarz, Tomasz; Anthony, Ken; González-Rivero, Manuel; Mengersen, Kerrie; Peterson, Erin E.

    2018-01-01

    Aesthetic value, or beauty, is important to the relationship between humans and natural environments and is, therefore, a fundamental socio-economic attribute of conservation alongside other ecosystem services. However, beauty is difficult to quantify and is not estimated well using traditional approaches to monitoring coral-reef aesthetics. To improve the estimation of ecosystem aesthetic values, we developed and implemented a novel framework used to quantify features of coral-reef aesthetics based on people's perceptions of beauty. Three observer groups with different experience to reef environments (Marine Scientist, Experienced Diver and Citizen) were virtually immersed in Australian's Great Barrier Reef (GBR) using 360° images. Perceptions of beauty and observations were used to assess the importance of eight potential attributes of reef-aesthetic value. Among these, heterogeneity, defined by structural complexity and colour diversity, was positively associated with coral-reef-aesthetic values. There were no group-level differences in the way the observer groups perceived reef aesthetics suggesting that past experiences with coral reefs do not necessarily influence the perception of beauty by the observer. The framework developed here provides a generic tool to help identify indicators of aesthetic value applicable to a wide variety of natural systems. The ability to estimate aesthetic values robustly adds an important dimension to the holistic conservation of the GBR, coral reefs worldwide and other natural ecosystems. PMID:29765676

  5. Coral calcification and ocean acidification

    Science.gov (United States)

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives

  6. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium

    Science.gov (United States)

    Weynberg, Karen D.; Neave, Matthew; Clode, Peta L.; Voolstra, Christian R.; Brownlee, Christopher; Laffy, Patrick; Webster, Nicole S.; Levin, Rachel A.; Wood-Charlson, Elisha M.; van Oppen, Madeleine J. H.

    2017-09-01

    Reef corals are under threat from bleaching and disease outbreaks that target both the host animal and the algal symbionts within the coral holobiont. A viral origin for coral bleaching has been hypothesized, but direct evidence has remained elusive. Using a multifaceted approach incorporating flow cytometry, transmission electron microscopy, DNA and RNA virome sequencing, we show that type C1 Symbiodinium cultures host a nucleocytoplasmic large double-stranded DNA virus (NCLDV) related to Phycodnaviridae and Mimiviridae, a novel filamentous virus of unknown phylogenetic affiliation, and a single-stranded RNA virus related to retroviruses. We discuss implications of these findings for laboratory-based experiments using Symbiodinium cultures.

  7. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium

    KAUST Repository

    Weynberg, Karen D.; Neave, Matthew J.; Clode, Peta L.; Voolstra, Christian R.; Brownlee, Christopher; Laffy, Patrick; Webster, Nicole S.; Levin, Rachel A.; Wood-Charlson, Elisha M.; Oppen, Madeleine J. H.

    2017-01-01

    Reef corals are under threat from bleaching and disease outbreaks that target both the host animal and the algal symbionts within the coral holobiont. A viral origin for coral bleaching has been hypothesized, but direct evidence has remained elusive. Using a multifaceted approach incorporating flow cytometry, transmission electron microscopy, DNA and RNA virome sequencing, we show that type C1 Symbiodinium cultures host a nucleocytoplasmic large double-stranded DNA virus (NCLDV) related to Phycodnaviridae and Mimiviridae, a novel filamentous virus of unknown phylogenetic affiliation, and a single-stranded RNA virus related to retroviruses. We discuss implications of these findings for laboratory-based experiments using Symbiodinium cultures.

  8. Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium

    KAUST Repository

    Weynberg, Karen D.

    2017-03-17

    Reef corals are under threat from bleaching and disease outbreaks that target both the host animal and the algal symbionts within the coral holobiont. A viral origin for coral bleaching has been hypothesized, but direct evidence has remained elusive. Using a multifaceted approach incorporating flow cytometry, transmission electron microscopy, DNA and RNA virome sequencing, we show that type C1 Symbiodinium cultures host a nucleocytoplasmic large double-stranded DNA virus (NCLDV) related to Phycodnaviridae and Mimiviridae, a novel filamentous virus of unknown phylogenetic affiliation, and a single-stranded RNA virus related to retroviruses. We discuss implications of these findings for laboratory-based experiments using Symbiodinium cultures.

  9. Thresholds for Coral Bleaching: Are Synergistic Factors and Shifting Thresholds Changing the Landscape for Management? (Invited)

    Science.gov (United States)

    Eakin, C.; Donner, S. D.; Logan, C. A.; Gledhill, D. K.; Liu, G.; Heron, S. F.; Christensen, T.; Rauenzahn, J.; Morgan, J.; Parker, B. A.; Hoegh-Guldberg, O.; Skirving, W. J.; Strong, A. E.

    2010-12-01

    As carbon dioxide rises in the atmosphere, climate change and ocean acidification are modifying important physical and chemical parameters in the oceans with resulting impacts on coral reef ecosystems. Rising CO2 is warming the world’s oceans and causing corals to bleach, with both alarming frequency and severity. The frequent return of stressful temperatures has already resulted in major damage to many of the world’s coral reefs and is expected to continue in the foreseeable future. Warmer oceans also have contributed to a rise in coral infectious diseases. Both bleaching and infectious disease can result in coral mortality and threaten one of the most diverse ecosystems on Earth and the important ecosystem services they provide. Additionally, ocean acidification from rising CO2 is reducing the availability of carbonate ions needed by corals to build their skeletons and perhaps depressing the threshold for bleaching. While thresholds vary among species and locations, it is clear that corals around the world are already experiencing anomalous temperatures that are too high, too often, and that warming is exceeding the rate at which corals can adapt. This is despite a complex adaptive capacity that involves both the coral host and the zooxanthellae, including changes in the relative abundance of the latter in their coral hosts. The safe upper limit for atmospheric CO2 is probably somewhere below 350ppm, a level we passed decades ago, and for temperature is a sustained global temperature increase of less than 1.5°C above pre-industrial levels. How much can corals acclimate and/or adapt to the unprecedented fast changing environmental conditions? Any change in the threshold for coral bleaching as the result of acclimation and/or adaption may help corals to survive in the future but adaptation to one stress may be maladaptive to another. There also is evidence that ocean acidification and nutrient enrichment modify this threshold. What do shifting thresholds mean

  10. The Pleural Mesothelium in Development and Disease

    Directory of Open Access Journals (Sweden)

    Hitesh eBatra

    2014-08-01

    Full Text Available The pleural mesothelium, derived from the embryonic mesoderm, is formed by a metabolically active monolayer of cells that blanket the chest wall and lungs on the parietal and visceral surfaces, respectively. The pleura and lungs are formed as a result of an intricate relationship between the mesoderm and the endoderm during development. Pleural Mesothelial Cells (PMCs are known to express Wilms tumor-1 (Wt1 gene and in lineage labeling studies of the developing embryo, PMCs were found to track into the lung parenchyma and undergo mesothelial-mesenchymal transition (MMT to form α-smooth muscle actin (α-SMA-positive cells of the mesenchyme and vasculature. There is definite evidence that mesothelial cells can differentiate and this seems to play an important role in pleural and parenchymal pathologies. Mesothelial cells can differentiate into adipocytes, chondrocytes and osteoblasts; and have been shown to clonally generate fibroblasts and smooth muscle cells in murine models. This supports the possibility that they may also modulate lung injury-repair by re-activation of developmental programs in the adult reflecting an altered recapitulation of development, with implications for regenerative biology of the lung.

  11. Effects of Simulated Eutrophication and Overfishing on Coral Reef Invertebrates, Algae and Microbes in the Red Sea

    OpenAIRE

    Jessen, Christian

    2013-01-01

    Besides the main climate change consequences, ocean warming and acidification, local disturbances such as overfishing and eutrophication are major threats to coral reefs worldwide. Despite its relatively healthy coral reefs that are increasingly faced with growing coastal development, the Red Sea is highly under-investigated, particularly outside the Gulf of Aqaba. This thesis therefore aims to contribute to the understanding of eutrophication and overfishing effects on Red Sea coral reefs by...

  12. Chronic exposure of corals to fine sediments: lethal and sub-lethal impacts.

    Directory of Open Access Journals (Sweden)

    Florita Flores

    Full Text Available Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata more than the upright branching species (Acropora millepora. The lowest sediment treatments that caused full colony mortality were 30 mg l(-1 TSS (25 mg cm(-2 day(-1 for M. aequituberculata and 100 mg l(-1 TSS (83 mg cm(-2 day(-1 for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue.

  13. Chronic Exposure of Corals to Fine Sediments: Lethal and Sub-Lethal Impacts

    Science.gov (United States)

    Flores, Florita; Hoogenboom, Mia O.; Smith, Luke D.; Cooper, Timothy F.; Abrego, David; Negri, Andrew P.

    2012-01-01

    Understanding the sedimentation and turbidity thresholds for corals is critical in assessing the potential impacts of dredging projects in tropical marine systems. In this study, we exposed two species of coral sampled from offshore locations to six levels of total suspended solids (TSS) for 16 weeks in the laboratory, including a 4 week recovery period. Dose-response relationships were developed to quantify the lethal and sub-lethal thresholds of sedimentation and turbidity for the corals. The sediment treatments affected the horizontal foliaceous species (Montipora aequituberculata) more than the upright branching species (Acropora millepora). The lowest sediment treatments that caused full colony mortality were 30 mg l−1 TSS (25 mg cm−2 day−1) for M. aequituberculata and 100 mg l−1 TSS (83 mg cm−2 day−1) for A. millepora after 12 weeks. Coral mortality generally took longer than 4 weeks and was closely related to sediment accumulation on the surface of the corals. While measurements of damage to photosystem II in the symbionts and reductions in lipid content and growth indicated sub-lethal responses in surviving corals, the most reliable predictor of coral mortality in this experiment was long-term sediment accumulation on coral tissue. PMID:22662225

  14. Water contamination reduces the tolerance of coral larvae to thermal stress.

    Directory of Open Access Journals (Sweden)

    Andrew P Negri

    Full Text Available Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST posing one of the main threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps, and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of water pollution (copper contamination and SST. We identify thresholds of temperature and pollution that prevent larval metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the concentration of Cu can protect corals from the negative effects of a 2-3°C increase in SST. These results demonstrate that effective mitigation of local impacts can reduce negative effects of global stressors.

  15. Global warming and coral reefs. Chikyu ondanka to sangosho

    Energy Technology Data Exchange (ETDEWEB)

    Kayane, H [Geological Survey of Japan, Tokyo (Japan)

    1991-09-01

    A summary is described with respect to the relation of the global warming with coral reefs on the environmental estimation based on the sea level rise, and the development of counter-technologies utilizing the CO{sub 2} fixing capability of coral reefs. if no measures are taken to reduce discharge of greenhouse effective gases, the air temperature will rise by 1{degree}C by the year 2025, and 3{degree}C by 2100. The thermal expansion of sea water and partial melting of land ice caused from the said temperature rise will cause the annual sea level rising speed to climb to 6 mm in the next century. It is estimated that the sea level will be elevated higher by 25 cm by the year 2025, 65 cm by 2100, and the maximum of 1 m than the present level. The upward growth rate of reef ridges is between 1m and 4m in 1000 years, and the growth of reef rides as the frameworks of coral reefs and lime alga ridges can not catch up the sea level rise of 6 mm/year. This may cause a possibility of sea water erosion or inundation. As a possible contermeasure, an expectation is placed on structuring coral reef eco-factories which may be possible as a result of elucidating the CO{sub 2} fixing mechanism in coral reefs and utilizing the capability to its maximum. 23 refs., 7 figs., 1 tab.

  16. Histone demethylases in development and disease

    DEFF Research Database (Denmark)

    Pedersen, Marianne Terndrup; Helin, Kristian

    2010-01-01

    Histone modifications serve as regulatory marks that are instrumental for the control of transcription and chromatin architecture. Strict regulation of gene expression patterns is crucial during development and differentiation, where diverse cell types evolve from common predecessors. Since...... the first histone lysine demethylase was discovered in 2004, a number of demethylases have been identified and implicated in the control of gene expression programmes and cell fate decisions. Histone demethylases are now emerging as important players in developmental processes and have been linked to human...

  17. Status of coral reefs of India

    Digital Repository Service at National Institute of Oceanography (India)

    Muley, E.V.; Venkataraman, K.; Alfred, J.R.B.; Wafar, M.V.M.

    and economic significance of coral reefs and the threat perceptions, Government of India has initiated measures for their intensive conservation and management. Present paper deals with ecological status of coral reefs in the country and various national...

  18. Elkhorn and Staghorn Corals Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for elkhorn coral (Acropora palmata) and staghorn coral (A. cervicornis) as designated by 73 FR 72210, November 26, 2008,...

  19. Deep-Sea Soft Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  20. Deep-Sea Stony Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...