WorldWideScience

Sample records for copy number analysis

  1. Genome-wide copy number analysis using copy number inferring tool (CNIT) and DNA pooling.

    Science.gov (United States)

    Lin, Chien-hsing; Huang, Mei-chu; Li, Ling-hui; Wu, Jer-yuarn; Chen, Yuan-tsong; Fann, Cathy S J

    2008-08-01

    Copy number variation (CNV) has become an important genomic structure element in the human population, and some CNVs are related to specific traits and diseases. Moreover, analysis of human genomes has been potentiated by the use of high-resolution microarrays that assess single nucleotide polymorphisms (SNPs). Although many programs have been designed to analyze data from Affymetrix SNP microarrays, they all have high false-positive rates (FPRs) in copy number (CN) analyses. Copy number analysis tool (CNAT) 4.0 is a recently developed program that offers improved CN estimation, but small amplifications and deletions are lost when using the smoothing procedure. Here, we propose a copy number inferring tool (CNIT) algorithm for the 100K SNP microarray to investigate CNVs at 29.6-kb resolution. CNIT estimated SNP allelic and total CN with reliable P values based on intensity data. In addition, the hidden Markov model (HMM) method was applied to predict regions having altered CN by considering contiguous SNPs. Based on a CN analysis of 23 unrelated Taiwanese and 30 HapMap Centre d'Etude du Polymorphisme Humain (CEPH) trios, CNIT showed higher accuracy and power than other programs. The FPRs and false-negative rates (FNRs) of CNIT were 0.1% and 0.16%, respectively. CNIT also showed better sensitivity for detecting small amplifications and deletions. Furthermore, DNA pooling of 10 and 30 normal unrelated individuals were applied to the 100K SNP microarray, respectively, and 12 common CN-variable regions were identified, suggesting that DNA pooling can be applied to discover common CNVs.

  2. Candidate gene copy number analysis by PCR and multicapillary electrophoresis.

    Science.gov (United States)

    Szantai, Eszter; Elek, Zsuzsanna; Guttman, András; Sasvari-Szekely, Maria

    2009-04-01

    Genetic polymorphisms are often considered as risk factors of complex diseases serving as valuable and easily detectable biomarkers, also stable during the whole lifespan. A novel type of genetic polymorphism has been identified just recently, referred to as gene copy number variation (CNV) or copy number polymorphism. CNV of glycogen synthase kinase 3 beta and its adjacent gene, Nr1i2 (pregnane X receptor isoform), has been reported to associate with bipolar depression. In our study we introduced multicapillary electrophoresis for gene copy number analysis as an affordable alternative to real-time PCR quantification with TaqMan gene probes. Our results show the reliability of the developed method based on conventional PCR followed by separation of products by multicapillary electrophoresis with quantitative evaluation. This method can be readily implemented for the analysis of candidate gene CNVs in high throughput clinical laboratories and also in personalized medicine care of depression-related risk factors.

  3. Genome wide copy number analysis of single cells

    Science.gov (United States)

    Baslan, Timour; Kendall, Jude; Rodgers, Linda; Cox, Hilary; Riggs, Mike; Stepansky, Asya; Troge, Jennifer; Ravi, Kandasamy; Esposito, Diane; Lakshmi, B.; Wigler, Michael; Navin, Nicholas; Hicks, James

    2016-01-01

    Summary Copy number variation (CNV) is increasingly recognized as an important contributor to phenotypic variation in health and disease. Most methods for determining CNV rely on admixtures of cells, where information regarding genetic heterogeneity is lost. Here, we present a protocol that allows for the genome wide copy number analysis of single nuclei isolated from mixed populations of cells. Single nucleus sequencing (SNS), combines flow sorting of single nuclei based on DNA content, whole genome amplification (WGA), followed by next generation sequencing to quantize genomic intervals in a genome wide manner. Multiplexing of single cells is discussed. Additionally, we outline informatic approaches that correct for biases inherent in the WGA procedure and allow for accurate determination of copy number profiles. All together, the protocol takes ~3 days from flow cytometry to sequence-ready DNA libraries. PMID:22555242

  4. Copy number variations in affective disorders and meta-analysis

    DEFF Research Database (Denmark)

    Olsen, Line; Hansen, Thomas; Djurovic, Srdjan

    2011-01-01

    In two recent studies 10 copy number variants (CNV) were found to be overrepresented either among patients suffering from affective disorders in an Amish family or in the Wellcome Trust Case-Control Consortium study. Here, we investigate if these variants are associated with affective disorders...

  5. Analysis of copy number variations among diverse cattle breeds

    Science.gov (United States)

    Liu, George E.; Hou, Yali; Zhu, Bin; Cardone, Maria Francesca; Jiang, Lu; Cellamare, Angelo; Mitra, Apratim; Alexander, Leeson J.; Coutinho, Luiz L.; Dell'Aquila, Maria Elena; Gasbarre, Lou C.; Lacalandra, Gianni; Li, Robert W.; Matukumalli, Lakshmi K.; Nonneman, Dan; de A. Regitano, Luciana C.; Smith, Tim P.L.; Song, Jiuzhou; Sonstegard, Tad S.; Van Tassell, Curt P.; Ventura, Mario; Eichler, Evan E.; McDaneld, Tara G.; Keele, John W.

    2010-01-01

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here, we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, three Bos indicus, and three composite breeds for beef, dairy, or dual purpose. We identified over 200 candidate CNV regions (CNVRs) in total and 177 within known chromosomes, which harbor or are adjacent to gains or losses. These 177 high-confidence CNVRs cover 28.1 megabases or ∼1.07% of the genome. Over 50% of the CNVRs (89/177) were found in multiple animals or breeds and analysis revealed breed-specific frequency differences and reflected aspects of the known ancestry of these cattle breeds. Selected CNVs were further validated by independent methods using qPCR and FISH. Approximately 67% of the CNVRs (119/177) completely or partially span cattle genes and 61% of the CNVRs (108/177) directly overlap with segmental duplications. The CNVRs span about 400 annotated cattle genes that are significantly enriched for specific biological functions, such as immunity, lactation, reproduction, and rumination. Multiple gene families, including ULBP, have gone through ruminant lineage-specific gene amplification. We detected and confirmed marked differences in their CNV frequencies across diverse breeds, indicating that some cattle CNVs are likely to arise independently in breeds and contribute to breed differences. Our results provide a valuable resource beyond microsatellites and single nucleotide polymorphisms to explore the full dimension of genetic variability for future cattle genomic research. PMID:20212021

  6. Copy number analysis of the low-copy repeats at the primate NPHP1 locus by array comparative genomic hybridization.

    Science.gov (United States)

    Yuan, Bo; Liu, Pengfei; Rogers, Jeffrey; Lupski, James R

    2016-06-01

    Array comparative genomic hybridization (aCGH) has been widely used to detect copy number variants (CNVs) in both research and clinical settings. A customizable aCGH platform may greatly facilitate copy number analyses in genomic regions with higher-order complexity, such as low-copy repeats (LCRs). Here we present the aCGH analyses focusing on the 45 kb LCRs [1] at the NPHP1 region with diverse copy numbers in humans. Also, the interspecies aCGH analysis comparing human and nonhuman primates revealed dynamic copy number transitions of the human 45 kb LCR orthologues during primate evolution and therefore shed light on the origin of complexity at this locus. The original aCGH data are available at GEO under GSE73962.

  7. An integrated Bayesian analysis of LOH and copy number data

    Directory of Open Access Journals (Sweden)

    Hutter Marcus

    2010-06-01

    Full Text Available Abstract Background Cancer and other disorders are due to genomic lesions. SNP-microarrays are able to measure simultaneously both genotype and copy number (CN at several Single Nucleotide Polymorphisms (SNPs along the genome. CN is defined as the number of DNA copies, and the normal is two, since we have two copies of each chromosome. The genotype of a SNP is the status given by the nucleotides (alleles which are present on the two copies of DNA. It is defined homozygous or heterozygous if the two alleles are the same or if they differ, respectively. Loss of heterozygosity (LOH is the loss of the heterozygous status due to genomic events. Combining CN and LOH data, it is possible to better identify different types of genomic aberrations. For example, a long sequence of homozygous SNPs might be caused by either the physical loss of one copy or a uniparental disomy event (UPD, i.e. each SNP has two identical nucleotides both derived from only one parent. In this situation, the knowledge of the CN can help in distinguishing between these two events. Results To better identify genomic aberrations, we propose a method (called gBPCR which infers the type of aberration occurred, taking into account all the possible influence in the microarray detection of the homozygosity status of the SNPs, resulting from an altered CN level. Namely, we model the distributions of the detected genotype, given a specific genomic alteration and we estimate the parameters involved on public reference datasets. The estimation is performed similarly to the modified Bayesian Piecewise Constant Regression, but with improved estimators for the detection of the breakpoints. Using artificial and real data, we evaluate the quality of the estimation of gBPCR and we also show that it outperforms other well-known methods for LOH estimation. Conclusions We propose a method (gBPCR for the estimation of both LOH and CN aberrations, improving their estimation by integrating both types

  8. Copy Number Variation Analysis by Array Analysis of Single Cells Following Whole Genome Amplification.

    Science.gov (United States)

    Dimitriadou, Eftychia; Zamani Esteki, Masoud; Vermeesch, Joris Robert

    2015-01-01

    Whole genome amplification is required to ensure the availability of sufficient material for copy number variation analysis of a genome deriving from an individual cell. Here, we describe the protocols we use for copy number variation analysis of non-fixed single cells by array-based approaches following single-cell isolation and whole genome amplification. We are focusing on two alternative protocols, an isothermal and a PCR-based whole genome amplification method, followed by either comparative genome hybridization (aCGH) or SNP array analysis, respectively.

  9. High-Resolution Analysis of Gene Copy Number Alterations in Human Prostate Cancer Using CGH on cDNA Microarrays: Impact of Copy Number on Gene Expression

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2004-05-01

    Full Text Available Identification of target genes for genetic rearrangements in prostate cancer and the impact of copy number changes on gene expression are currently not well understood. Here, we applied high-resolution comparative genomic hybridization (CGH on cDNA microarrays for analysis of prostate cancer cell lines. CGH microarrays identified most of the alterations detected by classical chromosomal CGH, as well as a number of previously unreported alterations. Specific recurrent regions of gain (28 and loss (18 were found, their boundaries defined with sub-megabasepair accuracy. The most common changes included copy number decreases at 13% and gains at iq and 5p. Refined mapping identified several sites, such as at 13q (33-44, 49-51, 74-76 Mbp from the p-telomere, which matched with minimal regions of loss seen in extensive loss of heterozygosity mapping studies of large numbers of tumors. Previously unreported recurrent changes were found at 2p, 2q, 3p, 17q (losses, at 3q, 5p, 6p (gains. Integration of genomic and transcriptomic data revealed the role of individual candidate target genes for genomic alterations as well as a highly significant (P < .0001 overall association between copy number levels and the percentage of differentially expressed genes. Across the genome, the overall impact of copy number on gene expression levels was, to a large extent, attributable to low-level gains and losses of copy number, corresponding to common deletions and gains of often large chromosomal regions.

  10. Data analysis considerations for detecting copy number changes in formalin-fixed, paraffin-embedded tissues.

    Science.gov (United States)

    Jacobs, Sharoni

    2012-11-01

    The Whole Genome Sampling Analysis (WGSA) assay in combination with Affymetrix GeneChip Mapping Arrays is used for copy number analysis of high-quality DNA samples (i.e., samples that have been collected from blood, fresh or frozen tissue, or cell lines). Formalin-fixed, paraffin-embedded (FFPE) samples, however, represent the most prevalent form of archived clinical samples, but they provide additional challenges for molecular assays. FFPE processing usually results in the degradation of FFPE DNA and in the contamination and chemical modification of these DNA samples. In this article, we describe the steps needed to obtain reliable copy number predictions from degraded and contaminated FFPE samples.

  11. Importance of rare gene copy number alterations for personalized tumor characterization and survival analysis.

    Science.gov (United States)

    Seifert, Michael; Friedrich, Betty; Beyer, Andreas

    2016-10-03

    It has proven exceedingly difficult to ascertain rare copy number alterations (CNAs) that may have strong effects in individual tumors. We show that a regulatory network inferred from gene expression and gene copy number data of 768 human cancer cell lines can be used to quantify the impact of patient-specific CNAs on survival signature genes. A focused analysis of tumors from six tissues reveals that rare patient-specific gene CNAs often have stronger effects on signature genes than frequent gene CNAs. Further comparison to a related network-based approach shows that the integration of indirectly acting gene CNAs significantly improves the survival analysis.

  12. Comparative analysis of copy number detection by whole-genome BAC and oligonucleotide array CGH

    Directory of Open Access Journals (Sweden)

    Bejjani Bassem A

    2010-06-01

    Full Text Available Abstract Background Microarray-based comparative genomic hybridization (aCGH is a powerful diagnostic tool for the detection of DNA copy number gains and losses associated with chromosome abnormalities, many of which are below the resolution of conventional chromosome analysis. It has been presumed that whole-genome oligonucleotide (oligo arrays identify more clinically significant copy-number abnormalities than whole-genome bacterial artificial chromosome (BAC arrays, yet this has not been systematically studied in a clinical diagnostic setting. Results To determine the difference in detection rate between similarly designed BAC and oligo arrays, we developed whole-genome BAC and oligonucleotide microarrays and validated them in a side-by-side comparison of 466 consecutive clinical specimens submitted to our laboratory for aCGH. Of the 466 cases studied, 67 (14.3% had a copy-number imbalance of potential clinical significance detectable by the whole-genome BAC array, and 73 (15.6% had a copy-number imbalance of potential clinical significance detectable by the whole-genome oligo array. However, because both platforms identified copy number variants of unclear clinical significance, we designed a systematic method for the interpretation of copy number alterations and tested an additional 3,443 cases by BAC array and 3,096 cases by oligo array. Of those cases tested on the BAC array, 17.6% were found to have a copy-number abnormality of potential clinical significance, whereas the detection rate increased to 22.5% for the cases tested by oligo array. In addition, we validated the oligo array for detection of mosaicism and found that it could routinely detect mosaicism at levels of 30% and greater. Conclusions Although BAC arrays have faster turnaround times, the increased detection rate of oligo arrays makes them attractive for clinical cytogenetic testing.

  13. Integrated analysis of DNA copy number and gene expression microarray data using gene sets

    NARCIS (Netherlands)

    R.X. de Menezes (Renee); M. Boetzer (Marten); M. Sieswerda (Melle); G.J.B. van Ommen; J.M. Boer (Judith)

    2009-01-01

    textabstractBackground: Genes that play an important role in tumorigenesis are expected to show association between DNA copy number and RNA expression. Optimal power to find such associations can only be achieved if analysing copy number and gene expression jointly. Furthermore, some copy number

  14. A robust penalized method for the analysis of noisy DNA copy number data

    Directory of Open Access Journals (Sweden)

    Huang Jian

    2010-09-01

    Full Text Available Abstract Background Deletions and amplifications of the human genomic DNA copy number are the causes of numerous diseases, such as, various forms of cancer. Therefore, the detection of DNA copy number variations (CNV is important in understanding the genetic basis of many diseases. Various techniques and platforms have been developed for genome-wide analysis of DNA copy number, such as, array-based comparative genomic hybridization (aCGH and high-resolution mapping with high-density tiling oligonucleotide arrays. Since complicated biological and experimental processes are often associated with these platforms, data can be potentially contaminated by outliers. Results We propose a penalized LAD regression model with the adaptive fused lasso penalty for detecting CNV. This method contains robust properties and incorporates both the spatial dependence and sparsity of CNV into the analysis. Our simulation studies and real data analysis indicate that the proposed method can correctly detect the numbers and locations of the true breakpoints while appropriately controlling the false positives. Conclusions The proposed method has three advantages for detecting CNV change points: it contains robustness properties; incorporates both spatial dependence and sparsity; and estimates the true values at each marker accurately.

  15. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Kylie L Gorringe

    Full Text Available Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.

  16. Copy number analysis identifies novel interactions between genomic loci in ovarian cancer.

    Science.gov (United States)

    Gorringe, Kylie L; George, Joshy; Anglesio, Michael S; Ramakrishna, Manasa; Etemadmoghadam, Dariush; Cowin, Prue; Sridhar, Anita; Williams, Louise H; Boyle, Samantha E; Yanaihara, Nozomu; Okamoto, Aikou; Urashima, Mitsuyoshi; Smyth, Gordon K; Campbell, Ian G; Bowtell, David D L

    2010-09-10

    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.

  17. Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    Hawthorn Lesleyann

    2010-08-01

    Full Text Available Abstract Background A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine parallel analyses that assess changes in the copy number alterations (CNAs. This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions which demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes'. Methods We have performed whole genome analysis of CNAs using the Affymetrix 250K Mapping array on 22 infiltrating ductal carcinoma samples (IDCs. Analysis of transcript expression alterations was performed using the Affymetrix U133 Plus2.0 array on 16 IDC samples. Fourteen IDC samples were analyzed using both platforms and the data integrated. We also incorporated data from loss of heterozygosity (LOH analysis to identify genes showing altered expression in LOH regions. Results Common chromosome gains and amplifications were identified at 1q21.3, 6p21.3, 7p11.2-p12.1, 8q21.11 and 8q24.3. A novel amplicon was identified at 5p15.33. Frequent losses were found at 1p36.22, 8q23.3, 11p13, 11q23, and 22q13. Over 130 genes were identified with concurrent increases or decreases in expression that mapped to these regions of copy number alterations. LOH analysis revealed three tumors with whole chromosome or p arm allelic loss of chromosome 17. Genes were identified that mapped to copy neutral LOH regions. LOH with accompanying copy loss was detected on Xp24 and Xp25 and genes mapping to these regions with decreased expression were identified. Gene expression data highlighted the PPARα/RXRα Activation Pathway as down-regulated in the tumor samples. Conclusion We have demonstrated the utility of the application of

  18. Clinical Omics Analysis of Colorectal Cancer Incorporating Copy Number Aberrations and Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Yoshida

    2010-07-01

    Full Text Available Background: Colorectal cancer (CRC is one of the most frequently occurring cancers in Japan, and thus a wide range of methods have been deployed to study the molecular mechanisms of CRC. In this study, we performed a comprehensive analysis of CRC, incorporating copy number aberration (CRC and gene expression data. For the last four years, we have been collecting data from CRC cases and organizing the information as an “omics” study by integrating many kinds of analysis into a single comprehensive investigation. In our previous studies, we had experienced difficulty in finding genes related to CRC, as we observed higher noise levels in the expression data than in the data for other cancers. Because chromosomal aberrations are often observed in CRC, here, we have performed a combination of CNA analysis and expression analysis in order to identify some new genes responsible for CRC. This study was performed as part of the Clinical Omics Database Project at Tokyo Medical and Dental University. The purpose of this study was to investigate the mechanism of genetic instability in CRC by this combination of expression analysis and CNA, and to establish a new method for the diagnosis and treatment of CRC. Materials and methods: Comprehensive gene expression analysis was performed on 79 CRC cases using an Affymetrix Gene Chip, and comprehensive CNA analysis was performed using an Affymetrix DNA Sty array. To avoid the contamination of cancer tissue with normal cells, laser micro-dissection was performed before DNA/RNA extraction. Data analysis was performed using original software written in the R language. Result: We observed a high percentage of CNA in colorectal cancer, including copy number gains at 7, 8q, 13 and 20q, and copy number losses at 8p, 17p and 18. Gene expression analysis provided many candidates for CRC-related genes, but their association with CRC did not reach the level of statistical significance. The combination of CNA and gene

  19. A Method for Generating New Datasets Based on Copy Number for Cancer Analysis

    Directory of Open Access Journals (Sweden)

    Shinuk Kim

    2015-01-01

    Full Text Available New data sources for the analysis of cancer data are rapidly supplementing the large number of gene-expression markers used for current methods of analysis. Significant among these new sources are copy number variation (CNV datasets, which typically enumerate several hundred thousand CNVs distributed throughout the genome. Several useful algorithms allow systems-level analyses of such datasets. However, these rich data sources have not yet been analyzed as deeply as gene-expression data. To address this issue, the extensive toolsets used for analyzing expression data in cancerous and noncancerous tissue (e.g., gene set enrichment analysis and phenotype prediction could be redirected to extract a great deal of predictive information from CNV data, in particular those derived from cancers. Here we present a software package capable of preprocessing standard Agilent copy number datasets into a form to which essentially all expression analysis tools can be applied. We illustrate the use of this toolset in predicting the survival time of patients with ovarian cancer or glioblastoma multiforme and also provide an analysis of gene- and pathway-level deletions in these two types of cancer.

  20. Novel population specific autosomal copy number variation and its functional analysis amongst Negritos from Peninsular Malaysia.

    Science.gov (United States)

    Mokhtar, Siti Shuhada; Marshall, Christian R; Phipps, Maude E; Thiruvahindrapuram, Bhooma; Lionel, Anath C; Scherer, Stephen W; Peng, Hoh Boon

    2014-01-01

    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value Malaysia.

  1. iGC-an integrated analysis package of gene expression and copy number alteration.

    Science.gov (United States)

    Lai, Yi-Pin; Wang, Liang-Bo; Wang, Wei-An; Lai, Liang-Chuan; Tsai, Mong-Hsun; Lu, Tzu-Pin; Chuang, Eric Y

    2017-01-14

    With the advancement in high-throughput technologies, researchers can simultaneously investigate gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise, however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues, one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual. We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package showed better performance. The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical questions. The iGC package's source code and manual are freely available at https://www.bioconductor.org/packages/release/bioc/html/iGC.html .

  2. Genome-wide analysis of copy number variation in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Britney L Grayson

    Full Text Available Type 1 diabetes (T1D tends to cluster in families, suggesting there may be a genetic component predisposing to disease. However, a recent large-scale genome-wide association study concluded that identified genetic factors, single nucleotide polymorphisms, do not account for overall familiality. Another class of genetic variation is the amplification or deletion of >1 kilobase segments of the genome, also termed copy number variations (CNVs. We performed genome-wide CNV analysis on a cohort of 20 unrelated adults with T1D and a control (Ctrl cohort of 20 subjects using the Affymetrix SNP Array 6.0 in combination with the Birdsuite copy number calling software. We identified 39 CNVs as enriched or depleted in T1D versus Ctrl. Additionally, we performed CNV analysis in a group of 10 monozygotic twin pairs discordant for T1D. Eleven of these 39 CNVs were also respectively enriched or depleted in the Twin cohort, suggesting that these variants may be involved in the development of islet autoimmunity, as the presently unaffected twin is at high risk for developing islet autoimmunity and T1D in his or her lifetime. These CNVs include a deletion on chromosome 6p21, near an HLA-DQ allele. CNVs were found that were both enriched or depleted in patients with or at high risk for developing T1D. These regions may represent genetic variants contributing to development of islet autoimmunity in T1D.

  3. Copy number analysis of ductal carcinoma in situ with and without recurrence.

    Science.gov (United States)

    Gorringe, Kylie L; Hunter, Sally M; Pang, Jia-Min; Opeskin, Ken; Hill, Prue; Rowley, Simone M; Choong, David Y H; Thompson, Ella R; Dobrovic, Alexander; Fox, Stephen B; Mann, G Bruce; Campbell, Ian G

    2015-09-01

    Ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive breast cancer and a frequent mammographic finding requiring treatment. Up to 25% of DCIS can recur and half of recurrences are invasive, but there are no reliable biomarkers for recurrence. We hypothesised that copy number aberrations could predict likelihood of recurrence. We analysed a cohort of pure DCIS cases treated only with wide local excision for genome-wide copy number and loss of heterozygosity using Affymetrix OncoScan MIP arrays. Cases included those without recurrence within 7 years (n = 25) and with recurrence between 1 and 5 years after diagnosis (n = 15). Pure DCIS were broadly similar in copy number changes compared with invasive breast cancer, with the consistent exception of a greater frequency of ERBB2 amplification in DCIS. There were no significant differences in age or ER status between the cases with a recurrence vs those without. Overall, the DCIS cases with recurrence had more copy number events than the DCIS without recurrence. The increased copy number appeared non-random with several genomic regions showing an increase in frequency in recurrent cases, including 20 q gain, ERBB2 amplification and 15q loss. Copy number changes may provide prognostic information for DCIS recurrence, but validation in additional cohorts is required.

  4. Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis.

    Science.gov (United States)

    Ramakrishna, Manasa; Williams, Louise H; Boyle, Samantha E; Bearfoot, Jennifer L; Sridhar, Anita; Speed, Terence P; Gorringe, Kylie L; Campbell, Ian G

    2010-04-08

    Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (> 40% of samples). Within these regions, 703/1370 (51%) unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r > or =0.6) between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2.

  5. Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis.

    Directory of Open Access Journals (Sweden)

    Manasa Ramakrishna

    Full Text Available Ovarian cancer is a disease characterised by complex genomic rearrangements but the majority of the genes that are the target of these alterations remain unidentified. Cataloguing these target genes will provide useful insights into the disease etiology and may provide an opportunity to develop novel diagnostic and therapeutic interventions. High resolution genome wide copy number and matching expression data from 68 primary epithelial ovarian carcinomas of various histotypes was integrated to identify genes in regions of most frequent amplification with the strongest correlation with expression and copy number. Regions on chromosomes 3, 7, 8, and 20 were most frequently increased in copy number (> 40% of samples. Within these regions, 703/1370 (51% unique gene expression probesets were differentially expressed when samples with gain were compared to samples without gain. 30% of these differentially expressed probesets also showed a strong positive correlation (r > or =0.6 between expression and copy number. We also identified 21 regions of high amplitude copy number gain, in which 32 known protein coding genes showed a strong positive correlation between expression and copy number. Overall, our data validates previously known ovarian cancer genes, such as ERBB2, and also identified novel potential drivers such as MYNN, PUF60 and TPX2.

  6. Whole-genome copy number variation analysis in anophthalmia and microphthalmia.

    Science.gov (United States)

    Schilter, K F; Reis, L M; Schneider, A; Bardakjian, T M; Abdul-Rahman, O; Kozel, B A; Zimmerman, H H; Broeckel, U; Semina, E V

    2013-11-01

    Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole-genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with non-syndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases.

  7. An integrated analysis of miRNA and gene copy numbers in xenografts of Ewing's sarcoma

    Directory of Open Access Journals (Sweden)

    Mosakhani Neda

    2012-03-01

    Full Text Available Abstract Background Xenografts have been shown to provide a suitable source of tumor tissue for molecular analysis in the absence of primary tumor material. We utilized ES xenograft series for integrated microarray analyses to identify novel biomarkers. Method Microarray technology (array comparative genomic hybridization (aCGH and micro RNA arrays was used to screen and identify copy number changes and differentially expressed miRNAs of 34 and 14 passages, respectively. Incubated cells used for xenografting (Passage 0 were considered to represent the primary tumor. Four important differentially expressed miRNAs (miR-31, miR-31*, miR-145, miR-106 were selected for further validation by real time polymerase chain reaction (RT-PCR. Integrated analysis of aCGH and miRNA data was performed on 14 xenograft passages by bioinformatic methods. Results The most frequent losses and gains of DNA copy number were detected at 9p21.3, 16q and at 8, 15, 17q21.32-qter, 1q21.1-qter, respectively. The presence of these alterations was consistent in all tumor passages. aCGH profiles of xenograft passages of each series resembled their corresponding primary tumors (passage 0. MiR-21, miR-31, miR-31*, miR-106b, miR-145, miR-150*, miR-371-5p, miR-557 and miR-598 showed recurrently altered expression. These miRNAS were predicted to regulate many ES-associated genes, such as genes of the IGF1 pathway, EWSR1, FLI1 and their fusion gene (EWS-FLI1. Twenty differentially expressed miRNAs were pinpointed in regions carrying altered copy numbers. Conclusion In the present study, ES xenografts were successfully applied for integrated microarray analyses. Our findings showed expression changes of miRNAs that were predicted to regulate many ES associated genes, such as IGF1 pathway genes, FLI1, EWSR1, and the EWS-FLI1 fusion genes.

  8. High-throughput quantitative analysis with cell growth kinetic curves for low copy number mutant cells.

    Science.gov (United States)

    Xing, James Z; Gabos, Stephan; Huang, Biao; Pan, Tianhong; Huang, Min; Chen, Jie

    2012-10-01

    The mutation rate in cells induced by environmental genotoxic hazards is very low and difficult to detect using traditional cell counting assays. The established genetic toxicity tests currently recognized by regulatory authorities, such as conventional Ames and hypoxanthine guanine phosphoribosyl-transferase (HPRT) assays, are not well suited for higher-throughput screening as they require large amounts of test compounds and are very time consuming. In this study, we developed a novel cell-based assay for quantitative analysis of low numbers of cell copies with HPRT mutation induced by an environmental mutagen. The HPRT gene mutant cells induced by the mutagen were selected by 6-thioguanine (6-TG) and the cell's kinetic growth curve monitored by a real-time cell electronic sensor (RT-CES) system. When a threshold is set at a certain cell index (CI) level, samples with different initial mutant cell copies take different amounts of time in order for their growth (or CI accumulation) to cross this threshold. The more cells that are initially seeded in the test well, the faster the cell accumulation and therefore the shorter the time required to cross this threshold. Therefore, the culture time period required to cross the threshold of each sample corresponds to the original number of cells in the sample. A mutant cell growth time threshold (MT) value of each sample can be calculated to predict the number of original mutant cells. For mutagenesis determination, the RT-CES assay displayed an equal sensitivity (p > 0.05) and coefficients of variation values with good correlation to conventional HPRT mutagenic assays. Most importantly, the RT-CES mutation assay has a higher throughput than conventional cellular assays.

  9. Genome-wide copy number analysis uncovers a new HSCR gene: NRG3.

    Directory of Open Access Journals (Sweden)

    Clara Sze-Man Tang

    Full Text Available Hirschsprung disease (HSCR is a congenital disorder characterized by aganglionosis of the distal intestine. To assess the contribution of copy number variants (CNVs to HSCR, we analysed the data generated from our previous genome-wide association study on HSCR patients, whereby we identified NRG1 as a new HSCR susceptibility locus. Analysis of 129 Chinese patients and 331 ethnically matched controls showed that HSCR patients have a greater burden of rare CNVs (p = 1.50 × 10(-5, particularly for those encompassing genes (p = 5.00 × 10(-6. Our study identified 246 rare-genic CNVs exclusive to patients. Among those, we detected a NRG3 deletion (p = 1.64 × 10(-3. Subsequent follow-up (96 additional patients and 220 controls on NRG3 revealed 9 deletions (combined p = 3.36 × 10(-5 and 2 de novo duplications among patients and two deletions among controls. Importantly, NRG3 is a paralog of NRG1. Stratification of patients by presence/absence of HSCR-associated syndromes showed that while syndromic-HSCR patients carried significantly longer CNVs than the non-syndromic or controls (p = 1.50 × 10(-5, non-syndromic patients were enriched in CNV number when compared to controls (p = 4.00 × 10(-6 or the syndromic counterpart. Our results suggest a role for NRG3 in HSCR etiology and provide insights into the relative contribution of structural variants in both syndromic and non-syndromic HSCR. This would be the first genome-wide catalog of copy number variants identified in HSCR.

  10. Genome-wide copy number variation analysis in a Chinese autism spectrum disorder cohort

    Science.gov (United States)

    Guo, Hui; Peng, Yu; Hu, Zhengmao; Li, Ying; Xun, Guanglei; Ou, Jianjun; Sun, Liangdan; Xiong, Zhimin; Liu, Yanling; Wang, Tianyun; Chen, Jingjing; Xia, Lu; Bai, Ting; Shen, Yidong; Tian, Qi; Hu, Yiqiao; Shen, Lu; Zhao, Rongjuan; Zhang, Xuejun; Zhang, Fengyu; Zhao, Jingping; Zou, Xiaobing; Xia, Kun

    2017-01-01

    Autism spectrum disorder (ASD) describes a group of neurodevelopmental disorders with high heritability, although the underlying genetic determinants of ASDs remain largely unknown. Large-scale whole-genome studies of copy number variation in Han Chinese samples are still lacking. We performed a genome-wide copy number variation analysis of 343 ASD trios, 203 patients with sporadic cases and 988 controls in a Chinese population using Illumina genotyping platforms to identify CNVs and related genes that may contribute to ASD risk. We identified 32 rare CNVs larger than 1 Mb in 31 patients. ASD patients were found to carry a higher global burden of rare, large CNVs than controls. Recurrent de novo or case-private CNVs were found at 15q11-13, Xp22.3, 15q13.1–13.2, 3p26.3 and 2p12. The de novo 15q11–13 duplication was more prevalent in this Chinese population than in those with European ancestry. Several genes, including GRAMD2 and STAM, were implicated as novel ASD risk genes when integrating whole-genome CNVs and whole-exome sequencing data. We also identified several CNVs that include known ASD genes (SHANK3, CDH10, CSMD1) or genes involved in nervous system development (NYAP2, ST6GAL2, GRM6). Besides, our study also implicated Contactins-NYAPs-WAVE1 pathway in ASD pathogenesis. Our findings identify ASD-related CNVs in a Chinese population and implicate novel ASD risk genes and related pathway for further study. PMID:28281572

  11. Precise ERBB2 copy number assessment in breast cancer by means of molecular inversion probe array analysis.

    Science.gov (United States)

    Christgen, Matthias; van Luttikhuizen, Jana L; Raap, Mieke; Braubach, Peter; Schmidt, Lars; Jonigk, Danny; Feuerhake, Friedrich; Lehmann, Ulrich; Schlegelberger, Brigitte; Kreipe, Hans H; Steinemann, Doris

    2016-12-13

    HER2/ERBB2 amplification/overexpression determines the eligibility of breast cancer patients to HER2-targeted therapy. This study evaluates the agreement between ERBB2 copy number assessment by fluorescence in situ hybridization, a standard method recommended by the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP), and newly available DNA extraction-based methods. A series of n=29 formalin-fixed paraffin-embedded breast cancers were subjected to ERBB2 copy number assessment by fluorescence in situ hybridization (FISH, Vysis, Abbott). Following macrodissection of invasive breast cancer tissue and DNA extraction, ERBB2 copy number was also determined by molecular inversion probe array analysis (MIP, OncoScan, Affymetrix) and next generation sequencing combined with normalized amplicon coverage analysis (NGS/NAC, AmpliSeq, Ion Torrent). ERBB2 copy number values obtained by MIP or NGS/NAC were tightly correlated with ERBB2 copy number values obtained by conventional FISH (rs = 0.940 and rs = 0.894, P copy number detection and should be considered as an ancillary method for clinical HER2 testing.

  12. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Science.gov (United States)

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  13. Copy number variation across European populations.

    Directory of Open Access Journals (Sweden)

    Wanting Chen

    Full Text Available Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by evidence for increased kinship correlation for specific copy number variants within populations.

  14. Genome-Wide Analysis Shows Increased Frequency of Copy Number Variation Deletions in Dutch Schizophrenia Patients

    NARCIS (Netherlands)

    Buizer-Voskamp, Jacobine E.; Muntjewerff, Jan-Willem; Strengman, Eric; Sabatti, Chiara; Stefansson, Hreinn; Vorstman, Jacob A. S.; Ophoff, Roel A.; GROUP investigators, [No Value

    2011-01-01

    Background: Since 2008, multiple studies have reported on copy number variations (CNVs) in schizophrenia. However, many regions are unique events with minimal overlap between studies. This makes it difficult to gain a comprehensive overview of all CNVs involved in the etiology of schizophrenia. We p

  15. Social Responsiveness Scale-aided analysis of the clinical impact of copy number variations in autism.

    NARCIS (Netherlands)

    Daalen, E. van; Kemner, C.; Verbeek, N.E.; Zwaag, B. van der; Dijkhuizen, T.; Rump, P.; Houben, R.; Slot, R. van 't; Jonge, M.V. de; Staal, W.G.; Beemer, F.A.; Vorstman, J.A.; Burbach, J.P.H.; Amstel, H.K. van; Hochstenbach, R.; Brilstra, E.H.; Poot, M.

    2011-01-01

    Recent array-based studies have detected a wealth of copy number variations (CNVs) in patients with autism spectrum disorders (ASD). Since CNVs also occur in healthy individuals, their contributions to the patient's phenotype remain largely unclear. In a cohort of children with symptoms of ASD, diag

  16. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  17. Copy number alteration and uniparental disomy analysis categorizes Japanese papillary thyroid carcinomas into distinct groups.

    Directory of Open Access Journals (Sweden)

    Michiko Matsuse

    Full Text Available The aim of the present study was to investigate chromosomal aberrations in sporadic Japanese papillary thyroid carcinomas (PTCs, concomitant with the analysis of oncogene mutational status. Twenty-five PTCs (11 with BRAF(V600E, 4 with RET/PTC1, and 10 without mutation in HRAS, KRAS, NRAS, BRAF, RET/PTC1, or RET/PTC3 were analyzed using Genome-Wide Human SNP Array 6.0 which allows us to detect copy number alteration (CNA and uniparental disomy (UPD, also referred to as copy neutral loss of heterozygosity, in a single experiment. The Japanese PTCs showed relatively stable karyotypes. Seven cases (28% showed CNA(s, and 6 (24% showed UPD(s. Interestingly, CNA and UPD were rarely overlapped in the same tumor; the only one advanced case showed both CNA and UPD with a highly complex karyotype. Thirteen (52% showed neither CNA nor UPD. Regarding CNA, deletions tended to be more frequent than amplifications. The most frequent and recurrent region was the deletion in chromosome 22; however, it was found in only 4 cases (16%. The degree of genomic instability did not depend on the oncogene status. However, in oncogene-positive cases (BRAF(V600E and RET/PTC1, tumors with CNA/UPD were less frequent (5/15, 33%, whereas tumors with CNA/UPD were more frequent in oncogene-negative cases (7/10, 70%, suggesting that chromosomal aberrations may play a role in the development of PTC, especially in oncogene-negative tumors. These data suggest that Japanese PTCs may be classified into three distinct groups: CNA(+, UPD(+, and no chromosomal aberrations. BRAF(V600E mutational status did not correlate with any parameters of chromosomal defects.

  18. Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis.

    Science.gov (United States)

    Frankel, Adam; Armour, Nicola; Nancarrow, Derek; Krause, Lutz; Hayward, Nicholas; Lampe, Guy; Smithers, B Mark; Barbour, Andrew

    2014-04-01

    The incidence of esophageal adenocarcinoma (EAC) has been increasing rapidly for the past 3 decades in Western (Caucasian) populations. Curative treatment is based around esophagectomy, which has a major impact on quality of life. For those suitable for treatment with curative intent, 5-year survival is ∼30%. More accurate prognostic tools are therefore needed, and copy number aberrations (CNAs) may offer the ability to act as prospective biomarkers in this regard. We performed a genome-wide examination of CNAs in 54 samples of EAC using single-nucleotide polymorphism (SNP) arrays. Our aims were to describe frequent regions of CNA, to define driver CNAs, and to identify CNAs that correlated with survival. Regions of frequent amplification included oncogenes such as EGFR, MYC, KLF12, and ERBB2, while frequently deleted regions included tumor suppressor genes such as CDKN2A/B, PTPRD, FHIT, and SMAD4. The genomic identification of significant targets in cancer (GISTIC) algorithm identified 24 regions of gain and 28 regions of loss that were likely to contain driver changes. We discovered 61 genes in five regions that, when stratified by CNA type (gain or loss), correlated with a statistically significant difference in survival. Pathway analysis of the genes residing in both the GISTIC and prognostic regions showed they were significantly enriched for cancer-related networks. Finally, we discovered that copy-neutral loss of heterozygosity is a frequent mechanism of CNA in genes currently targetable by chemotherapy, potentially leading to under-reporting of cases suitable for such treatment. Copyright © 2014 Wiley Periodicals, Inc.

  19. CONAN: copy number variation analysis software for genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Wichmann Heinz-Erich

    2010-06-01

    Full Text Available Abstract Background Genome-wide association studies (GWAS based on single nucleotide polymorphisms (SNPs revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes. Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing. However, while several software packages support the determination of CNVs from SNP chip data, the downstream statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions, thus strongly limiting the performance of GWAS based on CNVs. Results CONAN is a freely available client-server software solution which provides an intuitive graphical user interface for categorizing, analyzing and associating CNVs with phenotypes. Moreover, CONAN assists the evaluation process by visualizing detected associations via Manhattan plots in order to enable a rapid identification of genome-wide significant CNV regions. Various file formats including the information on CNVs in population samples are supported as input data. Conclusions CONAN facilitates the performance of GWAS based on CNVs and the visual analysis of calculated results. CONAN provides a rapid, valid and straightforward software solution to identify genetic variation underlying the 'missing' heritability for complex traits that remains unexplained by recent GWAS. The freely available software can be downloaded at http://genepi-conan.i-med.ac.at.

  20. Comparative analysis of methods for identifying recurrent copy number alterations in cancer.

    Directory of Open Access Journals (Sweden)

    Xiguo Yuan

    Full Text Available Recurrent copy number alterations (CNAs play an important role in cancer genesis. While a number of computational methods have been proposed for identifying such CNAs, their relative merits remain largely unknown in practice since very few efforts have been focused on comparative analysis of the methods. To facilitate studies of recurrent CNA identification in cancer genome, it is imperative to conduct a comprehensive comparison of performance and limitations among existing methods. In this paper, six representative methods proposed in the latest six years are compared. These include one-stage and two-stage approaches, working with raw intensity ratio data and discretized data respectively. They are based on various techniques such as kernel regression, correlation matrix diagonal segmentation, semi-parametric permutation and cyclic permutation schemes. We explore multiple criteria including type I error rate, detection power, Receiver Operating Characteristics (ROC curve and the area under curve (AUC, and computational complexity, to evaluate performance of the methods under multiple simulation scenarios. We also characterize their abilities on applications to two real datasets obtained from cancers with lung adenocarcinoma and glioblastoma. This comparison study reveals general characteristics of the existing methods for identifying recurrent CNAs, and further provides new insights into their strengths and weaknesses. It is believed helpful to accelerate the development of novel and improved methods.

  1. Comparative oncogenomic analysis of copy number alterations in human and zebrafish tumors enables cancer driver discovery.

    Directory of Open Access Journals (Sweden)

    GuangJun Zhang

    2013-08-01

    Full Text Available The identification of cancer drivers is a major goal of current cancer research. Finding driver genes within large chromosomal events is especially challenging because such alterations encompass many genes. Previously, we demonstrated that zebrafish malignant peripheral nerve sheath tumors (MPNSTs are highly aneuploid, much like human tumors. In this study, we examined 147 zebrafish MPNSTs by massively parallel sequencing and identified both large and focal copy number alterations (CNAs. Given the low degree of conserved synteny between fish and mammals, we reasoned that comparative analyses of CNAs from fish versus human MPNSTs would enable elimination of a large proportion of passenger mutations, especially on large CNAs. We established a list of orthologous genes between human and zebrafish, which includes approximately two-thirds of human protein-coding genes. For the subset of these genes found in human MPNST CNAs, only one quarter of their orthologues were co-gained or co-lost in zebrafish, dramatically narrowing the list of candidate cancer drivers for both focal and large CNAs. We conclude that zebrafish-human comparative analysis represents a powerful, and broadly applicable, tool to enrich for evolutionarily conserved cancer drivers.

  2. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues.

    Science.gov (United States)

    Ali Hassan, Nur Zarina; Mokhtar, Norfilza Mohd; Kok Sin, Teow; Mohamed Rose, Isa; Sagap, Ismail; Harun, Roslan; Jamal, Rahman

    2014-01-01

    Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV) and gene expression in colorectal cancer (CRC) samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.

  3. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues.

    Directory of Open Access Journals (Sweden)

    Nur Zarina Ali Hassan

    Full Text Available Integrative analyses of multiple genomic datasets for selected samples can provide better insight into the overall data and can enhance our knowledge of cancer. The objective of this study was to elucidate the association between copy number variation (CNV and gene expression in colorectal cancer (CRC samples and their corresponding non-cancerous tissues. Sixty-four paired CRC samples from the same patients were subjected to CNV profiling using the Illumina HumanOmni1-Quad assay, and validation was performed using multiplex ligation probe amplification method. Genome-wide expression profiling was performed on 15 paired samples from the same group of patients using the Affymetrix Human Gene 1.0 ST array. Significant genes obtained from both array results were then overlapped. To identify molecular pathways, the data were mapped to the KEGG database. Whole genome CNV analysis that compared primary tumor and non-cancerous epithelium revealed gains in 1638 genes and losses in 36 genes. Significant gains were mostly found in chromosome 20 at position 20q12 with a frequency of 45.31% in tumor samples. Examples of genes that were associated at this cytoband were PTPRT, EMILIN3 and CHD6. The highest number of losses was detected at chromosome 8, position 8p23.2 with 17.19% occurrence in all tumor samples. Among the genes found at this cytoband were CSMD1 and DLC1. Genome-wide expression profiling showed 709 genes to be up-regulated and 699 genes to be down-regulated in CRC compared to non-cancerous samples. Integration of these two datasets identified 56 overlapping genes, which were located in chromosomes 8, 20 and 22. MLPA confirmed that the CRC samples had the highest gains in chromosome 20 compared to the reference samples. Interpretation of the CNV data in the context of the transcriptome via integrative analyses may provide more in-depth knowledge of the genomic landscape of CRC.

  4. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability.

    Science.gov (United States)

    Paolella, Brenton R; Gibson, William J; Urbanski, Laura M; Alberta, John A; Zack, Travis I; Bandopadhayay, Pratiti; Nichols, Caitlin A; Agarwalla, Pankaj K; Brown, Meredith S; Lamothe, Rebecca; Yu, Yong; Choi, Peter S; Obeng, Esther A; Heckl, Dirk; Wei, Guo; Wang, Belinda; Tsherniak, Aviad; Vazquez, Francisca; Weir, Barbara A; Root, David E; Cowley, Glenn S; Buhrlage, Sara J; Stiles, Charles D; Ebert, Benjamin L; Hahn, William C; Reed, Robin; Beroukhim, Rameen

    2017-02-08

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent. One of these, the pre-mRNA splicing factor SF3B1, is also frequently mutated in cancer. We validated SF3B1 as a CYCLOPS gene and found that human cancer cells harboring partial SF3B1 copy-loss lack a reservoir of SF3b complex that protects cells with normal SF3B1 copy number from cell death upon partial SF3B1 suppression. These data provide a catalog of copy-number associated gene dependencies and identify partial copy-loss of wild-type SF3B1 as a novel, non-driver cancer gene dependency.

  5. Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes.

    Science.gov (United States)

    Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin

    2014-11-01

    Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and

  6. CCL3L1 copy number variation and susceptibility to HIV-1 infection: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    SiJie Liu

    Full Text Available BACKGROUND: Although several studies have investigated whether CCL3L1 copy number variation (CNV influences the risk of HIV-1 infection, there are still no clear conclusions. Therefore, we performed a meta-analysis using two models to generate a more robust estimate of the association between CCL3L1 CNV and susceptibility to HIV-1 infection. METHODS: We divided the cases and controls into two parts as individuals with CCL3L1 gene copy number (GCN above the population specific median copy number (PMN and individuals with CCL3L1 GCN below PMN, respectively. Odds ratios (ORs with 95% confidence intervals (95% CIs were given for the main analysis. We also conducted stratified analyses by ethnicity, age group and sample size. Relevant literatures were searched through PubMed and ISI Web of Knowledge up to March 2010. RESULTS: In total, 9 studies with 2434 cases and 4029 controls were included. ORs for the main analysis were 1.35 (95% CI, 1.02-1.78, model: GCN ≤ PMN Vs. GCN > PMN and 1.70 (95% CI, 1.30-2.23, model: GCN < PMN Vs. GCN ≥ PMN, respectively. Either in stratified analysis, statistically significant results can be detected in some subgroups. CONCLUSIONS: Our analyses indicate that CCL3L1 CNV is associated with susceptibility to HIV-1 infection. A lower copy number is associated with an increased risk of HIV-1 infection, while a higher copy number is associated with reduced risk for acquiring HIV-1.

  7. Cancer gene prioritization by integrative analysis of mRNA expression and DNA copy number data: a comparative review

    CERN Document Server

    Lahti, Leo; Klein, Hans-Ulrich; Bicciato, Silvio; Dugas, Martin

    2011-01-01

    A variety of genome-wide profiling techniques are available to probe complementary aspects of genome structure and function. Integrative analysis of heterogeneous data sources can reveal higher-level interactions that cannot be detected based on individual observations. A standard integration task in cancer studies is to identify altered genomic regions that induce changes in the expression of the associated genes based on joint analysis of genome-wide gene expression and copy number profiling measurements. In this review, we provide a comparison among various modeling procedures for integrating genome-wide profiling data of gene copy number and transcriptional alterations and highlight common approaches to genomic data integration. A transparent benchmarking procedure is introduced to quantitatively compare the cancer gene prioritization performance of the alternative methods. The benchmarking algorithms and data sets are available at http://intcomp.r-forge.r-project.org

  8. A Bayesian Analysis for Identifying DNA Copy Number Variations Using a Compound Poisson Process

    Directory of Open Access Journals (Sweden)

    Yiğiter Ayten

    2010-01-01

    Full Text Available To study chromosomal aberrations that may lead to cancer formation or genetic diseases, the array-based Comparative Genomic Hybridization (aCGH technique is often used for detecting DNA copy number variants (CNVs. Various methods have been developed for gaining CNVs information based on aCGH data. However, most of these methods make use of the log-intensity ratios in aCGH data without taking advantage of other information such as the DNA probe (e.g., biomarker positions/distances contained in the data. Motivated by the specific features of aCGH data, we developed a novel method that takes into account the estimation of a change point or locus of the CNV in aCGH data with its associated biomarker position on the chromosome using a compound Poisson process. We used a Bayesian approach to derive the posterior probability for the estimation of the CNV locus. To detect loci of multiple CNVs in the data, a sliding window process combined with our derived Bayesian posterior probability was proposed. To evaluate the performance of the method in the estimation of the CNV locus, we first performed simulation studies. Finally, we applied our approach to real data from aCGH experiments, demonstrating its applicability.

  9. Prospective diagnostic analysis of copy number variants using SNP microarrays in individuals with autism spectrum disorders.

    Science.gov (United States)

    Nava, Caroline; Keren, Boris; Mignot, Cyril; Rastetter, Agnès; Chantot-Bastaraud, Sandra; Faudet, Anne; Fonteneau, Eric; Amiet, Claire; Laurent, Claudine; Jacquette, Aurélia; Whalen, Sandra; Afenjar, Alexandra; Périsse, Didier; Doummar, Diane; Dorison, Nathalie; Leboyer, Marion; Siffroi, Jean-Pierre; Cohen, David; Brice, Alexis; Héron, Delphine; Depienne, Christel

    2014-01-01

    Copy number variants (CNVs) have repeatedly been found to cause or predispose to autism spectrum disorders (ASDs). For diagnostic purposes, we screened 194 individuals with ASDs for CNVs using Illumina SNP arrays. In several probands, we also analyzed candidate genes located in inherited deletions to unmask autosomal recessive variants. Three CNVs, a de novo triplication of chromosome 15q11-q12 of paternal origin, a deletion on chromosome 9p24 and a de novo 3q29 deletion, were identified as the cause of the disorder in one individual each. An autosomal recessive cause was considered possible in two patients: a homozygous 1p31.1 deletion encompassing PTGER3 and a deletion of the entire DOCK10 gene associated with a rare hemizygous missense variant. We also identified multiple private or recurrent CNVs, the majority of which were inherited from asymptomatic parents. Although highly penetrant CNVs or variants inherited in an autosomal recessive manner were detected in rare cases, our results mainly support the hypothesis that most CNVs contribute to ASDs in association with other CNVs or point variants located elsewhere in the genome. Identification of these genetic interactions in individuals with ASDs constitutes a formidable challenge.

  10. A meta-analysis of multiple matched copy number and transcriptomics data sets for inferring gene regulatory relationships.

    Directory of Open Access Journals (Sweden)

    Richard Newton

    Full Text Available Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data. We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what extent heterogeneity between cell types and between pathologies determines the number of statistically significant predictions available from a meta-analysis of experiments.

  11. Genome-wide copy number variation analysis in adult attention-deficit and hyperactivity disorder.

    Science.gov (United States)

    Ramos-Quiroga, Josep-Antoni; Sánchez-Mora, Cristina; Casas, Miguel; Garcia-Martínez, Iris; Bosch, Rosa; Nogueira, Mariana; Corrales, Montse; Palomar, Gloria; Vidal, Raquel; Coll-Tané, Mireia; Bayés, Mònica; Cormand, Bru; Ribasés, Marta

    2014-02-01

    Attention-deficit and hyperactivity disorder (ADHD) is a common psychiatric disorder with a worldwide prevalence of 5-6% in children and 4.4% in adults. Recently, copy number variations (CNVs) have been implicated in different neurodevelopmental disorders such as ADHD. Based on these previous reports that focused on pediatric cohorts, we hypothesize that structural variants may also contribute to adult ADHD and that such genomic variation may be enriched for CNVs previously identified in children with ADHD. To address this issue, we performed for the first time a whole-genome CNV study on 400 adults with ADHD and 526 screened controls. In agreement with recent reports in children with ADHD or in other psychiatric disorders, we identified a significant excess of insertions in ADHD patients compared to controls. The overall rate of CNVs >100 kb was 1.33 times higher in ADHD subjects than in controls (p = 2.4e-03), an observation mainly driven by a higher proportion of small events (from 100 kb to 500 kb; 1.35-fold; p = 1.3e-03). These differences remained significant when we considered CNVs that overlap genes or when structural variants spanning candidate genes for psychiatric disorders were evaluated, with duplications showing the greatest difference (1.41-fold, p = 0.024 and 2.85-fold, p = 8.5e-03, respectively). However, no significant enrichment was detected in our ADHD cohort for childhood ADHD-associated CNVs, CNVs previously identified in at least one ADHD patient or CNVs previously implicated in autism or schizophrenia. In conclusion, our study provides tentative evidence for a higher rate of CNVs in adults with ADHD compared to controls and contributes to the growing list of structural variants potentially involved in the etiology of the disease.

  12. copy number variation analysis in familial BRCA1/2-negative Finnish breast and ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Kirsi M Kuusisto

    Full Text Available BACKGROUND: Inherited factors predisposing individuals to breast and ovarian cancer are largely unidentified in a majority of families with hereditary breast and ovarian cancer (HBOC. We aimed to identify germline copy number variations (CNVs contributing to HBOC susceptibility in the Finnish population. METHODS: A cohort of 84 HBOC individuals (negative for BRCA1/2-founder mutations and pre-screened for the most common breast cancer genes and 36 healthy controls were analysed with a genome-wide SNP array. CNV-affecting genes were further studied by Gene Ontology term enrichment, pathway analyses, and database searches to reveal genes with potential for breast and ovarian cancer predisposition. CNVs that were considered to be important were validated and genotyped in 20 additional HBOC individuals (6 CNVs and in additional healthy controls (5 CNVs by qPCR. RESULTS: An intronic deletion in the EPHA3 receptor tyrosine kinase was enriched in HBOC individuals (12 of 101, 11.9% compared with controls (27 of 432, 6.3% (OR = 1.96; P = 0.055. EPHA3 was identified in several enriched molecular functions including receptor activity. Both a novel intronic deletion in the CSMD1 tumor suppressor gene and a homozygous intergenic deletion at 5q15 were identified in 1 of 101 (1.0% HBOC individuals but were very rare (1 of 436, 0.2% and 1 of 899, 0.1%, respectively in healthy controls suggesting that these variants confer disease susceptibility. CONCLUSION: This study reveals new information regarding the germline CNVs that likely contribute to HBOC susceptibility in Finland. This information may be used to facilitate the genetic counselling of HBOC individuals but the preliminary results warrant additional studies of a larger study group.

  13. Connecting Anxiety and Genomic Copy Number Variation: A Genome-Wide Analysis in CD-1 Mice.

    Directory of Open Access Journals (Sweden)

    Julia Brenndörfer

    Full Text Available Genomic copy number variants (CNVs have been implicated in multiple psychiatric disorders, but not much is known about their influence on anxiety disorders specifically. Using next-generation sequencing (NGS and two additional array-based genotyping approaches, we detected CNVs in a mouse model consisting of two inbred mouse lines showing high (HAB and low (LAB anxiety-related behavior, respectively. An influence of CNVs on gene expression in the central (CeA and basolateral (BLA amygdala, paraventricular nucleus (PVN, and cingulate cortex (Cg was shown by a two-proportion Z-test (p = 1.6 x 10-31, with a positive correlation in the CeA (p = 0.0062, PVN (p = 0.0046 and Cg (p = 0.0114, indicating a contribution of CNVs to the genetic predisposition to trait anxiety in the specific context of HAB/LAB mice. In order to confirm anxiety-relevant CNVs and corresponding genes in a second mouse model, we further examined CD-1 outbred mice. We revealed the distribution of CNVs by genotyping 64 CD 1 individuals using a high-density genotyping array (Jackson Laboratory. 78 genes within those CNVs were identified to show nominally significant association (48 genes, or a statistical trend in their association (30 genes with the time animals spent on the open arms of the elevated plus-maze (EPM. Fifteen of them were considered promising candidate genes of anxiety-related behavior as we could show a significant overlap (permutation test, p = 0.0051 with genes within HAB/LAB CNVs. Thus, here we provide what is to our knowledge the first extensive catalogue of CNVs in CD-1 mice and potential corresponding candidate genes linked to anxiety-related behavior in mice.

  14. Integrated Analysis of Genome-Wide Copy Number Alterations and Gene Expression Profiling of Lung Cancer in Xuanwei, China

    Science.gov (United States)

    Zhang, Yanliang; Xue, Qiuyue; Pan, Guoqing; Meng, Qing H.; Tuo, Xiaoyu; Cai, Xuemei; Chen, Zhenghui; Li, Ya; Huang, Tao; Duan, Xincen; Duan, Yong

    2017-01-01

    Objectives Lung cancer in Xuanwei (LCXW), China, is known throughout the world for its distinctive characteristics, but little is known about its pathogenesis. The purpose of this study was to screen potential novel “driver genes” in LCXW. Methods Genome-wide DNA copy number alterations (CNAs) were detected by array-based comparative genomic hybridization and differentially expressed genes (DEGs) by gene expression microarrays in 8 paired LCXW and non-cancerous lung tissues. Candidate driver genes were screened by integrated analysis of CNAs and DEGs. The candidate genes were further validated by real-time quantitative polymerase chain reaction. Results Large numbers of CNAs and DEGs were detected, respectively. Some of the most frequently occurring CNAs included gains at 5p15.33-p15.32, 5p15.1-p14.3, and 5p14.3-p14.2 and losses at 11q24.3, 21q21.1, 21q22.12-q22.13, and 21q22.2. Integrated analysis of CNAs and DEGs identified 24 candidate genes with frequent copy number gains and concordant upregulation, which were considered potential oncogenes, including CREB3L4, TRIP13, and CCNE2. In addition, the analysis identified 19 candidate genes with a negative association between copy number change and expression change, considered potential tumor suppressor genes, including AHRR, NKD2, and KLF10. One of the most studied oncogenes, MYC, may not play a carcinogenic role in LCXW. Conclusions This integrated analysis of CNAs and DEGs identified several potential novel LCXW-related genes, laying an important foundation for further research on the pathogenesis of LCXW and identification of novel biomarkers or therapeutic targets. PMID:28056099

  15. Hacking DNA copy number for circuit engineering.

    Science.gov (United States)

    Wu, Feilun; You, Lingchong

    2017-07-27

    DNA copy number represents an essential parameter in the dynamics of synthetic gene circuits but typically is not explicitly considered. A new study demonstrates how dynamic control of DNA copy number can serve as an effective strategy to program robust oscillations in gene expression circuits.

  16. Ribosomal DNA copy number loss and sequence variation in cancer.

    Science.gov (United States)

    Xu, Baoshan; Li, Hua; Perry, John M; Singh, Vijay Pratap; Unruh, Jay; Yu, Zulin; Zakari, Musinu; McDowell, William; Li, Linheng; Gerton, Jennifer L

    2017-06-01

    Ribosomal DNA is one of the most variable regions in the human genome with respect to copy number. Despite the importance of rDNA for cellular function, we know virtually nothing about what governs its copy number, stability, and sequence in the mammalian genome due to challenges associated with mapping and analysis. We applied computational and droplet digital PCR approaches to measure rDNA copy number in normal and cancer states in human and mouse genomes. We find that copy number and sequence can change in cancer genomes. Counterintuitively, human cancer genomes show a loss of copies, accompanied by global copy number co-variation. The sequence can also be more variable in the cancer genome. Cancer genomes with lower copies have mutational evidence of mTOR hyperactivity. The PTEN phosphatase is a tumor suppressor that is critical for genome stability and a negative regulator of the mTOR kinase pathway. Surprisingly, but consistent with the human cancer genomes, hematopoietic cancer stem cells from a Pten-/- mouse model for leukemia have lower rDNA copy number than normal tissue, despite increased proliferation, rRNA production, and protein synthesis. Loss of copies occurs early and is associated with hypersensitivity to DNA damage. Therefore, copy loss is a recurrent feature in cancers associated with mTOR activation. Ribosomal DNA copy number may be a simple and useful indicator of whether a cancer will be sensitive to DNA damaging treatments.

  17. A novel SNP analysis method to detect copy number alterations with an unbiased reference signal directly from tumor samples

    Directory of Open Access Journals (Sweden)

    LaFramboise William A

    2011-01-01

    Full Text Available Abstract Background Genomic instability in cancer leads to abnormal genome copy number alterations (CNA as a mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have improved detection of copy number alterations, the increase in the number of measured signals, noise from array probes, variations in signal-to-noise ratio across batches and disparity across laboratories leads to significant limitations for the accurate identification of CNA regions when comparing tumor and normal samples. Methods To address these limitations, we designed a novel "Virtual Normal" algorithm (VN, which allowed for construction of an unbiased reference signal directly from test samples within an experiment using any publicly available normal reference set as a baseline thus eliminating the need for an in-lab normal reference set. Results The algorithm was tested using an optimal, paired tumor/normal data set as well as previously uncharacterized pediatric malignant gliomas for which a normal reference set was not available. Using Affymetrix 250K Sty microarrays, we demonstrated improved signal-to-noise ratio and detected significant copy number alterations using the VN algorithm that were validated by independent PCR analysis of the target CNA regions. Conclusions We developed and validated an algorithm to provide a virtual normal reference signal directly from tumor samples and minimize noise in the derivation of the raw CN signal. The algorithm reduces the variability of assays performed across different reagent and array batches, methods of sample preservation, multiple personnel, and among different laboratories. This approach may be valuable when matched normal samples are unavailable or the paired normal specimens have been subjected to variations in methods of preservation.

  18. Multiplex Ligation-Dependent Probe Amplification Technique for Copy Number Analysis on Small Amounts of DNA Material

    DEFF Research Database (Denmark)

    Sørensen, Karina; Andersen, Paal; Larsen, Lars;

    2008-01-01

    The multiplex ligation-dependent probe amplification (MLPA) technique is a sensitive technique for relative quantification of up to 50 different nucleic acid sequences in a single reaction, and the technique is routinely used for copy number analysis in various syndromes and diseases. The aim...... of the study was to exploit the potential of MLPA when the DNA material is limited. The DNA concentration required in standard MLPA analysis is not attainable from dried blood spot samples (DBSS) often used in neonatal screening programs. A novel design of MLPA probes has been developed to permit for MLPA...... analysis on small amounts of DNA. Six patients with congenital adrenal hyperplasia (CAH) were used in this study. DNA was extracted from both whole blood and DBSS and subjected to MLPA analysis using normal and modified probes. Results were analyzed using GeneMarker and manual Excel analysis. A total...

  19. Getting DNA copy numbers without control samples

    Directory of Open Access Journals (Sweden)

    Ortiz-Estevez Maria

    2012-08-01

    Full Text Available Abstract Background The selection of the reference to scale the data in a copy number analysis has paramount importance to achieve accurate estimates. Usually this reference is generated using control samples included in the study. However, these control samples are not always available and in these cases, an artificial reference must be created. A proper generation of this signal is crucial in terms of both noise and bias. We propose NSA (Normality Search Algorithm, a scaling method that works with and without control samples. It is based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely to be normal. These normal regions are predicted for each sample individually and used to calculate the final reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method. It also finds an optimal weighting of the samples minimizing possible batch effects. Results Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM, Ovarian, Prostate and Lung Cancer experiments have been analyzed. It is shown that using only tumoral samples, NSA is able to remove the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy number aberrations (CNAs. These improvements allow NSA to also detect recurrent aberrations more accurately than other state of the art methods. Conclusions NSA provides a robust and accurate reference for scaling probe signals data to CN values without the need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore, NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of developing a parser to find the normal samples or possible batches within the

  20. Identification of copy number variants in horses

    KAUST Repository

    Doan, R.

    2012-03-01

    Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology. We identified 2368 CNVs ranging in size from 197 bp to 3.5 Mb. Merging identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6% of the genes investigated were affected by a CNV. Biological process enrichment analysis indicated CNVs primarily affected genes involved in sensory perception, signal transduction, and metabolism. CNVs also were identified in genes regulating blood group antigens, coat color, fecundity, lactation, keratin formation, neuronal homeostasis, and height in other species. Collectively, these data are the first report of copy number variation in horses and suggest that CNVs are common in the horse genome and may modulate biological processes underlying different traits observed among horses and horse breeds.

  1. Identification of copy number variations associated with congenital heart disease by chromosomal microarray analysis and next-generation sequencing.

    Science.gov (United States)

    Zhu, Xiangyu; Li, Jie; Ru, Tong; Wang, Yaping; Xu, Yan; Yang, Ying; Wu, Xing; Cram, David S; Hu, Yali

    2016-04-01

    To determine the type and frequency of pathogenic chromosomal abnormalities in fetuses diagnosed with congenital heart disease (CHD) using chromosomal microarray analysis (CMA) and validate next-generation sequencing as an alternative diagnostic method. Chromosomal aneuploidies and submicroscopic copy number variations (CNVs) were identified in amniocytes DNA samples from CHD fetuses using high-resolution CMA and copy number variation sequencing (CNV-Seq). Overall, 21 of 115 CHD fetuses (18.3%) referred for CMA had a pathogenic chromosomal anomaly. In six of 73 fetuses (8.2%) with an isolated CHD, CMA identified two cases of DiGeorge syndrome, and one case each of 1q21.1 microdeletion, 16p11.2 microdeletion and Angelman/Prader Willi syndromes, and 22q11.21 microduplication syndrome. In 12 of 42 fetuses (28.6%) with CHD and additional structural abnormalities, CMA identified eight whole or partial trisomies (19.0%), five CNVs (11.9%) associated with DiGeorge, Wolf-Hirschhorn, Miller-Dieker, Cri du Chat and Blepharophimosis, Ptosis, and Epicanthus Inversus syndromes and four other rare pathogenic CNVs (9.5%). Overall, there was a 100% diagnostic concordance between CMA and CNV-Seq for detecting all 21 pathogenic chromosomal abnormalities associated with CHD. CMA and CNV-Seq are reliable and accurate prenatal techniques for identifying pathogenic fetal chromosomal abnormalities associated with cardiac defects. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  2. Altered mitochondrial DNA copy number contributes to human cancer risk: evidence from an updated meta-analysis

    Science.gov (United States)

    Hu, Liwen; Yao, Xinyue; Shen, Yi

    2016-01-01

    Accumulating epidemiological evidence indicates that the quantitative changes in human mitochondrial DNA (mtDNA) copy number could affect the genetic susceptibility of malignancies in a tumor-specific manner, but the results are still elusive. To provide a more precise estimation on the association between mtDNA copy number and risk of diverse malignancies, a meta-analysis was conducted by calculating the pooled odds ratios (OR) and the 95% confidence intervals (95% CI). A total of 36 case-control studies involving 11,847 cases and 15,438 controls were finally included in the meta-analysis. Overall analysis of all studies suggested no significant association between mtDNA content and cancer risk (OR = 1.044, 95% CI = 0.866–1.260, P = 0.651). Subgroup analyses by cancer types showed an obvious positive association between mtDNA content and lymphoma and breast cancer (OR = 1.645, 95% CI = 1.117–2.421, P = 0.012; OR = 1.721, 95% CI = 1.130–2.622, P = 0.011, respectively), and a negative association for hepatic carcinoma. Stratified analyses by other confounding factors also found increased cancer risk in people with drinking addiction. Further analysis using studies of quartiles found that populations with the highest mtDNA content may be under more obvious risk of melanoma and that Western populations were more susceptible than Asians. PMID:27775013

  3. Genome-Wide Analysis of Protein and mRNA Copy Numbers in Single Escherichia coli Cells with Single-Molecule Sensitivity.

    Science.gov (United States)

    Taniguchi, Yuichi

    2015-01-01

    Single-cell proteomic and transcriptomic analysis is an emerging approach for providing quantitative and comprehensive characterization of gene functions in individual cells. This analysis, however, is often hampered by insufficient sensitivity for detecting low copy gene expression products such as transcription factors and regulators. Here I describe a method for the quantitative genome-wide analysis of single-cell protein and mRNA copy numbers with single molecule sensitivity for the model organism Escherichia coli.

  4. Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim Lütken; Dubash, Taronish; Drainas, Alexandros P

    2017-01-01

    that IRS4 overexpression in lung cancer is associated with recurrent deletions in cis, and we present evidence supporting a tumor-promoting role. We additionally pursued cancer-type-specific analyses and uncovered IGF2 as a target for enhancer hijacking in colorectal cancer. Recurrent tandem duplications......Extensive prior research focused on somatic copy-number alterations (SCNAs) affecting cancer genes, yet the extent to which recurrent SCNAs exert their influence through rearrangement of cis-regulatory elements (CREs) remains unclear. Here we present a framework for inferring cancer-related gene...... overexpression resulting from CRE reorganization (e.g., enhancer hijacking) by integrating SCNAs, gene expression data and information on topologically associating domains (TADs). Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate...

  5. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome.

    Directory of Open Access Journals (Sweden)

    Maribel Forero-Castro

    Full Text Available Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL is still a challenge.To characterize the presence of additional DNA copy number alterations (CNAs in children and adults with ALL by whole-genome oligonucleotide array (aCGH analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults. The NimbleGen CGH 12x135K array (Roche was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q. CNAs were associated with age, phenotype, genetic subtype and overall survival (OS. In the whole cohort of children, the losses on 14q32.33 (p = 0.019 and 15q13.2 (p = 0.04 were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001 and Xp21.1 (p = 0.029, and the loss of 17p (p = 0.014 were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.

  6. Copy number variation analysis implicates the cell polarity gene glypican 5 as a human spina bifida candidate gene

    Science.gov (United States)

    Bassuk, Alexander G.; Muthuswamy, Lakshmi B.; Boland, Riley; Smith, Tiffany L.; Hulstrand, Alissa M.; Northrup, Hope; Hakeman, Matthew; Dierdorff, Jason M.; Yung, Christina K.; Long, Abby; Brouillette, Rachel B.; Au, Kit Sing; Gurnett, Christina; Houston, Douglas W.; Cornell, Robert A.; Manak, J. Robert

    2013-01-01

    Neural tube defects (NTDs) are common birth defects of complex etiology. Family and population-based studies have confirmed a genetic component to NTDs. However, despite more than three decades of research, the genes involved in human NTDs remain largely unknown. We tested the hypothesis that rare copy number variants (CNVs), especially de novo germline CNVs, are a significant risk factor for NTDs. We used array-based comparative genomic hybridization (aCGH) to identify rare CNVs in 128 Caucasian and 61 Hispanic patients with non-syndromic lumbar-sacral myelomeningocele. We also performed aCGH analysis on the parents of affected individuals with rare CNVs where parental DNA was available (42 sets). Among the eight de novo CNVs that we identified, three generated copy number changes of entire genes. One large heterozygous deletion removed 27 genes, including PAX3, a known spina bifida-associated gene. A second CNV altered genes (PGPD8, ZC3H6) for which little is known regarding function or expression. A third heterozygous deletion removed GPC5 and part of GPC6, genes encoding glypicans. Glypicans are proteoglycans that modulate the activity of morphogens such as Sonic Hedgehog (SHH) and bone morphogenetic proteins (BMPs), both of which have been implicated in NTDs. Additionally, glypicans function in the planar cell polarity (PCP) pathway, and several PCP genes have been associated with NTDs. Here, we show that GPC5 orthologs are expressed in the neural tube, and that inhibiting their expression in frog and fish embryos results in NTDs. These results implicate GPC5 as a gene required for normal neural tube development. PMID:23223018

  7. CNARA: reliability assessment for genomic copy number profiles.

    Science.gov (United States)

    Ai, Ni; Cai, Haoyang; Solovan, Caius; Baudis, Michael

    2016-10-12

    DNA copy number profiles from microarray and sequencing experiments sometimes contain wave artefacts which may be introduced during sample preparation and cannot be removed completely by existing preprocessing methods. Besides, large derivative log ratio spread (DLRS) of the probes correlating with poor DNA quality is sometimes observed in genome screening experiments and may lead to unreliable copy number profiles. Depending on the extent of these artefacts and the resulting misidentification of copy number alterations/variations (CNA/CNV), it may be desirable to exclude such samples from analyses or to adapt the downstream data analysis strategy accordingly. Here, we propose a method to distinguish reliable genomic copy number profiles from those containing heavy wave artefacts and/or large DLRS. We define four features that adequately summarize the copy number profiles for reliability assessment, and train a classifier on a dataset of 1522 copy number profiles from various microarray platforms. The method can be applied to predict the reliability of copy number profiles irrespective of the underlying microarray platform and may be adapted for those sequencing platforms from which copy number estimates could be computed as a piecewise constant signal. Further details can be found at https://github.com/baudisgroup/CNARA . We have developed a method for the assessment of genomic copy number profiling data, and suggest to apply the method in addition to and after other state-of-the-art noise correction and quality control procedures. CNARA could be instrumental in improving the assessment of data used for genomic data mining experiments and support the reliable functional attribution of copy number aberrations especially in cancer research.

  8. Gene-based comparative analysis of tools for estimating copy number alterations using whole-exome sequencing data

    Science.gov (United States)

    Kim, Hyung-Yong; Choi, Jin-Woo; Lee, Jeong-Yeon; Kong, Gu

    2017-01-01

    Accurate detection of copy number alterations (CNAs) using next-generation sequencing technology is essential for the development and application of more precise medical treatments for human cancer. Here, we evaluated seven CNA estimation tools (ExomeCNV, CoNIFER, VarScan2, CODEX, ngCGH, saasCNV, and falcon) using whole-exome sequencing data from 419 breast cancer tumor-normal sample pairs from The Cancer Genome Atlas. Estimations generated using each tool were converted into gene-based copy numbers; concordance for gains and losses and the sensitivity and specificity of each tool were compared to validated copy numbers from a single nucleotide polymorphism reference array. The concordance and sensitivity of the tumor-normal pair methods for estimating CNAs (saasCNV, ExomeCNV, and VarScan2) were better than those of the tumor batch methods (CoNIFER and CODEX). SaasCNV had the highest gain and loss concordances (65.0%), sensitivity (69.4%), and specificity (89.1%) for estimating copy number gains or losses. These findings indicate that improved CNA detection algorithms are needed to more accurately interpret whole-exome sequencing results in human cancer. PMID:28460482

  9. High fidelity copy number analysis of formalin-fixed and paraffin-embedded tissues using Affymetrix Cytoscan HD chip.

    Directory of Open Access Journals (Sweden)

    Yan P Yu

    Full Text Available Detection of human genome copy number variation (CNV is one of the most important analyses in diagnosing human malignancies. Genome CNV detection in formalin-fixed and paraffin-embedded (FFPE tissues remains challenging due to suboptimal DNA quality and failure to use appropriate baseline controls for such tissues. Here, we report a modified method in analyzing CNV in FFPE tissues using microarray with Affymetrix Cytoscan HD chips. Gel purification was applied to select DNA with good quality and data of fresh frozen and FFPE tissues from healthy individuals were included as baseline controls in our data analysis. Our analysis showed a 91% overlap between CNV detection by microarray with FFPE tissues and chromosomal abnormality detection by karyotyping with fresh tissues on 8 cases of lymphoma samples. The CNV overlap between matched frozen and FFPE tissues reached 93.8%. When the analyses were restricted to regions containing genes, 87.1% concordance between FFPE and fresh frozen tissues was found. The analysis was further validated by Fluorescence In Situ Hybridization on these samples using probes specific for BRAF and CITED2. The results suggested that the modified method using Affymetrix Cytoscan HD chip gave rise to a significant improvement over most of the previous methods in terms of accuracy in detecting CNV in FFPE tissues. This FFPE microarray methodology may hold promise for broad application of CNV analysis on clinical samples.

  10. MET gene copy number predicts worse overall survival in patients with non-small cell lung cancer (NSCLC; a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Anastasios Dimou

    Full Text Available OBJECTIVES: MET is a receptor present in the membrane of NSCLC cells and is known to promote cell proliferation, survival and migration. MET gene copy number is a common genetic alteration and inhibition o MET emerges as a promising targeted therapy in NSCLC. Here we aim to combine in a meta-analysis, data on the effect of high MET gene copy number on the overall survival of patients with resected NSCLC. METHODS: Two independent investigators applied parallel search strategies with the terms "MET AND lung cancer", "MET AND NSCLC", "MET gene copy number AND prognosis" in PubMed through January 2014. We selected the studies that investigated the association of MET gene copy number with survival, in patients who received surgery. RESULTS: Among 1096 titles that were identified in the initial search, we retrieved 9 studies on retrospective cohorts with adequate retrievable data regarding the prognostic impact of MET gene copy number on the survival of patients with NSCLC. Out of those, 6 used FISH and the remaining 3 used RT PCR to assess the MET gene copy number in the primary tumor. We calculated the I2 statistic to assess heterogeneity (I2 = 72%. MET gene copy number predicted worse overall survival when all studies were combined in a random effects model (HR = 1.78, 95% CI 1.22-2.60. When only the studies that had at least 50% of adenocarcinoma patients in their populations were included, the effect was significant (five studies, HR 1.55, 95% CI 1.23-1.94. This was not true when we included only the studies with no more than 50% of the patients having adenocarcinoma histology (four studies HR 2.18, 95% CI 0.97-4.90. CONCLUSIONS: Higher MET gene copy number in the primary tumor at the time of diagnosis predicts worse outcome in patients with NSCLC. This prognostic impact may be adenocarcinoma histology specific.

  11. Unbiased K-mer Analysis Reveals Changes in Copy Number of Highly Repetitive Sequences During Maize Domestication and Improvement

    Science.gov (United States)

    Liu, Sanzhen; Zheng, Jun; Migeon, Pierre; Ren, Jie; Hu, Ying; He, Cheng; Liu, Hongjun; Fu, Junjie; White, Frank F.; Toomajian, Christopher; Wang, Guoying

    2017-01-01

    The major component of complex genomes is repetitive elements, which remain recalcitrant to characterization. Using maize as a model system, we analyzed whole genome shotgun (WGS) sequences for the two maize inbred lines B73 and Mo17 using k-mer analysis to quantify the differences between the two genomes. Significant differences were identified in highly repetitive sequences, including centromere, 45S ribosomal DNA (rDNA), knob, and telomere repeats. Genotype specific 45S rDNA sequences were discovered. The B73 and Mo17 polymorphic k-mers were used to examine allele-specific expression of 45S rDNA in the hybrids. Although Mo17 contains higher copy number than B73, equivalent levels of overall 45S rDNA expression indicates that transcriptional or post-transcriptional regulation mechanisms operate for the 45S rDNA in the hybrids. Using WGS sequences of B73xMo17 doubled haploids, genomic locations showing differential repetitive contents were genetically mapped, which displayed different organization of highly repetitive sequences in the two genomes. In an analysis of WGS sequences of HapMap2 lines, including maize wild progenitor, landraces, and improved lines, decreases and increases in abundance of additional sets of k-mers associated with centromere, 45S rDNA, knob, and retrotransposons were found among groups, revealing global evolutionary trends of genomic repeats during maize domestication and improvement. PMID:28186206

  12. Genome-wide analysis of CNV (copy number variation) and their associations with narcolepsy in a Japanese population.

    Science.gov (United States)

    Yamasaki, Maria; Miyagawa, Taku; Toyoda, Hiromi; Khor, Seik-Soon; Koike, Asako; Nitta, Aino; Akiyama, Kumi; Sasaki, Tsukasa; Honda, Yutaka; Honda, Makoto; Tokunaga, Katsushi

    2014-05-01

    In humans, narcolepsy with cataplexy (narcolepsy) is a sleep disorder that is characterized by sleepiness, cataplexy and rapid eye movement (REM) sleep abnormalities. Narcolepsy is caused by a reduction in the number of neurons that produce hypocretin (orexin) neuropeptide. Both genetic and environmental factors contribute to the development of narcolepsy.Rare and large copy number variations (CNVs) reportedly play a role in the etiology of a number of neuropsychiatric disorders. Narcolepsy is considered a neurological disorder; therefore, we sought to investigate any possible association between rare and large CNVs and human narcolepsy. We used DNA microarray data and a CNV detection software application, PennCNV-Affy, to detect CNVs in 426 Japanese narcoleptic patients and 562 healthy individuals. Overall, we found a significant enrichment of rare and large CNVs (frequency ≤1%, size ≥100 kb) in the patients (case-control ratio of CNV count=1.54, P=5.00 × 10(-4)). Next, we extended a region-based association analysis by including CNVs with its size ≥30 kb. Rare and large CNVs in PARK2 region showed a significant association with narcolepsy. Four patients were assessed to carry duplications of the gene region, whereas no controls carried the duplication, which was further confirmed by quantitative PCR assay. This duplication was also found in 2 essential hypersomnia (EHS) patients out of 171 patients. Furthermore, a pathway analysis revealed enrichments of gene disruptions by rare and large CNVs in immune response, acetyltransferase activity, cell cycle regulation and regulation of cell development. This study constitutes the first report on the risk association between multiple rare and large CNVs and the pathogenesis of narcolepsy. In the future, replication studies are needed to confirm the associations.

  13. Human copy number variation and complex genetic disease.

    Science.gov (United States)

    Girirajan, Santhosh; Campbell, Catarina D; Eichler, Evan E

    2011-01-01

    Copy number variants (CNVs) play an important role in human disease and population diversity. Advancements in technology have allowed for the analysis of CNVs in thousands of individuals with disease in addition to thousands of controls. These studies have identified rare CNVs associated with neuropsychiatric diseases such as autism, schizophrenia, and intellectual disability. In addition, copy number polymorphisms (CNPs) are present at higher frequencies in the population, show high diversity in copy number, sequence, and structure, and have been associated with multiple phenotypes, primarily related to immune or environmental response. However, the landscape of copy number variation still remains largely unexplored, especially for smaller CNVs and those embedded within complex regions of the human genome. An integrated approach including characterization of single nucleotide variants and CNVs in a large number of individuals with disease and normal genomes holds the promise of thoroughly elucidating the genetic basis of human disease and diversity.

  14. Adaptive copy number evolution in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Shalini Nair

    2008-10-01

    Full Text Available Copy number polymorphism (CNP is ubiquitous in eukaryotic genomes, but the degree to which this reflects the action of positive selection is poorly understood. The first gene in the Plasmodium folate biosynthesis pathway, GTP-cyclohydrolase I (gch1, shows extensive CNP. We provide compelling evidence that gch1 CNP is an adaptive consequence of selection by antifolate drugs, which target enzymes downstream in this pathway. (1 We compared gch1 CNP in parasites from Thailand (strong historical antifolate selection with those from neighboring Laos (weak antifolate selection. Two percent of chromosomes had amplified copy number in Laos, while 72% carried multiple (2-11 copies in Thailand, and differentiation exceeded that observed at 73 synonymous SNPs. (2 We found five amplicon types containing one to greater than six genes and spanning 1 to >11 kb, consistent with parallel evolution and strong selection for this gene amplification. gch1 was the only gene occurring in all amplicons suggesting that this locus is the target of selection. (3 We observed reduced microsatellite variation and increased linkage disequilibrium (LD in a 900-kb region flanking gch1 in parasites from Thailand, consistent with rapid recent spread of chromosomes carrying multiple copies of gch1. (4 We found that parasites bearing dhfr-164L, which causes high-level resistance to antifolate drugs, carry significantly (p = 0.00003 higher copy numbers of gch1 than parasites bearing 164I, indicating functional association between genes located on different chromosomes but linked in the same biochemical pathway. These results demonstrate that CNP at gch1 is adaptive and the associations with dhfr-164L strongly suggest a compensatory function. More generally, these data demonstrate how selection affects multiple enzymes in a single biochemical pathway, and suggest that investigation of structural variation may provide a fast-track to locating genes underlying adaptation.

  15. Analysis of copy number variation in Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals.

    Directory of Open Access Journals (Sweden)

    Shanker Swaminathan

    Full Text Available Copy number variations (CNVs are genomic regions that have added (duplications or deleted (deletions genetic material. They may overlap genes affecting their function and have been shown to be associated with disease. We previously investigated the role of CNVs in late-onset Alzheimer's disease (AD and mild cognitive impairment using Alzheimer's Disease Neuroimaging Initiative (ADNI and National Institute of Aging-Late Onset AD/National Cell Repository for AD (NIA-LOAD/NCRAD Family Study participants, and identified a number of genes overlapped by CNV calls. To confirm the findings and identify other potential candidate regions, we analyzed array data from a unique cohort of 1617 Caucasian participants (1022 AD cases and 595 controls who were clinically characterized and whose diagnosis was neuropathologically verified. All DNA samples were extracted from brain tissue. CNV calls were generated and subjected to quality control (QC. 728 cases and 438 controls who passed all QC measures were included in case/control association analyses including candidate gene and genome-wide approaches. Rates of deletions and duplications did not significantly differ between cases and controls. Case-control association identified a number of previously reported regions (CHRFAM7A, RELN and DOPEY2 as well as a new gene (HLA-DRA. Meta-analysis of CHRFAM7A indicated a significant association of the gene with AD and/or MCI risk (P = 0.006, odds ratio = 3.986 (95% confidence interval 1.490-10.667. A novel APP gene duplication was observed in one case sample. Further investigation of the identified genes in independent and larger samples is warranted.

  16. An all-statistics, high-speed algorithm for the analysis of copy number variation in genomes.

    Science.gov (United States)

    Chen, Chih-Hao; Lee, Hsing-Chung; Ling, Qingdong; Chen, Hsiao-Rong; Ko, Yi-An; Tsou, Tsong-Shan; Wang, Sun-Chong; Wu, Li-Ching; Lee, H C

    2011-07-01

    Detection of copy number variation (CNV) in DNA has recently become an important method for understanding the pathogenesis of cancer. While existing algorithms for extracting CNV from microarray data have worked reasonably well, the trend towards ever larger sample sizes and higher resolution microarrays has vastly increased the challenges they face. Here, we present Segmentation analysis of DNA (SAD), a clustering algorithm constructed with a strategy in which all operational decisions are based on simple and rigorous applications of statistical principles, measurement theory and precise mathematical relations. Compared with existing packages, SAD is simpler in formulation, more user friendly, much faster and less thirsty for memory, offers higher accuracy and supplies quantitative statistics for its predictions. Unique among such algorithms, SAD's running time scales linearly with array size; on a typical modern notebook, it completes high-quality CNV analyses for a 250 thousand-probe array in ∼1 s and a 1.8 million-probe array in ∼8 s.

  17. Analysis of copy number variation in the rhesus macaque genome identifies candidate loci for evolutionary and human disease studies.

    Science.gov (United States)

    Lee, Arthur S; Gutiérrez-Arcelus, María; Perry, George H; Vallender, Eric J; Johnson, Welkin E; Miller, Gregory M; Korbel, Jan O; Lee, Charles

    2008-04-15

    Copy number variants (CNVs) are heritable gains and losses of genomic DNA in normal individuals. While copy number variation is widely studied in humans, our knowledge of CNVs in other mammalian species is more limited. We have designed a custom array-based comparative genomic hybridization (aCGH) platform with 385 000 oligonucleotide probes based on the reference genome sequence of the rhesus macaque (Macaca mulatta), the most widely studied non-human primate in biomedical research. We used this platform to identify 123 CNVs among 10 unrelated macaque individuals, with 24% of the CNVs observed in multiple individuals. We found that segmental duplications were significantly enriched at macaque CNV loci. We also observed significant overlap between rhesus macaque and human CNVs, suggesting that certain genomic regions are prone to recurrent CNV formation and instability, even across a total of approximately 50 million years of primate evolution ( approximately 25 million years in each lineage). Furthermore, for eight of the CNVs that were observed in both humans and macaques, previous human studies have reported a relationship between copy number and gene expression or disease susceptibility. Therefore, the rhesus macaque offers an intriguing, non-human primate outbred model organism with which hypotheses concerning the specific functions of phenotypically relevant human CNVs can be tested.

  18. Array comparative genomic hybridization profiling analysis reveals deoxyribonucleic acid copy number variations associated with premature ovarian failure.

    Science.gov (United States)

    Aboura, Azzedine; Dupas, Claire; Tachdjian, Gérard; Portnoï, Marie-France; Bourcigaux, Nathalie; Dewailly, Didier; Frydman, René; Fauser, Bart; Ronci-Chaix, Nathalie; Donadille, Bruno; Bouchard, Philippe; Christin-Maitre, Sophie

    2009-11-01

    Premature ovarian failure (POF) is defined by amenorrhea of at least 4- to 6-month duration, occurring before 40 yr of age, with two FSH levels in the postmenopausal range. Its etiology remains unknown in more than 80% of cases. Standard karyotypes, having a resolution of 5-10 Mb, have identified critical chromosomal regions, mainly located on the long arm of the X chromosome. Array comparative genomic hybridization (a-CGH) analysis is able to detect submicroscopic chromosomal rearrangements with a higher genomic resolution. We searched for copy number variations (CNVs), using a-CGH analysis with a resolution of approximately 0.7 Mb, in a cohort of patients with POF. We prospectively included 99 women. Our study included a conventional karyotype and DNA microarrays comprising 4500 bacterial artificial chromosome clones spread on the entire genome. Thirty-one CNVs have been observed, three on the X chromosome and 28 on autosomal chromosomes. Data have been compared to control populations obtained from the Database of Genomic Variants (http://projects.tcag.ca/variation). Eight statistically significantly different CNVs have been identified in chromosomal regions 1p21.1, 5p14.3, 5q13.2, 6p25.3, 14q32.33, 16p11.2, 17q12, and Xq28. We report the first study of CNV analysis in a large cohort of Caucasian POF patients. In the eight statistically significant CNVs we report, we found five genes involved in reproduction, thus representing potential candidate genes in POF. The current study along with emerging information regarding CNVs, as well as data on their potential association with human diseases, emphasizes the importance of assessing CNVs in cohorts of POF women.

  19. Number matters: control of mammalian mitochondrial DNA copy number.

    Science.gov (United States)

    Clay Montier, Laura L; Deng, Janice J; Bai, Yidong

    2009-03-01

    Regulation of mitochondrial biogenesis is essential for proper cellular functioning. Mitochondrial DNA (mtDNA) depletion and the resulting mitochondrial malfunction have been implicated in cancer, neurodegeneration, diabetes, aging, and many other human diseases. Although it is known that the dynamics of the mammalian mitochondrial genome are not linked with that of the nuclear genome, very little is known about the mechanism of mtDNA propagation. Nevertheless, our understanding of the mode of mtDNA replication has advanced in recent years, though not without some controversies. This review summarizes our current knowledge of mtDNA copy number control in mammalian cells, while focusing on both mtDNA replication and turnover. Although mtDNA copy number is seemingly in excess, we reason that mtDNA copy number control is an important aspect of mitochondrial genetics and biogenesis and is essential for normal cellular function.

  20. Genome-wide copy number variant analysis in Holstein cattle reveals variants associated with 10 production traits including residual feed intake and dry matter intake

    Science.gov (United States)

    Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...

  1. Targeted next-generation sequencing at copy-number breakpoints for personalized analysis of rearranged ends in solid tumors.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyoung Kim

    Full Text Available BACKGROUND: The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs, which are abundant in solid tumors, can be utilized for identification of rearranged ends. METHOD: As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP microarray method entailing CNB-region refinement by competitor DNA. RESULT: Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9% were identified, and two polymerase chain reaction (PCR-amplifiable rearrangements were obtained in six cases (66.7%. And significantly, TNGS-CNB, with its high positive identification rate (82.6% of PCR-amplifiable rearrangements at candidate sites (19/23, just from filtering of aligned sequences, requires little effort for validation. CONCLUSION: Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.

  2. Significance of genome-wide analysis of copy number alterations and UPD in myelodysplastic syndromes using combined CGH - SNP arrays.

    Science.gov (United States)

    Ahmad, Ausaf; Iqbal, M Anwar

    2012-01-01

    Genetic information is an extremely valuable data source in characterizing the personal nature of cancer. Chromosome instability is a hallmark of most cancer cells. Chromosomal abnormalities are correlated with poor prognosis, disease classification, risk stratification, and treatment selection. Copy number alterations (CNAs) are an important molecular signature in cancer initiation, development, and progression. Recent application of whole-genome tools to characterize normal and cancer genomes provides the powerful molecular cytogenetic means to enumerate the multiple somatic, genetic and epigenetic alterations that occur in cancer. Combined array comparative genomic hybridization (aCGH) with single nucleotide polymorphism (SNP) array is a useful technique allowing detection of CNAs and loss of heterozygosity (LOH) or uni-parental disomy (UPD) together in a single experiment. It also provides allelic information on deletions, duplications, and amplifications. UPD can result in an abnormal phenotype when the chromosomes involved are imprinted. Myelodysplastic syndromes (MDS) are the most common clonal stem cell hematologic malignancy characterized by ineffective hematopoiesis, which leads to rapid progression into acute myeloid leukemia. UPD that occurs without concurrent changes in the gene copy number is a common chromosomal defect in hematologic malignancies, especially in MDS. Approximately 40-50% of MDS patients do not have karyotypic abnormalities that are detectable using classical metaphase cytogenetic techniques (MC) because of inherent limitations of MC, low resolution and the requirement of having dividing cells. In this review, we highlight advances in the clinical application of microarray technology in MDS and discuss the clinical potential of microarray.

  3. Measurement of absolute copy number variation of Glutathione S-Transferase M1 gene by digital droplet PCR and association analysis in Tunisian Rheumatoid Arthritis population.

    Science.gov (United States)

    Achour, Yosser; Ben Kilani, Mohamed Sahbi; Ben Hamad, Mariem; Marzouk, Sameh; Mahfoudh, Nadia; Bahloul, Zouheir; Keskes, Leila; Petit-Teixeira, Elisabeth; Maalej, Abdellatif

    2017-07-13

    The investigation of copy number variations (CNVs) analysis of candidate genes is currently an important research area in modulating human diseases. We aimed to quantify CNVs in glutathione S-transferase M1 (GSTM1) gene and determine its genetic contribution in Tunisian rheumatoid arthritis (RA) and its subsets through an innovative technique for quantification. A total of 165 RA cases and 102 healthy controls were included in the study. Using a recently powerful approach of digital droplet PCR (ddPCR), we quantified GSTM1 gene to determine the presence of no, one, or multiple copy number (CN) at high levels of sensitivity and specificity. Odds ratio and Fisher exact test were performed to estimate the association risk for GSTM1CNVs in RA. Copy number identified by ddPCR was 0, 1, and 2 copies per diploid genome. A high frequency of '0' copy was revealed with 54% in RA patients. The deletion ('0' copy) of GSTM1 was found to be a significant risk factor for anti-cyclic citrullinated peptide (anti-CCP) positive RA (OR=4.16, CI95% =[1.17-14.7]). In addition, a lack of association was found when comparing between the CNVs of RA patients and those of controls. This study highlights the powerful accuracy of ddPCR for the quantification of CNVs and suggests that the variation in the CN of GSTM1 is associated with anti-CCP positivity in RA. However, it does not indicate a specific role in the susceptibility to the disease in our Tunisian sample. © 2017 Wiley Periodicals, Inc.

  4. Genome-wide copy number analysis of cerebrospinal fluid tumor cells and their corresponding archival primary tumors.

    Science.gov (United States)

    Magbanua, Mark Jesus M; Roy, Ritu; Sosa, Eduardo V; Hauranieh, Louai; Kablanian, Andrea; Eisenbud, Lauren E; Ryazantsev, Artem; Au, Alfred; Scott, Janet H; Melisko, Michelle; Park, John W

    2014-12-01

    A debilitating complication of breast cancer is the metastatic spread of tumor cells to the leptomeninges or cerebrospinal fluid (CSF). Patients diagnosed with this aggressive clinical syndrome, known as leptomeningeal carcinomatosis, have very poor prognosis. Despite improvements in detecting cerebrospinal fluid tumor cells (CSFTCs), information regarding their molecular biology is extremely limited. In our recent work, we utilized a protocol previously used for circulating tumor cell isolation to purify tumor cells from the CSF. We then performed genomic characterization of CSFTCs as well as archival tumors from the same patient. Here, we describe the microarray data and quality controls associated with our study published in the Cancer Research journal in 2013 [1]. We also provide an R script containing code for quality control of microarray data and assessment of copy number calls. The microarray data has been deposited into Gene Expression Omnibus under accession # GSE46068.

  5. High-throughput single-cell analysis of low copy number β-galactosidase by a laboratory-built high-sensitivity flow cytometer.

    Science.gov (United States)

    Yang, Lingling; Huang, Tianxun; Zhu, Shaobin; Zhou, Yingxing; Jiang, Yunbin; Wang, Shuo; Chen, Yuqing; Wu, Lina; Yan, Xiaomei

    2013-10-15

    Single-cell analysis is vital in providing insights into the heterogeneity in molecular content and phenotypic characteristics of complex or clonal cell populations. As many essential proteins and most transcription factors are produced at a low copy number, analytical tools with superior sensitivity to enable the analysis of low abundance proteins in single cells are in high demand. β-galactosidase (β-gal) has been the standard cellular reporter for gene expression in both prokaryotic and eukaryotic cells. Here we report the development of a high-throughput method for the single-cell analysis of low copy number β-gal proteins using a laboratory-built high-sensitivity flow cytometer (HSFCM). Upon fluorescence staining with a fluorogenic substrate, quantitative measurements of the basal and near-basal expression of β-gal in single Escherichia coli BL21(DE3) cells were demonstrated. Statistical distribution can be determined quickly by analyzing thousands of individual cells in 1-2min, which reveals the heterogeneous expression pattern that is otherwise masked by the ensemble analysis. Combined with the quantitative fluorometric assay and the rapid bacterial enumeration by HSFCM, the β-gal expression distribution profile could be converted from arbitrary fluorescence units to protein copy numbers per cell. The sensitivity and speed of the HSFCM offers great capability in quantitative analysis of low abundance proteins in single cells, which would help gaining a deeper insight into the heterogeneity and fundamental biological processes in microbial populations.

  6. Determination of protein expression and plasmid copy number from cloned genes in Escherichia coli by flow injection analysis using an enzyme indicator vector.

    Science.gov (United States)

    Schendel, F J; Baude, E J; Flickinger, M C

    1989-10-20

    On-line determination of expression rates from cloned genes in Escherichia coli and of plasmid copy number would be useful for monitoring accumulation of non-secreted proteins. As an initial model for monitoring gene expression in intact cells, a non-gene-fusion enzyme-based indicator plasmid has been constructed containing the phoA gene coding for alkaline phosphatase (AP) in pUCIS and pACYC184. The activity of AP can be rapidly determined in permeabilized cells. A flow injection analysis (FIA) assay has been developed which allows the direct real-time measurement of the AP activity during cell growth. A model target gene coding for E. coli cyanase (cynS) has been inserted in order to determine the ratio between the expression of the target and indicator, AP. A linear relationship has been found between plasmid copy number and AP activity for the high-copy pUC vector. To minimize indicator expression, transcription terminators have been inserted between the cynS and phoA genes, altering the target-to-indicator ratio by 10- to 40-fold. These vectors may be useful for the rapid continuous determination of plasmid copy number and target gene expression for nonsecreted proteins and would overcome the limitations of in situ probe biosensors for real-time determination of the accumulation of proteins from cloned genes in E. coli.

  7. Whole Genome Pathway Analysis Identifies an Association of Cadmium Response Gene Loss with Copy Number Variation in Mutant p53 Bearing Uterine Endometrial Carcinomas.

    Directory of Open Access Journals (Sweden)

    Joe Ryan Delaney

    Full Text Available Massive chromosomal aberrations are a signature of advanced cancer, although the factors promoting the pervasive incidence of these copy number alterations (CNAs are poorly understood. Gatekeeper mutations, such as p53, contribute to aneuploidy, yet p53 mutant tumors do not always display CNAs. Uterine Corpus Endometrial Carcinoma (UCEC offers a unique system to begin to evaluate why some cancers acquire high CNAs while others evolve another route to oncogenesis, since about half of p53 mutant UCEC tumors have a relatively flat CNA landscape and half have 20-90% of their genome altered in copy number.We extracted copy number information from 68 UCEC genomes mutant in p53 by the GISTIC2 algorithm. GO term pathway analysis, via GOrilla, was used to identify suppressed pathways. Genes within these pathways were mapped for focal or wide distribution. Deletion hotspots were evaluated for temporal incidence.Multiple pathways contributed to the development of pervasive CNAs, including developmental, metabolic, immunological, cell adhesion and cadmium response pathways. Surprisingly, cadmium response pathway genes are predicted as the earliest loss events within these tumors: in particular, the metallothionein genes involved in heavy metal sequestration. Loss of cadmium response genes were associated with copy number changes and poorer prognosis, contrasting with 'copy number flat' tumors which instead exhibited substantive mutation.Metallothioneins are lost early in the development of high CNA endometrial cancer, providing a potential mechanism and biological rationale for increased incidence of endometrial cancer with cadmium exposure. Developmental and metabolic pathways are altered later in tumor progression.

  8. Copy-number variants in neurodevelopmental disorders: promises and challenges.

    LENUS (Irish Health Repository)

    Merikangas, Alison K

    2012-02-01

    Copy-number variation (CNV) is the most prevalent type of structural variation in the human genome. There is emerging evidence that copy-number variants (CNVs) provide a new vista on understanding susceptibility to neuropsychiatric disorders. Some challenges in the interpretation of current CNV studies include the use of overlapping samples, differing phenotypic definitions, an absence of population norms for CNVs and a lack of consensus in methods for CNV detection and analysis. Here, we review current CNV association study methods and results in autism spectrum disorders (ASD) and schizophrenia, and provide suggestions for design approaches to future studies that might maximize the translation of this work to etiological understanding.

  9. Copy number variation in the bovine genome

    DEFF Research Database (Denmark)

    Fadista, João; Thomsen, Bo; Holm, Lars-Erik;

    2010-01-01

    to genetic variation in cattle. Results We designed and used a set of NimbleGen CGH arrays that tile across the assayable portion of the cattle genome with approximately 6.3 million probes, at a median probe spacing of 301 bp. This study reports the highest resolution map of copy number variation...... in the cattle genome, with 304 CNV regions (CNVRs) being identified among the genomes of 20 bovine samples from 4 dairy and beef breeds. The CNVRs identified covered 0.68% (22 Mb) of the genome, and ranged in size from 1.7 to 2,031 kb (median size 16.7 kb). About 20% of the CNVs co-localized with segmental...

  10. Design and Generation of MLPA Probe Sets for Combined Copy Number and Small-Mutation Analysis of Human Genes: EGFR as an Example

    Directory of Open Access Journals (Sweden)

    Malgorzata Marcinkowska

    2010-01-01

    Full Text Available Multiplex ligation-dependent probe amplification (MLPA is a multiplex copy number analysis method that is routinely used to identify large mutations in many clinical and research labs. One of the most important drawbacks of the standard MLPA setup is a complicated, and therefore expensive, procedure of generating long MLPA probes. This drawback substantially limits the applicability of MLPA to those genomic regions for which ready-to-use commercial kits are available. Here we present a simple protocol for designing MLPA probe sets that are composed entirely of short oligonucleotide half-probes generated through chemical synthesis. As an example, we present the design and generation of an MLPA assay for parallel copy number and small-mutation analysis of the EGFR gene.

  11. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    Science.gov (United States)

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  12. Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms.

    Directory of Open Access Journals (Sweden)

    Rajini R Haraksingh

    Full Text Available Accurate and efficient genome-wide detection of copy number variants (CNVs is essential for understanding human genomic variation, genome-wide CNV association type studies, cytogenetics research and diagnostics, and independent validation of CNVs identified from sequencing based technologies. Numerous, array-based platforms for CNV detection exist utilizing array Comparative Genome Hybridization (aCGH, Single Nucleotide Polymorphism (SNP genotyping or both. We have quantitatively assessed the abilities of twelve leading genome-wide CNV detection platforms to accurately detect Gold Standard sets of CNVs in the genome of HapMap CEU sample NA12878, and found significant differences in performance. The technologies analyzed were the NimbleGen 4.2 M, 2.1 M and 3×720 K Whole Genome and CNV focused arrays, the Agilent 1×1 M CGH and High Resolution and 2×400 K CNV and SNP+CGH arrays, the Illumina Human Omni1Quad array and the Affymetrix SNP 6.0 array. The Gold Standards used were a 1000 Genomes Project sequencing-based set of 3997 validated CNVs and an ultra high-resolution aCGH-based set of 756 validated CNVs. We found that sensitivity, total number, size range and breakpoint resolution of CNV calls were highest for CNV focused arrays. Our results are important for cost effective CNV detection and validation for both basic and clinical applications.

  13. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: a feasibility study.

    Science.gov (United States)

    Iddawela, Mahesh; Rueda, Oscar; Eremin, Jenny; Eremin, Oleg; Cowley, Jed; Earl, Helena M; Caldas, Carlos

    2017-07-11

    An absence of reliable molecular markers has hampered individualised breast cancer treatments, and a major limitation for translational research is the lack of fresh tissue. There are, however, abundant banks of formalin-fixed paraffin-embedded (FFPE) tissue. This study evaluated two platforms available for the analysis of DNA copy number and gene expression using FFPE samples. The cDNA-mediated annealing, selection, extension, and ligation assay (DASL™) has been developed for gene expression analysis and the Molecular Inversion Probes assay (Oncoscan™), were used for copy number analysis using FFPE tissues. Gene expression and copy number were evaluated in core-biopsy samples from patients with breast cancer undergoing neoadjuvant chemotherapy (NAC). Forty-three core-biopsies were evaluated and characteristic copy number changes in breast cancers, gains in 1q, 8q, 11q, 17q and 20q and losses in 6q, 8p, 13q and 16q, were confirmed. Regions that frequently exhibited gains in tumours showing a pathological complete response (pCR) to NAC were 1q (55%), 8q (40%) and 17q (40%), whereas 11q11 (37%) gain was the most frequent change in non-pCR tumours. Gains associated with poor survival were 11q13 (62%), 8q24 (54%) and 20q (47%). Gene expression assessed by DASL correlated with immunohistochemistry (IHC) analysis for oestrogen receptor (ER) [area under the curve (AUC) = 0.95], progesterone receptor (PR)(AUC = 0.90) and human epidermal growth factor type-2 receptor (HER-2) (AUC = 0.96). Differential expression analysis between ER+ and ER- cancers identified over-expression of TTF1, LAF-4 and C-MYB (p ≤ 0.05), and between pCR vs non-pCRs, over-expression of CXCL9, AREG, B-MYB and under-expression of ABCG2. This study was an integrative analysis of copy number and gene expression using FFPE core biopsies and showed that molecular marker data from FFPE tissues were consistent with those in previous studies using fresh-frozen samples. FFPE tissue can provide

  14. High-resolution copy number arrays in cancer and the problem of normal genome copy number variation.

    Science.gov (United States)

    Gorringe, Kylie L; Campbell, Ian G

    2008-11-01

    High-resolution techniques for analysis of genome copy number (CN) enable the analysis of complex cancer somatic genetics. However, the analysis of these data is difficult, and failure to consider a number of issues in depth may result in false leads or unnecessary rejection of true positives. First, segmental duplications may falsely generate CN breakpoints in aneuploid samples. Second, even when tumor data were each normalized to matching lymphocyte DNA, we still observed copy number polymorphisms masquerading as somatic alterations due to allelic imbalance. We investigated a number of different solutions and determined that evaluating matching normal DNA, or at least using locally derived normal baseline data, were preferable to relying on current online databases because of poor cross-platform compatibility and the likelihood of excluding genuine small somatic alterations.

  15. Copy number variation identification and analysis of the chicken genome using a 60K SNP BeadChip.

    Science.gov (United States)

    Rao, Y S; Li, J; Zhang, R; Lin, X R; Xu, J G; Xie, L; Xu, Z Q; Wang, L; Gan, J K; Xie, X J; He, J; Zhang, X Q

    2016-08-01

    Copy number variation (CNV) is an important source of genetic variation in organisms and a main factor that affects phenotypic variation. A comprehensive study of chicken CNV can provide valuable information on genetic diversity and facilitate future analyses of associations between CNV and economically important traits in chickens. In the present study, an F2 full-sib chicken population (554 individuals), established from a cross between Xinghua and White Recessive Rock chickens, was used to explore CNV in the chicken genome. Genotyping was performed using a chicken 60K SNP BeadChip. A total of 1,875 CNV were detected with the PennCNV algorithm, and the average number of CNV was 3.42 per individual. The CNV were distributed across 383 independent CNV regions (CNVR) and covered 41 megabases (3.97%) of the chicken genome. Seven CNVR in 108 individuals were validated by quantitative real-time PCR, and 81 of these individuals (75%) also were detected with the PennCNV algorithm. In total, 274 CNVR (71.54%) identified in the current study were previously reported. Of these, 147 (38.38%) were reported in at least 2 studies. Additionally, 109 of the CNVR (28.46%) discovered here are novel. A total of 709 genes within or overlapping with the CNVR was retrieved. Out of the 2,742 quantitative trait loci (QTL) collected in the chicken QTL database, 43 QTL had confidence intervals overlapping with the CNVR, and 32 CNVR encompassed one or more functional genes. The functional genes located in the CNVR are likely to be the QTG that are associated with underlying economic traits. This study considerably expands our insight into the structural variation in the genome of chickens and provides an important resource for genomic variation, especially for genomic structural variation related to economic traits in chickens.

  16. Schizophrenia copy number variants and associative learning

    Science.gov (United States)

    Clifton, N E; Pocklington, A J; Scholz, B; Rees, E; Walters, J T R; Kirov, G; O'Donovan, M C; Owen, M J; Wilkinson, L S; Thomas, K L; Hall, J

    2017-01-01

    Large-scale genomic studies have made major progress in identifying genetic risk variants for schizophrenia. A key finding from these studies is that there is an increased burden of genomic copy number variants (CNVs) in schizophrenia cases compared with controls. The mechanism through which these CNVs confer risk for the symptoms of schizophrenia, however, remains unclear. One possibility is that schizophrenia risk CNVs impact basic associative learning processes, abnormalities of which have long been associated with the disorder. To investigate whether genes in schizophrenia CNVs impact on specific phases of associative learning we combined human genetics with experimental gene expression studies in animals. In a sample of 11 917 schizophrenia cases and 16 416 controls, we investigated whether CNVs from patients with schizophrenia are enriched for genes expressed during the consolidation, retrieval or extinction of associative memories. We show that CNVs from cases are enriched for genes expressed during fear extinction in the hippocampus, but not genes expressed following consolidation or retrieval. These results suggest that CNVs act to impair inhibitory learning in schizophrenia, potentially contributing to the development of core symptoms of the disorder. PMID:27956746

  17. Analysis of Copy Number Variation in Alzheimer’s Disease: the NIA-LOAD/NCRAD Family Study

    Science.gov (United States)

    Swaminathan, Shanker; Shen, Li; Kim, Sungeun; Inlow, Mark; West, John D.; Faber, Kelley M.; Foroud, Tatiana; Mayeux, Richard; Saykin, Andrew J.

    2012-01-01

    Copy number variants (CNVs) are DNA regions that have gains (duplications) or losses (deletions) of genetic material. CNVs may encompass a single gene or multiple genes and can affect their function. They are hypothesized to play an important role in certain diseases. We previously examined the role of CNVs in late-onset Alzheimer's disease (AD) and mild cognitive impairment (MCI) using participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study and identified gene regions overlapped by CNVs only in cases (AD and/or MCI) but not in controls. Using a similar approach as ADNI, we investigated the role of CNVs using 794 AD and 196 neurologically evaluated control non-Hispanic Caucasian NIA-LOAD/NCRAD Family Study participants with DNA derived from blood/brain tissue. The controls had no family history of AD and were unrelated to AD participants. CNV calls were generated and analyzed after detailed quality review. 711 AD cases and 171 controls who passed all quality thresholds were included in case/control association analyses, focusing on candidate gene and genome-wide approaches. We identified genes overlapped by CNV calls only in AD cases but not controls. A trend for lower CNV call rate was observed for deletions as well as duplications in cases compared to controls. Gene-based association analyses confirmed previous findings in the ADNI study (ATXN1, HLA-DPB1, RELN, DOPEY2, GSTT1, CHRFAM7A, ERBB4, NRXN1) and identified a new gene (IMMP2L) that may play a role in AD susceptibility. Replication in independent samples as well as further analyses of these gene regions is warranted. PMID:22486522

  18. Copy number variation in the horse genome.

    Directory of Open Access Journals (Sweden)

    Sharmila Ghosh

    2014-10-01

    Full Text Available We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches.

  19. Copy number variation in the horse genome.

    Science.gov (United States)

    Ghosh, Sharmila; Qu, Zhipeng; Das, Pranab J; Fang, Erica; Juras, Rytis; Cothran, E Gus; McDonell, Sue; Kenney, Daniel G; Lear, Teri L; Adelson, David L; Chowdhary, Bhanu P; Raudsepp, Terje

    2014-10-01

    We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches.

  20. Integrative analysis of DNA copy number and gene expression in metastatic oral squamous cell carcinoma identifies genes associated with poor survival.

    Science.gov (United States)

    Xu, Chang; Liu, Yan; Wang, Pei; Fan, Wenhong; Rue, Tessa C; Upton, Melissa P; Houck, John R; Lohavanichbutr, Pawadee; Doody, David R; Futran, Neal D; Zhao, Lue Ping; Schwartz, Stephen M; Chen, Chu; Méndez, Eduardo

    2010-06-11

    Lymphotropism in oral squamous cell carcinoma (OSCC) is one of the most important prognostic factors of 5-year survival. In an effort to identify genes that may be responsible for the initiation of OSCC lymphotropism, we examined DNA copy number gains and losses and corresponding gene expression changes from tumor cells in metastatic lymph nodes of patients with OSCC. We performed integrative analysis of DNA copy number alterations (CNA) and corresponding mRNA expression from OSCC cells isolated from metastatic lymph nodes of 20 patients using Affymetrix 250 K Nsp I SNP and U133 Plus 2.0 arrays, respectively. Overall, genome CNA accounted for expression changes in 31% of the transcripts studied. Genome region 11q13.2-11q13.3 shows the highest correlation between DNA CNA and expression. With a false discovery rate expression. Among these, we found two subsets that were significantly associated with OSCC (n = 122) when compared to controls, and with survival (n = 27), as tested using an independent dataset with genome-wide expression profiles for 148 primary OSCC and 45 normal oral mucosa. We fit Cox models to calculate a principal component analysis-derived risk-score for these two gene sets ('122-' or '27-transcript PC'). The models combining the 122- or 27-transcript PC with stage outperformed the model using stage alone in terms of the Area Under the Curve (AUC = 0.82 or 0.86 vs. 0.72, with p = 0.044 or 0.011, respectively). Genes exhibiting CNA-correlated expression may have biological impact on carcinogenesis and cancer progression in OSCC. Determination of copy number-associated transcripts associated with clinical outcomes in tumor cells with an aggressive phenotype (i.e., cells metastasized to the lymph nodes) can help prioritize candidate transcripts from high-throughput data for further studies.

  1. Investigation of the population structure of Legionella pneumophila by analysis of tandem repeat copy number and internal sequence variation.

    Science.gov (United States)

    Visca, Paolo; D'Arezzo, Silvia; Ramisse, Françoise; Gelfand, Yevgeniy; Benson, Gary; Vergnaud, Gilles; Fry, Norman K; Pourcel, Christine

    2011-09-01

    The population structure of the species Legionella pneumophila was investigated by multilocus variable number of tandem repeats (VNTR) analysis (MLVA) and sequencing of three VNTRs (Lpms01, Lpms04 and Lpms13) in selected strains. Of 150 isolates of diverse origins, 136 (86 %) were distributed into eight large MLVA clonal complexes (VACCs) and the rest were either unique or formed small clusters of up to two MLVA genotypes. In spite of the lower degree of genome-wide linkage disequilibrium of the MLVA loci compared with sequence-based typing, the clustering achieved by the two methods was highly congruent. The detailed analysis of VNTR Lpms04 alleles showed a very complex organization, with five different repeat unit lengths and a high level of internal variation. Within each MLVA-defined VACC, Lpms04 was endowed with a common recognizable pattern with some interesting exceptions. Evidence of recombination events was suggested by analysis of internal repeat variations at the two additional VNTR loci, Lpms01 and Lpms13. Sequence analysis of L. pneumophila VNTR locus Lpms04 alone provides a first-line assay for allocation of a new isolate within the L. pneumophila population structure and for epidemiological studies.

  2. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: the role of rare variants and duplications at 15q13.3.

    NARCIS (Netherlands)

    Williams, N.M.; Franke, B.; Mick, E.; Anney, R.J.; Freitag, C.M.; Gill, M.; Thapar, A.; O'Donovan, M.C.; Owen, M.J.; Holmans, P.; Kent, L.; Middleton, F.; Zhang-James, Y.; Liu, L.; Meyer, J.; Nguyen, T.T.M.; Romanos, J.; Romanos, M.; Seitz, C.; Renner, T.J.; Walitza, S.; Warnke, A.; Palmason, H.; Buitelaar, J.K.; Rommelse, N.N.; Arias Vasquez, A.; Hawi, Z.; Langley, K.; Sergeant, J.A.; Steinhausen, H.C.; Roeyers, H.; Biederman, J.; Zaharieva, I.; Hakonarson, H.; Elia, J.; Lionel, A.C.; Crosbie, J.; Marshall, C.R.; Schachar, R.; Scherer, S.W.; Todorov, A.; Smalley, S.L.; Loo, S.; Nelson, S.; Shtir, C.; Asherson, P.; Reif, A.; Lesch, K.P.; Faraone, S.V.

    2012-01-01

    OBJECTIVE: Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder. Because of its multifactorial etiology, however, identifying the genes involved has been difficult. The authors followed up on recent findings suggesting that rare copy number variants (CNV

  3. Genome-wide copy number profiling on high-density bacterial artificial chromosomes, single-nucleotide polymorphisms, and oligonucleotide microarrays: a platform comparison based on statistical power analysis.

    NARCIS (Netherlands)

    Hehir-Kwa, J.Y.; Egmont-Peterson, M.; Janssen, I.M.; Smeets, D.F.C.M.; Geurts van Kessel, A.H.M.; Veltman, J.A.

    2007-01-01

    Recently, comparative genomic hybridization onto bacterial artificial chromosome (BAC) arrays (array-based comparative genomic hybridization) has proved to be successful for the detection of submicroscopic DNA copy-number variations in health and disease. Technological improvements to achieve a

  4. Porcine MAP3K5 analysis: molecular cloning, characterization, tissue expression pattern, and copy number variations associated with residual feed intake.

    Science.gov (United States)

    Pu, L; Zhang, L C; Zhang, J S; Song, X; Wang, L G; Liang, J; Zhang, Y B; Liu, X; Yan, H; Zhang, T; Yue, J W; Li, N; Wu, Q Q; Wang, L X

    2016-08-12

    Mitogen-activated protein kinase kinase kinase 5 (MAP3K5) is essential for apoptosis, proliferation, differentiation, and immune responses, and is a candidate marker for residual feed intake (RFI) in pig. We cloned the full-length cDNA sequence of porcine MAP3K5 by rapid-amplification of cDNA ends. The 5451-bp gene contains a 5'-untranslated region (UTR) (718 bp), a coding region (3738 bp), and a 3'-UTR (995 bp), and encodes a peptide of 1245 amino acids, which shares 97, 99, 97, 93, 91, and 84% sequence identity with cattle, sheep, human, mouse, chicken, and zebrafish MAP3K5, respectively. The deduced MAP3K5 protein sequence contains two conserved domains: a DUF4071 domain and a protein kinase domain. Phylogenetic analysis showed that porcine MAP3K5 forms a separate branch to vicugna and camel MAP3K5. Tissue expression analysis using real-time quantitative polymerase chain reaction (qRT-PCR) revealed that MAP3K5 was expressed in the heart, liver, spleen, lung, kidney, muscle, fat, pancrea, ileum, and stomach tissues. Copy number variation was detected for porcine MAP3K5 and validated by qRT-PCR. Furthermore, a significant increase in average copy number was detected in the low RFI group when compared to the high RFI group in a Duroc pig population. These results provide useful information regarding the influence of MAP3K5 on RFI in pigs.

  5. Chimera-free, high copy number YAC libraries and efficient methods of analysis. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The first experiment involved a low chimera YAC library in recombination deficient host strains. To determine if the genetic background of the yeast host strain contributes to the formation of chimeric YACs the same YAC ligation mixture was introduced into three isogenic yeast hosts differing only in their recombination abilities. To prepare YACs, human genomic DNA was partially digested with EcoR1 and then ligated to YAC vector pCGS966 arms. DNA was size fractionated before and after ligation by preparative pulsed field gel electrophoresis (CHEF), selecting for fragments greater than 400 kb, and introduced into competent spheroplasts. CHEF gel Southern blots of resulting colony-purified YACs were probed with human DNA to determine if multiple YACs or YAC fragments were present in the same cell. The frequency of chimeric YACs was measured by fluorescence in situ hybridization (FISH) of YACs to human prometaphase spreads. YACs that hybridized to more than one location were assumed to be chimeric. In the second experiment new YAC vectors featuring tags for capture of YACs and YAC inserts were constructed. Yeast Artificial Chromosomes (YACs) have been of tremendous value in the physical mapping of the human genome. Because they can carry very large inserts, YACs are likely not only to contain entire genes but also their control elements. However, the only mode of purification of YAC DNA from current commonly used YAC libraries such as the CEPH library is by pulsed field gel electrophoresis. This is an inefficient, time consuming process and due to the single copy nature of these YACs, often result in poor yields. The vector pCGS1000 was designed to test new efficient ways of YAC DNA purification.

  6. Chimera-free, high copy number YAC libraries and efficient methods of analysis. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The first experiment involved a low chimera YAC library in recombination deficient host strains. To determine if the genetic background of the yeast host strain contributes to the formation of chimeric YACs the same YAC ligation mixture was introduced into three isogenic yeast hosts differing only in their recombination abilities. To prepare YACs, human genomic DNA was partially digested with EcoR1 and then ligated to YAC vector pCGS966 arms. DNA was size fractionated before and after ligation by preparative pulsed field gel electrophoresis (CHEF), selecting for fragments greater than 400 kb, and introduced into competent spheroplasts. CHEF gel Southern blots of resulting colony-purified YACs were probed with human DNA to determine if multiple YACs or YAC fragments were present in the same cell. The frequency of chimeric YACs was measured by fluorescence in situ hybridization (FISH) of YACs to human prometaphase spreads. YACs that hybridized to more than one location were assumed to be chimeric. In the second experiment new YAC vectors featuring tags for capture of YACs and YAC inserts were constructed. Yeast Artificial Chromosomes (YACs) have been of tremendous value in the physical mapping of the human genome. Because they can carry very large inserts, YACs are likely not only to contain entire genes but also their control elements. However, the only mode of purification of YAC DNA from current commonly used YAC libraries such as the CEPH library is by pulsed field gel electrophoresis. This is an inefficient, time consuming process and due to the single copy nature of these YACs, often result in poor yields. The vector pCGS1000 was designed to test new efficient ways of YAC DNA purification.

  7. Are there any more ovarian tumor suppressor genes? A new perspective using ultra high-resolution copy number and loss of heterozygosity analysis.

    Science.gov (United States)

    Gorringe, Kylie L; Ramakrishna, Manasa; Williams, Louise H; Sridhar, Anita; Boyle, Samantha E; Bearfoot, Jennifer L; Li, Jason; Anglesio, Michael S; Campbell, Ian G

    2009-10-01

    Ovarian cancer is characterized by complex genetic alterations, including copy number loss and copy number-neutral loss of heterozygosity (LOH). These alterations are assumed to represent the "second hit" of the underlying tumor suppressor gene (TSG), however, relative to the number of LOH hotspots reported, few ovarian TSGs have been identified. We conducted a high-resolution LOH analysis using SNP arrays (500K and SNP6.0) of 106 primary ovarian tumors of various histological subtypes together with matching normal DNA. LOH was detected in at least 35% of samples on chromosomes 17, 19p, 22q, Xp, 13q, 8p, 6q, 4q, 5q, 1p, 16q, and 9q with a median minimal region of overlap of only 300 kb. Subtype-specific differences in LOH frequency were noted, particularly for mucinous cases. We also identified 192 somatic homozygous deletions (HDs). Recurrent HDs targeted known TSGs such as CDKN2A (eight samples), RB1 (five samples), and PTEN (three samples). Additional recurrent HDs targeted 16 candidate TSGs near minimal regions of LOH on chromosomes 17, 13, 8p, 5q, and X. Given the importance of HDs in inactivating known genes, these candidates are highly likely to be ovarian TSGs. Our data suggest that the poor success of previous LOH studies was due to the inability of previous technology to resolve complex genomic alterations and distinguish true LOH from allelic imbalance. This study shows that recurrent regions of LOH and HD frequently align with known TSGs suggesting that LOH analysis remains a valid approach to discovering new candidates.

  8. EGFR gene copy number as a predictive/biomarker for patients with non-small-cell lung cancer receiving tyrosine kinase inhibitor treatment: a systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Xin; Zhang, Yiwen; Tang, Hailing; He, Jianxing

    2017-01-01

    Epidermal growth factor receptor (EGFR) gene copy number has been proposed as a candidate biomarker for predicting treatment response to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in patients with advanced non-small-cell lung cancer (NSCLC). MEDLINE, PubMed, Cochrane, and Google Scholar databases were searched until October 21, 2015 using the following search terms: lung neoplasms/lung cancer/non-small cell lung cancer/NSCLC, EGFR, gene amplification, copy number, erlotinib, gefitinib, tyrosine-kinase inhibitor/TKI, predictor. 17 studies were included in the analysis with a total of 2047 patients. The overall analysis found that increased EGFR gene copy number was associated with higher overall response rate (ORR), overall survival (OS) and progression-free survival (PFS; p values ≤0.008) compared with patients without a high EGFR gene copy number. Subgroup analysis found that in a population of patients who were primarily Caucasian, a higher EGFR gene copy number was also associated with increased ORR, OS, and PFS (p values ≤0.018). The results were similar in a population of Asian patients, except that a higher EGFR gene copy number was not associated with improved OS (p=0.248). Sensitivity analysis indicated that no one study overly influenced the results and that the findings are robust. The result of the analysis found that EGFR gene copy number was associated with increased OS and PFS, supporting the idea that EGFR gene copy number is a biomarker for response to EGFR-TKI therapy in patients with advanced NSCLC. Copyright © 2016 American Federation for Medical Research.

  9. Mitochondrial DNA copy number in peripheral blood and melanoma risk.

    Directory of Open Access Journals (Sweden)

    Jie Shen

    Full Text Available Mitochondrial DNA (mtDNA copy number in peripheral blood has been suggested as risk modifier in various types of cancer. However, its influence on melanoma risk is unclear. We evaluated the association between mtDNA copy number in peripheral blood and melanoma risk in 500 melanoma cases and 500 healthy controls from an ongoing melanoma study. The mtDNA copy number was measured using real-time polymerase chain reaction. Overall, mean mtDNA copy number was significantly higher in cases than in controls (1.15 vs 0.99, P<0.001. Increased mtDNA copy number was associated with a 1.45-fold increased risk of melanoma (95% confidence interval: 1.12-1.97. Significant joint effects between mtDNA copy number and variables related to pigmentation and history of sunlight exposure were observed. This study supports an association between increased mtDNA copy number and melanoma risk that is independent on the known melanoma risk factors (pigmentation and history of sunlight exposure.

  10. Copy number gain of VCX, X-linked multi-copy gene, leads to cell proliferation and apoptosis during spermatogenesis

    Science.gov (United States)

    Ji, Juan; Qin, Yufeng; Wang, Rong; Huang, Zhenyao; Zhang, Yan; Zhou, Ran; Song, Ling; Ling, Xiufeng; Hu, Zhibin; Miao, Dengshun; Shen, Hongbing; Xia, Yankai; Wang, Xinru; Lu, Chuncheng

    2016-01-01

    Male factor infertility affects one-sixth of couples worldwide, and non-obstructive azoospermia (NOA) is one of the most severe forms. In recent years there has been increasing evidence to implicate the participation of X chromosome in the process of spermatogenesis. To uncover the roles of X-linked multi-copy genes in spermatogenesis, we performed systematic analysis of X-linked gene copy number variations (CNVs) and Y chromosome haplogrouping in 447 idiopathic NOA patients and 485 healthy controls. Interestingly, the frequency of individuals with abnormal level copy of Variable charge, X-linked (VCX) was significantly different between cases and controls after multiple test correction (p = 5.10 × 10−5). To discriminate the effect of gain/loss copies in these genes, we analyzed the frequency of X-linked multi-copy genes in subjects among subdivided groups. Our results demonstrated that individuals with increased copy numbers of Nuclear RNA export factor 2 (NXF2) (p = 9.21 × 10−8) and VCX (p = 1.97 × 10−4) conferred the risk of NOA. In vitro analysis demonstrated that increasing copy number of VCX could upregulate the gene expression and regulate cell proliferation and apoptosis. Our study establishes a robust association between the VCX CNVs and NOA risk. PMID:27705943

  11. Copy number gain of VCX, X-linked multi-copy gene, leads to cell proliferation and apoptosis during spermatogenesis.

    Science.gov (United States)

    Ji, Juan; Qin, Yufeng; Wang, Rong; Huang, Zhenyao; Zhang, Yan; Zhou, Ran; Song, Ling; Ling, Xiufeng; Hu, Zhibin; Miao, Dengshun; Shen, Hongbing; Xia, Yankai; Wang, Xinru; Lu, Chuncheng

    2016-11-29

    Male factor infertility affects one-sixth of couples worldwide, and non-obstructive azoospermia (NOA) is one of the most severe forms. In recent years there has been increasing evidence to implicate the participation of X chromosome in the process of spermatogenesis. To uncover the roles of X-linked multi-copy genes in spermatogenesis, we performed systematic analysis of X-linked gene copy number variations (CNVs) and Y chromosome haplogrouping in 447 idiopathic NOA patients and 485 healthy controls. Interestingly, the frequency of individuals with abnormal level copy of Variable charge, X-linked (VCX) was significantly different between cases and controls after multiple test correction (p = 5.10 × 10-5). To discriminate the effect of gain/loss copies in these genes, we analyzed the frequency of X-linked multi-copy genes in subjects among subdivided groups. Our results demonstrated that individuals with increased copy numbers of Nuclear RNA export factor 2 (NXF2) (p = 9.21 × 10-8) and VCX (p = 1.97 × 10-4) conferred the risk of NOA. In vitro analysis demonstrated that increasing copy number of VCX could upregulate the gene expression and regulate cell proliferation and apoptosis. Our study establishes a robust association between the VCX CNVs and NOA risk.

  12. Copy number analysis by low coverage whole genome sequencing using ultra low-input DNA from formalin-fixed paraffin embedded tumor tissue.

    Science.gov (United States)

    Kader, Tanjina; Goode, David L; Wong, Stephen Q; Connaughton, Jacquie; Rowley, Simone M; Devereux, Lisa; Byrne, David; Fox, Stephen B; Mir Arnau, Gisela; Tothill, Richard W; Campbell, Ian G; Gorringe, Kylie L

    2016-11-15

    Unlocking clinically translatable genomic information, including copy number alterations (CNA), from formalin-fixed paraffin-embedded (FFPE) tissue is challenging due to low yields and degraded DNA. We describe a robust, cost-effective low-coverage whole genome sequencing (LC WGS) method for CNA detection using 5 ng of FFPE-derived DNA. CN profiles using 100 ng or 5 ng input DNA were highly concordant and comparable with molecular inversion probe (MIP) array profiles. LC WGS improved CN profiles of samples that performed poorly using MIP arrays. Our technique enables identification of driver and prognostic CNAs in archival patient samples previously deemed unsuitable for genomic analysis due to DNA limitations.

  13. Network-guided analysis of genes with altered somatic copy number and gene expression reveals pathways commonly perturbed in metastatic melanoma.

    Directory of Open Access Journals (Sweden)

    Armand Valsesia

    Full Text Available Cancer genomes frequently contain somatic copy number alterations (SCNA that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes' in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.

  14. An explorative analysis of ERCC1-19q13 copy number aberrations in a chemonaive stage III colorectal cancer cohort

    DEFF Research Database (Denmark)

    Smith, David Hersi; Christensen, Ib Jarle; Jensen, Niels Frank

    2013-01-01

    investigation is to determine the presence, frequency and prognostic impact of ERCC1 or ERCC4 gene copy number alterations in colorectal cancer (CRC). Methods: Fluorescent in situ hybridization probes directed at ERCC1 and ERCC4 with relevant reference probes were constructed. Probes were tested in a CRC cell...... line panel and in tumor sections from 152 stage III CRC chemonaive patients. Relationships between biomarker status and clinical endpoints (overall survival, time to recurrence, and local recurrence in rectal cancer) were analyzed by survival statistics. Results: ERCC1-19q13 copy number alterations...... were observed in a single cell line metaphase (HT29). In patient material, ERCC1-19q13 copy number gains (ERCC1-19q13/CEN-2 ≥ 1.5) were detected in 27.0% of specimens, whereas ERCC1-19q13 deletions (ERCC1-19q13/CEN-2

  15. Molecular methods for genotyping complex copy number polymorphisms.

    Science.gov (United States)

    Cantsilieris, Stuart; Baird, Paul N; White, Stefan J

    2013-02-01

    Genome structural variation shows remarkable complexity with respect to copy number, sequence content and distribution. While the discovery of copy number polymorphisms (CNP) has increased exponentially in recent years, the transition from discovery to genotyping has proved challenging, particularly for CNPs embedded in complex regions of the genome. CNPs that are collectively common in the population and possess a dynamic range of copy numbers have proved the most difficult to genotype in association studies. This is in some part due to technical limitations of genotyping assays and the sequence properties of the genomic region being analyzed. Here we describe in detail the basis of a number of molecular techniques used to genotype complex CNPs, compare and contrast these approaches for determination of multi-allelic copy number, and discuss the potential application of these techniques in genetic studies.

  16. Predictive diagnostic value for the clinical features accompanying intellectual disability in children with pathogenic copy number variations: a multivariate analysis

    Science.gov (United States)

    2014-01-01

    Background Array comparative genomic hybridization (a-CGH) has become the first-tier investigation in patients with unexplained developmental delay/intellectual disability (DD/ID). Although the costs are progressively decreasing, a-CGH is still an expensive and labour-intensive technique: for this reason a definition of the categories of patients that can benefit the most of the analysis is needed. Aim of the study was to retrospectively analyze the clinical features of children with DD/ID attending the outpatient clinic of the Mother & Child Department of the University Hospital of Modena subjected to a-CGH, to verify by uni- and multivariate analysis the independent predictors of pathogenic CNVs. Methods 116 patients were included in the study. Data relative to the CNVs and to the patients’ clinical features were analyzed for genotype/phenotype correlations. Results and conclusions 27 patients (23.3%) presented pathogenic CNVs (21 deletions, 3 duplications and 3 cases with both duplications and deletions). Univariate analysis showed a significant association of the pathogenic CNVs with the early onset of symptoms (before 1 yr of age) and the presence of malformations and dysmorphisms. Logistic regression analysis showed a significant independent predictive value for diagnosing a pathogenic CNV for malformations (P = 0.002) and dysmorphisms (P = 0.023), suggesting that those features should address a-CGH analysis as a high-priority test for diagnosis. PMID:24775911

  17. Analysis of copy number variations in Holstein cows identify potential mechanisms contributing to differences in residual feed intake

    Science.gov (United States)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. In this study, we performed an initial analysis of CNVs using BovineHD SNP genotyping data from 147 Holstein cows identified as having high or low feed efficiency as estimated by residual feed intak...

  18. Mitochondrial DNA copy number in whole blood and glioma risk: A case control study.

    Science.gov (United States)

    Shen, Jie; Song, Renduo; Lu, Zhimin; Zhao, Hua

    2016-12-01

    Alterations in mitochondrial DNA (mtDNA) copy number are observed in human gliomas. However, whether variations in mtDNA copy number in whole blood play any role in glioma carcinogenesis is still largely unknown. In current study with 395 glioma patients and 425 healthy controls, we intended to investigate the association between mtDNA copy number in whole blood and glioma risk. Overall, we found that levels of mtDNA copy number were significantly higher in glioma cases than healthy controls (mean: 1.48 vs. 1.32, P copy number were inversely correlated with age (P copy number than their counterparts (P = 0.02, P copy number levels were associated with a 1.63-fold increased risk of glioma (adjusted odds ratio (OR) = 1.63, 95% confidence interval (CI) = 1.23-2.14). In further quartile analysis, study subjects who had highest levels of mtNDA copy number had 1.75-fold increased risk of gliomas (adjOR = 1.75, 95%CI = 1.18-2.61). In brief, our findings support the role of mtDNA copy number in the glioma carcinogenesis. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-15

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen the yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  20. DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly

    NARCIS (Netherlands)

    Scheinin, I.; Sie, D.; Bengtsson, H.; Wiel, M.A. van de; Olshen, A.B.; Thuijl, H.F. van; Essen, H.F. van; Eijk, P.P.; Rustenburg, F.; Meijer, G.A.; Reijneveld, J.C.; Wesseling, P.; Pinkel, D.; Albertson, D.G.; Ylstra, B.

    2014-01-01

    Detection of DNA copy number aberrations by shallow whole-genome sequencing (WGS) faces many challenges, including lack of completion and errors in the human reference genome, repetitive sequences, polymorphisms, variable sample quality, and biases in the sequencing procedures. Formalin-fixed paraff

  1. Genome-wide copy number profiling on high-density bacterial artificial chromosomes, single-nucleotide polymorphisms, and oligonucleotide microarrays: a platform comparison based on statistical power analysis.

    NARCIS (Netherlands)

    Hehir-Kwa, J.Y.; Egmont-Peterson, M.; Janssen, I.M.; Smeets, D.F.C.M.; Geurts van Kessel, A.H.M.; Veltman, J.A.

    2007-01-01

    Recently, comparative genomic hybridization onto bacterial artificial chromosome (BAC) arrays (array-based comparative genomic hybridization) has proved to be successful for the detection of submicroscopic DNA copy-number variations in health and disease. Technological improvements to achieve a high

  2. Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing.

    Directory of Open Access Journals (Sweden)

    Zhifu Sun

    Full Text Available We used deep sequencing technology to profile the transcriptome, gene copy number, and CpG island methylation status simultaneously in eight commonly used breast cell lines to develop a model for how these genomic features are integrated in estrogen receptor positive (ER+ and negative breast cancer. Total mRNA sequence, gene copy number, and genomic CpG island methylation were carried out using the Illumina Genome Analyzer. Sequences were mapped to the human genome to obtain digitized gene expression data, DNA copy number in reference to the non-tumor cell line (MCF10A, and methylation status of 21,570 CpG islands to identify differentially expressed genes that were correlated with methylation or copy number changes. These were evaluated in a dataset from 129 primary breast tumors. Gene expression in cell lines was dominated by ER-associated genes. ER+ and ER- cell lines formed two distinct, stable clusters, and 1,873 genes were differentially expressed in the two groups. Part of chromosome 8 was deleted in all ER- cells and part of chromosome 17 amplified in all ER+ cells. These loci encoded 30 genes that were overexpressed in ER+ cells; 9 of these genes were overexpressed in ER+ tumors. We identified 149 differentially expressed genes that exhibited differential methylation of one or more CpG islands within 5 kb of the 5' end of the gene and for which mRNA abundance was inversely correlated with CpG island methylation status. In primary tumors we identified 84 genes that appear to be robust components of the methylation signature that we identified in ER+ cell lines. Our analyses reveal a global pattern of differential CpG island methylation that contributes to the transcriptome landscape of ER+ and ER- breast cancer cells and tumors. The role of gene amplification/deletion appears to more modest, although several potentially significant genes appear to be regulated by copy number aberrations.

  3. Application of droplet digital PCR to determine copy number of endogenous genes and transgenes in sugarcane.

    Science.gov (United States)

    Sun, Yue; Joyce, Priya Aiyar

    2017-08-28

    Droplet digital PCR combined with the low copy ACT allele as endogenous reference gene, makes accurate and rapid estimation of gene copy number in Q208 (A) and Q240 (A) attainable. Sugarcane is an important cultivated crop with both high polyploidy and aneuploidy in its 10 Gb genome. Without a known copy number reference gene, it is difficult to accurately estimate the copy number of any gene of interest by PCR-based methods in sugarcane. Recently, a new technology, known as droplet digital PCR (ddPCR) has been developed which can measure the absolute amount of the target DNA in a given sample. In this study, we deduced the true copy number of three endogenous genes, actin depolymerizing factor (ADF), adenine phosphoribosyltransferase (APRT) and actin (ACT) in three Australian sugarcane varieties, using ddPCR by comparing the absolute amounts of the above genes with a transgene of known copy number. A single copy of the ACT allele was detected in Q208 (A) , two copies in Q240 (A) , but was absent in Q117. Copy number variation was also observed for both APRT and ADF, and ranged from 9 to 11 in the three tested varieties. Using this newly developed ddPCR method, transgene copy number was successfully determined in 19 transgenic Q208 (A) and Q240 (A) events using ACT as the reference endogenous gene. Our study demonstrates that ddPCR can be used for high-throughput genetic analysis and is a quick, accurate and reliable alternative method for gene copy number determination in sugarcane. This discovered ACT allele would be a suitable endogenous reference gene for future gene copy number variation and dosage studies of functional genes in Q208 (A) and Q240 (A) .

  4. Transcriptome sequence and plasmid copy number analysis of the brewery isolate Pediococcus claussenii ATCC BAA-344 T during growth in beer.

    Directory of Open Access Journals (Sweden)

    Vanessa Pittet

    Full Text Available Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients; however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcus claussenii ATCC BAA-344(T (Pc344-358. Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P. claussenii ATCC BAA-344(T genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria.

  5. Transcriptome sequence and plasmid copy number analysis of the brewery isolate Pediococcus claussenii ATCC BAA-344 T during growth in beer.

    Science.gov (United States)

    Pittet, Vanessa; Phister, Trevor G; Ziola, Barry

    2013-01-01

    Growth of specific lactic acid bacteria in beer leads to spoiled product and economic loss for the brewing industry. Microbial growth is typically inhibited by the combined stresses found in beer (e.g., ethanol, hops, low pH, minimal nutrients); however, certain bacteria have adapted to grow in this harsh environment. Considering little is known about the mechanisms used by bacteria to grow in and spoil beer, transcriptome sequencing was performed on a variant of the beer-spoilage organism Pediococcus claussenii ATCC BAA-344(T) (Pc344-358). Illumina sequencing was used to compare the transcript levels in Pc344-358 growing mid-exponentially in beer to those in nutrient-rich MRS broth. Various operons demonstrated high gene expression in beer, several of which are involved in nutrient acquisition and overcoming the inhibitory effects of hop compounds. As well, genes functioning in cell membrane modification and biosynthesis demonstrated significantly higher transcript levels in Pc344-358 growing in beer. Three plasmids had the majority of their genes showing increased transcript levels in beer, whereas the two cryptic plasmids showed slightly decreased gene expression. Follow-up analysis of plasmid copy number in both growth environments revealed similar trends, where more copies of the three non-cryptic plasmids were found in Pc344-358 growing in beer. Transcriptome sequencing also enabled the addition of several genes to the P. claussenii ATCC BAA-344(T) genome annotation, some of which are putatively transcribed as non-coding RNAs. The sequencing results not only provide the first transcriptome description of a beer-spoilage organism while growing in beer, but they also highlight several targets for future exploration, including genes that may have a role in the general stress response of lactic acid bacteria.

  6. Identification and sequence analysis of IS6501, an insertion sequence in Brucella spp.: relationship between genomic structure and the number of IS6501 copies.

    Science.gov (United States)

    Ouahrani, S; Michaux, S; Sri Widada, J; Bourg, G; Tournebize, R; Ramuz, M; Liautard, J P

    1993-12-01

    An insertion sequence (IS) element of Brucella ovis, named IS6501, was isolated and its complete nucleotide sequence determined. IS6501 is 836 bp in length and occurs 20-35 times in the B. ovis genome and 5-15 times in other Brucella species. Analysis of the junctions at the sites of insertion revealed a small target site duplication of four bases and inverted repeats of 17 bp with one mismatch. IS6501 presents significant similarity (53.4%) with IS427 identified in Agrobacterium tumefaciens, suggesting a common ancestral sequence. A long ORF of 708 bp was identified encoding a protein with a predicted molecular mass of 26 kDa and sharing sequence identity with the hypothetical protein 1 of A. tumefaciens and with the transposase of Mycobacterium tuberculosis. IS6501 is present in all Brucella strains we have tested. Restriction fragment length polymorphism of reference and field strains of two species (B. melitensis and B. ovis) was studied using either pulsed field gel electrophoresis (PFGE) on XbaI-digested DNA or hybridization of EcoRI-digested DNA using IS6501 as a probe. The genome of B. melitensis biovar 3 contains about 10 IS copies per genome and field strains of the same species could not be distinguished either by IS hybridization or by XbaI (PFGE) restriction patterns. In contrast, the number of IS copies in the B. ovis genome is around 30 and the different field strains can be differentiated by both methods.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Evolution vs the number of gene copies per primitive cell.

    Science.gov (United States)

    Koch, A L

    1984-01-01

    Computer simulations are presented of the rate at which an advantageous mutant would displace the prototype in a replicating system without an accurate segregation mechanism. If the number of gene copies in the system is indefinitely large, Darwinian evolution is essentially stopped because there is no coupling of phenotype with genotype, i.e., there is no growth advantage to the advantageous gene relative to the prototype and therefore no "survival of the fittest." The inhibition of evolution due to a number of gene copies less than 100 would have been not insurmountable. Although the presence of multiple copies would have allowed replacement by an advantageous mutant, it provided a way for the primitive cell to conserve less immediately useful genes that could evolve into different or more effective genes. This possibility was lost as accurate segregation mechanisms evolved and cells with few copies of each gene, such as modern procaryotes, arose.

  8. Copy number variations exploration of multiple genes in Graves' disease.

    Science.gov (United States)

    Song, Rong-Hua; Shao, Xiao-Qing; Li, Ling; Wang, Wen; Zhang, Jin-An

    2017-01-01

    Few previous published papers reported copy number variations of genes could affect the predisposition of Graves' disease (GD). Herein, the aim of this study was to explore the association between copy number variations (CNV) profile and GD. The preliminary copy number microarray used to screen copy number variant genes was performed in 6 GD patients. Five CNV candidate genes (CFH, CFHR1, KIAA0125, UGT2B15, and UGT2B17) were then validated in an independent set of samples (50 GD patients and 50 matched healthy ones) by the Accucopy assay method. The CNV of the other 2 genes TRY6 and CCL3L1 was investigated in 144 GD patients and 144 healthy volunteers by the definitive genotyping technique using the Taqman quantitative polymerase-chain-reaction (Taqman qPCR). TRY6 gene-associated single nucleotide polymorphism (SNP), rs13230029, was genotyped by the PCR-ligase detection reaction (LDR) in 675 GD patients and 898 healthy controls. There were no correlation of the gene copy number (GCN) of CFH, CFHR1, KIAA0125, UGT2B15, and UGT2B17 with GD. In comparison with that of controls, the GCN distribution of TRY6 and CCL3L1 in GD patients did not show significantly differ (P > 0.05). Furthermore, TRY6-related polymorphism (rs13230029) showed no difference between GD patients and controls. No correlation was found between CNV or SNP genotype and clinical phenotypes. Generally, there were no link of the copy numbers of several genes, including CFH, CFHR1, KIAA0125, UGT2B15, UGT2B17, TRY6, and CCL3L1 to GD. Our results clearly indicated that the copy number variations of multiple genes, namely CFH, CFHR1, KIAA0125, UGT2B15, UGT2B17, TRY6, and CCL3L1, were not associated with the development of GD.

  9. Germline copy number variation and ovarian cancer survival

    Directory of Open Access Journals (Sweden)

    Brooke L Fridley

    2012-08-01

    Full Text Available Copy number variants (CNVs have been implicated in many complex diseases. We examined whether inherited CNVs were associated with overall survival among women with invasive epithelial ovarian cancer. Germline DNA from 1,056 cases (494 deceased, average of 3.7 years follow-up was interrogated with the Illumina 610quad genome-wide array containing, after quality control exclusions, 581,903 single nucleotide polymorphisms (SNPs and 17,917 CNV probes. Comprehensive analysis capitalized upon the strengths of three complementary approaches to CNV classification. First, to identify small CNVs, single markers were evaluated and, where associated with survival, consecutive markers were combined. Two chromosomal regions were associated with survival using this approach (14q31.3 rs2274736 p=1.59x10-6, p=0.001; 22q13.31 rs2285164 p=4.01x10-5, p=0.009, but were not significant after multiple testing correction. Second, to identify large CNVs, genome-wide segmentation was conducted to characterize chromosomal gains and losses, and association with survival was evaluated by segment. Four regions were associated with survival (1q21.3 loss p=0.005, 5p14.1 loss p=0.004, 9p23 loss p=0.002, and 15q22.31 gain p=0.002; however, again, after correcting for multiple testing, no regions were statistically significant, and none were in common with the single-marker approach. Finally, to evaluate associations with general amounts of copy number changes across the genome, we estimated CNV burden based on genome-wide numbers of gains and losses; no associations with survival were observed (p>0.40. Although CNVs that were not well-covered by the Illumina 610quad array merit investigation, these data suggest no association between inherited CNVs and survival after ovarian cancer.

  10. Identifying Potential Regions of Copy Number Variation for Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Yi-Hsuan Chen

    2014-02-01

    Full Text Available Bipolar disorder is a complex psychiatric disorder with high heritability, but its genetic determinants are still largely unknown. Copy number variation (CNV is one of the sources to explain part of the heritability. However, it is a challenge to estimate discrete values of the copy numbers using continuous signals calling from a set of markers, and to simultaneously perform association testing between CNVs and phenotypic outcomes. The goal of the present study is to perform a series of data filtering and analysis procedures using a DNA pooling strategy to identify potential CNV regions that are related to bipolar disorder. A total of 200 normal controls and 200 clinically diagnosed bipolar patients were recruited in this study, and were randomly divided into eight control and eight case pools. Genome-wide genotyping was employed using Illumina Human Omni1-Quad array with approximately one million markers for CNV calling. We aimed at setting a series of criteria to filter out the signal noise of marker data and to reduce the chance of false-positive findings for CNV regions. We first defined CNV regions for each pool. Potential CNV regions were reported based on the different patterns of CNV status between cases and controls. Genes that were mapped into the potential CNV regions were examined with association testing, Gene Ontology enrichment analysis, and checked with existing literature for their associations with bipolar disorder. We reported several CNV regions that are related to bipolar disorder. Two CNV regions on chromosome 11 and 22 showed significant signal differences between cases and controls (p < 0.05. Another five CNV regions on chromosome 6, 9, and 19 were overlapped with results in previous CNV studies. Experimental validation of two CNV regions lent some support to our reported findings. Further experimental and replication studies could be designed for these selected regions.

  11. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins

    DEFF Research Database (Denmark)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra

    2015-01-01

    STUDY OBJECTIVES: Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins....... SETTING: Academic clinical research center. PARTICIPANTS: 15 sleep duration discordant monozygotic twin pairs (30 twins, 80% female; mean age 42.1 years [SD 15.0]). DESIGN: Sleep duration was phenotyped with wrist actigraphy. Each twin pair included a "normal" (7-9 h/24) and "short" (sleeping...... twin. Fasting peripheral blood leukocyte DNA was assessed for mtDNA copy number via the n-fold difference between qPCR measured mtDNA and nuclear DNA creating an mtDNA measure without absolute units. We used generalized estimating equation linear regression models accounting for the correlated data...

  12. Genetically complex epilepsies, copy number variants and syndrome constellations.

    Science.gov (United States)

    Mefford, Heather C; Mulley, John C

    2010-10-05

    Epilepsy is one of the most common neurological disorders, with a prevalence of 1% and lifetime incidence of 3%. There are numerous epilepsy syndromes, most of which are considered to be genetic epilepsies. Despite the discovery of more than 20 genes for epilepsy to date, much of the genetic contribution to epilepsy is not yet known. Copy number variants have been established as an important source of mutation in other complex brain disorders, including intellectual disability, autism and schizophrenia. Recent advances in technology now facilitate genome-wide searches for copy number variants and are beginning to be applied to epilepsy. Here, we discuss what is currently known about the contribution of copy number variants to epilepsy, and how that knowledge is redefining classification of clinical and genetic syndromes.

  13. A single-sample method for normalizing and combining full-resolution copy numbers from multiple platforms, labs and analysis methods

    OpenAIRE

    Bengtsson, Henrik; Ray, Amrita; Spellman, Paul; Speed, Terence P.

    2009-01-01

    Motivation: The rapid expansion of whole-genome copy number (CN) studies brings a demand for increased precision and resolution of CN estimates. Recent studies have obtained CN estimates from more than one platform for the same set of samples, and it is natural to want to combine the different estimates in order to meet this demand. Estimates from different platforms show different degrees of attenuation of the true CN changes. Similar differences can be observed in CNs from the same platform...

  14. Genome-Wide Copy Number Variation Analysis in Extended Families and Unrelated Individuals Characterized for Musical Aptitude and Creativity in Music

    OpenAIRE

    Ukkola-Vuoti, Liisa; Kanduri, Chakravarthi; Oikkonen, Jaana; Buck, Gemma; Blancher, Christine; Raijas, Pirre; Karma, Kai; Lähdesmäki, Harri; Järvelä, Irma

    2013-01-01

    Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the...

  15. Copy number variation analysis detects novel candidate genes involved in follicular growth and oocyte maturation in a cohort of premature ovarian failure cases

    OpenAIRE

    Tšuiko, O.; Nõukas, M.; Žilina, O.; Hensen, K; Tapanainen, J.S.; Mägi, R.; Kals, M.; Kivistik, P. A.; Haller-Kikkatalo, K.; Salumets, A.; Kurg, A.

    2016-01-01

    STUDY QUESTION Can spontaneous premature ovarian failure (POF) patients derived from population-based biobanks reveal the association between copy number variations (CNVs) and POF? SUMMARY ANSWER CNVs can hamper the functional capacity of ovaries by disrupting key genes and pathways essential for proper ovarian function. WHAT IS KNOWN ALREADY POF is defined as the cessation of ovarian function before the age of 40 years. POF is a major reason for female infertility, although its cause remains...

  16. Multiplex Ligation-Dependent Probe Amplification Analysis of GATA4 Gene Copy Number Variations in Patients with Isolated Congenital Heart Disease

    Directory of Open Access Journals (Sweden)

    Valentina Guida

    2010-01-01

    Full Text Available GATA4 mutations are found in patients with different isolated congenital heart defects (CHDs, mostly cardiac septal defects and tetralogy of Fallot. In addition, GATA4 is supposed to be the responsible gene for the CHDs in the chromosomal 8p23 deletion syndrome, which is recognized as a malformation syndrome with clinical symptoms of facial anomalies, microcephaly, mental retardation, and congenital heart defects. Thus far, no study has been carried out to investigate the role of GATA4 copy number variations (CNVs in non-syndromic CHDs. To explore the possible occurrence of GATA4 gene CNVs in isolated CHDs, we analyzed by multiplex ligation-dependent probe amplification (MLPA a cohort of 161 non-syndromic patients with cardiac anomalies previously associated with GATA4 gene mutations. The patients were mutation-negative for GATA4, NKX2.5, and FOG2 genes after screening with denaturing high performance liquid chromatography. MLPA analysis revealed that normalized MLPA signals were all found within the normal range values for all exons in all patients, excluding a major contribution of GATA4 gene CNVs in CHD pathogenesis.

  17. Copy Number Analysis of 24 Oncogenes: MDM4 Identified as a Putative Marker for Low Recurrence Risk in Non Muscle Invasive Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Samanta Salvi

    2014-07-01

    Full Text Available Patients with non-muscle invasive bladder cancer (NMIBC generally have a high risk of relapsing locally after primary tumor resection. The search for new predictive markers of local recurrence thus represents an important goal for the management of this disease. We studied the copy number variations (CNVs of 24 oncogenes (MDM4, MYCN, ALK, PDGFRA, KIT, KDR, DHFR, EGFR, MET, SMO, FGFR1, MYC, ABL1, RET, CCND1, CCND2, CDK4, MDM2, AURKB, ERBB2, TOP2A, AURKA, AR and BRAF using multiplex ligation probe amplification technique to verify their role as predictive markers of recurrence. Formalin-fixed paraffin-embedded tissue samples from 43 patients who underwent transurethral resection of the bladder (TURB were used; 23 patients had relapsed and 20 were disease-free after 5 years. Amplification frequencies were analyzed for all genes and MDM4 was the only gene that showed significantly higher amplification in non recurrent patients than in recurrent ones (0.65 vs. 0.3; Fisher’s test p = 0.023. Recurrence-free survival analysis confirmed the predictive role of MDM4 (log-rank test p = 0.041. Our preliminary results indicate a putative role for the MDM4 gene in predicting local recurrence of bladder cancer. Confirmation of this hypothesis is needed in a larger cohort of NMIBC patients.

  18. [PCR analysis of the absolute number of copies of human chromosome 18 transcripts in liver and HepG2 cells].

    Science.gov (United States)

    Kiseleva, Y Y; Ptitsyn, K G; Tikhonova, O V; Radko, S P; Kurbatov, L K; Vakhrushev, I V; Zgoda, V G; Ponomarenko, E A; Lisitsa, A V; Archakov, A I

    2017-03-01

    Using reverse transcription in conjunction with the quantitative real-time PCR or digital droplet PCR, the transcriptome profiling of human chromosome 18 has been carried out in liver hepatocytes and hepatoblastoma cells (HepG2 cell line) in terms of the absolute number of each transcript per cell. The transcript abundance varies within the range of 0.006 to 9635 and 0.011 to 4819 copies per cell for HepG2 cell line and hepatocytes, respectively. The expression profiles for genes of chromosome 18 in hepatocytes and HepG2 cells were found to significantly correlate: the Spearman's correlation coefficient was equal to 0.81. The distribution of frequency of transcripts over their abundance was bimodal for HepG2 cells and unimodal for liver hepatocytes. Bioinformatic analysis of the differential gene expression has revealed that genes of chromosome 18, overexpressed in HepG2 cells compared to hepatocytes, are associated with cell division and cell adhesion processes. It is assumed that the enhanced expression of those genes in HepG2 cells is related to the proliferation activity of cultured cells. The differences in transcriptome profiles have to be taken into account when modelling liver hepatocytes with cultured HepG2 cells.

  19. Genome-wide analysis of DNA methylation, copy number variation, and gene expression in monozygotic twins discordant for primary biliary cirrhosis

    Directory of Open Access Journals (Sweden)

    Carlo eSelmi

    2014-03-01

    Full Text Available Primary biliary cirrhosis (PBC is an uncommon autoimmune disease with a homogeneous clinical phenotype that reflects incomplete disease concordance in monozygotic (MZ twins. We have taken advantage of a unique collection consisting of genomic DNA and mRNA from peripheral blood cells of female MZ twins (n=3 sets and sisters of similar age (n=8 pairs discordant for disease. We performed a genome-wide study to investigate differences in (i DNA methylation (using a custom tiled 4-plex array containing tiled 50-mers 19,084 randomly chosen methylation sites, (ii copy number variation (CNV (with a chip including markers derived from the 1000 Genomes Project, all three HapMap phases, and recently published studies, and/or (iii gene expression (by whole-genome expression arrays. Based on the results obtained from these three approaches we utilized quantitative PCR to compare the expression of candidate genes. Importantly, our data support consistent differences in discordant twins and siblings for the (i methylation profiles of 60 gene regions, (ii CNV of 10 genes, and (iii the expression of 2 interferon-dependent genes. Quantitative PCR analysis showed that 17 of these genes are differentially expressed in discordant sibling pairs. In conclusion, we report that MZ twins and sisters discordant for PBC manifest particular epigenetic differences and highlight the value of the epigenetic study of twins.

  20. Histotype-specific copy-number alterations in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Huang Ruby YunJu

    2012-10-01

    Full Text Available Abstract Background Epithelial ovarian cancer is characterized by multiple genomic alterations; most are passenger alterations which do not confer tumor growth. Like many cancers, it is a heterogeneous disease and can be broadly categorized into 4 main histotypes of clear cell, endometrioid, mucinous, and serous. To date, histotype-specific copy number alterations have been difficult to elucidate. The difficulty lies in having sufficient sample size in each histotype for statistical analyses. Methods To dissect the heterogeneity of ovarian cancer and identify histotype-specific alterations, we used an in silico hypothesis-driven approach on multiple datasets of epithelial ovarian cancer. Results In concordance with previous studies on global copy number alterations landscape, the study showed similar alterations. However, when the landscape was de-convoluted into histotypes, distinct alterations were observed. We report here significant histotype-specific copy number alterations in ovarian cancer and showed that there is genomic diversity amongst the histotypes. 76 cancer genes were found to be significantly altered with several as potential copy number drivers, including ERBB2 in mucinous, and TPM3 in endometrioid histotypes. ERBB2 was found to have preferential alterations, where it was amplified in mucinous (28.6% but deleted in serous tumors (15.1%. Validation of ERBB2 expression showed significant correlation with microarray data (p=0.007. There also appeared to be reciprocal relationship between KRAS mutation and copy number alterations. In mucinous tumors where KRAS mutation is common, the gene was not significantly altered. However, KRAS was significantly amplified in serous tumors where mutations are rare in high grade tumors. Conclusions The study demonstrates that the copy number landscape is specific to the histotypes and identification of these alterations can pave the way for targeted drug therapy specific to the histotypes.

  1. Inverse PCR and Quantitative PCR as Alternative Methods to Southern Blotting Analysis to Assess Transgene Copy Number and Characterize the Integration Site in Transgenic Woody Plants.

    Science.gov (United States)

    Stefano, Biricolti; Patrizia, Bogani; Matteo, Cerboneschi; Massimo, Gori

    2016-06-01

    One of the major unanswered questions with respect to the commercial use of genetic transformation in woody plants is the stability of the transgene expression over several decades within the same individual. Gene expression is strongly affected by the copy number which has been integrated into the plant genome and by the local DNA features close to the integration sites. Because woody plants cannot be subjected to selfing or backcrossing to modify the transgenic allelic structure without affecting the valuable traits of the cultivar, molecular characterization of the transformation event is therefore crucial. After assessing the transgene copy number of a set of apple transgenic clones with Southern blotting, we describe two alternative methods: the first is based on inverse PCR (i-PCR) and the second on the quantitative PCR (q-PCR). The methods produced comparable results with the exception of the data regarding a high copy number clone, but while the q-PCR-based system is rapid and easily adaptable to high throughput systems, the i-PCR-based method can provide information regarding the transformation event and the characteristics of the sequences flanking the transgenic construct.

  2. Peripheral blood mitochondrial DNA copy number is associated with prostate cancer risk and tumor burden.

    Directory of Open Access Journals (Sweden)

    Weimin Zhou

    Full Text Available Alterations of mitochondrial DNA (mtDNA have been associated with the risk of a number of human cancers; however, the relationship between mtDNA copy number in peripheral blood leukocytes (PBLs and the risk of prostate cancer (PCa has not been investigated. In a case-control study of 196 PCa patients and 196 age-paired healthy controls in a Chinese Han population, the association between mtDNA copy number in PBLs and PCa risk was evaluated. The relative mtDNA copy number was measured using quantitative real-time PCR; samples from three cases and two controls could not be assayed, leaving 193 cases and 194 controls for analysis. PCa patients had significantly higher mtDNA copy numbers than controls (medians 0.91 and 0.82, respectively; P<0.001. Dichotomized at the median value of mtDNA copy number in the controls, high mtDNA copy number was significantly associated with an increased risk of PCa (adjusted odds ratio= 1.85, 95% confidence interval: 1.21-2.83. A significant dose-response relationship was observed between mtDNA copy number and risk of PCa in quartile analysis (Ptrend = 0.011. Clinicopathological analysis showed that high mtDNA copy numbers in PCa patients were significantly associated with high Gleason score and advanced tumor stage, but not serum prostate-specific antigen level (P = 0.002, 0.012 and 0.544, respectively. These findings of the present study indicate that increased mtDNA copy number in PBLs is significantly associated with an increased risk of PCa and may be a reflection of tumor burden.

  3. Copy number variants in the kallikrein gene cluster.

    Directory of Open Access Journals (Sweden)

    Pernilla Lindahl

    Full Text Available The kallikrein gene family (KLK1-KLK15 is the largest contiguous group of protease genes within the human genome and is associated with both risk and outcome of cancer and other diseases. We searched for copy number variants in all KLK genes using quantitative PCR analysis and analysis of inheritance patterns of single nucleotide polymorphisms. Two deletions were identified: one 2235-bp deletion in KLK9 present in 1.2% of alleles, and one 3394-bp deletion in KLK15 present in 4.0% of alleles. Each deletion eliminated one complete exon and created out-of-frame coding that eliminated the catalytic triad of the resulting truncated gene product, which therefore likely is a non-functional protein. Deletion breakpoints identified by DNA sequencing located the KLK9 deletion breakpoint to a long interspersed element (LINE repeated sequence, while the deletion in KLK15 is located in a single copy sequence. To search for an association between each deletion and risk of prostate cancer (PC, we analyzed a cohort of 667 biopsied men (266 PC cases and 401 men with no evidence of PC at biopsy using short deletion-specific PCR assays. There was no association between evidence of PC in this cohort and the presence of either gene deletion. Haplotyping revealed a single origin of each deletion, with most recent common ancestor estimates of 3000-8000 and 6000-14 000 years for the deletions in KLK9 and KLK15, respectively. The presence of the deletions on the same haplotypes in 1000 Genomes data of both European and African populations indicate an early origin of both deletions. The old age in combination with homozygous presence of loss-of-function variants suggests that some kallikrein-related peptidases have non-essential functions.

  4. Genomic Copy Number Variation in Disorders of Cognitive Development

    Science.gov (United States)

    Morrow, Eric M.

    2010-01-01

    Objective: To highlight recent discoveries in the area of genomic copy number variation in neuropsychiatric disorders including intellectual disability, autism, and schizophrenia. To emphasize new principles emerging from this area, involving the genetic architecture of disease, pathophysiology, and diagnosis. Method: Review of studies published…

  5. Bovine copy number variation and its implication in animal health

    Science.gov (United States)

    Recently it has become apparent that previously unappreciated genomic structural variation, including copy number variations (CNV), contributes significantly to individual health and disease in humans and rodents. As a complement to the bovine HapMap project, we initiated a systematic study of the C...

  6. Genome-wide analysis of copy number variations reveals that aging processes influence body fat distribution in Korea Associated Resource (KARE) cohorts.

    Science.gov (United States)

    Lee, Bo-Young; Shin, Dong Hyun; Cho, Seoae; Seo, Kang-Seok; Kim, Heebal

    2012-11-01

    Many anthropometric measures, including body mass index (BMI), waist-to-hip ratio (WHR), and subcutaneous fat thickness, are used as indicators of nutritional status, fertility and predictors of future health outcomes. While BMI is currently the best available estimate of body adiposity, WHR and skinfold thickness at various sites (biceps, triceps, suprailiac, and subscapular) are used as indices of body fat distribution. Copy number variation (CNV) is an attractive emerging approach to the study of associations with various diseases. In this study, we investigated the dosage effect of genes in the CNV genome widely associated with fat distribution phenotypes in large cohorts. We used the Affymetrix genome-wide human SNP Array 5.0 data of 8,842 healthy unrelated adults in KARE cohorts and identified CNVs associated with BMI and fat distribution-related traits including WHR and subcutaneous skinfold thickness at suprailiac (SUP) and subscapular (SUB) sites. CNV segmentation of each chromosome was performed using Golden Helix SVS 7.0, and single regression analysis was used to identify CNVs associated with each phenotype. We found one CNV for BMI, 287 for WHR, 2,157 for SUP, and 2,102 for SUB at the 5% significance level after Holm-Bonferroni correction. Genes included in the CNV were used for the analysis of functional annotations using the Database for Annotation, Visualization and Integrated Discovery (DAVID v6.7b) tool. Functional gene classification analysis identified five significant gene clusters (metallothionein, ATP-binding proteins, ribosomal proteins, kinesin family members, and zinc finger proteins) for SUP, three (keratin-associated proteins, zinc finger proteins, keratins) for SUB, and one (protamines) for WHR. BMI was excluded from this analysis because the entire structure of no gene was identified in the CNV. Based on the analysis of genes enriched in the clusters, the fat distribution traits of KARE cohorts were related to the fat redistribution

  7. Quantum state discrimination using the minimum average number of copies

    CERN Document Server

    Slussarenko, Sergei; Li, Jun-Gang; Campbell, Nicholas; Wiseman, Howard M; Pryde, Geoff J

    2016-01-01

    In the task of discriminating between nonorthogonal quantum states from multiple copies, the key parameters are the error probability and the resources (number of copies) used. Previous studies have considered the task of minimizing the average error probability for fixed resources. Here we consider minimizing the average resources for a fixed admissible error probability. We derive a detection scheme optimized for the latter task, and experimentally test it, along with schemes previously considered for the former task. We show that, for our new task, our new scheme outperforms all previously considered schemes.

  8. Endogenous RNA interference is driven by copy number

    Science.gov (United States)

    Cruz, Cristina; Houseley, Jonathan

    2014-01-01

    A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome. DOI: http://dx.doi.org/10.7554/eLife.01581.001 PMID:24520161

  9. Endogenous RNA interference is driven by copy number.

    Science.gov (United States)

    Cruz, Cristina; Houseley, Jonathan

    2014-02-11

    A plethora of non-protein coding RNAs are produced throughout eukaryotic genomes, many of which are transcribed antisense to protein-coding genes and could potentially instigate RNA interference (RNAi) responses. Here we have used a synthetic RNAi system to show that gene copy number is a key factor controlling RNAi for transcripts from endogenous loci, since transcripts from multi-copy loci form double stranded RNA more efficiently than transcripts from equivalently expressed single-copy loci. Selectivity towards transcripts from high-copy DNA is therefore an emergent property of a minimal RNAi system. The ability of RNAi to selectively degrade transcripts from high-copy loci would allow suppression of newly emerging transposable elements, but such a surveillance system requires transcription. We show that low-level genome-wide pervasive transcription is sufficient to instigate RNAi, and propose that pervasive transcription is part of a defense mechanism capable of directing a sequence-independent RNAi response against transposable elements amplifying within the genome. DOI: http://dx.doi.org/10.7554/eLife.01581.001.

  10. Copy Number Variation at the APOL1 Locus.

    Directory of Open Access Journals (Sweden)

    Rupam Ruchi

    Full Text Available Two coding variants in the APOL1 gene (G1 and G2 explain most of the high rate of kidney disease in African Americans. APOL1-associated kidney disease risk inheritance follows an autosomal recessive pattern: The relative risk of kidney disease associated with inheritance of two high-risk variants is 7-30 fold, depending on the specific kidney phenotype. We wished to determine if the variability in phenotype might in part reflect structural differences in APOL1 gene. We analyzed sequence coverage from 1000 Genomes Project Phase 3 samples as well as exome sequencing data from African American kidney disease cases for copy number variation. 8 samples sequenced in the 1000 Genomes Project showed increased coverage over a ~100kb region that includes APOL2, APOL1 and part of MYH9, suggesting the presence of APOL1 copy number greater than 2. We reasoned that such duplications should be enriched in apparent G1 heterozygotes with kidney disease. Using a PCR-based assay, we observed the presence of this duplication in additional samples from apparent G0G1 or G0G2 individuals. The frequency of this APOL1 duplication was compared among cases (n = 123 and controls (n = 255 with apparent G0G1 heterozygosity. The presence of APOL1 duplication was observed in 4.06% of cases and 0.78% controls, preliminary evidence that this APOL1 duplication may alter susceptibility to kidney disease (p = 0.03. Taqman-based copy number assays confirmed the presence of 3 APOL1 copies in individuals positive for this specific duplication by PCR assay, but also identified a small number of individuals with additional APOL1 copies of presumably different structure. These observations motivate further studies to better assess the contribution of APOL1 copy number on kidney disease risk and on APOL1 function. Investigators and clinicians genotyping APOL1 should also consider whether the particular genotyping platform used is subject to technical errors when more than two copies of

  11. Prognostic value of MET gene copy number and protein expression in patients with surgically resected non-small cell lung cancer: a meta-analysis of published literatures.

    Directory of Open Access Journals (Sweden)

    Baoping Guo

    Full Text Available BACKGROUND: The prognostic value of the copy number (GCN and protein expression of the mesenchymal-epithelial transition (MET gene for survival of patients with non-small cell lung cancer (NSCLC remains controversial. This study aims to comprehensively and quantitatively asses the suitability of MET GCN and protein expression to predict patients' survival. METHODS: PubMed, Embase, Web of Science and Google Scholar were searched for articles comparing overall survival in patients with high MET GCN or protein expression with those with low level. Pooled hazard ratio (HR and 95% confidence intervals (CIs were calculated using the random and the fixed-effects models. Subgroup and sensitivity analyses were also performed. RESULTS: Eighteen eligible studies enrolling 5,516 patients were identified. Pooled analyses revealed that high MET GCN or protein expression was associated with poor overall survival (OS (GCN: HR = 1.90, 95% CI 1.35-2.68, p<0.001; protein expression: HR = 1.52, 95% CI 1.08-2.15, p = 0.017. In Asian populations (GCN: HR = 2.22, 95% CI 1.46-3.38, p<0.001; protein expression: HR = 1.89, 95% CI 1.34-2.68, p<0.001, but not in the non-Asian subset. For adenocarcinoma, high MET GCN or protein expression indicated decreased OS (GCN: HR = 1.49, 95% CI 1.05-2.10, p = 0.025; protein expression: HR = 1.69, 95% CI 1.31-2.19, p<0.001. Results were similar for multivariate analysis (GCN: HR = 1.61, 95% CI 1.15-2.25, p = 0.005; protein expression: HR = 2.18, 95% CI 1.60-2.97, p<0.001. The results of the sensitivity analysis were not materially altered and did not draw different conclusions. CONCLUSIONS: Increased MET GCN or protein expression was significantly associated with poorer survival in patients with surgically resected NSCLC; this information could potentially further stratify patients in clinical treatment.

  12. Copy number variations and cognitive phenotypes in unselected populations.

    Science.gov (United States)

    Männik, Katrin; Mägi, Reedik; Macé, Aurélien; Cole, Ben; Guyatt, Anna L; Shihab, Hashem A; Maillard, Anne M; Alavere, Helene; Kolk, Anneli; Reigo, Anu; Mihailov, Evelin; Leitsalu, Liis; Ferreira, Anne-Maud; Nõukas, Margit; Teumer, Alexander; Salvi, Erika; Cusi, Daniele; McGue, Matt; Iacono, William G; Gaunt, Tom R; Beckmann, Jacques S; Jacquemont, Sébastien; Kutalik, Zoltán; Pankratz, Nathan; Timpson, Nicholas; Metspalu, Andres; Reymond, Alexandre

    2015-05-26

    The association of copy number variations (CNVs), differing numbers of copies of genetic sequence at locations in the genome, with phenotypes such as intellectual disability has been almost exclusively evaluated using clinically ascertained cohorts. The contribution of these genetic variants to cognitive phenotypes in the general population remains unclear. To investigate the clinical features conferred by CNVs associated with known syndromes in adult carriers without clinical preselection and to assess the genome-wide consequences of rare CNVs (frequency ≤0.05%; size ≥250 kilobase pairs [kb]) on carriers' educational attainment and intellectual disability prevalence in the general population. The population biobank of Estonia contains 52,000 participants enrolled from 2002 through 2010. General practitioners examined participants and filled out a questionnaire of health- and lifestyle-related questions, as well as reported diagnoses. Copy number variant analysis was conducted on a random sample of 7877 individuals and genotype-phenotype associations with education and disease traits were evaluated. Our results were replicated on a high-functioning group of 993 Estonians and 3 geographically distinct populations in the United Kingdom, the United States, and Italy. Phenotypes of genomic disorders in the general population, prevalence of autosomal CNVs, and association of these variants with educational attainment (from less than primary school through scientific degree) and prevalence of intellectual disability. Of the 7877 in the Estonian cohort, we identified 56 carriers of CNVs associated with known syndromes. Their phenotypes, including cognitive and psychiatric problems, epilepsy, neuropathies, obesity, and congenital malformations are similar to those described for carriers of identical rearrangements ascertained in clinical cohorts. A genome-wide evaluation of rare autosomal CNVs (frequency, ≤0.05%; ≥250 kb) identified 831 carriers (10.5%) of the

  13. Genomic variability in Mexican chicken population using Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Erica Gorla

    2017-05-01

    Full Text Available Copy number variants (CNVs are polymorphisms which influence phenotypic variation and are an important source of genetic variability [1]. In Mexico the backyard poultry population is a unique widespread Creole chicken (Gallus gallus domesticus population, an undefined cross among different breeds brought to Mexico from Europe and under natural selection for almost 500 years [2-3]. The aim of this study was to investigate genomic variation in the Mexican chicken population using CNVs. A total of 256 DNA samples genotyped with Axiom® Genome-Wide Chicken Genotyping Array were used in the analyses. The individual CNV calling, based on log-R ratio and B-allele frequency values, was performed using the Hidden Markov Model (HMM of PennCNV software on the autosomes [4-5]. CNVs were summarized to CNV regions (CNVRs at a population level (i.e. overlapping CNVs, using BEDTools. The HMM detected a total of 1924 CNVs in the genome of 256 samples resulting, at population level, in 1216 CNV regions, of which 959 gains, 226 losses and 31 complex CNVRs (i.e. containing both losses and gains, covering a total of 47 Mb of sequence length corresponding to 5,12 % of the chicken galGal4 assembly autosome. A comparison among this study and 7 previous reports about CNVs in chicken was performed, finding that the 1,216 CNVRs detected in this study overlap with 617 regions (51% mapped by others studies.   This study allowed a deep insight into the structural variation in the genome of unselected Mexican chicken population, which up to now has not been never genetically characterized with SNP markers. Based on a cluster analysis (pvclust – R package on CNV markers the population, even if presenting extreme morphological variation, does not resulted divided in differentiated genetic subpopulations. Finally this study provides a CNV map based on the 600K SNP chip array jointly with a genome-wide gene copy number estimates in Mexican chicken population.

  14. Determining frequent patterns of copy number alterations in cancer.

    Directory of Open Access Journals (Sweden)

    Franck Rapaport

    Full Text Available Cancer progression is often driven by an accumulation of genetic changes but also accompanied by increasing genomic instability. These processes lead to a complicated landscape of copy number alterations (CNAs within individual tumors and great diversity across tumor samples. High resolution array-based comparative genomic hybridization (aCGH is being used to profile CNAs of ever larger tumor collections, and better computational methods for processing these data sets and identifying potential driver CNAs are needed. Typical studies of aCGH data sets take a pipeline approach, starting with segmentation of profiles, calls of gains and losses, and finally determination of frequent CNAs across samples. A drawback of pipelines is that choices at each step may produce different results, and biases are propagated forward. We present a mathematically robust new method that exploits probe-level correlations in aCGH data to discover subsets of samples that display common CNAs. Our algorithm is related to recent work on maximum-margin clustering. It does not require pre-segmentation of the data and also provides grouping of recurrent CNAs into clusters. We tested our approach on a large cohort of glioblastoma aCGH samples from The Cancer Genome Atlas and recovered almost all CNAs reported in the initial study. We also found additional significant CNAs missed by the original analysis but supported by earlier studies, and we identified significant correlations between CNAs.

  15. Large multi-allelic copy number variations in humans

    Science.gov (United States)

    Handsaker, Robert E.; Van Doren, Vanessa; Berman, Jennifer R.; Genovese, Giulio; Kashin, Seva; Boettger, Linda M.; McCarroll, Steven A.

    2015-01-01

    Thousands of genome segments appear to be present in widely varying copy number in different human genomes. We developed ways to use increasingly abundant whole genome sequence data to identify the copy numbers, alleles and haplotypes present at most large, multi-allelic CNVs (mCNVs). We analyzed 849 genomes sequenced by the 1000 Genomes Project to identify most large (>5 kb) mCNVs, including 3,878 duplications, of which 1,356 appear to have three or more segregating alleles. We find that mCNVs give rise to most human gene-dosage variation – exceeding sevenfold the contribution of deletions and biallelic duplications – and that this variation in gene dosage generates abundant variation in gene expression. We describe “runaway duplication haplotypes” in which genes, including HPR and ORM1, have mutated to high copy number on specific haplotypes. We describe partially successful initial strategies for analyzing mCNVs via imputation and provide an initial data resource to support such analyses. PMID:25621458

  16. A Method for Calling Copy Number Polymorphism Using Haplotypes

    Directory of Open Access Journals (Sweden)

    Gun Ho eJang

    2013-09-01

    Full Text Available Single nucleotide polymorphism (SNP and copy number variation (CNV are both widespread characteristic of the human genome, but are often called separately on common genotyping platforms. To capture integrated SNP and CNV information, methods have been developed for calling allelic specific copy numbers or so called copy number polymorphism (CNP, using limited inter-marker correlation. In this paper, we proposed a haplotype-based maximum likelihood method to call CNP, which takes advantage of the valuable multi-locus linkage disequilibrium (LD information in the population. We also developed a computationally efficient EM algorithm to estimate haplotype frequencies and optimize individual CNP calls simultaneously, even at presence of missing data. Through simulations, we demonstrated our model is more sensitive and accurate in detecting various CNV regions, compared with commonly-used CNV calling methods including PennCNV, another hidden Markov model using CNP, a scan statistic, segCNV, and cnvHap. Our method often performs better in the regions with higher LD, in longer CNV regions, and in common CNV than the opposite. We implemented our method on the genotypes of 90 HapMap CEU samples and 23 patients with acute lung injury (ALI. For each ALI patient the genotyping was performed twice. The CNPs from our method show good consistency and accuracy comparable to others.

  17. Mitochondrial DNA copy number variation as a potential predictor of renal cell carcinoma.

    Science.gov (United States)

    Elsayed, Eman T; Hashad, Mohamed M; Elgohary, Iman E

    2017-07-24

    Peripheral blood mitochondrial DNA (mtDNA) copy number alteration has been suggested as a risk factor for several types of cancer. The aim of the present study was to assess the role of peripheral blood mtDNA copy number variation as a noninvasive biomarker in the prediction and early detection of renal cell carcinoma (RCC) in a cohort of Egyptian patients. Quantitative real-time polymerase chain reaction (qPCR) was used to measure peripheral blood mtDNA copy numbers in 57 patients with newly diagnosed, early-stage localized RCC and 60 age- and sex-matched healthy individuals as a control group. Median mtDNA copy number was significantly higher in RCC cases than in controls (166 vs. 91, pcopy number was associated with an 18-fold increased risk of RCC (95% confidence interval: 5.065-63.9). On receiver operating characteristic curve analysis, it was found that mtDNA could distinguish between RCC patients and healthy controls, with 86% sensitivity, 80% specificity, 80.3% positive predictive value and 85.7% negative predictive value at a cutoff value of 108.5. Our results showed that increased peripheral blood mtDNA copy number was associated with increased risk of RCC. Therefore, RCC might be considered as part of a range of potential tumors in cases with elevated blood mtDNA copy number.

  18. Statistical tools for transgene copy number estimation based on real-time PCR.

    Science.gov (United States)

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation

  19. The relationship between mitochondrial DNA copy number and stallion sperm function.

    Science.gov (United States)

    Darr, Christa R; Moraes, Luis E; Connon, Richard E; Love, Charles C; Teague, Sheila; Varner, Dickson D; Meyers, Stuart A

    2017-05-01

    Mitochondrial DNA (mtDNA) copy number has been utilized as a measure of sperm quality in several species including mice, dogs, and humans, and has been suggested as a potential biomarker of fertility in stallion sperm. The results of the present study extend this recent discovery using sperm samples from American Quarter Horse stallions of varying age. By determining copy number of three mitochondrial genes, cytochrome b (CYTB), NADH dehydrogenase 1 (ND1) and NADH dehydrogenase 4 (ND4), instead of a single gene, we demonstrate an improved understanding of mtDNA fate in stallion sperm mitochondria following spermatogenesis. Sperm samples from 37 stallions ranging from 3 to 24 years old were collected at four breeding ranches in north and central Texas during the 2015 breeding season. Samples were analyzed for sperm motion characteristics, nuclear DNA denaturability and mtDNA copy number. Mitochondrial DNA content in individual sperm was determined by real-time qPCR and normalized with a single copy nuclear gene, Beta actin. Exploratory correlation analysis revealed that total motility was negatively correlated with CYTB copy number and sperm chromatin structure. Stallion age did not have a significant effect on copy number for any of the genes. Copy number differences existed between the three genes with CYTB having the greatest number of copies (20.6 ± 1.2 copies, range: 6.0 to 41.1) followed by ND4 (15.5 ± 0.8 copies, range: 6.7 to 27.8) and finally ND1 (12.0 ± 1.0 copies, range: 0.4 to 26.6) (P copy number across mitochondrial genes is likely to be a result of mtDNA fragmentation and degradation since downregulation of sperm mtDNA occurs during spermatogenesis and may be important for normal sperm function. Beta regression analysis suggested that for every unit increase in mtDNA copy number of CYTB, there was a 4% decrease in the odds of sperm movement (P = 0.001). Influential analysis suggested that results are robust and not highly influenced by

  20. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Eric Talevich

    2016-04-01

    Full Text Available Germline copy number variants (CNVs and somatic copy number alterations (SCNAs are of significant importance in syndromic conditions and cancer. Massively parallel sequencing is increasingly used to infer copy number information from variations in the read depth in sequencing data. However, this approach has limitations in the case of targeted re-sequencing, which leaves gaps in coverage between the regions chosen for enrichment and introduces biases related to the efficiency of target capture and library preparation. We present a method for copy number detection, implemented in the software package CNVkit, that uses both the targeted reads and the nonspecifically captured off-target reads to infer copy number evenly across the genome. This combination achieves both exon-level resolution in targeted regions and sufficient resolution in the larger intronic and intergenic regions to identify copy number changes. In particular, we successfully inferred copy number at equivalent to 100-kilobase resolution genome-wide from a platform targeting as few as 293 genes. After normalizing read counts to a pooled reference, we evaluated and corrected for three sources of bias that explain most of the extraneous variability in the sequencing read depth: GC content, target footprint size and spacing, and repetitive sequences. We compared the performance of CNVkit to copy number changes identified by array comparative genomic hybridization. We packaged the components of CNVkit so that it is straightforward to use and provides visualizations, detailed reporting of significant features, and export options for integration into existing analysis pipelines. CNVkit is freely available from https://github.com/etal/cnvkit.

  1. Copy number variation of KIR genes influences HIV-1 control

    DEFF Research Database (Denmark)

    Pelak, Kimberly; Need, Anna C; Fellay, Jacques

    2011-01-01

    A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses...... the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3...... individuals with multiple copies of KIR3DL1, in the presence of KIR3DS1 and the appropriate ligands, inhibit HIV-1 replication more robustly, and associated with a significant expansion in the frequency of KIR3DS1+, but not KIR3DL1+, NK cells in their peripheral blood. Our results suggest that the relative...

  2. Estimating Copy Number and Allelic Variation at the Immunoglobulin Heavy Chain Locus Using Short Reads.

    Directory of Open Access Journals (Sweden)

    Shishi Luo

    2016-09-01

    Full Text Available The study of genomic regions that contain gene copies and structural variation is a major challenge in modern genomics. Unlike variation involving single nucleotide changes, data on the variation of copy number is difficult to collect and few tools exist for analyzing the variation between individuals. The immunoglobulin heavy variable (IGHV locus, which plays an integral role in the adaptive immune response, is an example of a complex genomic region that varies in gene copy number. Lack of standard methods to genotype this region prevents it from being included in association studies and is holding back the growing field of antibody repertoire analysis. Here we develop a method that takes short reads from high-throughput sequencing and outputs a genetic profile of the IGHV locus with the read coverage depth and a putative nucleotide sequence for each operationally defined gene cluster. Our operationally defined gene clusters aim to address a major challenge in studying the IGHV locus: the high sequence similarity between gene segments in different genomic locations. Tests on simulated data demonstrate that our approach can accurately determine the presence or absence of a gene cluster from reads as short as 70 bp. More detailed resolution on the copy number of gene clusters can be obtained from read coverage depth using longer reads (e.g., ≥ 100 bp. Detail at the nucleotide resolution of single copy genes (genes present in one copy per haplotype can be determined with 250 bp reads. For IGHV genes with more than one copy, accurate nucleotide-resolution reconstruction is currently beyond the means of our approach. When applied to a family of European ancestry, our pipeline outputs genotypes that are consistent with the family pedigree, confirms existing multigene variants and suggests new copy number variants. This study paves the way for analyzing population-level patterns of variation in IGHV gene clusters in larger diverse datasets and for

  3. Copy number variations in three children with sudden infant death.

    Science.gov (United States)

    Toruner, G A; Kurvathi, R; Sugalski, R; Shulman, L; Twersky, S; Pearson, P G; Tozzi, R; Schwalb, M N; Wallerstein, R

    2009-07-01

    Sudden death of an infant is a devastating event that needs an explanation. When an explanation cannot be found, the case is labeled as sudden infant death syndrome or unclassified sudden infant death. The influence of genetic factors has been recognized for sudden infant death, but copy number variations (CNVs) as potential risk factors have not been evaluated yet. Twenty-seven families were enrolled in this study. The tissue specimens from deceased children were obtained and array-based comparative genomic hybridization (array-CGH) experiments were performed on the genomic DNA isolated from these specimens using Agilent Technologies Custom 4 x 44K arrays. Quantitative polymerase chain reaction experiments were performed to confirm the overlapping duplication and deletion region in two different cases. A de novo CNV is detected in 3 of 27 cases (11%). In case 1, an approximately 3-Mb (chr 8: 143,211,215-qter) duplication on 8q24.3-qter and a 4.4-Mb deletion on the 22q13.3-qter (chr 22: 45,047,068-qter) were detected. Subtelomeric chromosome analysis of the father and the surviving sibling of case 1 showed a balanced reciprocal translocation, 46,XY,t(8;22)(q24.3;q13.3). A 240-kb (chr 6: 26,139,810-26,380,787) duplication and a 1.9-Mb deletion (chr 6: 26,085,971-27,966,150) at chromosome 6p22 were found in cases 2 and 3, respectively. Array-CGH and conventional cytogenetic studies did not reveal the observed CNVs in the parents and the siblings of cases 2 and 3. The detected CNVs in cases 2 and 3 encompassed several genes including the major histone cluster genes. Array-CGH analysis may be beneficial during the investigations after sudden infant death.

  4. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  5. Copy number variation plays an important role in clinical epilepsy

    Science.gov (United States)

    Olson, Heather; Shen, Yiping; Avallone, Jennifer; Sheidley, Beth R.; Pinsky, Rebecca; Bergin, Ann M.; Berry, Gerard T.; Duffy, Frank H.; Eksioglu, Yaman; Harris, David J.; Hisama, Fuki M.; Ho, Eugenia; Irons, Mira; Jacobsen, Christina M.; James, Philip; Kothare, Sanjeev; Khwaja, Omar; Lipton, Jonathan; Loddenkemper, Tobias; Markowitz, Jennifer; Maski, Kiran; Megerian, J. Thomas; Neilan, Edward; Raffalli, Peter C.; Robbins, Michael; Roberts, Amy; Roe, Eugene; Rollins, Caitlin; Sahin, Mustafa; Sarco, Dean; Schonwald, Alison; Smith, Sharon E.; Soul, Janet; Stoler, Joan M.; Takeoka, Masanori; Tan, Wen-Han; Torres, Alcy R.; Tsai, Peter; Urion, David K.; Weissman, Laura; Wolff, Robert; Wu, Bai-Lin; Miller, David T.; Poduri, Annapurna

    2015-01-01

    Objective To evaluate the role of copy number abnormalities detectable by chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. Methods We identified patients with ICD-9 codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children’s Hospital. We reviewed medical records and included patients meeting criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. Results Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1–4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18 kb to 142 Mb, and 34% were over 500 kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or “hotspots.” We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. Interpretation Copy number abnormalities play an important role in patients with epilepsy. Given that the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy. PMID:24811917

  6. Bias of selection on human copy-number variants.

    Directory of Open Access Journals (Sweden)

    2006-02-01

    Full Text Available Although large-scale copy-number variation is an important contributor to conspecific genomic diversity, whether these variants frequently contribute to human phenotype differences remains unknown. If they have few functional consequences, then copy-number variants (CNVs might be expected both to be distributed uniformly throughout the human genome and to encode genes that are characteristic of the genome as a whole. We find that human CNVs are significantly overrepresented close to telomeres and centromeres and in simple tandem repeat sequences. Additionally, human CNVs were observed to be unusually enriched in those protein-coding genes that have experienced significantly elevated synonymous and nonsynonymous nucleotide substitution rates, estimated between single human and mouse orthologues. CNV genes encode disproportionately large numbers of secreted, olfactory, and immunity proteins, although they contain fewer than expected genes associated with Mendelian disease. Despite mouse CNVs also exhibiting a significant elevation in synonymous substitution rates, in most other respects they do not differ significantly from the genomic background. Nevertheless, they encode proteins that are depleted in olfactory function, and they exhibit significantly decreased amino acid sequence divergence. Natural selection appears to have acted discriminately among human CNV genes. The significant overabundance, within human CNVs, of genes associated with olfaction, immunity, protein secretion, and elevated coding sequence divergence, indicates that a subset may have been retained in the human population due to the adaptive benefit of increased gene dosage. By contrast, the functional characteristics of mouse CNVs either suggest that advantageous gene copies have been depleted during recent selective breeding of laboratory mouse strains or suggest that they were preferentially fixed as a consequence of the larger effective population size of wild mice. It

  7. Eclipse period of R1 plasmids during downshift from elevated copy number: Nonrandom selection of copies for replication.

    Science.gov (United States)

    Olsson, Jan A; Berg, Otto; Nordström, Kurt; Dasgupta, Santanu

    2012-03-01

    The classical Meselson-Stahl density-shift method was used to study replication of pOU71, a runaway-replication derivative of plasmid R1 in Escherichia coli. The miniplasmid maintained the normal low copy number of R1 during steady growth at 30°C, but as growth temperatures were raised above 34°C, the copy number of the plasmid increased to higher levels, and at 42°C, it replicated without control in a runaway replication mode with lethal consequences for the host. The eclipse periods (minimum time between successive replication of the same DNA) of the plasmid shortened with rising copy numbers at increasing growth temperatures (Olsson et al., 2003). In this work, eclipse periods were measured during downshifts in copy number of pOU71 after it had replicated at 39 and 42°C, resulting in 7- and 50-fold higher than normal plasmid copy number per cell, respectively. Eclipse periods for plasmid replication, measured during copy number downshift, suggested that plasmid R1, normally selected randomly for replication, showed a bias such that a newly replicated DNA had a higher probability of replication compared to the bulk of the R1 population. However, even the unexpected nonrandom replication followed the copy number kinetics such that every generation, the plasmids underwent the normal inherited number of replication, n, independent of the actual number of plasmid copies in a newborn cell.

  8. Systematic Inference of Copy-Number Genotypes from Personal Genome Sequencing Data Reveals Extensive Olfactory Receptor Gene Content Diversity

    Science.gov (United States)

    Waszak, Sebastian M.; Hasin, Yehudit; Zichner, Thomas; Olender, Tsviya; Keydar, Ifat; Khen, Miriam; Stütz, Adrian M.; Schlattl, Andreas; Lancet, Doron; Korbel, Jan O.

    2010-01-01

    Copy-number variations (CNVs) are widespread in the human genome, but comprehensive assignments of integer locus copy-numbers (i.e., copy-number genotypes) that, for example, enable discrimination of homozygous from heterozygous CNVs, have remained challenging. Here we present CopySeq, a novel computational approach with an underlying statistical framework that analyzes the depth-of-coverage of high-throughput DNA sequencing reads, and can incorporate paired-end and breakpoint junction analysis based CNV-analysis approaches, to infer locus copy-number genotypes. We benchmarked CopySeq by genotyping 500 chromosome 1 CNV regions in 150 personal genomes sequenced at low-coverage. The assessed copy-number genotypes were highly concordant with our performed qPCR experiments (Pearson correlation coefficient 0.94), and with the published results of two microarray platforms (95–99% concordance). We further demonstrated the utility of CopySeq for analyzing gene regions enriched for segmental duplications by comprehensively inferring copy-number genotypes in the CNV-enriched >800 olfactory receptor (OR) human gene and pseudogene loci. CopySeq revealed that OR loci display an extensive range of locus copy-numbers across individuals, with zero to two copies in some OR loci, and two to nine copies in others. Among genetic variants affecting OR loci we identified deleterious variants including CNVs and SNPs affecting ∼15% and ∼20% of the human OR gene repertoire, respectively, implying that genetic variants with a possible impact on smell perception are widespread. Finally, we found that for several OR loci the reference genome appears to represent a minor-frequency variant, implying a necessary revision of the OR repertoire for future functional studies. CopySeq can ascertain genomic structural variation in specific gene families as well as at a genome-wide scale, where it may enable the quantitative evaluation of CNVs in genome-wide association studies involving high

  9. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    Science.gov (United States)

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-09-05

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  10. Prognostic significance of centromere 17 copy number gain in breast cancer depends on breast cancer subtype.

    Science.gov (United States)

    Lee, Kyuongyul; Jang, Min Hye; Chung, Yul Ri; Lee, Yangkyu; Kang, Eunyoung; Kim, Sung-Won; Kim, Yu Jung; Kim, Jee Hyun; Kim, In Ah; Park, So Yeon

    2017-03-01

    Increased copy number of chromosome enumeration probe (CEP) targeting centromere 17 is frequently encountered during HER2 in situ hybridization (ISH) in breast cancer. The aim of this study was to clarify the clinicopathologic significance of CEP17 copy number gain in a relatively large series of breast cancer patients. We analyzed 945 cases of invasive breast cancers whose HER2 fluorescence ISH reports were available from 2004 to 2011 at a single institution and evaluated the association of CEP17 copy number gain with clinicopathologic features of tumors and patient survival. We detected 186 (19.7%) cases of CEP17 copy number gain (CEP17≥3.0) among 945 invasive breast cancers. In survival analysis, CEP17 copy number gain was not associated with disease-free survival of the patients in the whole group. Nonetheless, it was found to be an independent adverse prognostic factor in the HER2-negative group but not in the HER2-positive group. In further subgroup analyses, CEP17 copy number gain was revealed as an independent poor prognostic factor in HER2-negative and hormone receptor-positive breast cancers, and it was associated with aggressive histologic variables including high T stage, high histologic grade, lymphovascular invasion, p53 overexpression, and high Ki-67 proliferative index. In conclusion, we found that elevated CEP17 count can serve as a prognostic marker in luminal/HER2-negative subtype of invasive breast cancer. We advocate the use of the dual-colored fluorescence ISH using CEP17 rather than the single-colored one because it gives additional valuable information on CEP17 copy number alterations. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Genome-wide copy number profiling to detect gene amplifications in neural progenitor cells

    Directory of Open Access Journals (Sweden)

    U. Fischer

    2014-12-01

    Full Text Available DNA sequence amplification occurs at defined stages during normal development in amphibians and flies and seems to be restricted in humans to drug-resistant and tumor cells only. We used array-CGH to discover copy number changes including gene amplifications and deletions during differentiation of human neural progenitor cells. Here, we describe cell culture features, DNA extraction, and comparative genomic hybridization (CGH analysis tailored towards the identification of genomic copy number changes. Further detailed analysis of amplified chromosome regions associated with this experiment, was published by Fischer and colleagues in PLOS One in 2012 (Fischer et al., 2012. We provide detailed information on deleted chromosome regions during differentiation and give an overview on copy number changes during differentiation induction for two representative chromosome regions.

  12. Confirmed rare copy number variants implicate novel genes in schizophrenia.

    Science.gov (United States)

    Tam, Gloria W C; van de Lagemaat, Louie N; Redon, Richard; Strathdee, Karen E; Croning, Mike D R; Malloy, Mary P; Muir, Walter J; Pickard, Ben S; Deary, Ian J; Blackwood, Douglas H R; Carter, Nigel P; Grant, Seth G N

    2010-04-01

    Understanding how cognitive processes including learning, memory, decision making and ideation are encoded by the genome is a key question in biology. Identification of sets of genes underlying human mental disorders is a path towards this objective. Schizophrenia is a common disease with cognitive symptoms, high heritability and complex genetics. We have identified genes involved with schizophrenia by measuring differences in DNA copy number across the entire genome in 91 schizophrenia cases and 92 controls in the Scottish population. Our data reproduce rare and common variants observed in public domain data from >3000 schizophrenia cases, confirming known disease loci as well as identifying novel loci. We found copy number variants in PDE10A (phosphodiesterase 10A), CYFIP1 [cytoplasmic FMR1 (Fragile X mental retardation 1)-interacting protein 1], K(+) channel genes KCNE1 and KCNE2, the Down's syndrome critical region 1 gene RCAN1 (regulator of calcineurin 1), cell-recognition protein CHL1 (cell adhesion molecule with homology with L1CAM), the transcription factor SP4 (specificity protein 4) and histone deacetylase HDAC9, among others (see http://www.genes2cognition.org/SCZ-CNV). Integrating the function of these many genes into a coherent model of schizophrenia and cognition is a major unanswered challenge.

  13. Copy number variation of KIR genes influences HIV-1 control

    DEFF Research Database (Denmark)

    Pelak, Kimberly; Need, Anna C; Fellay, Jacques;

    2011-01-01

    A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses...... the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3......DS1 count associates with a lower viral set point if its putative ligand is present (p = 0.00028), as does an increase in KIR3DL1 count in the presence of KIR3DS1 and appropriate ligands for both receptors (p = 0.0015). We further provide functional data that demonstrate that NK cells from...

  14. Copy Number Alterations and Methylation in Ewing's Sarcoma

    Directory of Open Access Journals (Sweden)

    Mona S. Jahromi

    2011-01-01

    Full Text Available Ewing's sarcoma is the second most common bone malignancy affecting children and young adults. The prognosis is especially poor in metastatic or relapsed disease. The cell of origin remains elusive, but the EWS-FLI1 fusion oncoprotein is present in the majority of cases. The understanding of the molecular basis of Ewing's sarcoma continues to progress slowly. EWS-FLI1 affects gene expression, but other factors must also be at work such as mutations, gene copy number alterations, and promoter methylation. This paper explores in depth two molecular aspects of Ewing's sarcoma: copy number alterations (CNAs and methylation. While CNAs consistently have been reported in Ewing's sarcoma, their clinical significance has been variable, most likely due to small sample size and tumor heterogeneity. Methylation is thought to be important in oncogenesis and balanced karyotype cancers such as Ewing's, yet it has received only minimal attention in prior studies. Future CNA and methylation studies will help to understand the molecular basis of this disease.

  15. Plasmid copy number noise in monoclonal populations of bacteria

    Science.gov (United States)

    Wong Ng, Jérôme; Chatenay, Didier; Robert, Jérôme; Poirier, Michael Guy

    2010-01-01

    Plasmids are extra chromosomal DNA that can confer to their hosts’ supplementary characteristics such as antibiotic resistance. Plasmids code for their copy number through their own replication frequency. Even though the biochemical networks underlying the plasmid copy number (PCN) regulation processes have been studied and modeled, no measurement of the heterogeneity in PCN within a whole population has been done. We have developed a fluorescent-based measurement system, which enables determination of the mean and noise in PCN within a monoclonal population of bacteria. Two different fluorescent protein reporters were inserted: one on the chromosome and the other on the plasmid. The fluorescence of these bacteria was measured with a microfluidic flow cytometry device. We show that our measurements are consistent with known plasmid characteristics. We find that the partitioning system lowers the PCN mean and standard deviation. Finally, bacterial populations were allowed to grow without selective pressure. In this case, we were able to determine the plasmid loss rate and growth inhibition effect.

  16. Simple screening method for copy number variations associated with physical features.

    Science.gov (United States)

    Ueki, Misuzu; Takeshita, Haruo; Fujihara, Junko; Kimura-Kataoka, Kaori; Iida, Reiko; Yasuda, Toshihiro

    2017-03-01

    Recent studies of copy number variations (CNVs) associated with physical features, such as body mass index, body height or bone length, have suggested that such CNVs could serve as markers in forensic cases involving unidentified individuals. However, the process of cataloging CNVs has been slow because of the cumbersome nature and low reliability of the procedures involved. Here we describe a simple quantitative real-time PCR (Q-PCR) method for screening of medicolegally useful CNVs, which does not require reference DNA with known copy number. The first step is to prepare a chimeric plasmid vector including one copy each of the single-copy gene-specific sequence as the internal standard, and the target CNV-specific sequence. To assess the validity of this new method, we analyzed CNVs in the LTBP1 and ETV6 gene regions, both of which are candidate CNVs associated with body height. The PCR efficiencies for the single-copy (reference) gene and the target CNV were similar, indicating that quantitation was reliable. Furthermore, simulated analysis of the LTBP1 CNV using mock samples prepared by mixing vectors in varying proportions showed that this analytical method allowed correct determination of the LTBP1 copy number. These results demonstrated that our simple method has considerable potential for screening of trait-related CNVs that would be useful for forensic casework. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane.

    Science.gov (United States)

    Xue, Bantong; Guo, Jinlong; Que, Youxiong; Fu, Zhiwei; Wu, Luguang; Xu, Liping

    2014-05-19

    Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM) crops by quantitative real-time PCR (qPCR) or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids) DNA content quantification, we evaluated a set of potential "single copy" genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3--high copy number group, TST-1 and PRR-1--medium copy number group, P4H-1, APRT-2 and CYC-2--low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  18. Environmental change drives accelerated adaptation through stimulated copy number variation

    Science.gov (United States)

    Hull, Ryan M.; Cruz, Cristina; Jack, Carmen V.

    2017-01-01

    Copy number variation (CNV) is rife in eukaryotic genomes and has been implicated in many human disorders, particularly cancer, in which CNV promotes both tumorigenesis and chemotherapy resistance. CNVs are considered random mutations but often arise through replication defects; transcription can interfere with replication fork progression and stability, leading to increased mutation rates at highly transcribed loci. Here we investigate whether inducible promoters can stimulate CNV to yield reproducible, environment-specific genetic changes. We propose a general mechanism for environmentally-stimulated CNV and validate this mechanism for the emergence of copper resistance in budding yeast. By analysing a large cohort of individual cells, we directly demonstrate that CNV of the copper-resistance gene CUP1 is stimulated by environmental copper. CNV stimulation accelerates the formation of novel alleles conferring enhanced copper resistance, such that copper exposure actively drives adaptation to copper-rich environments. Furthermore, quantification of CNV in individual cells reveals remarkable allele selectivity in the rate at which specific environments stimulate CNV. We define the key mechanistic elements underlying this selectivity, demonstrating that CNV is regulated by both promoter activity and acetylation of histone H3 lysine 56 (H3K56ac) and that H3K56ac is required for CUP1 CNV and efficient copper adaptation. Stimulated CNV is not limited to high-copy CUP1 repeat arrays, as we find that H3K56ac also regulates CNV in 3 copy arrays of CUP1 or SFA1 genes. The impact of transcription on DNA damage is well understood, but our research reveals that this apparently problematic association forms a pathway by which mutations can be directed to particular loci in particular environments and furthermore that this mutagenic process can be regulated through histone acetylation. Stimulated CNV therefore represents an unanticipated and remarkably controllable pathway

  19. Accurate and objective copy number profiling using real-time quantitative PCR.

    Science.gov (United States)

    D'haene, Barbara; Vandesompele, Jo; Hellemans, Jan

    2010-04-01

    Copy number changes are known to be involved in numerous human genetic disorders. In this context, qPCR-based copy number screening may serve as the method of choice for targeted screening of the relevant disease genes and their surrounding regulatory landscapes. qPCR has many advantages over alternative methods, such as its low consumable and instrumentation costs, fast turnaround and assay development time, high sensitivity and open format (independent of a single supplier). In this chapter we provide all relevant information for a successfully implement of qPCR-based copy number analysis. We emphasize the significance of thorough in silico and empirical validation of the primers, the need for a well thought-out experiment design, and the importance of quality controls along the entire workflow. Furthermore, we suggest an appropriate and practical way to calculate copy numbers and to objectively interpret the results. The provided guidelines will most certainly improve the quality and reliability of your qPCR-based copy number screening.

  20. Major copy proportion analysis of tumor samples using SNP arrays

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2008-04-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common genetic variations in the human genome and are useful as genomic markers. Oligonucleotide SNP microarrays have been developed for high-throughput genotyping of up to 900,000 human SNPs and have been used widely in linkage and cancer genomics studies. We have previously used Hidden Markov Models (HMM to analyze SNP array data for inferring copy numbers and loss-of-heterozygosity (LOH from paired normal and tumor samples and unpaired tumor samples. Results We proposed and implemented major copy proportion (MCP analysis of oligonucleotide SNP array data. A HMM was constructed to infer unobserved MCP states from observed allele-specific signals through emission and transition distributions. We used 10 K, 100 K and 250 K SNP array datasets to compare MCP analysis with LOH and copy number analysis, and showed that MCP performs better than LOH analysis for allelic-imbalanced chromosome regions and normal contaminated samples. The major and minor copy alleles can also be inferred from allelic-imbalanced regions by MCP analysis. Conclusion MCP extends tumor LOH analysis to allelic imbalance analysis and supplies complementary information to total copy numbers. MCP analysis of mixing normal and tumor samples suggests the utility of MCP analysis of normal-contaminated tumor samples. The described analysis and visualization methods are readily available in the user-friendly dChip software.

  1. Accuracy of marker analysis, quantitative real-time polymerase chain reaction, and multiple ligation-dependent probe amplification to determine SMN2 copy number in patients with spinal muscular atrophy.

    Science.gov (United States)

    Alías, Laura; Bernal, Sara; Barceló, Maria J; Also-Rallo, Eva; Martínez-Hernández, Rebeca; Rodríguez-Alvarez, Francisco J; Hernández-Chico, Concepción; Baiget, Montserrat; Tizzano, Eduardo F

    2011-09-01

    Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by absence of or mutations in the survival motor neuron1 gene (SMN1). All SMA patients have a highly homologous copy of SMN1, the SMN2 gene. Severe (type I) SMA patients present one or two SMN2 copies, whereas milder chronic forms (type II-III) usually have three or four SMN2 copies. SMN2 dosage is important to stratify patients for motor function tests and clinical trials. Our aim was to compare three methods, marker analysis, real-time quantitative polymerase chain reaction using the LightCycler instrument, and multiple ligation-dependent probe amplification (MLPA), to characterize their accuracy in quantifying SMN2 genes. We studied a group of 62 genetically confirmed SMA patients, 54 with homozygous absence of exons 7 and 8 of SMN1 and 8 with SMN2-SMN1 hybrid genes. A complete correlation using the three methods was observed in 32 patients (51.6%). In the remaining 30 patients, discordances between the three methods were found, including under or overestimation of SMN2 copies by marker analysis with respect to the quantitative methods (LightCycler and MLPA) because of lack of informativeness of markers, 3' deletions of SMN genes, and breakpoints in SMN2-SMN1 hybrid genes. The technical limitations and advantages and disadvantages of these methods are discussed. We conclude that the three methods complement each other in estimating the SMN2 copy number in most cases. However, MLPA offers additional information to characterize SMA cases with particular rearrangements such as partial deletions and hybrid genes.

  2. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly

    DEFF Research Database (Denmark)

    Mengel-From, Jonas; Thinggaard, Mikael; Dalgård, Christine

    2014-01-01

    compared to nuclear DNA, i.e. the mitochondrial DNA copy number, was measured by PCR technology and used as a proxy for the content of mitochondria copies. In 1,067 Danish twins and singletons (18-93 years of age), with the majority being elderly individuals, the estimated mean mitochondrial DNA copy...... an individual was more than twice as steep as observed in the cross-sectional analysis [decline of mtDNA content: -1.27; 95 % CI (-1.71; -0.82)]. Subjects with low mitochondrial DNA copy number had poorer outcomes in terms of cognitive performance, physical strength, self-rated health, and higher all......-cause mortality than subjects with high mitochondrial DNA copy number, also when age was controlled for. The copy number mortality association can contribute to the smaller decline in a cross-sectional sample of the population compared to the individual, longitudinal decline. This study suggests that high...

  3. Genome-Wide Copy Number Variation Analysis in Extended Families and Unrelated Individuals Characterized for Musical Aptitude and Creativity in Music

    Science.gov (United States)

    Oikkonen, Jaana; Buck, Gemma; Blancher, Christine; Raijas, Pirre; Karma, Kai; Lähdesmäki, Harri; Järvelä, Irma

    2013-01-01

    Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music

  4. Array-based comparative genomic hybridization analysis reveals chromosomal copy number aberrations associated with clinical outcome in canine diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Arianna Aricò

    Full Text Available Canine Diffuse Large B-cell Lymphoma (cDLBCL is an aggressive cancer with variable clinical response. Despite recent attempts by gene expression profiling to identify the dog as a potential animal model for human DLBCL, this tumor remains biologically heterogeneous with no prognostic biomarkers to predict prognosis. The aim of this work was to identify copy number aberrations (CNAs by high-resolution array comparative genomic hybridization (aCGH in 12 dogs with newly diagnosed DLBCL. In a subset of these dogs, the genetic profiles at the end of therapy and at relapse were also assessed. In primary DLBCLs, 90 different genomic imbalances were counted, consisting of 46 gains and 44 losses. Two gains in chr13 were significantly correlated with clinical stage. In addition, specific regions of gains and losses were significantly associated to duration of remission. In primary DLBCLs, individual variability was found, however 14 recurrent CNAs (>30% were identified. Losses involving IGK, IGL and IGH were always found, and gains along the length of chr13 and chr31 were often observed (>41%. In these segments, MYC, LDHB, HSF1, KIT and PDGFRα are annotated. At the end of therapy, dogs in remission showed four new CNAs, whereas three new CNAs were observed in dogs at relapse compared with the previous profiles. One ex novo CNA, involving TCR, was present in dogs in remission after therapy, possibly induced by the autologous vaccine. Overall, aCGH identified small CNAs associated with outcome, which, along with future expression studies, may reveal target genes relevant to cDLBCL.

  5. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music.

    Science.gov (United States)

    Ukkola-Vuoti, Liisa; Kanduri, Chakravarthi; Oikkonen, Jaana; Buck, Gemma; Blancher, Christine; Raijas, Pirre; Karma, Kai; Lähdesmäki, Harri; Järvelä, Irma

    2013-01-01

    Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception

  6. Genome-wide copy number variation analysis in extended families and unrelated individuals characterized for musical aptitude and creativity in music.

    Directory of Open Access Journals (Sweden)

    Liisa Ukkola-Vuoti

    Full Text Available Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores: auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music was surveyed using a web-based questionnaire.Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9 was found co-segregating with low music test scores (COMB in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for

  7. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.

    Science.gov (United States)

    Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C

    2015-01-01

    Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of

  8. Atrazine exposure elicits copy number alterations in the zebrafish genome.

    Science.gov (United States)

    Wirbisky, Sara E; Freeman, Jennifer L

    2017-04-01

    Atrazine is an agricultural herbicide used throughout the Midwestern United States that frequently contaminates potable water supplies resulting in human exposure. Using the zebrafish model system, an embryonic atrazine exposure was previously reported to decrease spawning rates with an increase in progesterone and ovarian follicular atresia in adult females. In addition, alterations in genes associated with distinct molecular pathways of the endocrine system were observed in brain and gonad tissue of the adult females and males. Current hypotheses for mechanistic changes in the developmental origins of health and disease include genetic (e.g., copy number alterations) or epigenetic (e.g., DNA methylation) mechanisms. As such, in the current study we investigated whether an atrazine exposure would generate copy number alterations (CNAs) in the zebrafish genome. A zebrafish fibroblast cell line was used to limit detection to CNAs caused by the chemical exposure. First, cells were exposed to a range of atrazine concentrations and a crystal violet assay was completed, showing confluency decreased by ~60% at 46.3μM. Cells were then exposed to 0, 0.463, 4.63, or 46.3μM atrazine and array comparative genomic hybridization completed. Results showed 34, 21, and 44 CNAs in the 0.463, 4.63, and 46.3μM treatments, respectively. Furthermore, CNAs were associated with previously reported gene expression alterations in adult male and female zebrafish. This study demonstrates that atrazine exposure can generate CNAs that are linked to gene expression alterations observed in adult zebrafish exposed to atrazine during embryogenesis providing a mechanism of the developmental origins of atrazine endocrine disruption. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer

    Science.gov (United States)

    2015-08-01

    and clinical data inventory at MGH, 4) Sequenced RNA from these tumor samples. 2 Preliminary RNAseq analysis has indicated the need of analyzing...CNV on 300 samples, so that integration analysis with RNAseq can initiate. Plans for the next reporting period to accomplish the goals: Finish...analysis of DNA CNV on 300 samples and integrated analysis of the copy number variation result and the RNAseq results obtained from a paralleled DOD

  10. Validity of Low Copy Number Typing and Applications to Forensic Science

    OpenAIRE

    Budowle, Bruce; Eisenberg, Arthur J.; Van Daal, Angela

    2009-01-01

    Low copy number (LCN) typing, particularly for current short tandem repeat (STR) typing, refers to the analysis of any sample that contains less than 200 pg of template DNA. Generally, LCN typing simply can be defined as the analysis of any DNA sample where the results are below the stochastic threshold for reliable interpretation. There are a number of methodologies to increase sensitivity of detection to enable LCN typing. These approaches encompass modifications during the polymerase chain...

  11. BIOFILTER AS A FUNCTIONAL ANNOTATION PIPELINE FOR COMMON AND RARE COPY NUMBER BURDEN.

    Science.gov (United States)

    Kim, Dokyoon; Lucas, Anastasia; Glessner, Joseph; Verma, Shefali S; Bradford, Yuki; Li, Ruowang; Frase, Alex T; Hakonarson, Hakon; Peissig, Peggy; Brilliant, Murray; Ritchie, Marylyn D

    2016-01-01

    Recent studies on copy number variation (CNV) have suggested that an increasing burden of CNVs is associated with susceptibility or resistance to disease. A large number of genes or genomic loci contribute to complex diseases such as autism. Thus, total genomic copy number burden, as an accumulation of copy number change, is a meaningful measure of genomic instability to identify the association between global genetic effects and phenotypes of interest. However, no systematic annotation pipeline has been developed to interpret biological meaning based on the accumulation of copy number change across the genome associated with a phenotype of interest. In this study, we develop a comprehensive and systematic pipeline for annotating copy number variants into genes/genomic regions and subsequently pathways and other gene groups using Biofilter - a bioinformatics tool that aggregates over a dozen publicly available databases of prior biological knowledge. Next we conduct enrichment tests of biologically defined groupings of CNVs including genes, pathways, Gene Ontology, or protein families. We applied the proposed pipeline to a CNV dataset from the Marshfield Clinic Personalized Medicine Research Project (PMRP) in a quantitative trait phenotype derived from the electronic health record - total cholesterol. We identified several significant pathways such as toll-like receptor signaling pathway and hepatitis C pathway, gene ontologies (GOs) of nucleoside triphosphatase activity (NTPase) and response to virus, and protein families such as cell morphogenesis that are associated with the total cholesterol phenotype based on CNV profiles (permutation p-value Biofilter can be used for CNV data from any genotyping or sequencing platform and to explore CNV enrichment for any traits or phenotypes. Biofilter continues to be a powerful bioinformatics tool for annotating, filtering, and constructing biologically informed models for association analysis - now including copy number

  12. The association between DNA copy number aberrations at chromosome 5q22 and gastric cancer.

    Directory of Open Access Journals (Sweden)

    Pei-Chien Tsai

    Full Text Available BACKGROUND: Gastric cancer is common cancer. Discovering novel genetic biomarkers might help to identify high-risk individuals. Copy number variation (CNV has recently been shown to influence risk for several cancers. The aim of the present study was sought to test the association between copy number at a variant region and GC. METHODS: A total of 110 gastric cancer patients and 325 healthy volunteers were enrolled in this study. We searched for a CNV and found a CNV (Variation 7468 containing part of the APC gene, the SRP19 gene and the REEP5 gene. We chose four probes targeting at APC-intron8, APC-exon9, SRP19 and REEP5 to interrogate this CNV. Specific Taqman probes labeled by different reporter fluorophores were used in a real-time PCR platform to obtain copy number. Both the original non-integer data and transformed integer data on copy number were used for analyses. RESULTS: Gastric caner patients had a lower non-integer copy number than controls for the APC-exon9 probe (Adjusted p = 0.026 and SRP19 probe (Adjusted p = 0.002. The analysis of integer copy number yielded a similar pattern although less significant (Adjusted p = 0.07 for APC-exon9 probe and Adjusted p = 0.02 for SRP19 probe. CONCLUSIONS: Losses of a CNV at 5q22, especially in the DNA region surrounding APC-exon 9, may be associated with a higher risk of gastric cancer.

  13. Selection of Suitable Endogenous Reference Genes for Relative Copy Number Detection in Sugarcane

    Directory of Open Access Journals (Sweden)

    Bantong Xue

    2014-05-01

    Full Text Available Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM crops by quantitative real-time PCR (qPCR or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids DNA content quantification, we evaluated a set of potential “single copy” genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3—high copy number group, TST-1 and PRR-1—medium copy number group, P4H-1, APRT-2 and CYC-2—low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  14. Cyanobacteria Maintain Constant Protein Concentration despite Genome Copy-Number Variation.

    Science.gov (United States)

    Zheng, Xiao-Yu; O'Shea, Erin K

    2017-04-18

    The cyanobacterium Synechococcus elongatus PCC 7942 has multiple copies of its single chromosome, and the copy number varies in individual cells, providing an ideal system to study the effect of genome copy-number variation on cell size and gene expression. Using single-cell fluorescence imaging, we found that protein concentration remained constant across individual cells regardless of genome copy number. Cell volume and the total protein amount from a single gene were both positively, linearly correlated with genome copy number, suggesting that changes in cell volume play an important role in buffering genome copy-number variance. This study provides a quantitative examination of gene expression regulation in cells with variable genome copies and sheds light on the compensation mechanisms for variance in genome copy number. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. EGFR gene copy number as a predictive biomarker for the treatment of metastatic colorectal cancer with anti-EGFR monoclonal antibodies: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Yang Zu-Yao

    2012-08-01

    Full Text Available Abstract Background Epidermal growth factor receptor gene copy number (EGFR GCN has been heavily investigated as a potential predictive biomarker for the treatment of metastatic colorectal cancer (mCRC with anti-EGFR monoclonal antibodies (MAbs. The objective of this study was to systematically review current evidences on this issue. Methods PubMed, EMBASE, The Cochrane Library, Chinese Biomedical Literature Database, Wanfang Data, and the conference abstracts of American Society of Clinical Oncology and European Society of Medical Oncology were comprehensively searched. Studies that reported the objective response rate (ORR, progression-free survival, and/or overall survival of mCRC patients treated with anti-EGFR MAbs, stratified by EGFR GCN status, were included. The effect measures for binary outcome (response and time-to-event outcomes (progression-free survival and overall survival were risk difference and hazard ratio, respectively. Statistical heterogeneity among the studies was assessed by the Cochran’s Q-test and the I2 statistic. If appropriate, a quantitative synthesis of data from different studies would be conducted with a random-effects model. Results Nineteen eligible studies were identified. The criteria for increased EGFR GCN (GCN+ were highly inconsistent across different studies. The prevalence of GCN + ranged from 6.9% to 88.9%, and the difference in ORR between patients with GCN + and those with non-increased EGFR GCN (GCN- varied from −28% to 84%. Because of the significant heterogeneity, no quantitative synthesis of data was performed. There was a general trend towards higher ORR in patients with GCN+. The difference in ORRs between patients with GCN + and those with GCN- was even greater in KRAS wild-type patients, while in KRAS mutated patients the difference often did not exist. Almost all patients with EGFR amplification responded to the treatment. However, the prevalence of EGFR amplification was

  16. Decoding NF1 Intragenic Copy-Number Variations.

    Science.gov (United States)

    Hsiao, Meng-Chang; Piotrowski, Arkadiusz; Callens, Tom; Fu, Chuanhua; Wimmer, Katharina; Claes, Kathleen B M; Messiaen, Ludwine

    2015-08-06

    Genomic rearrangements can cause both Mendelian and complex disorders. Currently, several major mechanisms causing genomic rearrangements, such as non-allelic homologous recombination (NAHR), non-homologous end joining (NHEJ), fork stalling and template switching (FoSTeS), and microhomology-mediated break-induced replication (MMBIR), have been proposed. However, to what extent these mechanisms contribute to gene-specific pathogenic copy-number variations (CNVs) remains understudied. Furthermore, few studies have resolved these pathogenic alterations at the nucleotide-level. Accordingly, our aim was to explore which mechanisms contribute to a large, unique set of locus-specific non-recurrent genomic rearrangements causing the genetic neurocutaneous disorder neurofibromatosis type 1 (NF1). Through breakpoint-spanning PCR as well as array comparative genomic hybridization, we have identified the breakpoints in 85 unrelated individuals carrying an NF1 intragenic CNV. Furthermore, we characterized the likely rearrangement mechanisms of these 85 CNVs, along with those of two additional previously published NF1 intragenic CNVs. Unlike the most typical recurrent rearrangements mediated by flanking low-copy repeats (LCRs), NF1 intragenic rearrangements vary in size, location, and rearrangement mechanisms. We propose the DNA-replication-based mechanisms comprising both FoSTeS and/or MMBIR and serial replication stalling to be the predominant mechanisms leading to NF1 intragenic CNVs. In addition to the loop within a 197-bp palindrome located in intron 40, four Alu elements located in introns 1, 2, 3, and 50 were also identified as intragenic-rearrangement hotspots within NF1.

  17. Integrated analyses of copy number variations and gene expression in lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Tzu-Pin Lu

    Full Text Available Numerous efforts have been made to elucidate the etiology and improve the treatment of lung cancer, but the overall five-year survival rate is still only 15%. Identification of prognostic biomarkers for lung cancer using gene expression microarrays poses a major challenge in that very few overlapping genes have been reported among different studies. To address this issue, we have performed concurrent genome-wide analyses of copy number variation and gene expression to identify genes reproducibly associated with tumorigenesis and survival in non-smoking female lung adenocarcinoma. The genomic landscape of frequent copy number variable regions (CNVRs in at least 30% of samples was revealed, and their aberration patterns were highly similar to several studies reported previously. Further statistical analysis for genes located in the CNVRs identified 475 genes differentially expressed between tumor and normal tissues (p<10(-5. We demonstrated the reproducibility of these genes in another lung cancer study (p = 0.0034, Fisher's exact test, and showed the concordance between copy number variations and gene expression changes by elevated Pearson correlation coefficients. Pathway analysis revealed two major dysregulated functions in lung tumorigenesis: survival regulation via AKT signaling and cytoskeleton reorganization. Further validation of these enriched pathways using three independent cohorts demonstrated effective prediction of survival. In conclusion, by integrating gene expression profiles and copy number variations, we identified genes/pathways that may serve as prognostic biomarkers for lung tumorigenesis.

  18. Candidate predisposing germline copy number variants in early onset colorectal cancer patients.

    Science.gov (United States)

    Brea-Fernandez, A J; Fernandez-Rozadilla, C; Alvarez-Barona, M; Azuara, D; Ginesta, M M; Clofent, J; de Castro, L; Gonzalez, D; Andreu, M; Bessa, X; Llor, X; Xicola, R; Jover, R; Castells, A; Castellvi-Bel, S; Capella, G; Carracedo, A; Ruiz-Ponte, C

    2017-05-01

    A great proportion of the heritability of colorectal cancer (CRC) still remains unexplained, and rare variants, as well as copy number changes, have been proposed as potential candidates to explain the so-called 'missing heritability'. We aimed to identify rare high-to-moderately penetrant copy number variants (CNVs) in patients suspected of having hereditary CRC due to an early onset. We have selected for genome-wide copy number analysis, 27 MMR-proficient early onset CRC patients (1% in the in-house control CNV database (n = 629 healthy controls). Copy number assignment was checked by duplex real-time quantitative PCR or multiplex ligation probe amplification. Somatic mutation analysis in candidate genes included: loss of heterozygosity studies, point mutation screening, and methylation status of the promoter. We have identified two rare germline deletions involving the AK3 and SLIT2 genes in two patients. The search for a second somatic mutational event in the corresponding CRC tumors showed loss of heterozygosity in AK3, and promoter hypermethylation in SLIT2. Both genes have been previously related to colorectal carcinogenesis. These findings suggest that AK3 and SLIT2 may be potential candidates involved in genetic susceptibility to CRC.

  19. Genetic copy number variation and general cognitive ability.

    Directory of Open Access Journals (Sweden)

    Andrew K MacLeod

    Full Text Available Differences in genomic structure between individuals are ubiquitous features of human genetic variation. Specific copy number variants (CNVs have been associated with susceptibility to numerous complex psychiatric disorders, including attention-deficit-hyperactivity disorder, autism-spectrum disorders and schizophrenia. These disorders often display co-morbidity with low intelligence. Rare chromosomal deletions and duplications are associated with these disorders, so it has been suggested that these deletions or duplications may be associated with differences in intelligence. Here we investigate associations between large (≥500kb, rare (<1% population frequency CNVs and both fluid and crystallized intelligence in community-dwelling older people. We observe no significant associations between intelligence and total CNV load. Examining individual CNV regions previously implicated in neuropsychological disorders, we find suggestive evidence that CNV regions around SHANK3 are associated with fluid intelligence as derived from a battery of cognitive tests. This is the first study to examine the effects of rare CNVs as called by multiple algorithms on cognition in a large non-clinical sample, and finds no effects of such variants on general cognitive ability.

  20. Somatic Copy Number Alterations at Oncogenic Loci Show Diverse Correlations with Gene Expression

    Science.gov (United States)

    Roszik, Jason; Wu, Chang-Jiun; Siroy, Alan E.; Lazar, Alexander J.; Davies, Michael A.; Woodman, Scott E.; Kwong, Lawrence N.

    2016-01-01

    Somatic copy number alterations (SCNAs) affecting oncogenic drivers have a firmly established role in promoting cancer. However, no agreed-upon standard exists for calling locus-specific amplifications and deletions in each patient sample. Here, we report the correlative analysis of copy number amplitude and length with gene expression across 6,109 samples from The Cancer Genome Atlas (TCGA) dataset across 16 cancer types. Using specificity, sensitivity, and precision-based scores, we assigned optimized amplitude and length cutoffs for nine recurrent SCNAs affecting known oncogenic drivers, using mRNA expression as a functional readout. These cutoffs captured the majority of SCNA-driven, highly-expression-altered samples. The majority of oncogenes required only amplitude cutoffs, as high amplitude samples were almost invariably focal; however, CDKN2A and PTEN uniquely required both amplitude and length cutoffs as primary predictors. For PTEN, these extended to downstream AKT activation. In contrast, SCNA genes located peri-telomerically or in fragile sites showed poor expression-copy number correlations. Overall, our analyses identify optimized amplitude and length cutoffs as efficient predictors of gene expression changes for specific oncogenic SCNAs, yet warn against one-size-fits-all interpretations across all loci. Our results have implications for cancer data analyses and the clinic, where copy number and mutation data are increasingly used to personalize cancer therapy.

  1. Selective constraint on copy number variation in human piwi-interacting RNA Loci.

    Directory of Open Access Journals (Sweden)

    David W Gould

    Full Text Available Piwi-interacting RNAs (piRNAs are a recently discovered class of small non-coding RNA found in animals. PiRNAs are primarily expressed in the germline where their best understood function is to repress transposable elements. Unlike previous studies that investigated the evolution of piRNA-generating loci at the level of nucleotide substitutions, here we studied the evolution of piRNA-generating loci at the level of copy number variation (i.e. duplications and deletions using genome-wide copy number variation data from three human populations. Our analysis shows that at the level of copy number variation there is strong selective constraint and a very high mutation rate in human piRNA-generating loci. Our results differ from a model of positive selection on copy number variation in piRNA-generating loci previously proposed in rodents. We discuss possible reasons for this difference based on the transposable element insertion histories in the rodent and primate lineages.

  2. Short copy number variations potentially associated with tonic immobility responses in newly hatched chicks.

    Directory of Open Access Journals (Sweden)

    Hideaki Abe

    Full Text Available INTRODUCTION: Tonic immobility (TI is fear-induced freezing that animals may undergo when confronted by a threat. It is principally observed in prey species as defence mechanisms. In our preliminary research, we detected large inter-individual variations in the frequency and duration of freezing behavior among newly hatched domestic chicks (Gallus gallus. In this study we aim to identify the copy number variations (CNVs in the genome of chicks as genetic candidates that underlie the behavioral plasticity to fearful stimuli. METHODS: A total of 110 domestic chicks were used for an association study between TI responses and copy number polymorphisms. Array comparative genomic hybridization (aCGH was conducted between chicks with high and low TI scores using an Agilent 4 × 180 custom microarray. We specifically focused on 3 genomic regions (>60 Mb of chromosome 1 where previous quantitative trait loci (QTL analysis showed significant F-values for fearful responses. RESULTS: ACGH successfully detected short CNVs within the regions overlapping 3 QTL peaks. Eleven of these identified loci were validated by real-time quantitative polymerase chain reaction (qPCR as copy number polymorphisms. Although there wkas no significant p value in the correlation analysis between TI scores and the relative copy number within each breed, several CNV loci showed significant differences in the relative copy number between 2 breeds of chicken (White Leghorn and Nagoya which had different quantitative characteristics of fear-induced responses. CONCLUSION: Our data shows the potential CNVs that may be responsible for innate fear response in domestic chicks.

  3. Genome-wide copy number profiling of mouse neural stem cells during differentiation

    Directory of Open Access Journals (Sweden)

    U. Fischer

    2015-09-01

    Full Text Available There is growing evidence that gene amplifications were present in neural stem and progenitor cells during differentiation. We used array-CGH to discover copy number changes including gene amplifications and deletions during differentiation of mouse neural stem cells using TGF-ß and FCS for differentiation induction. Array data were deposited in GEO (Gene Expression Omnibus, NCBI under accession number GSE35523. Here, we describe in detail the cell culture features and our TaqMan qPCR-experiments to validate the array-CGH analysis. Interpretation of array-CGH experiments regarding gene amplifications in mouse and further detailed analysis of amplified chromosome regions associated with these experiments were published by Fischer and colleagues in Oncotarget (Fischer et al., 2015. We provide additional information on deleted chromosome regions during differentiation and give an impressive overview on copy number changes during differentiation induction at a time line.

  4. Potential Value of Genomic Copy Number Variations in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chuanjun Zhuo

    2017-06-01

    Full Text Available Schizophrenia is a devastating neuropsychiatric disorder affecting approximately 1% of the global population, and the disease has imposed a considerable burden on families and society. Although, the exact cause of schizophrenia remains unknown, several lines of scientific evidence have revealed that genetic variants are strongly correlated with the development and early onset of the disease. In fact, the heritability among patients suffering from schizophrenia is as high as 80%. Genomic copy number variations (CNVs are one of the main forms of genomic variations, ubiquitously occurring in the human genome. An increasing number of studies have shown that CNVs account for population diversity and genetically related diseases, including schizophrenia. The last decade has witnessed rapid advances in the development of novel genomic technologies, which have led to the identification of schizophrenia-associated CNVs, insight into the roles of the affected genes in their intervals in schizophrenia, and successful manipulation of the target CNVs. In this review, we focus on the recent discoveries of important CNVs that are associated with schizophrenia and outline the potential values that the study of CNVs will bring to the areas of schizophrenia research, diagnosis, and therapy. Furthermore, with the help of the novel genetic tool known as the Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9 system, the pathogenic CNVs as genomic defects could be corrected. In conclusion, the recent novel findings of schizophrenia-associated CNVs offer an exciting opportunity for schizophrenia research to decipher the pathological mechanisms underlying the onset and development of schizophrenia as well as to provide potential clinical applications in genetic counseling, diagnosis, and therapy for this complex mental disease.

  5. Quantitative analysis of waterfowl parvoviruses in geese and Muscovy ducks by real-time polymerase chain reaction: correlation between age, clinical symptoms and DNA copy number of waterfowl parvoviruses

    Directory of Open Access Journals (Sweden)

    Woźniakowski Grzegorz

    2012-03-01

    between age, clinical symptoms during parvoviral infection and the DNA copy number of these pathogens. The method allowed for a sensitive detection of GPV and MDPV even in 1-week old infected goslings or 2-week old ducklings before observation of any disease symptoms. Conclusions The developed method was found to be a valuable tool for the unification of laboratory procedures and both parvoviruses parallel detection and quantification. The conducted analysis revealed significant correlation between the age of the infected birds, the observed clinical symptoms and DNA copy number of GPV and MDPV in the examined organs. The obtained data may aid in better understanding of the pathogenesis and epidemiology of Derzsy's disease and 3-w disease as well as estimation of the infection's severity and stage of the disease.

  6. Quantitative analysis of waterfowl parvoviruses in geese and Muscovy ducks by real-time polymerase chain reaction: correlation between age, clinical symptoms and DNA copy number of waterfowl parvoviruses.

    Science.gov (United States)

    Woźniakowski, Grzegorz; Samorek-Salamonowicz, Elżbieta; Kozdruń, Wojciech

    2012-03-15

    parvoviral infection and the DNA copy number of these pathogens. The method allowed for a sensitive detection of GPV and MDPV even in 1-week old infected goslings or 2-week old ducklings before observation of any disease symptoms. The developed method was found to be a valuable tool for the unification of laboratory procedures and both parvoviruses parallel detection and quantification. The conducted analysis revealed significant correlation between the age of the infected birds, the observed clinical symptoms and DNA copy number of GPV and MDPV in the examined organs. The obtained data may aid in better understanding of the pathogenesis and epidemiology of Derzsy's disease and 3-w disease as well as estimation of the infection's severity and stage of the disease.

  7. A map of copy number variations in Chinese populations.

    Directory of Open Access Journals (Sweden)

    Haiyi Lou

    Full Text Available It has been shown that the human genome contains extensive copy number variations (CNVs. Investigating the medical and evolutionary impacts of CNVs requires the knowledge of locations, sizes and frequency distribution of them within and between populations. However, CNV study of Chinese minorities, which harbor the majority of genetic diversity of Chinese populations, has been underrepresented considering the same efforts in other populations. Here we constructed, to our knowledge, a first CNV map in seven Chinese populations representing the major linguistic groups in China with 1,440 CNV regions identified using Affymetrix SNP 6.0 Array. Considerable differences in distributions of CNV regions between populations and substantial population structures were observed. We showed that ∼35% of CNV regions identified in minority ethnic groups are not shared by Han Chinese population, indicating that the contribution of the minorities to genetic architecture of Chinese population could not be ignored. We further identified highly differentiated CNV regions between populations. For example, a common deletion in Dong and Zhuang (44.4% and 50%, which overlaps two keratin-associated protein genes contributing to the structure of hair fibers, was not observed in Han Chinese. Interestingly, the most differentiated CNV deletion between HapMap CEU and YRI containing CCL3L1 gene reported in previous studies was also the highest differentiated regions between Tibetan and other populations. Besides, by jointly analyzing CNVs and SNPs, we found a CNV region containing gene CTDSPL were in almost perfect linkage disequilibrium between flanking SNPs in Tibetan while not in other populations except HapMap CHD. Furthermore, we found the SNP taggability of CNVs in Chinese populations was much lower than that in European populations. Our results suggest the necessity of a full characterization of CNVs in Chinese populations, and the CNV map we constructed serves as a

  8. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA

    Directory of Open Access Journals (Sweden)

    Chan Alan

    2006-06-01

    Full Text Available Abstract Background Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. Results In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A. Conclusion Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  9. Macronuclear Actin copy number variations in single cells of different Pseudokeronopsis (Alveolata, Ciliophora) populations.

    Science.gov (United States)

    Huang, Lijuan; Lu, Xuefen; Zhu, Changyu; Lin, Xiaofeng; Yi, Zhenzhen

    2017-06-01

    Macronuclear chromosomes of ciliates, especially those of Spirotrichea, Armophorea and Phyllopharyngea, are extensively fragmented and their copy numbers vary significantly. A recent study suggested that parental RNA molecules regulate macronuclear copy number in offspring cells after conjugation. However, variations in patterns of macronuclear copy number during vegetative growth are not clear. Previous studies have reported macronuclear copy numbers of population averages, potentially masking individual variation. In the present investigation, we studied copy number variations among closely related species of Pseudokeronopsis and among individual cells during vegetative growth. We found that macronuclear copy numbers of Actin I, II in our Pseudokeronopsis populations are in the same range as in other spirotrichean species, but no close relationship is detected among morphologically related Pseudokeronopsis species. Copy numbers of three cells within each Pseudokeronopsis population range from 1.01 to 4.55 fold, suggesting that stochastic influences copy number during vegetative growth. Furthermore, the absence of a relationship between macronuclear copy numbers of Actin I and Actin II within Pseudokeronopsis is consistent with the fact that these genes are located on different gene-sized macronuclear chromosomes. Additionally, Actin II might have disappeared in P. carnea during evolution within the Actin gene family. Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. Determination of beta-defensin genomic copy number in different populations

    DEFF Research Database (Denmark)

    Fode, Peder; Jespersgaard, Cathrine; Hardwick, Robert J

    2011-01-01

    There have been conflicting reports in the literature on association of gene copy number with disease, including CCL3L1 and HIV susceptibility, and ß-defensins and Crohn's disease. Quantification of precise gene copy numbers is important in order to define any association of gene copy number...... with disease. At present, real-time quantitative PCR (QPCR) is the most commonly used method to determine gene copy number, however the Paralogue Ratio Test (PRT) is being used in more and more laboratories....

  11. High copy number of mitochondrial DNA predicts poor prognosis in patients with advanced stage colon cancer.

    Science.gov (United States)

    Wang, Yun; He, Shuixiang; Zhu, Xingmei; Qiao, Wei; Zhang, Juan

    2016-12-23

    The aim of this investigation was to determine whether alterations in mitochondrial DNA (mtDNA) copy number in colon cancer were associated with clinicopathological parameters and postsurgical outcome. By quantitative real-time PCR assay, the mtDNA copy number was detected in a cohort of colon cancer and matched adjacent colon tissues (n = 162). The majority of patients had higher mtDNA content in colon cancer tissues than matched adjacent colon tissues. Moreover, high mtDNA content in tumor tissues was associated with larger tumor size, higher serum CEA level, advanced TNM stage, vascular emboli, and liver metastases. Further survival curve analysis showed that high mtDNA content was related to the worst survival in patients with colon cancer at advanced TNM stage. High mtDNA content is a potential effective factor of poor prognosis in patients with advanced stage colon cancer.

  12. Copy-number variation and false positive prenatal aneuploidy screening results.

    Science.gov (United States)

    Snyder, Matthew W; Simmons, LaVone E; Kitzman, Jacob O; Coe, Bradley P; Henson, Jessica M; Daza, Riza M; Eichler, Evan E; Shendure, Jay; Gammill, Hilary S

    2015-04-23

    Investigations of noninvasive prenatal screening for aneuploidy by analysis of circulating cell-free DNA (cfDNA) have shown high sensitivity and specificity in both high-risk and low-risk cohorts. However, the overall low incidence of aneuploidy limits the positive predictive value of these tests. Currently, the causes of false positive results are poorly understood. We investigated four pregnancies with discordant prenatal test results and found in two cases that maternal duplications on chromosome 18 were the likely cause of the discordant results. Modeling based on population-level copy-number variation supports the possibility that some false positive results of noninvasive prenatal screening may be attributable to large maternal copy-number variants. (Funded by the National Institutes of Health and others.).

  13. ascatNgs: Identifying Somatically Acquired Copy-Number Alterations from Whole-Genome Sequencing Data.

    Science.gov (United States)

    Raine, Keiran M; Van Loo, Peter; Wedge, David C; Jones, David; Menzies, Andrew; Butler, Adam P; Teague, Jon W; Tarpey, Patrick; Nik-Zainal, Serena; Campbell, Peter J

    2016-12-08

    We have developed ascatNgs to aid researchers in carrying out Allele-Specific Copy number Analysis of Tumours (ASCAT). ASCAT is capable of detecting DNA copy number changes affecting a tumor genome when comparing to a matched normal sample. Additionally, the algorithm estimates the amount of tumor DNA in the sample, known as Aberrant Cell Fraction (ACF). ASCAT itself is an R-package which requires the generation of many file types. Here, we present a suite of tools to help handle this for the user. Our code is available on our GitHub site (https://github.com/cancerit). This unit describes both 'one-shot' execution and approaches more suitable for large-scale compute farms. © 2016 by John Wiley & Sons, Inc.

  14. Sequence diversity and copy number variation of Mutator-like transposases in wheat

    Directory of Open Access Journals (Sweden)

    Nobuaki Asakura

    2008-01-01

    Full Text Available Partial transposase-coding sequences of Mutator-like elements (MULEs were isolated from a wild einkorn wheat, Triticum urartu, by degenerate PCR. The isolated sequences were classified into a MuDR or Class I clade and divided into two distinct subclasses (subclass I and subclass II. The average pair-wise identity between members of both subclasses was 58.8% at the nucleotide sequence level. Sequence diversity of subclass I was larger than that of subclass II. DNA gel blot analysis showed that subclass I was present as low copy number elements in the genomes of all Triticum and Aegilops accessions surveyed, while subclass II was present as high copy number elements. These two subclasses seemed uncapable of recognizing each other for transposition. The number of copies of subclass II elements was much higher in Aegilops with the S, Sl and D genomes and polyploid Triticum species than in diploid Triticum with the A genome, indicating that active transposition occurred in S, Sl and D genomes before polyploidization. DNA gel blot analysis of six species selected from three subfamilies of Poaceae demonstrated that only the tribe Triticeae possessed both subclasses. These results suggest that the differentiation of these two subclasses occurred before or immediately after the establishment of the tribe Triticeae.

  15. Simple binary segmentation frameworks for identifying variation in DNA copy number

    Directory of Open Access Journals (Sweden)

    Yang Tae Young

    2012-10-01

    Full Text Available Abstract Background Variation in DNA copy number, due to gains and losses of chromosome segments, is common. A first step for analyzing DNA copy number data is to identify amplified or deleted regions in individuals. To locate such regions, we propose a circular binary segmentation procedure, which is based on a sequence of nested hypothesis tests, each using the Bayesian information criterion. Results Our procedure is convenient for analyzing DNA copy number in two general situations: (1 when using data from multiple sources and (2 when using cohort analysis of multiple patients suffering from the same type of cancer. In the first case, data from multiple sources such as different platforms, labs, or preprocessing methods are used to study variation in copy number in the same individual. Combining these sources provides a higher resolution, which leads to a more detailed genome-wide survey of the individual. In this case, we provide a simple statistical framework to derive a consensus molecular signature. In the framework, the multiple sequences from various sources are integrated into a single sequence, and then the proposed segmentation procedure is applied to this sequence to detect aberrant regions. In the second case, cohort analysis of multiple patients is carried out to derive overall molecular signatures for the cohort. For this case, we provide another simple statistical framework in which data across multiple profiles is standardized before segmentation. The proposed segmentation procedure is then applied to the standardized profiles one at a time to detect aberrant regions. Any such regions that are common across two or more profiles are probably real and may play important roles in the cancer pathogenesis process. Conclusions The main advantages of the proposed procedure are flexibility and simplicity.

  16. Gene expression profiling and gene copy-number changes in malignant mesothelioma cell lines.

    Science.gov (United States)

    Zanazzi, Claudia; Hersmus, Remko; Veltman, Imke M; Gillis, Ad J M; van Drunen, Ellen; Beverloo, H Berna; Hegmans, Joost P J J; Verweij, Marielle; Lambrecht, Bart N; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2007-10-01

    Malignant mesothelioma (MM) is an asbestos-induced tumor that acquires aneuploid DNA content during the tumorigenic process. We used instable MM cell lines as an in vitro model to study the impact of DNA copy-number changes on gene expression profiling, in the course of their chromosomal redistribution process. Two MM cell lines, PMR-MM2 (early passages of in vitro culture) and PMR-MM7 (both early and late passages of in vitro culture), were cytogenetically characterized. Genomic gains and losses were precisely defined using microarray-based comparative genomic hybridization (array-CGH), and minimal overlapping analysis led to the identification of the common unbalanced genomic regions. Using the U133Plus 2.0 Affymetrix gene chip array, we analyzed PMR-MM7 early and late passages for genome-wide gene expression, and correlated the differentially expressed genes with copy-number changes. The presence of a high number of genetic imbalances occurring from early to late culture steps reflected the tendency of MM cells toward genomic instability. The selection of specific chromosomal abnormalities observed during subsequent cultures demonstrated the spontaneous evolution of the cancer cells in an in vitro environment. MM cell lines were characterized by copy-number changes associated with the TP53 apoptotic pathway already present at the first steps of in vitro culture. Prolonged culture led to acquisition of additional chromosomal copy-number changes associated with dysregulation of genes involved in cell adhesion, regulation of mitotic cell cycle, signal transduction, carbohydrate metabolism, motor activity, glycosaminoglycan biosynthesis, protein binding activity, lipid transport, ATP synthesis, and methyltransferase activity.

  17. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    Science.gov (United States)

    Mayer, Melanie G; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J

    2015-06-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for

  18. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    Directory of Open Access Journals (Sweden)

    Melanie G Mayer

    2015-06-01

    Full Text Available Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as

  19. An evaluation of new and established methods to determine T-DNA copy number and homozygosity in transgenic plants.

    Science.gov (United States)

    Głowacka, Katarzyna; Kromdijk, Johannes; Leonelli, Lauriebeth; Niyogi, Krishna K; Clemente, Tom E; Long, Stephen P

    2016-04-01

    Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL-)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T-DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL-PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T-DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T-DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided.

  20. Low copy number of the salivary amylase gene predisposes to obesity.

    Science.gov (United States)

    Falchi, Mario; El-Sayed Moustafa, Julia Sarah; Takousis, Petros; Pesce, Francesco; Bonnefond, Amélie; Andersson-Assarsson, Johanna C; Sudmant, Peter H; Dorajoo, Rajkumar; Al-Shafai, Mashael Nedham; Bottolo, Leonardo; Ozdemir, Erdal; So, Hon-Cheong; Davies, Robert W; Patrice, Alexandre; Dent, Robert; Mangino, Massimo; Hysi, Pirro G; Dechaume, Aurélie; Huyvaert, Marlène; Skinner, Jane; Pigeyre, Marie; Caiazzo, Robert; Raverdy, Violeta; Vaillant, Emmanuel; Field, Sarah; Balkau, Beverley; Marre, Michel; Visvikis-Siest, Sophie; Weill, Jacques; Poulain-Godefroy, Odile; Jacobson, Peter; Sjostrom, Lars; Hammond, Christopher J; Deloukas, Panos; Sham, Pak Chung; McPherson, Ruth; Lee, Jeannette; Tai, E Shyong; Sladek, Robert; Carlsson, Lena M S; Walley, Andrew; Eichler, Evan E; Pattou, Francois; Spector, Timothy D; Froguel, Philippe

    2014-05-01

    Common multi-allelic copy number variants (CNVs) appear enriched for phenotypic associations compared to their biallelic counterparts. Here we investigated the influence of gene dosage effects on adiposity through a CNV association study of gene expression levels in adipose tissue. We identified significant association of a multi-allelic CNV encompassing the salivary amylase gene (AMY1) with body mass index (BMI) and obesity, and we replicated this finding in 6,200 subjects. Increased AMY1 copy number was positively associated with both amylase gene expression (P = 2.31 × 10(-14)) and serum enzyme levels (P copy number was associated with increased BMI (change in BMI per estimated copy = -0.15 (0.02) kg/m(2); P = 6.93 × 10(-10)) and obesity risk (odds ratio (OR) per estimated copy = 1.19, 95% confidence interval (CI) = 1.13-1.26; P = 1.46 × 10(-10)). The OR value of 1.19 per copy of AMY1 translates into about an eightfold difference in risk of obesity between subjects in the top (copy number > 9) and bottom (copy number copy number distribution. Our study provides a first genetic link between carbohydrate metabolism and BMI and demonstrates the power of integrated genomic approaches beyond genome-wide association studies.

  1. Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements.

    Science.gov (United States)

    Froyen, Guy; Belet, Stefanie; Martinez, Francisco; Santos-Rebouças, Cíntia Barros; Declercq, Matthias; Verbeeck, Jelle; Donckers, Lene; Berland, Siren; Mayo, Sonia; Rosello, Monica; Pimentel, Márcia Mattos Gonçalves; Fintelman-Rodrigues, Natalia; Hovland, Randi; Rodrigues dos Santos, Suely; Raymond, F Lucy; Bose, Tulika; Corbett, Mark A; Sheffield, Leslie; van Ravenswaaij-Arts, Conny M A; Dijkhuizen, Trijnie; Coutton, Charles; Satre, Veronique; Siu, Victoria; Marynen, Peter

    2012-08-10

    We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families. High-resolution mapping of the 12 copy-number gains reduced the minimal duplicated region to the HUWE1 locus only. Consequently, increased mRNA levels were detected for HUWE1, but not HSD17B10. Marker and SNP analysis, together with identification of two de novo events, suggested a paternally derived intrachromosomal duplication event. In four independent families, we report on a polymorphic 70 kb recurrent copy-number gain, which harbors part of HUWE1 (exon 28 to 3' untranslated region), including miR-98 and let-7f-2. Our findings thus demonstrate that HUWE1 is the only remaining dosage-sensitive gene associated with the ID phenotype. Junction and in silico analysis of breakpoint regions demonstrated simple microhomology-mediated rearrangements suggestive of replication-based duplication events. Intriguingly, in a single family, the duplication was generated through nonallelic homologous recombination (NAHR) with the use of HUWE1-flanking imperfect low-copy repeats, which drive this infrequent NAHR event. The recurrent partial HUWE1 copy-number gain was also generated through NAHR, but here, the homologous sequences used were identified as TcMAR-Tigger DNA elements, a template that has not yet been reported for NAHR. In summary, we showed that an increased dosage of HUWE1 causes nonsyndromic ID and demonstrated that the Xp11.22 region is prone to recombination- and replication-based rearrangements.

  2. Proteomic changes resulting from gene copy number variations in cancer cells.

    Directory of Open Access Journals (Sweden)

    Tamar Geiger

    2010-09-01

    Full Text Available Along the transformation process, cells accumulate DNA aberrations, including mutations, translocations, amplifications, and deletions. Despite numerous studies, the overall effects of amplifications and deletions on the end point of gene expression--the level of proteins--is generally unknown. Here we use large-scale and high-resolution proteomics combined with gene copy number analysis to investigate in a global manner to what extent these genomic changes have a proteomic output and therefore the ability to affect cellular transformation. We accurately measure expression levels of 6,735 proteins and directly compare them to the gene copy number. We find that the average effect of these alterations on the protein expression is only a few percent. Nevertheless, by using a novel algorithm, we find the combined impact that many of these regional chromosomal aberrations have at the protein level. We show that proteins encoded by amplified oncogenes are often overexpressed, while adjacent amplified genes, which presumably do not promote growth and survival, are attenuated. Furthermore, regulation of biological processes and molecular complexes is independent of general copy number changes. By connecting the primary genome alteration to their proteomic consequences, this approach helps to interpret the data from large-scale cancer genomics efforts.

  3. Rare Copy Number Variants Identified Suggest the Regulating Pathways in Hypertension-Related Left Ventricular Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Hoh Boon-Peng

    Full Text Available Left ventricular hypertrophy (LVH is an independent risk factor for cardiovascular morbidity and mortality, and a powerful predictor of adverse cardiovascular outcomes in the hypertensive patients. It has complex multifactorial and polygenic basis for its pathogenesis. We hypothesized that rare copy number variants (CNVs contribute to the LVH pathogenesis in hypertensive patients. Copy number variants (CNV were identified in 258 hypertensive patients, 95 of whom had LVH, after genotyping with a high resolution SNP array. Following stringent filtering criteria, we identified 208 rare, or private CNVs that were only present in our patients with hypertension related LVH. Preliminary findings from Gene Ontology and pathway analysis of this study confirmed the involvement of the genes known to be functionally involved in cardiac development and phenotypes, in line with previously reported transcriptomic studies. Network enrichment analyses suggested that the gene-set was, directly or indirectly, involved in the transcription factors regulating the "foetal cardiac gene programme" which triggered the hypertrophic cascade, confirming previous reports. These findings suggest that multiple, individually rare copy number variants altering genes may contribute to the pathogenesis of hypertension-related LVH. In summary, we have provided further supporting evidence that rare CNV could potentially impact this common and complex disease susceptibility with lower heritability.

  4. Significant heterogeneity in Wolbachia copy number within and between populations of Onchocerca volvulus.

    Science.gov (United States)

    Armoo, Samuel; Doyle, Stephen R; Osei-Atweneboana, Mike Y; Grant, Warwick N

    2017-04-18

    Wolbachia are intracellular bacteria found in arthropods and several filarial nematode species. The filarial Wolbachia have been proposed to be involved in the immunopathology associated with onchocerciasis. Higher Wolbachia-to-nematode ratios have been reported in the savannah-ecotype compared to the forest-ecotype, and have been interpreted as consistent with a correlation between Wolbachia density and disease severity. However, factors such as geographic stratification and ivermectin drug exposure can lead to significant genetic heterogeneity in the nematode host populations, so we investigated whether Wolbachia copy number variation is also associated with these underlying factors. Genomic DNA was prepared from single adult nematodes representing forest and savannah ecotypes sampled from Togo, Ghana, Côte d'Ivoire and Mali. A qPCR assay was developed to measure the number of Wolbachia genome(s) per nematode genome. Next-generation sequencing (NGS) was also used to measure relative Wolbachia copy number, and independently verify the qPCR assay. Significant variation was observed within the forest (range: 0.02 to 452.99; median: 10.58) and savannah (range: 0.01 to 1106.25; median: 9.10) ecotypes, however, no significant difference between ecotypes (P = 0.645) was observed; rather, strongly significant Wolbachia variation was observed within and between the nine study communities analysed (P = 0.021), independent of ecotype. Analysis of ivermectin-treated and untreated nematodes by qPCR showed no correlation (P = 0.869); however, an additional analysis of a subset of the nematodes by qPCR and NGS revealed a correlation between response to ivermectin treatment and Wolbachia copy number (P = 0.020). This study demonstrates that extensive within and between population variation exists in the Wolbachia content of individual adult O. volvulus. The origin and functional significance of such variation (up to ~ 100,000-fold between worms; ~10 to 100

  5. Systems biology analysis of hepatitis C virus infection reveals the role of copy number increases in regions of chromosome 1q in hepatocellular carcinoma metabolism

    DEFF Research Database (Denmark)

    Elsemman, Ibrahim; Mardinoglu, Adil; Shoaie, Saeed

    2016-01-01

    Hepatitis C virus (HCV) infection is a worldwide healthcare problem; however, traditional treatment methods have failed to cure all patients, and HCV has developed resistance to new drugs. Systems biology-based analyses could play an important role in the holistic analysis of the impact of HCV...

  6. 5 CFR 2429.25 - Number of copies and paper size.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Number of copies and paper size. 2429.25... Requirements § 2429.25 Number of copies and paper size. Unless otherwise provided by the Authority or the... the exception of any prescribed forms, any document or paper filed with the Authority, General Counsel...

  7. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    Science.gov (United States)

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  8. Reduced purifying selection prevails over positive selection in human copy number variant evolution.

    NARCIS (Netherlands)

    Nguyen, D.Q.; Webber, C.; Hehir-Kwa, J.; Pfundt, R.; Veltman, J.A.; Ponting, C.P.

    2008-01-01

    Copy number variation is a dominant contributor to genomic variation and may frequently underlie an individual's variable susceptibilities to disease. Here we question our previous proposition that copy number variants (CNVs) are often retained in the human population because of their adaptive

  9. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication

    NARCIS (Netherlands)

    Paudel, Y.; Madsen, O.; Megens, H.J.W.C.; Frantz, L.A.F.; Bosse, M.; Bastiaansen, J.W.M.; Crooijmans, R.P.M.A.; Groenen, M.

    2013-01-01

    Background Copy number variable regions (CNVRs) can result in drastic phenotypic differences and may therefore be subject to selection during domestication. Studying copy number variation in relation to domestication is highly relevant in pigs because of their very rich natural and domestication

  10. Copy number variation in Fayoumi and Leghorn chickens analyzed using array comparative genomic hybridization

    NARCIS (Netherlands)

    Abernathy, J.; Li, X.; Jia, X.; Chou, W.; Lamont, S.J.; Crooijmans, R.P.M.A.; Zhou, H.

    2014-01-01

    Copy number variation refers to regions along chromosomes that harbor a type of structural variation, such as duplications or deletions. Copy number variants (CNVs) play a role in many important traits as well as in genetic diversity. Previous analyses of chickens using array comparative genomic hyb

  11. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication

    NARCIS (Netherlands)

    Paudel, Y.; Madsen, O.; Megens, H.J.W.C.; Frantz, L.A.F.; Bosse, M.; Bastiaansen, J.W.M.; Crooijmans, R.P.M.A.; Groenen, M.

    2013-01-01

    Background Copy number variable regions (CNVRs) can result in drastic phenotypic differences and may therefore be subject to selection during domestication. Studying copy number variation in relation to domestication is highly relevant in pigs because of their very rich natural and domestication his

  12. 10 CFR 205.307 - Form and style; number of copies

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Form and style; number of copies 205.307 Section 205.307 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy to A Foreign Country § 205.307 Form and style; number of copies An original and...

  13. Characterization of an inducible promoter in different DNA copy number conditions.

    Science.gov (United States)

    Zucca, Susanna; Pasotti, Lorenzo; Mazzini, Giuliano; De Angelis, Maria Gabriella Cusella; Magni, Paolo

    2012-03-28

    The bottom-up programming of living organisms to implement novel user-defined biological capabilities is one of the main goals of synthetic biology. Currently, a predominant problem connected with the construction of even simple synthetic biological systems is the unpredictability of the genetic circuitry when assembled and incorporated in living cells. Copy number, transcriptional/translational demand and toxicity of the DNA-encoded functions are some of the major factors which may lead to cell overburdening and thus to nonlinear effects on system output. It is important to disclose the linearity working boundaries of engineered biological systems when dealing with such phenomena. The output of an N-3-oxohexanoyl-L-homoserine lactone (HSL)-inducible RFP-expressing device was studied in Escherichia coli in different copy number contexts, ranging from 1 copy per cell (integrated in the genome) to hundreds (via multicopy plasmids). The system is composed by a luxR constitutive expression cassette and a RFP gene regulated by the luxI promoter, which is activated by the HSL-LuxR complex. System output, in terms of promoter activity as a function of HSL concentration, was assessed relative to the one of a reference promoter in identical conditions by using the Relative Promoter Units (RPU) approach. Nonlinear effects were observed in the maximum activity, which is identical in single and low copy conditions, while it decreases for higher copy number conditions. In order to properly compare the luxI promoter strength among all the conditions, a mathematical modeling approach was used to relate the promoter activity to the estimated HSL-LuxR complex concentration, which is the actual activator of transcription. During model fitting, a correlation between the copy number and the dissociation constant of HSL-LuxR complex and luxI promoter was observed. Even in a simple inducible system, nonlinear effects are observed and non-trivial data processing is necessary to fully

  14. Fluorescent in situ hybridization (FISH) assessment of chromosome copy number in sperm

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, M.; Sigman, M.; Mark, H.F.L. [Brown Univ. School of Medicine, Providence, RI (United States)

    1994-09-01

    Approximately 15% of all recognized pregnancies end in spontaneous abortions. The overall frequency of chromosome abnormalities in spontaneous abortions is approximately 50%. Thus aneuploidy is a significant cause of fetal wastage. In addition, structural and numerical abnormalities of chromosomes can also lead to birth defects, developmental delay, mental retardation and infertility. Conventional cytogenetic analysis via GTG- and other banding techniques is a powerful tool in the elucidation of the nature of chromosomal abnormalities. Fluorescent in situ hybridization (FISH) enables detection of numerical chromosomal abnormalities, especially trisomies, in intact cells. Using FISH and commercially available biotin-labeled probes, we have initiated a prospective study to assess specific chromosome copy number of preparations of unstained smears from men referred for a male infertility evaluation as well as smears from normal control males chosen randomly from the sample of sperm donors. A total of approximately 19,000 sperm nuclei have been examined thus far. Of those suitable for analysis, 7382 (38.75%) were normal possessing one copy of chromosome 8, 155 (0.81%) were disomic, and 15 (0.079%) had more than two copies of chromosome 8. Comparisons with data available in the literature will be discussed. Work is ongoing to increase the efficiency of hybridization using both reported and previously untried pretreatment and fixation protocols. We have also initiated studies using multicolor FISH with various chromosome enumeration probes. The assay described here is a potentially powerful tool for detecting rare events such as spontaneous germ cell aneuploidy, aneuploidy detected in semen from men with carcinoma in situ of the testis and aneuploidy induced by potential environmental genotoxicants. It can also be utilized for segregation analysis and for correlating chromosome copy number with germ cell morphology.

  15. Genome-wide linkage and copy number variation analysis reveals 710 kb duplication on chromosome 1p31.3 responsible for autosomal dominant omphalocele

    Science.gov (United States)

    Radhakrishna, Uppala; Nath, Swapan K; McElreavey, Ken; Ratnamala, Uppala; Sun, Celi; Maiti, Amit K; Gagnebin, Maryline; Béna, Frédérique; Newkirk, Heather L; Sharp, Andrew J; Everman, David B; Murray, Jeffrey C; Schwartz, Charles E; Antonarakis, Stylianos E; Butler, Merlin G

    2017-01-01

    Background Omphalocele is a congenital birth defect characterised by the presence of internal organs located outside of the ventral abdominal wall. The purpose of this study was to identify the underlying genetic mechanisms of a large autosomal dominant Caucasian family with omphalocele. Methods and findings A genetic linkage study was conducted in a large family with an autosomal dominant transmission of an omphalocele using a genome-wide single nucleotide polymorphism (SNP) array. The analysis revealed significant evidence of linkage (non-parametric NPL = 6.93, p=0.0001; parametric logarithm of odds (LOD) = 2.70 under a fully penetrant dominant model) at chromosome band 1p31.3. Haplotype analysis narrowed the locus to a 2.74 Mb region between markers rs2886770 (63014807 bp) and rs1343981 (65757349 bp). Molecular characterisation of this interval using array comparative genomic hybridisation followed by quantitative microsphere hybridisation analysis revealed a 710 kb duplication located at 63.5–64.2 Mb. All affected individuals who had an omphalocele and shared the haplotype were positive for this duplicated region, while the duplication was absent from all normal individuals of this family. Multipoint linkage analysis using the duplication as a marker yielded a maximum LOD score of 3.2 at 1p31.3 under a dominant model. The 710 kb duplication at 1p31.3 band contains seven known genes including FOXD3, ALG6, ITGB3BP, KIAA1799, DLEU2L, PGM1, and the proximal portion of ROR1. Importantly, this duplication is absent from the database of genomic variants. Conclusions The present study suggests that development of an omphalocele in this family is controlled by overexpression of one or more genes in the duplicated region. To the authors’ knowledge, this is the first reported association of an inherited omphalocele condition with a chromosomal rearrangement. PMID:22499347

  16. sCNAphase: using haplotype resolved read depth to genotype somatic copy number alterations from low cellularity aneuploid tumors.

    Science.gov (United States)

    Chen, Wenhan; Robertson, Alan J; Ganesamoorthy, Devika; Coin, Lachlan J M

    2017-03-17

    Accurate identification of copy number alterations is an essential step in understanding the events driving tumor progression. While a variety of algorithms have been developed to use high-throughput sequencing data to profile copy number changes, no tool is able to reliably characterize ploidy and genotype absolute copy number from tumor samples that contain less than 40% tumor cells. To increase our power to resolve the copy number profile from low-cellularity tumor samples, we developed a novel approach that pre-phases heterozygote germline single nucleotide polymorphisms (SNPs) in order to replace the commonly used 'B-allele frequency' with a more powerful 'parental-haplotype frequency'. We apply our tool-sCNAphase-to characterize the copy number and loss-of-heterozygosity profiles of four publicly available breast cancer cell-lines. Comparisons to previous spectral karyotyping and microarray studies revealed that sCNAphase reliably identified overall ploidy as well as the individual copy number mutations from each cell-line. Analysis of artificial cell-line mixtures demonstrated the capacity of this method to determine the level of tumor cellularity, consistently identify sCNAs and characterize ploidy in samples with as little as 10% tumor cells. This novel methodology has the potential to bring sCNA profiling to low-cellularity tumors, a form of cancer unable to be accurately studied by current methods. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Familial longevity study reveals a significant association of mitochondrial DNA copy number between centenarians and their offspring.

    Science.gov (United States)

    He, Yong-Han; Chen, Xiao-Qiong; Yan, Dong-Jing; Xiao, Fu-Hui; Lin, Rong; Liao, Xiao-Ping; Liu, Yao-Wen; Pu, Shao-Yan; Yu, Qin; Sun, Hong-Peng; Jiang, Jian-Jun; Cai, Wang-Wei; Kong, Qing-Peng

    2016-11-01

    Reduced mitochondrial function is an important cause of aging and age-related diseases. We previously revealed a relatively higher level of mitochondrial DNA (mtDNA) content in centenarians. However, it is still unknown whether such an mtDNA content pattern of centenarians could be passed on to their offspring and how it was regulated. To address these issues, we recruited 60 longevity families consisting of 206 family members (cohort 1) and explored their mtDNA copy number. The results showed that the first generation of the offspring (F1 offspring) had a higher level of mtDNA copy number than their spouses (p copy number in centenarians with that in F1 offspring (r = 0.54, p = 0.0008) but not with that in F1 spouses. These results were replicated in another independent cohort consisting of 153 subjects (cohort 2). RNA sequencing analysis suggests that the single-stranded DNA-binding protein 4 was significantly associated with mtDNA copy number and was highly expressed in centenarians as well as F1 offspring versus the F1 spouses, thus likely regulates the mtDNA copy number in the long-lived family members. In conclusion, our results suggest that the pattern of high mtDNA copy number is likely inheritable, which may act as a favorable factor to familial longevity through assuring adequate energy supply. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Copy number variation of mitochondrial genes in Pneumocystis jirovecii according to the fungal load in BAL specimens

    Directory of Open Access Journals (Sweden)

    clara valero

    2016-09-01

    Full Text Available AbstractPneumocystis jirovecii is an unculturable fungus and the causative agent of Pneumocystis pneumonia, a life-threatening opportunistic infection. Although molecular diagnosis is often based on the mtLSU rRNA mitochondrial gene due to its greater sensitivity, physiology and the dynamics of the mitochondria in this fungus remains largely unknown. We developed and optimized six real-time PCR assays in order to determine the copy number of four mitochondrial genes (mtSSU rRNA, mtLSU rRNA, NAD1 and CYTB in comparison to nuclear genome (DHPS and HSP70 and tested 84 bronchoalveolar fluids of patients at different stages of the infection. Unexpectedly, we found that copy number of mitochondrial genes varied from gene to gene with mtSSU rRNA gene being more represented (37 copies than NAD1 (23 copies, mtLSU rRNA (15 copies and CYTB (6 copies genes compared to nuclear genome. Hierarchical clustering analysis (HCA allowed us to define five major clusters, significantly associated with fungal load (p=0.029, in which copy number of mitochondrial genes was significantly different among them. More importantly, copy number of mtLSU rRNA, NAD1 and CYTB but not mtSSU rRNA differed according to P. jirovecii physiological state with a decreased number of copies when the fungal load is low. This suggests the existence of a mixture of various subspecies of mtDNA that can harbor different amplification rates. Overall, we revealed here an unexpected plasticity and dynamics of P. jirovecii mitochondrial DNA that vary according to P. jirovecii’s physiological state.

  19. Chromosome copy number variation and control in the ciliate Chilodonella uncinata.

    Directory of Open Access Journals (Sweden)

    Kevin J Spring

    Full Text Available Copy number variations are widespread in eukaryotes. The unusual genome architecture of ciliates, in particular, with its process of amitosis in macronuclear division, provides a valuable model in which to study copy number variation. The current model of amitosis envisions stochastic distribution of macronuclear chromosomes during asexual reproduction. This suggests that amitosis is likely to result in high levels of copy number variation in ciliates, as dividing daughter cells can have variable copy numbers of chromosomes if chromosomal distribution during amitosis is a stochastic process. We examined chromosomal distribution during amitosis in Chilodonella uncinata, a ciliate with gene-size macronuclear chromosomes. We quantified 4 chromosomes in evolving populations of C. uncinata and modeled the amitotic distribution process. We found that macronuclear chromosomes differ in copy number from one another but that copy number does not change as expected under a stochastic process. The chromosome carrying SSU increased in copy number, which is consistent with selection to increase abundance; however, two other studied chromosomes displayed much lower than expected among-line variance. Our models suggest that balancing selection is sufficient to explain the observed maintenance of chromosome copy during asexual reproduction.

  20. Cell-free DNA copy number variations in plasma from colorectal cancer patients.

    Science.gov (United States)

    Li, Jian; Dittmar, Rachel L; Xia, Shu; Zhang, Huijuan; Du, Meijun; Huang, Chiang-Ching; Druliner, Brooke R; Boardman, Lisa; Wang, Liang

    2017-08-01

    To evaluate the clinical utility of cell-free DNA (cfDNA), we performed whole-genome sequencing to systematically examine plasma cfDNA copy number variations (CNVs) in a cohort of patients with colorectal cancer (CRC, n = 80), polyps (n = 20), and healthy controls (n = 35). We initially compared cfDNA yield in 20 paired serum-plasma samples and observed significantly higher cfDNA concentration in serum (median = 81.20 ng, range 7.18-500 ng·mL(-1) ) than in plasma (median = 5.09 ng, range 3.76-62.8 ng·mL(-1) ) (P copy number analysis showed common CNVs in multiple chromosomal regions, including amplifications on 1q, 8q, and 5q and deletions on 1p, 4q, 8p, 17p, 18q, and 22q. Copy number changes were also evident in genes critical to the cell cycle, DNA repair, and WNT signaling pathways. To evaluate whether cumulative copy number changes were associated with tumor stages, we calculated plasma genomic abnormality in colon cancer (PGA-C) score by summing the most significant CNVs. The PGA-C score showed predictive performance with an area under the curve from 0.54 to 0.84 for CRC stages I-IV. Locus-specific copy number analysis identified nine genomic regions where CNVs were significantly associated with survival in stage III-IV CRC patients. A multivariate model using six of nine genomic regions demonstrated a significant association of high-risk score with shorter survival (HR = 5.33, 95% CI = 6.76-94.44, P < 0.0001). Our study demonstrates the importance of using plasma (rather than serum) to test tumor-related genomic variations. Plasma cfDNA-based tests can capture tumor-specific genetic changes and may provide a measurable classifier for assessing clinical outcomes in advanced CRC patients. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  1. Magellan: A Web Based System for the Integrated Analysis of Heterogeneous Biological Data and Annotations; Application to DNA Copy Number and Expression Data in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Chris B. Kingsley

    2006-01-01

    Full Text Available Recent advances in high throughput biological methods allow researchers to generate enormous amounts of data from a single experiment. In order to extract meaningful conclusions from this tidal wave of data, it will be necessary to develop analytical methods of sufficient power and utility. It is particularly important that biologists themselves be able to perform many of these analyses, such that their background knowledge of the experimental system under study can be used to interpret results and direct further inquiries. We have developed a web-based system, Magellan, which allows the upload, storage, and analysis of multivariate data and textual or numerical annotations. Data and annotations are treated as abstract entities, to maximize the different types of information the system can store and analyze. Annotations can be used in analyses/visualizations, as a means of subsetting data to reduce dimensionality, or as a means of projecting variables from one data type or data set to another. Analytical methods are deployed within Magellan such that new functionalities can be added in a straightforward fashion. Using Magellan, we performed an integrated analysis of genome-wide comparative genomic hybridization (CGH, mRNA expression, and clinical data from ovarian tumors. Analyses included the use of permutation-based methods to identify genes whose mRNA expression levels correlated with patient survival, a nearest neighbor classifier to predict patient survival from CGH data, and curated annotations such as genomic position and derived annotations such as statistical computations to explore the quantitative relationship between CGH and mRNA expression data.

  2. Magellan: a web based system for the integrated analysis of heterogeneous biological data and annotations; application to DNA copy number and expression data in ovarian cancer.

    Science.gov (United States)

    Kingsley, Chris B; Kuo, Wen-Lin; Polikoff, Daniel; Berchuck, Andy; Gray, Joe W; Jain, Ajay N

    2007-02-05

    Recent advances in high throughput biological methods allow researchers to generate enormous amounts of data from a single experiment. In order to extract meaningful conclusions from this tidal wave of data, it will be necessary to develop analytical methods of sufficient power and utility. It is particularly important that biologists themselves be able to perform many of these analyses, such that their background knowledge of the experimental system under study can be used to interpret results and direct further inquiries. We have developed a web-based system, Magellan, which allows the upload, storage, and analysis of multivariate data and textual or numerical annotations. Data and annotations are treated as abstract entities, to maximize the different types of information the system can store and analyze. Annotations can be used in analyses/visualizations, as a means of subsetting data to reduce dimensionality, or as a means of projecting variables from one data type or data set to another. Analytical methods are deployed within Magellan such that new functionalities can be added in a straightforward fashion. Using Magellan, we performed an integrated analysis of genome-wide comparative genomic hybridization (CGH), mRNA expression, and clinical data from ovarian tumors. Analyses included the use of permutation-based methods to identify genes whose mRNA expression levels correlated with patient survival, a nearest neighbor classifier to predict patient survival from CGH data, and curated annotations such as genomic position and derived annotations such as statistical computations to explore the quantitative relationship between CGH and mRNA expression data.

  3. Abundant copy-number loss of CYCLOPS and STOP genes in gastric adenocarcinoma.

    Science.gov (United States)

    Cutcutache, Ioana; Wu, Alice Yingting; Suzuki, Yuka; McPherson, John Richard; Lei, Zhengdeng; Deng, Niantao; Zhang, Shenli; Wong, Wai Keong; Soo, Khee Chee; Chan, Weng Hoong; Ooi, London Lucien; Welsch, Roy; Tan, Patrick; Rozen, Steven G

    2016-04-01

    Gastric cancer, a leading cause of cancer death worldwide, has been little studied compared with other cancers that impose similar health burdens. Our goal is to assess genomic copy-number loss and the possible functional consequences and therapeutic implications thereof across a large series of gastric adenocarcinomas. We used high-density single-nucleotide polymorphism microarrays to determine patterns of copy-number loss and allelic imbalance in 74 gastric adenocarcinomas. We investigated whether suppressor of tumorigenesis and/or proliferation (STOP) genes are associated with genomic copy-number loss. We also analyzed the extent to which copy-number loss affects Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS (CYCLOPS) genes-genes that may be attractive targets for therapeutic inhibition when partially deleted. The proportion of the genome subject to copy-number loss varies considerably from tumor to tumor, with a median of 5.5 %, and a mean of 12 % (range 0-58.5 %). On average, 91 STOP genes were subject to copy-number loss per tumor (median 35, range 0-452), and STOP genes tended to have lower copy-number compared with the rest of the genes. Furthermore, on average, 1.6 CYCLOPS genes per tumor were both subject to copy-number loss and downregulated, and 51.4 % of the tumors had at least one such gene. The enrichment of STOP genes in regions of copy-number loss indicates that their deletion may contribute to gastric carcinogenesis. Furthermore, the presence of several deleted and downregulated CYCLOPS genes in some tumors suggests potential therapeutic targets in these tumors.

  4. High-resolution analysis of DNA copy number alterations in rectal cancer. Correlation with metastasis, survival, and mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Doyen, Jerome; Gerard, Jean-Pierre [Centre Antoine-Lacassagne, Department of Radiation Oncology, Nice (France); University of Nice Sophia-Antipolis, Nice (France); Letouze, Eric; Marisa, Laetitia; Reynies, Aurelien de [Ligue Nationale Contre Le Cancer, Programme Cartes d' Identite des Tumeurs, Paris (France); Milano, Gerard; Etienne-Grimaldi, Marie-Christine [University of Nice Sophia-Antipolis, Nice (France); Centre Antoine-Lacassagne, Oncopharmacology Unit, Nice (France); Olschwang, Sylviane [INSERM U1068, Marseille (France); Gaedcke, Jochen; Ghadimi, Michael [University Medical Center Goettingen, Department of General and Visceral Surgery, Goettingen (Germany)

    2014-11-15

    This study aimed to determine the candidate genes and chromosomal imbalances capable of predicting occurrences of metastasis in patients with rectal cancer. Fresh frozen tumor tissues from 80 patients with rectal cancer were prospectively collected and analyzed using Affymetrix HG-U133 Plus 2.0 gene expression arrays and high-resolution Illumina single-nucleotide polymorphism (SNP) arrays. Endpoints of the study were metastasis-free survival (MFS) and cancer-specific survival (CSS). The median follow-up was 102 months (1-146). Deletions of 8p and 1p36-35 correlated with worse MFS (p = 0.005 and p = 0.01, respectively) and CSS (p = 0.001 and p = 0.01, respectively). Multivariate analysis identified 8p deletion as an independent prognostic factor for MFS (p = 0.04) and CSS (p = 0.003); 97 genes located on the 8p chromosome were significantly underexpressed in tumors with 8p deletion. This study shows for the first time in rectal cancer an independent correlation of 8p deletion with MFS and CSS and highlights potential new tumor suppressor genes. (orig.) [German] Diese Studie zielt darauf ab, Kandidatengene und chromosomale Ungleichgewichte vorherzusagen und das Auftreten von Metastasen bei Rektumkarzinompatienten zu bestimmen. Frisch gefrorenes Tumorgewebe von 80 Patienten mit Rektumkarzinom wurde prospektiv erfasst und mit Affymetrix-(HG-U133-Plus-2.0)-Genexpressionsarrays und hochaufloesenden Illumina-Single-Nukleotid-Polymorphismus-(SNP-)Arrays analysiert. Endpunkte der Studie waren fernmetastasenfreies Ueberleben (MFU) und krebsspezifisches Ueberleben (KSU). Die mediane Nachbeobachtungszeit betrug 102 Monate (1-146 Monate). Die Deletionen von 8p und 1p36-35 waren mit schlechterem MFU (jeweils p = 0,005 und p = 0,01) und KSU (jeweils p = 0,001 und p = 0,01) korreliert. Die multivariate Analyse identifizierte - 8p als unabhaengigen prognostischen Faktor fuer MFU (p = 0,04) und KSU (p = 0,003). In Tumoren mit einer 8p-Deletion waren 97 Gene auf Chromosom 8p

  5. Increased pfmdr1 copy number in Plasmodium falciparum isolates from Suriname.

    Science.gov (United States)

    Labadie-Bracho, Mergiory; Adhin, Malti R

    2013-07-01

    Amplification of the pfmdr1 gene is associated with clinical failures and reduced in vivo and in vitro sensitivity to both mefloquine and artemether-lumefantrine in South-East Asia. Several African countries have reported the absence or very low prevalence of increased copy number, whilst South American reports are limited to Peru without and Venezuela with increased pfmdr1 multiplication. The relative pfmdr1 copy numbers were assessed in 68 isolates from Suriname collected from different endemic villages (2005) and from mining areas (2009). 11% of the isolates harbour multiple copies of the pfmdr1 gene. Isolates originating from mining areas do not yet display a higher tendency for increased copy number and no significant differences could be registered within a time span of 4 years, but the mere presence of increased copy number warrants caution and should be considered as an early warning sign for emerging drug resistance in Suriname and South America.

  6. Copy number of the transposon, Pokey, in rDNA is positively correlated with rDNA copy number in Daphnia obtuse [corrected].

    Directory of Open Access Journals (Sweden)

    Kaitlynn LeRiche

    Full Text Available Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼ 87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species.

  7. Copy-number changes in evolution: rates, fitness effects and adaptive significance

    Directory of Open Access Journals (Sweden)

    Vaishali eKatju

    2013-12-01

    Full Text Available Gene copy-number differences due to gene duplications and deletions are rampant in natural populations and play a crucial role in the evolution of genome complexity. Per-locus analyses of gene duplication rates in the pre-genomic era revealed that gene duplication rates are much higher than the per nucleotide substitution rate. Analyses of gene duplication and deletion rates in mutation accumulation lines of model organisms have revealed that these high rates of copy-number mutations occur at a genome-wide scale. Furthermore, comparisons of the spontaneous duplication and deletion rates to copy-number polymorphism data and bioinformatic-based estimates of duplication rates from sequenced genomes suggest that the vast majority of gene duplications are detrimental and removed by natural selection. The rate at which new gene copies appear in populations greatly influences their evolutionary dynamics and standing gene copy-number variation in populations. The opportunity for mutations that result in the maintenance of duplicate copies, either through neofunctionalization or subfunctionalization, also depends on the equilibrium frequency of additional gene copies in the population, and hence on the spontaneous gene duplication (and loss rate. The duplication rate may therefore have profound effects on the role of adaptation in the evolution of duplicated genes as well as important consequences for the evolutionary potential of organisms. We further discuss the broad ramifications of this standing gene copy-number variation on fitness and adaptive potential from a population-genetic and genome-wide perspective.

  8. K13 mutations and pfmdr1 copy number variation in Plasmodium falciparum malaria in Myanmar.

    Science.gov (United States)

    Win, Aye A; Imwong, Mallika; Kyaw, Myat P; Woodrow, Charles J; Chotivanich, Kesinee; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon

    2016-02-24

    Artemisinin-based combination therapy has been first-line treatment for falciparum malaria in Myanmar since 2005. The wide extent of artemisinin resistance in the Greater Mekong sub-region and the presence of mefloquine resistance at the Myanmar-Thailand border raise concerns over resistance patterns in Myanmar. The availability of molecular markers for resistance to both drugs enables assessment even in remote malaria-endemic areas. A total of 250 dried blood spot samples collected from patients with Plasmodium falciparum malarial infection in five malaria-endemic areas across Myanmar were analysed for kelch 13 sequence (k13) and pfmdr1 copy number variation. K13 mutations in the region corresponding to amino acids 210-726 (including the propeller region of the protein) were detected by nested PCR amplification and sequencing, and pfmdr1 copy number variation by real-time PCR. In two sites, a sub-set of patients were prospectively followed up for assessment of day-3 parasite clearance rates after a standard course of artemether-lumefantrine. K13 mutations and pfmdr1 amplification were successfully analysed in 206 and 218 samples, respectively. Sixty-nine isolates (33.5 %) had mutations within the k13 propeller region with 53 of these (76.8 %) having mutations already known to be associated with artemisinin resistance. F446I (32 isolates) and P574L (15 isolates) were the most common examples. K13 mutation was less common in sites in western border regions (29 of 155 isolates) compared to samples from the east and north (40 of 51 isolates; p < 0.0001). The overall proportion of parasites with multiple pfmdr1 copies (greater than 1.5) was 5.5 %. Seven samples showed both k13 mutation and multiple copies of pfmdr1. Only one of 36 patients followed up after artemether-lumefantrine treatment still had parasites at day 3; molecular analysis indicated wild-type k13 and single copy pfmdr1. The proportion of P. falciparum isolates with mutations in the propeller region of k

  9. An efficient method for measuring copy number variation applied to improvement of nematode resistance in soybean.

    Science.gov (United States)

    Lee, Tong Geon; Diers, Brian W; Hudson, Matthew E

    2016-10-01

    Copy number variation (CNV) is implicated in important traits in multiple crop plants, but can be challenging to genotype using conventional methods. The Rhg1 locus of soybean, which confers resistance to soybean cyst nematode (SCN), is a CNV of multiple 31.2-kb genomic units each containing four genes. Reliable, high-throughput methods to quantify Rhg1 and other CNVs for selective breeding were developed. The CNV genotyping assay described here uses a homeologous gene copy within the paleopolyploid soybean genome to provide the internal control for a single-tube TaqMan copy number assay. Using this assay, CNV in breeding populations can be tracked with high precision. We also show that extensive CNV exists within Fayette, a released, inbred SCN-resistant soybean cultivar with a high copy number at Rhg1 derived from a single donor parent. Copy number at Rhg1 is therefore unstable within a released variety over a relatively small number of generations. Using this assay to select for individuals with altered copy number, plants were obtained with both increased copy number and increased SCN resistance relative to control plants. Thus, CNV genotyping technologies can be used as a new type of marker-assisted selection to select for desirable traits in breeding populations, and to control for undesirable variation within cultivars. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Decreases in average bacterial community rRNA operon copy number during succession.

    Science.gov (United States)

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.

  11. A multilevel model to address batch effects in copy number estimation using SNP arrays.

    Science.gov (United States)

    Scharpf, Robert B; Ruczinski, Ingo; Carvalho, Benilton; Doan, Betty; Chakravarti, Aravinda; Irizarry, Rafael A

    2011-01-01

    Submicroscopic changes in chromosomal DNA copy number dosage are common and have been implicated in many heritable diseases and cancers. Recent high-throughput technologies have a resolution that permits the detection of segmental changes in DNA copy number that span thousands of base pairs in the genome. Genomewide association studies (GWAS) may simultaneously screen for copy number phenotype and single nucleotide polymorphism (SNP) phenotype associations as part of the analytic strategy. However, genomewide array analyses are particularly susceptible to batch effects as the logistics of preparing DNA and processing thousands of arrays often involves multiple laboratories and technicians, or changes over calendar time to the reagents and laboratory equipment. Failure to adjust for batch effects can lead to incorrect inference and requires inefficient post hoc quality control procedures to exclude regions that are associated with batch. Our work extends previous model-based approaches for copy number estimation by explicitly modeling batch and using shrinkage to improve locus-specific estimates of copy number uncertainty. Key features of this approach include the use of biallelic genotype calls from experimental data to estimate batch-specific and locus-specific parameters of background and signal without the requirement of training data. We illustrate these ideas using a study of bipolar disease and a study of chromosome 21 trisomy. The former has batch effects that dominate much of the observed variation in the quantile-normalized intensities, while the latter illustrates the robustness of our approach to a data set in which approximately 27% of the samples have altered copy number. Locus-specific estimates of copy number can be plotted on the copy number scale to investigate mosaicism and guide the choice of appropriate downstream approaches for smoothing the copy number as a function of physical position. The software is open source and implemented in the R

  12. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Science.gov (United States)

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies. Applying the approach to the analysis of over 200 skin cancer samples, we demonstrate its utility for discovering distinct CNA events and for deriving ancillary information such as tumor purity. Availability and implementation: https://github.com/xfwang/CLOSE CONTACT: xuefeng.wang@stonybrook.edu or michael.krauthammer@yale.edu. (Publication Abstract)

  13. Genomic copy number variation associated with clinical outcome in canine cutaneous mast cell tumors

    DEFF Research Database (Denmark)

    Jark, Paulo C; Mundin, Deborah B P; de Carvalho, Marcio

    2017-01-01

    from Group ST>12 and six from Group STGenomic DNA was extracted, and aCGH was performed using Agilent Canine Genome CGH Microarray 4×180 (ID-252 552 - Agilent, USA). Data analysis was carried out using Nexus program version 5.0 (Biodiscovery, USA). The group ST>12 presented 11±3.3 CNVs, while...... in DNA isolated from tumor cells by array comparative genomic hybridization (aCGH). The aim of this study was to compare copy number variations (CNVs) in cutaneous mast cell tumors of dogs that survived less than six (ST12months (ST>12) from the date of diagnosis. Ten animals were used: four...

  14. Use of Quantitative Polymerase Chain Reaction for Determining Copy Numbers of Transgenes in Lesquerella fendleri

    Directory of Open Access Journals (Sweden)

    Grace Q. Chen

    2010-01-01

    Full Text Available Problem statement: In transgenic plants, the number of transgene copies could greatly influence the level of expression and genetic stability of the target gene, thus it is important to develop an efficient method for accurate estimation of transgene copies. The quantitative Polymerase Chain Reaction (qPCR technique is becoming more efficient nowadays to determine copy numbers of transgenes in transgenic plants, being used here, for the first time in quantifying copy numbers of transgenes in Lesquerella fendleri. Approach: The system utilized a known one copy gene, LfKCS4/5, from L. fendleri as an endogenous calibrator and the threshold Crossing point (Ct measured by Applied Biosystem 7500 system to calculate the copy numbers of transgenes in primary transgenic lines (T0 generation. Results: The qPCR condition was optimized and each primer set had a PCR efficiency of 0.99 or 1.01. Our data demonstrated unambiguous 2-fold discrimination of the copy number of β-glucuronidase gene (gusA and hygromycine phosphotransferase II (hptII genes in 12 T0 lines. Most of the lines contained one or two copies of each gene. Eight out of 12 samples (66.7% showed more copies of gusA gene than that of hptII gene, suggesting rearrangements of the Transferred (T-DNA. Possible modifications of the T-DNA cassette in L. fendleri are discussed based on main models of T-DNA integration in the plant genome. Conclusion: The qPCR described in this study is an efficient method and it is particularly useful in identification and selection of transgenic plants with desirable copy numbers at early stage.

  15. Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Burgess Juliana

    2005-12-01

    Full Text Available Abstract Human beta-defensin 2 (DEFB4, also known as DEFB2 or hBD-2 is a salt-sensitive antimicrobial protein that is expressed in lung epithelia. Previous work has shown that it is encoded in a cluster of beta-defensin genes at 8p23.1, which varies in copy number between 2 and 12 in different individuals. We determined the copy number of this locus in 355 patients with cystic fibrosis (CF, and tested for correlation between beta-defensin cluster genomic copy number and lung disease associated with CF. No significant association was found.

  16. Post-polyploidisation morphotype diversification associates with gene copy number variation

    Science.gov (United States)

    Schiessl, Sarah; Huettel, Bruno; Kuehn, Diana; Reinhardt, Richard; Snowdon, Rod

    2017-01-01

    Genetic models for polyploid crop adaptation provide important information relevant for future breeding prospects. A well-suited model is Brassica napus, a recent allopolyploid closely related to Arabidopsis thaliana. Flowering time is a major adaptation trait determining life cycle synchronization with the environment. Here we unravel natural genetic variation in B. napus flowering time regulators and investigate associations with evolutionary diversification into different life cycle morphotypes. Deep sequencing of 35 flowering regulators was performed in 280 diverse B. napus genotypes. High sequencing depth enabled high-quality calling of single-nucleotide polymorphisms (SNPs), insertion-deletions (InDels) and copy number variants (CNVs). By combining these data with genotyping data from the Brassica 60 K Illumina® Infinium SNP array, we performed a genome-wide marker distribution analysis across the 4 ecogeographical morphotypes. Twelve haplotypes, including Bna.FLC.A10, Bna.VIN3.A02 and the Bna.FT promoter on C02_random, were diagnostic for the diversification of winter and spring types. The subspecies split between oilseed/kale (B. napus ssp. napus) and swedes/rutabagas (B. napus ssp. napobrassica) was defined by 13 haplotypes, including genomic rearrangements encompassing copies of Bna.FLC, Bna.PHYA and Bna.GA3ox1. De novo variation in copies of important flowering-time genes in B. napus arose during allopolyploidisation, enabling sub-functionalisation that allowed different morphotypes to appropriately fine-tune their lifecycle. PMID:28165502

  17. Low AMY1 Gene Copy Number Is Associated with Increased Body Mass Index in Prepubertal Boys.

    Directory of Open Access Journals (Sweden)

    M Loredana Marcovecchio

    Full Text Available Genome-wide association studies have identified more than 60 single nucleotide polymorphisms associated with Body Mass Index (BMI. Additional genetic variants, such as copy number variations (CNV, have also been investigated in relation to BMI. Recently, the highly polymorphic CNV in the salivary amylase (AMY1 gene, encoding an enzyme implicated in the first step of starch digestion, has been associated with obesity in adults and children. We assessed the potential association between AMY1 copy number and a wide range of BMI in a population of Italian school-children.744 children (354 boys, 390 girls, mean age (±SD: 8.4±1.4years underwent anthropometric assessments (height, weight and collection of saliva samples for DNA extraction. AMY1 copies were evaluated by quantitative PCR.A significant increase of BMI z-score by decreasing AMY1 copy number was observed in boys (β: -0.117, p = 0.033, but not in girls. Similarly, waist circumference (β: -0.155, p = 0.003, adjusted for age was negatively influenced by AMY1 copy number in boys. Boys with 8 or more AMY1 copy numbers presented a significant lower BMI z-score (p = 0.04 and waist circumference (p = 0.01 when compared to boys with less than 8 copy numbers.In this pediatric-only, population-based study, a lower AMY1 copy number emerged to be associated with increased BMI in boys. These data confirm previous findings from adult studies and support a potential role of a higher copy number of the salivary AMY1 gene in protecting from excess weight gain.

  18. Association between TLR7 copy number variations and hepatitis B virus infection outcome in Chinese.

    Science.gov (United States)

    Li, Fang; Li, Xu; Zou, Gui-Zhou; Gao, Yu-Feng; Ye, Jun

    2017-03-07

    To explore whether copy number variations (CNVs) of toll-like receptor 7 (TLR7) are associated with susceptibility to chronic hepatitis B virus (HBV) infection. This study included 623 patients (495 males and 128 females) with chronic hepatitis B virus infection (CHB) and 300 patients (135 females and 165 males) with acute hepatitis B virus infection (AHB) as controls. All CHB patients were further categorized according to disease progression after HBV infection (CHB, liver cirrhosis, or hepatocellular carcinoma). Copy numbers of the TLR7 gene were measured using the AccuCopy method. χ(2) tests were used to evaluate the association between TLR7 CNVs and infection type. P values, odds ratios, and 95% confidence intervals (CIs) were used to estimate the effects of risk. Among male patients, there were significant differences between the AHB group and CHB group in the distribution of TLR7 CNVs. Low copy number of TLR7 was significantly associated with chronic HBV infection (OR = 0.329, 95%CI: 0.229-0.473, P copy number was also found between AHB and CHB female patients, with low copy number again associated with an increased risk of chronic HBV infection (OR = 0.292, 95%CI: 0.173-0.492, P copy number among the three types of chronic HBV infection (CHB, liver cirrhosis, or hepatocellular carcinoma). In addition, there was no association between TLR7 copy number and titer of the HBV e antigen. Low TLR7 copy number is a risk factor for chronic HBV infection but is not associated with later stages of disease progression.

  19. Association between TLR7 copy number variations and hepatitis B virus infection outcome in Chinese

    Science.gov (United States)

    Li, Fang; Li, Xu; Zou, Gui-Zhou; Gao, Yu-Feng; Ye, Jun

    2017-01-01

    AIM To explore whether copy number variations (CNVs) of toll-like receptor 7 (TLR7) are associated with susceptibility to chronic hepatitis B virus (HBV) infection. METHODS This study included 623 patients (495 males and 128 females) with chronic hepatitis B virus infection (CHB) and 300 patients (135 females and 165 males) with acute hepatitis B virus infection (AHB) as controls. All CHB patients were further categorized according to disease progression after HBV infection (CHB, liver cirrhosis, or hepatocellular carcinoma). Copy numbers of the TLR7 gene were measured using the AccuCopy method. χ2 tests were used to evaluate the association between TLR7 CNVs and infection type. P values, odds ratios, and 95% confidence intervals (CIs) were used to estimate the effects of risk. RESULTS Among male patients, there were significant differences between the AHB group and CHB group in the distribution of TLR7 CNVs. Low copy number of TLR7 was significantly associated with chronic HBV infection (OR = 0.329, 95%CI: 0.229-0.473, P < 0.001). Difference in TLR7 copy number was also found between AHB and CHB female patients, with low copy number again associated with an increased risk of chronic HBV infection (OR = 0.292, 95%CI: 0.173-0.492, P < 0.001). However, there were no significant differences in TLR7 copy number among the three types of chronic HBV infection (CHB, liver cirrhosis, or hepatocellular carcinoma). In addition, there was no association between TLR7 copy number and titer of the HBV e antigen. CONCLUSION Low TLR7 copy number is a risk factor for chronic HBV infection but is not associated with later stages of disease progression.

  20. Low AMY1 Gene Copy Number Is Associated with Increased Body Mass Index in Prepubertal Boys

    Science.gov (United States)

    Verginelli, Fabio; De Lellis, Laura; Capelli, Cristian; Verzilli, Delfina; Chiarelli, Francesco; Mohn, Angelika; Cama, Alessandro

    2016-01-01

    Background Genome-wide association studies have identified more than 60 single nucleotide polymorphisms associated with Body Mass Index (BMI). Additional genetic variants, such as copy number variations (CNV), have also been investigated in relation to BMI. Recently, the highly polymorphic CNV in the salivary amylase (AMY1) gene, encoding an enzyme implicated in the first step of starch digestion, has been associated with obesity in adults and children. We assessed the potential association between AMY1 copy number and a wide range of BMI in a population of Italian school-children. Methods 744 children (354 boys, 390 girls, mean age (±SD): 8.4±1.4years) underwent anthropometric assessments (height, weight) and collection of saliva samples for DNA extraction. AMY1 copies were evaluated by quantitative PCR. Results A significant increase of BMI z-score by decreasing AMY1 copy number was observed in boys (β: -0.117, p = 0.033), but not in girls. Similarly, waist circumference (β: -0.155, p = 0.003, adjusted for age) was negatively influenced by AMY1 copy number in boys. Boys with 8 or more AMY1 copy numbers presented a significant lower BMI z-score (p = 0.04) and waist circumference (p = 0.01) when compared to boys with less than 8 copy numbers. Conclusions In this pediatric-only, population-based study, a lower AMY1 copy number emerged to be associated with increased BMI in boys. These data confirm previous findings from adult studies and support a potential role of a higher copy number of the salivary AMY1 gene in protecting from excess weight gain. PMID:27149670

  1. NF1 single and multi-exons copy number variations in neurofibromatosis type 1.

    Science.gov (United States)

    Imbard, Apolline; Pasmant, Eric; Sabbagh, Audrey; Luscan, Armelle; Soares, Magali; Goussard, Philippe; Blanché, Hélène; Laurendeau, Ingrid; Ferkal, Salah; Vidaud, Michel; Pinson, Stéphane; Bellanne-Chantelot, Christine; Vidaud, Dominique; Wolkenstein, Pierre; Parfait, Béatrice

    2015-04-01

    Neurofibromatosis type 1 (NF1) is caused by dominant loss-of-function mutations of the tumor suppressor NF1 containing 57 constitutive coding exons. A huge number of different pathogenic NF1 alterations has been reported. The aim of the present study was to evaluate the usefulness of a multiplex ligation-dependent probe amplification (MLPA) approach in NF1 patients to detect single and multi-exon NF1 gene copy number variations. A genotype-phenotype correlation was then performed in NF1 patients carrying these types of genetic alterations. Among 565 NF1 index cases from the French NF1 cohort, single and multi-exon deletions/duplications screening identified NF1 partial deletions/duplications in 22 patients (~4%) using MLPA analysis. Eight single exon deletions, 11 multiple exons deletions, 1 complex rearrangement and 2 duplications were identified. All results were confirmed using a custom array-CGH. MLPA and custom array-CGH allowed the identification of rearrangements that were missed by cDNA/DNA sequencing or microsatellite analysis. We then performed a targeted next-generation sequencing of NF1 that allowed confirmation of all 22 rearrangements. No clear genotype-phenotype correlations were found for the most clinically significant disease features of NF1 in patients with single and multi-exons NF1 gene copy number changes.

  2. A novel technique for measuring variations in DNA copy-number: competitive genomic polymerase chain reaction

    Directory of Open Access Journals (Sweden)

    Nakagawara Akira

    2007-07-01

    Full Text Available Background Changes in genomic copy number occur in many human diseases including cancer. Characterization of these changes is important for both basic understanding and diagnosis of these diseases. Microarrays have recently become the standard technique and are commercially available. However, it is useful to have an affordable technique to complement them. Results We describe a novel polymerase chain reaction (PCR-based technique, termed competitive genomic PCR (CGP. The main characteristic of CGP is that different adaptors are added to the sample and control genomic DNAs after appropriate restriction enzyme digestion. These adaptor-supplemented DNAs are subjected to competitive PCR using an adaptor-primer and a locus-specific primer. The amplified products are then separated according to size differences between the adaptors. CGP eliminates the tedious steps inherent in quantitative PCR and achieves moderate throughput. Assays with different X chromosome numbers showed that it can provide accurate quantification. High-resolution analysis of neuroblastoma cell lines around the MYCN locus revealed novel junctions for amplification, which were not detected by a commercial array. Conclusion CGP is a moderate throughput technique for analyzing changes in genomic copy numbers. Because CGP can measure any genomic locus using PCR primers, it is especially useful for detailed analysis of a genomic region of interest.

  3. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly.

    Science.gov (United States)

    Mengel-From, Jonas; Thinggaard, Mikael; Dalgård, Christine; Kyvik, Kirsten Ohm; Christensen, Kaare; Christiansen, Lene

    2014-09-01

    The role of the mitochondria in disease, general health and aging has drawn much attention over the years. Several attempts have been made to describe how the numbers of mitochondria correlate with age, although with inconclusive results. In this study, the relative quantity of mitochondrial DNA compared to nuclear DNA, i.e. the mitochondrial DNA copy number, was measured by PCR technology and used as a proxy for the content of mitochondria copies. In 1,067 Danish twins and singletons (18-93 years of age), with the majority being elderly individuals, the estimated mean mitochondrial DNA copy number in peripheral blood cells was similar for those 18-48 years of age [mean relative mtDNA content: 61.0; 95 % CI (52.1; 69.9)], but declined by -0.54 mtDNA 95 % CI (-0.63; -0.45) every year for those older than approximately 50 years of age. However, the longitudinal, yearly decline within an individual was more than twice as steep as observed in the cross-sectional analysis [decline of mtDNA content: -1.27; 95 % CI (-1.71; -0.82)]. Subjects with low mitochondrial DNA copy number had poorer outcomes in terms of cognitive performance, physical strength, self-rated health, and higher all-cause mortality than subjects with high mitochondrial DNA copy number, also when age was controlled for. The copy number mortality association can contribute to the smaller decline in a cross-sectional sample of the population compared to the individual, longitudinal decline. This study suggests that high mitochondrial DNA copy number in blood is associated with better health and survival among elderly.

  4. A genome wide association study between copy number variation (CNV) and human height in Chinese population

    Institute of Scientific and Technical Information of China (English)

    Xi Li; Liang Zhang; Han Yan; Feng Pan; Zhixin Zhang; Yumei Peng; Qi Zhou; Lina He; Xuezhen Zhu; Jing Cheng; Lishu Zhang; Lijun Tan; Yaozhong Liu; Qing Tian; Hongwen Deng; Xiaogang Liu; Shufeng Lei; Tielin Yang; Xiangding Chen; Fang Zhang; Yue Fang; Yan Guo

    2010-01-01

    Copy number variation (CNV) is a type of genetic variation which may have important roles in phenotypic variability and disease susceptibility. To hunt for genetic variants underlying human height variation, we performed a genome wide CNV association study for human height in 618 Chinese unrelated subjects using Affymetrix 500K array set. After adjusting for age and sex, we found that four CNVs at 6p21.3, 8p23.3-23.2, 9p23 and 16p12.1 were associated with human height (with borderline significant p value: 0.013, 0.011, 0.024, 0.049; respectively). However, after multiple tests correction, none of them was associated with human height. We observed that the gain of copy number (more than 2 copies) at 8p23.3-23.2 was associated with lower height (normal copy number vs. gain of copy number; 161.2 cm vs. 153.7 cm, p = 0.011), which accounted for 0.9% of height variation. Loss of copy number (less than 2 copies) at 6p21.3 was associated with 0.8% lower height (loss of copy number vs. normal copy number: 154.5 cm vs. 161.1 cm, p = 0.013). Since no important genes influencing height located in CNVs at loci of 8p23.3-23.2 and 6p21.3, the two CNVs may cause the structural rearrangements of neighbored important candidate genes, thus regulates the variation of height. Our results expand our knowledge of the genetic factors underlying height variation and the biological regulation of human height.

  5. High resolution measurement of DUF1220 domain copy number from whole genome sequence data.

    Science.gov (United States)

    Astling, David P; Heft, Ilea E; Jones, Kenneth L; Sikela, James M

    2017-08-14

    DUF1220 protein domains found primarily in Neuroblastoma BreakPoint Family (NBPF) genes show the greatest human lineage-specific increase in copy number of any coding region in the genome. There are 302 haploid copies of DUF1220 in hg38 (~160 of which are human-specific) and the majority of these can be divided into 6 different subtypes (referred to as clades). Copy number changes of specific DUF1220 clades have been associated in a dose-dependent manner with brain size variation (both evolutionarily and within the human population), cognitive aptitude, autism severity, and schizophrenia severity. However, no published methods can directly measure copies of DUF1220 with high accuracy and no method can distinguish between domains within a clade. Here we describe a novel method for measuring copies of DUF1220 domains and the NBPF genes in which they are found from whole genome sequence data. We have characterized the effect that various sequencing and alignment parameters and strategies have on the accuracy and precision of the method and defined the parameters that lead to optimal DUF1220 copy number measurement and resolution. We show that copy number estimates obtained using our read depth approach are highly correlated with those generated by ddPCR for three representative DUF1220 clades. By simulation, we demonstrate that our method provides sufficient resolution to analyze DUF1220 copy number variation at three levels: (1) DUF1220 clade copy number within individual genes and groups of genes (gene-specific clade groups) (2) genome wide DUF1220 clade copies and (3) gene copy number for DUF1220-encoding genes. To our knowledge, this is the first method to accurately measure copies of all six DUF1220 clades and the first method to provide gene specific resolution of these clades. This allows one to discriminate among the ~300 haploid human DUF1220 copies to an extent not possible with any other method. The result is a greatly enhanced capability to analyze the

  6. DUF1220-domain copy number implicated in human brain-size pathology and evolution

    National Research Council Canada - National Science Library

    Dumas, Laura J; O'Bleness, Majesta S; Davis, Jonathan M; Dickens, C Michael; Anderson, Nathan; Keeney, J G; Jackson, Jay; Sikela, Megan; Raznahan, Armin; Giedd, Jay; Rapoport, Judith; Nagamani, Sandesh S C; Erez, Ayelet; Brunetti-Pierri, Nicola; Sugalski, Rachel; Lupski, James R; Fingerlin, Tasha; Cheung, Sau Wai; Sikela, James M

    2012-01-01

    ... have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R(2) = 0.98; p = 1.8 × 10(-6...

  7. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: first results from a genome-wide copy number array analysis.

    Science.gov (United States)

    Granzow, Martin; Hegenbart, Ute; Hinderhofer, Katrin; Hose, Dirk; Seckinger, Anja; Bochtler, Tilmann; Hemminki, Kari; Goldschmidt, Hartmut; Schönland, Stefan O; Jauch, Anna

    2017-07-01

    Immunoglobulin light chain (AL) amyloidosis is a rare plasma cell dyscrasia characterized by the deposition of abnormal amyloid fibrils in multiple organs, thus impairing their function. In the largest cohort studied up to now of 118 CD138-purified plasma cell samples from previously untreated immunoglobulin light chain amyloidosis patients, we assessed in parallel copy number alterations using high-density copy number arrays and interphase fluorescence in situ hybridization (iFISH). We used fluorescence in situ hybridization probes for the IgH translocations t(11;14), t(4;14), and t(14;16) or any other IgH rearrangement as well as numerical aberrations of the chromosome loci 1q21, 8p21, 5p15/5q35, 11q22.3 or 11q23, 13q14, 15q22, 17p13, and 19q13. Recurrent gains included chromosomes 1q (36%), 9 (24%), 11q (24%), as well as 19 (15%). Recurrent losses affected chromosome 13 (29% monosomy) and partial losses of 14q (19%), 16q (14%) and 13q (12%), respectively. In 88% of patients with translocation t(11;14), the hallmark chromosomal aberration in AL amyloidosis, a concomitant gain of 11q22.3/11q23 detected by iFISH was part of the unbalanced translocation der(14)t(11;14)(q13;q32) with the breakpoint in the CCND1/MYEOV gene region. Partial loss of chromosome regions 14q and 16q were significantly associated to gain 1q. Gain 1q21 detected by iFISH almost always resulted from a gain of the long arm of chromosome 1 and not from trisomy 1, whereas deletions on chromosome 1p were rarely found. Overall and event-free survival analysis found a potential adverse prognostic effect of concomitant gain 1q and deletion 14q as well as of deletion 1p. In conclusion, in the first whole genome report of clonal plasma cells in AL amyloidosis, novel aberrations and hitherto unknown potential adverse prognostic effects were uncovered. Copyright© 2017 Ferrata Storti Foundation.

  8. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Science.gov (United States)

    Wang, Wei; Wang, Shenyuan; Hou, Chenglin; Xing, Yanping; Cao, Junwei; Wu, Kaifeng; Liu, Chunxia; Zhang, Dong; Zhang, Li; Zhang, Yanru; Zhou, Huanmin

    2014-01-01

    Recent studies have found that copy number variations (CNVs) are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds) and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs). The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO), genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  9. Detection of copy number variations and their effects in Chinese bulls

    KAUST Repository

    Zhang, Liangzhi

    2014-06-17

    Background: Copy number variations (CNVs) are a main source of genomic structural variations underlying animal evolution and production traits. Here, with one pure-blooded Angus bull as reference, we describe a genome-wide analysis of CNVs based on comparative genomic hybridization arrays in 29 Chinese domesticated bulls and examined their effects on gene expression and cattle growth traits.Results: We identified 486 copy number variable regions (CNVRs), covering 2.45% of the bovine genome, in 24 taurine (Bos taurus), together with 161 ones in 2 yaks (Bos grunniens) and 163 ones in 3 buffaloes (Bubalus bubalis). Totally, we discovered 605 integrated CNVRs, with more " loss" events than both " gain" and " both" ones, and clearly clustered them into three cattle groups. Interestingly, we confirmed their uneven distributions across chromosomes, and the differences of mitochondrion DNA copy number (gain: taurine, loss: yak & buffalo). Furthermore, we confirmed approximately 41.8% (253/605) and 70.6% (427/605) CNVRs span cattle genes and quantitative trait loci (QTLs), respectively. Finally, we confirmed 6 CNVRs in 9 chosen ones by using quantitative PCR, and further demonstrated that CNVR22 had significantly negative effects on expression of PLA2G2D gene, and both CNVR22 and CNVR310 were associated with body measurements in Chinese cattle, suggesting their key effects on gene expression and cattle traits.Conclusions: The results advanced our understanding of CNV as an important genomic structural variation in taurine, yak and buffalo. This study provides a highly valuable resource for Chinese cattle\\'s evolution and breeding researches. 2014 Zhang et al.; licensee BioMed Central Ltd.

  10. Focal DNA copy number changes in neuroblastoma target MYCN regulated genes.

    Directory of Open Access Journals (Sweden)

    Candy Kumps

    Full Text Available Neuroblastoma is an embryonic tumor arising from immature sympathetic nervous system cells. Recurrent genomic alterations include MYCN and ALK amplification as well as recurrent patterns of gains and losses of whole or large partial chromosome segments. A recent whole genome sequencing effort yielded no frequently recurring mutations in genes other than those affecting ALK. However, the study further stresses the importance of DNA copy number alterations in this disease, in particular for genes implicated in neuritogenesis. Here we provide additional evidence for the importance of focal DNA copy number gains and losses, which are predominantly observed in MYCN amplified tumors. A focal 5 kb gain encompassing the MYCN regulated miR-17~92 cluster as sole gene was detected in a neuroblastoma cell line and further analyses of the array CGH data set demonstrated enrichment for other MYCN target genes in focal gains and amplifications. Next we applied an integrated genomics analysis to prioritize MYCN down regulated genes mediated by MYCN driven miRNAs within regions of focal heterozygous or homozygous deletion. We identified RGS5, a negative regulator of G-protein signaling implicated in vascular normalization, invasion and metastasis, targeted by a focal homozygous deletion, as a new MYCN target gene, down regulated through MYCN activated miRNAs. In addition, we expand the miR-17~92 regulatory network controlling TGFß signaling in neuroblastoma with the ring finger protein 11 encoding gene RNF11, which was previously shown to be targeted by the miR-17~92 member miR-19b. Taken together, our data indicate that focal DNA copy number imbalances in neuroblastoma (1 target genes that are implicated in MYCN signaling, possibly selected to reinforce MYCN oncogene addiction and (2 serve as a resource for identifying new molecular targets for treatment.

  11. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs.

    Science.gov (United States)

    Mei, H; Sun, S; Bai, Y; Chen, Y; Chai, R; Li, H

    2015-04-02

    Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.

  12. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs

    Science.gov (United States)

    Mei, H; Sun, S; Bai, Y; Chen, Y; Chai, R; Li, H

    2015-01-01

    Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors. PMID:25837486

  13. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

    Science.gov (United States)

    Schrider, Daniel R.; Hahn, Matthew W.; Begun, David J.

    2016-01-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster. In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. PMID:26809315

  14. Chemiluminescent Detection for Estimating Relative Copy Numbers of Porcine Endogenous Retrovirus Proviruses from Chinese Minipigs Based on Magnetic Nanoparticles.

    Science.gov (United States)

    Yang, Haowen; Liu, Ming; Zhou, Bingcong; Deng, Yan; He, Nongyue; Jiang, Hesheng; Guo, Yafen; Lan, Ganqiu; Jiang, Qinyang; Yang, Xiurong; Li, Zhiyang

    2016-06-01

    Chinese Bama minipigs could be potential donors for the supply of xenografts because they are genetically stable, highly inbred, and inexpensive. However, porcine endogenous retrovirus (PERV) is commonly integrated in pig genomes and could cause a cross-species infection by xenotransplantation. For screening out the pigs with low copy numbers of PERV proviruses, we have developed a novel semiquantitative analysis approach based on magnetic nanoparticles (MNPs) and chemiluminescence (CL) for estimating relative copy numbers (RCNs) of PERV proviruses in Chinese Bama minipigs. The CL intensities of PERV proviruses and the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were respectively determined with this method, and the RCNs of PERV proviruses were calculated by the equation: RCN of PERV provirus = CL intensity of PERV provirus/CL intensity of GAPDH. The results showed that PERVs were integrated in the genomes of Bama minipigs at different copy numbers, and the copy numbers of PERV-C subtype were greatly low. Two Bama minipigs with low copy numbers of PERV proviruses were detected out and could be considered as xenograft donor candidates. Although only semiquantitation can be achieved, this approach has potential for screening out safe and suitable pig donors for xenotransplantation.

  15. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    Science.gov (United States)

    Shay, Tal

    aberration profile' is then combined with chromosomal arm status (gain/loss) to define a succinct genomic signature for each tumor. Unsupervised clustering of the samples based on these genomic signatures can reveal novel tumor subtypes. This approach was applied to datasets from three types of brain tumors: Glioblastoma, Medulloblastoma and Neuroblastoma, and identified a new subtype in Medulloblastoma, characterized by many chromosomal aberrations. Elucidating the transcriptional effect of monosomy and trisomy. Trisomy and monosomy are expected to impact the expression of genes that are located on the affected chromosome. Analysis of several cancer datasets revealed that not all the genes on the aberrant chromosome are affected by the change of copy number. Affected genes exhibit a wide range of expression changes with varying penetrance. Specifically, (1) The effect of trisomy is much more conserved among individuals than the effect of monosomy and (2) the expression level of a gene in the diploid is significantly correlated with the level of change between the diploid and the trisomy or monosomy.

  16. Telomere length is correlated with mitochondrial DNA copy number in intestinal, but not diffuse, gastric cancer.

    Science.gov (United States)

    Jung, Soo-Jung; Cho, Ji-Hyoung; Park, Won-Jin; Heo, Yu-Ran; Lee, Jae-Ho

    2017-07-01

    A positive correlation between telomere length and mitochondrial DNA (mtDNA) copy number has previously been observed in healthy individuals, and in patients with psychiatric disorders. In the present study, telomere length and mtDNA copy number were evaluated in gastric cancer (GC) tissue samples. DNA was extracted from 109 GC samples (including 82 intestinal, and 27 diffuse cases), and the telomere length and mtDNA copy number were analyzed using a quantitative-polymerase chain reaction assay. The relative telomere length and mtDNA copy number in tumor tissue, as compared with in normal tissue, (mean ± standard deviation) in all GC samples were 11.48±1.14 and 14.86±1.35, respectively. Telomere length and mtDNA copy number were not identified as exhibiting clinical or prognostic value for GC. However, positive correlations between telomere length and mitochondrial DNA copy number were identified in GC (r=0.408, P<0.001) and in the adjacent normal mucosa (r=0.363; P<0.001). When stratified by Lauren classification, the correlation was identified in intestinal type GC samples (r=0.461; P<0.001), but not in diffuse type GC samples (r=0.225; P=0.260). This result indicated that loss of the correlation of telomeres and mitochondrial function may induce the initiation or progression of GC pathogenesis.

  17. TOP1 gene copy numbers are increased in cancers of the bile duct and pancreas

    DEFF Research Database (Denmark)

    Grunnet, Mie; Calatayud, Dan; Schultz, Nicolai Aa.

    2015-01-01

    ) poison. Top1 protein, TOP1 gene copy number and mRNA expression, respectively, have been proposed as predictive biomarkers of response to irinotecan in other cancers. Here we investigate the occurrence of TOP1 gene aberrations in cancers of the bile ducts and pancreas. Material and methods. TOP1...... and centromere 20 (CEN-20) numbers were investigated by fluorescence in situ hybridization analyses in tumor tissue from 226 patients. The frequencies of aberration in the TOP1 gene copy number, the CEN-20 copy number and the TOP1/CEN-20 ratio were analyzed. As TOP1 is located on chromosome 20, the CEN-20 probe...... was included to distinguish between chromosomal and gene amplifications. Results. In PC, 29.8% had an increased TOP1 copy number (≥3.5n gene copies per cell) and 10.8% had a TOP1/CEN-20 ratio >1.5. In bile duct cancer, 12.8 % had an increased TOP1 copy number and 6.4% had a TOP1/CEN-20 ratio >1.5. Neither...

  18. CCL3L1 copy number, HIV load, and immune reconstitution in sub-Saharan Africans

    Science.gov (United States)

    2013-01-01

    Background The role of copy number variation of the CCL3L1 gene, encoding MIP1α, in contributing to the host variation in susceptibility and response to HIV infection is controversial. Here we analyse a sub-Saharan African cohort from Tanzania and Ethiopia, two countries with a high prevalence of HIV-1 and a high co-morbidity of HIV with tuberculosis. Methods We use a form of quantitative PCR called the paralogue ratio test to determine CCL3L1 gene copy number in 1134 individuals and validate our copy number typing using array comparative genomic hybridisation and fiber-FISH. Results We find no significant association of CCL3L1 gene copy number with HIV load in antiretroviral-naïve patients prior to initiation of combination highly active anti-retroviral therapy. However, we find a significant association of low CCL3L1 gene copy number with improved immune reconstitution following initiation of highly active anti-retroviral therapy (p = 0.012), replicating a previous study. Conclusions Our work supports a role for CCL3L1 copy number in immune reconstitution following antiretroviral therapy in HIV, and suggests that the MIP1α -CCR5 axis might be targeted to aid immune reconstitution. PMID:24219137

  19. Genomic copy number alterations of primary and secondary metastasizing pleomorphic adenomas.

    Science.gov (United States)

    Mariano, Fernanda Viviane; Gondak, Rogério de Oliveira; Martins, Antonio Santos; Coletta, Ricardo Della; Paes de Almeida, Oslei; Kowalski, Luiz Paulo; Krepischi, Ana Cristina Victorino; Altemani, Albina

    2015-09-01

    Metastasizing pleomorphic adenoma (MPA) is a rare tumour, and its mechanism of metastasis still is unknown. To date, there has been no study on MPA genomics. We analysed primary and secondary MPAs with array comparative genomic hybridization to identify somatic copy number alterations and affected genes. Tumour DNA samples from primary (parotid salivary gland) and secondary (scalp skin) MPAs were subjected to array comparative genomic hybridization investigation, and the data were analysed with NEXUS COPY NUMBER DISCOVERY. The primary MPA showed copy number losses affecting 3p22.2p14.3 and 19p13.3p123, and a complex pattern of four different deletions at chromosome 6. The 3p deletion encompassed several genes: CTNNB1, SETD2, BAP1, and PBRM1, among others. The secondary MPA showed a genomic profile similar to that of the primary MPA, with acquisition of additional copy number changes affecting 9p24.3p13.1 (loss), 19q11q13.43 (gain), and 22q11.1q13.33 (gain). Our findings indicated a clonal origin of the secondary MPA, as both tumours shared a common profile of genomic copy number alterations. Furthermore, we were able to detect in the primary tumour a specific pattern of copy number alterations that could explain the metastasizing characteristic, whereas the secondary MPA showed a more unbalanced genome. © 2015 John Wiley & Sons Ltd.

  20. Toward accurate high-throughput SNP genotyping in the presence of inherited copy number variation

    Directory of Open Access Journals (Sweden)

    Aldred Micheala A

    2007-07-01

    Full Text Available Abstract Background The recent discovery of widespread copy number variation in humans has forced a shift away from the assumption of two copies per locus per cell throughout the autosomal genome. In particular, a SNP site can no longer always be accurately assigned one of three genotypes in an individual. In the presence of copy number variability, the individual may theoretically harbor any number of copies of each of the two SNP alleles. Results To address this issue, we have developed a method to infer a "generalized genotype" from raw SNP microarray data. Here we apply our approach to data from 48 individuals and uncover thousands of aberrant SNPs, most in regions that were previously unreported as copy number variants. We show that our allele-specific copy numbers follow Mendelian inheritance patterns that would be obscured in the absence of SNP allele information. The interplay between duplication and point mutation in our data shed light on the relative frequencies of these events in human history, showing that at least some of the duplication events were recurrent. Conclusion This new multi-allelic view of SNPs has a complicated role in disease association studies, and further work will be necessary in order to accurately assess its importance. Software to perform generalized genotyping from SNP array data is freely available online 1.

  1. Dosage sensitivity shapes the evolution of copy-number varied regions.

    Directory of Open Access Journals (Sweden)

    Benjamin Schuster-Böckler

    Full Text Available Dosage sensitivity is an important evolutionary force which impacts on gene dispensability and duplicability. The newly available data on human copy-number variation (CNV allow an analysis of the most recent and ongoing evolution. Provided that heterozygous gene deletions and duplications actually change gene dosage, we expect to observe negative selection against CNVs encompassing dosage sensitive genes. In this study, we make use of several sources of population genetic data to identify selection on structural variations of dosage sensitive genes. We show that CNVs can directly affect expression levels of contained genes. We find that genes encoding members of protein complexes exhibit limited expression variation and overlap significantly with a manually derived set of dosage sensitive genes. We show that complexes and other dosage sensitive genes are underrepresented in CNV regions, with a particular bias against frequent variations and duplications. These results suggest that dosage sensitivity is a significant force of negative selection on regions of copy-number variation.

  2. Copy number variation in CNP267 region may be associated with hip bone size.

    Directory of Open Access Journals (Sweden)

    Shan-Lin Liu

    Full Text Available Osteoporotic hip fracture (HF is a serious global public health problem associated with high morbidity and mortality. Hip bone size (BS has been identified as one of key measurable risk factors for HF, independent of bone mineral density (BMD. Hip BS is highly genetically determined, but genetic factors underlying BS variation are still poorly defined. Here, we performed an initial genome-wide copy number variation (CNV association analysis for hip BS in 1,627 Chinese Han subjects using Affymetrix GeneChip Human Mapping SNP 6.0 Array and a follow-up replicate study in 2,286 unrelated US Caucasians sample. We found that a copy number polymorphism (CNP267 located at chromosome 2q12.2 was significantly associated with hip BS in both initial Chinese and replicate Caucasian samples with p values of 4.73E-03 and 5.66E-03, respectively. An important candidate gene, four and a half LIM domains 2 (FHL2, was detected at the downstream of CNP267, which plays important roles in bone metabolism by binding to several bone formation regulator, such as insulin-like growth factor-binding protein 5 (IGFBP-5 and androgen receptor (AR. Our findings suggest that CNP267 region may be associated with hip BS which might influence the FHL2 gene downstream.

  3. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells.

    Science.gov (United States)

    Abyzov, Alexej; Mariani, Jessica; Palejev, Dean; Zhang, Ying; Haney, Michael Seamus; Tomasini, Livia; Ferrandino, Anthony F; Rosenberg Belmaker, Lior A; Szekely, Anna; Wilson, Michael; Kocabas, Arif; Calixto, Nathaniel E; Grigorenko, Elena L; Huttner, Anita; Chawarska, Katarzyna; Weissman, Sherman; Urban, Alexander Eckehart; Gerstein, Mark; Vaccarino, Flora M

    2012-12-20

    Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has been suspected of causing de novo copy number variation. To explore this issue, here we perform a whole-genome and transcriptome analysis of 20 human iPSC lines derived from the primary skin fibroblasts of seven individuals using next-generation sequencing. We find that, on average, an iPSC line manifests two copy number variants (CNVs) not apparent in the fibroblasts from which the iPSC was derived. Using PCR and digital droplet PCR, we show that at least 50% of those CNVs are present as low-frequency somatic genomic variants in parental fibroblasts (that is, the fibroblasts from which each corresponding human iPSC line is derived), and are manifested in iPSC lines owing to their clonal origin. Hence, reprogramming does not necessarily lead to de novo CNVs in iPSCs, because most of the line-manifested CNVs reflect somatic mosaicism in the human skin. Moreover, our findings demonstrate that clonal expansion, and iPSC lines in particular, can be used as a discovery tool to reliably detect low-frequency CNVs in the tissue of origin. Overall, we estimate that approximately 30% of the fibroblast cells have somatic CNVs in their genomes, suggesting widespread somatic mosaicism in the human body. Our study paves the way to understanding the fundamental question of the extent to which cells of the human body normally acquire structural alterations in their DNA post-zygotically.

  4. Copy number change: evolving views on gene amplification.

    Science.gov (United States)

    Elliott, Kathryn T; Cuff, Laura E; Neidle, Ellen L

    2013-07-01

    The rapid pace of genomic sequence analysis is increasing the awareness of intrinsically dynamic genetic landscapes. Gene duplication and amplification (GDA) contribute to adaptation and evolution by allowing DNA regions to expand and contract in an accordion-like fashion. This process affects diverse aspects of bacterial infection, including antibiotic resistance and host-pathogen interactions. In this review, microbial GDA is discussed, primarily using recent bacterial examples that demonstrate medical and evolutionary consequences. Interplay between GDA and horizontal gene transfer further impact evolutionary trajectories. Complementing the discovery of gene duplication in clinical and environmental settings, experimental evolution provides a powerful method to document genetic change over time. New methods for GDA detection highlight both its importance and its potential application for genetic engineering, synthetic biology and biotechnology.

  5. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    NARCIS (Netherlands)

    Marshall, Christian R.; Howrigan, Daniel P.; Merico, Daniele; Thiruvahindrapuram, Bhooma; Wu, Wenting; Greer, Douglas S.; Antaki, Danny; Shetty, Aniket; Holmans, Peter A.; Pinto, Dalila; Gujral, Madhusudan; Brandler, William M.; Malhotra, Dheeraj; Wang, Zhouzhi; Fajarado, Karin V. Fuentes; Maile, Michelle S.; Ripke, Stephan; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amin, Farooq; Atkins, Joshua; Bacanu, Silviu A.; Belliveau, Richard A.; Bergen, Sarah E.; Ertalan, Marcelo; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Bulik-Sullivan, Brendan; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Cairns, Murray J.; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberley D.; Cheng, Wei; Cloninger, C. Robert; Cohen, David; Cormican, Paul; Craddock, Nick; Crespo-Facorro, Benedicto; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; Del Favero, Jurgen; DeLisi, Lynn E.; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farh, Kai-How; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedman, Joseph I.; Forstner, Andreas J.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodriguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Gratten, Jacob; de Haan, Lieuwe; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffinann, Per; Hofman, Andrea; Huang, Hailiang; Ikeda, Masashi; Joa, Inge; Kahler, Anna K.; Kahn, Rene S.; Kalaydjieva, Luba; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Kim, Yunjung; Knowles, James A.; Konte, Bettina; Laurent, Claudine; Lee, Phil; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Levy, Deborah L.; Liang, Kung-Yee; Lieberman, Jeffrey; Lonnqvist, Jouko; Loughland, Carmel M.; Magnusson, Patrik K. E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Muller-Myhsok, Bertram; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nisenbaum, Laura; Nordin, Annelie; O'Callaghan, Eadbhard; O'Dushlaine, Colm; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; O'Neill, F. Anthony; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Perkins, Diana O.; Pers, Tune H.; Pietilainen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Savitz, Adam; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Silverman, Jeremy M.; Smoller, Jordan W.; Soderman, Erik; Spencer, Chris C. A.; Stahl, Eli A.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Thirumalai, Srinivas; Tooney, Paul A.; Veijola, Juha; Visscher, Peter M.; Waddington, John; Walsh, Dermot; Webb, Bradley T.; Weiser, Mark; Wildenauer, Dieter B.; Williams, Nigel M.; Williams, Stephanie; Witt, Stephanie H.; Wolen, Aaron R.; Wormley, Brandon K.; Wray, Naomi R.; Wu, Jing Qin; Zai, Clement C.; Adolfsson, Rolf; Andreassen, Ole A.; Blackwood, Douglas H. R.; Bramon, Elvira; Buxbaum, Joseph D.; Cichon, Sven; Collier, David A.; Corvin, Aiden; Daly, Mark J.; Darvasi, Ariel; Domenici, Enrico; Esko, Tonu; Gejman, Pablo V.; Gill, Michael; Gurling, Hugh; Hultman, Christina M.; Iwata, Nakao; Jablensky, Assen V.; Jonsson, Erik G.; Kendler, Kenneth S.; Kirov, George; Knight, Jo; Levinson, Douglas F.; Li, Qingqin S.; McCarroll, Steven A.; McQuillin, Andrew; Moran, Jennifer L.; Mowry, Bryan J.; Nothen, Markus M.; Ophoff, Roel A.; Owen, Michael J.; Palotie, Aarno; Pato, Carlos N.; Petryshen, Tracey L.; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P.; Rujescu, Dan; Sklar, Pamela; St Clair, David; Walters, James T. R.; Werge, Thomas; Siillivan, Patrick F.; O'Donovan, Michael C.; Scherer, Stephen W.; Neale, Benjamin M.; Sebat, Jonathan

    2017-01-01

    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to

  6. Genomic and functional characteristics of copy number variations in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes

    Science.gov (United States)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to intestinal nematodes. In this study, we performed a large sca...

  7. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    NARCIS (Netherlands)

    Marshall, Christian R.; Howrigan, Daniel P.; Merico, Daniele; Thiruvahindrapuram, Bhooma; Wu, Wenting; Greer, Douglas S.; Antaki, Danny; Shetty, Aniket; Holmans, Peter A.; Pinto, Dalila; Gujral, Madhusudan; Brandler, William M.; Malhotra, Dheeraj; Wang, Zhouzhi; Fajarado, Karin V. Fuentes; Maile, Michelle S.; Ripke, Stephan; Agartz, Ingrid; Albus, Margot; Alexander, Madeline; Amin, Farooq; Atkins, Joshua; Bacanu, Silviu A.; Belliveau, Richard A.; Bergen, Sarah E.; Ertalan, Marcelo; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Bulik-Sullivan, Brendan; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Cairns, Murray J.; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberley D.; Cheng, Wei; Cloninger, C. Robert; Cohen, David; Cormican, Paul; Craddock, Nick; Crespo-Facorro, Benedicto; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; Del Favero, Jurgen; DeLisi, Lynn E.; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farh, Kai-How; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedman, Joseph I.; Forstner, Andreas J.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodriguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Gratten, Jacob; de Haan, Lieuwe; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffinann, Per; Hofman, Andrea; Huang, Hailiang; Ikeda, Masashi; Joa, Inge; Kahler, Anna K.; Kahn, Rene S.; Kalaydjieva, Luba; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Kim, Yunjung; Knowles, James A.; Konte, Bettina; Laurent, Claudine; Lee, Phil; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Levy, Deborah L.; Liang, Kung-Yee; Lieberman, Jeffrey; Lonnqvist, Jouko; Loughland, Carmel M.; Magnusson, Patrik K. E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Muller-Myhsok, Bertram; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nisenbaum, Laura; Nordin, Annelie; O'Callaghan, Eadbhard; O'Dushlaine, Colm; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; O'Neill, F. Anthony; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Perkins, Diana O.; Pers, Tune H.; Pietilainen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Savitz, Adam; Schall, Ulrich; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Silverman, Jeremy M.; Smoller, Jordan W.; Soderman, Erik; Spencer, Chris C. A.; Stahl, Eli A.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Thirumalai, Srinivas; Tooney, Paul A.; Veijola, Juha; Visscher, Peter M.; Waddington, John; Walsh, Dermot; Webb, Bradley T.; Weiser, Mark; Wildenauer, Dieter B.; Williams, Nigel M.; Williams, Stephanie; Witt, Stephanie H.; Wolen, Aaron R.; Wormley, Brandon K.; Wray, Naomi R.; Wu, Jing Qin; Zai, Clement C.; Adolfsson, Rolf; Andreassen, Ole A.; Blackwood, Douglas H. R.; Bramon, Elvira; Buxbaum, Joseph D.; Cichon, Sven; Collier, David A.; Corvin, Aiden; Daly, Mark J.; Darvasi, Ariel; Domenici, Enrico; Esko, Tonu; Gejman, Pablo V.; Gill, Michael; Gurling, Hugh; Hultman, Christina M.; Iwata, Nakao; Jablensky, Assen V.; Jonsson, Erik G.; Kendler, Kenneth S.; Kirov, George; Knight, Jo; Levinson, Douglas F.; Li, Qingqin S.; McCarroll, Steven A.; McQuillin, Andrew; Moran, Jennifer L.; Mowry, Bryan J.; Nothen, Markus M.; Ophoff, Roel A.; Owen, Michael J.; Palotie, Aarno; Pato, Carlos N.; Petryshen, Tracey L.; Posthuma, Danielle

    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to

  8. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    DEFF Research Database (Denmark)

    Marshall, Christian R.; Howrigan, Daniel P.; Merico, Daniele

    2017-01-01

    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline...

  9. Germline DNA copy number aberrations identified as potential prognostic factors for breast cancer recurrence.

    Directory of Open Access Journals (Sweden)

    Yadav Sapkota

    Full Text Available Breast cancer recurrence (BCR is a common treatment outcome despite curative-intent primary treatment of non-metastatic breast cancer. Currently used prognostic and predictive factors utilize tumor-based markers, and are not optimal determinants of risk of BCR. Germline-based copy number aberrations (CNAs have not been evaluated as determinants of predisposition to experience BCR. In this study, we accessed germline DNA from 369 female breast cancer subjects who received curative-intent primary treatment following diagnosis. Of these, 155 experienced BCR and 214 did not, after a median duration of follow up after breast cancer diagnosis of 6.35 years (range = 0.60-21.78 and 8.60 years (range = 3.08-13.57, respectively. Whole genome CNA genotyping was performed on the Affymetrix SNP array 6.0 platform. CNAs were identified using the SNP-Fast Adaptive States Segmentation Technique 2 algorithm implemented in Nexus Copy Number 6.0. Six samples were removed due to poor quality scores, leaving 363 samples for further analysis. We identified 18,561 CNAs with ≥1 kb as a predefined cut-off for observed aberrations. Univariate survival analyses (log-rank tests identified seven CNAs (two copy number gains and five copy neutral-loss of heterozygosities, CN-LOHs showing significant differences (P<2.01×10(-5 in recurrence-free survival (RFS probabilities with and without CNAs.We also observed three additional but distinct CN-LOHs showing significant differences in RFS probabilities (P<2.86×10(-5 when analyses were restricted to stratified cases (luminal A, n = 208 only. After adjusting for tumor stage and grade in multivariate analyses (Cox proportional hazards models, all the CNAs remained strongly associated with the phenotype of BCR. Of these, we confirmed three CNAs at 17q11.2, 11q13.1 and 6q24.1 in representative samples using independent genotyping platforms. Our results suggest further investigations on the potential use of germline DNA

  10. A recurrent copy number variation of the NEB triplicate region: only revealed by the targeted nemaline myopathy CGH array.

    Science.gov (United States)

    Kiiski, Kirsi; Lehtokari, Vilma-Lotta; Löytynoja, Ari; Ahlstén, Liina; Laitila, Jenni; Wallgren-Pettersson, Carina; Pelin, Katarina

    2016-04-01

    Recently, new large variants have been identified in the nebulin gene (NEB) causing nemaline myopathy (NM). NM constitutes a heterogeneous group of disorders among the congenital myopathies, and disease-causing variants in NEB are a main cause of the recessively inherited form of NM. NEB consists of 183 exons and it includes homologous sequences such as a 32-kb triplicate region (TRI), where eight exons are repeated three times (exons 82-89, 90-97, 98-105). In human, the normal copy number of NEB TRI is six (three copies in each allele). Recently, we described a custom NM-CGH microarray designed to detect copy number variations (CNVs) in the known NM genes. The array has now been updated to include all the currently known 10 NM genes. The NM-CGH array is superior in detecting CNVs, especially of the NEB TRI, that is not included in the exome capture kits. To date, we have studied 266 samples from 196 NM families using the NM-CGH microarray, and identified a novel recurrent NEB TRI variation in 13% (26/196) of the families and in 10% of the controls (6/60). An analysis of the breakpoints revealed adjacent repeat elements, which are known to predispose for rearrangements such as CNVs. The control CNV samples deviate only one copy from the normal six copies, whereas the NM samples include CNVs of up to four additional copies. Based on this study, NEB seems to tolerate deviations of one TRI copy, whereas addition of two or more copies might be pathogenic.

  11. HaplotypeCN: copy number haplotype inference with Hidden Markov Model and localized haplotype clustering.

    Directory of Open Access Journals (Sweden)

    Yen-Jen Lin

    Full Text Available Copy number variation (CNV has been reported to be associated with disease and various cancers. Hence, identifying the accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions, constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus. The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches. The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better detection power than that with integer copy number states.

  12. A prospective study of mitochondrial DNA copy number and the risk of prostate cancer.

    Science.gov (United States)

    Moore, Amy; Lan, Qing; Hofmann, Jonathan N; Liu, Chin-San; Cheng, Wen-Ling; Lin, Ta-Tsung; Berndt, Sonja I

    2017-06-01

    Evidence suggests that mitochondrial DNA (mtDNA) copy number increases in response to DNA damage. Increased mtDNA copy number has been observed in prostate cancer (PCa) cells, suggesting a role in PCa development, but this association has not yet been investigated prospectively. We conducted a nested case-control study (793 cases and 790 controls) of men randomized to the screening arm of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) to evaluate the association between pre-diagnosis mtDNA copy number, measured in peripheral blood leukocytes, and the risk of PCa. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) and polytomous logistic regression to analyze differences in associations by non-aggressive (Stage I/II AND Gleason grade copy number was not significantly associated with PCa risk overall (OR 1.23, 95% CI 0.97-1.55, p = 0.089), increasing mtDNA copy number was associated with an increased risk of non-aggressive PCa (OR 1.29, 95% CI 1.01-1.65, p = 0.044) compared to controls. No association was observed with aggressive PCa (OR 1.02, 95% CI 0.64-1.63, p = 0.933). Higher mtDNA copy number was also associated with increased PSA levels among controls (p = 0.014). These results suggest that alterations in mtDNA copy number may reflect disruption of the normal prostate glandular architecture seen in early-stage disease, as opposed to reflecting the large number of tumor cells seen with advanced PCa.

  13. HaplotypeCN: Copy Number Haplotype Inference with Hidden Markov Model and Localized Haplotype Clustering

    Science.gov (United States)

    Lin, Yen-Jen; Chen, Yu-Tin; Hsu, Shu-Ni; Peng, Chien-Hua; Tang, Chuan-Yi; Yen, Tzu-Chen; Hsieh, Wen-Ping

    2014-01-01

    Copy number variation (CNV) has been reported to be associated with disease and various cancers. Hence, identifying the accurate position and the type of CNV is currently a critical issue. There are many tools targeting on detecting CNV regions, constructing haplotype phases on CNV regions, or estimating the numerical copy numbers. However, none of them can do all of the three tasks at the same time. This paper presents a method based on Hidden Markov Model to detect parent specific copy number change on both chromosomes with signals from SNP arrays. A haplotype tree is constructed with dynamic branch merging to model the transition of the copy number status of the two alleles assessed at each SNP locus. The emission models are constructed for the genotypes formed with the two haplotypes. The proposed method can provide the segmentation points of the CNV regions as well as the haplotype phasing for the allelic status on each chromosome. The estimated copy numbers are provided as fractional numbers, which can accommodate the somatic mutation in cancer specimens that usually consist of heterogeneous cell populations. The algorithm is evaluated on simulated data and the previously published regions of CNV of the 270 HapMap individuals. The results were compared with five popular methods: PennCNV, genoCN, COKGEN, QuantiSNP and cnvHap. The application on oral cancer samples demonstrates how the proposed method can facilitate clinical association studies. The proposed algorithm exhibits comparable sensitivity of the CNV regions to the best algorithm in our genome-wide study and demonstrates the highest detection rate in SNP dense regions. In addition, we provide better haplotype phasing accuracy than similar approaches. The clinical association carried out with our fractional estimate of copy numbers in the cancer samples provides better detection power than that with integer copy number states. PMID:24849202

  14. Effective Normalization for Copy Number Variation Detection from Whole Genome Sequencing

    NARCIS (Netherlands)

    Janevski, A.; Varadan, V.; Kamalakaran, S.; Banerjee, N.; Dimitrova, D.

    2012-01-01

    Background Whole genome sequencing enables a high resolution view ofthe human genome and provides unique insights into genome structureat an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools while validatedalso include a number of parame

  15. Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR.

    Science.gov (United States)

    Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz

    2017-01-01

    Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a

  16. Copy number variations in alternative splicing gene networks impact lifespan.

    Directory of Open Access Journals (Sweden)

    Joseph T Glessner

    Full Text Available Longevity has a strong genetic component evidenced by family-based studies. Lipoprotein metabolism, FOXO proteins, and insulin/IGF-1 signaling pathways in model systems have shown polygenic variations predisposing to shorter lifespan. To test the hypothesis that rare variants could influence lifespan, we compared the rates of CNVs in healthy children (0-18 years of age with individuals 67 years or older. CNVs at a significantly higher frequency in the pediatric cohort were considered risk variants impacting lifespan, while those enriched in the geriatric cohort were considered longevity protective variants. We performed a whole-genome CNV analysis on 7,313 children and 2,701 adults of European ancestry genotyped with 302,108 SNP probes. Positive findings were evaluated in an independent cohort of 2,079 pediatric and 4,692 geriatric subjects. We detected 8 deletions and 10 duplications that were enriched in the pediatric group (P=3.33×10(-8-1.6×10(-2 unadjusted, while only one duplication was enriched in the geriatric cohort (P=6.3×10(-4. Population stratification correction resulted in 5 deletions and 3 duplications remaining significant (P=5.16×10(-5-4.26×10(-2 in the replication cohort. Three deletions and four duplications were significant combined (combined P=3.7×10(-4-3.9×10(-2. All associated loci were experimentally validated using qPCR. Evaluation of these genes for pathway enrichment demonstrated ~50% are involved in alternative splicing (P=0.0077 Benjamini and Hochberg corrected. We conclude that genetic variations disrupting RNA splicing could have long-term biological effects impacting lifespan.

  17. Association between Leukocyte Mitochondrial DNA Copy Number and Regular Exercise in Postmenopausal Women.

    Science.gov (United States)

    Chang, Yu Kyung; Kim, Da Eun; Cho, Soo Hyun; Kim, Jung-Ha

    2016-11-01

    Previous studies suggest that habitual exercise can improve skeletal mitochondrial function; however, to date, the association between exercise and mitochondrial function in peripheral leukocytes has not been reported. The aim of this study was to evaluate the relationship between regular exercise and mitochondrial function by measuring leukocyte mitochondrial DNA (mtDNA) copy number in postmenopausal women. This cross-sectional study included 144 relatively healthy, non-diabetic, non-smoking, postmenopausal women. Clinical parameters, including anthropometric measurements and cardio-metabolic parameters, were assessed. Regular exercise was defined as at least 150 minutes per week of moderate-intensity activity, or an equivalent combination of moderate and vigorous-intensity activity, over a duration of at least 6 months. Leukocyte mtDNA copy numbers were measured using real-time polymerase chain reaction assays, and these were normalized to the β-globin copy number to give the relative mtDNA copy number. The mtDNA copy number of peripheral leukocytes was significantly greater in the exercise group (1.33±0.02) than in the no exercise group (1.05±0.02, Pcopy number (β=0.25, Pcopy number in postmenopausal women.

  18. Sample processing considerations for detecting copy number changes in formalin-fixed, paraffin-embedded tissues.

    Science.gov (United States)

    Jacobs, Sharoni

    2012-11-01

    The Whole Genome Sampling Analysis (WGSA) assay in combination with Affymetrix GeneChip Mapping Arrays is used for copy number analysis of high-quality DNA samples (i.e., samples that have been collected from blood, fresh or frozen tissue, or cell lines). Formalin-fixed, paraffin-embedded (FFPE) samples, however, represent the most prevalent form of archived clinical samples, but they provide additional challenges for molecular assays. FFPE processing usually results in the degradation of FFPE DNA and in the contamination and chemical modification of these DNA samples. Because of these issues, FFPE DNA is not suitable for all molecular assays designed for high-quality DNA samples. Strategies recommended for processing FFPE DNA samples through WGSA and to the Mapping arrays are described here.

  19. Performance of Molecular Inversion Probes (MIP) in Allele CopyNumber Determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Wang,Nicolas J.; Ireland, James; Lin, Steven; Chen, Chunnuan; Heiser, LauraM.; Chin, Koei; Esserman, Laura; Gray, Joe W.; Spellman, Paul T.; Faham,Malek

    2007-05-14

    We have developed a new protocol for using MolecularInversion Probes (MIP) to accurately and specifically measure allele copynumber (ACN). The new protocol provides for significant improvementsincluding the reduction of input DNA (from 2?g) by more than 25 fold (to75ng total genomic DNA), higher overall precision resulting in one orderof magnitude lower false positive rate, and greater dynamic range withaccurate absolute copy number up to 60 copies.

  20. A Hidden Markov Model to estimate population mixture and allelic copy-numbers in cancers using Affymetrix SNP arrays

    Directory of Open Access Journals (Sweden)

    Torring Niels

    2007-11-01

    Full Text Available Abstract Background Affymetrix SNP arrays can interrogate thousands of SNPs at the same time. This allows us to look at the genomic content of cancer cells and to investigate the underlying events leading to cancer. Genomic copy-numbers are today routinely derived from SNP array data, but the proposed algorithms for this task most often disregard the genotype information available from germline cells in paired germline-tumour samples. Including this information may deepen our understanding of the "true" biological situation e.g. by enabling analysis of allele specific copy-numbers. Here we rely on matched germline-tumour samples and have developed a Hidden Markov Model (HMM to estimate allelic copy-number changes in tumour cells. Further with this approach we are able to estimate the proportion of normal cells in the tumour (mixture proportion. Results We show that our method is able to recover the underlying copy-number changes in simulated data sets with high accuracy (above 97.71%. Moreover, although the known copy-numbers could be well recovered in simulated cancer samples with more than 70% cancer cells (and less than 30% normal cells, we demonstrate that including the mixture proportion in the HMM increases the accuracy of the method. Finally, the method is tested on HapMap samples and on bladder and prostate cancer samples. Conclusion The HMM method developed here uses the genotype calls of germline DNA and the allelic SNP intensities from the tumour DNA to estimate allelic copy-numbers (including changes in the tumour. It differentiates between different events like uniparental disomy and allelic imbalances. Moreover, the HMM can estimate the mixture proportion, and thus inform about the purity of the tumour sample.

  1. Normalization of Illumina Infinium whole-genome SNP data improves copy number estimates and allelic intensity ratios

    Directory of Open Access Journals (Sweden)

    Juliusson Gunnar

    2008-10-01

    Full Text Available Abstract Background Illumina Infinium whole genome genotyping (WGG arrays are increasingly being applied in cancer genomics to study gene copy number alterations and allele-specific aberrations such as loss-of-heterozygosity (LOH. Methods developed for normalization of WGG arrays have mostly focused on diploid, normal samples. However, for cancer samples genomic aberrations may confound normalization and data interpretation. Therefore, we examined the effects of the conventionally used normalization method for Illumina Infinium arrays when applied to cancer samples. Results We demonstrate an asymmetry in the detection of the two alleles for each SNP, which deleteriously influences both allelic proportions and copy number estimates. The asymmetry is caused by a remaining bias between the two dyes used in the Infinium II assay after using the normalization method in Illumina's proprietary software (BeadStudio. We propose a quantile normalization strategy for correction of this dye bias. We tested the normalization strategy using 535 individual hybridizations from 10 data sets from the analysis of cancer genomes and normal blood samples generated on Illumina Infinium II 300 k version 1 and 2, 370 k and 550 k BeadChips. We show that the proposed normalization strategy successfully removes asymmetry in estimates of both allelic proportions and copy numbers. Additionally, the normalization strategy reduces the technical variation for copy number estimates while retaining the response to copy number alterations. Conclusion The proposed normalization strategy represents a valuable tool that improves the quality of data obtained from Illumina Infinium arrays, in particular when used for LOH and copy number variation studies.

  2. Quantification of protein copy number in single mitochondria: The Bcl-2 family proteins.

    Science.gov (United States)

    Chen, Chaoxiang; Zhang, Xiang; Zhang, Shuyue; Zhu, Shaobin; Xu, Jingyi; Zheng, Yan; Han, Jinyan; Zeng, Jin-Zhang; Yan, Xiaomei

    2015-12-15

    Bcl-2 family proteins, represented by antiapoptotic protein Bcl-2 and proapoptotic protein Bax, are key regulators of mitochondria-mediated apoptosis pathway. To build a quantitative model of how Bcl-2 family protein interactions control mitochondrial outer membrane permeabilization and subsequent cytochrome c release, it is essential to know the number of proteins in individual mitochondria. Here, we report an effective method to quantify the copy number and distribution of proteins in single mitochondria via immunofluorescent labeling and sensitive detection by a laboratory-built high sensitivity flow cytometer (HSFCM). Mitochondria isolated from HeLa cells were stained with Alexa Fluor 488 (AF488)-labeled monoclonal antibodies specifically targeting Bcl-2 or Bax and with nucleic acid dye. A series of fluorescent nanospheres with fluorescence intensity calibrated in the unit of molecules of equivalent soluble fluorochrome (MESF)-AF488 were used to construct a calibration curve for converting the immunofluorescence of a single mitochondrion to the number of antibodies bound to it and then to the number of proteins per mitochondrion. Under the normal condition, the measured mean copy numbers were 1300 and 220 per mitochondrion for Bcl-2 and Bax, respectively. A significant variation in protein copy number was identified, which ranged from 130 to 6000 (2.5-97.5%) for Bcl-2 and from 65 to 700 (2.5-97.5%) for Bax, respectively. We observed an approximately 4.4 fold increase of Bax copy number per mitochondrion upon 9h of apoptosis stimulation while the abundance of Bcl-2 remained almost unchanged. To the best of our knowledge, this is the first report of Bcl-2 family protein copy number and variance in single mitochondria. Collectively, we demonstrate that the HSFCM-based immunoassay provides a rapid and sensitive method for determining protein copy number distribution in single mitochondria. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Cardiometabolic phenotypes and mitochondrial DNA copy number in two cohorts of UK women.

    Science.gov (United States)

    Guyatt, Anna L; Burrows, Kimberley; Guthrie, Philip A I; Ring, Sue; McArdle, Wendy; Day, Ian N M; Ascione, Raimondo; Lawlor, Debbie A; Gaunt, Tom R; Rodriguez, Santiago

    2017-08-15

    The mitochondrial genome is present at variable copy number between individuals. Mitochondria are vulnerable to oxidative stress, and their dysfunction may be associated with cardiovascular disease. The association of mitochondrial DNA copy number with cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N=2278) and the second at 69.4 (5.5) years (N=2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits. Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were >0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: -0.06, [-0.098, -0.022], p=0.002), but this association did not replicate in the younger cohort. Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    Science.gov (United States)

    Reiter, Taylor; Jagoda, Evelyn; Capellini, Terence D

    2016-01-01

    Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  5. DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer

    Science.gov (United States)

    Mamlouk, Soulafa; Childs, Liam Harold; Aust, Daniela; Heim, Daniel; Melching, Friederike; Oliveira, Cristiano; Wolf, Thomas; Durek, Pawel; Schumacher, Dirk; Bläker, Hendrik; von Winterfeld, Moritz; Gastl, Bastian; Möhr, Kerstin; Menne, Andrea; Zeugner, Silke; Redmer, Torben; Lenze, Dido; Tierling, Sascha; Möbs, Markus; Weichert, Wilko; Folprecht, Gunnar; Blanc, Eric; Beule, Dieter; Schäfer, Reinhold; Morkel, Markus; Klauschen, Frederick; Leser, Ulf; Sers, Christine

    2017-01-01

    Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal–distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC. PMID:28120820

  6. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    Directory of Open Access Journals (Sweden)

    Taylor Reiter

    Full Text Available Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR, phytanol-CoA 2-hydroxylase (PHYH, and pancreatic α-amylase 2B (AMY2B. These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  7. Spectrum of EGFR gene copy number changes and KRAS gene mutation status in Korean triple negative breast cancer patients.

    Directory of Open Access Journals (Sweden)

    Yoonjung Kim

    Full Text Available Anti-epidermal growth factor receptor (EGFR therapy has been tried in triple negative breast cancer (TNBC patients without evaluation of molecular and clinical predictors in several randomized clinical studies. Only fewer than 20% of metastatic TNBCs showed response to anti-EGFR therapy. In order to increase the overall response rate, first step would be to classify TNBC into good or poor responders according to oncogenic mutation profiles. This study provides the molecular characteristics of TNBCs including EGFR gene copy number changes and mutation status of EGFR and KRAS gene in Korean TNBC patients. Mutation analysis for EGFR, KRAS, BRAF and TP53 from a total of 105 TNBC tissue samples was performed by direct sequencing, peptide nucleic acid-mediated PCR clamping method and real-time PCR. Copy number changes of EGFR gene were evaluated using multiplex ligation-dependent probe amplification. Out of all 105 TNBCs, 15.2% (16/105 showed EGFR copy number changes. Among them, increased or decreased EGFR copy number was detected in 13 (5 single copy gain, 2 amplification and 4 high-copy number amplification and 3 cases (3 hemizygous deletion, respectively. The mutation frequencies of KRAS, EGFR and TP53 gene were 1.9% (G12V and G12D, 1.0% (exon 19 del and 31.4%, respectively. There was no BRAF V600E mutation found. Future studies are needed to evaluate the clinical outcomes of TNBC patients who undergo anti-EGFR therapy according to the genetic status of EGFR.

  8. DNA copy number aberrations in breast cancer by array comparative genomic hybridization

    DEFF Research Database (Denmark)

    Li, J.; Wang, K.; Li, S.;

    2009-01-01

    Array comparative genomic hybridization (CGH) has been popularly used for analyzing DNA copy number variations in diseases like cancer. In this study, we investigated 82 sporadic samples from 49 breast cancer patients using 1-Mb resolution bacterial artificial chromosome CGH arrays. A number of h...

  9. 10 CFR 51.66 - Environmental report-number of copies; distribution.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-number of copies; distribution. 51.66... Implementing Section 102(2) Environmental Reports-Materials Licenses § 51.66 Environmental report—number of... submit to the Director of Nuclear Material Safety and Safeguards an environmental report or...

  10. Low copy number DNA profiling from isolated sperm using the aureka®-micromanipulation system.

    Science.gov (United States)

    Schneider, C; Müller, U; Kilper, R; Siebertz, B

    2012-07-01

    A new cell isolation technique linked to the aureka® micromanipulation system (aureka®) was used to pick sperm from mixed samples containing sperm and epithelial cells. Both cell types were stained using the HY-LITER™ high-resolution, fluorescent staining kit. To isolate a single sperm of interest under a fluorescent microscope, a specific microsphere picking technique was used. This sensitive and reliable cell identification and isolation technique enables low-copy-number (LCN) DNA profiling, as few as 20 sperm are sufficient for obtaining a full short tandem repeat (STR) profile without any allelic drop out. The presented protocol covers the whole workflow, from sample staining and cell pick up to STR analysis.

  11. Copy number variations of the ATP-binding cassette transporter ABCC6 gene and its pseudogenes

    Directory of Open Access Journals (Sweden)

    Kringen Marianne K

    2012-08-01

    Full Text Available Abstract Background The ATP-binding cassette transporter ABCC6 gene is located on chromosome 16 between its two pseudogenes (ABCC6P1 and ABCC6P2. Previously, we have shown that ABCC6P1 is transcribed and affects ABCC6 at the transcriptional level. In this study we aimed to determine copy number variations of ABCC6, ABCC6P1 and ABCC6P2 in different populations. Moreover, we sought to study the transcription pattern of ABCC6 and ABCC6 pseudogenes in 39 different human tissues. Findings Genomic DNA from healthy individuals from five populations, Chinese (n = 24, Middle East (n = 20, Mexicans (n = 24, Caucasians (n = 50 and Africans (n = 24, were examined for copy number variations of ABCC6 and its pseudogenes by pyrosequencing and quantitative PCR. Copy number variation of ABCC6 was very rare (2/142; 1.4%. However, one or three copies of ABCC6P1 were relatively common (3% and 8%, respectively. Only one person had a single copy of ABCC6P2 while none had three copies. In Chinese, deletions or duplications of ABCC6P1 were more frequent than in any other population (9/24; 37.5%. The transcription pattern of ABCC6P2 was highly similar to ABCC6 and ABCC6P1, with highest transcription in liver and kidney. Interestingly, the total transcription level of pseudogenes, ABCC6P1 + ABCC6P2, was higher than ABCC6 in most tissues, including liver and kidney. Conclusions Copy number variations of the ABCC6 pseudogenes are quite common, especially in populations of Chinese ancestry. The expression pattern of ABCC6P2 in 39 human tissues was highly similar to that of ABCC6 and ABCC6P1 suggesting similar regulatory mechanisms for ABCC6 and its pseudogenes.

  12. Application of BAC-probes to visualize copy number variants (CNVs).

    Science.gov (United States)

    Weise, Anja; Othman, Moneeb A K; Bhatt, Samarth; Löhmer, Sharon; Liehr, Thomas

    2015-01-01

    Copy number variations (CNVs) are structural variations of the human genome. These alterations result in variant copy numbers of certain stretches of DNA. In other words, some regions may be present in more or less copies than in a reference genome; however, these copy number changes do not have any impact on the phenotype. Also, CNVs may be extremely large and cytogenetically detectable or submicroscopic but still spanning several megabasepairs (Mb). In the recent years, array technology has identified especially the latter ones as so-called copy number variant (CNV) polymorphisms. These CNVs are detected in ~12 % of the human genome sequences and may comprise several hundred kilobasepairs. CNVs contribute significantly to the inter-individual differences in humans, and can range between 0.5 and 1.5 Mb amongst different genomes, well within the level of detection using cytogenetics techniques. Thus, they can be visualized by FISH using bacterial artificial chromosomes (BACs) as probes. Here we describe a method that enables discrimination of individual homologous chromosomes at the single cell level based on CNVs in the genome, called parental origin determination fluorescence in situ hybridization (POD-FISH). Possible fields of applications of this single cell-directed approach are in analyses of the parental origin of single chromosomes in inherited and acquired chromosomal aberrations.

  13. Enhancing yields of low and single copy number plasmid DNAs from Escherichia coli cells.

    Science.gov (United States)

    Wood, Whitney N; Smith, Kyle D; Ream, Jennifer A; Kevin Lewis, L

    2017-02-01

    Many plasmids used for gene cloning and heterologous protein expression in Escherichia coli cells are low copy number or single copy number plasmids. The extraction of these types of plasmids from small bacterial cell cultures produces low DNA yields. In this study, we have quantitated yields of low copy and single copy number plasmid DNAs after growth of cells in four widely used broths (SB, SOC, TB, and 2xYT) and compared results to those obtained with LB, the most common E. coli cell growth medium. TB (terrific broth) consistently generated the greatest amount of plasmid DNA, in agreement with its ability to produce higher cell titers. The superiority of TB was primarily due to its high levels of yeast extract (24g/L) and was independent of glycerol, a unique component of this broth. Interestingly, simply preparing LB with similarly high levels of yeast extract (LB24 broth) resulted in plasmid yields that were equivalent to those of TB. By contrast, increasing ampicillin concentration to enhance plasmid retention did not improve plasmid DNA recovery. These experiments demonstrate that yields of low and single copy number plasmid DNAs from minipreps can be strongly enhanced using simple and inexpensive media. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Use of competitive PCR to assay copy number of repetitive elements in banana.

    Science.gov (United States)

    Baurens, F C; Noyer, J L; Lanaud, C; Lagoda, P J

    1996-11-27

    Banana is one of the most important subtropical fruit crops. Genetic improvement by traditional breeding strategies is difficult and better knowledge of genomic structure is needed. Repeated sequences are powerful markers for genetic fingerprinting. The method proposed here to determine the copy number of nuclear repetitive elements is based on competitive reverse transcription-polymerase chain reaction and can also be used for quantifying cytosolic sequences. The reliability of this method was investigated on crude preparations of total DNA. Variations due to the heterogeneity of crude DNA extracts showed that a single locus reference is needed for accurate quantification. A mapped microsatellite locus was used to normalize copy number measurements. Copy number assay of repetitive elements using this method clearly distinguishes between the two banana subspecies investigated: Musa acuminata spp. banskii and M. acuminata spp. malaccensis. Two repetitive sequence families, pMaCIR1115 and pA9-26, were assayed that cover up to 1% of the M. acuminata genome. Their copy number varied up to six fold between the two subspecies. Furthermore, sequence quantification showed that mitochondrial genomes are present in crude leaf-extracted banana DNA at up to 40 copies per cell.

  15. Outlier reset CUSUM for the exploration of copy number alteration data.

    Science.gov (United States)

    Lai, Yinglei; Gastwirth, Joseph L

    2015-08-01

    Copy number alteration (CNA) data have been collected to study disease related chromosomal amplifications and deletions. The CUSUM procedure and related plots have been used to explore CNA data. In practice, it is possible to observe outliers. Then, modifications of the CUSUM procedure may be required. An outlier reset modification of the CUSUM (ORCUSUM) procedure is developed in this paper. The threshold value for detecting outliers or significant CUSUMs can be derived using results for sums of independent truncated normal random variables. Bartel's non-parametric test for autocorrelation is also introduced to the analysis of copy number variation data. Our simulation results indicate that the ORCUSUM procedure can still be used even in the situation where the degree of autocorrelation level is low. Furthermore, the results show the outlier's impact on the traditional CUSUM's performance and illustrate the advantage of the ORCUSUM's outlier reset feature. Additionally, we discuss how the ORCUSUM can be applied to examine CNA data with a simulated data set. To illustrate the procedure, recently collected single nucleotide polymorphism (SNP) based CNA data from The Cancer Genome Atlas (TCGA) Research Network is analyzed. The method is applied to a data set collected in an ovarian cancer study. Three cytogenetic bands (cytobands) are considered to illustrate the method. The cytobands 11q13 and 9p21 have been shown to be related to ovarian cancer. They are presented as positive examples. The cytoband 3q22, which is less likely to be disease related, is presented as a negative example. These results illustrate the usefulness of the ORCUSUM procedure as an exploratory tool for the analysis of SNP based CNA data.

  16. Characterization of copy number variation in genomic regions containing STR loci using array comparative genomic hybridization.

    Science.gov (United States)

    Repnikova, Elena A; Rosenfeld, Jill A; Bailes, Andrea; Weber, Cecilia; Erdman, Linda; McKinney, Aimee; Ramsey, Sarah; Hashimoto, Sayaka; Lamb Thrush, Devon; Astbury, Caroline; Reshmi, Shalini C; Shaffer, Lisa G; Gastier-Foster, Julie M; Pyatt, Robert E

    2013-09-01

    Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.

  17. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia.

    Science.gov (United States)

    Gaines, Todd A; Barker, Abigail L; Patterson, Eric L; Westra, Philip; Westra, Eric P; Wilson, Robert G; Jha, Prashant; Kumar, Vipan; Kniss, Andrew R

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.

  18. CCL3L gene copy number and survival in an HIV-1 infected Zimbabwean population

    DEFF Research Database (Denmark)

    Larsen, Margit Hørup; Thørner, Lise Wegner; Zinyama, Rutendo

    2012-01-01

    The C-C motif chemokine ligand 3-like (CCL3L) protein is a potent chemoattractant which by binding to C-C chemokine receptor type 5 (CCR5) inhibits human immunodeficiency virus (HIV) entry. Copy number variation (CNV) of the CCL3L has been shown to be associated with HIV susceptibility and progre......The C-C motif chemokine ligand 3-like (CCL3L) protein is a potent chemoattractant which by binding to C-C chemokine receptor type 5 (CCR5) inhibits human immunodeficiency virus (HIV) entry. Copy number variation (CNV) of the CCL3L has been shown to be associated with HIV susceptibility.......9), viral load (P=0.9), or CCL3 protein levels (P=1.0). Survival among the HIV infected individuals did not differ according to CCL3L copy number. In this cohort, CCL3L CNV did not affect HIV status, pathogenesis, or survival....

  19. Relative Copy Number Variations of CYP2C19 in South Indian Population

    Directory of Open Access Journals (Sweden)

    Anichavezhi Devendran

    2012-01-01

    Full Text Available CYP2C19 is a polymorphic enzyme involved in the metabolism of clinically important drugs. Genotype-phenotype association studies of CYP2C19 have reported wide ranges in the metabolic ratios of its substrates. These discrepancies could be attributed to the variations in the promoter region and this aspect has been reported recently. The observations in the recent reports on the influence of promoter region variants on the metabolism of CYP2C19 substrates might also have been influenced by the copy number variations of CYP2C19. In this paper, we describe copy number variations of CYP2C19 using real-time polymerase chain reaction by comparative Ct method. No copy number variations were observed in the south Indian population indicating the observed discrepancies in genotype-phenotype association studies might be due to the regulatory region polymorphisms as reported earlier.

  20. Gyrase activity and number of copies of the gyrase B subunit gene in Haemophilus influenzae

    Energy Technology Data Exchange (ETDEWEB)

    Cabrera-Juarez, E.; Setlow, J.K.

    1985-11-01

    Gyrase activities in extracts of various strains of Haemophilus influenzae can differ by more than an order of magnitude. Measurements of in vitro activity and copy number indicated that most of these differences arose from variations in the number of copies of the gene for the gyrase B subunit, with some strains containing multicopy plasmids coding for that subunit. The quantitative relationship between gyrase and copy number depended on the mutations in the plasmids and in the host. The possibility that the in vivo gyrase activity did not reflect the in vitro data was explored by measurement of alkaline phosphatase and ATPase activity in the extracts. Alkaline phosphatase activity increased with increasing gyrase activity measured in vitro, but ATPase activity did not. The authors conclude that extra supercoiling enhanced transcription of the alkaline phosphatase gene but not the ATPase gene and that it is unlikely that there is much discrepancy between gyrase activity assayed in vitro and the activity in the cell.

  1. Mitochondrial DNA Copy Number in Peripheral Blood Cells and Risk of Developing Breast Cancer.

    Science.gov (United States)

    Lemnrau, Alina; Brook, Mark N; Fletcher, Olivia; Coulson, Penny; Tomczyk, Katarzyna; Jones, Michael; Ashworth, Alan; Swerdlow, Anthony; Orr, Nick; Garcia-Closas, Montserrat

    2015-07-15

    Increased mitochondrial DNA (mtDNA) copy number in peripheral blood cells (PBC) has been associated with the risk of developing several tumor types. Here we evaluate sources of variation of this biomarker and its association with breast cancer risk in a prospective cohort study. mtDNA copy number was measured using quantitative real-time PCR on PBC DNA samples from participants in the UK-based Breakthrough Generations Study. Temporal and assay variation was evaluated in a serial study of 91 women, with two blood samples collected approximately 6-years apart. Then, associations with breast cancer risk factors and risk were evaluated in 1,108 cases and 1,099 controls using a nested case-control design. In the serial study, mtDNA copy number showed low assay variation but large temporal variation [assay intraclass correlation coefficient (ICC), 79.3%-87.9%; temporal ICC, 38.3%). Higher mtDNA copy number was significantly associated with younger age at blood collection, being premenopausal, having an older age at menopause, and never taking HRT, both in cases and controls. Based on measurements in a single blood sample taken on average 6 years before diagnosis, higher mtDNA copy number was associated with increased breast cancer risk [OR (95% CI) for highest versus lowest quartile, 1.37 (1.02-1.83); P trend = 0.007]. In conclusion, mtDNA copy number is associated with breast cancer risk and represents a promising biomarker for risk assessment. The relatively large temporal variation should be taken into account in future analyses.

  2. Loss of the Association between Telomere Length and Mitochondrial DNA Copy Number Contribute to Colorectal Carcinogenesis.

    Science.gov (United States)

    Lee, Hyunsu; Cho, Ji-Hyoung; Park, Won-Jin; Jung, Soo-Jung; Choi, In-Jang; Lee, Jae-Ho

    2017-05-09

    Positive association between telomere length and mitochondrial DNA (mtDNA) copy number were introduced in healthy and patients with psychiatric disorder. Based on frequent genetic changes of telomere and mitochondria in colorectal carcinomas (CRC), we studied their clinical characteristics and their association in colorectal carcinogenesis. DNA was extracted from 109 CRCs, 64 colorectal tubular adenomas (TAs), and 28 serrated polyps (SPs), and then, telomere length and mtDNA copy number were analyzed in these legions by using a real-time PCR assay. Telomere length and mtDNA copy number (mean ± S.D) in CRCs was 1.87 ± 1.52 and 1.61 ± 1.37, respectively. In TAs and SPs, relative mtDNA copy number was 0.92 ± 0.71 and 1.84 ± 1.06, respectively, shoing statistical difference (p = 0.017). However, telomere length was similar in these precancerous legions. Telomere length and mtDNA copy number did not show clinical and prognostic values in CRCs, however, positive correlation between telomere length and mitochondrial DNA copy number were found in CRC (r = 0.408, p < 0.001). However, this association was not shown in precancerous lesions (r = -0.031, p = 0.765). This result suggests that loss of co-regulation between telomeres and mitochondrial function may induce the initiation or play a role as trigger factor of colorectal carcinogenesis.

  3. Copy number variations of 11 macronuclear chromosomes and their gene expression in Oxytricha trifallax.

    Science.gov (United States)

    Xu, Ke; Doak, Thomas G; Lipps, Hans J; Wang, Jingmei; Swart, Estienne C; Chang, Wei-Jen

    2012-08-15

    Ciliated protozoa are peculiar for their nuclear dimorphism, wherein two types of nuclei divide nuclear functions: a germline micronucleus (MIC) is transcriptionally inert during vegetative growth, but serves as the genetic blueprint for the somatic macronucleus (MAC), which is responsible for all transcripts supporting cell growth and reproduction. While all the advantages/disadvantages associated with nuclear dimorphism are not clear, an essential advantage seems to be the ability to produce a highly polyploid MAC, which then allows for the maintenance of extremely large single cells - many ciliate cells are larger than small metazoa. In some ciliate classes, chromosomes in the MAC are extensively fragmented to create extremely short chromosomes that often carry single genes, and these chromosomes may be present in different copy numbers, resulting in different ploidies. While using gene copy number to regulate gene expression is limited in most eukaryotic systems, the extensive fragmentation in some ciliate classes provides this opportunity to every MAC gene. However, it is still unclear if this mechanism is in fact used extensively in these ciliates. To address this, we have quantified copy numbers of 11 MAC chromosomes and their gene expression in Oxytricha trifallax (CI: Spirotrichea). We compared copy numbers between two subpopulations of O. trifallax, and copy numbers of 7 orthologous genes between O. trifallax and the closely related Stylonychia lemnae. We show that copy numbers of MAC chromosomes are variable, dynamic, and positively correlated to gene expression. These features might be conserved in all spirotrichs, and might exist in other classes of ciliates with heavily fragmented MAC chromosomes.

  4. Topoisomerase I copy number alterations as biomarker for irinotecan efficacy in metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Palshof, Jesper Andreas; Høgdall, Estrid Vilma Solyom; Poulsen, Tim Svenstrup

    2017-01-01

    Background No biomarker exists to guide the optimal choice of chemotherapy for patients with metastatic colorectal cancer. We examined the copy numbers (CN) of topoisomerase I (TOP1) as well as the ratios of TOP1/CEN-20 and TOP1/CEN-2 as biomarkers for irinotecan efficacy in patients with metasta......Background No biomarker exists to guide the optimal choice of chemotherapy for patients with metastatic colorectal cancer. We examined the copy numbers (CN) of topoisomerase I (TOP1) as well as the ratios of TOP1/CEN-20 and TOP1/CEN-2 as biomarkers for irinotecan efficacy in patients...

  5. Canine Mammary Tumours Are Affected by Frequent Copy Number Aberrations, including Amplification of MYC and Loss of PTEN.

    Directory of Open Access Journals (Sweden)

    Kaja S Borge

    Full Text Available Copy number aberrations frequently occur during the development of many cancers. Such events affect dosage of involved genes and may cause further genomic instability and progression of cancer. In this survey, canine SNP microarrays were used to study 117 canine mammary tumours from 69 dogs.We found a high occurrence of copy number aberrations in canine mammary tumours, losses being more frequent than gains. Increased frequency of aberrations and loss of heterozygosity were positively correlated with increased malignancy in terms of histopathological diagnosis. One of the most highly recurrently amplified regions harbored the MYC gene. PTEN was located to a frequently lost region and also homozygously deleted in five tumours. Thus, deregulation of these genes due to copy number aberrations appears to be an important event in canine mammary tumour development. Other potential contributors to canine mammary tumour pathogenesis are COL9A3, INPP5A, CYP2E1 and RB1. The present study also shows that a more detailed analysis of chromosomal aberrations associated with histopathological parameters may aid in identifying specific genes associated with canine mammary tumour progression.The high frequency of copy number aberrations is a prominent feature of canine mammary tumours as seen in other canine and human cancers. Our findings share several features with corresponding studies in human breast tumours and strengthen the dog as a suitable model organism for this disease.

  6. Reliable transgene-independent method for determining Sleeping Beauty transposon copy numbers

    Directory of Open Access Journals (Sweden)

    Kolacsek Orsolya

    2011-03-01

    Full Text Available Abstract Background The transposon-based gene delivery technique is emerging as a method of choice for gene therapy. The Sleeping Beauty (SB system has become one of the most favored methods, because of its efficiency and its random integration profile. Copy-number determination of the delivered transgene is a crucial task, but a universal method for measuring this is lacking. In this paper, we show that a real-time quantitative PCR-based, transgene-independent (qPCR-TI method is able to determine SB transposon copy numbers regardless of the genetic cargo. Results We designed a specific PCR assay to amplify the left inverted repeat-direct repeat region of SB, and used it together with the single-copy control gene RPPH1 and a reference genomic DNA of known copy number. The qPCR-TI method allowed rapid and accurate determination of SB transposon copy numbers in various cell types, including human embryonic stem cells. We also found that this sensitive, rapid, highly reproducible and non-radioactive method is just as accurate and reliable as the widely used blotting techniques or the transposon display method. Because the assay is specific for the inverted repeat region of the transposon, it could be used in any system where the SB transposon is the genetic vehicle. Conclusions We have developed a transgene-independent method to determine copy numbers of transgenes delivered by the SB transposon system. The technique is based on a quantitative real-time PCR detection method, offering a sensitive, non-radioactive, rapid and accurate approach, which has a potential to be used for gene therapy.

  7. Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia

    Directory of Open Access Journals (Sweden)

    Wongsrichanalai Chansuda

    2009-01-01

    Full Text Available Abstract Background The combination of artesunate and mefloquine was introduced as the national first-line treatment for Plasmodium falciparum malaria in Cambodia in 2000. However, recent clinical trials performed at the Thai-Cambodian border have pointed to the declining efficacy of both artesunate-mefloquine and artemether-lumefantrine. Since pfmdr1 modulates susceptibility to mefloquine and artemisinin derivatives, the aim of this study was to assess the link between pfmdr1 copy number, in vitro susceptibility to individual drugs and treatment failure to combination therapy. Methods Blood samples were collected from P. falciparum-infected patients enrolled in two in vivo efficacy studies in north-western Cambodia: 135 patients were treated with artemether-lumefantrine (AL group in Sampovloun in 2002 and 2003, and 140 patients with artesunate-mefloquine (AM group in Sampovloun and Veal Veng in 2003 and 2004. At enrollment, the in vitro IC50 was tested and the strains were genotyped for pfmdr1 copy number by real-time PCR. Results The pfmdr1 copy number was analysed for 115 isolates in the AM group, and for 109 isolates in the AL group. Parasites with increased pfmdr1 copy number had significantly reduced in vitro susceptibility to mefloquine, lumefantrine and artesunate. There was no association between pfmdr1 polymorphisms and in vitro susceptibilities. In the patients treated with AM, the mean pfmdr1copy number was lower in subjects with adequate clinical and parasitological response compared to those who experienced late treatment failure (n = 112, p p = 0.364. The presence of three or more copies of pfmdr1 were associated with recrudescence in artesunate-mefloquine treated patients (hazard ratio (HR = 7.80 [95%CI: 2.09–29.10], N = 115, p = 0.002 but not with recrudescence in artemether-lumefantrine treated patients (HR = 1.03 [95%CI: 0.24–4.44], N = 109, p = 0.969. Conclusion This study shows that pfmdr1 copy number is a molecular

  8. Inducible amplification of gene copy number and heterologous protein production in the yeast Kluyveromyces lactis.

    Science.gov (United States)

    Morlino, G B; Tizzani, L; Fleer, R; Frontali, L; Bianchi, M M

    1999-11-01

    Heterologous protein production can be doubled by increasing the copy number of the corresponding heterologous gene. We constructed a host-vector system in the yeast Kluyveromyces lactis that was able to induce copy number amplification of pKD1 plasmid-based vectors upon expression of an integrated copy of the plasmid recombinase gene. We increased the production and secretion of two heterologous proteins, glucoamylase from the yeast Arxula adeninivorans and mammalian interleukin-1beta, following gene dosage amplification when the heterologous genes were carried by pKD1-based vectors. The choice of the promoters for expression of the integrated recombinase gene and of the episomal heterologous genes are critical for the mitotic stability of the host-vector system.

  9. Copy number polymorphism of the salivary amylase gene: implications in human nutrition research.

    Science.gov (United States)

    Santos, J L; Saus, E; Smalley, S V; Cataldo, L R; Alberti, G; Parada, J; Gratacòs, M; Estivill, X

    2012-01-01

    The salivary α-amylase is a calcium-binding enzyme that initiates starch digestion in the oral cavity. The α-amylase genes are located in a cluster on the chromosome that includes salivary amylase genes (AMY1), two pancreatic α-amylase genes (AMY2A and AMY2B) and a related pseudogene. The AMY1 genes show extensive copy number variation which is directly proportional to the salivary α-amylase content in saliva. The α-amylase amount in saliva is also influenced by other factors, such as hydration status, psychosocial stress level, and short-term dietary habits. It has been shown that the average copy number of AMY1 gene is higher in populations that evolved under high-starch diets versus low-starch diets, reflecting an intense positive selection imposed by diet on amylase copy number during evolution. In this context, a number of different aspects can be considered in evaluating the possible impact of copy number variation of the AMY1 gene on nutrition research, such as issues related to human diet gene evolution, action on starch digestion, effect on glycemic response after starch consumption, modulation of the action of α-amylases inhibitors, effect on taste perception and satiety, influence on psychosocial stress and relation to oral health.

  10. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    Science.gov (United States)

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Whole-genome sequencing reveals the diversity of cattle copy number variations and multicopy genes

    Science.gov (United States)

    Structural and functional impacts of copy number variations (CNVs) on livestock genomes are not yet well understood. We identified 1853 CNV regions using population-scale sequencing data generated from 75 cattle representing 8 breeds (Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnol...

  12. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    Science.gov (United States)

    The diversity and population-genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analyzed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnola), sequenced to 11-fold...

  13. Copy number variations of chromosome 16p13.1 region associated with schizophrenia

    NARCIS (Netherlands)

    Ingason, A.; Rujescu, D.; Cichon, S.; Sigurdsson, E.; Sigmundsson, T.; Pietilainen, O.P.H.; Buizer-Voskamp, J.E.; Strengman, E.; Francks, C.; Muglia, P.; Gylfason, A.; Gustafsson, O.; Olason, P.I.; Steinberg, S.; Hansen, T.; Jakobsen, K.D.; Rasmussen, H.B.; Giegling, I.; Moller, H.J.; Hartmann, A.; Crombie, C.; Fraser, G.; Walker, N.; Lonnqvist, J.; Suvisaari, J.; Tuulio-Henriksson, A.; Bramon, E.; Kiemeney, L.A.L.M.; Franke, B.; Murray, R.; Vassos, E.; Toulopoulou, T.; Muhleisen, T.W.; Tosato, S.; Ruggeri, M.; Djurovic, S.; Andreassen, O.A.; Zhang, Z.; Werge, T.; Ophoff, R.A.; Rietschel, M.; Nothen, M.M.; Petursson, H.; Stefansson, H.; Peltonen, L.; Collier, D.; Stefansson, K.; St Clair, D.M.

    2011-01-01

    Deletions and reciprocal duplications of the chromosome 16p13.1 region have recently been reported in several cases of autism and mental retardation (MR). As genomic copy number variants found in these two disorders may also associate with schizophrenia, we examined 4345 schizophrenia patients and 3

  14. Distribution of Disease-Associated Copy Number Variants across Distinct Disorders of Cognitive Development

    Science.gov (United States)

    Pescosolido, Matthew F.; Gamsiz, Ece D.; Nagpal, Shailender; Morrow, Eric M.

    2013-01-01

    Objective: The purpose of the present study was to discover the extent to which distinct "DSM" disorders share large, highly recurrent copy number variants (CNVs) as susceptibility factors. We also sought to identify gene mechanisms common to groups of diagnoses and/or specific to a given diagnosis based on associations with CNVs. Method:…

  15. Alpha-defensin DEFA1A3 gene copy number elevation in Danish Crohn's disease patients

    DEFF Research Database (Denmark)

    Jespersgaard, Cathrine; Fode, Peder; Dybdahl, Marianne

    2011-01-01

    BACKGROUND AND PURPOSE OF STUDY: Extensive copy number variation is observed for the DEFA1A3 gene encoding alpha-defensins 1-3. The objective of this study was to determine the involvement of alpha-defensins in colonic tissue from Crohn's disease (CD) patients and the possible genetic association...

  16. Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease

    DEFF Research Database (Denmark)

    Petersen, Maria Hvidberg; Budtz-Jørgensen, Esben; Sørensen, Sven Asger;

    2014-01-01

    to the investigation of the mitochondrial DNA (mtDNA) copy number relative to nuclear DNA (nDNA) in leukocytes from carriers of the HD mutation compared to healthy individuals. We found significantly reduced mtDNA/nDNA in HD mutation carriers compared to controls. A longitudinal study of archive DNA sample pairs from...

  17. Copy number variation in obsessive-compulsive disorder and tourette syndrome: A cross-disorder study

    NARCIS (Netherlands)

    L.M. McGrath; D. Yu (D.); C.R. Marshall (Christian); L.K. Davis (Lea); B. Thiruvahindrapuram (Bhooma); B. Li (Bingbin); C. Cappi (Carolina); G. Gerber (Gloria); A. de Wolf (Anneke); F.A. Schroeder (Frederick); L. Osiecki (Lisa); C. O'Dushlaine (Colm); A. Kirby (Andrew); C. Illmann (Cornelia); S. Haddad (Stephen); P. Gallagher (Patience); J. Fagerness (Jesen); C.L. Barr; L. Bellodi (Laura); F. Benarroch (Fortu); O.J. Bienvenu (Oscar); D.W. Black (Donald W); J. Bloch (Jocelyne); R.D. Bruun (Ruth); C.L. Budman (Cathy); B. Camarena (Beatriz); D. Cath (Daniëlle); M.C. Cavallini (Maria); S. Chouinard; V. Coric (Vladimir); C. Cullen; R. Delorme (Richard); D.A.J.P. Denys (Damiaan); E.M. Derks (Eske); Y. Dion (Yves); M.C. Rosário (Maria); C.E. Eapen (Chundamannil Eapen); P. Evans; P. Falkai (Peter); T.V. Fernandez (Thomas); H. Garrido (Helena); D. Geller (Daniel); H.J. Grabe (Hans Jörgen); M. Grados (Marco); B.D. Greenberg (Benjamin); V. Gross-Tsur (Varda); E. Grünblatt (Edna); M.L. Heiman (Mark); S.M.J. Hemmings (Sian); L.D. Herrera (Luis); A.G. Hounie (Ana); J. Jankovic (Joseph); J.L. Kennedy; R.A. King; R. Kurlan; N. Lanzagorta (Nuria); M. Leboyer (Marion); J.F. Leckman; L. Lennertz (Leonhard); C. Lochner (Christine); T.L. Lowe (Thomas); H.N. Lyon (Helen); F. MacCiardi (Fabio); W. Maier (Wolfgang); J.T. McCracken (James); W.M. McMahon (William); D.L. Murphy (Dennis); A.L. Naarden (Allan); E. Nurmi (Erika); A.J. Pakstis; C. Pato (Carlos); C. Pato (Carlos); J. Piacentini (John); C. Pittenger (Christopher); M.N. Pollak (Michael); V.I. Reus (Victor); M.A. Richter (Margaret); M. Riddle (Mark); M.M. Robertson; D. Rosenberg (David); G.A. Rouleau; S. Ruhrmann (Stephan); A.S. Sampaio (Aline); J. Samuels (Jonathan); P. Sandor (Paul); B. Sheppard (Brooke); H.S. Singer (Harvey); J.H. Smit (Jan); D.J. Stein (Dan); J.A. Tischfield (Jay); H. Vallada (Homero); J. Veenstra-Vanderweele (Jeremy); S. Walitza (Susanne); Y. Wang (Ying); A. Wendland (Annika); Y.Y. Shugart; E.C. Miguel (Euripedes); H. Nicolini (Humberto); B.A. Oostra (Ben); R. Moessner (Rainald); M. Wagner (Michael); A. Ruiz-Linares (Andres); P. Heutink (Peter); G. Nestadt (Gerald); N.B. Freimer (Nelson); T.L. Petryshen (Tracey); D. Posthuma (Danielle); M.A. Jenike (Michael); N.J. Cox (Nancy); G.L. Hanna (Gregory); H. Brentani (Helena); S.W. Scherer (Stephen); P.D. Arnold (Paul); S.E. Stewart; C. Mathews; J.A. Knowles (James A); E.H. Cook (Edwin); D.L. Pauls (David); K. Wang (Kai); J.M. Scharf; B.M. Neale (Benjamin)

    2014-01-01

    textabstractObjective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and th

  18. Identification of copy number variants defining genomic differences among major human groups.

    Directory of Open Access Journals (Sweden)

    Lluís Armengol

    Full Text Available BACKGROUND: Understanding the genetic contribution to phenotype variation of human groups is necessary to elucidate differences in disease predisposition and response to pharmaceutical treatments in different human populations. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the genome-wide profile of structural variation on pooled samples from the three populations studied in the HapMap project by comparative genome hybridization (CGH in different array platforms. We have identified and experimentally validated 33 genomic loci that show significant copy number differences from one population to the other. Interestingly, we found an enrichment of genes related to environment adaptation (immune response, lipid metabolism and extracellular space within these regions and the study of expression data revealed that more than half of the copy number variants (CNVs translate into gene-expression differences among populations, suggesting that they could have functional consequences. In addition, the identification of single nucleotide polymorphisms (SNPs that are in linkage disequilibrium with the copy number alleles allowed us to detect evidences of population differentiation and recent selection at the nucleotide variation level. CONCLUSIONS: Overall, our results provide a comprehensive view of relevant copy number changes that might play a role in phenotypic differences among major human populations, and generate a list of interesting candidates for future studies.

  19. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects

    Directory of Open Access Journals (Sweden)

    Carla Marques Rondon Campos

    2015-01-01

    Full Text Available Background: Congenital heart defects (CHD are the most prevalent group of structural abnormalities at birth and one of the main causes of infant morbidity and mortality. Studies have shown a contribution of the copy number variation in the genesis of cardiac malformations. Objectives: Investigate gene copy number variation (CNV in children with conotruncal heart defect. Methods: Multiplex ligation-dependent probe amplification (MLPA was performed in 39 patients with conotruncal heart defect. Clinical and laboratory assessments were conducted in all patients. The parents of the probands who presented abnormal findings were also investigated. Results: Gene copy number variation was detected in 7/39 patients: 22q11.2 deletion, 22q11.2 duplication, 15q11.2 duplication, 20p12.2 duplication, 19p deletion, 15q and 8p23.2 duplication with 10p12.31 duplication. The clinical characteristics were consistent with those reported in the literature associated with the encountered microdeletion/microduplication. None of these changes was inherited from the parents. Conclusions: Our results demonstrate that the technique of MLPA is useful in the investigation of microdeletions and microduplications in conotruncal congenital heart defects. Early diagnosis of the copy number variation in patients with congenital heart defect assists in the prevention of morbidity and decreased mortality in these patients.

  20. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Carla Marques Rondon, E-mail: carlamcampos@uol.com.br [Universidade Federal de Mato Grosso, Cuiabá, MT (Brazil); Zanardo, Evelin Aline; Dutra, Roberta Lelis [Departamento de Patologia - Laboratório de Citogenômica - LIM 03 - Universidade de São Paulo, São Paulo, SP (Brazil); Kulikowski, Leslie Domenici [Universidade de São Paulo, São Paulo, SP (Brazil); Departamento de Patologia - Laboratório de Citogenômica - LIM 03 - Universidade de São Paulo, São Paulo, SP (Brazil); Kim, Chong Ae [Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-01-15

    Congenital heart defects (CHD) are the most prevalent group of structural abnormalities at birth and one of the main causes of infant morbidity and mortality. Studies have shown a contribution of the copy number variation in the genesis of cardiac malformations. Investigate gene copy number variation (CNV) in children with conotruncal heart defect. Multiplex ligation-dependent probe amplification (MLPA) was performed in 39 patients with conotruncal heart defect. Clinical and laboratory assessments were conducted in all patients. The parents of the probands who presented abnormal findings were also investigated. Gene copy number variation was detected in 7/39 patients: 22q11.2 deletion, 22q11.2 duplication, 15q11.2 duplication, 20p12.2 duplication, 19p deletion, 15q and 8p23.2 duplication with 10p12.31 duplication. The clinical characteristics were consistent with those reported in the literature associated with the encountered microdeletion/microduplication. None of these changes was inherited from the parents. Our results demonstrate that the technique of MLPA is useful in the investigation of microdeletions and microduplications in conotruncal congenital heart defects. Early diagnosis of the copy number variation in patients with congenital heart defect assists in the prevention of morbidity and decreased mortality in these patients.

  1. Copy number variation associates with mortality in long-lived individuals

    DEFF Research Database (Denmark)

    Nygaard, Marianne; Debrabant, Birgit; Tan, Qihua

    2016-01-01

    Copy number variants (CNVs) represent a significant source of genetic variation in the human genome and have been implicated in numerous diseases and complex traits. To date, only a few studies have investigated the role of CNVs in human lifespan. To investigate the impact of CNVs on prospective...

  2. Subtelomeric Rearrangements and Copy Number Variations in People with Intellectual Disabilities

    Science.gov (United States)

    Christofolini, D. M.; De Paula Ramos, M. A.; Kulikowski, L. D.; Da Silva Bellucco, F. T.; Belangero, S. I. N.; Brunoni, D.; Melaragno, M. I.

    2010-01-01

    Background: The most prevalent type of structural variation in the human genome is represented by copy number variations that can affect transcription levels, sequence, structure and function of genes. Method: In the present study, we used the multiplex ligation-dependent probe amplification (MLPA) technique and quantitative PCR for the detection…

  3. Distribution of Disease-Associated Copy Number Variants across Distinct Disorders of Cognitive Development

    Science.gov (United States)

    Pescosolido, Matthew F.; Gamsiz, Ece D.; Nagpal, Shailender; Morrow, Eric M.

    2013-01-01

    Objective: The purpose of the present study was to discover the extent to which distinct "DSM" disorders share large, highly recurrent copy number variants (CNVs) as susceptibility factors. We also sought to identify gene mechanisms common to groups of diagnoses and/or specific to a given diagnosis based on associations with CNVs. Method:…

  4. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-number of copies; distribution. 51.58... Implementing Section 102(2) Environmental Reports-Production and Utilization Facilities § 51.58 Environmental... appropriate, of an environmental report or any supplement to an environmental report. These reports must...

  5. Construction of thiostrepton-inducible, high-copy-number expression vectors for use in Streptomyces spp.

    NARCIS (Netherlands)

    Takano, Eriko; White, Janet; Thompson, Charles J.; Bibb, Mervyn J.

    1995-01-01

    A high-copy-number plasmid expression vector (pIJ6021) was constructed that contains a thiostrepton-inducible promoter, PtipA, from Streptomyces lividans 66. The promoter and ribosome-binding site of tipA lie immediately upstream from a multiple cloning site (MCS) which begins with a NdeI site (5'-C

  6. Pyruvate Kinase and Fcγ Receptor Gene Copy Numbers Associated With Malaria Phenotypes.

    Science.gov (United States)

    Faik, Imad; van Tong, Hoang; Lell, Bertrand; Meyer, Christian G; Kremsner, Peter G; Velavan, Thirumalaisamy P

    2017-07-15

    Genetic factors are associated with susceptibility to many infectious diseases and may be determinants of clinical progression. Gene copy number variation (CNV) has been shown to be associated with phenotypes of numerous diseases, including malaria. We quantified gene copy numbers of the pyruvate kinase, liver, and red blood cell (PKLR) gene as well as of the Fcγ receptor 2A and Fcγ receptor 2C (FCGR2A, FCGR2C) and Fcγ receptor 3 (FCGR3) genes using real-time quantitative polymerase chain reaction (RT-qPCR) assays in Gabonese children with severe (n = 184) or and mild (n = 189) malaria and in healthy Gabonese and white individuals (n = 76 each). The means of PKLR, FCGR2A, FCGR2C, and FCGR3 copy numbers were significantly higher among children with severe malaria compared to those with mild malaria (P malaria severity. Copy numbers of the FCGR2A and FCGR2C genes were significantly lower (P = .005) in Gabonese individuals compared with white individuals. In conclusion, CNV of the PKLR, FCGR2A, FCGR2C, and FCGR3 genes is associated with malaria severity, and our results provide evidence for a role of CNV in host responses to malaria. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  7. Copy number variation in obsessive-compulsive disorder and tourette syndrome: A cross-disorder study

    NARCIS (Netherlands)

    L.M. McGrath; D. Yu (D.); C.R. Marshall (Christian); L.K. Davis (Lea); B. Thiruvahindrapuram (Bhooma); B. Li (Bingbin); C. Cappi (Carolina); G. Gerber (Gloria); A. de Wolf (Anneke); F.A. Schroeder (Frederick); L. Osiecki (Lisa); C. O'Dushlaine (Colm); A. Kirby (Andrew); C. Illmann (Cornelia); S. Haddad (Stephen); P. Gallagher (Patience); J. Fagerness (Jesen); C.L. Barr; L. Bellodi (Laura); F. Benarroch (Fortu); O.J. Bienvenu (Oscar); D.W. Black (Donald W); J. Bloch (Jocelyne); R.D. Bruun (Ruth); C.L. Budman (Cathy); B. Camarena (Beatriz); D. Cath (Daniëlle); M.C. Cavallini (Maria); S. Chouinard; V. Coric (Vladimir); C. Cullen; R. Delorme (Richard); D.A.J.P. Denys (Damiaan); E.M. Derks (Eske); Y. Dion (Yves); M.C. Rosário (Maria); C.E. Eapen (Chundamannil Eapen); P. Evans; P. Falkai (Peter); T.V. Fernandez (Thomas); H. Garrido (Helena); D. Geller (Daniel); H.J. Grabe (Hans Jörgen); M. Grados (Marco); B.D. Greenberg (Benjamin); V. Gross-Tsur (Varda); E. Grünblatt (Edna); M.L. Heiman (Mark); S.M.J. Hemmings (Sian); L.D. Herrera (Luis); A.G. Hounie (Ana); J. Jankovic (Joseph); J.L. Kennedy; R.A. King; R. Kurlan; N. Lanzagorta (Nuria); M. Leboyer (Marion); J.F. Leckman; L. Lennertz (Leonhard); C. Lochner (Christine); T.L. Lowe (Thomas); H.N. Lyon (Helen); F. MacCiardi (Fabio); W. Maier (Wolfgang); J.T. McCracken (James); W.M. McMahon (William); D.L. Murphy (Dennis); A.L. Naarden (Allan); E. Nurmi (Erika); A.J. Pakstis; C. Pato (Carlos); C. Pato (Carlos); J. Piacentini (John); C. Pittenger (Christopher); M.N. Pollak (Michael); V.I. Reus (Victor); M.A. Richter (Margaret); M. Riddle (Mark); M.M. Robertson; D. Rosenberg (David); G.A. Rouleau; S. Ruhrmann (Stephan); A.S. Sampaio (Aline); J. Samuels (Jonathan); P. Sandor (Paul); B. Sheppard (Brooke); H.S. Singer (Harvey); J.H. Smit (Jan); D.J. Stein (Dan); J.A. Tischfield (Jay); H. Vallada (Homero); J. Veenstra-Vanderweele (Jeremy); S. Walitza (Susanne); Y. Wang (Ying); A. Wendland (Annika); Y.Y. Shugart; E.C. Miguel (Euripedes); H. Nicolini (Humberto); B.A. Oostra (Ben); R. Moessner (Rainald); M. Wagner (Michael); A. Ruiz-Linares (Andres); P. Heutink (Peter); G. Nestadt (Gerald); N.B. Freimer (Nelson); T.L. Petryshen (Tracey); D. Posthuma (Danielle); M.A. Jenike (Michael); N.J. Cox (Nancy); G.L. Hanna (Gregory); H. Brentani (Helena); S.W. Scherer (Stephen); P.D. Arnold (Paul); S.E. Stewart; C. Mathews; J.A. Knowles (James A); E.H. Cook (Edwin); D.L. Pauls (David); K. Wang (Kai); J.M. Scharf; B.M. Neale (Benjamin)

    2014-01-01

    textabstractObjective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and

  8. Copy number variants on the X chromosome in women with primary ovarian insufficiency

    NARCIS (Netherlands)

    Knauff, Erik A. H.; Blauw, Hylke M.; Pearson, Peter L.; Kok, Klaas; Wijmenga, Cisca; Veldink, Jan H.; van den Berg, Leonard H.; Bouchard, Philippe; Fauser, Bart C. J. M.; Franke, Lude

    2011-01-01

    Objective: To investigate whether submicroscopic copy number variants (CNVs) on the X chromosome can be identified in women with primary ovarian insufficiency (POI), defined as spontaneous secondary amenorrhea before 40 years of age accompanied by follicle-stimulating hormone levels above 40 IU/L on

  9. Decreased mtDNA Copy Number of Gastric Cancer: a New Tumor Marker?

    Institute of Scientific and Technical Information of China (English)

    FanLi; XiaosongWang; ChengboHan; JieLin

    2004-01-01

    OBJECTIVE To explore the relationship between mtDNA (mitochondrial DNA) and gastric cancer by comparing the difference of mtDNA copy number in gastric cancers and paracancerous tissues.METHODS The HV1 (hypervariable region) and HV2 of the mitochondrial Dloop region from 20 cases of gastric cancer and 20 paracancerous tissues were amplified by PCR with 13-actin serving as a quantitative standard marker. The products were separated by polyacrylamide gel electrophoresis (PAGE) and silver stained in order to compare the difference in mtDNA copy number between gastric cancers and paracancerous tissues. The mtDNA copy number was determined for gastric cancer shaving various pathological characteristics and the results compared with previous immunohistochemical staininq of the tumors,RESULTS There was a significantly quantitative difference in HV1, HV2 (standardized with β-actin) between gastric cancers and paracancerous tissues (P0.05).CONCLUSION The occurrence of gastric cancer was closely associated with decreased mtDNA copy number, which may be a new tumor marker.

  10. rSW-seq: Algorithm for detection of copy number alterations in deep sequencing data

    Directory of Open Access Journals (Sweden)

    Kim Tae-Min

    2010-08-01

    Full Text Available Abstract Background Recent advances in sequencing technologies have enabled generation of large-scale genome sequencing data. These data can be used to characterize a variety of genomic features, including the DNA copy number profile of a cancer genome. A robust and reliable method for screening chromosomal alterations would allow a detailed characterization of the cancer genome with unprecedented accuracy. Results We develop a method for identification of copy number alterations in a tumor genome compared to its matched control, based on application of Smith-Waterman algorithm to single-end sequencing data. In a performance test with simulated data, our algorithm shows >90% sensitivity and >90% precision in detecting a single copy number change that contains approximately 500 reads for the normal sample. With 100-bp reads, this corresponds to a ~50 kb region for 1X genome coverage of the human genome. We further refine the algorithm to develop rSW-seq, (recursive Smith-Waterman-seq to identify alterations in a complex configuration, which are commonly observed in the human cancer genome. To validate our approach, we compare our algorithm with an existing algorithm using simulated and publicly available datasets. We also compare the sequencing-based profiles to microarray-based results. Conclusion We propose rSW-seq as an efficient method for detecting copy number changes in the tumor genome.

  11. Copy number variation in obsessive-compulsive disorder and tourette syndrome : a cross-disorder study

    NARCIS (Netherlands)

    McGrath, Lauren M; Yu, Dongmei; Marshall, Christian; Davis, Lea K; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A; Osiecki, Lisa; O'Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Cath, Danielle C; Cavallini, Maria C; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, D.; Derks, Eske M; Dion, Yves; Rosário, Maria C; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas V; Garrido, Helena; Geller, Daniel; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hounie, Ana G; Jankovic, Joseph; Kennedy, James L; King, Robert A; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L; Lyon, Gholson J; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T; McMahon, William; Murphy, Dennis L; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I; Richter, Margaret A; Riddle, Mark; Robertson, Mary M; Rosenberg, David; Rouleau, Guy A; Ruhrmann, Stephan; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H; Stein, Dan J; Tischfield, Jay A; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R; Shugart, Yin Yao; Miguel, Euripedes C; Nicolini, Humberto; Oostra, Ben A; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A; Cox, Nancy J; Hanna, Gregory L; Brentani, Helena; Scherer, Stephen W; Arnold, Paul D; Stewart, S Evelyn; Mathews, Carol A; Knowles, James A; Cook, Edwin H; Pauls, David L; Wang, Kai; Scharf, Jeremiah M

    2014-01-01

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest g

  12. Copy number variation in obsessive-compulsive disorder and tourette syndrome : a cross-disorder study

    NARCIS (Netherlands)

    McGrath, Lauren M; Yu, Dongmei; Marshall, Christian; Davis, Lea K; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A; Osiecki, Lisa; O'Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Cath, Danielle C|info:eu-repo/dai/nl/194111423; Cavallini, Maria C; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, Damiaan; Derks, Eske M; Dion, Yves; Rosário, Maria C; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas V; Garrido, Helena; Geller, Daniel; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hounie, Ana G; Jankovic, Joseph; Kennedy, James L; King, Robert A; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L; Lyon, Gholson J; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T; McMahon, William; Murphy, Dennis L; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I; Richter, Margaret A; Riddle, Mark; Robertson, Mary M; Rosenberg, David; Rouleau, Guy A; Ruhrmann, Stephan; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H|info:eu-repo/dai/nl/113700644; Stein, Dan J; Tischfield, Jay A; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R; Shugart, Yin Yao; Miguel, Euripedes C; Nicolini, Humberto; Oostra, Ben A; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A; Cox, Nancy J; Hanna, Gregory L; Brentani, Helena; Scherer, Stephen W; Arnold, Paul D; Stewart, S Evelyn; Mathews, Carol A; Knowles, James A; Cook, Edwin H; Pauls, David L; Wang, Kai; Scharf, Jeremiah M

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest

  13. Copy number polymorphisms in new HapMap III and Singapore populations.

    Science.gov (United States)

    Ku, Chee-Seng; Teo, Shu-Mei; Naidoo, Nasheen; Sim, Xueling; Teo, Yik-Ying; Pawitan, Yudi; Seielstad, Mark; Chia, Kee-Seng; Salim, Agus

    2011-08-01

    Copy number variations can be identified using newer genotyping arrays with higher single nucleotide polymorphisms (SNPs) density and copy number probes accompanied by newer algorithms. McCarroll et al. (2008) applied these to the HapMap II samples and identified 1316 copy number polymorphisms (CNPs). In our study, we applied the same approach to 859 samples from three Singapore populations and seven HapMap III populations. Approximately 50% of the 1291 autosomal CNPs were found to be polymorphic only in populations of non-African ancestry. Pairwise comparisons among the 10 populations showed substantial differences in the CNPs frequencies. Additionally, 698 CNPs showed significant differences with false discovery rate (FDR)macular degeneration), GSTTI (metabolism of various carcinogenic compounds and cancers) and UGT2B17 (prostate cancer and graft-versus-host disease). The correlations between CNPs and genome-wide association studies-SNPs were investigated and several loci, which were previously unreported, that may potentially be implicated in complex diseases and traits were found; for example, childhood acute lymphoblastic leukaemia, age-related macular degeneration, breast cancer, response to antipsychotic treatment, rheumatoid arthritis and type-1 diabetes. Additionally, we also found 5014 novel copy number loci that have not been reported previously by McCarroll et al. (2008) in the 10 populations.

  14. Copy number variation in obsessive-compulsive disorder and tourette syndrome : a cross-disorder study

    NARCIS (Netherlands)

    McGrath, Lauren M; Yu, Dongmei; Marshall, Christian; Davis, Lea K; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A; Osiecki, Lisa; O'Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Cath, Danielle C; Cavallini, Maria C; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, Damiaan; Derks, Eske M; Dion, Yves; Rosário, Maria C; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas V; Garrido, Helena; Geller, Daniel; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hounie, Ana G; Jankovic, Joseph; Kennedy, James L; King, Robert A; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L; Lyon, Gholson J; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T; McMahon, William; Murphy, Dennis L; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I; Richter, Margaret A; Riddle, Mark; Robertson, Mary M; Rosenberg, David; Rouleau, Guy A; Ruhrmann, Stephan; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H; Stein, Dan J; Tischfield, Jay A; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R; Shugart, Yin Yao; Miguel, Euripedes C; Nicolini, Humberto; Oostra, Ben A; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A; Cox, Nancy J; Hanna, Gregory L; Brentani, Helena; Scherer, Stephen W; Arnold, Paul D; Stewart, S Evelyn; Mathews, Carol A; Knowles, James A; Cook, Edwin H; Pauls, David L; Wang, Kai; Scharf, Jeremiah M

    2014-01-01

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest g

  15. Copy number variation in obsessive-compulsive disorder and tourette syndrome: A cross-disorder study

    NARCIS (Netherlands)

    L.M. McGrath; D. Yu (D.); C.R. Marshall (Christian); L.K. Davis (Lea); B. Thiruvahindrapuram (Bhooma); B. Li (Bingbin); C. Cappi (Carolina); G. Gerber (Gloria); A. de Wolf (Anneke); F.A. Schroeder (Frederick); L. Osiecki (Lisa); C. O'Dushlaine (Colm); A. Kirby (Andrew); C. Illmann (Cornelia); S. Haddad (Stephen); P. Gallagher (Patience); J. Fagerness (Jesen); C.L. Barr; L. Bellodi (Laura); F. Benarroch (Fortu); O.J. Bienvenu (Oscar); D.W. Black (Donald W); J. Bloch (Jocelyne); R.D. Bruun (Ruth); C.L. Budman (Cathy); B. Camarena (Beatriz); D. Cath (Daniëlle); M.C. Cavallini (Maria); S. Chouinard; V. Coric (Vladimir); C. Cullen; R. Delorme (Richard); D.A.J.P. Denys (Damiaan); E.M. Derks (Eske); Y. Dion (Yves); M.C. Rosário (Maria); C.E. Eapen (Chundamannil Eapen); P. Evans; P. Falkai (Peter); T.V. Fernandez (Thomas); H. Garrido (Helena); D. Geller (Daniel); H.J. Grabe (Hans Jörgen); M. Grados (Marco); B.D. Greenberg (Benjamin); V. Gross-Tsur (Varda); E. Grünblatt (Edna); M.L. Heiman (Mark); S.M.J. Hemmings (Sian); L.D. Herrera (Luis); A.G. Hounie (Ana); J. Jankovic (Joseph); J.L. Kennedy; R.A. King; R. Kurlan; N. Lanzagorta (Nuria); M. Leboyer (Marion); J.F. Leckman; L. Lennertz (Leonhard); C. Lochner (Christine); T.L. Lowe (Thomas); H.N. Lyon (Helen); F. MacCiardi (Fabio); W. Maier (Wolfgang); J.T. McCracken (James); W.M. McMahon (William); D.L. Murphy (Dennis); A.L. Naarden (Allan); E. Nurmi (Erika); A.J. Pakstis; C. Pato (Carlos); C. Pato (Carlos); J. Piacentini (John); C. Pittenger (Christopher); M.N. Pollak (Michael); V.I. Reus (Victor); M.A. Richter (Margaret); M. Riddle (Mark); M.M. Robertson; D. Rosenberg (David); G.A. Rouleau; S. Ruhrmann (Stephan); A.S. Sampaio (Aline); J. Samuels (Jonathan); P. Sandor (Paul); B. Sheppard (Brooke); H.S. Singer (Harvey); J.H. Smit (Jan); D.J. Stein (Dan); J.A. Tischfield (Jay); H. Vallada (Homero); J. Veenstra-Vanderweele (Jeremy); S. Walitza (Susanne); Y. Wang (Ying); A. Wendland (Annika); Y.Y. Shugart; E.C. Miguel (Euripedes); H. Nicolini (Humberto); B.A. Oostra (Ben); R. Moessner (Rainald); M. Wagner (Michael); A. Ruiz-Linares (Andres); P. Heutink (Peter); G. Nestadt (Gerald); N.B. Freimer (Nelson); T.L. Petryshen (Tracey); D. Posthuma (Danielle); M.A. Jenike (Michael); N.J. Cox (Nancy); G.L. Hanna (Gregory); H. Brentani (Helena); S.W. Scherer (Stephen); P.D. Arnold (Paul); S.E. Stewart; C. Mathews; J.A. Knowles (James A); E.H. Cook (Edwin); D.L. Pauls (David); K. Wang (Kai); J.M. Scharf; B.M. Neale (Benjamin)

    2014-01-01

    textabstractObjective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and th

  16. 17 CFR 230.424 - Filing of prospectuses, number of copies.

    Science.gov (United States)

    2010-04-01

    ... asset-backed securities on a delayed basis under § 230.415(a)(1)(x) that is required to be filed... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Filing of prospectuses, number of copies. 230.424 Section 230.424 Commodity and Securities Exchanges SECURITIES AND EXCHANGE...

  17. RefCNV: Identification of Gene-Based Copy Number Variants Using Whole Exome Sequencing

    Science.gov (United States)

    Chang, Lun-Ching; Das, Biswajit; Lih, Chih-Jian; Si, Han; Camalier, Corinne E.; McGregor, Paul M.; Polley, Eric

    2016-01-01

    With rapid advances in DNA sequencing technologies, whole exome sequencing (WES) has become a popular approach for detecting somatic mutations in oncology studies. The initial intent of WES was to characterize single nucleotide variants, but it was observed that the number of sequencing reads that mapped to a genomic region correlated with the DNA copy number variants (CNVs). We propose a method RefCNV that uses a reference set to estimate the distribution of the coverage for each exon. The construction of the reference set includes an evaluation of the sources of variability in the coverage distribution. We observed that the processing steps had an impact on the coverage distribution. For each exon, we compared the observed coverage with the expected normal coverage. Thresholds for determining CNVs were selected to control the false-positive error rate. RefCNV prediction correlated significantly (r = 0.96–0.86) with CNV measured by digital polymerase chain reaction for MET (7q31), EGFR (7p12), or ERBB2 (17q12) in 13 tumor cell lines. The genome-wide CNV analysis showed a good overall correlation (Spearman’s coefficient = 0.82) between RefCNV estimation and publicly available CNV data in Cancer Cell Line Encyclopedia. RefCNV also showed better performance than three other CNV estimation methods in genome-wide CNV analysis. PMID:27147817

  18. Use of the MLPA assay in the molecular diagnosis of gene copy number alterations in human genetic diseases.

    Science.gov (United States)

    Stuppia, Liborio; Antonucci, Ivana; Palka, Giandomenico; Gatta, Valentina

    2012-01-01

    Multiplex Ligation-dependent Probe Amplification (MLPA) assay is a recently developed technique able to evidence variations in the copy number of several human genes. Due to this ability, MLPA can be used in the molecular diagnosis of several genetic diseases whose pathogenesis is related to the presence of deletions or duplications of specific genes. Moreover, MLPA assay can also be used in the molecular diagnosis of genetic diseases characterized by the presence of abnormal DNA methylation. Due to the large number of genes that can be analyzed by a single technique, MLPA assay represents the gold standard for molecular analysis of all pathologies derived from the presence of gene copy number variation. In this review, the main applications of the MLPA technique for the molecular diagnosis of human diseases are described.

  19. Copy number variation of functional RBMY1 is associated with sperm motility: an azoospermia factor-linked candidate for asthenozoospermia.

    Science.gov (United States)

    Yan, Yuanlong; Yang, Xiling; Liu, Yunqiang; Shen, Ying; Tu, Wenling; Dong, Qiang; Yang, Dong; Ma, Yongyi; Yang, Yuan

    2017-05-12

    population. A difference in the distribution of RBMY1 copy number was observed between the group with normal sperm motility and the group with asthenozoospermia. A positive correlation between the RBMY1 copy dosage and sperm motility was identified, and the males with fewer than six copies of RBMY1 showed an elevated risk for asthenozoospermia relative to those with six RBMY1 copies, the most common dosage in the population. The RBMY1 copy dosage was positively correlated with its mRNA and protein level in the testis. Sperm with high motility were found to carry more RBMY1 protein than those with relatively low motility. The RBMY1 protein was confirmed to predominantly localize in the neck and mid-piece region of sperm as well as the principal piece of the sperm tail. Our population study completes a chain of evidence suggesting that RBMY1 influences the susceptibility of males to asthenozoospermia by modulating sperm motility. High sequence similarity between the RBMY1 functional copies and a large number of pseudogenes potentially reduces the accuracy of the copy number detection. The mechanism underlying the CNV in RBMY1 is still unclear, and the effect of the structural variations in the RBMY1 copy cluster on the copy dosage of other protein-coding genes located in the region cannot be excluded, which may potentially bias our observations. Asthenozoospermia is a multi-factor complex disease with a limited number of proven susceptibility genes. This study identified a novel genomic candidate independently contributing to the condition, enriching our understanding of the role of AZF-linked genes in male reproduction. Our finding provides insight into the physiological and pathological characteristics of RBMY1 in terms of sperm motility, supplies persuasive evidence of the significance of RBMY1 copy number analysis in the clinical counselling of male infertility resulting from asthenozoospermia. This work was funded by the National Natural Science Foundation of China (Nos

  20. Genomic DNA copy-number alterations of the let-7 family in human cancers.

    Directory of Open Access Journals (Sweden)

    Yanling Wang

    Full Text Available In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e, breast cancer (let-7a-2, and ovarian cancer (let-7a-3/let-7b. For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer.

  1. DUF1220-domain copy number implicated in human brain-size pathology and evolution.

    Science.gov (United States)

    Dumas, Laura J; O'Bleness, Majesta S; Davis, Jonathan M; Dickens, C Michael; Anderson, Nathan; Keeney, J G; Jackson, Jay; Sikela, Megan; Raznahan, Armin; Giedd, Jay; Rapoport, Judith; Nagamani, Sandesh S C; Erez, Ayelet; Brunetti-Pierri, Nicola; Sugalski, Rachel; Lupski, James R; Fingerlin, Tasha; Cheung, Sau Wai; Sikela, James M

    2012-09-07

    DUF1220 domains show the largest human-lineage-specific increase in copy number of any protein-coding region in the human genome and map primarily to 1q21, where deletions and reciprocal duplications have been associated with microcephaly and macrocephaly, respectively. Given these findings and the high correlation between DUF1220 copy number and brain size across primate lineages (R(2) = 0.98; p = 1.8 × 10(-6)), DUF1220 sequences represent plausible candidates for underlying 1q21-associated brain-size pathologies. To investigate this possibility, we used specialized bioinformatics tools developed for scoring highly duplicated DUF1220 sequences to implement targeted 1q21 array comparative genomic hybridization on individuals (n = 42) with 1q21-associated microcephaly and macrocephaly. We show that of all the 1q21 genes examined (n = 53), DUF1220 copy number shows the strongest association with brain size among individuals with 1q21-associated microcephaly, particularly with respect to the three evolutionarily conserved DUF1220 clades CON1(p = 0.0079), CON2 (p = 0.0134), and CON3 (p = 0.0116). Interestingly, all 1q21 DUF1220-encoding genes belonging to the NBPF family show significant correlations with frontal-occipital-circumference Z scores in the deletion group. In a similar survey of a nondisease population, we show that DUF1220 copy number exhibits the strongest correlation with brain gray-matter volume (CON1, p = 0.0246; and CON2, p = 0.0334). Notably, only DUF1220 sequences are consistently significant in both disease and nondisease populations. Taken together, these data strongly implicate the loss of DUF1220 copy number in the etiology of 1q21-associated microcephaly and support the view that DUF1220 domains function as general effectors of evolutionary, pathological, and normal variation in brain size. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  2. Analysis of Copy Number Variations in Patients with Autism Using Cytogenetic and MLPA Techniques: Report of 16p13.1p13.3 and 10q26.3 Duplications

    Science.gov (United States)

    Ghasemi Firouzabadi, Saghar; Vameghi, Roshanak; Kariminejad, Roxana; Darvish, Hossein; Banihashemi, Susan; Firouzkouhi Moghaddam, Mahboubeh; Jamali, Peyman; Farbod Mofidi Tehrani, Hassan; Dehghani, Hossein; Raeisoon, Mohammad Reza; Narooie-Nejad, Mehrnaz; Jamshidi, Javad; Tafakhori, Abbas; Sadabadi, Saeid; Behjati, Farkhondeh

    2016-01-01

    Autism is a common neuropsychiatric disorder affecting 1 in 68 children. Copy number variations (CNVs) are known to be major contributors of autism spectrum disorder (ASD). There are different whole genome or targeted techniques to identify CNVs in the patients including karyotyping, multiplex ligation-dependent probe amplification (MLPA) and array CGH. In this study, we used karyotyping and MLPA to detect CNVs in 50 Iranian patients with autism. GTG banding and 4 different MLPA kits (2 subtelomeric and 2 autism kits) were utilized. To elevate our detection rate, we selected the sporadic patients who had additional clinical features including intellectual disability, seizure, attention deficit hyperactivity disorder, and abnormal head circumference. Two out of 50 patients (4%) showed microscopic chromosome abnormalities and 5 out of 50 (10%) demonstrated copy number gains or losses using MLPA kits. Including one overlapping result between karyotype and MLPA techniques, our overall detection rate was 6 out of 50 (12%). Three out of 6 CNVs were de novo and three others were paternally inherited. Two of CNVs detected by karyotyping and MLPA tests were 16p13.1q13.3 and 10q26.3 duplications, respectively. For these two CNVs genotype and phenotype of the patients were compared with other studies. Although the pathogenicity of cytogenetic results was certain, most of MLPA results needed to be better refined using other more accurate techniques such as array CGH. Our findings suggest that it might be possible to obtain some useful information using MLPA technique but it cannot be used as a single diagnostic tool for the autism. PMID:28357200

  3. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants.

    Science.gov (United States)

    Kearney, Hutton M; Thorland, Erik C; Brown, Kerry K; Quintero-Rivera, Fabiola; South, Sarah T

    2011-07-01

    Genomic microarrays used to assess DNA copy number are now recommended as first-tier tests for the postnatal evaluation of individuals with intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies. Application of this technology has resulted in the discovery of widespread copy number variation in the human genome, both polymorphic variation in healthy individuals and novel pathogenic copy number imbalances. To assist clinical laboratories in the evaluation of copy number variants and to promote consistency in interpretation and reporting of genomic microarray results, the American College of Medical Genetics has developed the following professional guidelines for the interpretation and reporting of copy number variation. These guidelines apply primarily to evaluation of constitutional copy number variants detected in the postnatal setting.

  4. Tandem duplication and copy number polymorphism of the SRY gene in patients with sex chromosome anomalies and males exposed to natural background radiation.

    Science.gov (United States)

    Premi, Sanjay; Srivastava, Jyoti; Chandy, Sebastian Padinjarel; Ahmad, Jamal; Ali, Sher

    2006-02-01

    Mutations in the SRY gene encompassing the HMG box have been well characterized in gonadal dysgenesis, male infertility and other types of sex chromosome related anomalies (SCRA). However, no information is available on copy number status of this gene under such abnormal conditions. Employing 'Taqman Probe Assay' specific to the SRY gene, we screened 16 DNA samples from patients with SCRA and 36 samples from males exposed to high levels of natural background radiation (HNBR). Patients with SCRA showed 2-16 copies of the SRY gene of which, one, Oxen (49, XYYYY) had eight copies with sequences different from one another. Of the 36 HNBR samples, 12 had one copy whereas 24 harboured 2-8 copies of the SRY gene. A HNBR male 33F had one normal and one mutated copy of this gene. Analysis of 25 DNA samples from blood and semen of normal males showed only one copy of this gene. Despite multiple copies in affected males, fluorescence in-situ hybridization (FISH) with SRY probe detected a single signal on the Y chromosome in HNBR males suggesting its possible localized tandem duplication. Copy number status of the other Y-linked loci is envisaged to augment DNA diagnostics facilitating genetic counselling to affected patients.

  5. A copy number variation in human NCF1 and its pseudogenes

    Directory of Open Access Journals (Sweden)

    Chambers Isfahan

    2010-02-01

    Full Text Available Abstract Background Neutrophil cytosolic factor-1 (NCF1 is a component of NADPH oxidase. The NCF1 gene colocalizes with two pseudogenes (NCF1B and NCF1C. These two pseudogenes have a GT deletion in exon 2, resulting in a frameshift and an early stop codon. Here, we report a copy number variation (CNV of the NCF1 pseudogenes and their alternative spliced expressions. Results We examined three normal populations (86 individuals. We observed the 2:2:2 pattern (NCF1B:NCF1:NCF1C in only 26 individuals. On average, each African- American has 1.4 ± 0.8 (Mean ± SD copies of NCF1B and 2.3 ± 0.6 copies of NCF1C; each Caucasian has 1.8 ± 0.7 copies of NCF1B and 1.9 ± 0.4 copies of NCF1C; and each Mexican has 1.6 ± 0.6 copies of NCF1B and 1.0 ± 0.4 copies of NCF1C. Mexicans have significantly less NCF1C copies than African-Americans (p = 6e-15 and Caucasians (p = 3e-11. Mendelian transmission of this CNV was observed in two CEPH pedigrees. Moreover, we cloned two alternative spliced transcripts generated from these two pseudogenes that adopt alternative exon-2 instead of their defective exon 2. The NCF1 pseudogene expression responded robustly to PMA induction during macrophage differentiation. NCF1B decreased from 32.9% to 8.3% in the cDNA pool transcribed from 3 gene copies. NCF1Ψs also displayed distinct expression patterns in different human tissues. Conclusions Our results suggest that these two pseudogenes may adopt an alternative exon-2 in different tissues and in response to external stimuli. The GT deletion is insufficient to define them as functionless pseudogenes; this CNV may have biological relevance.

  6. Differences in AMY1 Gene Copy Numbers Derived from Blood, Buccal Cells and Saliva Using Quantitative and Droplet Digital PCR Methods: Flagging the Pitfall

    Science.gov (United States)

    Ong, Siong Gim; Chan, Yiong Huak; Heng, Chew Kiat

    2017-01-01

    Introduction The human salivary (AMY1) gene, encoding salivary α-amylase, has variable copy number variants (CNVs) in the human genome. We aimed to determine if real-time quantitative polymerase chain reaction (qPCR) and the more recently available Droplet Digital PCR (ddPCR) can provide a precise quantification of the AMY1 gene copy number in blood, buccal cells and saliva samples derived from the same individual. Methods Seven participants were recruited and DNA was extracted from the blood, buccal cells and saliva samples provided by each participant. Taqman assay real-time qPCR and ddPCR were conducted to quantify AMY1 gene copy numbers. Statistical analysis was carried out to determine the difference in AMY1 gene copy number between the different biological specimens and different assay methods. Results We found significant within-individual difference (p<0.01) in AMY1 gene copy number between different biological samples as determined by qPCR. However, there was no significant within-individual difference in AMY1 gene copy number between different biological samples as determined by ddPCR. We also found that AMY1 gene copy number of blood samples were comparable between qPCR and ddPCR, while there is a significant difference (p<0.01) between AMY1 gene copy numbers measured by qPCR and ddPCR for both buccal swab and saliva samples. Conclusions Despite buccal cells and saliva samples being possible sources of DNA, it is pertinent that ddPCR or a single biological sample, preferably blood sample, be used for determining highly polymorphic gene copy numbers like AMY1, due to the large within-individual variability between different biological samples if real time qPCR is employed. PMID:28125683

  7. Copy number variation in the genomes of twelve natural isolates of Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Flibotte Stephane

    2010-01-01

    Full Text Available Abstract Background Copy number variation is an important component of genetic variation in higher eukaryotes. The extent of natural copy number variation in C. elegans is unknown outside of 2 highly divergent wild isolates and the canonical N2 Bristol strain. Results We have used array comparative genomic hybridization (aCGH to detect copy number variation in the genomes of 12 natural isolates of Caenorhabditis elegans. Deletions relative to the canonical N2 strain are more common in these isolates than duplications, and indels are enriched in multigene families on the autosome arms. Among the strains in our study, the Hawaiian and Madeiran strains (CB4856 and JU258 carry the largest number of deletions, followed by the Vancouver strain (KR314. Overall we detected 510 different deletions affecting 1136 genes, or over 5% of the genes in the canonical N2 genome. The indels we identified had a median length of 2.7 kb. Since many deletions are found in multiple isolates, deletion loci were used as markers to derive an unrooted tree to estimate genetic relatedness among the strains. Conclusion Copy number variation is extensive in C. elegans, affecting over 5% of the genes in the genome. The deletions we have detected in natural isolates of C. elegans contribute significantly to the number of deletion alleles available to researchers. The relationships between strains are complex and different regions of the genome possess different genealogies due to recombination throughout the natural history of the species, which may not be apparent in studies utilizing smaller numbers of genetic markers.

  8. Genomic landscape of copy number variation and copy neutral loss of heterozygosity events in equine sarcoids reveals increased instability of the sarcoid genome.

    Science.gov (United States)

    Pawlina-Tyszko, Klaudia; Gurgul, Artur; Szmatoła, Tomasz; Ropka-Molik, Katarzyna; Semik-Gurgul, Ewelina; Klukowska-Rötzler, Jolanta; Koch, Christoph; Mählmann, Kathrin; Bugno-Poniewierska, Monika

    2017-09-01

    Although they are the most common neoplasms in equids, sarcoids are not fully characterized at the molecular level. Therefore, the objective of this study was to characterize the landscape of structural rearrangements, such as copy number variation (CNV) and copy neutral loss of heterozygosity (cnLOH), in the genomes of sarcoid tumor cells. This information will not only broaden our understanding of the characteristics of this genome but will also improve the general knowledge of this tumor and the mechanisms involved in its generation. To this end, Equine SNP64K Illumina microarrays were applied along with bioinformatics tools dedicated for signal intensity analysis. The analysis revealed increased instability of the genome of sarcoid cells compared with unaltered skin tissue samples, which was manifested by the prevalence of CNV and cnLOH events. Many of the identified CNVs overlapped with the other research results, but the simultaneously observed variability in the number and sizes of detected aberrations indicated a need for further studies and the development of more reliable bioinformatics algorithms. The functional analysis of genes co-localized with the identified aberrations revealed that these genes are engaged in vital cellular processes. In addition, a number of these genes directly contribute to neoplastic transformation. Furthermore, large numbers of cnLOH events identified in the sarcoids suggested that they may play no less significant roles than CNVs in the carcinogenesis of this tumor. Thus, our results indicate the importance of cnLOH and CNV in equine sarcoid oncogenesis and present a direction of future research. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    Science.gov (United States)

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes.

  10. Thin and thick primary cutaneous melanomas reveal distinct patterns of somatic copy number alterations.

    Science.gov (United States)

    Montagnani, Valentina; Benelli, Matteo; Apollo, Alessandro; Pescucci, Chiara; Licastro, Danilo; Urso, Carmelo; Gerlini, Gianni; Borgognoni, Lorenzo; Luzzatto, Lucio; Stecca, Barbara

    2016-05-24

    Cutaneous melanoma is one of the most aggressive type of skin tumor. Early stage melanoma can be often cured by surgery; therefore current management guidelines dictate a different approach for thin (thick (>4mm) melanomas. We have carried out whole-exome sequencing in 5 thin and 5 thick fresh-frozen primary cutaneous melanomas. Unsupervised hierarchical clustering analysis of somatic copy number alterations (SCNAs) identified two groups corresponding to thin and thick melanomas. The most striking difference between them was the much greater abundance of SCNAs in thick melanomas, whereas mutation frequency did not significantly change between the two groups. We found novel mutations and focal SCNAs in genes that are embryonic regulators of axon guidance, predominantly in thick melanomas. Analysis of publicly available microarray datasets provided further support for a potential role of Ephrin receptors in melanoma progression. In addition, we have identified a set of SCNAs, including amplification of BRAF and ofthe epigenetic modifier EZH2, that are specific for the group of thick melanomas that developed metastasis during the follow-up. Our data suggest that mutations occur early during melanoma development, whereas SCNAs might be involved in melanoma progression.

  11. Copy Number Variation of UGT 2B Genes in Indian Families Using Whole Genome Scans

    Directory of Open Access Journals (Sweden)

    Avinash M. Veerappa

    2016-01-01

    Full Text Available Background and Objectives. Uridine diphospho-glucuronosyltransferase 2B (UGT2B is a family of genes involved in metabolizing steroid hormones and several other xenobiotics. These UGT2B genes are highly polymorphic in nature and have distinct polymorphisms associated with specific regions around the globe. Copy number variations (CNVs status of UGT2B17 in Indian population is not known and their disease associations have been inconclusive. It was therefore of interest to investigate the CNV profile of UGT2B genes. Methods. We investigated the presence of CNVs in UGT2B genes in 31 members from eight Indian families using Affymetrix Genome-Wide Human SNP Array 6.0 chip. Results. Our data revealed >50% of the study members carried CNVs in UGT2B genes, of which 76% showed deletion polymorphism. CNVs were observed more in UGT2B17 (76.4% than in UGT2B15 (17.6%. Molecular network and pathway analysis found enrichment related to steroid metabolic process, carboxylesterase activity, and sequence specific DNA binding. Interpretation and Conclusion. We report the presence of UGT2B gene deletion and duplication polymorphisms in Indian families. Network analysis indicates the substitutive role of other possible genes in the UGT activity. The CNVs of UGT2B genes are very common in individuals indicating that the effect is neutral in causing any suspected diseases.

  12. Copy number variation distribution in six monozygotic twin pairs discordant for schizophrenia.

    Science.gov (United States)

    Castellani, Christina A; Awamleh, Zain; Melka, Melkaye G; O'Reilly, Richard L; Singh, Shiva M

    2014-04-01

    We have evaluated copy number variants (CNVs) in six monozygotic twin pairs discordant for schizophrenia. The data from Affymetrix® Human SNP 6.0 arrays™ were analyzed using Affymetrix® Genotyping Console™, Partek® Genomics Suite™, PennCNV, and Golden Helix SVS™. This yielded both program-specific and overlapping results. Only CNVs called by Affymetrix Genotyping Console, Partek Genomics Suite, and PennCNV were used in further analysis. This analysis included an assessment of calls in each of the six twin pairs towards identification of unique CNVs in affected and unaffected co-twins. Real time polymerase chain reaction (PCR) experiments confirmed one CNV loss at 7q11.21 that was found in the affected patient but not in the unaffected twin. The results identified CNVs and genes that were previously implicated in mental abnormalities in four of the six twin pairs. It included PYY (twin pairs 1 and 5), EPHA3 (twin pair 3), KIAA1211L (twin pair 4), and GPR139 (twin pair 5). They represent likely candidate genes and CNVs for the discordance of four of the six monozygotic twin pairs for this heterogeneous neurodevelopmental disorder. An explanation for these differences is ontogenetic de novo events that differentiate in the monozygotic twins during development.

  13. Change and Significance of Mitochondrial DNA Copy Number in Esophageal Squamous Cell Carcinoma

    Institute of Scientific and Technical Information of China (English)

    Zongwen Liu; Zhihua Zhao; Qiumin Zhao; Shenglei Li; Dongling Gao; Xia Pang; Kuisheng Chen; Yunhan Zhang

    2007-01-01

    OBJECTIVE To compare the differences of mitochondrial DNA (mtDNA)copies among the tissues of esophageal squamous cell carcinoma (ESCC),para-neoplastic tissue and normal mucous membrane of the esophagus,and to study the relationship between the mtDNA and the occurrence and development of esophageal squamous cell carcinoma.METHODS The mtDNA copies of 42 specimens with the ESCC,paraneoplastic mucous tissue and normal mucous membrane of the esophagus were determined using real-time fluorescence quantitative PCR.The mtDNA was analyzed using agarose gel electrophoresis.RESULTS The mtDNA from all of the tissues (42/42) from the ESCC,para-neoplastic tissue and normal esophageal mucous membranes was analyzed.showing thal there were an average mtDNA copy number of 27.1894x106 μg DNA.9.4102x106 μg DNA and 5.9347x106 μg DNA,from the respective tissues.There were significant differences (F=27.83,P<0.05) in mtDNA copy number among the three.A positive band was shown at 403 bp after qel electrophoresis of the PCR products.and the lane where the ESCC mtDNA located was rather bright.which was in accordance with the result of the real-time PCR determination.CONCLUSION An increase in the mtDNA copy number is related to the occurrence and development of ESCC.

  14. Copy number variation of age-related macular degeneration relevant genes in the Korean population.

    Directory of Open Access Journals (Sweden)

    Jung Hyun Park

    Full Text Available PURPOSE: Studies that analyzed single nucleotide polymorphisms (SNP in various genes have shown that genetic factors are strongly associated with age-related macular degeneration (AMD susceptibility. Copy number variation (CNV may be an additional type of genetic variation that contributes to AMD pathogenesis. This study investigated CNV in 4 AMD-relevant genes in Korean AMD patients and control subjects. METHODS: Four CNV candidate regions located in AMD-relevant genes (VEGFA, ARMS2/HTRA1, CFH and VLDLR, were selected based on the outcomes of our previous study which elucidated common CNVs in the Asian populations. Real-time PCR based TaqMan Copy Number Assays were performed on CNV candidates in 273 AMD patients and 257 control subjects. RESULTS: The predicted copy number (PCN, 0, 1, 2 or 3+ of each region was called using the CopyCaller program. All candidate genes except ARMS2/HTRA1 showed CNV in at least one individual, in which losses of VEGFA and VLDLR represent novel findings in the Asian population. When the frequencies of PCN were compared, only the gain in VLDLR showed significant differences between AMD patients and control subjects (p = 0.025. Comparisons of the raw copy values (RCV revealed that 3 of 4 candidate genes showed significant differences (2.03 vs. 1.92 for VEGFA, p<0.01; 2.01 vs. 1.97 for CFH, p<0.01; 1.97 vs. 2.01, p<0.01 for ARMS2/HTRA1. CONCLUSION: CNVs located in AMD-relevant genes may be associated with AMD susceptibility. Further investigations encompassing larger patient cohorts are needed to elucidate the role of CNV in AMD pathogenesis.

  15. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    Directory of Open Access Journals (Sweden)

    Walker Susan

    2009-09-01

    Full Text Available Abstract Background Copy number variation (CNV in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH" that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  16. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-10-01

    Full Text Available Masoumeh Falah,1,2 Massoud Houshmand,3 Mohammad Najafi,2 Maryam Balali,1 Saeid Mahmoudian,1 Alimohamad Asghari,4 Hessamaldin Emamdjomeh,1 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran; 4Skull base research center, Iran University of Medical Sciences, Tehran, Iran Objectives: Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined.Methods: Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction.Results: Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant (P=0.007. Mitochondrial DNA

  17. Genome-wide assessment of the association of rare and common copy number variations to testicular germ cell cancer

    DEFF Research Database (Denmark)

    Edsgard, Stefan Daniel; Dalgaard, Marlene Danner; Weinhold, Nils;

    2013-01-01

    Testicular germ cell cancer (TGCC) is one of the most heritable forms of cancer. Previous genome-wide association studies have focused on single nucleotide polymorphisms, largely ignoring the influence of copy number variants (CNVs). Here we present a genome-wide study of CNV on a cohort of 212...... cases and 437 controls from Denmark, which was genotyped at ∼1.8 million markers, half of which were non-polymorphic copy number markers. No association of common variants were found, whereas analysis of rare variants (present in less than 1% of the samples) initially indicated a single gene...... of rare CNVs related to cell migration (false-discovery rate = 0.021, 1.8% of cases and 1.1% of controls). Dysregulation during migration of primordial germ cells has previously been suspected to be a part of TGCC development and this set of multiple rare variants may thereby have a minor contribution...

  18. The relationship between leukocyte mitochondrial DNA copy number and telomere length in community-dwelling elderly women.

    Directory of Open Access Journals (Sweden)

    Jung-Ha Kim

    Full Text Available PURPOSE: Both telomere length and mitochondrial function are accepted as reflective indices of aging. Recent studies have shown that telomere dysfunction may influence impaired mitochondrial biogenesis and function. However, there has been no study regarding the possible association between telomere and mitochondrial function in humans. Therefore, the purpose of the study was to identify any relationships between mitochondrial and telomere function. METHODS: The present study included 129 community-dwelling, elderly women. The leukocyte mitochondrial DNA copy number and telomere length were measured using a quantitative real-time polymerase chain reaction method. Anthropometric measurement, biochemical blood testing, a depression screening questionnaire using a 15-question geriatric depression scale (GDS-15, and a cognitive function test using the Korean version of the mini mental state examination (K-MMSE were performed. RESULTS: Leukocyte mtDNA copy number was positively associated with telomere length (r=0.39, p=<0.0001 and K-MMSE score (r=0.06, p=0.02. Additionally, leukocyte mtDNA copy number was negatively correlated with GDS-15 score (r=-0.17, p=0.04. Age (r=-0.15, p=0.09, waist circumference (r=-0.16, p=0.07, and serum ferritin level (r=-0.13, p=0.07 tended to be inversely correlated with leukocyte mtDNA copy number. With a stepwise multiple regression analysis, telomere length was found to be an independent factor associated with leukocyte mtDNA copy number after adjustment for confounding variables including age, body mass index, waist circumference, total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, hs-CRP, serum ferritin, HOMA-IR, K-MMSE, GDS-15, hypertension, diabetes, dyslipidemia, currently smoking, alcohol drinking, and regular exercise. CONCLUSIONS: This study showed that leukocyte mtDNA copy number was positively correlated with leukocyte telomere length in community-dwelling elderly women. Our findings suggest

  19. Detection of clinically relevant exonic copy-number changes by array CGH.

    Science.gov (United States)

    Boone, Philip M; Bacino, Carlos A; Shaw, Chad A; Eng, Patricia A; Hixson, Patricia M; Pursley, Amber N; Kang, Sung-Hae L; Yang, Yaping; Wiszniewska, Joanna; Nowakowska, Beata A; del Gaudio, Daniela; Xia, Zhilian; Simpson-Patel, Gayle; Immken, LaDonna L; Gibson, James B; Tsai, Anne C-H; Bowers, Jennifer A; Reimschisel, Tyler E; Schaaf, Christian P; Potocki, Lorraine; Scaglia, Fernando; Gambin, Tomasz; Sykulski, Maciej; Bartnik, Magdalena; Derwinska, Katarzyna; Wisniowiecka-Kowalnik, Barbara; Lalani, Seema R; Probst, Frank J; Bi, Weimin; Beaudet, Arthur L; Patel, Ankita; Lupski, James R; Cheung, Sau Wai; Stankiewicz, Pawel

    2010-12-01

    Array comparative genomic hybridization (aCGH) is a powerful tool for the molecular elucidation and diagnosis of disorders resulting from genomic copy-number variation (CNV). However, intragenic deletions or duplications--those including genomic intervals of a size smaller than a gene--have remained beyond the detection limit of most clinical aCGH analyses. Increasing array probe number improves genomic resolution, although higher cost may limit implementation, and enhanced detection of benign CNV can confound clinical interpretation. We designed an array with exonic coverage of selected disease and candidate genes and used it clinically to identify losses or gains throughout the genome involving at least one exon and as small as several hundred base pairs in size. In some patients, the detected copy-number change occurs within a gene known to be causative of the observed clinical phenotype, demonstrating the ability of this array to detect clinically relevant CNVs with subkilobase resolution. In summary, we demonstrate the utility of a custom-designed, exon-targeted oligonucleotide array to detect intragenic copy-number changes in patients with various clinical phenotypes.

  20. DNA copy number changes in high-grade malignant peripheral nerve sheath tumors by array CGH

    Directory of Open Access Journals (Sweden)

    Bjerkehagen Bodil

    2008-06-01

    Full Text Available Abstract Background Malignant peripheral nerve sheath tumors (MPNSTs are rare and highly aggressive soft tissue tumors showing complex chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, and thereby novel gene targets of potential importance for MPNST development and/or progression, we have analyzed DNA copy number changes in seven high-grade MPNSTs using microarray-based comparative genomic hybridization (array CGH. Results Considerable more gains than losses were observed, and the most frequent minimal recurrent regions of gain included 1q24.1-q24.2, 1q24.3-q25.1, 8p23.1-p12, 9q34.11-q34.13 and 17q23.2-q25.3, all gained in five of seven samples. The 17q23.2-q25.3 region was gained in all five patients with poor outcome and not in the two patients with disease-free survival. cDNA microarray analysis and quantitative real-time reverse transcription PCR were used to investigate expression of genes located within these regions. The gene lysyl oxidase-like 2 (LOXL2 was identified as a candidate target for the 8p23.1-p12 gain. Within 17q, the genes topoisomerase II-α (TOP2A, ets variant gene 4 (E1A enhancer binding protein, E1AF (ETV4 and baculoviral IAP repeat-containing 5 (survivin (BIRC5 showed increased expression in all samples compared to two benign tumors. Increased expression of these genes has previously been associated with poor survival in other malignancies, and for TOP2A, in MPNSTs as well. In addition, we have analyzed the expression of five micro RNAs located within the 17q23.2-q25.3 region, but none of them showed high expression levels compared to the benign tumors. Conclusion Our study shows the potential of using DNA copy number changes obtained by array CGH to predict the prognosis of MPNST patients. Although no clear correlations between the expression level and patient outcome were observed, the genes TOP2A, ETV4 and BIRC5 are interesting candidate targets for the 17q gain associated

  1. Copy number variations in Saudi family with intellectual disability and epilepsy

    Directory of Open Access Journals (Sweden)

    Muhammad I. Naseer

    2016-10-01

    Full Text Available Abstract Background Epilepsy is genetically complex but common brain disorder of the world affecting millions of people with almost of all age groups. Novel Copy number variations (CNVs are considered as important reason for the numerous neurodevelopmental disorders along with intellectual disability and epilepsy. DNA array based studies contribute to explain a more severe clinical presentation of the disease but interoperation of many detected CNVs are still challenging. Results In order to study novel CNVs with epilepsy related genes in Saudi family with six affected and two normal individuals with several forms of epileptic seizures, intellectual disability (ID, and minor dysmorphism, we performed the high density whole genome Agilent sure print G3 Hmn CGH 2x 400 K array-CGH chips analysis. Our results showed de novo deletions, duplications and deletion plus duplication on differential chromosomal regions in the affected individuals that were not shown in the normal fathe and normal kids by using Agilent CytoGenomics 3.0.6.6 softwear. Copy number gain were observed in the chromosome 1, 16 and 22 with LCE3C, HPR, GSTT2, GSTTP2, DDT and DDTL genes respectively whereas the deletions observed in the chromosomal regions 8p23-p21 (4303127–4337759 and the potential gene in this region is CSMD1 (OMIM: 612279. Moreover, the array CGH results deletions and duplication were also validated by using primer design of deleted regions utilizing the flanked SNPs using simple PCR and also by using quantitative real time PCR. Conclusions We found some of the de novo deletions and duplication in our study in Saudi family with intellectual disability and epilepsy. Our results suggest that array-CGH should be used as a first line of genetic test for epilepsy except there is a strong indication for a monogenic syndrome. The advanced high through put array-CGH technique used in this study aim to collect the data base and to identify new mechanisms describing

  2. Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI.

    Science.gov (United States)

    Rukh, Gull; Ericson, Ulrika; Andersson-Assarsson, Johanna; Orho-Melander, Marju; Sonestedt, Emily

    2017-07-01

    Background: Studies have shown conflicting associations between the salivary amylase gene (AMY1) copy number and obesity. Salivary amylase initiates starch digestion in the oral cavity; starch is a major source of energy in the diet.Objective: We investigated the association between AMY1 copy number and obesity traits, and the effect of the interaction between AMY1 copy number and starch intake on these obesity traits.Design: We first assessed the association between AMY1 copy number (genotyped by digital droplet polymerase chain reaction) and obesity traits in 4800 individuals without diabetes (mean age: 57 y; 60% female) from the Malmö Diet and Cancer Cohort. Then we analyzed interactions between AMY1 copy number and energy-adjusted starch intake (obtained by a modified diet history method) on body mass index (BMI) and body fat percentage.Results:AMY1 copy number was not associated with BMI (P = 0.80) or body fat percentage (P = 0.38). We observed a significant effect of the interaction between AMY1 copy number and starch intake on BMI (P-interaction = 0.007) and body fat percentage (P-interaction = 0.03). Upon stratification by dietary starch intake, BMI tended to decrease with increasing AMY1 copy numbers in the low-starch intake group (P = 0.07) and tended to increase with increasing AMY1 copy numbers in the high-starch intake group (P = 0.08). The lowest mean BMI was observed in the group of participants with a low AMY1 copy number and a high dietary intake of starch.Conclusions: Our findings suggest an effect of the interaction between starch intake and AMY1 copy number on obesity. Individuals with high starch intake but low genetic capacity to digest starch had the lowest BMI, potentially because larger amounts of undigested starch are transported through the gastrointestinal tract, contributing to fewer calories extracted from ingested starch. © 2017 American Society for Nutrition.

  3. New cytogenetically visible copy number variant in region 8q21.2

    Directory of Open Access Journals (Sweden)

    Ewers Elisabeth

    2011-01-01

    Full Text Available Abstract Background Cytogenetically visible unbalanced chromosomal abnormalities (UBCA, reported for >50 euchromatic regions of almost all human autosomes, are comprised of a few megabases of DNA, and carriers are in many cases clinically healthy. It may be speculated, that some of the UBCA may be similar or identical to copy number variants (CNV of the human genome. Results Here we report on a yet unreported cytogenetically visible copy number variant (CNV in the long arm of chromosome 8, region 8q21.2, detected in three unrelated clinically healthy carriers. Conclusion The first description of a cytogenetically visible CNV/UBCA in 8q21.2 shows that banding cytogenetics is far from being outdated. It is a cost efficient, up-to-date method for a single cell specific overview on the whole genome, still prepared to deliver unexpected findings.

  4. Copy Number Variants Associated with 14 Cases of Self-Injurious Behavior.

    Directory of Open Access Journals (Sweden)

    Matthew D Shirley

    Full Text Available Copy number variants (CNVs were detected and analyzed in 14 probands with autism and intellectual disability with self-injurious behavior (SIB resulting in tissue damage. For each proband we obtained a clinical history and detailed behavioral descriptions. Genetic anomalies were observed in all probands, and likely clinical significance could be established in four cases. This included two cases having novel, de novo copy number variants and two cases having variants likely to have functional significance. These cases included segmental trisomy 14, segmental monosomy 21, and variants predicted to disrupt the function of ZEB2 (encoding a transcription factor and HTR2C (encoding a serotonin receptor. Our results identify variants in regions previously implicated in intellectual disability and suggest candidate genes that could contribute to the etiology of SIB.

  5. Model-integrated estimation of normal tissue contamination for cancer SNP allelic copy number data.

    Science.gov (United States)

    Stjernqvist, Susann; Rydén, Tobias; Greenman, Chris D

    2011-01-01

    SNP allelic copy number data provides intensity measurements for the two different alleles separately. We present a method that estimates the number of copies of each allele at each SNP position, using a continuous-index hidden Markov model. The method is especially suited for cancer data, since it includes the fraction of normal tissue contamination, often present when studying data from cancer tumors, into the model. The continuous-index structure takes into account the distances between the SNPs, and is thereby appropriate also when SNPs are unequally spaced. In a simulation study we show that the method performs favorably compared to previous methods even with as much as 70% normal contamination. We also provide results from applications to clinical data produced using the Affymetrix genome-wide SNP 6.0 platform.

  6. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability.

    Science.gov (United States)

    Beckmann, Jacques S; Estivill, Xavier; Antonarakis, Stylianos E

    2007-08-01

    A considerable and unanticipated plasticity of the human genome, manifested as inter-individual copy number variation, has been discovered. These structural changes constitute a major source of inter-individual genetic variation that could explain variable penetrance of inherited (Mendelian and polygenic) diseases and variation in the phenotypic expression of aneuploidies and sporadic traits, and might represent a major factor in the aetiology of complex, multifactorial traits. For these reasons, an effort should be made to discover all common and rare copy number variants (CNVs) in the human population. This will also enable systematic exploration of both SNPs and CNVs in association studies to identify the genomic contributors to the common disorders and complex traits.

  7. A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2.

    Directory of Open Access Journals (Sweden)

    John P Didion

    2015-02-01

    Full Text Available Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC. Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 - 86.2 Mb. A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1 that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system.

  8. A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2

    Science.gov (United States)

    Didion, John P.; Morgan, Andrew P.; Clayshulte, Amelia M.-F.; Mcmullan, Rachel C.; Yadgary, Liran; Petkov, Petko M.; Bell, Timothy A.; Gatti, Daniel M.; Crowley, James J.; Hua, Kunjie; Aylor, David L.; Bai, Ling; Calaway, Mark; Chesler, Elissa J.; French, John E.; Geiger, Thomas R.; Gooch, Terry J.; Garland, Theodore; Harrill, Alison H.; Hunter, Kent; McMillan, Leonard; Holt, Matt; Miller, Darla R.; O'Brien, Deborah A.; Paigen, Kenneth; Pan, Wenqi; Rowe, Lucy B.; Shaw, Ginger D.; Simecek, Petr; Sullivan, Patrick F.; Svenson, Karen L; Weinstock, George M.; Threadgill, David W.; Pomp, Daniel; Churchill, Gary A.; Pardo-Manuel de Villena, Fernando

    2015-01-01

    Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 – 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system. PMID

  9. Copy number expansion of the STX17 duplication in melanoma tissue from Grey horses

    Directory of Open Access Journals (Sweden)

    Sundström Elisabeth

    2012-08-01

    Full Text Available Abstract Background Greying with age in horses is an autosomal dominant trait, associated with loss of hair pigmentation, melanoma and vitiligo-like depigmentation. We recently identified a 4.6 kb duplication in STX17 to be associated with the phenotype. The aims of this study were to investigate if the duplication in Grey horses shows copy number variation and to exclude that any other polymorphism is uniquely associated with the Grey mutation. Results We found little evidence for copy number expansion of the duplicated sequence in blood DNA from Grey horses. In contrast, clear evidence for copy number expansions was indicated in five out of eight tested melanoma tissues or melanoma cell lines. A tendency of a higher copy number in aggressive tumours was also found. Massively parallel resequencing of the ~350 kb Grey haplotype did not reveal any additional mutations perfectly associated with the phenotype, confirming the duplication as the true causative mutation. We identified three SNP alleles that were present in a subset of Grey haplotypes within the 350 kb region that shows complete linkage disequilibrium with the causative mutation. Thus, these three nucleotide substitutions must have occurred subsequent to the duplication, consistent with our interpretation that the Grey mutation arose more than 2,000 years before present. Conclusions These results suggest that the mutation acts as a melanoma-driving regulatory element. The elucidation of the mechanistic features of the duplication will be of considerable interest for the characterization of these horse melanomas as well as for the field of human melanoma research.

  10. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia

    OpenAIRE

    Gaines, Todd A.; Barker, Abigail L.; Patterson, Eric L.; Westra, Philip; Westra, Eric P.; Wilson, Robert G.; Jha, Prashant; Kumar, Vipan; Andrew R Kniss

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebrask...

  11. Critical evaluation of HPV16 gene copy number quantification by SYBR green PCR.

    Science.gov (United States)

    Roberts, Ian; Ng, Grace; Foster, Nicola; Stanley, Margaret; Herdman, Michael T; Pett, Mark R; Teschendorff, Andrew; Coleman, Nicholas

    2008-07-24

    Human papilloma virus (HPV) load and physical status are considered useful parameters for clinical evaluation of cervical squamous cell neoplasia. However, the errors implicit in HPV gene quantification by PCR are not well documented. We have undertaken the first rigorous evaluation of the errors that can be expected when using SYBR green qPCR for quantification of HPV type 16 gene copy numbers. We assessed a modified method, in which external calibration curves were generated from a single construct containing HPV16 E2, HPV16 E6 and the host gene hydroxymethylbilane synthase in a 1:1:1 ratio. When testing dilutions of mixed HPV/host DNA in replicate runs, we observed errors in quantifying E2 and E6 amplicons of 5-40%, with greatest error at the lowest DNA template concentration (3 ng/microl). Errors in determining viral copy numbers per diploid genome were 13-53%. Nevertheless, in cervical keratinocyte cell lines we observed reasonable agreement between viral loads determined by qPCR and Southern blotting. The mean E2/E6 ratio in episome-only cells was 1.04, but with a range of 0.76-1.32. In three integrant-only lines the mean E2/E6 ratios were 0.20, 0.72 and 2.61 (values confirmed by gene-specific Southern blotting). When E2/E6 ratios in fourteen HPV16-positive cervical carcinomas were analysed, conclusions regarding viral physical state could only be made in three cases, where the E2/E6 ratio was unavoidable inaccuracies that should be allowed for when quantifying HPV gene copy number. While E6 copy numbers can be considered to provide a useable indication of viral loads, the E2/E6 ratio is of limited value. Previous studies may have overestimated the frequency of mixed episomal/integrant HPV infections.

  12. Incorporating 16S Gene Copy Number Information Improves Estimates of Microbial Diversity and Abundance

    Science.gov (United States)

    Kembel, Steven W.; Wu, Martin; Eisen, Jonathan A.; Green, Jessica L.

    2012-01-01

    The abundance of different SSU rRNA (“16S”) gene sequences in environmental samples is widely used in studies of microbial ecology as a measure of microbial community structure and diversity. However, the genomic copy number of the 16S gene varies greatly – from one in many species to up to 15 in some bacteria and to hundreds in some microbial eukaryotes. As a result of this variation the relative abundance of 16S genes in environmental samples can be attributed both to variation in the relative abundance of different organisms, and to variation in genomic 16S copy number among those organisms. Despite this fact, many studies assume that the abundance of 16S gene sequences is a surrogate measure of the relative abundance of the organisms containing those sequences. Here we present a method that uses data on sequences and genomic copy number of 16S genes along with phylogenetic placement and ancestral state estimation to estimate organismal abundances from environmental DNA sequence data. We use theory and simulations to demonstrate that 16S genomic copy number can be accurately estimated from the short reads typically obtained from high-throughput environmental sequencing of the 16S gene, and that organismal abundances in microbial communities are more strongly correlated with estimated abundances obtained from our method than with gene abundances. We re-analyze several published empirical data sets and demonstrate that the use of gene abundance versus estimated organismal abundance can lead to different inferences about community diversity and structure and the identity of the dominant taxa in microbial communities. Our approach will allow microbial ecologists to make more accurate inferences about microbial diversity and abundance based on 16S sequence data. PMID:23133348

  13. De novo copy number variations in cloned dogs from the same nuclear donor

    OpenAIRE

    Jung, Seung-Hyun; Yim, Seon-Hee; Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Kim, Geon A; Kim, Tae-Min; Kim, Jin-Soo; Lee, Byeong Chun; Chung, Yeun-Jun

    2013-01-01

    Background Somatic mosaicism of copy number variants (CNVs) in human body organs and de novo CNV event in monozygotic twins suggest that de novo CNVs can occur during mitotic recombination. These de novo CNV events are important for understanding genetic background of evolution and diverse phenotypes. In this study, we explored de novo CNV event in cloned dogs with identical genetic background. Results We analyzed CNVs in seven cloned dogs using the nuclear donor genome as reference by array-...

  14. Reduced purifying selection prevails over positive selection in human copy number variant evolution.

    Science.gov (United States)

    Nguyen, Duc-Quang; Webber, Caleb; Hehir-Kwa, Jayne; Pfundt, Rolph; Veltman, Joris; Ponting, Chris P

    2008-11-01

    Copy number variation is a dominant contributor to genomic variation and may frequently underlie an individual's variable susceptibilities to disease. Here we question our previous proposition that copy number variants (CNVs) are often retained in the human population because of their adaptive benefit. We show that genic biases of CNVs are best explained, not by positive selection, but by reduced efficiency of selection in eliminating deleterious changes from the human population. Of four CNV data sets examined, three exhibit significant increases in protein evolutionary rates. These increases appear to be attributable to the frequent coincidence of CNVs with segmental duplications (SDs) that recombine infrequently. Furthermore, human orthologs of mouse genes, which, when disrupted, result in pre- or postnatal lethality, are unusually depleted in CNVs. Together, these findings support a model of reduced purifying selection (Hill-Robertson interference) within copy number variable regions that are enriched in nonessential genes, allowing both the fixation of slightly deleterious substitutions and increased drift of CNV alleles. Additionally, all four CNV sets exhibited increased rates of interspecies chromosomal rearrangement and nucleotide substitution and an increased gene density. We observe that sequences with high G+C contents are most prone to copy number variation. In particular, frequently duplicated human SD sequence, or CNVs that are large and/or observed frequently, tend to be elevated in G+C content. In contrast, SD sequences that appear fixed in the human population lie more frequently within low G+C sequence. These findings provide an overarching view of how CNVs arise and segregate in the human population.

  15. Network modeling of the transcriptional effects of copy number aberrations in glioblastoma

    Science.gov (United States)

    Jörnsten, Rebecka; Abenius, Tobias; Kling, Teresia; Schmidt, Linnéa; Johansson, Erik; Nordling, Torbjörn E M; Nordlander, Bodil; Sander, Chris; Gennemark, Peter; Funa, Keiko; Nilsson, Björn; Lindahl, Linda; Nelander, Sven

    2011-01-01

    DNA copy number aberrations (CNAs) are a hallmark of cancer genomes. However, little is known about how such changes affect global gene expression. We develop a modeling framework, EPoC (Endogenous Perturbation analysis of Cancer), to (1) detect disease-driving CNAs and their effect on target mRNA expression, and to (2) stratify cancer patients into long- and short-term survivors. Our method constructs causal network models of gene expression by combining genome-wide DNA- and RNA-level data. Prognostic scores are obtained from a singular value decomposition of the networks. By applying EPoC to glioblastoma data from The Cancer Genome Atlas consortium, we demonstrate that the resulting network models contain known disease-relevant hub genes, reveal interesting candidate hubs, and uncover predictors of patient survival. Targeted validations in four glioblastoma cell lines support selected predictions, and implicate the p53-interacting protein Necdin in suppressing glioblastoma cell growth. We conclude that large-scale network modeling of the effects of CNAs on gene expression may provide insights into the biology of human cancer. Free software in MATLAB and R is provided. PMID:21525872

  16. Detection of breed specific copy number variations in domestic chicken genome.

    Science.gov (United States)

    Sohrabi, Saeed S; Mohammadabadi, Mohammadreza; Wu, Dong-Dong; Esmailizadeh, Ali

    2017-09-29

    Copy number variations (CNVs) are important large scale variants that are widespread in the genome and may contribute to phenotypic variation. Detection and characterization of CNVs can provide new insights into the genetic basis of important traits. Here, we performed whole genome short read sequence analysis to identify CNVs in two indigenous and commercial chicken breeds and evaluate the impact of the identified CNVs on breed specific traits. After filtration, a total of 12955 CNVs spanning (on average) about 9.42% of the chicken genome were found that made up 5467 CNV regions (CNVRs). Chicken quantitative trait loci (QTL) datasets and Ensembl gene annotations were used as resources for the estimation of potential phenotypic effects of our CNVRs on breed specific traits. In total, 34% of our detected CNVRs were also detected in earlier CNV studies. These CNVRs partly overlap with several previously reported QTL and gene ontology terms associated with some important traits, including shank length QTL in Creeper specific CNVRs and body weight and egg production characteristics as well as growth of muscles and body organs gene terms in the Arian commercial breed. Our findings provide new insights into the genomic structure of the chicken genome for an improved understanding of the potential roles of CNVRs in differentiating between breeds or lines.

  17. CODEX: a normalization and copy number variation detection method for whole exome sequencing.

    Science.gov (United States)

    Jiang, Yuchao; Oldridge, Derek A; Diskin, Sharon J; Zhang, Nancy R

    2015-03-31

    High-throughput sequencing of DNA coding regions has become a common way of assaying genomic variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic variation, but detecting and characterizing CNV from exome sequencing is challenging due to the high level of biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for whole exome sequencing data. The Poisson latent factor model in CODEX includes terms that specifically remove biases due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based recursive segmentation procedure that explicitly models the count-based exome sequencing data. CODEX is compared to existing methods on a population analysis of HapMap samples from the 1000 Genomes Project, and shown to be more accurate on three microarray-based validation data sets. We further evaluate performance on 222 neuroblastoma samples with matched normals and focus on a well-studied rare somatic CNV within the ATRX gene. We show that the cross-sample normalization procedure of CODEX removes more noise than normalizing the tumor against the matched normal and that the segmentation procedure performs well in detecting CNVs with nested structures.

  18. Investigation of modifier genes within copy number variations in Rett syndrome.

    Science.gov (United States)

    Artuso, Rosangela; Papa, Filomena T; Grillo, Elisa; Mucciolo, Mafalda; Yasui, Dag H; Dunaway, Keith W; Disciglio, Vittoria; Mencarelli, Maria A; Pollazzon, Marzia; Zappella, Michele; Hayek, Giuseppe; Mari, Francesca; Renieri, Alessandra; Lasalle, Janine M; Ariani, Francesca

    2011-07-01

    MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT). We investigated whether copy number variants (CNVs) may modulate the phenotype by comparison of array-CGH data from two discordant pairs of sisters and four additional discordant pairs of unrelated girls matched by mutation type. We also searched for potential MeCP2 targets within CNVs by chromatin immunopreceipitation microarray (ChIP-chip) analysis. We did not identify one major common gene/region, suggesting that modifiers may be complex and variable between cases. However, we detected CNVs correlating with disease severity that contain candidate modifiers. CROCC (1p36.13) is a potential MeCP2 target, in which a duplication in a Z-RTT and a deletion in a classic patient were observed. CROCC encodes a structural component of ciliary motility that is required for correct brain development. CFHR1 and CFHR3, on 1q31.3, may be involved in the regulation of complement during synapse elimination, and were found to be deleted in a Z-RTT but duplicated in two classic patients. The duplication of 10q11.22, present in two Z-RTT patients, includes GPRIN2, a regulator of neurite outgrowth and PPYR1, involved in energy homeostasis. Functional analyses are necessary to confirm candidates and to define targets for future therapies.

  19. Copy number variation in the porcine genome inferred from a 60 k SNP BeadChip

    Directory of Open Access Journals (Sweden)

    Fernández Ana I

    2010-10-01

    Full Text Available Abstract Background Recent studies in pigs have detected copy number variants (CNVs using the Comparative Genomic Hybridization technique in arrays designed to cover specific porcine chromosomes. The goal of this study was to identify CNV regions (CNVRs in swine species based on whole genome SNP genotyping chips. Results We used predictions from three different programs (cnvPartition, PennCNV and GADA to analyze data from the Porcine SNP60 BeadChip. A total of 49 CNVRs were identified in 55 animals from an Iberian x Landrace cross (IBMAP according to three criteria: detected in at least two animals, contained three or more consecutive SNPs and recalled by at least two programs. Mendelian inheritance of CNVRs was confirmed in animals belonging to several generations of the IBMAP cross. Subsequently, a segregation analysis of these CNVRs was performed in 372 additional animals from the IBMAP cross and its distribution was studied in 133 unrelated pig samples from different geographical origins. Five out of seven analyzed CNVRs were validated by real time quantitative PCR, some of which coincide with well known examples of CNVs conserved across mammalian species. Conclusions Our results illustrate the usefulness of Porcine SNP60 BeadChip to detect CNVRs and show that structural variants can not be neglected when studying the genetic variability in this species.

  20. Contribution of Copy Number Variation to Down Syndrome-associated Atrioventricular Septal Defects

    Science.gov (United States)

    Ramachandran, Dhanya; Mulle, Jennifer G.; Locke, Adam E.; Bean, Lora J.H.; Rosser, Tracie C.; Bose, Promita; Dooley, Kenneth J.; Cua, Clifford L.; Capone, George T.; Reeves, Roger H.; Maslen, Cheryl L.; Cutler, David J.; Sherman, Stephanie L.; Zwick, Michael E.

    2014-01-01

    Purpose The goal of this study was to identify the contribution of large copy number variants (CNV) to Down syndrome (DS) associated atrioventricular septal defects (AVSD), whose risk in the trisomic population is 2000-fold more compared to general disomic population. Methods Genome-wide CNV analysis was performed on 452 individuals with DS (210 cases with complete AVSD; 242 controls with structurally normal hearts) using Affymetrix SNP 6.0 arrays, making this the largest heart study conducted to date on a trisomic background. Results Large common CNVs with substantial effect sizes (OR>2.0) do not account for the increased risk observed in DS-associated AVSD. In contrast, cases had a greater burden of large rare deletions (p<0.01) and intersected more genes (p<0.007) when compared to controls. We also observed a suggestive enrichment of deletions intersecting ciliome genes in cases compared to controls. Conclusion Our data provide strong evidence that large rare deletions increase the risk of DS-associated AVSD, while large common CNVs do not appear to increase the risk of DS-associated AVSD. The genetic architecture of AVSD is complex and multifactorial in nature. PMID:25341113

  1. The genomic architecture of segmental duplications and associated copy number variants in dogs.

    Science.gov (United States)

    Nicholas, Thomas J; Cheng, Ze; Ventura, Mario; Mealey, Katrina; Eichler, Evan E; Akey, Joshua M

    2009-03-01

    Structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of segmental duplications and associated copy number variants (CNVs) in the modern domesticated dog, Canis familiaris, which exhibits considerable morphological, physiological, and behavioral variation. Through computational analyses of the publicly available canine reference sequence, we estimate that segmental duplications comprise approximately 4.21% of the canine genome. Segmental duplications overlap 841 genes and are significantly enriched for specific biological functions such as immunity and defense and KRAB box transcription factors. We designed high-density tiling arrays spanning all predicted segmental duplications and performed aCGH in a panel of 17 breeds and a gray wolf. In total, we identified 3583 CNVs, approximately 68% of which were found in two or more samples that map to 678 unique regions. CNVs span 429 genes that are involved in a wide variety of biological processes such as olfaction, immunity, and gene regulation. Our results provide insight into mechanisms of canine genome evolution and generate a valuable resource for future evolutionary and phenotypic studies.

  2. A genome-wide copy number variant study of suicidal behavior.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Gross

    Full Text Available Suicide and suicide attempts are complex behaviors that result from the interaction of different factors, including genetic variants that increase the predisposition to suicidal behaviors. Copy number variations (CNVs are deletions or duplications of a segment of DNA usually larger than one kilobase. These structural genetic changes, although quite rare, have been associated with genetic liability to mental disorders, such as autism, schizophrenia, and bipolar disorder. No genome-wide level studies have been published investigating the potential role of CNVs in suicidal behaviors. Based on single-nucleotide polymorphism array data, we followed the Penn-CNV standards to detect CNVs in 1,608 subjects, comprising 475 suicide and suicide attempt cases and 1,133 controls. Although the initial algorithms determined the presence of CNVs on chromosomes 6 and 12 in seven and eight cases, respectively, compared with none of the controls, visual inspection of the raw data did not support this finding. Furthermore we were unable to validate these findings by CNV-specific real-time polymerase chain reaction. Additionally, rare CNV burden analysis did not find an association between the frequency or length of rare CNVs and suicidal behavior in our sample population. Although our findings suggest CNVs do not play an important role in the etiology of suicidal behaviors, they are not inconsistent with the strong evidence from the literature suggesting that other genetic variants account for a portion of the total phenotypic variability in suicidal behavior.

  3. Novel Somatic Copy Number Alteration Identified for Cervical Cancer in the Mexican American Population

    Directory of Open Access Journals (Sweden)

    Alireza Torabi

    2016-08-01

    Full Text Available Cervical cancer affects millions of Americans, but the rate for cervical cancer in the Mexican American is approximately twice that for non-Mexican Americans. The etiologies of cervical cancer are still not fully understood. A number of somatic mutations, including several copy number alterations (CNAs, have been identified in the pathogenesis of cervical carcinomas in non-Mexican Americans. Thus, the purpose of this study was to investigate CNAs in association with cervical cancer in the Mexican American population. We conducted a pilot study of genome-wide CNA analysis using 2.5 million markers in four diagnostic groups: reference (n = 125, low grade dysplasia (cervical intraepithelial neoplasia (CIN-I, n = 4, high grade dysplasia (CIN-II and -III, n = 5 and invasive carcinoma (squamous cell carcinoma (SCC, n = 5 followed by data analyses using Partek. We observed a statistically-significant difference of CNA burden between case and reference groups of different sizes (>100 kb, 10–100 kb and 1–10 kb of CNAs that included deletions and amplifications, e.g., a statistically-significant difference of >100 kb deletions was observed between the reference (6.6% and pre-cancer and cancer (91.3% groups. Recurrent aberrations of 98 CNA regions were also identified in cases only. However, none of the CNAs have an impact on cancer progression. A total of 32 CNA regions identified contained tumor suppressor genes and oncogenes. Moreover, the pathway analysis revealed endometrial cancer and estrogen signaling pathways associated with this cancer (p < 0.05 using Kyoto Encyclopedia of Genes and Genomes (KEGG. This is the first report of CNAs identified for cervical cancer in the U.S. Latino population using high density markers. We are aware of the small sample size in the study. Thus, additional studies with a larger sample are needed to confirm the current findings.

  4. Simple and versatile molecular method of copy-number measurement using cloned competitors.

    Science.gov (United States)

    Kim, Hyun-Kyoung; Hwang, Hai-Li; Park, Seong-Yeol; Lee, Kwang Man; Park, Won Cheol; Kim, Han-Seong; Um, Tae-Hyun; Hong, Young Jun; Lee, Jin Kyung; Joo, Sun-Young; Seoh, Ju-Young; Song, Yeong-Wook; Kim, Soo-Youl; Kim, Yong-Nyun; Hong, Kyeong-Man

    2013-01-01

    Variations and alterations of copy numbers (CNVs and CNAs) carry disease susceptibility and drug responsiveness implications. Although there are many molecular methods to measure copy numbers, sensitivity, reproducibility, cost, and time issues remain. In the present study, we were able to solve those problems utilizing our modified real competitive PCR method with cloned competitors (mrcPCR). First, the mrcPCR for ERBB2 copy number was established, and the results were comparable to current standard methods but with a shorter assay time and a lower cost. Second, the mrcPCR assays for 24 drug-target genes were established, and the results in a panel of NCI-60 cells were comparable to those from real-time PCR and microarray. Third, the mrcPCR results for FCGR3A and the FCGR3B CNVs were comparable to those by the paralog ratio test (PRT), but without PRT's limitations. These results suggest that mrcPCR is comparable to the currently available standard or the most sensitive methods. In addition, mrcPCR would be invaluable for measurement of CNVs in genes with variants of similar structures, because combination of the other methods is not necessary, along with its other advantages such as short assay time, small sample amount requirement, and applicability to all sequences and genes.

  5. Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease

    Science.gov (United States)

    2011-01-01

    Background Addison's disease (AD) is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV) could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352) and healthy controls (n = 353) by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28) and T cell maturation (ADAM3A). Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity. PMID:21851588

  6. Genome-wide copy number variation (CNV in patients with autoimmune Addison's disease

    Directory of Open Access Journals (Sweden)

    Brønstad Ingeborg

    2011-08-01

    Full Text Available Abstract Background Addison's disease (AD is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352 and healthy controls (n = 353 by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28 and T cell maturation (ADAM3A. Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity.

  7. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing

    Science.gov (United States)

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J.; Szatkiewicz, Jin P.

    2015-01-01

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  8. c-myc copy number gain is a powerful prognosticator of disease outcome in cervical dysplasia.

    Science.gov (United States)

    Kübler, Kirsten; Heinenberg, Sally; Rudlowski, Christian; Keyver-Paik, Mignon-Denise; Abramian, Alina; Merkelbach-Bruse, Sabine; Büttner, Reinhard; Kuhn, Walther; Schildhaus, Hans-Ulrich

    2015-01-20

    Cervical carcinoma develops from preneoplasia by a multistep process. Although most low-grade dysplastic lesions will regress without intervention and even high-grade changes exhibit a substantial rate of regression, a small percentage of dysplasia will progress over time. Thus, indicators are needed to estimate the biological risk and to help avoid overtreatment in women who desire to preserve fertility. In addition to the classical biomarkers, PCR-ELISA-determined HPV genotype and immunohistochemically assessed p16INK4a and Ki-67 expression, cells with integrated HPV and copy number gain of TERC and c-myc were quantified in a panel of 104 benign, intraepithelial neoplastic (CIN I, II, III) and cancerous lesions using fluorescence in situ hybridization. Optimal cut-off values were calculated; Kaplan-Meier curves and a Cox proportional hazard regression model were used to evaluate prognostic signatures. The assay reliably identified HPV integration, TERC and c-myc copy number gain as determined by comparisons with established biomarkers. All biomarker levels increased with the progression of the disease. However, only c-myc copy number gain independently prognosticated a low probability of dysplastic regression. Our results suggest that c-myc plays a key role in the process of dysplastic transformation and might thus be exploited for treatment and follow-up decision-making of cervical dysplasia.

  9. Copy number of tandem direct repeats within the inverted repeats of Marek's disease virus DNA.

    Science.gov (United States)

    Kanamori, A; Nakajima, K; Ikuta, K; Ueda, S; Kato, S; Hirai, K

    1986-12-01

    We previously reported that DNA of the oncogenic strain BC-1 of Marek's disease virus serotype 1 (MDV1) contains three units of tandem direct repeats with 132 base pair (bp) repeats within the inverted repeats of the long regions of the MDV1 genome, whereas the attenuated, nononcogenic viral DNA contains multiple units of tandem direct repeats (Maotani et al., 1986). In the present study, the difference in the copy numbers of 132 bp repeats of oncogenic and nononcogenic MDV1 DNAs in other strains of MDV1 was investigated by Southern blot hybridization. The main copy numbers in different oncogenic MDV1 strains differed: those of BC-1, JM and highly oncogenic Md5 were 3, 5 to 12 and 2, respectively. The viral DNA population with two units of repeats was small, but detectable, in cells infected with either the oncogenic BC-1 or JM strain. The MDV1 DNA in various MD cell lines contained either two units or both two and three units of repeats. The significance of the copy number of repeats in oncogenicity of MDV1 is discussed.

  10. Detection and validation of copy number variation in X-linked mental retardation.

    Science.gov (United States)

    Bauters, M; Weuts, A; Vandewalle, J; Nevelsteen, J; Marynen, P; Van Esch, H; Froyen, G

    2008-01-01

    Studies to identify the genetic defects associated with X-linked mental retardation (XLMR) in males have revealed tens of genes important for normal brain development and cognitive functioning in men. Despite extensive efforts in breakpoint cloning of chromosomal rearrangements and mutation screening of candidate genes on the X chromosome, still many XLMR families and sporadic cases remain unsolved. It is now clear that submicroscopic copy number changes on the X chromosome can explain about 5% of these idiopathic cases. Interestingly, beside gene deletions, an increase in gene dosage due to genomic duplications seems to contribute to causality more often than expected. Since larger duplications on the X chromosome are tolerated compared to deletions, they often harbour more than one gene hampering the identification of the causal gene. In contrast to copy number variations (CNVs) on autosomes, most disease-associated CNVs on the X chromosome in males are inherited from their mothers who normally do not present with any clinical symptoms due to non-random X inactivation. Here, we review the different methods applied to study copy number alterations on the X chromosome in patients with cognitive impairment, discuss those CNVs that are associated with disease and elaborate on the genes and mechanisms involved. At the end, we will resume in vivo assays to study the relation of CNVs on the X chromosome and mental disability.

  11. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    Science.gov (United States)

    Tuch, Brian B; Laborde, Rebecca R; Xu, Xing; Gu, Jian; Chung, Christina B; Monighetti, Cinna K; Stanley, Sarah J; Olsen, Kerry D; Kasperbauer, Jan L; Moore, Eric J; Broomer, Adam J; Tan, Ruoying; Brzoska, Pius M; Muller, Matthew W; Siddiqui, Asim S; Asmann, Yan W; Sun, Yongming; Kuersten, Scott; Barker, Melissa A; De La Vega, Francisco M; Smith, David I

    2010-02-19

    Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq) should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  12. ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads.

    Directory of Open Access Journals (Sweden)

    Christopher A Miller

    Full Text Available Copy number alterations are important contributors to many genetic diseases, including cancer. We present the readDepth package for R, which can detect these aberrations by measuring the depth of coverage obtained by massively parallel sequencing of the genome. In addition to achieving higher accuracy than existing packages, our tool runs much faster by utilizing multi-core architectures to parallelize the processing of these large data sets. In contrast to other published methods, readDepth does not require the sequencing of a reference sample, and uses a robust statistical model that accounts for overdispersed data. It includes a method for effectively increasing the resolution obtained from low-coverage experiments by utilizing breakpoint information from paired end sequencing to do positional refinement. We also demonstrate a method for inferring copy number using reads generated by whole-genome bisulfite sequencing, thus enabling integrative study of epigenomic and copy number alterations. Finally, we apply this tool to two genomes, showing that it performs well on genomes sequenced to both low and high coverage. The readDepth package runs on Linux and MacOSX, is released under the Apache 2.0 license, and is available at http://code.google.com/p/readdepth/.

  13. Simple and versatile molecular method of copy-number measurement using cloned competitors.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyoung Kim

    Full Text Available Variations and alterations of copy numbers (CNVs and CNAs carry disease susceptibility and drug responsiveness implications. Although there are many molecular methods to measure copy numbers, sensitivity, reproducibility, cost, and time issues remain. In the present study, we were able to solve those problems utilizing our modified real competitive PCR method with cloned competitors (mrcPCR. First, the mrcPCR for ERBB2 copy number was established, and the results were comparable to current standard methods but with a shorter assay time and a lower cost. Second, the mrcPCR assays for 24 drug-target genes were established, and the results in a panel of NCI-60 cells were comparable to those from real-time PCR and microarray. Third, the mrcPCR results for FCGR3A and the FCGR3B CNVs were comparable to those by the paralog ratio test (PRT, but without PRT's limitations. These results suggest that mrcPCR is comparable to the currently available standard or the most sensitive methods. In addition, mrcPCR would be invaluable for measurement of CNVs in genes with variants of similar structures, because combination of the other methods is not necessary, along with its other advantages such as short assay time, small sample amount requirement, and applicability to all sequences and genes.

  14. CCL3L1 gene copy number in individuals with and without HIV-associated neurocognitive disorder

    Directory of Open Access Journals (Sweden)

    Brown A

    2012-01-01

    groups could differentiate HIV-infected individuals with and without HAND.Methods: Genomic DNA was isolated from buccal swabs or peripheral blood mononuclear cells obtained from HIV-infected patients with or without a diagnoses of neurocognitive dysfunction in the Northeast AIDS Dementia Cohort and National NeuroAIDS Tissue Consortium. To maintain a uniform standard, a quantitative polymerase chain reaction design similar to previous studies using Taqman probes and fixed input DNA between 2 ng and 10 ng was used to determine a CCL3L1 copy number. Standard curves with two-fold dilutions from 25 ng to 1.56 ng were generated. CCL3L1 copy number was determined in triplicate in 262 subjects using quantitative polymerase chain reaction and the relative quantitation method. Data were analyzed using analysis of variance, with significance defined as P < 0.05 and Bonferroni post hoc tests.Results: Significant differences as determined by analysis of variance in CCL3L1 copy number between African-Americans and Caucasians (P < 0.0001 were found, highlighting ethnic group differences in the copy number of this gene. However, there were no differences in CCL3L1 copy number across the neurocognitive groups within each ethnic group. The median CCL3L1 copy number in African-Americans of two and Caucasians of one in this study was significantly lower than the previously reported ethnic group means of two and four copies, respectively. A higher prevalence of abnormal cognition with a relative risk of four was seen in African-Americans versus Caucasians.Conclusion: Based on this nested case-control study, CCL3L1 copy number alone may not be useful for distinguishing between individuals at risk for mild or severe neurocognitive disorder. Additional larger cohort studies are required to determine whether CCL3L1 copy number in combination with polymorphisms in other genes known to contribute to HIV risk will be useful in identifying those at increased risk for HAND.Keywords: neurological, HIV

  15. Expression of epithelial-mesenchymal transition-related genes increases with copy number in multiple cancer types.

    Science.gov (United States)

    Zhao, Min; Liu, Yining; Qu, Hong

    2016-04-26

    Epithelial-mesenchymal transition (EMT) is a cellular process through which epithelial cells transform into mesenchymal cells. EMT-implicated genes initiate and promote cancer metastasis because mesenchymal cells have greater invasive and migration capacities than epithelial cells. In this pan-cancer analysis, we explored the relationship between gene expression changes and copy number variations (CNVs) for EMT-implicated genes. Based on curated 377 EMT-implicated genes from the literature, we identified 212 EMT-implicated genes associated with more frequent copy number gains (CNGs) than copy number losses (CNLs) using data from The Cancer Genome Atlas (TCGA). Then by correlating these CNV data with TCGA gene expression data, we identified 71 EMT-implicated genes with concordant CNGs and gene up-regulation in 20 or more tumor samples. Of those, 14 exhibited such concordance in over 110 tumor samples. These 14 genes were predominantly apoptosis regulators, which may implies that apoptosis is critical during EMT. Moreover, the 71 genes with concordant CNG and up-regulation were largely involved in cellular functions such as phosphorylation cascade signaling. This is the first observation of concordance between CNG and up-regulation of specific genes in hundreds of samples, which may indicate that somatic CNGs activate gene expression by increasing the gene dosage.

  16. 水稻EPSP合酶cDNA克隆、序列分析及其拷贝数测定%Isolation of Rice EPSP Synthase cDNA and Its Sequence Analysis and Copy Number Determination

    Institute of Scientific and Technical Information of China (English)

    徐军望; 魏晓丽; 李旭刚; 陈蕾; 冯德江; 朱祯

    2002-01-01

    根据本室分离的水稻EPSP合酶基因的基因组序列设计一对引物,利用RT-PCR方法首次从水稻(Oryza sativa L. subsp. indica)叶片的RNA中扩增获得了水稻编码EPSP合酶的全长为1 585 bp的cDNA片段,它含有一个完整的开放读码框,编码511个氨基酸,包括444个氨基酸组成的成熟肽序列以及N端的67个氨基酸组成的叶绿体转运肽序列.成熟肽氨基酸序列对比表明,除真菌来源的EPSP合酶变异较大外,其他来源的EPSP合酶同源性较高,均在51%以上.而叶绿体转运肽氨基酸序列同源性较低.Southern杂交表明水稻EPSP合酶基因在水稻基因组中以单拷贝形式存在.RT-PCR分析表明,水稻EPSP合酶基因在根、未成熟种子和叶片中均有转录表达,在叶片中表达量最高.%In order to isolate the total cDNA of rice (Oryza sativa L.) epsps gene, RT-PCR was carried out with template of rice first-strand cDNA and primers designed according to rice EPSP synthase genomic sequence obtained in previous study. A 1 585-bp cDNA fragment was amplified and cloned. The 1 585-bp cDNA contains an open reading frame (ORF) comprising of 1 533 nucleotides (nt) which encodes a 511 residue polypepetides, including 67 amino acids chloroplast transit peptide and 444 amino acids EPSP synthase mature peptide. A comparison between the EPSP synthase of different sources indicates that the mature peptide shows more than 51% identity except for the fungi EPSP synthase and the transit peptide shows considerably less sequence conservation. The copy number of rice epsps gene is estimated to be one copy per haploid rice genome using southern blot. RT-PCR indicated that rice epsps gene is expressed in rice leaves, endosperms and roots and has the highest expression level in leaves.

  17. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes.

    Science.gov (United States)

    Arendt, Maja; Fall, Tove; Lindblad-Toh, Kerstin; Axelsson, Erik

    2014-10-01

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus.

  18. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes

    Science.gov (United States)

    Arendt, Maja; Fall, Tove; Lindblad-Toh, Kerstin; Axelsson, Erik

    2014-01-01

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus. PMID:24975239

  19. Mutations in MAPT gene cause chromosome instability and introduce copy number variations widely in the genome.

    Science.gov (United States)

    Rossi, Giacomina; Conconi, Donatella; Panzeri, Elena; Redaelli, Serena; Piccoli, Elena; Paoletta, Laura; Dalprà, Leda; Tagliavini, Fabrizio

    2013-01-01

    In addition to the main function of promoting polymerization and stabilization of microtubules, other roles are being attributed to tau, now considered a multifunctional protein. In particular, previous studies suggest that tau is involved in chromosome stability and genome protection. We performed cytogenetic analysis, including molecular karyotyping, on lymphocytes and fibroblasts from patients affected by frontotemporal lobar degeneration carrying different mutations in the microtubule-associated protein tau gene, to investigate the effects of these mutations on genome stability. Furthermore, we analyzed the response of mutated lymphoblastoid cell lines to genotoxic agents to evaluate the participation of tau to DNA repair systems. We found a significantly higher level of chromosome aberrations in mutated than in control cells. Mutated lymphocytes showed higher percentages of stable lesions, clonal and total aneuploidy (medians: 2 versus 0, p $\\ll$ 0.01; 1.5 versus 0, p $\\ll$ 0.01; 16.5 versus 0, p $\\ll$ 0.01, respectively). Fibroblasts of patients showed higher percentages of stable lesions, structural aberrations and total aneuploidy (medians: 0 versus 0, p = 0.03; 5.8 versus 0, p = 0.02; 26.5 versus 12.6, p $\\ll$ 0.01, respectively). In addition, the in depth analysis of DNA copy number variations showed a higher tendency to non-allelic homologous recombination in mutated cells. Finally, while our analysis did not support an involvement of tau in DNA repair systems, it revealed its role in stabilization of chromatin. In summary, our findings indicate a role of tau in genome and chromosome stability that can be ascribed to its function as a microtubule-associated protein as well as a protein protecting chromatin integrity through interaction with DNA.

  20. Copy Number Variation in Obsessive-Compulsive Disorder and Tourette Syndrome: A Cross-Disorder Study

    Science.gov (United States)

    McGrath, Lauren M.; Yu, Dongmei; Marshall, Christian; Davis, Lea K.; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A.; Osiecki, Lisa; O’Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A.; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Cath, Danielle C.; Cavallini, Maria C.; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, Damiaan; Derks, Eske M.; Dion, Yves; Rosário, Maria C.; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas; Garrido, Helena; Geller, Daniel; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A.; Hemmings, Sian M.J.; Herrera, Luis D.; Hounie, Ana G.; Jankovic, Joseph; Kennedy, James L; King, Robert A.; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L.; Lyon, Gholson J.; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T.; McMahon, William; Murphy, Dennis L.; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark; Robertson, Mary M.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Tischfield, Jay A.; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Shugart, Yin Yao; Miguel, Euripedes C.; Nicolini, Humberto; Oostra, Ben A.; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A.; Cox, Nancy J.; Hanna, Gregory L.; Brentani, Helena; Scherer, Stephen W.; Arnold, Paul D.; Stewart, S. Evelyn; Mathews, Carol A.; Knowles, James A.; Cook, Edwin H.; Pauls, David L.; Wang, Kai; Scharf, Jeremiah M.

    2014-01-01

    Objective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable, neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date. Method The primary analyses utilized a cross-disorder design for 2,699 patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls. Parental data facilitated a de novo analysis in 348 OCD trios. Results Although no global CNV burden was detected in the cross-disorder analysis or in secondary, disease-specific analyses, there was a 3.3-fold increased burden of large deletions previously associated with other neurodevelopmental disorders (p=.09). Half of these neurodevelopmental deletions were located in a single locus, 16p13.11 (5 patient deletions: 0 control deletions, p=0.08 in current study, p=0.025 compared to published controls). Three 16p13.11 deletions were confirmed de novo, providing further support to the etiological significance of this region. The overall OCD de novo rate was 1.4%, which is intermediate between published rates in controls (0.7%) and in autism or schizophrenia (2–4%). Conclusion Several converging lines of evidence implicate 16p13.11 deletions in OCD, with weaker evidence for a role in TS. The trend toward increased overall neurodevelopmental CNV burden in TS and OCD suggests that deletions previously associated with other neurodevelopmental disorders may also contribute to these phenotypes. PMID:25062598

  1. Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications.

    Science.gov (United States)

    Liu, Pengfei; Erez, Ayelet; Nagamani, Sandesh C Sreenath; Bi, Weimin; Carvalho, Claudia M B; Simmons, Alexandra D; Wiszniewska, Joanna; Fang, Ping; Eng, Patricia A; Cooper, M Lance; Sutton, V Reid; Roeder, Elizabeth R; Bodensteiner, John B; Delgado, Mauricio R; Prakash, Siddharth K; Belmont, John W; Stankiewicz, Pawel; Berg, Jonathan S; Shinawi, Marwan; Patel, Ankita; Cheung, Sau Wai; Lupski, James R

    2011-05-15

    Genomic instability is a feature of the human Xp22.31 region wherein deletions are associated with X-linked ichthyosis, mental retardation and attention deficit hyperactivity disorder. A putative homologous recombination hotspot motif is enriched in low copy repeats that mediate recurrent deletion at this locus. To date, few efforts have focused on copy number gain at Xp22.31. However, clinical testing revealed a high incidence of duplication of Xp22.31 in subjects ascertained and referred with neurobehavioral phenotypes. We systematically studied 61 unrelated subjects with rearrangements revealing gain in copy number, using multiple molecular assays. We detected not only the anticipated recurrent and simple nonrecurrent duplications, but also unexpectedly identified recurrent triplications and other complex rearrangements. Breakpoint analyses enabled us to surmise the mechanisms for many of these rearrangements. The clinical significance of the recurrent duplications and triplications were assessed using different approaches. We cannot find any evidence to support pathogenicity of the Xp22.31 duplication. However, our data suggest that the Xp22.31 duplication may serve as a risk factor for abnormal phenotypes. Our findings highlight the need for more robust Xp22.31 triplication detection in that such further gain may be more penetrant than the duplications. Our findings reveal the distribution of different mechanisms for genomic duplication rearrangements at a given locus, and provide insights into aspects of strand exchange events between paralogous sequences in the human genome.

  2. Adaptation of the Osmotolerant Yeast Zygosaccharomyces rouxii to an Osmotic Environment Through Copy Number Amplification of FLO11D

    Science.gov (United States)

    Watanabe, Jun; Uehara, Kenji; Mogi, Yoshinobu

    2013-01-01

    Copy number variations (CNVs) contribute to the adaptation process in two possible ways. First, they may have a direct role, in which a certain number of copies often provide a selective advantage. Second, CNVs can also indirectly contribute to adaptation because a higher copy number increases the so-called “mutational target size.” In this study, we show that the copy number amplification of FLO11D in the osmotolerant yeast Zygosaccharomyces rouxii promotes its further adaptation to a flor-formative environment, such as osmostress static culture conditions. We demonstrate that a gene, which was identified as FLO11D, is responsible for flor formation and that its expression is induced by osmostress under glucose-free conditions, which confer unique characteristics to Z. rouxii, such as osmostress-dependent flor formation. This organism possesses zero to three copies of FLO11D, and it appears likely that the FLO11D copy number increased in a branch of the Z. rouxii tree. The cellular hydrophobicity correlates with the FLO11D copy number, and the strain with a higher copy number of FLO11D exhibits a fitness advantage compared to a reference strain under osmostress static culture conditions. Our data indicate that the FLO gene-related system in Z. rouxii has evolved remarkably to adapt to osmostress environments. PMID:23893487

  3. Confirmation of the spinal motor neuron gene 2 (SMN2) copy numbers by real-time PCR.

    Science.gov (United States)

    Wieme, Maamouri-Hicheri; Monia Ben, Hammer; Yosr, Bouhlal; Sihem, Souilem; Nawel, Toumi; Ines, Manai-Azizi; Wajdi, Bennour; Najla, Khmiri; Houda, Nahdi; Faycal, Hentati; Rim, Amouri

    2012-09-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by mutation or deletion of the survival motor neuron gene 1 (SMN1). SMN2, a copy gene, influences the severity of SMA and may be used in somatic gene therapy of patients with SMA in the future. The SMA carrier analysis developed at the Institute of Medical Genetics, Catholic University (Rome), on the Applied Biosystems real-time PCR instruments by Dr Danilo Tiziano and his group, provides a robust workflow to evaluate SMA carrier status. In this study, the SMN2 copy number was confirmed on 22 patients by developing our own assay on the basis of a relative real-time PCR system using the 7500 Fast Real-Time PCR System.

  4. Copy number variation is a fundamental aspect of the placental genome.

    Science.gov (United States)

    Hannibal, Roberta L; Chuong, Edward B; Rivera-Mulia, Juan Carlos; Gilbert, David M; Valouev, Anton; Baker, Julie C

    2014-05-01

    Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000 N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication.

  5. Copy number variation is a fundamental aspect of the placental genome.

    Directory of Open Access Journals (Sweden)

    Roberta L Hannibal

    2014-05-01

    Full Text Available Discovery of lineage-specific somatic copy number variation (CNV in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000 N polyploid trophoblast giant cells (TGCs of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR. UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(DJ recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication.

  6. A New Method for Detecting Associations with Rare Copy-Number Variants.

    Directory of Open Access Journals (Sweden)

    Jung-Ying Tzeng

    2015-10-01

    Full Text Available Copy number variants (CNVs play an important role in the etiology of many diseases such as cancers and psychiatric disorders. Due to a modest marginal effect size or the rarity of the CNVs, collapsing rare CNVs together and collectively evaluating their effect serves as a key approach to evaluating the collective effect of rare CNVs on disease risk. While a plethora of powerful collapsing methods are available for sequence variants (e.g., SNPs in association analysis, these methods cannot be directly applied to rare CNVs due to the CNV-specific challenges, i.e., the multi-faceted nature of CNV polymorphisms (e.g., CNVs vary in size, type, dosage, and details of gene disruption, and etiological heterogeneity (e.g., heterogeneous effects of duplications and deletions that occur within a locus or in different loci. Existing CNV collapsing analysis methods (a.k.a. the burden test tend to have suboptimal performance due to the fact that these methods often ignore heterogeneity and evaluate only the marginal effects of a CNV feature. We introduce CCRET, a random effects test for collapsing rare CNVs when searching for disease associations. CCRET is applicable to variants measured on a multi-categorical scale, collectively modeling the effects of multiple CNV features, and is robust to etiological heterogeneity. Multiple confounders can be simultaneously corrected. To evaluate the performance of CCRET, we conducted extensive simulations and analyzed large-scale schizophrenia datasets. We show that CCRET has powerful and robust performance under multiple types of etiological heterogeneity, and has performance comparable to or better than existing methods when there is no heterogeneity.

  7. A genome-wide investigation of copy number variation in patients with sporadic brain arteriovenous malformation.

    Directory of Open Access Journals (Sweden)

    Nasrine Bendjilali

    Full Text Available BACKGROUND: Brain arteriovenous malformations (BAVM are clusters of abnormal blood vessels, with shunting of blood from the arterial to venous circulation and a high risk of rupture and intracranial hemorrhage. Most BAVMs are sporadic, but also occur in patients with Hereditary Hemorrhagic Telangiectasia, a Mendelian disorder caused by mutations in genes in the transforming growth factor beta (TGFβ signaling pathway. METHODS: To investigate whether copy number variations (CNVs contribute to risk of sporadic BAVM, we performed a genome-wide association study in 371 sporadic BAVM cases and 563 healthy controls, all Caucasian. Cases and controls were genotyped using the Affymetrix 6.0 array. CNVs were called using the PennCNV and Birdsuite algorithms and analyzed via segment-based and gene-based approaches. Common and rare CNVs were evaluated for association with BAVM. RESULTS: A CNV region on 1p36.13, containing the neuroblastoma breakpoint family, member 1 gene (NBPF1, was significantly enriched with duplications in BAVM cases compared to controls (P = 2.2×10(-9; NBPF1 was also significantly associated with BAVM in gene-based analysis using both PennCNV and Birdsuite. We experimentally validated the 1p36.13 duplication; however, the association did not replicate in an independent cohort of 184 sporadic BAVM cases and 182 controls (OR = 0.81, P = 0.8. Rare CNV analysis did not identify genes significantly associated with BAVM. CONCLUSION: We did not identify common CNVs associated with sporadic BAVM that replicated in an independent cohort. Replication in larger cohorts is required to elucidate the possible role of common or rare CNVs in BAVM pathogenesis.

  8. Pseudosymmetry, high copy number and twinning complicate the structure determination of Desulfovibrio desulfuricans (ATCC 29577) flavodoxin.

    Science.gov (United States)

    Guelker, Megan; Stagg, Loren; Wittung-Stafshede, Pernilla; Shamoo, Yousif

    2009-06-01

    The crystal structure of oxidized flavodoxin from Desulfovibrio desulfuricans (ATCC 29577) was determined by molecular replacement in two crystal forms, P3(1)21 and P4(3), at 2.5 and 2.0 A resolution, respectively. Structure determination in space group P3(1)21 was challenging owing to the presence of pseudo-translational symmetry and a high copy number in the asymmetric unit (8). Initial phasing attempts in space group P3(1)21 by molecular replacement using a poor search model (46% identity) and multi-wavelength anomalous dispersion were unsuccessful. It was necessary to solve the structure in a second crystal form, space group P4(3), which was characterized by almost perfect twinning, in order to obtain a suitable search model for molecular replacement. This search model with complementary approaches to molecular replacement utilizing the pseudo-translational symmetry operators determined by analysis of the native Patterson map facilitated the selection and manual placement of molecules to generate an initial solution in the P3(1)21 crystal form. During the early stages of refinement, application of the appropriate twin law, (-h, -k, l), was required to converge to reasonable R-factor values despite the fact that in the final analysis the data were untwinned and the twin law could subsequently be removed. The approaches used in structure determination and refinement may be applicable to other crystal structures characterized by these complicating factors. The refined model shows flexibility of the flavin mononucleotide coordinating loops indicated by the isolation of two loop conformations and provides a starting point for the elucidation of the mechanism used for protein-partner recognition.

  9. The copy number of chloroplast gene minicircles changes dramatically with growth phase in the dinoflagellate Amphidinium operculatum.

    Science.gov (United States)

    Koumandou, V L; Howe, Christopher J

    2007-01-01

    The chloroplast genome of algae and plants typically comprises a circular DNA molecule of 100-200kb, which harbours approximately 120 genes, and is present in 50-100 copies per chloroplast. However, in peridinin dinoflagellates, an ecologically important group of unicellular algae, the chloroplast genome is fragmented into plasmid-like 'minicircles', each of 2-3kb. Furthermore, the chloroplast gene content of dinoflagellates is dramatically reduced. Only 14 genes have been found on dinoflagellate minicircles, and recent evidence from EST studies suggests that most of the genes typically located in the chloroplast in other algae and plants are located in the nucleus. In this study, Southern blot analysis was used to estimate the copy number per cell of a variety of minicircles during different growth stages in the dinoflagellate Amphidinium operculatum. It was found that minicircle copy number is low during the exponential growth stage but increases during the later growth phase to resemble the situation seen in other plants and algae. The control of minicircle replication is discussed in the light of these findings.

  10. Dosage-dependent severity of the phenotype in patients with mental retardation due to a recurrent copy-number gain at Xq28 mediated by an unusual recombination.

    Science.gov (United States)

    Vandewalle, Joke; Van Esch, Hilde; Govaerts, Karen; Verbeeck, Jelle; Zweier, Christiane; Madrigal, Irene; Mila, Montserrat; Pijkels, Elly; Fernandez, Isabel; Kohlhase, Jürgen; Spaich, Christiane; Rauch, Anita; Fryns, Jean-Pierre; Marynen, Peter; Froyen, Guy

    2009-12-01

    We report on the identification of a 0.3 Mb inherited recurrent but variable copy-number gain at Xq28 in affected males of four unrelated families with X-linked mental retardation (MR). All aberrations segregate with the disease in the families, and the carrier mothers show nonrandom X chromosome inactivation. Tiling Xq28-region-specific oligo array revealed that all aberrations start at the beginning of the low copy repeat LCR-K1, at position 153.20 Mb, and end just distal to LCR-L2, at 153.54 Mb. The copy-number gain always includes 18 annotated genes, of which RPL10, ATP6AP1 and GDI1 are highly expressed in brain. From these, GDI1 is the most likely candidate gene. Its copy number correlates with the severity of clinical features, because it is duplicated in one family with nonsyndromic moderate MR, is triplicated in males from two families with mild MR and additional features, and is present in five copies in a fourth family with a severe syndromic form of MR. Moreover, expression analysis revealed copy-number-dependent increased mRNA levels in affected patients compared to control individuals. Interestingly, analysis of the breakpoint regions suggests a recombination mechanism that involves two adjacent but different sets of low copy repeats. Taken together, our data strongly suggest that an increased expression of GDI1 results in impaired cognition in a dosage-dependent manner. Moreover, these data also imply that a copy-number gain of an individual gene present in the larger genomic aberration that leads to the severe MECP2 duplication syndrome can of itself result in a clinical phenotype as well.

  11. Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC

    Directory of Open Access Journals (Sweden)

    Cheng Yuanyuan

    2012-03-01

    Full Text Available Abstract Background The Tasmanian devil (Sarcophilus harrisii is currently under threat of extinction due to an unusual fatal contagious cancer called Devil Facial Tumour Disease (DFTD. DFTD is caused by a clonal tumour cell line that is transmitted between unrelated individuals as an allograft without triggering immune rejection due to low levels of Major Histocompatibility Complex (MHC diversity in Tasmanian devils. Results Here we report the characterization of the genomic regions encompassing MHC Class I and Class II genes in the Tasmanian devil. Four genomic regions approximately 960 kb in length were assembled and annotated using BAC contigs and physically mapped to devil Chromosome 4q. 34 genes and pseudogenes were identified, including five Class I and four Class II loci. Interestingly, when two haplotypes from two individuals were compared, three genomic copy number variants with sizes ranging from 1.6 to 17 kb were observed within the classical Class I gene region. One deletion is particularly important as it turns a Class Ia gene into a pseudogene in one of the haplotypes. This deletion explains the previously observed variation in the Class I allelic number between individuals. The frequency of this deletion is highest in the