WorldWideScience

Sample records for coprecipitation

  1. Analytical Study of Oxalates Coprecipitation

    Directory of Open Access Journals (Sweden)

    Liana MARTA

    2003-03-01

    Full Text Available The paper deals with the establishing of the oxalates coprecipitation conditions in view of the synthesis of superconducting systems. A systematic analytical study of the oxalates precipitation conditions has been performed, for obtaining superconducting materials, in the Bi Sr-Ca-Cu-O system. For this purpose, the formulae of the precipitates solubility as a function of pH and oxalate excess were established. The possible formation of hydroxo-complexes and soluble oxalato-complexes was taken into account. A BASIC program was used for tracing the precipitation curves. The curves of the solubility versus pH for different oxalate excess have plotted for the four oxalates, using a logaritmic scale. The optimal conditions for the quantitative oxalate coprecipitation have been deduced from the diagrams. The theoretical curves were confirmed by experimental results. From the precursors obtained by this method, the BSCCO superconducting phases were obtained by an appropriate thermal treatment. The formation of the superconducting phases was identified by X-ray diffraction analysis.

  2. Hexaferrite particles by coprecipitation and lyophilization

    Science.gov (United States)

    Calleja, A.; Tijero, E.; Martínez, B.; Piñol, S.; Sandiumenge, F.; Obradors, X.

    1999-05-01

    Fine strontium hexaferrite particles were prepared by lyophilization (known as freeze-drying) and coprecipitation of nitrates and chloride salts, respectively. The resulting powders were calcined at different temperatures between 700°C and 1100°C. As concluded from the measured hysteresis loops at 300 K, the freeze-dried hexaferrite showed good magnetic characteristics, the coercivity being as high as 5690 Oe. However, coprecipitated hexaferrite displayed poor coercivity values, around 1300 Oe at best.

  3. Coprecipitation of radon oxide with cesium fluoroxenate

    Energy Technology Data Exchange (ETDEWEB)

    Avrorin, V.V.; Krasikova, R.N.; Nefedov, V.D.; Toropova, M.A.

    1986-03-01

    This paper presents a study of the processes of coprecipitation of radon oxide with cesium fluoroxenate in aqueous solutions. It has been shown that the reason for the coprecipitation in the case at hand is the occurrence of a process of isomorphous cocrystallization. The results obtained are examined as a confirmation of the suggestion that the hydrolysis product of the radon fluoride which is formed on thermal initiation of reaction in the rn-F2-BrF5-NaF system is radon trioxide, Rno3.

  4. Coprecipitation of radionuclides: basic concepts, literature review and first applications

    Energy Technology Data Exchange (ETDEWEB)

    Curti, E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-11-01

    Coprecipitation of radionuclides with solid products is currently not analysed quantitatively in safety assessments for nuclear waste repositories, although this process is thought to be an important mechanism for limiting nuclide concentrations in solution. This is due to the fact that neither the solid phases controlling coprecipitation nor the parameter values necessary to describe this process are known sufficiently. This introductory report provides basic knowledge on this subject and a review of experimental data from the literature. Emphasis is placed on experiments of trace metal coprecipitation with calcite, because this mineral is a dominating alteration product of cement in the Swiss L/ILW repository. This resulted in a database of partition coefficients, which allow to describe empirically the distribution of trace elements between calcite and solution and thus to quantify coprecipitation processes. Since laboratory data on coprecipitation with calcite are lacking for many safety-relevant radioelements, their partition coefficients were inferred with the help of estimation techniques. Such techniques rely on empirical correlations, which relate the uptake of trace metals in calcite (measured in laboratory tests) with selected chemical properties of the coprecipitated metals (e.g. ionic radius, sorption properties, solubility products of the pure trace metal carbonates). The combination of these correlations with independent geochemical evidence allows the extrapolation of radioelement-specific partition coefficients, which are then used for the quantitative modelling. In a first step the potential role of radionuclide coprecipitation during cement degradation in the L/ILW repository planned at Wellenberg is assessed. (author) figs., tabs., refs.

  5. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose

    CSIR Research Space (South Africa)

    Djerafi, R

    2017-05-01

    Full Text Available crystallinity of the active ingredient was observed and a simultaneous precipitation of ethyl cellulose and drug was achieved. The effect of solvent/CO 2 molar ratio and polymer/drug mass ratio on the co-precipitates morphology and drug loading was investigated...

  6. Study of calcium carbonate and sulfate co-precipitation

    KAUST Repository

    Zarga, Y.

    2013-06-01

    Co-precipitation of mineral based salts in scaling is still not well understood and/or thermodynamically well defined in the water industry. This study focuses on investigating calcium carbonate (CaCO3) and sulfate mixed precipitation in scaling which is commonly observed in industrial water treatment processes including seawater desalination either by thermal-based or membrane-based processes. Co-precipitation kinetics were studied carefully by monitoring several parameters simultaneously measured, including: pH, calcium and alkalinity concentrations as well as quartz microbalance responses. The CaCO3 germination in mixed precipitation was found to be different than that of simple precipitation. Indeed, the co-precipitation of CaCO3 germination time was not anymore related to supersaturation as in a simple homogenous precipitation, but was significantly reduced when the gypsum crystals appeared first. On the other hand, the calcium sulfate crystals appear to reduce the energetic barrier of CaCO3 nucleation and lead to its precipitation by activating heterogeneous germination. However, the presence of CaCO3 crystals does not seem to have any significant effect on gypsum precipitation. IR spectroscopy and the Scanning Electronic Microscopy (SEM) were used to identify the nature of scales structures. Gypsum was found to be the dominant precipitate while calcite and especially vaterite were found at lower proportions. These analyses showed also that gypsum crystals promote calcite crystallization to the detriment of other forms. © 2013 Elsevier Ltd.

  7. Wet milling versus co-precipitation in magnetite ferrofluid preparation

    Directory of Open Access Journals (Sweden)

    Almásy László

    2015-01-01

    Full Text Available Various uses of ferrofluids for technical applications continuously raise the interest in improvement and optimization of preparation methods. This paper deals with preparation of finely granulated magnetite particles coated with oleic acid in hydrocarbon suspensions following either chemical co-precipitation from iron salt precursors or wet milling of micron size magnetite powder with the goal to compare the benefits and disadvantages of each method. Microstructural measurements showed that both methods gave similar magnetite particle size of 10-15 nm. Higher saturation magnetization was achieved for the wet-milled magnetite suspension compared to relatively rapid co-precipitation synthesis. Different efficacies of ferrophase incorporation into kerosene could be related to the different mechanisms of oleic acid bonding to nanoparticle surface. The comparative data show that wet milling represents a practicable alternative to the traditional co-precipitation since despite of longer processing time, chemicals impact on environment can be avoided as well as the remnant water in the final product.

  8. Law of mass action for co-precipitation; Loi d'action de masse de la co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Vitorge, P

    2008-07-01

    Coprecipitation is often understood as the incorporation of elements at trace concentrations into -initially pure- solid compounds. Coprecipitation has typically been used to identify radioactive isotopes. Coprecipitation can result in lowering solubility as compared to the solubility, when controlled by pure compounds. For this reason it is also important for geochemistry, waste management and de-pollution studies. The solid obtained with coprecipitation is a new homogeneous solid phase called solid solution. The 2 formula needed to calculate the aqueous solubility when controlled by the ideal AB{sub b(1-x)}C{sub cx} solid solutions are K{sub s,B}{sup 1-x}*K{sub s,C}{sup x} equals [A{sup z{sub A}}]*[B{sup z{sub B}}]{sup b(1-x)}*[C{sup z{sub C}}]{sup cx}/((1-x){sup b(1-x)}x{sup cx}) and K{sub s,C}/K{sub s,B} equals (1-x){sup b}*[C{sup z{sub C}}]{sup c}/[B{sup z{sub B}}]{sup b}*x{sup c}), where K{sub s,B} and K{sub s,C} are the classical constant solubility products of the AB{sub b} and AC{sub c} end-members, the b and c values are calculated from the (z{sub i}) charges of the ions and from charge balance. This report is essentially written to provide a thermodynamic demonstration of the law of mass action in attempts to confirm scientific bases for solubility calculations in geosciences (as typically retention of radio-nuclides by co-precipitation), and to facilitate such calculations. Note that the law of mass action is here a set of 2 equations (not only 1) for the ideal or near ideal systems. Since they are consistent with the phase rule, no extra formula (beside mass balance) is needed to calculate the concentrations of all the species in both phases, namely: [A{sup z{sub A}}], [B{sup z{sub B}}], [C{sup z{sub C}}] and specially x.

  9. A Coprecipitation Coating Synthesis of SiC/YAG Composites

    Institute of Scientific and Technical Information of China (English)

    Ning ZHANG; Hongqiang RU; Xudong SUN; Qingkui CAI

    2004-01-01

    The α-SiC in 0.5 μm size powders were coated with Al2O3 and Y2O3 by a coprecipitation coating (CPC) method for fabrication of SiC/YAG composites. The same powder preparation was carried out by conventional mechanical mixing (MM) method for comparison. Two kinds of SiC/YAG composites were manufactured by pressureless sintering using the different powders, named CPC composite and MM composite thereafter respectively. It is shown that the CPC composite has the advantages of homogeneous distribution of YAG phase and of being sintered to high density at a low temperature, 100℃ lower than that of MM composite. The strength (573 Mpa) and hardness (23.3 Gpa) of the CPC composite are significantly higher than those (323 Mpa and 13.5 Gpa) of the MM composite, respectively.

  10. Preparation of ITO Nanoparticles by Liquid Phase Coprecipitation Method

    Directory of Open Access Journals (Sweden)

    Zhanlai Ding

    2010-01-01

    Full Text Available The nanoscale indium tin oxide (ITO particles are synthesied by liquid phase coprecipitation method under given conditions with solution of indium chloride, tin chloride, and ammonia. The absolute ethyl alcohol or deionized water was used as solvent and the dodecylamine or hexadecylamine surfactant was used as a dispersant in the reaction system. The sample powder was characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, and high-resolution electron microscopy (HRTEM. Based on the transmission electron micrograph, the influences of the two different solvents and the two different dispersants on the nanoparticle size and dispersion were studied, respectively. The results showed that the ITO particles are finely crystallized body-centered cubic structure. The particle size has distributed in 30 nm to 90 nm.

  11. Modified coprecipitation process of synthesizing Bi-system superconductor precursor powder and its stoichiometry

    Institute of Scientific and Technical Information of China (English)

    毛传斌; 杜泽华; 周廉

    1996-01-01

    A modified coprecipitation process is presented based on the stoichiometry study of oxalate coprecipitation process in water medium to synthesize Bi-Pb-Sr-Ca-Cu-O multi-component powder.Its characteristic is that the coprecipitation reaction takes place in a mixed solution medium composed of water and a kind of organic solvent (volume percentage >90%).Thus,it overcomes the serious shortcoming of inability to maintain stoichiometry in Bi-system superconductor powder synthesized by water-medium coprecipitation.The effects of pH value,oxalic acid concentration and aging time on stoichiometry maintenance in precipitate are systematically studied.Bulk material made from the powder prepared by the new modified coprecipitation also shows the success of the new process.

  12. Technetium (VII) Co-precipitation with Framework Aluminosilicates

    Energy Technology Data Exchange (ETDEWEB)

    Harsh, James B. [Washington State Univ., Pullman, WA (United States); Dickson, Johnbull Otah [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pierce, Eric M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bargar, John [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-07-13

    Technetium-99 (99Tc), a long-lived radionuclide, is one of the most widespread contaminants within the Hanford subsurface. At some depths, it is only extractable with strong acids, suggesting incorporation into a solid phase. We hypothesized that Tc may have coprecipitated with feldspathoid aluminosilicates under waste tanks that had leaked caustic solutions into the vadose zone. Our objectives were to determine if Tc could be incorporated into the feldspathoids cancrinite and sodalite and under what conditions coprecipitation could occur. Our hypothesis was that sodalite was more likely to incorporate and retain Tc. Our approach was to use known methods of feldspathoid formation in solutions resembling those in Hanford waste tanks contacting sediments in terms of major ion (Na, NO3, OH, Al(OH)4, and Si(OH)4 concentrations. In some cases, Al and Si were supplied from zeolite. We used perrhenate (ReO4) as a surrogate for pertechnetate (TcO4) to avoid the radioactivity. The major findings of this study were 1) ReO4 could be incorporated into either sodalite or cancrinite but the concentration in the solid was < 1% of the competing ion Cl, NO3, or NO2. 2) The small amount of ReO4 incorporated was not exchangeable with NO3 or NO2. 3) In sodalite, NO3 was highly preferred over ReO4 but significant Re-sodalite was formed when the mole fraction in solution (Re/Re+N) exceeded 0.8. 4) A nonlinear relation between the unit cell parameter and amount of Re incorporated suggested that a separate Re-sodalite phase was formed rather than a solid solution. 5) We determined that sodalite preference for sodalite in the presence of different anions increased with the ionic size of the competing anion: Cl < CO3 < NO3 < SO4 < MnO4 < WO4 and significant incorporation did not occur unless the difference in anion radii was less than 12%. 6) Re(VII) was not significantly reduced to Re(IV) under the conditions of this experiment and Re appeared to be a good surrogate for Tc under oxidizing

  13. Properties of Fe-organic matter associations via coprecipitation versus adsorption.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Sparks, Donald L

    2014-12-01

    The association of organic matter (OM) with minerals is recognized as the most important stabilization mechanism for soil organic matter. This study compared the properties of Fe-OM complexes formed from adsorption (reaction of OM to postsynthesis ferrihydrite) versus coprecipitation (formation of Fe solids in the presence of OM). Coprecipitates and adsorption complexes were synthesized using dissolved organic matter (DOM) extracts from a forest little layer at varying molar C/Fe ratios of 0.3-25.0. Sample properties were studied by N2 gas adsorption, XRD, FTIR, Fe EXAFS, and STXM-NEXAFS techniques. Coprecipitation resulted in much higher maximum C contents (∼130 mg g(-1) C difference) in the solid products than adsorption, which may be related to the formation of precipitated insoluble Fe(III)-organic complexes at high C/Fe ratios in the coprecipitates as revealed by Fe EXAFS analysis. Coprecipitation led to a complete blockage of mineral surface sites and pores with ≥177 mg g(-1) C and molar C/Fe ratios ≥2.8 in the solid products. FTIR and STXM-NEXAFS showed that the coprecipitated OM was similar in composition to the adsorbed OM. An enrichment of aromatic C was observed at low C/Fe ratios. Association of carboxyl functional groups with Fe was shown with FTIR and STXM-NEXAFS analysis. STXM-NEXAFS analysis showed a continuous C distribution on minerals. Desorption of the coprecipitated OM was less than that of the adsorbed OM at comparable C/Fe ratios. These results are helpful to understand C and Fe cycling in the natural environments with periodically fluctuating redox conditions, where coprecipitation can occur.

  14. Effects of natural organic matter on the coprecipitation of arsenic with iron.

    Science.gov (United States)

    Kim, Eun Jung; Hwang, Bo-Ram; Baek, Kitae

    2015-12-01

    Natural organic matter (NOM) can affect arsenic speciation and mobility in the environment. In this study, the effects of NOM on the coprecipitation of arsenic with iron were investigated in order to better understand the fate and transport of arsenic in natural environments. The coprecipitation of arsenic with iron was studied in the presence and absence of NOM under various arsenic-to-iron molar ratios (As/Fe) and pH conditions. The addition of humic acid (HA) hindered the As-Fe coprecipitation under high pH and high As/Fe conditions by forming a soluble As-Fe-HA complex. The X-ray diffraction and Fourier transform infrared studies showed that the As-Fe-coprecipitated solid phase was highly affected by pH and As/Fe. The arsenic was coprecipitated with iron as an amorphous ferric arsenate phase at a low pH level or high As/Fe conditions, while the formation of ferrihydrite phase and the arsenic incorporation to the ferrihydrite by adsorption was predominant at high pH levels or low As/Fe conditions. The HA affected the As-Fe-coprecipitated solid phase depending on the As/Fe molar ratio under neutral and alkaline conditions.

  15. Comparative study of the coprecipitation methods for the preparation of Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Crepaldi Eduardo L.

    2000-01-01

    Full Text Available Coprecipitation is the method most frequently applied to prepare Layered Double Hydroxides (LDHs. Two variations of this method can be used, depending on the pH control conditions during the precipitation step. In one case the pH values are allowed to vary while in the other they are kept constant throughout coprecipitation. Although research groups have their preferences, no systematic comparison of the two variations of the coprecipitation method is available in the literature. On this basis, the objective of the present study was to compare the properties of LDHs prepared using the two forms of pH control in the coprecipitation method. The results showed that even though coprecipitation is easier to perform under conditions of variable pH values, materials with more interesting properties, from the point of view of technological applications, are obtained at constant pH. Higher crystallinity, smaller particle size, higher specific surface area and higher average pore diameter were found for materials obtained by coprecipitation at constant pH, when compared to the materials obtained at variable pH.

  16. Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part II: Siderophore-promoted dissolution

    Science.gov (United States)

    Mikutta, Christian; Kretzschmar, Ruben

    2008-02-01

    Ferrihydrite (Fh) coprecipitated with exopolymers of plants and microbes may differ in its geochemical reactivity from its abiotic counterpart. We synthesized Fh in the presence and absence of acid polysaccharides (polygalacturonic acid (PGA), alginate, xanthan) and characterized the physical and structural properties of the precipitates formed [Mikutta C., Mikutta R., Bonneville S., Wagner F., Voegelin A., Christl I. and Kretzschmar R. (2008) Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: Characterization. Geochim. Cosmochim. Acta]. In this paper, we focus on the reactivity of PGA and alginate coprecipitates and pure Fh, and studied their interaction with the microbial siderophore desferrioxamine B (DFOB) in the presence and absence of low molecular weight organic (LMWO) acid anions (malate, citrate). Batch adsorption and dissolution experiments were performed in the dark at pH 7 in 10 mM NaClO 4 background electrolyte. In the dissolution experiments, different modes of ligand addition were applied (single, simultaneous, stepwise). With an estimated Langmuir sorption maximum of 15 mmol/mol Fe, a PGA coprecipitate with 11% C org sorbed about four times as much DFOB as pure Fh, and the amount of DFOB sorbed was ˜4-fold larger than estimated from the sum of DFOB sorption to pure Fh and PGA alone. The apparent initial dissolution rates, Rapp-initial, and pseudo-first order rate coefficients, k, of the coprecipitates exceeded those of pure Fh by up to two orders of magnitude. Citrate and malate exerted a strong synergistic effect on the DFOB-promoted dissolution of pure Fh, whereas synergistic effects of both anions were absent or negligible for the coprecipitates. Rapp-initial of the citrate and DFOB-promoted dissolution of PGA coprecipitates increased with increasing molar C/Fe ratio of the coprecipitates, independent of the charge of the LMWO ligand. Our results indicate that polyuronates stabilize Fh particles sterically and /or

  17. Uranium isotope fractionation during coprecipitation with aragonite and calcite

    Science.gov (United States)

    Chen, Xinming; Romaniello, Stephen J.; Herrmann, Achim D.; Wasylenki, Laura E.; Anbar, Ariel D.

    2016-09-01

    Natural variations in 238U/235U of marine calcium carbonates might provide a useful way of constraining redox conditions of ancient environments. In order to evaluate the reliability of this proxy, we conducted aragonite and calcite coprecipitation experiments at pH ∼7.5 and ∼8.5 to study possible U isotope fractionation during incorporation into these minerals. Small but significant U isotope fractionation was observed in aragonite experiments at pH ∼8.5, with heavier U isotopes preferentially enriched in the solid phase. 238U/235U of dissolved U in these experiments can be fit by Rayleigh fractionation curves with fractionation factors of 1.00007 + 0.00002/-0.00003, 1.00005 ± 0.00001, and 1.00003 ± 0.00001. In contrast, no resolvable U isotope fractionation was observed in an aragonite experiment at pH ∼7.5 or in calcite experiments at either pH. Equilibrium isotope fractionation among different aqueous U species is the most likely explanation for these findings. Certain charged U species are preferentially incorporated into calcium carbonate relative to the uncharged U species Ca2UO2(CO3)3(aq), which we hypothesize has a lighter equilibrium U isotope composition than most of the charged species. According to this hypothesis, the magnitude of U isotope fractionation should scale with the fraction of dissolved U that is present as Ca2UO2(CO3)3(aq). This expectation is confirmed by equilibrium speciation modeling of our experiments. Theoretical calculation of the U isotope fractionation factors between different U species could further test this hypothesis and our proposed fractionation mechanism. These findings suggest that U isotope variations in ancient carbonates could be controlled by changes in the aqueous speciation of seawater U, particularly changes in seawater pH, PCO2 , Ca2+, or Mg2+ concentrations. In general, these effects are likely to be small (<0.13‰), but are nevertheless potentially significant because of the small natural range of

  18. Formation and stability of aluminosilicate colloids by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Yuniati

    2011-02-15

    Colloids are ubiquitous in natural waters. Colloid-facilitated migration is of importance in safety assessment of a nuclear waste disposal. Aluminosilicate colloids are considered to be the kernel of aquatic colloids. Their stability is affected by a number of geochemical parameters. This work aims to study qualitatively and quantitatively the stability of aluminosilicate colloids formed by coprecipitation under various geochemical conditions, i.e. pH, concentration of Al and Si metal ions, ionic strength, and omnipresent cations (Na{sup +}, Ca{sup 2+}, and Mg{sup 2+}). The work is performed by colorimetric method and laser-induced breakdown detection (LIBD). Two consecutive phase separations at 450 nm and 1 kDa are applied to separate the precipitates and colloids from the ionic species. By means of colorimetry, Si and Al can be detected down to 5.8 x10{sup -8} M and 7.4x10{sup -7} M, respectively. On the other hand, LIBD is able to quantify the colloidal size and its number density down to several ppt. Depending on the concentration of Al and Si metal ions, the formation trend of aluminosilicate colloid changes following its solubility curve. The lower the concentration, the higher the pH range in which the colloids start to emerge. Furthermore, the colloids are stable at higher Al and Si concentration and at low ionic strength. In the low pH range, cations provide different effects at low and high ionic strengths. At high ionic strength, the colloids are stable in the presence of a larger cation, while all cations exhibit similar effects at low ionic strength. However, in the high pH range, valence seems to have a stronger effect than ionic radius; colloids are more stable in the presence of monovalent cations than divalent ones. Meanwhile, XRD shows non- and/or poor crystalline structure of the aluminosilicate species. Nevertheless, results from XPS may suggest that the chemical composition (Si/Al ∼ 0.6) of the aluminosilicate precipitates is sillimanite or

  19. Uranium co-precipitation with iron oxide minerals

    Science.gov (United States)

    Duff, Martine C.; Coughlin, Jessica Urbanik; Hunter, Douglas B.

    2002-10-01

    In oxidizing environments, the toxic and radioactive element uranium (U) is most soluble and mobile in the hexavalent oxidation state. Sorption of U(VI) on Fe-oxides minerals (such as hematite [α-Fe 2O 3] and goethite [α-FeOOH]) and occlusion of U(VI) by Fe-oxide coatings are processes that can retard U transport in environments. In aged U-contaminated geologic materials, the transport and the biological availability of U toward reduction may be limited by coprecipitation with Fe-oxide minerals. These processes also affect the biological availability of U(VI) species toward reduction and precipitation as the less soluble U(IV) species by metal-reducing bacteria. To examine the dynamics of interactions between U(VI) and Fe oxides during crystallization, Fe-oxide phases (containing 0.5 to 5.4 mol% U/(U + Fe)) were synthesized by means of solutions of U(VI) and Fe(III). Wet chemical (digestions and chemical extractions) and spectroscopic techniques were used to characterize the synthesized Fe oxide coprecipitates after rinsing in deionized water. Leaching the high mol% U solids with concentrated carbonate solution (for sorbed and solid-phase U(VI) species) typically removed most of the U, leaving, on average, about 0.6 mol% U. Oxalate leaching of solids with low mol% U contents (about 1 mol% U or less) indicated that almost all of the Fe in these solids was crystalline and that most of the U was associated with these crystalline Fe oxides. X-ray diffraction and Fourier-transform infrared (FT-IR) spectroscopic studies indicate that hematite formation is preferred over that of goethite when the amount of U in the Fe-oxides exceeds 1 mol% U (˜4 wt% U). FT-IR and room temperature continuous wave luminescence spectroscopic studies with unleached U/Fe solids indicate a relationship between the mol% U in the Fe oxide and the intensity or existence of the spectra features that can be assigned to UO 22+ species (such as the IR asymmetric υ 3 stretch for O = U = O for

  20. Physical stability and enthalpy relaxation of drug-hydroxypropyl methylcellulose phthalate solvent change co-precipitates.

    Science.gov (United States)

    Sertsou, Gabriel; Butler, James; Hempenstall, John; Rades, Thomas

    2003-01-01

    The poorly water-soluble drug GWX was co-precipitated with hydroxypropyl methylcellulose phthalate (HPMCP) using a solvent change method. The two co-precipitate formulations made, with drug-HPMCP ratios of 2:8 and 5:5, were analysed using modulated temperature differential scanning calorimetry. They were found to consist of completely amorphous solid solution and a mixture of amorphous solid solution, crystalline drug and amorphous drug, respectively. Stability with respect to crystallization of the two co-precipitates and pure amorphous drug made by quench cooling was compared by storing preparations at 25 degrees C and 40 degrees C, under vacuum over P(2)O(5), and at 75% relative humidity (r.h.). Humidity (75% r.h. compared with dry) had a larger influence on crystallization of the amorphous drug than temperature (25 degrees C compared with 40 degrees C). The solid solution phase in co-precipitates had a relatively higher stability than amorphous drug alone, with respect to crystallization, in presence of the plasticizer water, and crystalline drug. These findings were partly explained by evidence of decreased molecular mobility in the amorphous solid solution with respect to amorphous drug alone, using enthalpy relaxation measurements. At an ageing temperature of 65 degrees C, the calculated half-life for enthalpy relaxation of the 2:8 drug-HPMCP ratio coprecipitate was about 6 orders of magnitude greater than that of amorphous drug alone, indicating a large difference in relative molecular mobility.

  1. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal.

    Science.gov (United States)

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-20

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  2. Molecular Structures of Al/Si and Fe/Si Coprecipitates and the Implication for Selenite Removal

    Science.gov (United States)

    Chan, Ya-Ting; Kuan, Wen-Hui; Tzou, Yu-Min; Chen, Tsan-Yao; Liu, Yu-Ting; Wang, Ming-Kuang; Teah, Heng-Yi

    2016-04-01

    Aluminum and iron oxides have been often used in the coagulation processes during water purification due to their unique surface properties toward anions. In the presence of silica, the coprecipitation of Al/Si or Fe/Si might decrease the efficiency of wastewater purification and reuse. In this study, surface properties and molecular structures of Al/Si and Fe/Si coprecipitates were characterized using spectroscopic techniques. Also, the selenite removal efficiency of Al/Si and Fe/Si coprecipitates in relation to their surface and structural properties was investigated. While dissolved silicate increased with increasing pH from Fe/Si coprecipitates, less than 7% of silicate was discernible from Al/Si samples over the range from acidic to alkaline conditions. Our spectroscopic results showed that the associations between Al and Si were relatively stronger than that between Fe and Si in coprecipitates. In Al/Si coprecipitates, core-shell structures were developed with AlO6/AlO4 domains as the shells and Si frameworks polymerized from the SiO2 as the cores. However, Si framework remained relatively unchanged upon coprecipitation with Fe hydroxides in Fe/Si samples. The Si core with Al shell structure of Al/Si coprecipitates shielded the negative charges from SiO2 and thereby resulted in a higher adsorption capacity of selenite than Fe/Si coprecipitates.

  3. Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    El-Shobaky, G.A., E-mail: elshobaky@yahoo.co [Physical Chemistry Department, National Research Center, Dokki, Cairo (Egypt); Turky, A.M.; Mostafa, N.Y.; Mohamed, S.K. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt)

    2010-03-18

    Cobalt ferrite nanoparticles were prepared via thermal treatment of cobalt-iron mixed hydroxides at 400-600 {sup o}C. The mixed hydroxides were coprecipitated from their nitrates solutions using NaOH as precipitating agent. The effects of pH and temperature of coprecipitation and calcination temperature on the physicochemical, surface and catalytic properties of the prepared ferrites were studied. The prepared systems were characterized using TG, DTG, DTA, chemical analysis, atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) as well as surface and texture properties based on nitrogen adsorption-desorption isotherms. The prepared cobalt ferrites were found to be mesoporous materials that have crystallite size ranges between 8 and 45 nm. The surface and catalytic properties of the produced ferrite phase were strongly dependent on coprecipitation conditions of the mixed hydroxides and on their calcination temperature.

  4. A nanoscale co-precipitation approach for property enhancement of Fe-base alloys.

    Science.gov (United States)

    Zhang, Zhongwu; Liu, Chain Tsuan; Miller, Michael K; Wang, Xun-Li; Wen, Yuren; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei; Chen, Guang; Chin, Bryan A

    2013-01-01

    Precipitate size and number density are two key factors for tailoring the mechanical behavior of nanoscale precipitate-hardened alloys. However, during thermal aging, the precipitate size and number density change, leading to either poor strength or high strength but significantly reduced ductility. Here we demonstrate, by producing nanoscale co-precipitates in composition-optimized multicomponent precipitation-hardened alloys, a unique approach to improve the stability of the alloy against thermal aging and hence the mechanical properties. Our study provides compelling experimental evidence that these nanoscale co-precipitates consist of a Cu-enriched bcc core partially encased by a B2-ordered Ni(Mn, Al) phase. This co-precipitate provides a more complex obstacle for dislocation movement due to atomic ordering together with interphases, resulting in a high yield strength alloy without sacrificing alloy ductility.

  5. Experimental and modeling studies of coprecipitation as an attenuation mechanism for radionuclides, metals, and metalloid mobility

    Science.gov (United States)

    Zhu, C.; Martin, S.; Ford, R.; Nuhfer, N.

    2003-04-01

    Coprecipitation (CPT) is typically defined as the simultaneous removal of both the tracer and carrier constituents from an aqueous solution without regard to the specific mechanisms involved. CPT is potentially important to many environmental issues closely related to water resources, including acid mine drainage, radionuclide migration in fouled waste repositories, metal contaminant transport at industrial and defense sites, metal concentrations in aquatic systems, and wastewater treatment technology. The coprecipitation process may vary in each case and solid phase partitioning may be driven by surface adsorption, ion-exchange, surface precipitation, occlusion, and solid solution formation. Solid solution formation is a result of structural incorporation of the tracer into carrier structural sites resulting in a minor constituent in solid solution with the host phase possessing a solubility greatly reduced from that of its pure solid. Coprecipitation of Pb, Zn, Al, and As with ferric iron oxides has been or is being conducted in the laboratory. The coprecipitates have been examined by High Resolution Analytical Transmission Electron Microscopy, while the bulk solution results are modeled as surface complexation, bulk precipitation, or amorphous solid solutions. Coprecipitation with iron oxides may be relevant to a fouled repository where steel containers corrode and transform into iron oxides. Additionally, the coprecipitation of radium with barite, which has relevance to both naturally occurring radioactive materials (NORM) associated with oil and gas production and nuclear waste repositories, is assessed and modeled. A general correlation is found among excess thermodynamic properties of binary solutions in the barite isostructural family, the volume mismatch between the two end-members, and the differences in the non-solvation contribution to the Gibbs free energy of formation of the substituting aqueous metal ions.

  6. Strontium Co-precipitation During Biomineralization of Calcite in Porous Media Using Differing Treatment Strategies

    Science.gov (United States)

    Lauchnor, E. G.; Schultz, L.; Mitchell, A.; Cunningham, A. B.; Gerlach, R.

    2013-12-01

    The process of ureolytically-induced calcium carbonate mineralization has been shown in laboratory studies to be effective in co-precipitation of heavy metals and radionuclides. During this process, the microbially catalyzed hydrolysis of urea increases alkalinity and pH, thus promoting CaCO3 precipitation in the presence of dissolved calcium. One proposed application of biomineralization includes the remediation of radionuclides such as strontium, which can be co-precipitated in situ within calcite. Strontium is of concern at several US DOE sites where it is a radioactive product of uranium fission and groundwater contaminant. Our research focuses on promoting attached bacteria, or biofilms, in subsurface environments where they serve as immobilized catalysts in biomineralization and can aide in co-precipitation of some contaminants. In this work, flat plate reactors with 1 mm etched flow channels designed to mimic a porous medium environment were used. Reactors were inoculated with the model ureolytic bacterium Sporosarcina pasteurii and addition of urea, calcium and strontium containing fluid was performed to induce biomineralization. Continuous flow and stopped-flow injection strategies were investigated to evaluate differences in strontium co-precipitation efficiency. During stopped-flow experiments, injection of cementation fluid containing urea, Ca2+ and Sr2+ was alternated with growth nutrients for stimulation of microbial activity. Control parameters such as urea and calcium concentration and injection flow rate are currently being varied to optimize rate and efficiency of strontium co-precipitation. Ureolytically induced calcite precipitation and strontium incorporation in the calcite was verified by chemical and mineralogical analyses, including X-ray diffraction and ICP-MS. Strontium co-precipitation efficiency was similar under different injection strategies. Alternating calcium-containing fluid with growth nutrients allowed for continued viability of

  7. Y-TZP ceramic processing from coprecipitated powders : A comparative study with three commercial dental ceramics

    NARCIS (Netherlands)

    Lazar, Dolores R. R.; Bottino, Marco C.; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H. A.

    2008-01-01

    Objectives. (1) To synthesize 3 mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. Methods.

  8. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE

    Science.gov (United States)

    Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...

  9. Trace Level Rare Earth Elements Separation From Gram Scale Uranium by Calcium Fluoride Coprecipitation

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiu-feng

    2013-01-01

    In the fission yield measurement of rare earth elements of uranium induced by neutron,and the analysis of rare earth elements in spent fuel,the separation of trace rare earth elements from a large number of uranium has very important significance.We separated trace level rare earth elements from gram scale uranium by calcium fluoride coprecipitation in this paper.

  10. Stabilization of microbial residues by co-precipitation with Fe and Al oxides

    Science.gov (United States)

    Miltner, Anja; Achtenhagen, Jan; Kästner, Matthias

    2016-04-01

    Recent studies have shown that microbial residues contribute significantly to soil organic matter (SOM) formation. This material, however, is readily degradable and thus needs to be stabilized in soil. We hypothesize that the interaction with minerals, in particular co-precipitation with metal oxyhydroxides, plays an important role in stabilization of cell envelope material. We therefore analyzed the mineralization of 14C-labelled Escherichia coli cells and cell envelope fragments during incubation of the cell materials alone or after co-precipitation with either Fe or Al oxyhydroxide. We also tested the effect of environmental conditions, in particular oxygen supply and redox potential, on the stabilizing effect of the mineral phases. Co-precipitation with both Fe and Al oxyhydroxides decreased the mineralization significantly, indicating strong protection of biomass and biomass-derived fragments. Surprisingly, the mineralization of intact cells was higher than that of cell envelope fragments. This points to a higher recalcitrance of the cell envelope fragments, which therefore may be selectively enriched in SOM. Reductive conditions obtained after water-logging combined with excessive supply of an easily available carbon source resulted in increased mineralization in the treatments containing Fe oxyhydroxides, due to reductive dissolution of the Fe oxyhydroxide and thus loss of the stabilizing agent. We therefore conclude that co-precipitation with and incrustation by Fe or Al oxyhydroxides is a relevant stabilization mechanism for microbial residues. The same mechanism also may apply for SOM in general.

  11. Y-TZP ceramic processing from coprecipitated powders : A comparative study with three commercial dental ceramics

    NARCIS (Netherlands)

    Lazar, Dolores R. R.; Bottino, Marco C.; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H. A.

    2008-01-01

    Objectives. (1) To synthesize 3 mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. Methods.

  12. Chitosan-kaolin coprecipitate as disintegrant in microcrystalline cellulose-based pellets elaborated by extrusion-spheronization.

    Science.gov (United States)

    Goyanes, Alvaro; Souto, Consuelo; Martínez-Pacheco, Ramón

    2013-02-01

    The usefulness of a coprecipitate of chitosan and kaolin as disintegrant in the pellets of microcrystalline cellulose (MCC) and hydrochlorothiazide (HCT) (as a model of poorly water-soluble drug) produced by extrusion-spheronization was evaluated in this study. The effectiveness of chitosan-kaolin coprecipitate to increase the dissolution rate was compared with that of kaolin and chitosan. A possible synergy effect was also evaluated between the coprecipitate, kaolin or chitosan and sorbitol, added to the pellets as a very water-soluble diluent. The chitosan-kaolin coprecipitate, the kaolin or the chitosan allowed pellets to be obtained of adequate size, roundness, mechanical strength and flow properties. Furthermore, the incorporation of chitosan-kaolin coprecipitate or chitosan significantly increased the dissolution rate of HCT independently of the sorbitol content. The effects on the dissolution of HCT derived from the incorporation of coprecipitate to the pellets can be attributed to its content of chitosan. However, the addition of kaolin into the pellets did not significantly affect the HCT dissolution process. The pellets incorporating coprecipitated chitosan-kaolin or chitosan and the maximum proportion of sorbitol (50%) led to the highest HCT dissolution rate and experienced a rapid and complete disintegration in the dissolution medium.

  13. Cu Binding to Iron Oxide-Organic Matter Coprecipitates in Solid and Dissolved Phases

    Science.gov (United States)

    Vadas, T. M.; Koenigsmark, F.

    2015-12-01

    Recent studies indicate that Cu is released from wetlands following storm events. Assymetrical field flow field fractionation (AF4) analyses as well as total and dissolved metal concentration measurements suggest iron oxide-organic matter complexes control Cu retention and release. Coprecipitation products of Fe oxide and organic matter were prepared under conditions similar to the wetland to assess Cu partitioning to and availability from solid phases that settle from solution as well as phases remaining suspended. Cu coprecipitation and sorption to organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca2+, glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. Suspended Fe oxide-organic matter coprecipitates were assessed using AF4 coupled to online TOC analysis and ICP-MS. In laboratory prepared samples, Cu was observed in a mixture of small 1-5 nm colloids of Fe oxide-organic matter precipitates, but the majority was observed in larger organic matter colloids and were not UV absorbing, suggesting more aliphatic carbon materials. In field samples, up to 60% of the dissolved Cu

  14. Preparation of tetragonal CaO-ZrO2 nano-powder by chemical coprecipitation method

    Institute of Scientific and Technical Information of China (English)

    刘建本; 阮建明; 邹俭鹏; 李亚军; 骆锋

    2003-01-01

    With zirconium oxychloride, nitrate of lime and ammonia as raw materials, nano-powder of CaO-ZrO2 was prepared by chemical coprecipitation method. By use of azeotropic distillation processing, chemical coprecipitation precursor was obtained. Phase transformation of the precursor was observed at the temperature of 593.81 ℃ and 1 234.56 ℃ respectively with DTA analyses. Phase structure was analyzed through XRD and Raman spectra. The average particle size of tetragonal zirconium oxide powder was 9.8 and 43.7 nm after calcination at 600 and 1 100 ℃ respectively which was tested by TEM and BET analyses. Furthermore, the influences of the doping of nitrate of lime and the average particle size of zirconium oxide on the stability of tetragonal zirconium oxide were also discussed.

  15. Synthesis of alumina/YAG 20 vol% composite by co-precipitation

    Directory of Open Access Journals (Sweden)

    Radosław Lach

    2011-12-01

    Full Text Available Co-precipitation of alumina/YAG precursor from aluminum and yttrium nitrate solution with ammonium carbonate results in dawsonite. Its crystallographic parameters differ from the compound precipitated with no yttrium additive. It suggests that yttrium ions become incorporated into the dawsonite structure. The DSC/TG and X-ray diffraction measurements show decomposition of dawsonite at elevated temperatures resulting in γ-Al2O3 and then δ- and θ-alumina modifications. Full transformation to α-Al2O3 and YAG occurs at temperatures higher than 1230°C. Starting powder for the sintering experiments was prepared using the coprecipitated precursor calcined at 600°C. Seeding of such powder with 5 wt.% α-Al2O3 results in material of 98% density at 1500°C. Much lower densification show compacts of unseeded powder.

  16. Liberation of Adsorbed and Co-Precipitated Arsenic from Jarosite, Schwertmannite, Ferrihydrite, and Goethite in Seawater

    Directory of Open Access Journals (Sweden)

    Rodrigo Alarcón

    2014-07-01

    Full Text Available Sea level rise is able to change the geochemical conditions in coastal systems. In these environments, transport of contaminants can be controlled by the stability and adsorption capacity of iron oxides. The behavior of adsorbed and co-precipitated arsenic in jarosite, schwertmannite, ferrihydrite, and goethite in sea water (common secondary minerals in coastal tailings was investigated. The aim of the investigation was to establish As retention and transport under a marine flood scenario, which may occur due to climate change. Natural and synthetic minerals with co-precipitated and adsorbed As were contacted with seawater for 25 days. During this period As, Fe, Cl, SO4, and pH levels were constantly measured. The larger retention capability of samples with co-precipitated As, in relation with adsorbed As samples, reflects the different kinetics between diffusion, dissolution, and surface exchange processes. Ferrihydrite and schwertmannite showed good results in retaining arsenic, although schwertmannite holding capacity was enhanced due its buffering capacity, which prevented reductive dissolution throughout the experiment. Arsenic desorption from goethite could be understood in terms of ion exchange between oxides and electrolytes, due to the charge difference generated by a low point-of-zero-charge and the change in stability of surface complexes between synthesis conditions and natural media.

  17. Synthesis of yttria-doped bismuth oxide powder by carbonate coprecipitation for IT-SOFC electrolyte.

    Science.gov (United States)

    Lee, J G; Kim, S H; Yoon, H H

    2011-01-01

    Yttria-doped bismuth oxide (YBO) powders were synthesized by ammonium carbonate coprecipitation for the preparation of electrolytes of an intermediate temperature solid oxide fuel cell (IT-SOFC). The starting salts were yttrium and bismuth nitrate. The crystal structures and the morphological characteristics of the particles were analyzed by XRD and SEM, respectively. The ionic conductivity of the sintered pellet was measured by an electrochemical impedance analyzer. The size of the calcined YBO powders were in the range of 20-100 nm as measured by SEM images. The YBO pellets had a face-centered cubic structure, and their crystallite size was about 54-88 nm. The ionic conductivity of the YBO pellets sintered at 800 degrees C was observed to be 2.7 x 10(-1) Scm-(-1) at 700 degrees C. The ball-milling of the YBO powder before it was pelletized was found to have been unrequired probably because of a good sinterability of the YBO powders that was prepared via the ammonium carbonate coprecipitation method. The results showed that the ammonium carbonate coprecipitation process could be used as the cost-efficient method of producing YBO electrolytes for IT-SOFC.

  18. Synthesis of layered double hydroxide nanosheets by coprecipitation using a T-type microchannel reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiujiang; Sun, Meiyu; Ma, Xiuming [State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Hou, Wanguo, E-mail: wghou@sdu.edu.cn [Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100 (China)

    2014-02-15

    The synthesis of Mg{sub 2}Al–NO{sub 3} layered double hydroxide (LDH) nanosheets by coprecipitation using a T-type microchannel reactor is reported. Aqueous LDH nanosheet dispersions were obtained. The LDH nanosheets were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy and particle size analysis, and the transmittance and viscosity of LDH nanosheet dispersions were examined. The two-dimensional LDH nanosheets consisted of 1–2 brucite-like layers and were stable for ca. 16 h at room temperature. In addition, the co-assembly between LDH nanosheets and dodecyl sulfate (DS) anions was carried out, and a DS intercalated LDH nanohybrid was obtained. To the best of our knowledge, this is the first report of LDH nanosheets being directly prepared in bulk aqueous solution. This simple, cheap method can provide naked LDH nanosheets in high quantities, which can be used as building blocks for functional materials. - Graphical abstract: Layered double hydroxide (LDH) nanosheets were synthesized by coprecipitation using a T-type microchannel reactor, and could be used as basic building blocks for LDH-based functional materials. Display Omitted - Highlights: • LDH nanosheets were synthesized by coprecipitation using a T-type microchannel reactor. • Naked LDH nanosheets were dispersed in aqueous media. • LDH nanosheets can be used as building blocks for functional materials.

  19. Co-precipitation of phosphate and carbonate minerals: geological and ecological implications

    Science.gov (United States)

    Sanchez-Román, Monica; McKenzie, Judith; Vasconcelos, Crisogono

    2015-04-01

    Microorganisms play an important role in natural environments by controlling the metal cations (e.g., Ca2+, Mg2+, Fe2+) and the anions (CO32-, NH4+, PO43-) that precipitate as biominerals (e.g., carbonates, phosphates). In contrast to phosphate minerals, precipitation of carbonate minerals by bacteria has been widely studied in culture experiments and in natural environments. Moreover, studies of sedimentary phosphate minerals and their geological and ecological implications are rare. Nevertheless, phosphate minerals frequently co-precipitate with carbonates in culture experiments and in natural systems. In the present work, we investigate how microorganisms control the mineralogy and geochemistry of phosphate and carbonate minerals. For this, culture experiments were performed to study the co-precipitation of phosphate and carbonate minerals using aerobic heterotrophic bacteria at sedimentary Earth's surface conditions. Ca-Mg carbonate (dolomite, Mg-calcite) and/or Mg-carbonate (hydromagnesite) precipitated with Mg-phosphate (struvite). In most of the cultures, phosphate was the dominant mineral phase found in the bacterial precipitates and carbonates precipitated after phosphate phases. Notably, in all the cultures, we found a mixture of phosphate and carbonate minerals. This study shines new light into the microbial diagenetic processes involved in the co-precipitation of phosphate and carbonate minerals and links the P and C cycles.

  20. Evaluation of Co-precipitation Processes for the Synthesis of Mixed-Oxide Fuel Feedstock Materials

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Emory D [ORNL; Voit, Stewart L [ORNL; Vedder, Raymond James [ORNL

    2011-06-01

    The focus of this report is the evaluation of various co-precipitation processes for use in the synthesis of mixed oxide feedstock powders for the Ceramic Fuels Technology Area within the Fuels Cycle R&D (FCR&D) Program's Advanced Fuels Campaign. The evaluation will include a comparison with standard mechanical mixing of dry powders and as well as other co-conversion methods. The end result will be the down selection of a preferred sequence of co-precipitation process for the preparation of nuclear fuel feedstock materials to be used for comparison with other feedstock preparation methods. A review of the literature was done to identify potential nitrate-to-oxide co-conversion processes which have been applied to mixtures of uranium and plutonium to achieve recycle fuel homogeneity. Recent studies have begun to study the options for co-converting all of the plutonium and neptunium recovered from used nuclear fuels, together with appropriate portions of recovered uranium to produce the desired mixed oxide recycle fuel. The addition of recycled uranium will help reduce the safeguard attractiveness level and improve proliferation resistance of the recycled fuel. The inclusion of neptunium is primarily driven by its chemical similarity to plutonium, thus enabling a simple quick path to recycle. For recycle fuel to thermal-spectrum light water reactors (LWRs), the uranium concentration can be {approx}90% (wt.), and for fast spectrum reactors, the uranium concentration can typically exceed 70% (wt.). However, some of the co-conversion/recycle fuel fabrication processes being developed utilize a two-step process to reach the desired uranium concentration. In these processes, a 50-50 'master-mix' MOX powder is produced by the co-conversion process, and the uranium concentration is adjusted to the desired level for MOX fuel recycle by powder blending (milling) the 'master-mix' with depleted uranium oxide. In general, parameters that must be

  1. Role of Fe(II) and phosphate in arsenic uptake by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, N.; Lee, Y.J.; Xu, H.; Ciardelli, M.; Gaillard, J.-F. (NWU); (UW)

    2008-07-08

    Natural attenuation of arsenic by simple adsorption on oxyhydroxides may be limited due to competing oxyanions, but uptake by coprecipitation may locally sequester arsenic. We have systematically investigated the mechanism and mode (adsorption versus coprecipitation) of arsenic uptake in the presence of carbonate and phosphate, from solutions of inorganic composition similar to many groundwaters. Efficient arsenic removal, >95% As(V) and {approx}55% in initial As(III) systems, occurred over 24 h at pHs 5.5-6.5 when Fe(II) and hydroxylapatite (Ca{sub 5}(PO{sub 4}){sub 3}OH, HAP) 'seed' crystals were added to solutions that had been previously reacted with HAP, atmospheric CO{sub 2(g)} and O{sub 2(g)}. Arsenic adsorption was insignificant (<10%) on HAP without Fe(II). Greater uptake in the As(III) system in the presence of Fe(II) was interpreted as due to faster As(III) to As(V) oxidation by molecular oxygen in a putative pathway involving Fe(IV) and As(IV) intermediate species. HAP acts as a pH buffer that allows faster Fe(II) oxidation. Solution analyses coupled with high-resolution transmission electron microscopy (HRTEM), X-ray Energy-Dispersive Spectroscopy (EDS), and X-Ray Absorption Spectroscopy (XAS) indicated the precipitation of sub-spherical particles of an amorphous, chemically-mixed, nanophase, Fe{sup III}[(OH){sub 3}(PO{sub 4})(As{sup V}O{sub 4})] {center_dot} nH{sub 2}O or Fe{sup III}[(OH){sub 3}(PO{sub 4})(As{sup V}O{sub 4})(As{sup III}O{sub 3}){sub minor}] {center_dot} nH{sub 2}O, where As{sup III}O{sub 3} is a minor component. The mode of As uptake was further investigated in binary coprecipitation (Fe(II) + As(III) or P), and ternary coprecipitation and adsorption experiments (Fe(II) + As(III) + P) at variable As/Fe, P/Fe and As/P/Fe ratios. Foil-like, poorly crystalline, nanoparticles of Fe{sup III}(OH){sub 3} and sub-spherical, amorphous, chemically-mixed, metastable nanoparticles of Fe{sup III}[(OH){sub 3}, PO{sub 4}] {center_dot} n

  2. Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions

    Science.gov (United States)

    Henneberry, Yumiko K.; Kraus, Tamara E.C.; Nico, Peter S.; Horwath, William R.

    2012-01-01

    The objective was to assess the interaction of Fe coprecipitated with dissolved organic matter (DOM) and its effect on Fe (hydr)oxide crystallinity and DOM retention under abiotic reducing conditions. A Fe-based coagulant was reacted with DOM from an agricultural drain and the resulting precipitate (floc) was exposed to S(-II) and Fe(II). Solution concentrations of Fe(II/III) and DOM were monitored, floc crystallinity was determined using X-ray diffraction, and the composition and distribution of functional groups were assessed using scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Results indicate coprecipitation of Fe(III) with DOM forms a non-crystalline floc that withstands crystallization regardless of change in pH, Fe:DOM ratio and type of reductant added. There was no evidence that exposure to reducing conditions led to release of DOM from the floc, indicating that coprecipitation with complex natural DOM in aquatic environments may stabilize Fe (hydr)oxides against crystallization upon reaction with reduced species and lead to long term sequestration of the DOM. STXM analysis identified spatially distinct regions with remarkable functional group purity, contrary to the model of DOM as a relatively uniform complex polymer lacking identifiable organic compounds. Polysaccharide-like OM was strongly and directly correlated with the presence of Fe but showed different Fe binding strength depending on the presence of carboxylic acid functional groups, whereas amide and aromatic functional groups were inversely correlated with Fe content.

  3. An innovative carbonate coprecipitation process for the removal of zinc and manganese from mining impacted waters

    Science.gov (United States)

    Sibrell, P.L.; Chambers, M.A.; Deaguero, A.L.; Wildeman, T.R.; Reisman, D.J.

    2007-01-01

    Although mine drainage is usually thought of as acidic, there are many cases where the water is of neutral pH, but still contains metal species that can be harmful to human or aquatic animal health, such as manganese (Mn) and zinc (Zn). Typical treatment of mine drainage waters involves pH adjustment, but this often results in excessive sludge formation and removal of nontoxic species such as magnesium and calcium. Theoretical consideration of the stability of metal carbonate species suggests that the target metals could be removed from solution by coprecipitation with calcium carbonate. The U.S. Geological Survey has developed a limestone-based process for remediation of acid mine drainage that increases calcium carbonate saturation. This treatment could then be coupled with carbonate coprecipitation as an innovative method for removal of toxic metals from circumneutral mine drainage waters. The new process was termed the carbonate coprecipitation (CCP) process. The CCP process was tested at the laboratory scale using a synthetic mine water containing 50 mg/L each of Mn and Zn. Best results showed over 95% removal of both Mn and Zn in less than 2 h of contact in a limestone channel. The process was then tested on a sample of water from the Palmerton zinc superfund site, near Palmerton, Pennsylvania, containing over 300 mg/L Zn and 60 mg/L Mn. Treatment of this water resulted in removal of over 95% of the Zn and 40% of the Mn in the limestone channel configuration. Because of the potential economic advantages of the CCP process, further research is recommended for refinement of the process for the Palmerton water and for application to other mining impacted waters as well. ?? Mary Ann Liebert, Inc.

  4. Thermodynamic Analysis on the Coprecipitation of Ni-Co-Mn Hydroxide

    Science.gov (United States)

    Li, Ling; Li, Yunjiao; Li, Lin; Chen, Nanxiong; Han, Qiang; Zhang, Xianzhen; Xu, Hu

    2017-10-01

    The thermodynamic data of various species in Ni-H2O, Co-H2O, Mn-H2O, and Ni-Co-Mn-H2O systems were obtained by thermodynamic calculation. The potential-pH diagrams for Ni-H2O, Co-H2O, and Mn-H2O systems at different ion activities at 323 K (50 °C), as well as Ni-Co-Mn-H2O complex systems at activity 1.00 at 298 K, 323 K, and 373 K (25 °C, 50 °C, and 100 °C) were constructed, respectively. The costable regions of Ni(OH)2, Co(OH)2, and Mn(OH)2 are verified to be thermodynamically stable in aqueous solution, which indicates the thermodynamic possibility of Ni-Co-Mn hydroxide coprecipitation. The potential-pH diagrams show that the temperature and ion activity have significant effects on the coprecipitation process. As the temperature increases or the ion activity decreases, the coprecipitation region of the Ni-Co-Mn hydroxide narrows. Moreover, the metal oxides, rather than the metal hydroxide, are more easily formed when the temperature increases. Experimental confirmation was performed to further verify the constructed potential-pH diagrams. The Ni-Co-Mn hydroxide with typical hexagonal CdI2 structure and quasi-spherical morphology was successfully obtained, and the SEM results show the uniform distribution of the elements Ni, Co, and Mn. The experimental results confirm the reliability of the prediction of thermodynamics analysis.

  5. Arsenate and cadmium co-adsorption and co-precipitation on goethite

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Wei [Environment Research Institute, Shandong University, Jinan 250100 (China); Lv, Jitao; Luo, Lei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Yang, Kun [Department of Environmental Science, Zhejiang University, Hangzhou 310058 (China); Lin, Yongfeng; Hu, Fanbao [Environment Research Institute, Shandong University, Jinan 250100 (China); Zhang, Jing [State Key Laboratory of Synchrotron Radiation, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Shuzhen, E-mail: szzhang@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2013-11-15

    Highlights: • As enhances Cd adsorption amount on goethite. • Cd fixed through precipitation is more difficult to get released. • As in co-precipitates is easier to release than in its adsorption complexes. -- Abstract: Arsenate (As(V), AsO{sub 4}{sup 3−}) and cadmium (Cd) are among the toxic elements of most concern. Their sorption behaviors on goethite were studied by batch experiments (pH edges, isotherms and kinetics) and X-ray diffraction (XRD). Arsenic coordination environment was explored by X-ray absorbance fine structure (EXAFS) analysis. Sorption isotherms of both As(V) and Cd on goethite could be divided into the adsorption-dominated and precipitation-dominated parts, while their sorption showed different pH-dependency and sorption reversibility. Cadmium adsorption was enhanced in the presence of AsO{sub 4}{sup 3−}, which could be explained by the decrease in the electrostatic potential due to the sorption of AsO{sub 4}{sup 3−} and the formation of a ternary Cd–As(V)–goethite complex. Based on the EXAFS study, AsO{sub 4}{sup 3−} adsorbed on goethite mainly formed bidentate–binuclear complex. The high loadings of Cd changed the As(V)–Fe distance and its coordination number. However, Cd did not affect the As(V) adsorption amount in the adsorption-dominated region. When As(V) and Cd formed co-precipitates, their sorption amounts were both increased. The formation of co-precipitates decreased the mobility of Cd but increased the mobility of As(V) because less As(V) was sorbed on goethite through surface complexation. This study will provide better understandings on As(V) and Cd transport and useful information on their remediation strategies.

  6. Co-precipitation of dissolved organic matter by calcium carbonate in Pyramid Lake, Nevada

    Science.gov (United States)

    Leenheer, Jerry A.; Reddy, Michael M.

    2008-01-01

    Our previous research has demonstrated that dissolved organic matter (DOM) influences calcium carbonate mineral formation in surface and ground water. To better understand DOM mediation of carbonate precipitation and DOM co-precipitation and/or incorporation with carbonate minerals, we characterized the content and speciation of DOM in carbonate minerals and in the lake water of Pyramid Lake, Nevada, USA. A 400-gram block of precipitated calcium carbonate from the Pyramid Lake shore was dissolved in 8 liters of 10% acetic acid. Particulate matter not dissolved by acetic acid was removed by centrifugation. DOM from the carbonate rock was fractionated into nine portions using evaporation, dialysis, resin adsorption, and selective precipitations to remove acetic acid and inorganic constituents. The calcium carbonate rock contained 0.23% DOM by weight. This DOM was enriched in polycarboxylic proteinaceous acids and hydroxy-acids in comparison with the present lake water. DOM in lake water was composed of aliphatic, alicyclic polycarboxylic acids. These compound classes were found in previous studies to inhibit calcium carbonate precipitation. DOM fractions from the carbonate rock were 14C-age dated at about 3,100 to 3,500 years before present. The mechanism of DOM co-precipitation and/or physical incorporation in the calcium carbonate is believed to be due to formation of insoluble calcium complexes with polycarboxylic proteinaceous acids and hydroxy-acids that have moderately large stability constants at the alkaline pH of the lake. DOM co-precipitation with calcium carbonate and incorporation in precipitated carbonate minerals removes proteinaceous DOM, but nearly equivalent concentrations of neutral and acidic forms of organic nitrogen in DOM remain in solution. Calcium carbonate precipitation during lime softening pretreatment of drinking water may have practical applications for removal of proteinaceous disinfection by-product precursors.

  7. Nanostructured yttrium aluminum garnet powders synthesized by co-precipitation method using tetraethylenepentamine

    Institute of Scientific and Technical Information of China (English)

    李先学; 王文菊

    2009-01-01

    Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-precipitation method without controlling the pH value during precipitation process.The original precursor was analyzed by thermogravimetry/differential scanning calorimetry(TG/DSC).The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by X-ray ...

  8. A coprecipitation technique to prepare ZnNb2O6 powders

    Indian Academy of Sciences (India)

    V V Deshpande; M M Patil; S C Navale; V Ravi

    2005-06-01

    A simple coprecipitation technique was successfully applied for the preparation of pure ultrafine single phase, ZnNb2O6 (ZN). Ammonium hydroxide was used to precipitate Zn2+ and Nb5+ cations as hydroxides simultaneously. This precursor on heating at 750°, produced ZN powders. For comparison, ZN powders were also prepared by the traditional solid state method. The phase contents and lattice parameters were studied by the powder X-ray diffraction (XRD). Particle size and morphology were studied by transmission electron spectroscopy (TEM).

  9. Effect of sintering on structural and electrical properties of co-precipitated Mn-Zn ferrites

    Science.gov (United States)

    Mehmood, S.; Zahra, F.; Rehman, M. A.

    2016-08-01

    Mn-Zn ferrite is one of the important class of soft ferrites. These are famous for possessing high initial permeability. In the present work, we have studied the effect of sintering on Mn-Zn nano particles. The particles were synthesized using co-precipitation method. The structural characterization of the prepared sample after each sintering step were done by using XRD. The XRD analysis showed the spinel structure. The electrical properties were studied as a function of temperature. It was observed that dielectric constant, loss tangent and AC conductivity varies with respect to temperature. The prepared composition is useful in microwave devices.

  10. Removal of borate by coprecipitation with Mg/Al layered double hydroxide

    Science.gov (United States)

    Kurashina, Masashi; Inoue, Tatsuki; Tajima, Chihiro; Kanezaki, Eiji

    2015-03-01

    Borate has been used for various industrial products and excessive dose of boron is harmful to humans. We investigated the removal of borate by direct coprecipitation with Mg/Al layered double hydroxide. In this study, the maximum removal of boron was 90% when Mg 30 mmol and Al 15 mmol at pH = 10 were used for 498 mg/l as B. The boron adsorption isotherms could be fitted to Langmuir model. The calculated constant Ws, saturation limit of boron adsorption, is 25 ± 2 mg/g and it is larger than that of ion exchange reaction (Ws = 15±1 mg/g).

  11. Synthesis and characterization of laurate-intercalated Mg–Al layered double hydroxide prepared by coprecipitation

    DEFF Research Database (Denmark)

    Gerds, Nathalie Christiane; Katiyar, Vimal; Koch, Christian Bender

    2012-01-01

    Effective utilization of layered double hydroxides (LDH) for industrial applications requires the synthesis of pure and well-defined LDH phases. In the present study, dodecanoate (laurate) anions were intercalated into Mg–Al-layered double hydroxide (LDH-C12) by coprecipitation in the presence...... intercalated structure, but we here demonstrate it to be magnesium laurate (Mg-C12). The LDH-C12 compound showed high structural order with a basal spacing of 2.41nm. Fourier-transform IR-spectra confirmed the intercalation of the laurate anions in the interlayer. Transmission electron microscopy showed plate...

  12. Spectroscopic properties of Eu3+ doped YBO3 nanophosphors synthesized by modified co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    A. Szczeszak; S. Lis; V. Nagirnyi

    2011-01-01

    Y1-xEuxBO3 nanophosphors were synthesized by a modified co-precipitation method.The structure of the obtained nanocrystals was determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM).The average crystallite size was calculated from the full-width at half-maximum (FWHM) of the diffraction peaks by the Scherrer equation.The average particles size was 25±10 nm.The spectroscopic properties of the Y1-xEuxBO3 nanoborates were characterized by excitation and emission spectra under UV and VUV excitation.In order to improve colour purity,the chromaticity coordinates were also calculated.

  13. Synthesis, Characterization of Nano Tin Oxide via Co-precipitation Method

    Directory of Open Access Journals (Sweden)

    K. Sujatha

    2016-09-01

    Full Text Available Pure SnO2 nano powders were synthesized by co-precipitation method. The structure, surface, optical, and functional groups were analyzed by X-ray diffraction, FESEM, UV-Vis spectroscopy, FTIR and fluorescence spectra, respectively. The results were compared with pure tin oxide nanoparticle. X-ray analysis shows that the obtained power has tetragonal rutile structure with average crystallite size of 34 nm. Band gap is observed from UV-Vis spectroscopy. Fluorescence spectrum of pure sample detected a strong emission peaks at 634nm due to surface defect and oxygen vacancies in SnO2 nanoparticles.

  14. Pore Structure Evolution of Lanthana–Alumina Systems Prepared through Coprecipitation

    NARCIS (Netherlands)

    Nair, Jalajakumari; Nair, Padmakumar; Mizukami, Fujio; Ommen, van Jan G.; Doesburg, Giel B.M.; Ross, Julian R.H.; Burggraaf, Anthonie J.

    2000-01-01

    Pure Al2O3 and different compositions of La2O3–Al2O3 samples have been prepared through coprecipitation. Even after heating at 1300°C, the compositions La2O3·11Al2O3 and La2O3·13Al2O3 had higher surface area compared to the pure Al2O3 and the La2O3·Al2O3 composition. Ethanol washing is an effective

  15. Avrami behavior of magnetite nanoparticles formation in co-precipitation process

    Directory of Open Access Journals (Sweden)

    Ahmadi R.

    2011-01-01

    Full Text Available In this work, magnetite nanoparticles (mean particle size about 20 nm were synthesized via coprecipitation method. In order to investigate the kinetics of nanoparticle formation, variation in the amount of reactants within the process was measured using pH-meter and atomic absorption spectroscopy (AAS instruments. Results show that nanoparticle formation behavior can be described by Avrami equations. Transmission electron microscopy (TEM and X-ray diffraction (XRD were performed to study the chemical and morphological characterization of nanoparticles. Some simplifying assumptions were employed for estimating the nucleation and growth rate of magnetite nanoparticles.

  16. Factors of Impacting the Coprecipitation Process for Synthesizing CoTi-substitued Barium M-type Ferrite Ultrafine Powder

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wen-yu; ZHANG Qing-jie ZHANG Qing-jie; GUAN Jian-guo

    2004-01-01

    The effect of pH values on synthesizing single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoTiFe10O19, was investigated employing corrosion versus pH plot (E-pH plot) for metal element, thermodynamic calculation, and co-dump coprecipitation. The pH values of complete coprecipitation of all Fe3+, Ti4+, Co2+ and Ba2+ cations are 9-12 and higher than 7.9 on the basis of E-pH plot analysis and thermodynamic calculation, respectively. The minimum pH value necessary to the formation of single-phase BaCoTiFe10O19 is 8.5 in the light of the co-dump coprecipitation.These results indicate that the coprecipitation process for synthesizing CoTi-substituted barium M-type ferrite ultrafine powders is simultaneously influenced by synergetic coprecipation effect of cations and coordination effect of Cl anions. The test time of the minimum pH value corresponding to forming a series of single-phase CoTi-substituted barium M-type ferrite ultrafine powders,and BaCoxTixFe12-2xO19, may be significantly reduced by using the effects of two new factors on the coprecipitation process.

  17. Sorption and coprecipitation of copper to ferrihydrite and humic acid organomineral complexes and controls on copper availability.

    Science.gov (United States)

    Seda, Neila N; Koenigsmark, Faye; Vadas, Timothy M

    2016-03-01

    Coprecipitation of Fe oxide and organic matter in redox dynamic sediments controls the net retention and form of Cu in the solid precipitates. In this study, coprecipitation and sorption of Cu with organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca(2+), glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. This has implications for the assumption of additivity in binding phases and for researchers conducting binding or exposure experiments.

  18. Oxalate co-precipitation synthesis of calcium zirconate and calcium titanate powders.

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Sanchez, Bernadette A.; Tuttle, Bruce Andrew

    2009-06-01

    Fine powders of calcium zirconate (CaZrO{sub 3}, CZ) and calcium titanate (CaTiO{sub 3}, CT) were synthesized using a nonaqueous oxalate co-precipitation route from Ca(NO{sub 3}){sub 2}{center_dot}4 H{sub 2}O and group(IV) n-butoxides (Ti(OBu{sup n}){sub 4} or Zr(OBu{sup n}){sub 4}). Several reaction conditions and batch sizes (2-35 g) were explored to determine their influence on final particle size, morphology, and phase. Characterization of the as-prepared oxalate precursors, oven dried oxalate precursors (60-90 C), and calcined powders (635-900 C) were analyzed with TGA/DTA, XRD, TEM, and SEM. Densification and sintering studies on pressed CZ pellets at 1375 and 1400 C were also performed. Through the developed oxalate co-precipitation route, densification temperatures for CZ were lowered by 125 C from the 1500 C firing temperature required for conventional mixed oxide powders. Low field electrical tests of the CZ pellets indicated excellent dielectric properties with dielectric constants of {approx}30 and a dissipation factor of 0.0004 were measured at 1 kHz.

  19. Enhancement of MgAl2O4 spinel formation from coprecipitated precursor by powder processing

    Indian Academy of Sciences (India)

    Soumen Pal; A K Bandyopadhyay; S Mukherjee; B N Samaddar; P G Pal

    2011-07-01

    Although low temperature fast coprecipitation technique has been used to synthesize stoichiometric (MgO–nAl2O3, = 1) MgAl2O4 spinel forming precursor, delayed spinellization has always been the concern in this process. In this article, the precursor of this ‘fast technique’ has been used for bulk production by further processing by high speed mixing with solvents and mechanical activation by attrition milling in terms of superior spinellization. At 1000°C, MgAl2O4 – -Al2O3 solid solution and MgO phases are formed (spinel formed by 1000°C is regarded as primary spinel). At higher temperatures, due to large agglomerate size, MgO can not properly interact with the exsolved -Al2O3 from spinel solid solution to form secondary spinel; and consequently spinellization gets affected. Solvent treatment and attrition milling of the coprecipitated precursor disintegrate the larger agglomerates into smaller size (effect is more in attrition). Then MgO comes in proper contact with exsolved alumina, and therefore total spinel formation (primary + secondary) is enhanced. Extent of spinellization, for processed calcined samples where some alumina exists as solid solution with spinel, can be determined from the percentage conversion of MgO. Analysis of the processed powders suggests that the 4 h attrited precursor is most effective in terms of nano size (< 25 nm) stoichiometric spinel crystallite formation at ≤ 1100°C.

  20. Microstructure and hysteresis curves of samarium-holmium-iron garnet synthesized by coprecipitation

    Directory of Open Access Journals (Sweden)

    Caffarena Valeska da Rocha

    2003-01-01

    Full Text Available An investigation was made into the synthesis and magnetic properties of Sm(3-xHo xFe5O12 (samarium-holmium-iron garnet ferrite, as yet absent from the literature. The material in question was synthesized by co-precipitation, starting from hydrated chlorides of rare-earth elements and ferrous sulfate, and the mixed hydroxide co-precipitate was calcined at 1000 °C. Using PVA as a binder, rectangular cross section-shaped compacts were produced by means of steel-die pressing, drying and sintering from 1200 to 1450 °C. The main conclusions of this study were that the coercive force decreases as the sintering temperature increases, and that the effect of substituting holmium for samarium in SmIG is entirely different from that provided by replacing yttrium by gadolinium in YIG, which is the most important result of this work. An in-depth investigation will be necessary to determine the correlation between microstructure/magnetic properties and ceramic processing variables.

  1. Co-precipitation of oppositely charged nanoparticles: the case of mixed ligand nanoparticles

    Science.gov (United States)

    Moglianetti, Mauro; Ponomarev, Evgeniy; Szybowski, Maxime; Stellacci, Francesco; Reguera, Javier

    2015-11-01

    Colloid stability is of high importance in a multitude of fields ranging from food science to biotechnology. There is strong interest in studying the stability of small particles (of a size of a few nanometres) with complex surface structures, that make them resemble the complexity of proteins and other natural biomolecules, in the presence of oppositely charged nanoparticles. While for nanoparticles with homogeneously charged surfaces an abrupt precipitation has been observed at the neutrality of charges, data are missing about the stability of nanoparticles when they have more complex surface structures, like the presence of hydrophobic patches. To study the role of these hydrophobic patches in the stability of nanoparticles a series of negatively charged nanoparticles has been synthesized with different ratios of hydrophobic content and with control on the structural distribution of the hydrophobic moiety, and then titrated with positively charged nanoparticles. For nanoparticles with patchy nanodomains, the influence of hydrophobic content was observed together with the influence of the size of the nanoparticles. By contrast, for nanoparticles with a uniform distribution of hydrophobic ligands, size changes and hydrophobic content did not play any role in co-precipitation behaviour. A comparison of these two sets of nanoparticles suggests that nanodomains present at the surfaces of nanoparticles are playing an important role in stability against co-precipitation.

  2. Structural characterization of mixed uranium-plutonium co-precipitates and oxides synthesized by oxalic co-conversion route

    Energy Technology Data Exchange (ETDEWEB)

    Arab-Chapelet, B.; De Bruycker, F.; Picart, S.; Leturcq, G.; Grandjean, S. [Laboratoire de Chimie des Actinides, CEA Valrho, bat 399, BP17171, 30207 Bagnols sur Ceze cedex (France)

    2008-07-01

    In this study, mixed uranium(IV)-plutonium(III) oxalate co-precipitates with Pu/(U+Pu) molar ratio equal to 29 and 45% were synthesized and characterized by X-ray powder diffraction (XRD) and Scanning Electron Microscopy (SEM). The thermal conversion step of these co-precipitates into oxide was carried out under argon flow up to 700 deg. C leading to mixed oxides. The structural investigation on these oxides indicates the formation of (U,Pu)O{sub 2} fluorite-type solid solution characterized by a very homogeneous distribution of plutonium and uranium, a controlled oxygen stoichiometry and well-defined morphology of particles. (authors)

  3. Comparative study on the preparation of Uranium source using a Cerium fluoride Co-precipitation method and an Electrodeposition method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han-Byeol; Park, Seunghoon; Shin, Jung-Ki; Ahn, Gil Hoon; Chung, Heejun; Kwak, Sung-Woo [Korea Institute of Nonproliferation and control, Daejeon (Korea, Republic of)

    2015-05-15

    This analysis can be used to identify the undeclared nuclear activities of North Korea. The international community has developed a method of collecting and analyzing uranium particles within a limited time in the field to determine whether or not undeclared nuclear activities have taken place. This study shows the U source using CeF{sub 3} coprecipitation has no significant difference. In addition, this CeF{sub 3} coprecipitation method is simple and time saving. It is expected to be useful for rapid on-site detection of undeclared uranium enrichment activities.

  4. Low temperature synthesis of nanocrystalline lanthanum monoaluminate powders by chemical coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-L. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, C.-L. [Department of Materials Science and Engineering, I-Shou University, 1 Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung 840, Taiwan (China); Chen, T.-Y. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Chen, G.-J. [Department of Materials Science and Engineering, I-Shou University, 1 Section 1, Hsueh-Cheng Road, Ta-Hsu Hsiang, Kaohsiung 840, Taiwan (China); Hung, I-M. [Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chungli, Taoyuan 320, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)]. E-mail: CJShih@kmu.edu.tw; Fung, K.-Z. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China)

    2007-08-16

    Nanocrystalline lanthanum monoaluminate (LaAlO{sub 3}) powders were prepared by chemical coprecipitation using 25 vol.% of NH{sub 4}OH, 0.05 M La(NO{sub 3}){sub 3}.6H{sub 2}O and 0.05 M Al(NO{sub 3}){sub 3}.9H{sub 2}O aqueous solutions as the starting materials. Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analyses (TGA/DTA), X-ray diffraction (XRD), Raman spectrometry, specific surface area (BET) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron diffraction (ED) were utilized to characterize the LaAlO{sub 3} powders prepared by chemical coprecipitation. The crystallization temperature of the LaAlO{sub 3} precursor gels precipitated at pH 9 is estimated as 810 deg. C by TG/DTA. The XRD pattern of the LaAlO{sub 3} precursor gels precipitated at pH 8-12 and calcined at 700 deg. C for 6 h shows a broad arciform continuum exist between 24{sup o} and 32{sup o} and sharp peaks of LaAlO{sub 3} except the precursor gels precipitated at pH 9. For the LaAlO{sub 3} precursor gels precipitated at pH 9 and calcined at 700 deg. C for 6 h, the formation of the perovskite LaAlO{sub 3} phase occurs and the presence of crystalline impurities is not found. The crystallite size of LaAlO{sub 3} slightly increases from 37.8 to 41.5 nm with calcination temperature increasing from 700 to 900 deg. C for 6 h. The LaAlO{sub 3} powders prepared by chemical coprecipitation have a considerably large specific surface of 30 m{sup 2}/g. The relative density greater than 97% is obtained when these nanocrystalline LaAlO{sub 3} powders are sintered at 1550 deg. C for 2 h.

  5. Green and red luminescence in co-precipitation synthesized Pr:LuAG nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Arun; Kumar, K. Ashok; Gunaseelan, M.; Senthilselvan, J., E-mail: jsselvan@hotmail.com [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai–600 025, Tamil Nadu (India); Asokan, K. [Materials Science Group, Inter University Accelerator Centre, New Delhi-110067 (India)

    2016-05-06

    Pr:LuAG nanophosphor is an effective candidate in magnetic resonance imaging coupled positron emission tomography (MRI-PET) for medical imaging and scintillator applications. LuAG:Pr (0.05, 0.15 mol%) nanoscale ceramic powders were synthesized by co-precipitation method using urea as precipitant. Effect of antisite defect on structure and luminescence behavior was investigated. Pr:LuAG nanoceramic powders are found crystallized in cubic structure by high temperature calcination at 1400 °C and it shows antisite defect. HR-SEM analysis revealed spherically shaped Pr:LuAG nanoceramic particulate powders with ∼100 nm size. By the excitation at 450 nm, Pr:LuAG nanophosphor exhibit green to red luminescence in the wavelength range of 520 to 680 nm, which is originated from multiplet transition of Pr{sup 3+} ions.

  6. Synthesis of cerium oxide (CeO{sub 2}) nanoparticles using simple CO-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Farahmandjou, M.; Zarinkamar, M.; Firoozabadi, T. P., E-mail: farahamndjou@iauvaramin.ac.ir [Islamis Azad University, Varamin-Phisva Branch, Department of Physics, Varamin (Iran, Islamic Republic of)

    2016-11-01

    Synthesis of cerium oxide (CeO{sub 2}) nanoparticles was studied by new and simple co-precipitation method. The cerium oxide nanoparticles were synthesized using cerium nitrate and potassium carbonate precursors. Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (Sem), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (Ftir) and UV-Vis spectrophotometer. XRD pattern showed the cubic structure of the cerium oxide nanoparticles. The average particle size of CeO{sub 2} was around 20 nm as estimated by XRD technique and direct HRTEM observations. The surface morphological studies from Sem and Tem depicted spherical particles with formation of clusters. The sharp peaks in Ftir spectrum determined the existence of CeO{sub 2} stretching mode and the absorbance peak of UV-Vis spectrum showed the bandgap energy of 3.26 eV. (Author)

  7. TRANSPARENT CONDUCTING OXIDE SYNTHESIS OF ALUMINIUM DOPED ZINC OXIDES BY CHEMICAL COPRECIPITATION

    Directory of Open Access Journals (Sweden)

    Silvia Maioco

    2013-03-01

    Full Text Available Aluminium doped zinc oxides (AZO are promising replacements for tin doped indium oxides (ITO but thin films show a wide range of physical properties strongly dependent on deposition process conditions. Submicrometric 1% aluminum doped zinc oxide ceramics (AZO are examined, prepared by coprecipitation, from Zn(NO32 and Al(NO33 aqueous solutions, sintered at 1200°C and subsequently annealed in 10-16 atm controlled oxygen fugacity atmospheres, at 1000°C. Electrical resistivity diminishes by two orders of magnitude after two hours of annealing and the Seebeck coefficient gradually changes from -140 to -50 µV/K within 8 h. It is concluded that increased mobility is dominant over the increased carrier density, induced by changes in metal-oxygen stoichiometry

  8. A coprecipitation technique to prepare NaNbO3 and NaTaO3

    Indian Academy of Sciences (India)

    V Samuel; A B Gaikwad; V Ravi

    2006-04-01

    A simple coprecipitation technique has been used successfully for the preparation of pure, ultrafine, single phases of NaNbO3 (NN) and NaTaO3 (NT). An alcoholic solution of ammonium carbonate and ammonium hydroxide was used to precipitate Na+ and Nb5+ (or Ta5+) cations under basic conditions as carbonate and hydroxide, respectively. On heating at 700°C, these precursors produce respective products. For comparison, both NN and NT powders were also prepared by the traditional solid state method. The phase purity and lattice parameters were studied by powder X-ray diffraction (XRD). The particle size and morphology were studied by scanning electron microscopy (SEM).

  9. Structural & Magnetic Characterizations of NiLiZn Nanoferrites Synthesized by Co-precipitation Method

    Institute of Scientific and Technical Information of China (English)

    D.N. Rohadian; Z.A.Z. Jamal; S.B. Jamaludin; M.F. Bari; J. Adnan

    2011-01-01

    Synthesis of Ni0.sLixZn(0.5-x)Fe204 nanoparticles with x=0, 0.1, 0.2, 0.3, 0.4 and 0.5 were realized via coprecipitation method. X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) measurements were performed on the samples to determine the characteristics of the crystal structures and the magnetic properties of the samples, respectively. The spinel phase structures of the samples were confirmed by XRD analysis. Patterns of decreased lattice parameter and increased crystallite size values were observed by increasing the Li concentration at longer synthesis reaction periods. Similarly, for the magnetic properties, both the saturation magnetization (Ms) and coercivity (Hc) were found to vary with increasing patterns at higher Li doping levels and longer synthesis reaction periods. The results and mechanisms concerned were discussed.

  10. Water-dispersed bone morphogenetic protein nanospheres prepared by co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    江兵兵; 高长有; 胡玲; 沈家骢

    2004-01-01

    A modified complex coacervation-co-precipitation method was used to prepare bone morphogenetic protein(BMP)-loaded nanospheres. Three natural polymers were used as packing materials to obtain nanoscale delivery device for BMP,in the presence of phosphatidylcholine functioning as stabilizer. Positively charged polysaccharide, N,N-diethylaminoethyl dex-tran (DEAE-dextran) tended to form stable, uniform and smaller size particles carrying BMP. Negatively charged bovine serumalbumin (BSA) induced precipitation of the produced BMP particles due to its weak interaction with BMP molecules, although itproduced nanosized BMP spheres. While collagen, a weakly positively charged protein shaped larger particles due to the stronginteraction among themselves. A mechanism of co-precipitation process was also deduced to depict the formation of stablenanospheres.

  11. Development of a coprecipitation system for the speciation/preconcentration of chromium in tap waters

    Energy Technology Data Exchange (ETDEWEB)

    Karatepe, Aslihan, E-mail: karatepea@gmail.com [Nevsehir University, Faculty of Science and Arts, Department of Chemistry, 50000 Nevsehir (Turkey); Korkmaz, Esra [Bozok University, Faculty of Science and Arts, Department of Chemistry, Yozgat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey); Elci, Latif [Pamukkale University, Faculty of Science and Arts, Department of Chemistry, 20020 Denizli (Turkey)

    2010-01-15

    A method for the speciation of chromium(III), chromium(VI) and determination of total chromium based on coprecipitation of chromium(III) with dysprosium hydroxide has been investigated and applied to tap water samples. Chromium(III) was quantitatively recovered by the presented method, while the recovery values for chromium(VI) was below 10%. The influences of analytical parameters including amount of dysprosium(III), pH, centrifugation speed and sample volume for the quantitative precipitation were examined. No interferic effects were observed from alkali, earth alkali and some transition metals for the analyte ions. The detection limits (k = 3, N = 15) were 0.65 {mu}g/L for chromium(III) and 0.78 {mu}g/L for chromium(VI). The validation of the presented method was checked by the analysis of certified reference materials.

  12. Reverse water gas shift reaction over Co-precipitated Ni-CeO2 catalysts

    Institute of Scientific and Technical Information of China (English)

    WANG Luhui; ZHANG Shaoxing; LIU Yuan

    2008-01-01

    The Ni-CeO2 catalysts with different Ni contents were prepared by a co-precipitation method and used for Reverse Water Gas Shift (RWGS) reaction. 2wt.%Ni-CeO2 showed excellent catalytic performance in terms of activity, selectivity, and stability for RWGS reaction. Characterizations of the catalyst samples were conducted by XRD and TPR. The results indicated that, in Ni-CeO2 catalysts, there were three kinds of nickel, nickel ions in ceria lattice, highly dispersed NiO and bulk NiO. Oxygen vacancies were formed in CeO2 lattice due to the incorporation of Ni2+ ions into ceria lattice. Oxygen vacancies formed in ceda lattice and highly dispersed Ni were key active components for RWGS, and bulk Ni was key active component for methanation of CO2.

  13. Co-Precipitation Preparation and Luminescent Behavior of (Y,Gd)BO3∶ Eu Phosphor

    Institute of Scientific and Technical Information of China (English)

    鱼志坚; 黄小卫; 庄卫东; 崔向中; 何华强; 李红卫

    2004-01-01

    (Y,Gd)BO3∶ Eu phosphors were prepared by co-precipitation precursors, and luminescent properties were investigated. The precursors were synthesized by introducing hydroxyl ion to mixed solution of rare earth nitrates and boric acid, either through adding ammonia(precursor 1)or through controlled release of hydroxyl ion of urea(precursor 2). The precursors were fired in air at 1000 ℃ for 2 h. Resulted phosphor synthesized with precursor 1 has non-uniformed particle with mean diameter of about 3 μm, while that with precursor 2 exhibits uniformed near spherical-like morphology with mean diameter of about 300 nm. Phosphors with the two methods exhibit same crystal structure as that of commercial one. Emission spectra of the samples indicate that the sample prepared with precursor 2 shows relative higher intensity(exited by 172 nm VUV)than that prepared with the other precursor.

  14. Luminescence modification of Eu~(3+)-activated molybdate phosphor prepared via co-precipitation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Chunlei; HU Yunsheng; ZHUANG Weidong; HUANG Xiaowei; HE Tao

    2009-01-01

    Eu-activated CaMoO_4 phosphors were co-precipitated in an aqueous solution, and NH_3·H_2O, NH_4HCO_3 and (NH_2)_2CO as pre-cipitating aid agents were compared based on the morphology and particle size distribution of the phosphor samples. Sm~(3+) as sensitizer ion was investigated on the luminescence of CaMoO_4:Eu, and it could strengthen the 406 nm absorption of this phosphor. At last, the scheelite CaMoO_4:Eu and wolframite ZnMoO_4:Eu were selected to compare their host absorption. The result showed that the scheelite molybdate host exhibited stronger UV absorption than wolframite one.

  15. Luminescence modification of Eu3+-activated molybdate phosphor prepared via co-precipitation

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Chunlei

    2009-01-01

    Eu-activated CaMoO4 phosphors were co-precipitated in an aqueous solution, and NH3·H2O, NH4HCO3 and (NH2)2CO as pre-cipitating aid agents were compared based on the morphology and particle size distribution of the phosphor samples. Sm3+ as sensitizer ion was investigated on the luminescence of CaMoO4:Eu, and it could strengthen the 406 nm absorption of this phosphor. At last, the scheelite CaMoO4:Eu and wolframite ZnMoO4:Eu were selected to compare their host absorption. The result showed that the scheelite molybdate host exhibited stronger UV absorption than wolframite one.

  16. Effect of pressure on the size of magnetite nanoparticles in the coprecipitation synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, F., E-mail: fyazdani@ccerci.ac.ir [Chemical Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran (Iran, Islamic Republic of); Edrissi, M., E-mail: edrisi@aut.ac.ir [Chemical Engineering Department, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2010-07-25

    The effect of pressure on the size of magnetite nanoparticles synthesized by the coprecipitation technique was studied. It is generally believed that pressure has negligible effects, if any, on liquid and solid reactions. However, in this work it was shown that pressure has a significant effect on the size of magnetite nanoparticles. This could be attributed to the very high surface-to-volume ratio of nanosized particles and to some other physical properties of magnetite, such as supersaturation and surface tension. The increase in the size of the nanoparticles is explained by the change in the Gibbs free energy value during crystallization from a homogeneous supersaturated solution at higher pressures. This phenomenon could find important applications especially in biomedicine where a limitation on the maximum size of the nanoparticles will be desired.

  17. Characterization of ZnS nanoparticles synthesized by co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    Parvaneh Iranmanesh; Samira Saeedni; Mohsen Nourzpoor

    2015-01-01

    ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated us-ing x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum.

  18. Synthesis of layered double hydroxide nanosheets by coprecipitation using a T-type microchannel reactor

    Science.gov (United States)

    Pang, Xiujiang; Sun, Meiyu; Ma, Xiuming; Hou, Wanguo

    2014-02-01

    The synthesis of Mg2Al-NO3 layered double hydroxide (LDH) nanosheets by coprecipitation using a T-type microchannel reactor is reported. Aqueous LDH nanosheet dispersions were obtained. The LDH nanosheets were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy and particle size analysis, and the transmittance and viscosity of LDH nanosheet dispersions were examined. The two-dimensional LDH nanosheets consisted of 1-2 brucite-like layers and were stable for ca. 16 h at room temperature. In addition, the co-assembly between LDH nanosheets and dodecyl sulfate (DS) anions was carried out, and a DS intercalated LDH nanohybrid was obtained. To the best of our knowledge, this is the first report of LDH nanosheets being directly prepared in bulk aqueous solution. This simple, cheap method can provide naked LDH nanosheets in high quantities, which can be used as building blocks for functional materials.

  19. Magnetic properties of Fe-Ni nanoparticles prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Davarpanah, A M; Sargazi, M [Department of Physics, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of); Mirzae, A A; Feizi, M [Department of Chemistry, University of Sistan and Baluchestan, Zahedan (Iran, Islamic Republic of)], E-mail: A.M.DAVARPANAH@hamoon.usb.ac.ir

    2008-08-15

    Many methods have been extended for the preparation of nanoparticles. One of the most important methods is the chemical wet process, e.g. the co-precipitation method that has been used for the preparation of Fe-Ni nanoparticles by the authors. XRD patterns show that the nanoparticles are amorphous before calcination and crystallized after calcination. SEM images show that the grain size of the Fe-Ni particles is in 50-300 nanometre range and that the texture of the nanoparticles after calcination was smoother than before calcination. Hysteresis loops show that the Fe-Ni nanoparticles are superparamagnetic before calcination, because the carbonate phase still exists in the sample, and that they are ferromagnetic materials after calcination. For 40Fe-60Ni nanoparticles after calcination, H{sub c} = 0.12 and B{sub s} = 4800 Oe, being very different in respect to the bulk 40Fe-60Ni alloy.

  20. Magnetic properties of Fe-Ni nanoparticles prepared by co-precipitation method

    Science.gov (United States)

    Davarpanah, A. M.; Mirzae, A. A.; Sargazi, M.; Feizi, M.

    2008-08-01

    Many methods have been extended for the preparation of nanoparticles. One of the most important methods is the chemical wet process, e.g. the co-precipitation method that has been used for the preparation of Fe-Ni nanoparticles by the authors. XRD patterns show that the nanoparticles are amorphous before calcination and crystallized after calcination. SEM images show that the grain size of the Fe-Ni particles is in 50-300 nanometre range and that the texture of the nanoparticles after calcination was smoother than before calcination. Hysteresis loops show that the Fe-Ni nanoparticles are superparamagnetic before calcination, because the carbonate phase still exists in the sample, and that they are ferromagnetic materials after calcination. For 40Fe-60Ni nanoparticles after calcination, Hc = 0.12 and Bs = 4800 Oe, being very different in respect to the bulk 40Fe-60Ni alloy.

  1. Microstructure of Yttria-Doped Ceria as a Function of Oxalate Co-Precipitation Synthesis Conditions

    Science.gov (United States)

    Brissonneau, Laurent; Mathieu, Aurore; Tormos, Brigitte; Martin-Garin, Anna

    2016-12-01

    In sodium fast reactors (SFR), dissolved oxygen in sodium can be monitored via potentiometric sensors with an yttria-doped thoria electrolyte. Yttria-doped ceria (YDC) was chosen as a surrogate material to validate the process of such sensors. The material must exhibit high density and a fine grain microstructure to be resistant to the corrosion by liquid sodium and thermal shocks. Thus, the oxalic co-precipitation route was chosen to avoid milling steps that could bring impurity incorporation which is suspected to induce grain boundary corrosion in sodium. The powder and sintered pellets examination show that the synthesis conditions are of primary importance on the process yield, the oxalate powder microstructure and, eventually, on the ceramic density and microstructure. The impurity content was limited by controlling the synthesis, calcination, and sintering steps.

  2. Synthesis of LaPO4:Ce, Terbium by Co-Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The synthesis of precursor of green phosphors, LaPO4:Ce, Tb, by means of co-precipitation with cocurrent flow feed was studied. The effects of the reaction temperature, the kind and concentration of the acid in the bottom water, and the charging rate on the physical properties, such as particle size, were investigated. It is found that the particle size of the powder is controllable by adjusting acidity in bottom water and charging rate. The powder with diameter size of 3 to 5 μm was obtained. Its XRD and SEM were analyzed. XRD patterns of the as-prepared green phosphor powders display the typical peaks of CePO4. SEM shows that the morphology of powders is ball-shaped.

  3. Water-dispersed bone morphogenetic protein nanospheres prepared by co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    江兵兵; 高长有; 胡玲; 沈家骢

    2004-01-01

    A modified complex coacervation-co-precipitation method was used to prepare bone morphogenetic protein (BMP)-loaded nanospheres. Three natural polymers were used as packing materials to obtain nanoscale delivery device for BMP,in the presence of phosphatidylcholine functioning as stabilizer. Positively charged polysaccharide, N,N-diethylaminoethyl dex-tran (DEAE-dextran) tended to form stable, uniform and smaller size particles carrying BMP. Negatively charged bovine serum albumin (BSA) induced precipitation of the produced BMP particles due to its weak interaction with BMP molecules, although it produced nanosized BMP spheres. While collagen, a weakly positively charged protein shaped larger particles due to the strong interaction among themselves. A mechanism of co-precipitation process was also deduced to depict the formation of stable nanospheres.

  4. Modified release and antioxidant stable Lagenaria siceraria extract microspheres using co-precipitated starch.

    Science.gov (United States)

    Kulkarni, Sameer D; Sinha, Barij N; Kumar, K Jayaram

    2014-05-01

    Ca-alginate hydrogel beads of Lagenaria siceraria (LS) fruit extract using co-precipitates of LS seed starch and colloidal silicon dioxide (SSD) as filler was studied. Effect of different concentrations of SSD on the encapsulation efficiency, size of microspheres, moisture content and antioxidant potential of the microspheres comprising extract was determined. The chemical composition of ethanolic extract was analysed by LC-MS. The prepared microspheres were characterized by SEM, FTIR and XRD. The incorporation of filler in hydrogel beads modified the micromeritic properties and release profile of LS fruit extract. It is observed that fillers have improved the stability of antioxidant potential of the extract. The application of this technology would improve the stability of LS fruit extract in pharmaceutical and food products.

  5. Y-TZP ceramic processing from coprecipitated powders: a comparative study with three commercial dental ceramics.

    Science.gov (United States)

    Lazar, Dolores R R; Bottino, Marco C; Ozcan, Mutlu; Valandro, Luiz Felipe; Amaral, Regina; Ussui, Valter; Bressiani, Ana H A

    2008-12-01

    (1) To synthesize 3mol% yttria-stabilized zirconia (3Y-TZP) powders via coprecipitation route, (2) to obtain zirconia ceramic specimens, analyze surface characteristics, and mechanical properties, and (3) to compare the processed material with three reinforced dental ceramics. A coprecipitation route was used to synthesize a 3mol% yttria-stabilized zirconia ceramic processed by uniaxial compaction and pressureless sintering. Commercially available alumina or alumina/zirconia ceramics, namely Procera AllCeram (PA), In-Ceram Zirconia Block (CAZ) and In-Ceram Zirconia (IZ) were chosen for comparison. All specimens (6mmx5mmx5mm) were polished and ultrasonically cleaned. Qualitative phase analysis was performed by XRD and apparent densities were measured on the basis of Archimedes principle. Ceramics were also characterized using SEM, TEM and EDS. The hardness measurements were made employing Vickers hardness test. Fracture toughness (K(IC)) was calculated. Data were analyzed using one-way analysis of variance (ANOVA) and Tukey's test (alpha=0.05). ANOVA revealed that the Vickers hardness (pceramic materials composition. It was confirmed that the PA ceramic was constituted of a rhombohedral alumina matrix, so-called alpha-alumina. Both CAZ and IZ ceramics presented tetragonal zirconia and alpha-alumina mixture of phases. The SEM/EDS analysis confirmed the presence of aluminum in PA ceramic. In the IZ and CAZ ceramics aluminum, zirconium and cerium in grains involved by a second phase containing aluminum, silicon and lanthanum were identified. PA showed significantly higher mean Vickers hardness values (H(V)) (18.4+/-0.5GPa) compared to vitreous CAZ (10.3+/-0.2GPa) and IZ (10.6+/-0.4GPa) ceramics. Experimental Y-TZP showed significantly lower results than that of the other monophased ceramic (PA) (pceramics (pceramic processing conditions led to ceramics with mechanical properties comparable to commercially available reinforced ceramic materials.

  6. Speciation analysis of 129I in seawater using coprecipitation and accelerator mass spectrometry and its applications

    DEFF Research Database (Denmark)

    Xing, Shan; Hou, Xiaolin; Aldahan, Ala

    2017-01-01

    Speciation analysis of long-lived 129I in seawater can provide useful information on the source of water masses. This paper presents an improved method for speciation analysis of 129I based on coprecipitation of iodide as AgI with Ag2SO3 and AgCl. By adding a small amount of 127I carrier, the sep...

  7. Properties and reactivity of Fe-organic matter associations formed by coprecipitation versus adsorption: Clues from arsenate batch adsorption

    Science.gov (United States)

    Mikutta, Robert; Lorenz, Dennis; Guggenberger, Georg; Haumaier, Ludwig; Freund, Anja

    2014-11-01

    Ferric oxyhydroxides play an important role in controlling the bioavailability of oxyanions such as arsenate and phosphate in soil. Despite this, little is known about the properties and reactivity of Fe(III)-organic matter phases derived from adsorption (reaction of organic matter (OM) to post-synthesis Fe oxide) versus coprecipitation (formation of Fe oxides in presence of OM). Coprecipitates and adsorption complexes were synthesized at pH 4 using two natural organic matter (NOM) types extracted from forest floor layers (Oi and Oa horizon) of a Haplic Podzol. Iron(III) coprecipitates were formed at initial molar metal-to-carbon (M/C) ratios of 1.0 and 0.1 and an aluminum (Al)-to-Fe(III) ratio of 0.2. Sample properties were studied by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2 gas adsorption, dynamic light scattering, and electrophoretic mobility measurements. Arsenic [As(V)] adsorption to Fe-OM phases was studied in batch experiments (168 h, pH 4, 100 μM As). The organic carbon (OC) contents of the coprecipitates (82-339 mg g-1) were higher than those of adsorption complexes (31 and 36 mg g-1), leading to pronounced variations in specific surface area (9-300 m2 g-1), average pore radii (1-9 nm), and total pore volumes (11-374 mm3 g-1) but being independent of the NOM type or the presence of Al. The occlusion of Fe solids by OM (XPS surface concentrations: 60-82 atom% C) caused comparable pHPZC (1.5-2) of adsorption complexes and coprecipitates. The synthesis conditions resulted in different Fe-OM association modes: Fe oxide particles in 'M/C 0.1' coprecipitates covered to a larger extent the outermost aggregate surfaces, for some 'M/C 1.0' coprecipitates OM effectively enveloped the Fe oxides, while OM in the adsorption complexes primarily covered the outer aggregate surfaces. Despite of their larger OC contents, adsorption of As(V) was fastest to coprecipitates formed at low Fe availability (M/C 0.1) and facilitated by desorption of weakly

  8. Carrier element-free coprecipitation (CEFC) method for the separation, preconcentration and speciation of chromium using an isatin derivative

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Volkan Numan; Ozdes, Duygu; Bekircan, Olcay; Gundogdu, Ali; Duran, Celal [Department of Chemistry, Karadeniz Technical University, Faculty of Arts and Sciences, 61080 Trabzon (Turkey); Soylak, Mustafa [Department of Chemistry, Erciyes University, Faculty of Arts and Sciences, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr

    2009-01-19

    A new, simple, rapid and sensitive separation, preconcentration and speciation procedure for chromium in environmental liquid and solid samples has been established. The present speciation procedure for Cr(III) and Cr(VI) is based on combination of carrier element-free coprecipitation (CEFC) and flame atomic absorption spectrometric (FAAS) determinations. In this method a newly synthesized organic coprecipitant, 5-chloro-3-[4-(trifluoromethoxy) phenylimino]indolin-2-one (CFMEPI), was used without adding any carrier element for coprecipitation of chromium(III). After reduction of chromium(VI) by concentrated H{sub 2}SO{sub 4} and ethanol, the procedure was applied for the determination of total chromium. Chromium(VI) was calculated as the difference between the amount of total chromium and chromium(III). The optimum conditions for coprecipitation and speciation processes were investigated on several commonly tested experimental parameters, such as pH of the solution, amount of coprecipitant, sample volume, etc. No considerable interference was observed from the other investigated anions and cations, which may be found in natural water samples. The preconcentration factor was found to be 40. The detection limit for chromium(III) corresponding to three times the standard deviation of the blank (N = 10) was found 0.7 {mu}g L{sup -1}. The present procedure was successfully applied for speciation of chromium in several liquid and solid environmental samples. In order to support the accuracy of the method, the certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) were analyzed, and standard APDC-MIBK liquid-liquid extraction method was performed. The results obtained were in good agreement with the certified values.

  9. Structural and magnetic properties of holmium substituted cobalt ferrites synthesized by chemical co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Irshad; Islam, M.U.; Ishaque, M.; Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan); Naeem Ashiq, Muhammad, E-mail: naeemashiqqau@yahoo.com [Department of Chemistry, Bahauddin Zakariya University, Multan (Pakistan); Rana, M.U. [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan)

    2012-11-15

    CoHo{sub x}Fe{sub 2-x}O{sub 4} ferrites (x=0.00-0.1) were prepared by the co-precipitation technique and the effect of holmium substitution on the magnetic properties was investigated. X-ray diffraction reveals that the substituted samples show a second phase of HoFeO{sub 3} along with the spinel phase. The magnetic properties such as the saturation magnetization (M{sub s}), coercivity (H{sub c}) and remanence (M{sub r}) are obtained from the hysteresis loops. It is observed that the M{sub s} decreases while H{sub c} increases with Ho{sup 3+} substitution. The decrease of saturation magnetization is attributed to the weakening of exchange interactions. The coercivity increases with increase of the Ho{sup 3+} concentration, which is attributed to the presence of an ultra-thin layer at the grain boundaries that impedes the domain wall motion. Low field AC susceptibility was also measured over the temperature range 300-600 K at the frequency of 200 Hz. It decreases with the increase of temperature following the Curie-Weiss law up to the Curie temperature. Above the Curie temperature it shows paramagnetic behavior. The increase in coercivity suggests that the material can be used for applications in perpendicular recording media. - Highlights: Black-Right-Pointing-Pointer CoHo{sub x}Fe{sub 2-x}O{sub 4} ferrites (x=0.00, 0.04, 0.06, 0.08, 1.0) were prepared by the simple and economic co-precipitation technique. Black-Right-Pointing-Pointer X-ray diffraction reveals that the samples are biphasic except for the undoped sample. Black-Right-Pointing-Pointer Decrease in saturation magnetization is attributed to the weakening of the exchange interactions. Black-Right-Pointing-Pointer Coercivity increases with increase of the Ho{sup 3+} concentration. Black-Right-Pointing-Pointer Increase in coercivity suggests that the materials can be used for applications in perpendicular recording media.

  10. Synthesis and formation of TlSr1212 superconductors from coprecipitated oxalate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Salleh, F.Md. [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)]. E-mail: faizah163@salam.uitm.edu.my; Yahya, A.K. [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Imad, H. [Faculty of Science and Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Jumali, M.H. [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2005-10-01

    TlSr1212 superconductors were synthesized by solid-state reaction using Tl-containing precursor powder prepared by coprecipitation of metal acetates with stoichiometric ratio based on Tl{sub 0.8}Bi{sub 0.2}Sr{sub 2}Ca{sub 0.8}Y{sub 0.2}Cu{sub 2}O{sub 7{+-}}{sub {delta}} composition. The samples were sintered at temperatures between 870 and 980 deg. C for different durations. XRD patterns for samples sintered at 870 deg. C showed formation of dominant 1212 phase in addition to minor 1201 phase and SrCO{sub 3} impurity. At this sintering temperature, the best superconducting behavior with T {sub czero} of 94 K was observed for the sample sintered for 60 min. SEM investigations on the sample revealed elongated grains with a slight directional grain alignment. Effect of using metal acetates with a slightly different starting stoichiometric ratio of Tl{sub 0.96}Bi{sub 0.2}Sr{sub 1.6}Ca{sub 0.8}Y{sub 0.2}Cu{sub 2}O{sub 7{+-}}{sub {delta}} was also investigated.

  11. Room temperature ferromagnetism in Mn doped ZnO: Co nanoparticles by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivelu, V.; Selvadurai, A. Paul Blessington [Department of Physics, Anna University, Chennai 600044 (India); Zhao, Yongsheng; Thiyagarajan, R. [Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai 201203 (China); Murugaraj, R., E-mail: r.murugaraj@gmail.com [Department of Physics, Anna University, Chennai 600044 (India)

    2016-01-15

    In this present work, the Mn{sup 2+} and Co{sup 2+} ions doping and co-doping effect on the structural, vibrational, morphological, optical and magnetic behaviors of ZnO based dilute magnetic semiconductors are reported. The Zn{sub 0.95}Co{sub 0.05}O (ZC), Zn{sub 0.95}Mn{sub 0.05}O (ZM) and Zn{sub 0.90}Co{sub 0.05}Mn{sub 0.05}O (ZCM) samples were prepared by co-precipitation method. From the XRD analysis, it was observed that on the doping of Mn{sup 2+} ion in ZnO matrix, decreases their crystalline nature as well as the crystallite size significantly. The Raman spectra, Photoluminescence and electron paramagnetic resonance spectroscopy measurements reveal that the presence of defects in prepared samples. The UV-DRS spectroscopic exhibits the incorporation of dopant ions and their effect on the band gap subsequently. The magnetization measurements suggest the room temperature ferromagnetism (RTFM) in the prepared samples. The observed RTFM phenomenon was discussed based on the defects and grain confinement.

  12. Structural Characterization of Spinel Zinc Aluminate Nanoparticles Prepared By Coprecipitation Method

    Science.gov (United States)

    Sunder, Shyam; Rohilla, Sunil; Kumar, Sushil; Aghamkar, Praveen

    2011-12-01

    Zinc aluminate is well known wide bandgap semiconductor with cubic spinel structure and transparent for wavelength greater than 320 nm. Therefore, ZnAl2O4 can be used for ultraviolet photoelectronic devices. Furthermore, spinel zinc aluminate is useful in many reactions as catalytic support. Moreover, zinc aluminate can be used as second phase in glaze layer of white ceramics to improve wear resistance and to preserve whiteness. In present study cubic spinel zinc aluminate nanoparticles have been synthesized from aqueous solution of Zn(NO3)2.6H2O (0.1 M) and Al(NO3)2.9H2O (0.2 M) using chemical coprecipitation technique. Ammonium hydroxide was used as precipitating agent and pH was maintained between 8 to 9. The precipitated slurry was filtered and washed several times with deionized double distilled water and dried at 110 °C. The fine powder was annealed at different temperatures from 600 °C to 900 °C for 4h in temperature controlled furnace. Structural characterization of annealed samples was carried out via X-ray Diffraction (XRD), and Fourier Transform Infrared spectroscopy (FTIR). XRD patterns reveal that zinc aluminate samples were cubic spinel nanoparticles and grain size determined by Debye-Scherrer formula is from 5 to 16 nm.

  13. Functionalization of emissive conjugated polymer nanoparticles by coprecipitation: consequences for particle photophysics and colloidal properties

    Science.gov (United States)

    Singh, Amita; Bezuidenhout, Michael; Walsh, Nichola; Beirne, Jason; Felletti, Riccardo; Wang, Suxiao; Fitzgerald, Kathleen T.; Gallagher, William M.; Kiely, Patrick; Redmond, Gareth

    2016-07-01

    The functionalization of polyfluorene (PFO) nanoparticles by coprecipitation of the conjugated polymer with an amphiphilic comb polymer, consisting of a hydrophobic polystyrene backbone with hydrophilic, carboxylic acid-terminated polyethylene oxide side-chains (PS-PEG-COOH), is investigated. The comb polymer affects the properties of the formed hybrid nanoparticles. Non-functionalized particles are typically larger (28 nm) than functionalized ones (20 nm); peak molar extinction coefficients are found to differ in a similar trend. Zeta potentials are negative, consistent with negative surface charge on PFO particles due to chemical defect formation, with additional charge on functionalized particles due to the pendant carboxylic acid groups. Emission quantum yields of functionalized particles are typically larger, consistent with lower efficiency of energy transfer to quenchers in smaller particles and weaker PFO interchain interactions due to chain dilution. The trend in per-particle fluorescence brightness values, as confirmed by single particle fluorescence imaging, reflects the nanoparticle extinction coefficients. Photostability studies on aqueous dispersions of hybrid particles indicate mild photobrightening under continuous illumination while PFO particles exhibit slow exponential emission decay. Functionalized particles are also resistant to aggregation during exposure to adenocarcinoma cells. Generally, the hybrid particles exhibit more favorable time-, pH- and medium-dependent stabilities, likely due to steric and electrostatic stabilization by PEG-carboxylic acid functionalities. Overall, the functionalized particles exhibit attractive properties: Reasonably small size, tight size distribution, high absorption cross section, radiative rate and emission quantum yield, excellent brightness and photostability, and good colloidal stability.

  14. Structural Characterization of Polymer-Clay Nanocomposites Prepared by Co-Precipitation Using EPR Techniques

    Directory of Open Access Journals (Sweden)

    Udo Kielmann

    2014-02-01

    Full Text Available Polymer-clay nanocomposites (PCNCs containing either a rubber or an acrylate polymer were prepared by drying or co-precipitating polymer latex and nanolayered clay (synthetic and natural suspensions. The interface between the polymer and the clay nanoparticles was studied by electron paramagnetic resonance (EPR techniques by selectively addressing spin probes either to the surfactant layer (labeled stearic acid or the clay surface (labeled catamine. Continuous-wave (CW EPR studies of the surfactant dynamics allow to define a transition temperature T* which was tentatively assigned to the order-disorder transition of the surfactant layer. CW EPR studies of PCNC showed that completely exfoliated nanoparticles coexist with agglomerates. HYSCORE spectroscopy in PCNCs showed couplings within the probe −assigned with DFT computations− and couplings with nuclei of the environment, 1H and 23Na for the surfactant layer probe, and 29Si, 7Li, 19F and 23Na for the clay surface probe. Analysis of these couplings indicates that the integrity of the surfactant layer is conserved and that there are sizeable ionic regions containing sodium ions directly beyond the surfactant layer. Simulations of the very weak couplings demonstrated that the HYSCORE spectra are sensitive to the composition of the clay and whether or not clay platelets stack.

  15. Synthesis of mono and multidomain YIG particles by chemical coprecipitation or ceramic procedure

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garcia, L. [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Suarez, M., E-mail: m.suarez@cinn.e [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo - UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain); Menendez, J.L. [Departamento de Materiales Nanoestructurados, Centro de Investigacion en Nanomateriales y Nanotecnologia (CINN), Principado de Asturias - Consejo superior de Investigaciones Cientificas (CSIC) - Universidad de Oviedo -UO, Parque Tecnologico de Asturias, 33428 Llanera, Asturias (Spain)

    2010-04-09

    Yttrium iron garnet powders have been synthesized by chemical coprecipitation using two different precursors, nitrates and chlorides, and by an oxides mixture route. It is shown that depending on the precursors and synthesis conditions used pure yttrium iron garnet powders can be obtained with a mono or multidomain magnetic behaviour. The yttrium iron garnet crystalline structure, as studied by Raman spectroscopy, was already formed after calcination at temperatures as low as 800 {sup o}C when the nitrate precursors were used. However, calcination temperatures of up to 1100 {sup o}C were required to obtain yttrium iron garnet powders when the precursors were chlorides or when the oxides mixture route was chosen. The saturation magnetization of the powders correlates well with the structural characterization: when nitrate precursors were used, the saturation magnetization was already close to the bulk value, 26.8 emu/cm{sup 3}, after calcination at 800 {sup o}C. However, the saturation magnetization of the powders obtained by the chlorides and oxides mixture routes was close to zero up to calcination temperatures of 1100 {sup o}C. Finally, both the chlorides and the oxides mixture routes yield multidomain micron sized yttrium iron garnet powders, whereas the nitrates route led to monodomain submicron sized powders.

  16. Magnetic Properties of La/Ni-Substituted Strontium Hexaferrite Nanoparticles Prepared by Coprecipitation at Optimal Conditions

    Science.gov (United States)

    Ghanbari, F.; Arab, A.; Shishe Bor, M.; Mardaneh, M. R.

    2017-04-01

    La/Ni-substituted strontium hexaferrite Sr0.8La0.2Ni x Fe12- x O19 ( x = 0.2 to 1.0 in steps of 0.2) nanoparticles have been produced by a coprecipitation method at reaction and calcination temperature of 80°C and 1200°C, respectively. X-ray diffraction (XRD) analysis confirmed formation of single-phase M-type hexaferrite structure. The average crystallite size and morphology of the nanoparticles were obtained from XRD analysis and transmission electron microscopy (TEM), respectively. The magnetic properties in magnetic field of 12 kOe obtained from room-temperature hysteresis loops revealed minimum and maximum magnetization for x = 0.4 and 0.8, respectively, a behavior attributed to the ionic radii of the substituted cations, canted spin structure, electron hopping between cations, and the substitutional sites of the ions. It was also confirmed that the magnetization of nanoscale particles was lower than that of bulk material, which can be explained based on the different behavior of surface versus bulk atoms. The coercivity varied with x in a similar way to the magnetization, being related to sample anisotropy. In the M-type hexaferrite structure, substitution of Fe3+ by Ni2+ occurred at octahedral sites, making the greatest contribution to the anisotropy.

  17. Effect of Calcination at Synthesis of Mg-Al Hydrotalcite Using co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Niar Kurnia Julianti

    2017-01-01

    Full Text Available The use of hydrotalcite in catalysis has wide attention in academic research and industrial parties. Based on its utilization, hydrotalcite can be active catalyst or support. This research is focused on the investigation of characteristic like spesific surface area of Mg-Al hydrotalcite which is prepared with different temperature of calcination. Synthesis of Mg-Al hydrotalcites with Mg/Al molar ratio 3:1 were prepared by co-precipitation method. Mg(NO33.6H2O and Al(NO33.9H2O as precursors of Mg-Al hydrotalcite. Na2CO3 was used as precipitant agent and NaOH was used as buffer solution. The solution was mixed and aging for 5 hours at 650oC. The dried precipitate was calcined at 2500oC, 3500oC, 4500oC, 5500oC and 6500oC. The characterization of functional group was determined by Fourier Transform Infra Red (FT-IR. The Identical peaks diffractogram were analyzed by X-Ray Diffraction (XRD. The spesific surface area was determined by adsorption-desorption of nitrogen. The largest surface area that obtained from the calcination temperature of 650oC is 156.252 m2/g.

  18. Synthesis of strontium hexaferrite nanoparticles prepared using co-precipitation method and microemulsion processing

    Science.gov (United States)

    Drmota, A.; Žnidaršič, A.; Košak, A.

    2010-01-01

    Strontium hexaferrite (SrFe12O19) nanoparticles have been prepared with co-precipitation in aqueous solutions and precipitation in microemulsion system water/SDS/n-butanol/cyclohexane, using iron and strontium nitrates in different molar rations as a starting materials. The mixed Sr2+, Fe3+ hydroxide precursors obtained during the reaction between corresponding metal nitrates and tetramethylammonium hydroxide (TMAH), which served as a precipitating reagent, were calcined in a wide temperature range, from 350 °C to 1000 °C in a static air atmosphere. The influence of the Sr2+/Fe3+ molar ratio and the calcination temperature to the chemistry of the product formation, its crystallite size, morphology and magnetic properties were investigated. It was found that the formation of single phase SrFe12O19 with relatively high specific magnetization (54 Am2/kg) was achieved at the Sr2+/Fe3+ molar ration of 6.4 and calcination at 800 °C for 3h with heating/cooling rate 5 °C/min. The prepared powders were characterized using X-ray diffractometry (XRD) and specific surface area measurements (BET). The specific magnetization (DSM-10, magneto-susceptometer) of the prepared samples was measured.

  19. Synthesis and photocatalytic performances of BiVO 4 by ammonia co-precipitation process

    Science.gov (United States)

    Yu, Jianqiang; Zhang, Yan; Kudo, Akihiko

    2009-02-01

    This paper reports the preparation and photocatalytic performance of Bismuth vanadate (BiVO 4) by a facile and inexpensive approach. An amorphous BiVO 4 was first prepared by a co-precipitation process from aqueous solutions of Bi(NO 3) 3 and NH 4VO 3 using ammonia. Followed by heating treatment at various temperatures, the amorphous phase converted to crystalline BiVO 4 with a structure between monoclinic and tetragonal scheelite. The crystallization of BiVO 4 occurred at about 523 K, while the nanocrystalline BiVO 4 were formed with a heat-treatment of lower than 673 K. However, when the heat-treatment was carried out at 773 K, the accumulation of nanocrystals to bulk particles was observed. The photocatalytic performances of the materials were investigated by O 2 evolution under visible-light, and MB decomposition under solar simulator. The results demonstrated that the crystalline structure is still the vital factor for the activities of both reactions. However, the crystallinity of BiVO 4 gives a major influence on the activity of O 2 evolution, whereas the surface area, plays an important role for photocatalytic MB decomposition.

  20. Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles.

    Science.gov (United States)

    Pidchenko, Ivan; Kvashnina, Kristina O; Yokosawa, Tadahiro; Finck, Nicolas; Bahl, Sebastian; Schild, Dieter; Polly, Robert; Bohnert, Elke; Rossberg, André; Göttlicher, Jörg; Dardenne, Kathy; Rothe, Jörg; Schäfer, Thorsten; Geckeis, Horst; Vitova, Tonya

    2017-02-21

    Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).

  1. Immobilization of bile salt hydrolase enzyme on mesoporous SBA-15 for co-precipitation of cholesterol.

    Science.gov (United States)

    Bhange, Pallavi; Sridevi, N; Bhange, Deu S; Prabhune, Asmita; Ramaswamy, Veda

    2014-02-01

    We describe herein a simple and effective strategy for immobilization of bile salt hydrolase enzyme by grafting glutaraldehyde groups inside channels of APTES functionalized SBA-15. The increase in glutaraldehyde concentration prevents leakage of enzyme but showed a steep decrease in enzyme activity in the immobilized matrix. So the degree of cross-linking should be the minimum possible to ensure sufficient stability without loss of activity. Cross-linking carried out with 0.1% glutaraldehyde concentration showed the highest activity, so this was used in all further experiments. Physico-chemical characterizations of the immobilized enzyme were carried out by XRD, N2 adsorption, TEM, FTIR and (29)Si CP-MAS NMR techniques. Immobilized BSH exhibits enhanced stability over a wide pH (3-11) and temperature range (40-80 °C) and retains an activity even after recycling experiments and six months of storage. From our in vivo research experiment toward co-precipitation of cholesterol, we have shown that immobilized BSH enzyme may be the promising catalyst for the reduction of serum cholesterol levels in our preliminary investigation. Enhancement in pH stability at the extreme side of pH may favor the use of immobilized BSH enzyme for drug delivery purpose to with stand extreme pH conditions in the gastrointestinal conditions.

  2. Heating ability and hemolysis test of magnetite nanoparticles obtained by a simple co-precipitation method

    Directory of Open Access Journals (Sweden)

    B.I. Macías-Martínez

    2016-08-01

    Full Text Available The present paper reports the heating ability and hemolysis test of magnetite nanoparticles (MNPs for biomedical applications, obtained by a novel and easy co-precipitation method, in which it is not necessary the use of controlled atmospheres and high stirring rates. Different molar proportions of FeCl2:FeCl3 (2:1 and 3:2 respectively were used and the obtained MNPs were analyzed by X-ray diffraction, vibrating sample magnetometry and transmission electron microscopy. The heating ability was evaluated under a magnetic field using a solid state induction heating equipment at two different frequencies (362 and 200 kHz. Additionally, a hemolysis test was performed according to the ASTM method. The obtained ferrites showed a particle size in the range of 8–12 nm and superparamagnetic behavior. The MNPs increased the temperature up to 43.1 °C in 5 min under a low magnetic field and showed non hemolytic effect up to 3 mg/ml. The MNPs obtained are highly potential materials for hyperthermia cancer treatment.

  3. Structural and magnetic properties of calcium doped nickel ferrite nanoparticles by co-precipitation method

    Science.gov (United States)

    Vigneswari, T.; Raji, P.

    2017-01-01

    It is a truism that a sequence of calcium doped nickel ferrite (with x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0) nanoparticles are combined by co-precipitation technique. X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) scrutinize the formation of single-phase inverse spinel structure in all the compositions. The lattice framework increases with the increase in calcium concentration and it exhibits the development of unit cell. Crystallite size in the range of 22-34 nm is viewed and also augmented the level of calcium. The elemental composition of pure and calcium doped nickel ferrite has been procured from Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Energy Dispersive X-ray analysis (EDX). It is interesting to note that the substitution of calcium increasingly exerts influence on the magnetic characteristics. These observations paved the way for the room temperature of magnetization measurements. The saturation magnetization and the experimental value of magnetic moment are noticed to enlarge initially up to x = 0.2, and then decrease incessantly with increase in the Ca content x. The increase and the decrease of saturation magnetization have widely been expounded by Neel's collinear two-sublattice model and Yafet-Kittel (Y-K) three-sub lattice model.

  4. Cerium and neodymium co-precipitation in molten chloride by wet argon sparging

    Energy Technology Data Exchange (ETDEWEB)

    Vigier, J.F. [CEA, Nuclear Energy Division, RadioChemistry and Processes Department, SMCS/LEPS, F-30207 Bagnols sur Ceze (France); Unite de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Renard, C., E-mail: catherine.renard@ensc-lille.fr [Unite de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France); Laplace, A. [CEA, Nuclear Energy Division, RadioChemistry and Processes Department, SMCS/LEPS, F-30207 Bagnols sur Ceze (France); Lacquement, J. [CEA, Nuclear Energy Division, DTEC/DIR, F-30207 Bagnols sur Ceze (France); Abraham, F. [Unite de Catalyse et de Chimie du Solide, UCCS UMR CNRS 8181, Univ. Lille Nord de France, ENSCL-USTL, B.P. 90108, 59652 Villeneuve d' Ascq Cedex (France)

    2013-01-15

    Co-precipitations of cerium (III) and neodymium (III) at 10 wt.% in LiCl-CaCl{sub 2} (30-70 mol%) molten salt at 705 Degree-Sign C have been achieved using an original way of precipitation, wet argon sparging. Several CeCl{sub 3}/NdCl{sub 3} ratios have been studied, and the isolated powders were analyzed using different characterization methods including XRD investigations. The lanthanides precipitation yields have been determined around 99.9% using ICP-AES analysis. XRD demonstrated that the precipitates mainly contained mixed oxychloride (Ce{sub 1-x}Nd{sub x})OCl and a small amount of the mixed oxide Ce{sub 1-y}Nd{sub y}O{sub 2-0.5y}. Calcination of these precipitates has resulted in the cerium and neodymium mixed oxides. For the precipitation with a Ce/Nd = 50/50 ratio, an hydroxychloride Ln(OH){sub 2}Cl and the oxychloride Ce{sup IV}(Nd{sub 0.7}Ce{sub 0.3}){sup III}O{sub 3}Cl have been identified as unexpected intermediate compounds.

  5. Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method.

    Science.gov (United States)

    Kalantari, Katayoon; Bin Ahmad, Mansor; Shameli, Kamyar; Khandanlou, Roshanak

    2013-01-01

    The aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe(3)O(4)) nanoparticles on talc layers using an environmentally friendly process. The Fe(3)O(4) magnetic nanoparticles were synthesized using the chemical co-precipitation method on the exterior surface layer of talc mineral as a solid substrate. Ferric chloride, ferrous chloride, and sodium hydroxide were used as the Fe(3)O(4) precursor and reducing agent in talc. The talc was suspended in deionized water, and then ferrous and ferric ions were added to this solution and stirred. After the absorption of ions on the exterior surface of talc layers, the ions were reduced with sodium hydroxide. The reaction was carried out under a nonoxidizing oxygen-free environment. There were not many changes in the interlamellar space limits (d-spacing = 0.94-0.93 nm); therefore, Fe(3)O(4) nanoparticles formed on the exterior surface of talc, with an average size of 1.95-2.59 nm in diameter. Nanoparticles were characterized using different methods, including powder X-ray diffraction, transmission electron microscopy, emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. These talc/Fe(3)O(4) nanocomposites may have potential applications in the chemical and biological industries.

  6. Co-Precipitation Synthesis of Gadolinium Aluminum Gallium Oxide (GAGG) via Different Precipitants

    Science.gov (United States)

    Sun, Yan; Yang, Shenghui; Zhang, Ye; Jiang, Jun; Jiang, Haochuan

    2014-02-01

    In order to obtain a uniform transparent ceramic scintillator, well-dispersed fine starting powders with high-purity, small grain size, spherical morphology and high sinter-ability are necessary. In this study, Ce3+ doped gadolinium aluminum gallium garnet Gd3Al3Ga2O12 (GAGG) powders were synthesized by the co-precipitation method. NH4OH, NH4HCO3 and the mixed solution of NH4OH and NH4HCO3 were used as precipitants, respectively. The precursor composition, phase formation process, microstructure, morphology, particle size distribution and luminescent properties of obtained GAGG powders were measured. The results show that powders prepared using the mixed precipitant exhibit the best microstructural morphology, good sinter-ability and highest luminescent intensity. Pure GAGG polycrystalline powders could be obtained at about 950°C for 1.5 h and the average size of the particles is about 50 nm. The photoluminescence spectrum shows a strong green-yellow emission near 540 nm.

  7. Effect of Calcination Conditions on the Performance of Co-precipitation Catalyst

    Directory of Open Access Journals (Sweden)

    Lin Kai

    2016-01-01

    Full Text Available The Fe-Co-Ce composite catalysts were prepared by co-precipitation method, and the effect of calcination temperature and calcination time on the performances of the Fe-Co-Ce composite catalysts were investigated. The results indicated that the optimum calcination temperature and calcination time of the Fe-Co-Ce composite catalysts were 450 °C and 7 h, respectively. Using the catalysts which prepared under the optimum calcination conditions catalytic wet oxidation of methyl orange simulated wastewater, after 90 min, the COD, COD removal rate, absorbance, decolorization rate and pH of the methyl orange simulated wastewater were 737.7, 70.5%, 0.348, 95.3%, and 5.31, respectively. According to the analyses of the SEM, FTIR, and TG-DTA curves, the components of the catalysts which prepared under the optimum calcination conditions distributed evenly, and the chemical compositions of the catalysts including C-O, -OH, and H-O-H, showing a good thermal stability.

  8. Methane Decomposition into Carbon Fibers over Coprecipitated Nickel-Based Catalysts

    Institute of Scientific and Technical Information of China (English)

    Yan Ju; Fengyi Li; Renzhong Wei

    2005-01-01

    Decomposition of methane in the presence of coprecipitated nickel-based catalysts to produce carbon fibers was investigated. The reaction was studied in the temperature range of 773 K to 1073 K.At 1023 K, the catalytic activities of three catalysts kept high at the initial period and then decreased with the reaction time. The lifetimes of Ni-Cu-Al and Ni-La-Al catalysts are longer than that of Ni-Al catalyst. With three catalysts, the yield of carbon fibers was very low at 773 K. The yield of carbon fibers for Ni-La-Al catalyst was more than those for Ni-Al and Ni-Cu-Al catalysts. For Ni-La-Al catalyst, the elevation of temperature from 873 K up to 1073 K led gradually to an increase in the yield of carbon fibers.XRD studies on the Ni-La-Al catalyst indicate that La2NiO4 was formed. The formation of La2NiO4 is responsible for the increase in the catalytic lifetime and the yield of carbon fibers synthesized on Ni-La-Al at 773-1073 K. Carbon fibers synthesized on Ni-Al catalyst are thin, long carbon nanotubes. There are bamboo-shaped carbon fibers synthesized on Ni-Cu-Al catalyst. Carbon fibers synthesized on Ni-La-Al catalyst have large hollow core, thin wall and good graphitization.

  9. Tunable Band Gap Energy of Mn-Doped ZnO Nanoparticles Using the Coprecipitation Technique

    Directory of Open Access Journals (Sweden)

    Tong Ling Tan

    2014-01-01

    Full Text Available A simple coprecipitation technique was introduced to form manganese (Mn doped on zinc oxide (ZnO nanoparticles effectively. Based on our morphological studies, it was revealed that mean particle size was increased while bigger agglomeration of nanoparticles could be observed as the amount of concentration of Mn was increased. Interestingly, it was found that the position of the absorption spectra was shifted towards the lower wavelength (UV region as correlated with the increasing of Mn dopants concentration into ZnO nanoparticles. This result inferred that optimum content of Mn doped into the ZnO nanoparticles was crucial in controlling the visible/UV-responsive of samples. In the present study, 3 mol% of Mn dopants into the ZnO nanoparticles exhibited the better UV as well as visible light-responsive as compared to the other samples. The main reason might be attributed to the modification of electronic structure of ZnO nanoparticles via lattice doping of Mn ions into the lattice, whereas excessive Mn dopants doped on ZnO nanoparticles caused the strong UV-responsive due to the more 3d orbitals in the valence band.

  10. Co-precipitation synthesis of lutetium aluminum garnet (LuAG) powders: The influence of ethanol

    Science.gov (United States)

    Pan, Liangjie; Jiang, Benxue; Fan, Jintai; Zhang, Pande; Mao, Xiaojian; Zhang, Long

    2017-09-01

    Aluminum Garnet (LuAG) precursors were co-precipitated by using ethanol-water as the precipitant solvent. The effect of different volume ratios of ethanol to water (R) on the preparation of pure-phase LuAG powders has been mainly studied. The evolution of phase, composition and micro-structure of the as-synthesized LuAG powders were characterized by TG/DTA, FTIR, XRD, BET, and SEM. The BET-equivalent diameter of LuAG nano particles increased with R. The ethanol-water solvent does not change the main composition of the LuAG precursors, but has great influence on the morphology of the final LuAG nano particles. Uniformly dispersed LuAG powders calcined at 1200 °C for 3 h with a particle size of approximately 120 nm were obtained by using ethanol-water solvent with proper R = 1. The mechanism of ethanol in the preparation process was discussed.

  11. Effects of Heating Processing on Microstructure and Magnetic Properties of Mn-Zn Ferrites Prepared via Chemical Co-precipitation

    Institute of Scientific and Technical Information of China (English)

    CHEN Shijie; XIA Jingbing; DAI Jianqing

    2015-01-01

    The fine powders of Mn-Zn ferrites with uniform size were prepared via chemical co-precipitation method. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM), frequency dependence of permeability and metallographical microscope were used to investigate the crystal structure, surface topography and magnetic properties of the powders and the sintering samples. The experimental results demonstrate that the precursor powders have formed a pure phase cubic spinel MnxZn1-xFe2O4 while in the reactor and show deifnite magnetism, which can solve the dififcult issue in washing process effectively. When calcined beneath 450℃, the powders have intact crystal form and the crystallite size is less than 20 nm. Comparison tests of sintering temperatures show that 1 300℃ is the ideal sintering temperature for Mn-Zn ferrites prepared by using the chemical co-precipitation.

  12. SrAl2O4 :Eu2+, Dy3+ Long Afterglow Phosphors Prepared by Chemical Coprecipitation Method

    Institute of Scientific and Technical Information of China (English)

    Sun Yanbin; Qiu Guanming; Zhang Shengqu; Zhang Ming; Yan Changhao; Dai Shaojun

    2004-01-01

    SrAl2 O4: Eu2+ , Dy3+ long afterglow phosphors were prepared by chemical coprecipitation method. Ammonium carbonate and ammonium hydrogen carbonate were used as the precipitants. The preparation of the SrAl2 O4: Eu2+ ,Dy3 + precursor was completed at room temperature by controlling the concentration of the metal-salt solution, pH value of the system, etc. The phosphors were prepared by sintering the precursor at 1000 ~ 1200 ℃ in a weak reducing atmosphere for 2 h. The XRD, SEM, excitation spectra, emission spectra and afterglow decay of the samples were tested and the optimal synthesis conditions of the SrAl2O4: Eu2+ , Dy3+ long afterglow phosphors prepared by precipitation method were determined. The phosphor which had good luminescent properties is prepared and its persistent time can reach more than 1600 min. In the coprecipitation process, a small amount of glucose operates to refe the luminescent powders. The particle size of the phosphor can be less than 1 μm. The sintering temperature of the sample prepared by the coprecipitation method is much lower than that of the one prepared by the high temperature solid state method.Compared with the high temperature solid state method, a clear blue shift occurs in the excitation and emission spectra of the samples.

  13. Mercury (II) reduction and co-precipitation of metallic mercury on hydrous ferric oxide in contaminated groundwater.

    Science.gov (United States)

    Richard, Jan-Helge; Bischoff, Cornelia; Ahrens, Christian G M; Biester, Harald

    2016-01-01

    Mercury (Hg) speciation and sorption analyses in contaminated aquifers are useful for understanding transformation, retention, and mobility of Hg in groundwater. In most aquifers hydrous ferric oxides (HFOs) are among the most important sorbents for trace metals; however, their role in sorption or mobilization of Hg in aquifers has been rarely analyzed. In this study, we investigated Hg chemistry and Hg sorption to HFO under changing redox conditions in a highly HgCl2-contaminated aquifer (up to 870μgL(-1) Hg). Results from aqueous and solid phase Hg measurements were compared to modeled (PHREEQC) data. Speciation analyses of dissolved mercury indicated that Hg(II) forms were reduced to Hg(0) under anoxic conditions, and adsorbed to or co-precipitated with HFO. Solid phase Hg thermo-desorption measurements revealed that between 55 and 93% of Hg bound to HFO was elemental Hg (Hg(0)). Hg concentrations in precipitates reached more than 4 weight %, up to 7000 times higher than predicted by geochemical models that do not consider unspecific sorption to and co-precipitation of elemental Hg with HFO. The observed process of Hg(II) reduction and Hg(0) formation, and its retention and co-precipitation by HFO is thought to be crucial in HgCl2-contaminated aquifers with variable redox-conditions regarding the related decrease in Hg solubility (factor of ~10(6)), and retention of Hg in the aquifer.

  14. Sequestration of uranium on fabricated aluminum co-precipitated with goethite (Al-FeOOH)

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yubing; Yang, Shubin; Wang, Qi; Wang, Xiangke [Chinese Academy of Science, Hefei (China). Key Laboratory of Novel Thin Film Solar Cells; Alsaedi, Ahmad [King Abdulaziz Univ., Jeddah (Saudi Arabia). Nonlinear Analysis and Applied Mathematics (NAAM) Research Group

    2014-11-01

    Aluminum co-precipitated with goethites (Al-FeOOHs) are ubiquitous within (sub)-surface environments, which are considered one of the most important sinks for radionuclide pollution management. Accordingly, various mole ratios Al-FeOOH were synthesized and characterized by XRD, FT-IR, TEM, specific surface area and potentiometric acid-base titration. According to XRD and TEM images, the morphology of Al-FeOOH was transformed from acicular-like goethite to cotton-like gibbsite with increasing Al content. The adsorption and sequential desorption of U(VI) on Al-FeOOHs were conducted by batch techniques under N{sub 2} conditions. The batch adsorption results showed that the adsorption of U(VI) on Al-FeOOHs slightly increased at pH < 4.0, then the significant increase of U(VI) adsorption was observed at pH from 4.0 to 7.0, whereas the suppressed adsorption at pH > 8.0 was due to the electrostatic repulsion between negative charge surface and negative carbonato-complexes. The adsorption of U(VI) on Al-FeOOHs was independent of ionic strength at pH > 5.0, indicating that the inner-sphere surface complexation predominated their adsorption behaviors, whereas U(VI) adsorption on Al-FeOOH could be the outer-sphere surface/cation exchange reaction. The sequential extraction texts showed that the desorption of U(VI) from Al-FeOOHs decreased with increasing Al content. These findings highlighted the effect of Al content on the sequestration and immobilization of U(VI) onto Al-FeOOHs from (sub)-surface environments in pollution management.

  15. Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method

    Directory of Open Access Journals (Sweden)

    Kalantari K

    2013-05-01

    Full Text Available Katayoon Kalantari,1 Mansor Bin Ahmad,1,* Kamyar Shameli,1,2,* Roshanak Khandanlou11Department of Chemistry, Universiti Putra Malaysia, Serdang, Malaysia; 2Nanotechnology and Advance Materials Department, Materials and Energy Research Center, Karaj, Alborz, Karaj, Iran*These authors contributed equally to this workAbstract: The aim of this research was to synthesize and develop a new method for the preparation of iron oxide (Fe3O4 nanoparticles on talc layers using an environmentally friendly process. The Fe3O4 magnetic nanoparticles were synthesized using the chemical co-precipitation method on the exterior surface layer of talc mineral as a solid substrate. Ferric chloride, ferrous chloride, and sodium hydroxide were used as the Fe3O4 precursor and reducing agent in talc. The talc was suspended in deionized water, and then ferrous and ferric ions were added to this solution and stirred. After the absorption of ions on the exterior surface of talc layers, the ions were reduced with sodium hydroxide. The reaction was carried out under a nonoxidizing oxygen-free environment. There were not many changes in the interlamellar space limits (d-spacing = 0.94–0.93 nm; therefore, Fe3O4 nanoparticles formed on the exterior surface of talc, with an average size of 1.95–2.59 nm in diameter. Nanoparticles were characterized using different methods, including powder X-ray diffraction, transmission electron microscopy, emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy. These talc/Fe3O4 nanocomposites may have potential applications in the chemical and biological industries.Keywords: nanocomposites, Fe3O4 nanoparticles, talc, powder X-ray diffraction, scanning electron microscopy

  16. Preparation and Magnetic Properties of Mn-Zn Ferrites by the Co-precipitation Method

    Institute of Scientific and Technical Information of China (English)

    LI Xue; REN Ping; ZHANG Junxi; ZHANG Lingsong; LIU Guoping

    2009-01-01

    Mn-Zn ferrites(Mn_(1-x)Zn_xFe_2O_4)with different compositions were prepared by the coprecipitation method,and the influences of such synthesis conditions as pH value,composition and volume ratio(R)of the mixed solution and NH_4HCO_3 solution on their microstructures and magnetic properties were discussed.The samples were characterized by X-ray diffraction(XRD)and magneti-zation measurement instrument.Lattice parameters and average crystalline size of the synthesized materials were calculated from the corresponding XRD patterns with the related software Jade.5.For samples of different pH values,only one phase was found when pH values were 7.0,8.0 and 9.0.The sample with pH value of 7.0 exhibited the highest saturation magnetic induction,the lowest coercive force,and crystallized best.For samples of different R values with pH value of 7.0,only one phase was observed in all samples,and the sample with R value of 2.3 exhibited the highest saturation magnetic induction and the lowest coercive force.The composition has mainly afected the magnetic properties,and the saturation magnetic induction increases with the increase of the content of Zn(x),but decreases when x is beyond 0.6.The trend of coercive force is on the contrary.However,no magnetism is ex-hibited when the x value is up to 0.8.

  17. Stability of arsenate-bearing Fe(III)/Al(III) co-precipitates in the presence of sulfide as reducing agent under anoxic conditions.

    Science.gov (United States)

    Doerfelt, Christoph; Feldmann, Thomas; Roy, Ranjan; Demopoulos, George P

    2016-05-01

    Currently, the co-precipitation of arsenate with ferric iron at molar ratios Fe(III)/As(V) ≥ 3 by lime neutralization produces tailings solids that are stable under oxic conditions. However not much is known about the stability of these hazardous co-precipitates under anoxic conditions. These can develop in tailings storage sites by the action of co-discharged reactive sulfides, organic reagent residuals or bacterial activity. The ferric matrix can then undergo reductive dissolution reactions, which could release arsenic into the pore water. Co-ions like aluminum could provide a redox-immune sink to scavenge any mobilized arsenic as a result of reduction of ferric. As such, in this work Fe(III)/As(V) = 4 and aluminum substituted Fe(III)/Al(III)/As(V) = 2/2/1 co-precipitates were produced in a mini continuous co-precipitation process circuit and subjected to excess sulfide addition under inert gas to evaluate their stability. It was found that the ferric-arsenate co-precipitate could retain up to 99% (30 mg/L in solution) of its arsenic content despite the high pH (10.5) and extremely reducing (Eh ferric iron was reduced. Partial aluminum substitution was found to cut the amount of mobilized arsenic by 50% (down to 15 mg/L) hence mixed Fe(III)/Al(III)-arsenate co-precipitates may offer better resistance to reductive destabilization over the long term than all iron co-precipitates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Magnetite nanoparticles prepared by co-precipitation method in different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aphesteguy, J.C., E-mail: caphestegu@fi.uba.ar [LAFMACEL-INTECIN, Facultad de Ingeniería, UBA, Paseo Colón 850, C1063EHA Buenos Aires (Argentina); Kurlyandskaya, G.V. [Universidad del País Vasco UPV-EHU, Dept. Electricidad y Electronica, 48940 Leioa (Spain); Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Celis, J.P. de [National Technology University (UTN), Facultad Regional Avellaneda, Department of Chemistry (Argentina); Safronov, A.P. [Ural Federal University, Dept. Magnetism and Magnetic Nanomaterials, 620000 Ekaterinburg (Russian Federation); Institute of Electrophysics UD RAS, Ekaterinburg 620016 (Russian Federation); Schegoleva, N.N. [Institute of Metal Physics UD RAS, Ekaterinburg 620044 (Russian Federation)

    2015-07-01

    Magnetic nanoparticles (MNPs) of pure magnetite (Fe{sub 3}O{sub 4}) were prepared in an aqueous solution (sample M−I) and in a water-ethyl alcohol mixture (sample M−II) by the co-precipitation method. The structure and magnetic properties of both samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), magnetic (M−H) and microwave measurements (FMR). The mean average particle diameter and particle size distribution was evaluated by the Dynamic Light Scattering (DLS) and Brunauer- Emmett-Teller techniques (BET). The Quantitative chemical analysis of iron was performed by Inductively Coupled Plasma (ICP)- Atomic Emission Spectroscopy (AES) technique. The MNPs prepared in aqueous solution show a higher grain than those prepared in the water-ethyl alcohol mixture. The type of phase structure in both cases can be defined as “defective spinel”. The shape of the majority of M−I MNPs is octahedral. The shape of the majority of M−II MNPs is cubic. The specific surface area of MNPs was as high as 14.4 m{sup 2}/g for M−I sample and 77.8 m{sup 2}/g for sample M–II. The obtained saturation magnetization values of 75 emu/g (M−I) and 68 emu/g (M−II) are consistent with expected values for magnetite MNPs of observed sizes. Ferromagnetic resonance (FMR) measurements confirmed that MNPs of both types are magnetically homogeneous materials. FMR lines' position and line widths can be understood by invoking the local dipolar fields, deviations from sphericity, magnetocrystalline anisotropy and stresses. M−I sample shows sizeable zero field microwave absorption which is absent in the M−II case. The differences in microwave behaviour of M−I and M−II MNPs can be used in the design of microwave radiation absorbing multilayers. - Highlights: • Magnetite nanoparticles were prepared in two different conditions. • Specific surface area of sample prepared in water- ethanol mix is

  19. Co-precipitation of copper and niobium carbide in a low carbon steel

    Science.gov (United States)

    Gagliano, Michael Scott

    Co-precipitation of niobium carbide and body-centered cubic (BCC) copper in ferrite was investigated as a high strength, low carbon, chromium-free alternative to conventional high performance structural steels that rely on a tempered martensitic microstructure. Theoretical nucleation and growth rate models for BCC copper and niobium carbide were constructed using calculated thermodynamic driving forces in conjunction with classical theories for the homogeneous nucleation and subsequent growth of coherent, spherical precipitates. The maximum calculated nucleation and growth rates for niobium carbide were found to be 1.0 x 106 nuclei/cm3s at 666°C and 1.0 nm/s at 836°C, respectively, for an austenitizing temperature of 1170°C. For BCC copper in ferrite, the maximum calculated nucleation and growth rates were determined to be 8.0 x 1015 nuclei/cm 3s at 612°C and 0.038 nm/s at 682°C, respectively, for all austenitizing temperatures. Three-dimensional atom probe (3DAP) microscopy revealed the presence of nano-scale BCC copper clusters in approximately the same number density predicted by the theoretical nucleation model. Using an experimentally determined "effective" activation energy for copper in iron, the normalized theoretical nucleation rate curve compared very well with the normalized hardness response after 5 minutes of aging and effectively described the experimental short-time aging behavior of a low carbon, niobium bearing steel. The size and morphological evolution as well as the growth and coarsening behavior of copper precipitates were investigated through conventional TEM during isothermal direct aging at 550°C for a niobium and niobium-free steel. Although niobium carbide precipitation was not characterized, niobium additions provided increased hardness upon direct aging and showed a much higher resistance to overaging, than a niobium-free steel, for long isothermal aging times. In both steels for aging times up to five hours, both 9R type and BCC

  20. Bioavailability of adsorbed and coprecipitated Cu, Ni, Pb, and Cd on iron and iron/aluminum hydroxide to Phragmites australis.

    Science.gov (United States)

    Wang, He; Jia, Yongfeng

    2017-01-01

    The bioavailability of heavy metals strongly depends on their speciation in the environment. Adsorption (ADS) and coprecipitation (CPT) on amorphous metal hydroxides are important processes, controlling the fates of heavy metals in an aqueous environment. This work studied the bioavailability of Cu, Cd, Ni, and Pb adsorbed on and/or coprecipitated with amorphous iron and iron/aluminum mixed hydroxides to the wetland plant Phragmites australis. After a 13-day treatment, there was an apparent uptake of the heavy metals by the plant, and the amount of metal bioaccumulation was measurably different for different association forms (ADS vs. CPT). The bioaccumulation of Cd associated with Fe0.5Al0.5(OH)3 was greater than that with Fe(OH)3; the adsorbed metals were found to be more bioavailable than the coprecipitated forms for most of the treatments while the aging treatment significantly reduced the bioaccumulation of ADS metals. In the single metal treatment, root metal concentrations in the Fe(OH)3 ADS system followed the order Ni (68 mg kg(-1)) > Cu (32 mg kg(-1)) > Cd (28 mg kg(-1)) > Pb (9 mg kg(-1)), while the CPT system followed the order of Cu (30 mg kg(-1)) > Ni (22 mg kg(-1)) > Pb (9 mg kg(-1)) > Cd (7 mg kg(-1)). The order of metal accumulation in a combined metal treatment was similar to that for single metal treatments, but observed Ni concentration declines by 22 and 71 % and Cu and Cd concentrations increase by 30 and 50 % (for CPT and ADS treatments, respectively), while Pb concentrations increased by 30~50 % in both of them. When treated with low-molecular-weight organic acids (LMWOAs), metal desorption, indicative of metal oxide bonding strength and metal bioavailability, was consistent with metal accumulation in the plant.

  1. Effect of pH value on electromagnetic loss properties of Co–Zn ferrite prepared via coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiaogu, E-mail: nthxg@126.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); School of Material Science and Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Zhang, Jing [Nanjing Center, China Geological Survey, Nanjing 210016 (China); Wang, Wei [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Sang, Tianyi [Department of Electrical and Computer Engineering, University of California Davis, Davis 95616 (United States); Song, Bo [School of Material Science and Engineering, Georgia Institute of Technology, Atlanta 30332 (United States); Zhu, Hongli [Institute 53 of China North Industries Group Corporation, Jinan 250031 (China); Rao, Weifeng [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Wong, Chingping [School of Material Science and Engineering, Georgia Institute of Technology, Atlanta 30332 (United States)

    2016-05-01

    In this paper, the cobalt zinc ferrite was prepared by coprecipitation method at different pH conditions. The influence of pH values on the coprecipitation reaction was theoretically analyzed at first. The calculated results showed that the pH values should be controlled in the range of 9–11 to form the stable precipitation. The XRD investigation was used to further confirm the formation of the composite on specific pH values. In addition, the morphological study revealed that the average particle size of the composite decreased from 40 nm to 30 nm when the pH value increased from 9–11. The variation of microstructure plays a critical role in controlling the electromagnetic properties. From the electromagnetic analysis, the dielectric loss factor was 0.02–0.07 and magnetic loss factor was 0.2–0.5 for the composite synthesized at pH of 9, which presents dramatically improved dielectric loss and magnetic loss properties than the samples prepared at pH of 10 and 11. The as-prepared cobalt zinc ferrite are highly promising to be used as microwave absorption materials. - Highlights: • Co–Zn ferrite was prepared by coprecipitation method with different pH values. • To obtain pure Co–Zn ferrite, the theoretical pH values were 9–11. • Microstructure and electromagnetic properties can be tuned by varying pH values. • Co–Zn ferrite prepared with pH=9 performed well electromagnetic loss properties.

  2. Revisiting Pocos de Caldas. Application of the co-precipitation approach to establish realistic solubility limits for performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J.; Duro, L.; Jordana, S.; Cera, E. [QuantiSci, Barcelona (Spain)

    1996-02-01

    Solubility limits constitute a critical parameter for the determination of the mobility of radionuclides in the near field and the geosphere, and consequently for the performance assessment of nuclear waste repositories. Mounting evidence from natural system studies indicate that trace elements, and consequently radionuclides, are associated to the dynamic cycling of major geochemical components. We have recently developed a thermodynamic approach to take into consideration the co-precipitation and co-dissolution processes that mainly control this linkage. The approach has been tested in various natural system studies with encouraging results. The Pocos de Caldas natural analogue was one of the sites where a full testing of our predictive geochemical modelling capabilities were done during the analogue project. We have revisited the Pocos de Caldas data and expanded the trace element solubility calculations by considering the documented trace metal/major ion interactions. This has been done by using the co-precipitation/co-dissolution approach. The outcome is as follows: A satisfactory modelling of the behaviour of U, Zn and REEs is achieved by assuming co-precipitation with ferrihydrite. Strontium concentrations are apparently controlled by its co-dissolution from Sr-rich fluorites. From the performance assessment point of view, the present work indicates that calculated solubility limits using the co-precipitation approach are in close agreement with the actual trace element concentrations. Furthermore, the calculated radionuclide concentrations are 2-4 orders of magnitude lower than conservative solubility limits calculated by assuming equilibrium with individual trace element phases. 34 refs, 18 figs, 13 tabs.

  3. Synthesis of cubic yttrium aluminum garnet (YAG) powders by co-precipitation and two-step calcinations

    Science.gov (United States)

    Girish, H. N.; Zhu, C.; Ma, F. F.; Shao, G. Q.

    2017-04-01

    YAG powders were synthesized by co-precipitation and two-step moderate calcinations at 600/800 °C or 600/900 °C in air, respectively. Two kinds of the synthesized powders both possess pure cubic YAG phases without any secondary phases such as YAH, YAP and YAM, etc.. The former has low agglomeration with nano-sized primary particles and large active energy, and the latter has homogeneously dispersed and well-crystallized particles, with a narrow particle size distribution of 8 - 13 µm.

  4. Solid-state 29Si NMR and FTIR analyses of lignin-silica coprecipitates

    DEFF Research Database (Denmark)

    Cabrera Orozco, Yohanna; Cabrera, Andrés; Larsen, Flemming Hofmann;

    2016-01-01

    When agricultural residues are processed to ethanol, lignin and silica are some of the main byproducts. Separation of these two products is difficult and the chemical interactions between lignin and silica are not well described. In the present study, the effect of lignin-silica complexing has been...... in the distribution of silanol hydroxyl groups among different coprecipitates. These differences are dependent on the lignin type. The results are interpreted that the underlying mechanism of the interactions is the formation of hydrogen bonds between lignin aliphatic hydroxyl or carboxyl groups and the silanols...

  5. Synthesis and Bactericidal Ability of TiO2 and Ag-TiO2 Prepared by Coprecipitation Method

    OpenAIRE

    Robert Liu; Wu, H. S.; Ruth Yeh; Lee, C Y; Yungtse Hung

    2012-01-01

    Preparation of photocatalysts of TiO2 and Ag-TiO2 was carried out by coprecipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), SEM, EDX, and XRF analysis. The disinfection of E. coli, a model indicator organism for the safe water supply, was investigated by using TiO2 and Ag-TiO2 under different light sources. The treatment efficacy for the inactivation of E. coli would be UV/Ag-TiO2; visible/Ag-TiO2; dark/Ag-TiO2; UV (all 100%) > UV/TiO2 (99%) > visib...

  6. Improvement of corrosion resistance of AZ31 Mg alloy by anodizing with co-precipitation of cerium oxide

    Institute of Scientific and Technical Information of China (English)

    Salah Abdelghany SALMAN; Ryoichi ICHINO; Masazumi OKIDO

    2009-01-01

    Anodizing of AZ31 Mg alloy in NaOH solution by co-precipitation of cerium oxide was investigated. The chemical composition and phase structure of the coating film were determined via optical microscopy, SEM and XRD. The corrosion properties of the anodic film were characterized by using potentiodynamic polarization curves in 17 mmol/L NaCl and 0.1 mol/L Na2SO4 solution at 298 K. The corrosion resistance of AZ31 magnesium alloy is significantly improved by adding cerium oxide to alkaline solution. In addition, the surface properties are enhanced and the film contains no crack.

  7. Effects of morphology on the structural and photoluminescence properties of co-precipitation derived GdVO4:Dy3+

    Science.gov (United States)

    Kumari, Puja; Manam, J.

    2016-10-01

    Herein, Dy3+ doped GdVO4 samples with various morphologies were prepared by the co-precipitation method at low temperature, and the effects of different morphologies on the structural and optical behaviors have been reported. The obtained samples were stabilized to the stable tetragonal structure. The IR and FESEM study were carried out to see the vibrational bonds position and surface morphology. At present PL, PLE, diffuse reflectance and decay curves have been discussed in detail. The morphology dependent photoluminescence studies were resulted to a suitable sample for the lighting and display applications.

  8. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream.

    Science.gov (United States)

    Park, Jin Hee; Han, Young-Soo; Ahn, Joo Sung

    2016-12-01

    Mine stream precipitate collected from Ilkwang mine, Korea, contained high concentrations of arsenic (As), while water collected from the same site had negligible As concentrations, indicating natural attenuation of As occurred in the mine stream. The mechanism of attenuation was explained by comparison of X-ray absorption near edge structure (XANES) of As(V) co-precipitated with or adsorbed to iron (Fe) minerals in mine precipitates. Arsenic in the mine precipitate was present as As(V) and schwertmannite was the main Fe mineral. Arsenic co-precipitation with schwertmannite was the major mechanism of As removal in the mine stream, followed by As adsorption by goethite and As co-precipitation with ferrihydrite. Schwertmannite and ferrihydrite were formed in acid mine drainage and As was incorporated in their structure during formation. Additionally, schwertmannite and ferrihydrite may transform to goethite with As adsorbed onto the goethite surface. Based on the results of batch experiments of As co-precipitation and adsorption, co-precipitation of As with ferrihydrite and schwertmannite was the most effective As sequestration mechanism in the removal of As(V) from acid mine drainage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Quality-by-design: an integrated process analytical technology approach to determine the nucleation and growth mechanisms during a dynamic pharmaceutical coprecipitation process.

    Science.gov (United States)

    Wu, Huiquan; Khan, Mansoor A

    2011-05-01

    The objective of this study was to demonstrate the feasibility of using an integrated process analytical technology (PAT) approach to determine nucleation and growth mechanisms of a dynamic naproxen (drug)-Eudragit L100 (polymer) coprecipitation process. The influence of several thermodynamically important formulation and process variables (drug/polymer ratio, alcohol, and water usages) on coprecipitation process characteristics was investigated via real-time in situ focused beam reflectance measurement (FBRM) monitoring and near real-time particle vision microscopy measurement. The final products were characterized by near-infrared (NIR) spectroscopy and NIR chemical imaging microscopy. The coprecipitation nucleation induction time (t(ind) ) was measured by both FBRM trend statistics and process trajectory method, respectively. Furthermore, nucleation kinetics was evaluated based on t(ind) measurement and corresponding supersaturation ratio (S) estimated. It was found that plots of ln(t(ind) ) versus (ln(2) S)(-1) consist of two linear segments and are consistent with classical primary nucleation mechanisms. Apparently, the coprecipitation process is governed by heterogeneous primary nucleation mechanism at low S (14 ≤ S ≤ 503) and by homogeneous primary nucleation mechanism at high S (1216 ≤ S ≤ 3649). Off-line characterizations collectively supported this statement. Therefore, it demonstrated that integration real-time PAT process monitoring with first-principles modeling and off-line product characterization could enhance understanding to coprecipitation process dynamics and nucleation/growth mechanisms, which is impossible via off-line techniques alone.

  10. Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods-A review

    Science.gov (United States)

    Theiss, Frederick L.; Ayoko, Godwin A.; Frost, Ray L.

    2016-10-01

    Co-precipitation is a common method for the preparation of layered double hydroxides (LDHs) and related materials. This review article is aimed at providing newcomers to the field with some examples of the types of co-precipitation reactions that have been reported previously and to briefly investigate some of the properties of the products of these reactions. Due to the sheer volume of literature on the subject, the authors have had to limit this article to the synthesis of Mg/Al, Zn/Al and Ca/Al LDHs by co-precipitation and directly related methods. LDHs have been synthesised from various reagents including metal salts, oxides and hydroxides. Co-precipitation is also useful for the direct synthesis of LDHs with a wide range of interlayer anions and various bases have been successfully employed to prepare LDHs. Examples of other synthesis techniques including the urea method, hydrothermal synthesis and various mechanochemical methods that are undoubtedly related to co-precipitation have also been included in this review. The effect of post synthesis hydrothermal has also been summarised.

  11. Synthesis and characterization of La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, F.A., E-mail: fernandafabianro@gmail.com [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Pedra, P.P.; Filho, J.L.S. [Universidade Federal de Sergipe, Campus Prof. Aluísio Campos, Departamento de Física, 49100-000 São Cristóvão, SE (Brazil); Duque, J.G.S.; Meneses, C.T. [Universidade Federal de Sergipe, Campus Prof. Alberto Carvalho, Departamento de Física, 49500-000 Itabaiana, SE (Brazil)

    2015-04-01

    Magnetic and structural properties have been investigated in La(Cr,Fe,Mn)O{sub 3} nanoparticles obtained by co-precipitation method. The X-ray diffraction measurements allied to Rietveld method confirm the formation of LaCrO{sub 3}, LaFeO{sub 3} and LaMnO{sub 3} nanoparticles with crystal structure orthorhombic (Pbnm), orthorhombic (Pnma) and rhombohedral (R-3c), respectively. We also verified an decreasing in the average crystallite size from 73 to 26 nm, depending of the transition metal. The magnetic measurements reveal an antiferromagnetic behavior for the LaCrO{sub 3} sample with T{sub N}~289 K, and a weak ferromagnetic ordering for the LaMnO{sub 3} sample with T{sub c}~200 K. - Highlights: • La(Cr,Fe,Mn)O{sub 3} nanoparticles were synthesized by coprecipitation method. • XRD results confirm the formation single phase in the compounds studied. • Magnetic property in the La(Fe,Cr,Mn)O{sub 3} nanoparticles dependent on the TM. • La(Cr,Fe)O{sub 3} nanoparticles presented behavior antiferromagnetic and LaMnO{sub 3} ferromagnetic.

  12. Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration.

    Science.gov (United States)

    Englehardt, James D; Meeroff, Daniel E; Echegoyen, Luis; Deng, Yang; Raymo, Françisco M; Shibata, Tomoyuki

    2007-01-01

    Cationic metal and radionuclide contaminants can be extracted from soils to groundwater with sequestering agents such as EDTA. However, EDTA must then be removed fromthe groundwater, by advanced oxidation or specialized biological treatment. In this work, aqueous individual metal-EDTA solutions were aerated with steel wool for 25 h, at ambient pH, temperature, and pressure. Removal of approximately 99% of EDTA (0.09-1.78 mM); glyoxylic acid (0.153 mM); chelated Cd2+ (0.94 and 0.0952 mM), Pb2+ (0.0502 mM), and Hg2+ (0.0419 mM); and free chromate and vanadate was shown. EDTA was oxidized to glyoxylic acid and formaldehyde, and metals/metalloids were coprecipitated together with iron oxyhydroxide floc. Free arsenite and arsenate were each removed at 99.97%. Free Sr2+, and chelated Ni2+ were removed at 92% and 63%, respectively. Similar removals were obtained from mixtures, including 99.996+/-0.004% removal of total arsenic (95% confidence). Traces of iminodiacetic acid, nitrilotriacetic acid, and ethylenediaminetriacetic acid were detected after 25 h. Results are consistent with first-order, solution-phase oxidation of EDTA and glyoxylic acid by ferryl ion and H202, respectively, with inhibition due to sludge accumulation, and equilibrium metal coprecipitation. This ambient process, to our knowledge previously unknown, agrees with recently reported findings and shows promise for remediation of metals, metalloids, and radionuclides in wastewater, soil, and sediment.

  13. Phase pure synthesis of BiFeO{sub 3} nanopowders using diverse precursor via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Shami, M. Yasin, E-mail: m_yasin_shami@yahoo.com [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Park Road, Islamabad 44000 (Pakistan); Awan, M.S. [Center for Micro and Nano Devices, Department of Physics, COMSATS Institute of Information Technology, Park Road, Islamabad 44000 (Pakistan); Anis-ur-Rehman, M. [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Park Road, Islamabad 44000 (Pakistan)

    2011-10-13

    Highlights: > Synthesized phase pure BiFeO{sub 3} using diverse precursor by co-precipitation method. > Optimized synthesis and processing parameters. > Thermal behavior, structure and microstructure were analyzed. > Resistivity vs temperature and dielectric constant vs frequency were measured. > Multiferroicity at room temperature was confirmed by M-H and P-E loops. - Abstract: Amorphous powder of BiFeO{sub 3} (BFO) was synthesized at low-temperature (80 deg. C) by co-precipitation method. Optimal synthesis conditions for phase pure BFO were obtained. Powders were calcined in the temperature range from 400 to 600 deg. C for 1 h. Iso-statically pressed powder was sintered at 500 deg. C for 2 h. Differential scanning calorimetric thermo-gram guided for phase transition, crystallization and melting temperatures. X-ray diffraction confirmed the amorphous nature of as synthesized powder and phase formation of calcined powders. Calcination at temperature {>=}400 deg. C resulted in nano crystalline powders with perovskite structure. Average crystallite size increased with the increase in calcination temperature. Scanning electron microscopic studies revealed dense granular microstructure of the sintered samples. The sintered samples exhibited high dc resistivity at room temperature which decreased with the increase in temperature. Dielectric constant, dielectric loss tangent and ac conductivity measurements were carried out in the frequency range (10 Hz to 2 MHz). The samples responded weak electric and magnetic polarization at room temperature with unsaturated and hysteresis free loops, respectively.

  14. Characterization of γ- Al{sub 2}O{sub 3} nanopowders synthesized by Co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Jbara, Ahmed S., E-mail: ahmedsbhe@yahoo.com [Center for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Physics Department, Science College, Al-Muthanna University, Samawah - 66001 (Iraq); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Othaman, Zulkafli [Center for Sustainable Nanomaterials, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Ati, Ali A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Saeed, M.A., E-mail: moalsd@gmail.com [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, Skudai - 81310, Johor Bahru (Malaysia); Division of Science and Technology, University of Education, Township, Lahore - 54770 (Pakistan)

    2017-02-15

    Co-precipitation technique has been used to synthesize gamma-Al{sub 2}O{sub 3} (γ-Al{sub 2}O{sub 3}) nanopowders under annealing temperature effect. The crystalline phase and purity for the prepared powder were characterized by different spectroscopy techniques. XRD analysis confirms the gamma phase of alumina nanopowders with particle diameter ranging from 6 to 24 nm, which confirms the quantum dots formation, which is also supported by the BET measurement. The surface area of the prepared nanopowders is in the range of 109–367 m{sup 2}/g. Morphology analysis indicates that γ-Al{sub 2}O{sub 3} nanopowders are consisted of grains almost spherical in shape. Some agglomeration of nanoparticles occurs, which become more regular hexagonal shaped with the increasing annealing temperature. The small nanoparticles size and the high surface area from a simple procedure for preparing γ-Al{sub 2}O{sub 3} may make it more suitable for use as an adsorbent for malachite green. - Highlights: • Co-precipitation technique is used to synthesize gamma- Al{sub 2}O{sub 3} nanopowders. • Pure gamma- Al{sub 2}O{sub 3} phase was obtained having maximum nanoparticle size is 24 nm. • The quantum dots were formed inside powder. • High surface area of nanopowders at the low annealing temperature. • Increasing annealing temperature causes the hexagonal agglomeration shape.

  15. Properties of Co2FeAl Heusler Alloy Nano-particles Synthesized by Coprecipitation and Thermal Deoxidization Method

    Institute of Scientific and Technical Information of China (English)

    J.H.Du; Y.L.Zuo; Z.Wang; J.H.Ma; L.Xi

    2013-01-01

    Co2FeAl nanoparticles were synthesized by reducing the coprecipitated precursor of CoCl2·6H2O,Fe(NO3)3·9H2O and Al2(SO4)3·18H2O under H2 atmosphere with various annealing temperatures and durations.X-ray diffraction and transmission electron microscopy were used to characterize the crystal structure and microstructure of Co2FeAl particles,respectively.The investigation indicates that the crystal structure of Co2FeAl particles tends to be B2 structure,in which atoms are partially ordered.The saturation magnetization and hyperfine field of Co2FeAl particles,which were measured under a vibrating sample magnetometer and a 57Fe M(o)ssbauer spectroscope,are consistent with those of the bulk sample and thin films.Furthermore,the higher annealing temperature and the longer annealing time,the better crystallinity of Co2FeAl and more ordered arrangement of atoms will be.It turned out that the coprecipitation thermal deoxidization method could be an easy and high efficient way to obtain the half-metallic Co2FeAl nanoparticles.

  16. Investigation of sintered cobalt-zinc ferrite synthesized by coprecipitation at different temperatures: a relation between microstructure and hysteresis curves

    Directory of Open Access Journals (Sweden)

    Ana Maria Rangel de Figueiredo Teixeira

    2006-09-01

    Full Text Available The magnetic properties of sintered samples of cobalt-zinc ferrites produced from the corresponding coprecipitate were calculated based on hysteresis curves (Hc. The Hc values confirmed that soft ferrites were obtained by the procedure. A possible relation between the magnetic hysteresis curves and the microstructure of the sintered samples was investigated. X ray diffraction, thermal analysis and scanning electron microscopy were used to characterize the microstructure and the phases present in the sintered ceramic pieces, as well as those of their coprecipitated tri-metallic hydroxide precursor powders. It was found that sintering of Co0.5Zn0.5Fe2O4 at 1400 °C led to "honeycombing" of the ferrite grains and that there was no single phase in the microstructure of a sample sintered at 1400 °C. Thus, a more complete study was made of the behavior of the microstructure at lower sintering temperatures, i.e., in the 1100-1350 °C range.

  17. Complexation-Coprecipitation Synthesis and Characterization of Neodymium and Antimony Doped SnO2 Conductive Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nd and Sb doped SnO2 conductive nanoparticles were prepared by the complexation-coprecipitation method with Sn, Sb2O3 and Nd2O3 as the raw materials. Thermal behavior, crystal phase, and structure of the prepared conductive nanoparticles were characterized by TG/DSC/DTG, FTIR, XRD and TEM techniques, respectively. The resistivity of the prepared conductive nanoparticles was 0.12 Ω·cm. TG/DSC/DTG curves show that the precursors lose weight completely before 750 ℃. FTIR spectrum shows that the vibration peaks are wide peaks in 731~617 cm-1, and the Nd and Sb doped SnO2 conductive nanoparticles have intense absorption in 4000~2000 cm-1. Nd and Sb doped SnO2 have a structure of tetragonal rutile, and complex doping is achieved well by complexation-coprecipitation method and is recognized as replacement doping or caulking doping. TME shows that the particles are weakly agglomerated, and the size of the particles calcined at 1000 ℃ ranges about 10 nm to 30 nm.

  18. Effect of Ferric Chloride on the Properties of Biological Sludge in Co-precipitation Phosphorus Removal Process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhibin; LI Yi; WEI Leilei; L(U) Yufeng; WANG Meng; GAO Baoyu

    2013-01-01

    This paper studied the effect of ferric chloride on waste sludge digestion,dewatering and sedimentation under the optimized doses in co-precipitation phosphorus removal process.The experimental results showed that the concentration of mixed liquid suspended solid (MLSS) was 2436 mg·L-1 and 2385 mg·L-1 in co-precipitation phosphorus removal process (CPR) and biological phosphorous removal process (BPR),respectively.The sludge reduction ratio for each process was 22.6% and 24.6% in aerobic digestion,and 27.6% and 29.9% in anaerobic digestion,respectively.Due to the addition of chemical to the end of aeration tank,the sludge content of CPR was slightly higher than that of BPR,but the sludge reduction rate for both processes had no distinct difference.The sludge volume index (SVI) and sludge specific resistance of BPR were 126 ml·g-1 and 11.7×1012 m·kg-1,respectively,while those of CPR were only 98 ml·g-1 and 7.1×1012 m·kg-1,indicating that CPR chemical could improve sludge settling and dewatering.

  19. Co-precipitation of tobramycin into biomimetically coated orthopedic fixation pins employing submicron-thin seed layers of hydroxyapatite.

    Science.gov (United States)

    Sörensen, Jan H; Lilja, Mirjam; Åstrand, Maria; Sörensen, Torben C; Procter, Philip; Strømme, Maria; Steckel, Hartwig

    2014-01-01

    The migration, loosening and cut-out of implants and nosocomial infections are current problems associated with implant surgery. New innovative strategies to overcome these issues are emphasized in today's research. The current work presents a novel strategy involving co-precipitation of tobramycin with biomimetic hydroxyapatite (HA) formation to produce implant coatings that control local drug delivery to prevent early bacterial colonization of the implant. A submicron- thin HA layer served as seed layer for the co-precipitation process and allowed for incorporation of tobramycin in the coating from a stock solution of antibiotic concentrations as high as 20 mg/ml. Concentrations from 0.5 to 20 mg/ml tobramycin and process temperatures of 37 °C and 60 °C were tested to assess the optimal parameters for a thin tobramycin- delivering HA coating on discs and orthopedic fixation pins. The morphology and thickness of the coating and the drug-release profile were evaluated via scanning electron microscopy and high performance liquid chromatography. The coatings delivered pharmaceutically relevant amounts of tobramycin over a period of 12 days. To the best of our knowledge, this is the longest release period ever observed for a fast-loaded biomimetic implant coating. The presented approach could form the foundation for development of combination device/antibiotic delivery vehicles tailored to meet well-defined clinical needs while combating infections and ensuring fast implant in-growth.

  20. Preparation and Characterization of Gd3Sc2Ga3O12 Polycrystalline Material by Co-Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Gd3Sc2Ga3O12 polycrystalline material for single crystal growth was prepared with Ga, Gd2O3 and Sc2O3 as starting materials and aqueous ammonia as the precipitator by co-precipitation method. The precursors sintered at various temperatures were characterized by infrared spectra (IR), X-ray diffractometry (XRD) and transmitted electron microscopy (TEM). The results showed that pure GSGG phase could be obtained at 900 ℃. The sintered powders were well-dispersed and less-aggregated in the sintered temperature range of 900~1000 ℃. XRD and TEM show that the polycrystalline particle sizes of the polycrystalline powders were about 20~50 nm. Compared with the method that Ga2O3, Gd2O3 and Sc2O3 were mixed directly and sintered to get polycrystalline materials, the synthesized temperature was lower and sintered time was shorter. Thus co-precipitation was a good method to synthesize GSGG polycrystalline material.

  1. Study of effect of planetary ball milling on ZnO nanopowder synthesized by co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Shinde, K.P., E-mail: kiranshinde_phy@yahoo.co.in [Superconductivity Research Centre, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of); Pawar, R.C. [Department of Materials Engineering, Hanyang University, Ansan 426-791 (Korea, Republic of); Sinha, B.B. [Nano Functional Materials Research Group, Department of Powder Materials, Korea Institute of Material Science, Changwon 641-831 (Korea, Republic of); Kim, H.S.; Oh, S.S. [Superconductivity Research Centre, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of); Chung, K.C. [Nano Functional Materials Research Group, Department of Powder Materials, Korea Institute of Material Science, Changwon 641-831 (Korea, Republic of)

    2014-12-25

    Highlights: • Synthesis of ZnO nanopowder by co-precipitation method. • Particle size reduction using planetary ball milling. • PL spectra shows shifting towards higher wavelength with decrease in intensity. • The bandgap energy (E{sub g}) of ZnO powders varied from 3.13 to 2.85 eV. - Abstract: Nanocrystalline ZnO powders have been synthesized by co-precipitation method and investigated planetary ball milling effects on structural and optical properties. These powders were characterized using X-ray diffraction, field emission scanning electronic microscope, Infrared spectrophotometer, UV–vis spectrophotometer and Photoluminescence. It was found that prepared ZnO powders have hexagonal close packed structure which was annealed at 500 °C for 30 min. The bandgap energy of ZnO powders varied from 3.13 to 2.85 eV. The room temperature PL spectra exhibits low intensity UV emission peak at 383 nm and green emission band around 520 nm shows shifting towards higher wavelength with decrease in intensity of peak with time of planetary ball milling. Hence, it was observed that planetary ball milling can be used to tailor the optoelectronic properties of ZnO nanostructures.

  2. Particle size and magnetic properties dependence on growth temperature for rapid mixed co-precipitated magnetite nanoparticles

    Science.gov (United States)

    Fang, Mei; Ström, Valter; Olsson, Richard T.; Belova, Lyubov; Rao, K. V.

    2012-04-01

    Magnetite nanoparticles have been prepared by co-precipitation using a custom-designed jet mixer to achieve rapid mixing (RM) of reactants in a timescale of milliseconds. The quick and stable nucleation obtained allows control of the particle size and size distribution via a more defined growth process. Nanoparticles of different sizes were prepared by controlling the processing temperature in the first few seconds post-mixing. The average size of the nanoparticles investigated using a Tecnai transmission electron microscope is found to increase with the temperature from 3.8 nm at 1 ± 1 °C to 10.9 nm for particles grown at 95 ± 1 °C. The temperature dependence of the size distribution follows the same trend and is explained in terms of Ostwald ripening of the magnetite nanoparticles during the co-precipitation of Fe2+ and Fe3+. The magnetic properties were studied by monitoring the blocking temperature via both DC and AC techniques. Strikingly, the obtained RM particles maintain the high magnetization (as high as ˜88 A m2 kg-1 at 500 kA m-1) while the coercivity is as low as ˜12 A m-1 with the expected temperature dependence. Besides, by adding a drop of tetramethylammonium hydroxide, aqueous ferrofluids with long term stability are obtained, suggesting their suitability for applications in ferrofluid technology and biomedicine.

  3. Evaluation of Three Chitin Metal Silicate Co-Precipitates as a Potential Multifunctional Single Excipient in Tablet Formulations

    Directory of Open Access Journals (Sweden)

    Rana Al-Shaikh Hamid

    2010-05-01

    Full Text Available The performance of the novel chitin metal silicate (CMS co-precipitates as a single multifunctional excipient in tablet formulation using direct compression and wet granulation methods is evaluated. The neutral, acidic, and basic drugs Spironolactone (SPL, ibuprofen (IBU and metronidazole (MET, respectively, were used as model drugs. Commercial Aldactone®, Fleximex® and Dumazole® tablets containing SPL, IBU and MET, respectively, and tablets made using Avicel® 200, were used in the study for comparison purposes. Tablets of acceptable crushing strength (>40 N were obtained using CMS. The friability values for all tablets were well below the maximum 1% USP tolerance limit. CMS produced superdisintegrating tablets (disintegration time < 1 min with the three model drugs. Regarding the dissolution rate, the sequence was as follow: CMS > Fleximex® > Avicel® 200, CMS > Avicel® 200 > Dumazole® and Aldactone® > Avicel® 200 > CMS for IBU, MET and SPL, respectively. Compressional properties of formulations were analyzed using density measurements and the compression Kawakita equation as assessment parameters. On the basis of DSC results, CMS co precipitates were found to be compatible with the tested drugs. Conclusively, the CMS co-precipitates have the potential to be used as filler, binder, and superdisintegrant, all-in-one, in the design of tablets by the direct compression as well as wet granulation methods.

  4. Effect of pH value on electromagnetic loss properties of Co-Zn ferrite prepared via coprecipitation method

    Science.gov (United States)

    Huang, Xiaogu; Zhang, Jing; Wang, Wei; Sang, Tianyi; Song, Bo; Zhu, Hongli; Rao, Weifeng; Wong, Chingping

    2016-05-01

    In this paper, the cobalt zinc ferrite was prepared by coprecipitation method at different pH conditions. The influence of pH values on the coprecipitation reaction was theoretically analyzed at first. The calculated results showed that the pH values should be controlled in the range of 9-11 to form the stable precipitation. The XRD investigation was used to further confirm the formation of the composite on specific pH values. In addition, the morphological study revealed that the average particle size of the composite decreased from 40 nm to 30 nm when the pH value increased from 9-11. The variation of microstructure plays a critical role in controlling the electromagnetic properties. From the electromagnetic analysis, the dielectric loss factor was 0.02-0.07 and magnetic loss factor was 0.2-0.5 for the composite synthesized at pH of 9, which presents dramatically improved dielectric loss and magnetic loss properties than the samples prepared at pH of 10 and 11. The as-prepared cobalt zinc ferrite are highly promising to be used as microwave absorption materials.

  5. Experimental Investigation of the Coprecipitation Method: An Approach to Obtain Magnetite and Maghemite Nanoparticles with Improved Properties

    Directory of Open Access Journals (Sweden)

    Wilson Sacchi Peternele

    2014-01-01

    Full Text Available Iron oxides that exhibit magnetic properties have been widely studied not only from an academic standpoint, but also for numerous applications in different fields of knowledge, such as biomedical and technological research. In this work, magnetite and maghemite nanoparticles were synthesized by chemical coprecipitation of FeCl2·4H2O and FeCl3·6H2O (proportion of 1 : 2 in three different cases using two bases (sodium hydroxide and hydroxide ammonium as precipitants. The chemical coprecipitation method was selected for its simplicity, convenience, reproducibility, and low cost in the use of glassware. The nanostructured materials were characterized by transmission electron microscopy (TEM, X-ray diffraction (XRD and magnetometry (VSM. The objective of this work is to study the variation in the morphological characteristics and physical properties of nanoparticles magnetic as a function of the different production processes. As observed by TEM, the materials obtained from the precipitating agent NH4OH are more uniform than those obtained with NaOH. From XRD pattern analysis, it appears that the obtained materials correspond to magnetite and maghemite and, from magnetometry VSM analysis, show high magnetization as a function of the magnetic field at room temperature, indicating that these materials are superparamagnetic.

  6. Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate

    Science.gov (United States)

    Waychunas, G. A.; Rea, B. A.; Fuller, C. C.; Davis, J. A.

    1993-05-01

    EXAFS spectra were collected on both the As and Fe K-edges from samples of two-line ferrihydrite with adsorbed (ADS) and coprecipitated (CPT) arsenate prepared over a range of conditions and arsenate surface coverages. Spectra also were collected for arsenate adsorbed on the surfaces of three FeOOH crystalline polymorphs, α (goethite), β (akaganeite), and γ (lepidocrocite), and as a free ion in aqueous: solution. Analyses of the As EXAFS show clear evidence for inner sphere bidentate (bridging) arsenate complexes on the ferrihydrite surface and on the surfaces of the crystalline FeOOH polymorphs. The bridging arsenate is attached to adjacent apices of edge-sharing Fe oxyhydroxyl octahedra. The arsenic-iron distance at the interface ( 3.28 ±0.01 Å) is close to that expected for this geometry on the FeOOH polymorph surfaces, but is slightly shorter on the ferrihydrite surfaces ( 3.25 ± 0.02 Å). Mono-dentate arsenate linkages ( 3.60 ± 0.03 Å) also occur on the ferrihydrite, but are not generally observed on the crystalline FeOOH polymorphs. The proportion of monodentate bonds appears largest for adsorption samples with the smallest As/Fe molar ratio. In all cases the arsenate tetrahedral complex is relatively undistorted with As-O bonds of 1.66 ± 0.01 Å. Precipitation of arsenate or scorodite-like phases was not observed for any samples, all of which were prepared at a pH value of 8. The Fe EXAFS results confirm that the Fe-Fe correlations in the ferrihydrite are progressively disrupted in the CPT samples as the As/Fe ratio is increased. Coherent crystallite size is probably no more than 10 Å in diameter and no Fe oxyhydroxyl octahedra corner-sharing linkages (as would be present in FeOOH polymorphs) are observed at the largest As/Fe ratios. Comparison of the number and type of Fe-Fe neighbors with the topological constraints imposed by the arsenate saturation limit in the CPT samples (about 0.7 As/Fe) indicates ferrihydrite units consisting mainly of Fe

  7. Method for Determination of Neptunium in Large-Sized Urine Samples Using Manganese Dioxide Coprecipitation and 242Pu as Yield Tracer

    DEFF Research Database (Denmark)

    Qiao, Jixin; Hou, Xiaolin; Roos, Per

    2013-01-01

    A novel method for bioassay of large volumes of human urine samples using manganese dioxide coprecipitation for preconcentration was developed for rapid determination of 237Np. 242Pu was utilized as a nonisotopic tracer to monitor the chemical yield of 237Np. A sequential injection extraction...... to 100% and high separation capacity of processing up to 5 L of human urine samples. The MnO2 coprecipitation process is simple and straightforward in which a batch (8–12) of samples can be pretreated within 4 h (i.e.,

  8. A comparative study on heat dissipation, morphological and magnetic properties of hyperthermia suitable nanoparticles prepared by co-precipitation and hydrothermal methods

    Indian Academy of Sciences (India)

    Md Shariful Islam; Yoshihumi Kusumoto; Junichi Kurawaki; Md Abdulla-Al-Mamun; Hirotaka Manaka

    2012-12-01

    Magnetite (Fe3O4) nanoparticles were prepared by co-precipitation and hydrothermal methods and their phase transfer was done successfully to compare their performances in different aspects. Synthesized nanoparticles were characterized for XRD, FE–SEM, TEM, UV-Vis absorption (reflectance) spectra, magnetic hysteresis loops and a.c. magnetic field induced hyperthermia. The magnetic nanoparticles prepared by the co-precipitation method show superior performances in respect of heat dissipation capability, saturation of magnetization values and particle size when compared to those prepared by the hydrothermal method.

  9. Thermoluminescence and photoluminescence properties of NaCl:Mn, NaCL:Cu nano-particles produced using co-precipitation and sono-chemistry methods

    Science.gov (United States)

    Mehrabi, M.; Zahedifar, M.; Saeidi-Sogh, Z.; Ramazani-Moghaddam-Arani, A.; Sadeghi, E.; Harooni, S.

    2017-02-01

    The NaCl: Cu and NaCl: Mn nanoparticles (NPs) were produced by co-precipitation and sono-chemistry methods and their thermoluminescence (TL) and photoluminescence (PL) properties were studied. By decreasing the particles size a considerable increase in sensitivity of the samples to high dose gamma radiation was observed. The NPs produced by sono-chemistry method have smaller size, homogeneous structure, more sensitivity to high gamma radiation and less fading than of those produced by co-precipitation method.

  10. Coprecipitation experiment with Sm hydroxide using a multitracer produced by nuclear spallation reaction: A tool for chemical studies with superheavy elements.

    Science.gov (United States)

    Kasamatsu, Yoshitaka; Yokokita, Takuya; Toyomura, Keigo; Shigekawa, Yudai; Haba, Hiromitsu; Kanaya, Jumpei; Huang, Minghui; Ezaki, Yutaka; Yoshimura, Takashi; Morita, Kosuke; Shinohara, Atsushi

    2016-12-01

    To establish a new methodology for superheavy element chemistry, the coprecipitation behaviors of 34 elements with samarium hydroxide were investigated using multitracer produced by a spallation of Ta. The chemical reactions were rapidly equilibrated within 10s for many elements. In addition, these elements exhibited individual coprecipitation behaviors, and the behaviors were qualitatively related to their hydroxide precipitation behaviors. It was demonstrated that the ammine and hydroxide complex formations of superheavy elements could be investigated using the established method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. New trends on liquid effluent treatments: coprecipitation, adsorption, filtration, photo-catalysis, a complementary association of innovative tools

    Energy Technology Data Exchange (ETDEWEB)

    Barre, Yves [CEA, DEN, MAR, DTCD, SPDE, Laboratoire des Procedes Avances de Decontamination, 30207 Bagnols sur Ceze (France); Pacary, Vincent [CEA, DEN, MAR, DRCP, SCPS, LCSE, 30207 Bagnols sur Ceze (France); Schrive, Luc [CEA, DEN, MAR, DTCD, SPDE, Laboratoire des Fluides Supercritiques et Membranes, 30207 Bagnols sur Ceze (France); Guibal, Eric [Ecole des Mines d' Ales, Centre de Recherche LGEI, 6 avenue de Clavieres, 30319 Ales Cedex (France)

    2009-06-15

    The ever increasing pressure to reduce the release of radioactive and other toxic substances into environment requires constant improvement/upgrading of processes and technologies for treatment and conditioning of liquid radioactive wastes. The extensive research is carried out on various processes including ion exchange, sorption, coprecipitation, membrane separation and photo-catalytic degradation of organics substances. A judicious combination of the processes is being pursued to meet the end objectives of improved decontamination and waste volume reduction. In a previous study, an elaborated model is proposed to predict the radioactive strontium decontamination factor of nuclear waste solutions which can be realized by using a coprecipitation process with barium sulphate. Simulations of the coprecipitation of strontium ions with barium sulphate have been performed in continuous and semibatch reactors. Thanks to these simulations, laws of the treatment efficiency variation as a function of several process parameters (mean residence time, stirring speed, concentration) have been determined and experimentally verified. This study leads to the determination of optimal treatment conditions. Three apparatus (recycling apparatus, fluidized bed and reactor/settling tank) providing these optimal conditions have been successfully tested and offered significant outlooks for the reduction of the residual sludge volume. Since the development of new ceramic membranes with large filtration area and their long term use verification in conventional water purification fields, these membrane processes have been adopted by the nuclear industry as a viable alternative treatment method for liquid radioactive wastes. Ion exchange is one of the most common and effective treatment methods for liquid radioactive. Spent ion exchange resins are considered to be problematic waste that requires precautions during its immobilization to meet the acceptance criteria for disposal. Efforts to

  12. Study on the electromagnetic behavior evaluation of Y{sup 3+} doped cobalt nanocrystals synthesized via co-precipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Ishaque, M., E-mail: ishaqdgk1@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Azhar Khan, Muhammad, E-mail: azhar.khan@iub.edu.pk [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ali, Irshad; Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Asif Iqbal, M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); College of E and ME, National University of Science and Technology, Islamabad (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2014-12-15

    A series of nanocrystalline cobalt ferrites doped with yttrium ions were synthesized by chemical co-precipitation technique. The X-ray diffraction analysis reveals that all the samples exhibit cubic spinel phase as main phase along with few traces of orthorhombic phase (YFeO{sub 3}). The crystallite size calculated by Scherrer’s formula is found in the range of 48–34 nm. This crystallite size is small enough to obtain the suitable signal to noise ratio in the high density recording media applications. The lattice constant was found to decrease from 8.385 Å to 8.348 Å with the increase of yttrium contents which may be attributed to the solubility limit of yttrium ions. The dc electrical resistivity was found to increases from 4.95×10{sup 6} Ω-cm to 8.39×10{sup 7} Ω-cm with the increase of yttrium contents. Yttrium doped samples exhibit lower dielectric constant and dielectric loss tangent as compared to pure CoFe{sub 2}O{sub 4} nanocrystals. An appreciable increase in coercivity has been observed by the Y{sup 3+} addition. The enhanced dc electrical resistivity and coercivity (H{sub c}=1273 Oe) of cobalt nanoparticles (5 wt% doped Y{sup 3+}) are favorable for their potential use in microwave devices and high density recording media applications. - Graphical abstract: Yttrium doped CoFe{sub 2}O{sub 4} nanocrystalline (48–34 nm) ferrites were synthesized by co-precipitation technique. About two fold increase in coercivity was observed for CoFe{sub 2}O{sub 4}+x Y{sub 2}O{sub 3} (x=5 wt%) nanocrystalline ferrites. - Highlights: • Y{sup 3+} doped CoFe{sub 2}O{sub 4} nanocrystals are fabricated by co-precipitation technique. • Impact of yttrium addition on various properties has been studied in detail. • These Y{sup 3+} doped nanomaterials exhibited optimized properties.

  13. Room Temperature Co-Precipitation Synthesis of Magnetite Nanoparticles in a Large pH Window with Different Bases

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mascolo

    2013-11-01

    Full Text Available Magnetite nanoparticles (Fe3O4 represent the most promising materials in medical applications. To favor high-drug or enzyme loading on the nanoparticles, they are incorporated into mesoporous materials to form a hybrid support with the consequent reduction of magnetization saturation. The direct synthesis of mesoporous structures appears to be of interest. To this end, magnetite nanoparticles have been synthesized using a one pot co-precipitation reaction at room temperature in the presence of different bases, such as NaOH, KOH or (C2H54NOH. Magnetite shows characteristics of superparamagnetism at room temperature and a saturation magnetization (Ms value depending on both the crystal size and the degree of agglomeration of individual nanoparticles. Such agglomeration appears to be responsible for the formation of mesoporous structures, which are affected by the pH, the nature of alkali, the slow or fast addition of alkaline solution and the drying modality of synthesized powders.

  14. Solution-Phase Synthesis and Characterization of Perovskite LaCoO3 Nanocrystals via A Co-Precipitation Route

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A facile co-precipitation route for the synthesis of well-dispersed LaCoO3 nanocrystals was developed. The as-prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX), and laser Raman spectroscopy (LRS). The results showed that modulating the growth parameters, such as the addition of surfactants as well as the adding manner of the precipitator had a significant effect on the overall shape and size of the obtained nanocrystals. The nanorods with the diameter of 20 nm and spherical LaCoO3 nanocrystals with the size of about 25 nm could be obtained at a relatively low calcining temperature of 600 ℃. Furthermore, the Raman properties of LaCoO3 products obtained at different calcining temperatures were investigated.

  15. Properties of Er{sub 2}O{sub 3} nanoparticles synthesized by a modified co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda C, J.; Maranon R, V. F.; Perez Ladron de G, H.; Rodriguez R, R. A.; Chiu Z, R. [Universidad de Guadalajara, Centro Universitario de los Lagos, Av. Enrique Diaz de Leon s/n, Lagos de Moreno 47460, Jalisco (Mexico); Meneses N, M. A., E-mail: jcc050769@yahoo.com.mx [Centro de Investigaciones en Optica, A. C., Apdo. Postal 1-948, Leon, Guanajuato (Mexico)

    2015-07-01

    Er{sub 2}O{sub 3} nanoparticles were synthesized by co-precipitation with the addition of ascorbate as stabilizing agent. The nanoparticles had spherical shapes with a mean diameter of 32 nm and were allocated in clusters, as determined by X-ray diffraction, atomic force microscopy and optical microscopy. Characteristic green and red emissions from Er{sup 3+} were recorded by pumping the nanoparticles at 525 nm, 805 nm and 975 nm. However, the luminescence spectra show an enhancement of red emission for Nir pump wavelengths. We proposed this behavior was due to phonon-assisted depopulation mechanisms and energy transfer processes related to the different excitation schemes. (Author)

  16. Variation in structural and dielectric properties of co-precipitated nanoparticles strontium ferrites due to value of pH

    Energy Technology Data Exchange (ETDEWEB)

    Anis-ur-Rehman, M., E-mail: marehman@comsats.edu.pk [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Asghar, G. [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2011-01-12

    Nanoparticles of strontium ferrites with nominal composition SrFe{sub 12}O{sub 19} were prepared by co-precipitation method, by decreasing pH from 13 to 8 with a regular step of 1. The secondary phase of {alpha}-Fe{sub 2}O{sub 3} was increased with the decrease in pH. The crystallite size estimated from X-rays diffraction data was in the range 52-70 nm, which is much smaller than that already reported. Most of the particles formed had hexagonal structure, as observed by the scanning electron microscopy. Particle size and dielectric loss were increased where as dc electrical resistivity and dielectric constant were decreased with decrease in pH. The results show that the material synthesized with higher pH is phase pure and is potentially more suitable for high frequency applications.

  17. Coprecipitation of trace amounts of silicon with aluminum hydroxide and the determination by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Ardeshir Shokrollahi

    2014-01-01

    Full Text Available A simple preconcentration method of silicon based on coprecipitation with aluminum hydroxide prior to its flame atomic absorption (FAAS determination was established. The recovery values of analyte ion was higher than 95%. The parameters including types of hydroxide ion source for precipitation, acid type for dissolution step, amount of aluminum ion as collector, pH, temperature, standing and centrifuge time, and sample volume were optimized for the quantitative recovery of the analyte. The influences of matrix ions were also examined. The relative standard deviation was found to be 3.2%. The limit of detection was calculated as (0.1 mg L-1. The preconcentration factor is 100 for (200 mL solution. The proposed method was successfully applied for the determination of silicon in some water and alloy samples.

  18. NiO/YSZ nanocomposite particles synthesized via co-precipitation method for electrochemically active Ni/YSZ anode

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Kazuyoshi; Okamoto, Go; Naito, Makio; Abe, Hiroya [Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2009-08-01

    NiO/YSZ composite particles were synthesized via a co-precipitation of hydroxides. We investigated the effect of pH on the morphology of the composite particles, as well as on the microstructure and the electrochemical property of the Ni/YSZ anode. The particles synthesized at pH 10 involved aggregated composites and large NiO. The particles resulted in coarse and inhomogeneous anode microstructure and moderate area specific resistance (ASR) as 0.57 {omega} cm{sup 2} at 800 C under open circuit voltage (OCV). Contrarily, nano-sized composite particles were successfully synthesized at pH 13. The particles provided fine as well as homogeneous porous structure with the grain size in the range 200-400 nm and low ASR as 0.36 {omega} cm{sup 2} at 800 C under OCV. (author)

  19. A coprecipitation technique to prepare Sr0.5Ba0.5Nb2O6

    Indian Academy of Sciences (India)

    A Vadivel Murugan; A B Gaikwad; V Samuel; V Ravi

    2006-06-01

    An aqueous mixture of ammonium oxalate and ammonium hydroxide was used to coprecipitate barium and strontium ions as oxalates and niobium ions as hydroxide under basic conditions. This precursor on calcining at 750°C yielded Sr0.5Ba0.5Nb2O6 phase. This is a much lower temperature than that prepared by traditional solid state method (1000°C) as reported for the formation of Sr0.5Ba0.5Nb2O6 (SBN). Transmission electron microscopic (TEM) investigations revealed that the average particle size was 80 nm for the calcined powders. The room temperature dielectric constant at 1 kHz was found to be 1100. The ferroelectric hysteresis loop parameters of these samples were also studied.

  20. Comparison of catalytic activity of bismuth substituted cobalt ferrite nanoparticles synthesized by combustion and co-precipitation method

    Science.gov (United States)

    Kiran, Venkat Savunthari; Sumathi, Shanmugam

    2017-01-01

    In this study, cobalt ferrite and bismuth substituted cobalt ferrite (CoFe2-xBixO4x=0, 0.1) nanoparticles were synthesized by two different methods viz combustion and co-precipitation. The nanoparticles were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), diffuse reflectance spectroscopy (DRS), scanning electron microscopy-energy dispersive X-ray analyzer (SEM-EDX) and vibrating sample magnetometer (VSM). The results of powder XRD pattern showed an increase in lattice parameter and decrease in particle size of cobalt ferrite by the substitution of bismuth. Catalytic activity of cobalt ferrite and bismuth substituted cobalt ferrite nanoparticles synthesized by two different methods were compared for the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as a reducing agent.

  1. Synthesis and Photoluminescence of BaMgAl10O17:Eu2+ Phosphor by Oxalate Co-precipitation Process

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhanhui; Wang Yuhua; Du Yunkun; Li Feng

    2005-01-01

    Single phase of Ba1-xMgAl10O17:xEu2+ (0.02≤x≤0.14) phosphors was first successfully prepared by co-precipitation in aqueous medium with a "reverse strike" method, using oxalic acid and ammonia together as precipitants. Completely crystallized phosphors were obtained at 1300 ℃, which is 300 ℃ lower than the temperature of solid-state reaction. Their photoluminescence was investigated under UV and VUV region, respectively. The emission spectra of Ba1-xMgAl10O17:xEu2+ samples excited by 254 or 147 nm showed a characteristic wide band with the peak centred at about 450~454 nm. Optimum emission intensity reached at x=0.1 and then concentration quenching occurred. The synthesized phosphor shows 10% higher emission intensity than that prepared by solid-state reaction.

  2. Co-precipitation synthesis and upconversion luminescence properties of ZrO2:Yb3+-Ho3+

    Indian Academy of Sciences (India)

    Jinsheng Liao; Shaohua Liu; Liling Nie; Suijun Liu; Junxiang Fu

    2015-12-01

    ZrO2:Yb3+-Ho3+ phosphors with different Yb3+ doping concentration have been prepared by coprecipitation method. X-ray diffraction (XRD), scanning electron microscope (SEM) and photoluminescence spectra were used to characterize the properties of ZrO2:Yb3+-Ho3+ phosphors. Different phases of ZrO2 can be obtained by changing the concentration of Yb3+. Under the 980 nm excitation, the sample gives a set of light: strong green (539 nm), weak red (670 nm) and near-infrared (760 nm). The upconversion luminescence is based on two-photon absorption by the energy transfer from the donor (Yb3+) to the acceptor (Ho3+). All the results indicate that ZrO2:Yb3+-Ho3+ phosphors could be a promising biological labelling material.

  3. Preparation and characterization of PEG-PEI/Fe3O4 nano-magnetic fluid by co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    PENG Jian; ZOU Fen; LIU Lu; TANG Liang; YU Li; CHEN Wei; LIU Hui; TANG Jing-bo; WU Li-xiang

    2008-01-01

    PEG-PEI/Fe3O4 nano-magnetic fluids with different mass fractions of reactant were prepared by co-precipitation method. Besides particle size analyzer, the methods of XRD, IR, VSM and AFM were adopted to characterize the synthesized samples. Covalent bonding of PEG, PEI and Fe3O4 exhibits superparamagnetism. The TEM photograph shows that the particles are of stable dispersion and little aggregation, with smooth surface, spherical shape and a diameter of about 80 nm, which meets the requirements of nano-materials. When the mass fraction of PEI in reactant is 25%, the particle size, Zeta-potential and pEGFP-C1 DNA loading efficiency are all satisfactory. In this case, PEG-PEI/ Fe3O4 nano-magnetic fluids can be used as gene vectors or targeted drug carriers.

  4. Optical and structural properties of Fe-doped SnO2 nanoparticles prepared by co-precipitation method

    Science.gov (United States)

    Kaur, Navneet; Abhinav, Singh, Gurwinder Pal; Singh, Vishal; Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    Today nanomaterials plays important role in every field, due to their unique mechanical, chemical and electrical properties which are completely different from the bulk materials. With reduction in the size of material its properties are dynamically changed. Semiconductor materials are widely used in electronic devices but in the field of optoelectronic these materials have some limitations. Tin oxide could be the material which could be used in these applications without limitations. Doped Tin Oxide is an oxygen deficient material which could be beneficial for transparent conducting oxide. Iron doped SnO2 prepared by co-precipitation method. Studies on structural properties of undoped and doped SnO2 were done by X-ray diffraction. The XRD results have shown that the size of the nanoparticles decreases with Fe doping down to 53nm. Optical Properties were studied by UV-visible spectroscopy. Band gap was found to decrease with increase in iron content in samples.

  5. Performance of Fe-Cr based WGS catalysts prepared by co-precipitation and oxi-precipitation methods

    Energy Technology Data Exchange (ETDEWEB)

    Marono, M.; Ruiz, E.; Sanchez, J.M. [CIEMAT, Energy Department, Combustion and Gasification Division, Avda Complutense, 22, 28040 Madrid (Spain); Martos, C.; Dufour, J.; Ruiz, A. [URJC, Department of Chemical and Environmental Technology, ESCET, C/Tulipan, s/n, 28933, Mostoles, Madrid (Spain)

    2009-11-15

    In this work the performance of Fe-Cr based WGS catalysts synthesized following two different methods (co-precipitation and oxy-precipitation) is studied under a wide range of operating conditions. A commercial Fe-Cr based WGS catalyst is used for comparison. The activity of the catalysts has been studied on simulated gases under conditions typical of oxygen pressurized gasification. The influence of main operating parameters, including temperature, space velocity and excess steam is evaluated in terms of hydrogen production and CO conversion. Catalytic performance has been evaluated from 200 C to 500 C, using gas space velocities between 2885 and 10000 h{sup -1} and steam to carbon monoxide ratios from 2 to 6.7. According to the results obtained in this work, the oxy-precipitation method has provided a suitable approach to synthesize highly active Fe-Cr based WGS catalysts. (author)

  6. Stability of continuously produced Fe(II)/Fe(III)/As(V) co-precipitates under periodic exposure to reducing agents.

    Science.gov (United States)

    Doerfelt, Christoph; Feldmann, Thomas; Daenzer, Renaud; Demopoulos, George P

    2015-11-01

    Arsenic mobilized during ore processing necessitates its effective removal from process effluents and disposal in environmentally stable tailings. The most common method to accomplish this involves co-precipitation with excess ferric iron during lime neutralization. The precipitates produced are stable under oxic conditions. This may not be true, however, under sub-oxic or anoxic conditions. In this context, the potential stabilizing role of ferrous iron on arsenic removal/retention becomes important. As such, this work investigates the removal and redox stability of arsenic with ferrous, ferric and mixtures of both. The stability of produced solids is monitored in terms of arsenic release over time. It was found that ferrous was very effective for arsenic (V) removal with Fe(II)/As(V)=4, reducing its concentration down to reducing agent exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Aging Time Effect on Porous Characteristics of Natural Mud-based Silica Prepared by Hydrothermal-Coprecipitation Route

    Science.gov (United States)

    Ubaid, A.; Hidayat, N.; Munasir

    2017-05-01

    In this present study, we report the influence of aging time on porous characteristics and chemical bonding within structurally related silicates of silica. The silica was well prepared by using a combination of hydrothermal and coprecipitation methods. Local natural mud from Sidoarjo, Indonesia was preferred as a starting material, rather than the expensive commercial ones. The aging time was set at 20, 24, 28, and 32 hours. The X-ray fluorescence (XRF) test revealed that the produced porous silica has a purity of 98.9%. The Fourier Transform of Infra-Red (FTIR) analysis showed that ≡Si-OH and ≡Si-O -Si≡ functional groups were found in the samples. The pores of the silica, after Brunauer-Emmett-Teller (BET) measurement, found to be macropore and mesopore. The prepared silica with different porous characteristics were strongly influenced by the chemical activities during the synthesis, known as syneresis and Ostwald processes.

  8. Preparation of ceria-zirconia by modified coprecipitation method and its supported Pd-only three-way catalyst.

    Science.gov (United States)

    Lan, Li; Chen, Shanhu; Cao, Yi; Zhao, Ming; Gong, Maochu; Chen, Yaoqiang

    2015-07-15

    A CeO2-ZrO2 compound with mixed phase composition (CZ4) was prepared by modified co-precipitation method, and for comparison, single-phase Ce(0.2)Zr(0.8)O2, Ce(0.5)Zr(0.5)O2 and Ce(0.8)Zr(0.2)O2 were synthesized via simultaneous co-precipitation method. The textural, structural and redox properties, together with the catalytic performance of the supported Pd-only three-way catalysts were investigated systematically. The results revealed that the generation of numerous interface sites in Pd/CZ4 due to its mixed phase composition (as confirmed by TEM observation) had a positive influence on modifying its structural, redox properties and thermal stability. The XRD and Raman results revealed that the highest structural stability was obtained by Pd/CZ4 with negligible lattice variation and slightest grain growth after aging treatment. The XPS analysis demonstrated that the compositional heterogeneity of Pd/CZ4 could facilitate the formation of Ce(3+), and was beneficial to preserve high dispersion of Pd as well as maintain Pd at a more oxidized state. The H2-TPR and oxygen storage capacity measurements indicated that Pd/CZ4 possessed highest reduction ability as well as largest oxygen storage capacity regardless of thermal aging treatment. And consequently Pd/CZ4 exhibited improved three-way catalytic activity compared with the catalysts supported on single-phase Ce(x)Zr(1-x)O2 both before and after thermal aging treatment.

  9. Magnetic and structural properties of nano sized Dy-doped cobalt ferrite synthesized by co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Z., E-mail: Zahra_kr64@yahoo.com [Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Mohammadifar, Y.; Shokrollahi, H. [Electroceramics Group, Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz (Iran, Islamic Republic of); Asl, Sh. Khameneh [Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16471 (Iran, Islamic Republic of); Yousefi, Gh. [Center for Pharmaceutical Nanotechnology and Biomaterials, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Karimi, L. [Materials Science and Engineering Department, Islamic Azad University Ahvaz Branch, Ahvaz (Iran, Islamic Republic of)

    2014-06-01

    Regarding the various applications of cobalt ferrite as a magnetic ceramic in various scientific and industrial categories, it is essential to modify and optimize its microstructural and magnetic features. Chemical composition (doped elements and their quantities) is a determining factor which has been studied in this research. For this purpose, cobalt-dysprosium ferrite ceramic nanoparticles with the chemical formula Co{sub 1−x}Dy{sub x}Fe{sub 2}O{sub 4} (x=0, 0.01, 0.03, 0.05, 0.1) were synthesized by the co-precipitation chemical method and then analyzed from the structural and magnetic perspectives. The desirable spinel phase formation was confirmed via x-ray diffractometry, and the other crystallographic parameters and cation distribution were calculated. The microscopic image of the samples showed 15 nm particles. The type and strength of the interionic bonds were determined by infrared spectroscopy. The hysteresis loop of the material was affected noticeably by doped elements as the room temperature saturation magnetization was decreased, but the residual magnetization and coercivity of ferrite were promoted by 50 and 150% after adding dysprosium, respectively. The maximum anisotropy constant, which is equal to 19.1 erg/g for undoped cobalt ferrite, was increased to 45.2 erg/g by doping 0.05 dysprosium. It is worth mentioning that introducing dopants into the lattice led to a great decrease in Curie temperature. - Highlights: • Magnetic and structural studies of Dy{sup 3+}–Co–ferrite are investigated. • Simple co-precipitation method involving less energy and low-cost is used. • The nanoparticles with high coercivity, magnetization and loop area are obtained. • The composition Co{sub 0.95}Dy{sub 0.05}Fe{sub 2}O{sub 4} has the maximum coercivity and high residual magnetization.

  10. Organic-free synthesis of zincoaluminosilicate zeolites from homogeneous gels prepared by a co-precipitation method.

    Science.gov (United States)

    Koike, Natsume; Chaikittisilp, Watcharop; Iyoki, Kenta; Yanaba, Yutaka; Yoshikawa, Takeshi; Elangovan, Shanmugam Palani; Itabashi, Keiji; Okubo, Tatsuya

    2017-08-22

    Zeolites containing Zn in their frameworks are promising materials for ion-exchange and catalysis because of their unique ion-exchange capabilities and characteristic Lewis acidity. However, expensive organic compounds often required in their synthesis can prevent their practical uses. Here, a facile organic-free synthesis route for new zincoaluminosilicate zeolites having MOR topology, in which both Zn and Al are substituted in the framework, is demonstrated for the first time. The use of homogeneous zincoaluminosilicate gels prepared by a co-precipitation technique as raw materials is vital for the successful incorporation of both Zn and Al into the zeolite frameworks as revealed by several characterization techniques including solid-state NMR and UV-vis spectroscopy, and ion-exchange experiments. The obtained zincoaluminosilicate zeolites had high Zn contents comparable to those in the initial zincoaluminosilicate gels. In contrast, the uses of conventional sources of Si, Al, and Zn resulted in zeolites with very low contents of framework Zn or zeolites with extra-framework zinc oxide-species. FT-IR measurements using probe molecules and ion-exchange experiments suggested that there are two different environments of Zn in the zeolite frameworks. The obtained zincoaluminosilicate zeolites showed a higher ion-exchange efficiency for divalent cations such as nickel compared to the aluminosilicate analog. It is expected that the present co-precipitation technique is efficient for the incorporation of Zn (and other metals) into a variety of zeolite frameworks. To show its extended applicable scope, the synthesis of zincoaluminosilicate *BEA zeolite is also demonstrated.

  11. 共沉淀氢氧化铁急性毒性试验研究%Acute toxicity test study of co-precipitation ferric hydroxide

    Institute of Scientific and Technical Information of China (English)

    洪南华; 李诚

    2012-01-01

    For studying the acute toxicity of co-precipitation ferric hydroxide, kunming mice were divided into 4 groups and given co-precipitation ferric hydroxide at different dose. The result showed that the LD50 of co-precipitation ferric hydroxide was higher than 21500mg/kg m, and thus classified as innocuity. So co-precipitation ferric hydroxide has no markedly acute recation as an iron fortificant.%为探讨共沉淀氢氧化铁的毒性作用,以昆明小鼠为试验对象,对所研制的共沉淀氢氧化铁进行急性毒理学试验,结果表明以共沉淀氢氧化铁灌胃,对小鼠的LD50> 21500mg/kg,属于无毒级.因此共沉淀氢氧化铁作为一种铁强化剂无明显急性毒理反应.

  12. Magnetic and microwave-absorbing properties of SrAl4Fe8O19 powders synthesized by coprecipitation and citriccombustion methods

    Indian Academy of Sciences (India)

    H Y He; J F Huang; L Y Cao; Z He; Q Shen

    2011-06-01

    Al-substituted -type hexaferrite is a highly anisotropic ferromagnetic material. In the present study, the coprecipitation and the citric-combustion methods of synthesis for SrAl4Fe8O19 powders were explored and their microstructure, magnetic properties, and microwave absorptivity examined. X-ray diffraction (XRD), scanning electron microscopy (SEM), a vibrating sample magnetometer, and a vector network analyser were used to characterize the powders. The XRD analyses indicated that the pure SrAl4Fe8O19 powder was synthesized at 900°C and 1000°C for 3 h by coprecipitation, but only at 1000°C for the citric-combustion processes. The SEM analysis revealed that the coprecipitation process yielded a powder with a smaller particle size, near single-domain structure, uniform grain morphology, and smaller shape anisotropy than the citric-combustion process. The synthesis technique also significantly affected the magnetic properties and microwave-absorptivity. Conversely, calcining temperature and calcining time had less of an effect. The grain size was found to be a key factor affecting the property of the powder. The powders synthesized by coprecipitation method at calcining temperature of 900°C exhibited the largest magnetization, largest coercivity, and best microwave absorptivity.

  13. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    Science.gov (United States)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-09-01

    Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.

  14. Distinction between SnO2 nanoparticles synthesized using co-precipitation and solvothermal methods for the photovoltaic efficiency of dye-sensitized solar cells

    Indian Academy of Sciences (India)

    M M Rashad; I A Ibrahim; I Osama; A E Shalan

    2014-06-01

    Nanocrystalline SnO2 powders prepared by solvothermal and co-precipitation pathways have been characterized using XRD, TEM, UV–Visible absorption, BET specific surface area (BET) method, EIS and – measurements. The obtained powders have a surface area and size of 38.59 m2/g and 10.63 nm for the SnO2 powders synthesized solvothermally at a temperature of 200 °C for 24 h, while the values were 32.59 m2/g and 16.20 nm for the formed hydroxide precursor annealed at 1000 °C for 2 h by co-precipitation route. The microstructure of the formed powders appeared as tetragonal-like structure. Thus, the prepared SnO2 nanopowders using two pathways were applied as an electrode in dye-sensitized solar cell (DSSC). The photoelectrochemical measurements indicated that the cell presents short-circuit photocurrent (sc), open circuit voltage (oc) and fill factor (FF) were 7.017 mA/cm2, 0.690 V and 69.68%, respectively, for solvothermal route and they were 4.241 mA/cm2, 0.756 V and 66.74%, respectively, for co-precipitation method. The energy conversion efficiency of the solvothermal SnO2 powders was considerably higher than that formed by co-precipitation powders; ∼ 3.20% (solvothermal) and 2.01% (co-precipitation) with the N719 dye under 100 mW/cm2 of simulated sunlight, respectively. These results were in agreement with EIS study showing that the electrons were transferred rapidly to the surface of the solvothermal-modified SnO2 nanoparticles, compared with that of a co-precipitation-modified SnO2 nanoparticles.

  15. Influence of Cd substitution on structural, electrical and magnetic properties of M-type barium hexaferrites co-precipitated nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Din, Muhammad F.; Ahmad, Ishtiaq; Ahmad, Mukhtar; Farid, M.T. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Asif Iqbal, M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); NUST College of Electrical and Mechanical Engineering, Islamabad (Pakistan); Murtaza, G. [Centre for Advanced Studies in Physics, G.C. University, Lahore 54000 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Shakir, Imran [Deanship of Scientific Research, College of Engineering, PO Box 800, King Saud University, Riyadh 11421 (Saudi Arabia); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Khan, Muhammad Azhar, E-mail: azhar_manais@hotmail.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2014-01-25

    Graphical abstract: Nanocrystalline M-type hexagonal ferrites (Ba{sub 0.5}Co{sub 0.5−x}Cd{sub x}Fe{sub 12}O{sub 19}) prepared by co-precipitation route exhibited the increased % porosity and decreased crystallite size from 47 to 26 nm upon the substitution of Co with Cd. The dc-electrical resistivity and magnetic parameters (M{sub s} and H{sub c}) were also greatly influenced by increased Cd contents, which clearly suggested the possible utilization of these nanomaterials for recording media and high frequency devices fabrications. Highlights: • Ba{sub 0.5}Co{sub 0.5−x}Cd{sub x}Fe{sub 12}O{sub 19} nanocrystalline are synthesized by co-precipitation route. • Effect of cadmium substitution on various properties has been studied. • Optimum electromagnetic properties have been observed for Ba{sub 0.5}Cd{sub 0.5}Fe{sub 12}O{sub 19} samples. • The DC electrical resistivity lies in the range 2.31 × 10{sup 9} to 6.42 × 10{sup 9} Ω cm. • Cd incorporation increases coercivity from 155 to 1852 Oe. -- Abstract: Nanocrystalline M-type hexagonal ferrites with the nominal chemical composition Ba{sub 0.5}Co{sub 0.5−x}Cd{sub x}Fe{sub 12}O{sub 19} (where x = 0–0.5) have been synthesized by the co-precipitation method and sintered at high annealing temperature (1250 °C) to study their structural, electrical and magnetic properties. The aim of the present work is to increase the DC electrical resistivity and coercivity of these M-type hexaferrites nanomaterials by the substitution of cadmium (Cd{sup 2+}) ions at Co{sup 2+} site. The analysis of X-ray diffraction (XRD) patterns indicates single M-type hexaferrite phase. The parameters such as lattice constants (a and c), cell volume (V), X-xay density (D{sub x}), bulk density (D{sub b}), crystallite size (D) and percentage porosity (%P) were calculated from XRD data. The crystallite size is found in the range of 26–47 nm and this size is small enough to obtain a suitable signal-to-noise ratio for application in

  16. BaFe{sub 12}O{sub 19} powder with high magnetization prepared by acetone-aided coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hsuan-Fu, E-mail: hfyu@mail.tku.edu.tw

    2013-09-15

    BaFe{sub 12}O{sub 19} particles with high magnetization were produced using an acetone-aided coprecipitation process. An aqueous solution of iron and barium nitrates, in an Fe{sup 3+}/Ba{sup 2+} molar ratio of 12, was added in a stirred precipitation liquid medium composed of H{sub 2}O, CH{sub 3}(CO)CH{sub 3} and NH{sub 4}OH. After reacting metallic ions with ammonia, the precipitates were formed, centrifugally filtered, freeze dried and calcined. Effects of amount of the acetone in the precipitation liquid medium on the formation of crystalline BaFe{sub 12}O{sub 19} were investigated. The presence of acetone in the precipitation liquid medium can greatly promote formation of the crystalline BaFe{sub 12}O{sub 19} at temperature as low as 650 °C and can enhance magnetization of the derived particles. On the other hand, raising the calcination temperature can effectively accelerate development of crystallite morphology and magnetic characters of the barium hexaferrites. While the barium hexaferrite powder obtained without acetone additions and calcined at 1000 °C had magnetization (measured at 50 kOe; M(50 kOe)) of 63.5 emu/g, remanence magnetization (Mr) of 31.3 emu/g and coercivity (Hc) of 4.7 kOe, the single magnetic domain size BaFe{sub 12}O{sub 19} powder with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was produced at 1000 °C, using a precipitation liquid medium of 64 vol% acetone. - Highlights: • BaFe{sub 12}O{sub 19} with high magnetic characters was produced by an acetone-aided coprecipitation. • The effects of acetone addition in the precipitation on the formation of BaFe{sub 12}O{sub 19} were studied. • Acetone presence in the precipitation liquid medium promoted BaFe{sub 12}O{sub 19} formation at ≥650 °C. • BaFe{sub 12}O{sub 19} with M(50 kOe) of 70.6 emu/g, Mr of 34.4 emu/g and Hc of 3.7 kOe was obtained.

  17. Luminescence behaviors of Eu- and Dy-codoped alkaline earth metal aluminate phosphors through potassium carbonate coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen-Jui, E-mail: cjliang@fcu.edu.tw; Siao, Hao-Yi

    2016-07-01

    An electronic energy mechanism of activator and sensitizer was established to describe the luminescence behaviors of Eu- and Dy-codoped M(II)Al{sub 2}O{sub 4} (M(II) = Ba, Sr, Ca, Mg) phosphors through potassium carbonate coprecipitation. Experimental results demonstrated that the prepared phosphors exhibited superior crystallinity at a temperature lower than 950 °C. The phosphors are ordered according to emission intensity as follows Ca- > Ba- > Sr- > Mg-containing phosphors. The energy level for Eu{sup 2+} 4f{sup 6}5d{sup 1} → 4f{sup 7}, Eu{sup 3+4}D{sub 0} → {sup 7}F, and Dy{sup 3+4}F{sub 9/2} → {sup 6}H transitions and the effects of nephelauxetic and crystal field in Ba-, Sr-, and Ca-containing phosphors were discussed. The energy gap, (hv){sub em}, between 5d and 4f of Eu{sup 2+} ion is strongly affected by host composition, crystal field strength, and nephelauxetic effect. The infrared emission of 4f{sub 9/2} → 6h for Dy{sup 3+} is merely depend on the transfer of energy from Eu{sup 2+} upon excited. Ca-containing phosphor with maximum (hv){sub em} is attributed to the lowest bond length of Ca−O and highest ionization potential of Ca{sup 2+} ion, which leads to the effects of crystal field and nephelauxetic greater than that in the other phosphors. - Highlights: • The list of the collected figure captions: • Develop a new coprecipitation method to prepare high efficiency phosphors. • Obtain superior crystallinity with lower calcination temperature. • Luminescence behavior of Eu- and Dy-codoped on aluminate phosphors is discussed. • Investigate the effects of alkaline earth metal containing on crystal field and nephelauxetic.

  18. The effect of fluoride and silicate ions on the coprecipitation of gadolinium with calcium in phosphoric and sulpho-phosphoric media

    Energy Technology Data Exchange (ETDEWEB)

    Bouhlassa, S.; Salhamen, F. [Univ. Mohammed V - Agdal, Rabat (Morocco). Lab. de Radiochimie

    2013-05-01

    This work was carried out with the aim to establish the effect of some impurities on the coprecipitation of gadolinium with calcium phosphate and gypsum. The tests were performed using the radioactive tracer technique to monitor the fate of gadolinium in various phosphoric and sulpho-phosphoric media containing fluoride and silicate ions as impurities. In 10{sup -2} to 10{sup -1} M NH{sub 4}H{sub 2}PO{sub 4} solution, the Gd(III) at a concentration of 10{sup -4} M is almost entirely precipitated as amorphous phosphate. However, the presence of H{sub 2}SO{sub 4} at C{sub H{sub 3SO{sub 4}}} {>=} 0.1 M, reduces the coprecipitation to less than 8 at. %, on average. The fluoride ions in solution, even at C{sub HF} {<=} 0.1 M, induce a reduction of coprecipitation of 10 to 30% according to HF concentration. In the media containing 10{sup -2} to 10{sup -1} M NH{sub 4}H{sub 2}PO{sub 4} and 10{sup -1} M H{sub 2}SO{sub 4}, the effect of HF is almost negligible in the absence of Si(IV); nevertheless, the presence of fluorosilicate in solution may contribute to the enhancement of the coprecipitation of the REE. The sulphuric acid (0.1 M) in phosphoric media (0.74 {<=} C{sub H{sub 3PO{sub 4}}} {<=} 4.44 M), leads to a significant coprecipitation of the REE (1.3 {+-} 0.2 {<=}D{sub Gd}{<=} 3.1 {+-} 0.5), whilst the addition of HF (0.1 M) to these media enhances the solubility of the REE (left angle D{sub Gd} right angle = 0.06 {+-} 0.01). XRD, IR spectroscopy and elemental analyses of the solid phases in conjunction with the variation of the distribution coefficient D indicate that the coprecipitation of the REE is likely controlled by heterovalent substitution of REE in gypsum and its precipitation as phosphate or fluorosilicate. (orig.)

  19. Microwave Resonant and Zero-Field Absorption Study of Doped Magnetite Prepared by a Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Juan Carlos Aphesteguy

    2014-06-01

    Full Text Available Fe3O4 and ZnxFe3−xO4 pure and doped magnetite magnetic nanoparticles (NPs were prepared in aqueous solution (Series A or in a water-ethyl alcohol mixture (Series B by the co-precipitation method. Only one ferromagnetic resonance line was observed in all cases under consideration indicating that the materials are magnetically uniform. The shortfall in the resonance fields from 3.27 kOe (for the frequency of 9.5 GHz expected for spheres can be understood taking into account the dipolar forces, magnetoelasticity, or magnetocrystalline anisotropy. All samples show non-zero low field absorption. For Series A samples the grain size decreases with an increase of the Zn content. In this case zero field absorption does not correlate with the changes of the grain size. For Series B samples the grain size and zero field absorption behavior correlate with each other. The highest zero-field absorption corresponded to 0.2 zinc concentration in both A and B series. High zero-field absorption of Fe3O4 ferrite magnetic NPs can be interesting for biomedical applications.

  20. Effect of Potassium Addition on Coprecipitated Iron Catalysts for Fischer-Tropsch Synthesis Using Bio-oil-syngas

    Institute of Scientific and Technical Information of China (English)

    Zhao-xiang Wang; Ting Dong; Tao Kan; Quan-xin Li

    2008-01-01

    The effects of potassium addition and the potassium content on the activity and selectivity of coprecipitated iron catalyst for Fischer-Tropsch synthesis (FTS) were studied in a fixed bed reactor at 1.5 MPa,300℃, and contact time (W/F) of 12.5 gcath/mol using the model bio-oil-syngas of H2/CO/CO2/N2 (62/8/25/5, vol%).It was found that potassium addition increases the catalyst activity for FTS and the reverse water gas shift reaction.Moreover,potassium increases the average molecular weight (chain length) of the hydrocarbon products.With the increase of potassium content,it was found that CH4 selectivity decreases and the selectivity of liquid phase products (C5+) increases.The characteristics of FTS catalysts with different potassium content were also investigated by various characterization measurements including X-ray diffraction,X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller surface area.Based on experimental results,100Fe/6Cu/16Al/6K (weight ratio) was selected as the optimal catalyst for FTS from bio-oil-syngas. The results indicate that the 100Fe/6Cu/16Al/6K catalyst is one of the most promising candidates to directly synthesize liquid bio-fuel using bio-oil-syngas.

  1. Estimation of whey protein in casein coprecipitate and milk powder by high-performance liquid chromatography quantification of cysteine.

    Science.gov (United States)

    Ballin, Nicolai Z

    2006-06-14

    An analytical high-performance liquid chromatography (HPLC)-fluorescence method for indirect measuring of whey protein in casein coprecipitate and milk powder was developed. Samples were hydrolyzed with HCl, and cysteyl residues were derivatized with 3,3'-dithiodipropionic acid and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. The cysteine content was used to calculate the percentage of whey protein in commercial samples with use of European Union Regulation cysteine reference values in both casein and whey protein. Method validation studies were performed for caseinates and milk powder, and results indicate that the present HPLC approach can be applied as a fast method with a standard deviation of repeatability between 3.3 and 9.5%. Applicability was studied by analysis of 40 commercial caseinate samples, and all complied to European legislation with a content of whey protein not exceeding 5%. Finally, an approach used to estimate the cysteine amount in pure casein by comparison of calculated and experimental values questions the generally accepted cysteine reference value in casein, which is most likely an overestimation.

  2. Synthesis and Pholuminescence studies of polymer capped SnO2 nanoparticles synthesized by chemical co-precipitation method

    Directory of Open Access Journals (Sweden)

    Lakshmi Venkata Kumari P

    2017-06-01

    Full Text Available In recent years many research works have been focused on the electrical and optical properties of metal oxides. In this present paper SnO2 nanoparticles have been synthesized by chemical co-precipitation method using different capping agents like EDTA (ethylene diamine tetra acetic acid, PVP (polyvinylpyrrolidone, PVA (polyvinyl alcohol and studied the influence of capping agent on various properties of SnO2 nanoparticles. Structural, surface morphology, chemical analysis and luminescence properties of prepared SnO2 nanoparticles were studied by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM attached with energy dispersive analysis of X-rays (EDAX and photoluminescence studies (PL. X-ray diffraction study reveals the nano-size particle distribution of the prepared samples with tetragonal rutile structure in the range of 3 to 9 nm. FTIR spectra show the structural confirmation of SnO2 nanoparticles. Various PL signals were observed in the visible region around 375 nm to 600 nm due to oxygen vacancies and interfacial Sn vacancies present in the prepared nanosamples.

  3. Synthesis, Characterization, and Optimization of Co2SnO4 Nanoparticles via Co-precipitation Method

    Science.gov (United States)

    Shamirian, Armen; Edrisi, Mohammad; Naderi, Mahnaz

    2013-01-01

    Nano-structured pure Co2SnO4 powders have been synthesized using the co-precipitation method in the presence of oleic acid (OA) as a capping agent. The Taguchi L4 statistical design was used to investigate the effect of the main parameters (i.e., OA concentration, calcination time, and calcination temperature) on Co2SnO4 formation, crystallite size, and morphology. Co2SnO4 particles were characterized by powder x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, scanning electron microscopy (SEM), Fourier transform of infrared spectroscopy (FT-IR), dynamic light scattering (DLS), and Brunauer-Emmett-Teller (BET) surface area measurements. The formation of small and well-crystalline particles, on the order of 41.12-90.60 nm in crystal size, has been determined from XRD patterns and confirmed by SEM and DLS. The specific surface area was measured by a BET method to be 25.43 m2/g. The particle size of the product was observed by DLS to be in the range of 40-105 nm. The results indicated that calcination temperature has the most significant effect on the produced cobalt stannate crystal size.

  4. Comparison of the Sol-gel Method with the Coprecipitation Technique for Preparation of Hexagonal Barium Ferrite

    Institute of Scientific and Technical Information of China (English)

    WANG Jing-ping; LIU Ying; ZHANG Mi-lin; QIAO Ying-jie; XIA Tian

    2008-01-01

    Hexagonal barium ferrite BaFe12O19 particles were prepared by sol-gel and coprecipitation methods,respectively.The composition of the so-obtained materials was investigated by means of XRD.By the sol-gel method,non-anticipated intermediate crystalline phases,such as γ-Fe2O3,α-Fe2O3,BaCO3,and BaFe2O4 etc.,were formed with the delay of the formation of BaFe12O19.The formation of single phase BaFe12O19 required calcination at 850 ℃ for 4 h.On the other hand,using copreeipitation technique,amorphous hydroxide precursor was directly transferred into BaFe12O19 almost without the formation of intermediate crystalline phases.BaFe12O19 was prepared by calcining at 700 ℃ for 3 h.The results were confirmed by ESEM and VSM analyses.Based on the already reported results and the observed results in this study,it can be concluded that the coprecipitaion technique is easier to control than the sol-gel method for preparation of BaFe12O19 at a low temperature.

  5. Structural analysis of Sm{sup 3+} doped nanocrystalline Mg-Cd ferrites prepared by oxalate co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Gadkari, A.B., E-mail: kashokabg@yahoo.com [Department of Physics, GKG College, Kolhapur, 416 012 (India); Shinde, T.J. [Department of Physics, KRP Kanya Mahavidylaya, Isalampur, 415409 (India); Vasambekar, P.N. [Department of Electronic, Shivaji University, Kolhapur, 416 004 (India)

    2009-11-15

    The structural properties of polycrystalline Sm{sup 3+} doped Mg{sub 1} {sub -} {sub x}Cd{sub x} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0) have been investigated by oxalate co-precipitation method from high purity sulphates. The samples were sintered at 1050 deg. C for a duration of 5 h. The X-ray diffraction measurements confirmed the formation of a cubic spinel structure. The different parameters like lattice constant, X-ray density, physical density, porosity, crystallite size, site radii and bond length on tetrahedral and octahedral sites have been calculated. The lattice constant increases with an increase in Cd{sup 2+} content and shows non linear behavior. The crystallite size was calculated using Scherrer formula and varies from 28.69 to 32.05 nm. Physical densities were obtained by Archimedes principle. The surface morphology studied by scanning electron microscope shows that the grain size of the samples increases with an increase in Cd{sup 2+} content. The IR spectra show two strong absorption bands around 5.87 x 10{sup 4} m{sup -1} and 4.27 x 10{sup 4} m{sup -1} on the tetrahedral and octahedral sites respectively. IR spectra also show that Sm{sup 3+} occupies the octahedral B-site.

  6. Structural analysis of Y{sup 3+}-doped Mg-Cd ferrites prepared by oxalate co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Gadkari, A.B. [Department of Physics, GKG College, Kolhapur 416012, Maharashtra (India)], E-mail: kashokabg@yahoo.com; Shinde, T.J. [Department of Physics, KRP Kanya Mahavidylaya, Islampur 415409 (India); Vasambekar, P.N. [Department of Electronics, Shivaji University, Kolhapur 416004 (India)

    2009-04-15

    Polycrystalline ferrites of Cd{sub x}Mg{sub 1-x}Fe{sub 2}O{sub 4} (x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) with addition of 5% of yttrium has been synthesized by oxalate co-precipitation method and characterized by XRD, SEM and FTIR techniques. The samples were presintered at 700 deg. C for duration of 6 h and sintered at 1050 deg. C for 5 h. The X-ray diffraction measurements confirmed the formation of cubic spinel structure. Lattice constant, X-ray density, physical density, crystallite size, ionic radii on A-site and B-site (r{sub A}, r{sub B}), bond length on A-site and B-site (A-O, B-O) and porosity have been calculated. The lattice constant is found to increase with increase in Cd{sup 2+} content. The physical densities are about 86.96% of their X-ray density. Average crystallite size lies in the range of 28.86-32.06 nm. SEM study shows that the grain size of the samples increases with increase in Cd{sup 2+} content. The addition of Y{sup 3+} reduces the grain growth. The FTIR spectra shows two strong absorption bands in the frequency range 575-435 cm{sup -1}, on the tetrahedral and octahedral sites, respectively. Further it shows that Y{sup 3+} occupies B-sites.

  7. Synthesis of Zn1-xCuxO Nanoparticles by Coprecipitation and Their Structure and Electrical Property

    Science.gov (United States)

    Ayu Daratika, Dyah; Anjelh Baqiya, Malik; Darminto

    2017-05-01

    The Zn1-xCuxO (x = 0 - 6% wt) nanoparticles has been synthesized by coprecipitation method using zinc acetate dihydrate, and copper powder were employed with HCl and NH4OH respectively as solvent and precipitating agents. The effect of Cu concentration on structural, optical, and electrical properties of Zn1-xCuxO nanoparticles were investigated. The diffraction patterns of XRD indicate that Zn1-xCuxO phase crystallized in the wurtzite structure having crystal size which was evaluated by using MAUD software, in the range of 28 - 79 nm. Electron microscope analysis shows the morphology of Zn1-xCuxO is nanowires, having finer grains with the increasing content of Cu. The Cu doping reduced the optical band gap energy from 3.10 eV to 2.80 eV, while the electrical conductivity increased from 1.18 × 10-8 to 24.25 × 10-8 S/cm. This result implies that Cu+ or Cu2+ ions have substituted Zn2+ ions. However, doping of Cu more than 4% wt increase optical band gap which makes the electrical conductivity decrease. The electrical conductivity obtained from this study is significantly higher than that reported previously.

  8. Structural and magnetic characterization of co-precipitated NixZn1-xFe2O4 ferrite nanoparticles

    Science.gov (United States)

    Srinivas, Ch.; Tirupanyam, B. V.; Meena, S. S.; Yusuf, S. M.; Babu, Ch. Seshu; Ramakrishna, K. S.; Potukuchi, D. M.; Sastry, D. L.

    2016-06-01

    A series of NixZn1-xFe2O4 (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni2+ ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core-shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe3+ ions and absence of Fe2+ ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core-shell interactions.

  9. Room temperature ferromagnetism in Ist group elements codoped ZnO:Fe nanoparticles by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivelu, V.; Paul Blessington Selvadurai, A. [Department of Physics, MIT Campus, Anna University, Chennai 600044 (India); Kannan, R. [Department of Physics, Pondicherry Engineering College, Puducherry 605014 (India); Murugaraj, R., E-mail: r.murugaraj@gmail.com [Department of Physics, MIT Campus, Anna University, Chennai 600044 (India)

    2016-04-15

    In this paper, we report on the structural, vibrational and magnetic behavior of Ist group elements (Li{sup +}, Na{sup +} and K{sup +}) codoping effect in ZnO:Fe nanoparticles (NPs) prepared by co-precipitation method. The single crystalline phase of the prepared NPs was identified as Wurtizite structure and the Raman spectra expressed the local structural change and the presence of complex lattice defects such as Zinc interstitial (Zn{sub i}) and Oxygen vacanvy (V{sup +}{sub o}) defects in the NPs. The presence of functional groups was confirmed by FT-IR spectral analysis. The optical absorption properties of the prepared NPs were characterised by UV-Drs spectroscopy. The valance state of Zinc ions and the role of Oxygen related defects were analysed from x-ray photoelectron spectroscopy (XPS) spectra. The electron paramagnetic resonance (EPR) spectral line illustrated the presence of complex defects such as Zinc interstitial (Zn{sub i}) and oxygen vacancy (V{sup +}{sub o}) defects in the sample. The observed room temperature ferromagnetism (RTFM) in the prepared sample was induced by lattice defects. The observed results are discussed and reported.

  10. Preparation and Microstructure of Spinel Zinc Ferrite ZnFe_2O_4 by Co-precipitation Method

    Institute of Scientific and Technical Information of China (English)

    REN Ping; ZHANG Junxi; DENG Huiyong

    2009-01-01

    Spinel zinc ferrites ZnFe_2O)4,prepared by co-precipitation method using the zinc nitrate Zn(NO_3)_2·6H_2O and ferric nitrate Fe(NO_3)_3·2H_2O as the raw materials,were characterized by the thermo gravimetric analysis(TG)and differential scanning calorimeter(DSC),X-ray diffraction (XRD)and scanning electron microscope(SEM).The influence of synthesis conditions,such as Zn/Fe molar ratio,pH value,the sintering temperature and time,on the microstructures was detailedly in-vestigated.The relationships between the microstructures and the synthesis conditions were discussed.The results show that the pure spinel zinc ferrites ZnFe_2O_4 are formed when the Zn/Fe molar ratio is 1.05:2 at pH=8.5 or Zn/Fe molar ratio is 1:2 at Ph=9-10,and the precursors are sintered at 1100℃ for 4 h.Especially no other phases are observed when the Zn/Fe molar ratio is 1:2 at pH=10 and the precursor is sintered above 700 ℃for 4h.The higher sintering temperature and longer sintering time contribute to grain growth.

  11. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III salts as precursors

    Directory of Open Access Journals (Sweden)

    Mutasim I. Khalil

    2015-03-01

    Full Text Available An innovative quantitative synthetic method for preparing magnetite nanoparticles was achieved by co-precipitation in aqueous solution using only one single iron(III salt as a precursor. A 2 Fe(III:1 Fe(II mole ratio was first attained in solution by reducing iron(III using KI solution, followed by filtering the iodine formed and hydrolyzing the filtrate by 25% ammonium hydroxide solution at pH 9–11. A high selectivity and atom economy percents were achieved indicating that the method is environmentally benign and green. The as-synthesized nanoparticles were characterized by fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, field emission transmission electron microscopy (FETEM, selected area electron diffraction (SAED, and 57Fe Mössbauer spectroscopy. Magnetite nanocrystals (d: 7.84 ± 0.05 nm and nanorods (d: 6.3 ± 0.2 nm; l: 46.2 ± 0.9 formation was evident.

  12. High-temperature ferromagnetism in Co-doped CeO2 synthesized by the coprecipitation technique.

    Science.gov (United States)

    Colis, S; Bouaine, A; Schmerber, G; Ulhaq-Bouillet, C; Dinia, A; Choua, S; Turek, P

    2012-05-28

    The aim of the present study is to check the influence of annealing under vacuum and a mixture of N(2)-H(2) atmosphere on the magnetic properties of polycrystalline Co-doped CeO(2) diluted magnetic oxides (DMOs) with Co concentrations of 5 at% synthesized using the coprecipitation technique. X-Ray diffraction (XRD) patterns and transmission electron microscopy (TEM) showed for all samples the expected CeO(2) cubic fluorite-type structure and that Co ions are uniformly distributed inside the samples. Room-temperature Raman and photoluminescence (PL) spectroscopies indicate an increase in the concentration of oxygen vacancies upon Co doping and further annealing. Field dependent magnetization measurements revealed a paramagnetic behavior for as-prepared Co-doped CeO(2), while a ferromagnetic behavior appears when the same samples are annealed under vacuum or N(2)-H(2) atmosphere. Temperature dependent magnetization measurements suggest that the observed ferromagnetism is due to the presence of metallic Co clusters with nanometric size and broad size distribution. These results are supported by electron paramagnetic resonance studies.

  13. Preparation of LuAG Powders with Single Phase and Good Dispersion for Transparent Ceramics Using Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Liangjie Pan

    2015-08-01

    Full Text Available The synthesis of pure and well dispersed lutetium aluminum garnet (LuAG powder is crucial and important for the preparation of LuAG transparent ceramics. In this paper, high purity and well dispersed LuAG powders have been synthesized via co-precipitation method with lutetium nitrate and aluminum nitrate as raw materials. Ammonium hydrogen carbonate (AHC was used as the precipitant. The influence of aging time, pH value, and dripping speed on the prepared LuAG powders were investigated. It showed that long aging duration (>15 h with high terminal pH value (>7.80 resulted in segregation of rhombus Lu precipitate and Al precipitate. By decreasing the initial pH value or accelerating the dripping speed, rhombus Lu precipitate was eliminated and pure LuAG nano powders were synthesized. High quality LuAG transparent ceramics with transmission >75% at 1064 nm were fabricated using these well dispersed nano LuAG powders.

  14. Influence of Co{sup 2+} on the structural and magnetic properties of substituted magnetites obtained by the coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, A. A., E-mail: avelas26@eafit.edu.edu.co [Universidad EAFIT, Grupo de Electromagnetismo Aplicado (Colombia); Urquijo, J. P. [Universidad de Antioquia, Grupo de Estado Sólido, Instituto de Física (Colombia)

    2015-06-15

    In this paper we report the effect of divalent cobalt on the structural and magnetic properties of substituted magnetites, Fe {sub 3−x}Co {sub x}O{sub 4}, with γ=Co {sup 2+}/Fe = 0, 5, 10, 15, 20 and 30 % wt, synthesized by the coprecipitation method. The samples were characterized by Atomic Absorption Spectroscopy, X-ray Diffraction, room temperature Mössbauer Spectroscopy and Vibrating Sample Magnetometry. The effect of Co {sup 2+} was found to depend strongly of the concentration employed in the synthesis process. For γ≤15 % the Co {sup 2+} promotes the formation of particles more crystalline and with higher saturation magnetization, remanence and coercivity than those obtained in absence of this cation. A sequential increasing of the lattice parameter is observed, as well as a reduction in the hyperfine magnetic field of the Fe {sup 2.5+}sub spectrum, while the hyperfine magnetic field of the Fe {sup 3+}sub spectrum keeps almost constant. For γ=20 % and 30 % the crystallinity of the samples decreases, particle size distribution effects are evidenced and the saturation magnetization decreases drastically. The results suggest that for low Co {sup 2+} contents the substitution of Fe {sup 3+}by Co {sup 2+} at octahedral sites of the inverse spinel system is the dominant effect, while for the highest concentrations used the substitution of Fe {sup 2+} by Co {sup 2+} and the increasing of the particle size distribution are the dominant effects.

  15. Preparation of alumina-doped yttria-stabilized zirconia nanopowders by microwave-assisted peroxyl-complex coprecipitation

    Institute of Scientific and Technical Information of China (English)

    QI Liang; XU Ming-xia; TIAN Yu-ming; ZHAO Jin-wei

    2006-01-01

    Alumina-doped yttria-stabilized zirconia (ADYSZ) nanopowders were prepared by microwave-assisted peroxyl-complex coprecipitation (MAPCC) using ZrOCl2·8H2O,Y2O3 and AlCl3·6H2O as starting materials,NH3·H2O as precipitant and H2O2 as complexant. The effects of adding H2O2 and microwave drying on the preparation and properties of ADYSZ were investigated. The precursors and nanopowders were studied by EDX,XRD,SEM and TEM techniques. The results show that the uniformity of component distribution within ADYSZ nanopowders is improved by adding appropriate dosage of H2O2. Complexing reaction between H2O2 and Zr4+ ion restrains the hydrolyzation and precipitation of Zr4+ ion. With the addition of H2O2,Al3+,Y3+ and Zr4+ ions can be precipitated synchronously in a relatively narrow range of pH value. H2O2 also improves the filterability of the wet precipitate. The highly hydrophilic precipitates can be quickly and effectively separated from aqueous solution. During microwave drying process,the moisture of wet precursors is selectively heated. Quick expansion of steam vapor within the wet colloidal particles causes the aggregations burst into numerous tiny lumps. Compared with oven drying,microwave drying can not only shorten drying time but also reduce aggregation intensity of the resultant ADYSZ nanopowders.

  16. Structural, magnetic and electrical properties of Co-Ni-Mn ferrites synthesized by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, P.A.; Kambale, R.C.; Rao, A.V. [Composite Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India); Kolekar, Y.D., E-mail: ydkolekar@gmail.co [Department of Physics, University of Pune, Ganeshkhind, Pune-411 007, Maharashtra (India)

    2010-03-04

    In present work, fine particles of Co{sub 1-x}Ni{sub x}Fe{sub 1.9}Mn{sub 0.1}O{sub 4} (x = 0.2, 0.4, 0.6 and 0.8) system were prepared by co-precipitation method. X-ray diffraction (XRD) study of prepared sample confirms the cubic spinel phase formation. The microstructural features were examined by SEM images. Infrared absorption (IR) spectra shows two vibrational bands, one around 600 cm{sup -1} (v{sub 1}) and second around 400 cm{sup -1} (v{sub 2}) were attributed to the tetrahedral and octahedral group complexes of the spinel lattice respectively. The magnetic parameters viz. magnetization at 6 kOe (M{sub 6kOe}) and coercivity (H{sub c}) were measured at room temperature under the field of 6 kOe. It is observed that, both M{sub 6kOe} and H{sub c} decrease with increase of Ni content. The DC resistivity measurement with temperature indicates a semiconducting behavior of the samples. Frequency dependent dielectric constant ({epsilon}') shows the usual dispersion behavior, while linear variation of AC conductivity ({sigma}{sub AC}) with frequency confirms the conduction due to small polaron.

  17. Structural, FTIR and photoluminescence studies of Fe doped ZnO nanopowder by co-precipitation method.

    Science.gov (United States)

    Raja, K; Ramesh, P S; Geetha, D

    2014-10-15

    An investigation on Fe-doped ZnO (Zn1-xFexO, x=0, 0.03, 0.06 and 0.09mM) nanopowder have been synthesized by co-precipitated method annealed at 550°C were reported. The structural, morphological and optical properties of the samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectra (EDS) analysis, Atomic Force Microscopy (AFM), UV-Visible spectroscopy, and photoluminescence (PL) techniques, Fourier transform infrared (FTIR) spectroscopy. The XRD spectrum shows all the samples are hexagonal wurtzite structure. The presence of functional groups and chemical bonding are confirmed by FT-IR. The PL spectra of the Zn1-xFexxO systems show that the shift in near band edge (NBE) UV emission from 344.54 to 364.21nm and a shift in green band (GB) emission from 484 to 540nm which conforms the substitution of Fe into the ZnO lattice. UV-Visible measurement showed a decrease in the energy gap with increasing Fe content, probably due to an increase in the lattice parameters. It is also found that these results are in good agreement with other calculated and experimental results.

  18. Investigation of optical, photocatalytic and physical adsorption of a new nanocomposite synthesized via a simple co-precipitation method

    Science.gov (United States)

    Sabet, Mohammad; Mohammadi, Marziyeh; Googhari, Fatemeh

    2017-03-01

    In this experimental work, different morphologies of the CdxZn1-xS/ZnO nanocomposite were synthesized via a simple co-precipitation method. The effect of Zn2+: Cd2+ mole ratio on the product size and morphology was investigated and it was found that the mole ratio has a significant effect on the morphology of the products. To study the crystallinity and purity of the product, X-ray diffraction (XRD) pattern was served. Scanning electron microscopy (SEM) was used to study the morphology of the products. The optical properties of the as-synthesized nanocomposites were studied by ultraviolet-visible (UV-Vis) spectra. Photocatalytic activity of the nanocomposite was carried out by decomposition of Acid Black 1 dye, and it was found after 60min, almost all the dye structure was decomposed under UV radiation. Finally, to study the nanocomposite performance in removing heavy metal ions from water, three different solutions containing Zn2+, Cd2+ and Pb2+ with 0.01 molar concentration were prepared in the aqueous medium and the absorption of them with the nanocomposite was investigated by atomic absorption spectroscopy (AAS). The results showed that the synthesized nanocomposite has a unique performance and it can remove almost 80% of heavy metal ions from the water.

  19. Electrical transport properties of CoZn ferrite-SiO{sub 2} composites prepared by co-precipitation technique

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan)], E-mail: muislampk@yahoo.com; Aen, Faiza [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan); Niazi, Shahida B. [Department of Chemistry, Bahauddin Zakariya University, Multan (Pakistan); Azhar Khan, M.; Ishaque, M.; Abbas, T.; Rana, M.U. [Department of Physics, Bahauddin Zakariya University, Multan (Pakistan)

    2008-06-15

    CoZn ferrite-SiO{sub 2} composites having general formula (1 - x)Co{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} + xSiO{sub 2} with x = 0.0-0.8 were prepared by co-precipitation technique. The X-ray diffraction analysis of the composites reveals that they are bi-phase. Room temperature resistivity increases from 10{sup 5} to 10{sup 9} ({omega} cm) from x = 0.0-0.8. This drastic increase in resistivity may be attributed to the presence of pores and the segregation of Si at grain boundaries. The Arrhenius plots of these samples show that resistivity decreases as the temperature increases indicating their semi conducting behavior. Arrhenius plots show a change of slope at particular temperature (except for x = 0.8) that may be attributed to their Curie temperature. It is observed that the activation energies are small in Para-region as compared to Ferri-region and is an indication of the hopping conduction mechanism. The variation of thermopower with temperature reveals that these samples are degenerate type semiconductors. The values of activation energies calculated from log {mu}{sub d} vs. 1000/T are slightly lower than the values of activation energies obtained from Arrhenius plots. This suggests that the conduction phenomenon is due to polaron hopping.

  20. Room Temperature Synthesis of Magnetite (Fe3-δO4) Nanoparticles by a Simple Reverse Co-Precipitation Method

    Science.gov (United States)

    Mahmed, N.; Heczko, O.; Söderberg, O.; Hannula, S.-P.

    2011-10-01

    Magnetite (Fe3-δO4) nanoparticles with the size less than 30 nm have been synthesized by using a simple reverse co-precipitation method at room temperature. During the process, ferrous sulfate (FeSO4·7H2O) powder was used as an iron precursor, and ammonium hydroxide (NH4OH) as a precipitating agent. The experiment was carried out in ambient atmosphere without any surfactant added. In this method, the base solution for the precipitation process was adjusted to have a pH value suitable for the formation of the magnetite phase. The iron salt precursor was added into the solution during the synthesis by two different synthesis protocols. The phase, morphology and magnetic characteristic of differently synthesized magnetite particles were characterized by using an X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The morphologies of the particles were spherical or irregular in shape depending on the synthesis protocol used. Magnetic measurement shows that the particles are ferromagnetic at room temperature with relatively high saturation magnetization and low hysteresis. The saturation magnetization and magnetic hysteresis of the particles varied with preparation reaction conditions and the resulting oxidation state of the particles.

  1. Co-precipitation synthesis and characterization of faceted MoS{sub 2} nanorods with controllable morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Vattikuti, S.V.P.; Byon, Chan; Reddy, C.V.; Shim, Jaesool [Yeungnam University, School of Mechanical Engineering, Gyeongsan (Korea, Republic of); Venkatesh, B. [Vardhaman College of Engineering, Department of Mechanical Engineering, Kacharam, Hyderabad (India)

    2015-06-15

    Molybdenum disulfide (MoS{sub 2}) nanopowder has been prepared using a co-precipitation method. This paper describes the thermal effect on the morphology enhancement of MoS{sub 2} sphere-like structures into nanorods with a winding structure. For the reduction in precursors, the as-obtained MoS{sub 2} nanopowder was calcinated at 250, 400, 600, and 800 C for 1 h in an N{sub 2} environment. The calcined samples were characterized using a particle size analyzer, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with X-ray analysis (EDAX) and transmission electron microscopy, HRTEM and X-ray photoelectron spectroscopy. The results show the MoS{sub 2} sphere-like structure with diameter in the range of 50-100 nm and rod-like winding structure with diameter in the range of 20-150 nm, and a few tens of micrometers in length with a high degree of size homogeneity. The FT-IR spectra show the obtained bands at 480 and 900 cm{sup -1} are corresponding to the Mo-S bond and the S-S bond. The TG-DTA curves confirm the thermal stability of the prepared samples. It is observed that the band gap energy for the MoS{sub 2} nanorods is lower than for the nanospherical structure MoS{sub 2}, which leads to achieve high electron and hole recombination rate. (orig.)

  2. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    Energy Technology Data Exchange (ETDEWEB)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro; Darminto, E-mail: darminto@physics.its.ac.id [Department of Physics, Faculty of Mathematics and Natural Sciences, Institute of Technology Sepuluh November (ITS), Jl. Arief Rahman Hakim, Surabaya Indonesia 60111 (Indonesia)

    2016-02-08

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinement of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.

  3. Characterization of CeO2-ZrO2 mixed oxides prepared by two different co-precipitation methods

    Institute of Scientific and Technical Information of China (English)

    YUE Mei; CUI Meisheng; ZHANG Na; LONG Zhiqi; HUANG Xiaowei

    2013-01-01

    A series of cerium zirconium mixed oxides were prepared by two co-precipitation methods using magnesium hydrogen carbonate (MHC) and mixed ammonia-ammonia hydrogen carbonate (AAHC) as precipitant respectively.The crystal structure,BET surface area and morphology of the produced cerium zirconium mixed oxides were characterized by X-ray diffraction (XRD),Brumauer-Emmett-Teller (BET) and scanning electron microscopy (SEM) techniques.The reduction-oxidation behavior and oxygen storage capacity (OSC) performance were also studied by temperature programmed reduction (TPR) and oxygen pulse chemical adsorption methods.The XRD results demonstrated that the cerium zirconium mixed oxides obtained by both methods possessed structure of cubic solid solution phase.The fresh surface area calcinated at 600 ℃,aged surface area after 1000 ℃ and OSC at 500 ℃ of cerium zirconium mixed oxides were determined to be 89.337,34.784 m2/g,and 567 μmol O2/g for MHC method and 122.010,46.307 m2/g,and 665 μmol O2/g for AAHC method,respectively.

  4. Co-Precipitation of YAG Powders for Transparent Materials: Effect of the Synthesis Parameters on Processing and Microstructure

    Directory of Open Access Journals (Sweden)

    Paola Palmero

    2014-10-01

    Full Text Available The fabrication of transparent polycrystalline Y3Al5O12 (YAG is still a challenge, requiring the achievement of highly pure and fully dense, homogeneous materials. An important role is played by the powder characteristics: pure, fine and unagglomerated powders are essential for achieving full density and the required microstructural features. Keeping in mind these requirements, the aim of this work was to investigate the role of different synthesis parameters during co-precipitation, which is widely used to prepare YAG powders for transparent devices. The key role of the precipitant solution is here illustrated, by comparing the effect of aqueous ammonia (AA versus ammonium hydrogen carbonate (AHC. This latter allowed the preparation of softly agglomerated powders, characterized by a very good sinterability. However, when AHC is used, attention should be paid to its concentration. By comparing the effect of two AHC precipitant solutions (at 0.5 M and 1.5 M, respectively, only the former one allowed the preparation of pure YAG powders, free from secondary phases. In this last condition, by using both chlorides and nitrates as YAG precursors, pressureless sintering at 1500–1600 °C/3 h gave rise to pure materials, highly dense and characterized by a fine and homogeneous microstructure.

  5. Synthesis by coprecipitation technique and spectroscopic properties of some phosphates. [Yttrium or rare earth and potassium and alkaline earth metal phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Arbus, A.; Duranceau, C.; Zambon, D.; Cousseins, J.C. (Clermont-Ferrand-2 Univ., 63 - Aubiere (FR))

    1991-01-01

    The coprecipitation process has been used for the synthesis of some KBLn(PO{sub 4}){sub 2} compounds where B is an alkaline earth metal and Ln a lanthanide or yttrium. After the gel stage, an amorphous powder is obtained by drying, the thermal evolution of which is studied by X-ray diffraction. The temperature of calcination for the different powders is included in the 500-700{sup 0}C range, lower than that of the classical solid state synthesis, 800-1000{sup 0}C. The final phosphates crystallize with monoclinic or tetragonal symmetry. The spectroscopic properties of some Eu{sup 3+}-doped compounds prepared by coprecipitation technique are reported.

  6. Preparation and Characterization of Y3Sc2Ga3O12 Nano-Polycrystalline Powders by Co-Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    Su Jing; Zhang Qingli; Shao Shufang; Gu Changjiang; Wan Songming; Yin Shaotang

    2007-01-01

    In order to grow high-quality gallium garnet crystals, polycrystalline materials were used as starting materials. YSGG precursor was synthesized by co-precipitation method using aqueous ammonia as a precipitator, and the precursor was then sintered at different temperatures. The results showed that the feasible pH range was 8.3~9.84 in the process of co-precipitation reaction. The YSGG precursor and the powders sintered at different temperatures were characterized by IR, XRD and TEM methods. It was found that the precursor transformed to pure YSGG polycrystalline phase at 800 ℃. YSGG nano-polycrystalline powders sintered at 800~1000 ℃ were well dispersed and the sizes of the YSGG grains were about 40~100 nm.

  7. Speciation analysis of 129I in seawater by carrier-free AgI-AgCl coprecipitation and accelerator mass spectrometric measurement

    DEFF Research Database (Denmark)

    Luo, Maoyi; Hou, Xiaolin; He, Chaohui;

    2013-01-01

    A rapid and simple method was developed for speciation analysis of 129I in seawater by selective coprecipitation of carrier-free iodide and accelerator mass spectrometry (AMS) measurement of 129I. Iodide was separated from seawater and other species of iodine by coprecipitation of AgI with Ag2SO3...... is higher than 70%. Six seawater samples collected from the Norwegian Sea were analyzed by this method as well as a conventional anion-exchange chromatographic method; the results from the two methods show no significant difference (p = 0.05). Because only one separation step and fewer chemicals...... are involved in the procedure, this method is suitable for operation on board sampling vessels, as it avoids the transport of samples to the laboratory and storage for a longer time before analysis, therefore significantly improving the analytical capacity and reliability of speciation analysis of 129I...

  8. Flame atomic absorption spectrometric determination of heavy metals in aqueous solution and surface water preceded by co-precipitation procedure with copper(II) 8-hydroxyquinoline

    Science.gov (United States)

    Ipeaiyeda, Ayodele Rotimi; Ayoade, Abisayo Ruth

    2017-07-01

    Co-precipitation procedure has widely been employed for preconcentration and separation of metal ions from the matrices of environmental samples. This is simply due to its simplicity, low consumption of separating solvent and short duration for analysis. Various organic ligands have been used for this purpose. However, there is dearth of information on the application of 8-hydroxyquinoline (8-HQ) as ligand and Cu(II) as carrier element. The use of Cu(II) is desirable because there is no contamination and background adsorption interference. Therefore, the objective of this study was to use 8-HQ in the presence of Cu(II) for coprecipitation of Cd(II), Co(II), Cr(III), Ni(II) and Pb(II) from standard solutions and surface water prior to their determinations by flame atomic absorption spectrometry (FAAS). The effects of pH, sample volume, amount of 8-HQ and Cu(II) and interfering ions on the recoveries of metal ions from standard solutions were monitored using FAAS. The water samples were treated with 8-HQ under the optimum experimental conditions and metal concentrations were determined by FAAS. The metal concentrations in water samples not treated with 8-HQ were also determined. The optimum recovery values for metal ions were higher than 85.0%. The concentrations (mg/L) of Co(II), Ni(II), Cr(III), and Pb(II) in water samples treated with 8-HQ were 0.014 ± 0.002, 0.03 ± 0.01, 0.04 ± 0.02 and 0.05 ± 0.02, respectively. These concentrations and those obtained without coprecipitation technique were significantly different. Coprecipitation procedure using 8-HQ as ligand and Cu(II) as carrier element enhanced the preconcentration and separation of metal ions from the matrix of water sample.

  9. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development.

    Science.gov (United States)

    Wu, Huiquan; White, Maury; Khan, Mansoor A

    2011-02-28

    The aim of this work was to develop an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and design space development. A dynamic co-precipitation process by gradually introducing water to the ternary system of naproxen-Eudragit L100-alcohol was monitored at real-time in situ via Lasentec FBRM and PVM. 3D map of count-time-chord length revealed three distinguishable process stages: incubation, transition, and steady-state. The effects of high risk process variables (slurry temperature, stirring rate, and water addition rate) on both derived co-precipitation process rates and final chord-length-distribution were evaluated systematically using a 3(3) full factorial design. Critical process variables were identified via ANOVA for both transition and steady state. General linear models (GLM) were then used for parameter estimation for each critical variable. Clear trends about effects of each critical variable during transition and steady state were found by GLM and were interpreted using fundamental process principles and Nyvlt's transfer model. Neural network models were able to link process variables with response variables at transition and steady state with R(2) of 0.88-0.98. PVM images evidenced nucleation and crystal growth. Contour plots illustrated design space via critical process variables' ranges. It demonstrated the utility of integrated PAT approach for QbD development. Published by Elsevier B.V.

  10. Synthesis and properties of single domain sphere-shaped barium hexa-ferrite nano powders via an ultrasonic-assisted co-precipitation route.

    Science.gov (United States)

    Liu, Junliang; Liu, Ping; Zhang, Xingkai; Pan, Dongjun; Zhang, Peng; Zhang, Ming

    2015-03-01

    To synthesize high quality barium hexa-ferrite nano powders, an ultrasonic-assisted co-precipitation method has been used and the influences of the ultrasonic technique on the particle morphologies and magnetic properties of the synthesized barium hexa-ferrite nano powders have been investigated. The results indicated that the introduction of ultrasonic energy into the co-precipitation process promoted the composition homogeneities of the co-precipitated precursors, minished their particle sizes, and exerted the additional surface barriers between the particles, which influenced both the phase formation and particle growth-up processes during the subsequent heating treatment and altered the particle sizes, size distributions and particle shapes of the final synthesized powders. The average particle sizes of the synthesized nano powders dramatically decreased from 210 nm to about 100 nm as the inputting ultrasonic power increased, while the size distribution became increasingly uniform except for a few of large particles existed as the inputting power approached to a high value. The magnetization at 1.4 T of the as-synthesized barium hexa-ferrite dramatically increased and approached to the highest value of 57.9 emu/g due to the elimination of multi-domain particles, the alleviation of particle adhesion and the evolution of particle shape from flake to quasi-sphere as well as the uniform particle size distribution as the ultrasonic assistance was employed, and slightly decreased because of the coarsening in particle sizes.

  11. Simultaneous determination of some trace metal impurities in high-purity sodium tungstate using coprecipitation and inductively coupled plasma atomic emission spectrometry

    Institute of Scientific and Technical Information of China (English)

    MA Xiaoguo; KUANG Tongchun; LIU Qianjun

    2004-01-01

    A method based on the combination of coprecipitation with inductively coupled plasma atomic emission spec trometry (ICP-AES) was developed for the determination of impurities in high-purity sodium tungstate. Six elements (Co,Cu, Fe, Mn, Ni, and Pb) were coprecipitated by lanthanum hydroxide so as to be concentrated and separated from the tungsten matrix. Effects of some factors on the recoveries of the analytes and on the residual amount of sodium tungstate were investigated, and the optimum conditions for the coprecipitation were proposed. Matrix-matching calibration curve method was used for the analysis. It is shown that the elements mentioned above can be quantitatively recovered. The detection limits for Co, Cu, Fe, Mn, Ni, and Pb are 0.07, 0.4, 0.2, 0.1, 0.6, and 1.3 μg.g-1, respectively. The recoveries vary from 92.5% to 108%, and the relative standard deviations (RSDs) are in the range of 3.1%-5.5%.

  12. A novel slurry sampling analysis of lead in different water samples by electrothermal atomic absorption spectrometry after coprecipitated with cobalt/pyrrolidine dithiocarbamate complex

    Energy Technology Data Exchange (ETDEWEB)

    Baysal, A. [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak, Istanbul (Turkey); Akman, S. [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak, Istanbul (Turkey)], E-mail: akmans@itu.edu.tr; Calisir, F. [Istanbul Technical University, Faculty of Science and Letters, Department of Chemistry, 34469 Maslak, Istanbul (Turkey)

    2008-10-30

    A preconcentration/separation technique based on the coprecipitation of lead with cobalt/pyrrolidine dithiocarbamate complex (Co(PDC){sub 2}) and subsequently its direct slurry sampling determination by electrothermal atomic absorption spectrometry (AAS) was described. For this purpose, at first, lead was coprecipitated with cobalt/pyrrolidine dithiocarbamate complex formed using ammonium pyrrolidine dithiocarbamate (APDC) as a chelating agent and cobalt as a carrier element. The supernatant was then separated and the slurry of the precipitate prepared in Triton X-100 was directly analyzed by electrothermal atomic absorption spectrometry with respect to lead concentration. The effects of experimental conditions on coprecipitation of lead with gathering precipitate as well as homogeneity and stability of the slurry were investigated. After the optimization of experimental parameters, a 100-fold enrichment of the analyte with quantitative recovery (>90%) and high precision (<10% R.S.D.) were obtained. By using the proposed technique, the lead concentrations in heavy matrices of Certified Sea-water and wastewater samples could be practically and rapidly determined in the range of 95% confidence level. The detection limit of the described method for lead using sample-matching blanks was 1.5 ng/L (3{sigma}, N = 10)

  13. Synthesis, characterization, and Fischer–Tropsch performance of cobalt/zinc aluminate nanocomposites via a facile and corrosion-free coprecipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhenxin; Xing, Yu, E-mail: yuxing@zzuli.edu.cn; Xue, Yingying; Wu, Depeng; Fang, Shaoming, E-mail: smfang@zzuli.edu.cn [Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Surface and Interface Science, School of Materials and Chemical Engineering (China)

    2015-02-15

    Literature about ZnAl{sub 2}O{sub 4}-supported cobalt Fischer–Tropsch synthesis (FTS) catalytic materials is sparse. A series of cobalt-containing nanocomposites, supported by nanosized ZnAl{sub 2}O{sub 4} spinel (i.e., a complex oxide of about 6.4 nm) or alumina (i.e., a simple oxide of about 6.2 nm), were prepared via urea-gelation, coprecipitation, or impregnation methods followed by stepwise reduction. These materials were examined by XRD, TGA, nitrogen sorption, FESEM, and EDS. Effects of corrosion and pore size distributions on materials preparation were also investigated. The “coprecipitation/stepwise reduction” route is facile and suitable to prepare nanosized ZnAl{sub 2}O{sub 4}-supported Co{sup 0} nanocomposites. At similar CO conversions, the coprecipitated Co/ZnAl{sub 2}O{sub 4} exhibits significantly lower C{sub 1} hydrocarbon distribution, slightly lower C{sub 5+} hydrocarbon distribution, significantly higher C{sub 2}–C{sub 4} hydrocarbon distribution, and significantly higher olefin/paraffin ratio of C{sub 2}–C{sub 4} than Co/γ-Al{sub 2}O{sub 3}.

  14. Polymer-assisted co-precipitation route for the synthesis of Al$_2$O$_3$–13% TiO$_2$ nanocomposite

    Indian Academy of Sciences (India)

    NEERA SINGH; RANABRATA MAZUMDER; PALLAV GUPTA; DEVENDRA KUMAR

    2017-06-01

    The present investigation reveals the effect of processing parameters on the properties of alumina–titania (Al$_2$O$_3$–TiO$_2$) nanocomposites. A polymer-assisted (Pluronic P123 triblock co-polymer) co-precipitation route has been employed to synthesize Al$_2$O$_3$–TiO$_2$ nanoparticles. As a surfactant, pluronic P123 polymer exhibits hydrophobic as well as the hydrophilic nature simultaneously which detains the agglomeration and hence the nano size particle have been obtained. Effect of surfactant concentration on morphology and particle size of product has also been investigated. Thermal behaviour of the prepared powder samples have been studied using differential scanning calorimeter/thermal gravimetric analysis and dilatometer. Formation of aluminium-titanate (Al$_2$TiO$_5$) phase has been confirmed using X-ray diffraction analysis. It has been observed by field emission scanning electron microscopy analysis that the particle size reduced effectively (below 100 nm) when polymer-assisted co-precipitation route is used instead of the simple co-precipitation technique. A highly dense microstructure of sintered samples has been obtained, driven by reduced particle size.

  15. Isolation of recombinant proteins from culture broth by co-precipitation with an amino acid carrier to form stable dry powders.

    Science.gov (United States)

    Moore, Barry D; Deere, Joseph; Edrada-Ebel, RuAngelie; Ingram, Andrew; van der Walle, Christopher F

    2010-08-01

    Protein-coated microcrystals can be generated by co-precipitation of protein and a water-soluble crystalline carrier by addition to excess water miscible organic solvent. We have investigated this novel process for its utility in the concentration and partial purification of a recombinant protein exported into the culture broth during expression by Pichia pastoris. Co-precipitation with a L-glutamine carrier selectively isolated the protein content of the culture broth, with a minimal number of steps, and simultaneously removed contaminants including a novel yeast metabolite. This pigment co-elutes during aqueous chromatography but its elucidation as a benzoylated glycosamine suggested a simple route of removal by partition during the co-precipitation process. Scale-up of the process was readily achieved through in-line mixing and subsequent reconstitution of the dried protein-coated microcrystals yielded natively folded, bioactive protein. Additional washing of the crystals with saturated L-glutamine facilitated further purification of the recombinant protein immobilized on the L-glutamine carrier. Thus, we present a novel method for the harvesting of recombinant protein from culture broth as a dry powder, which may be of general applicability to bioprocessing. (c) 2010 Wiley Periodicals, Inc.

  16. Determination of the platinum - group elements (PGE) and gold (Au) in the manganese nodule reference samples by nickel sulfide fire-assay and Te coprecipitation with ICP-MS

    Digital Repository Service at National Institute of Oceanography (India)

    Balaram, V.; Mathur, R.; Banakar, V.K.; Hein, J.R.; Rao, C.R.M.; Rao, T.G.; Dasaram, B.

    fire-assay and Te coprecipitation, are presented. By optimizing several critical parameters such as flux composition, matrix matching calibration, etc., best experimental conditions were established to develop a method suitable for routine analysis...

  17. Microstructure, optical and FTIR studies of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method

    Science.gov (United States)

    Ashokkumar, M.; Muthukumaran, S.

    2014-11-01

    Zn0.96-xCu0.04NixO (0 ⩽ x ⩽ 0.04) nanoparticles were synthesized by co-precipitation method. The X-ray diffraction pattern showed the crystalline nature of prepared nanoparticles with hexagonal wurtzite structure. The average crystal size is decreased from 27 to 22.7 nm when Ni concentration is increased from 0% to 2% due to the suppression of nucleation and subsequent growth of ZnO by Ni-doping. The increased crystal size from 22.7 to 25.8 nm (ΔD ∼ 3.1 nm) by Ni-doping from 2% to 4% is due to the creation of distortion centers and Zn/Ni interstitials. The cell parameters and volume of the lattice showed solubility limit at 2% of Ni doping. The energy dispersive X-ray spectra confirmed the presence of Cu and Ni in Zn-O. The optical absorption spectra showed that the absorption was increased up to Ni = 2% due to the creation of carrier concentration by Ni-doping and decreased beyond 2% due to the presence of more defects and interstitials in the Zn-Ni-Cu-O lattice. The observed red shift of energy gap from 3.65 eV (Ni = 0%) to 3.59 eV (Ni = 2%, ΔEg ≈ 0.06 eV) is explained by sp-d exchange interactions between the band electrons and the localized d-electrons of the Ni2+ ions. The blue shift of energy gap from 3.59 eV (Ni = 2%) to 3.67 eV (Ni = 4%, ΔEg ≈ 0.08 eV) is explained by Burstein-Moss effect. Presence of chemical bonding was confirmed by FTIR spectra.

  18. Effect of zinc substitution on Co-Zn and Mn-Zn ferrite nanoparticles prepared by co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Arulmurugan, R. [Department of Physics, Pondicherry Engineering College, Pondicherry 605014 (India)]. E-mail: arulphysics@rediffmail.com; Jeyadevan, B. [Graduate School of Environmental Studies, Tohoku University, Sendai 980-8579 (Japan); Vaidyanathan, G. [Department of Physics, Pondicherry Engineering College, Pondicherry 605014 (India)]. E-mail: gvn_pec@yahoo.com; Sendhilnathan, S. [Department of Physics, Sri Manakula Vinayagar Engineering College, Pondicherry 605 107 (India)

    2005-03-01

    Co{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} and Mn{sub (1-x)}Zn{sub x}Fe{sub 2}O{sub 4} (x=0.1-0.5) nanoparticles less than 12nm are prepared by chemical co-precipitation method which could be used for ferrofluid preparation. X-ray diffraction (XRD), Transmission electron microscopy (TEM), Vibrational sample magnetometer (VSM) and Thermo gravimetric analysis (TGA) are utilized in order to study the effect of variation in the Zn substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C}, Curie temperature, thermomagnetic coefficient and associated water content. Atomic absorption spectroscopy was used for the estimation of cobalt, zinc and manganese and Fe{sup 3+} ion was estimated using spectrophotometer. The saturation magnetization of the Co-Zn substituted ferrite nanoparticles decreases continuously with the increase in Zn concentration, whereas for the Mn-Zn substituted ferrite nanoparticle the saturation magnetization was maximum for x=0.2 and decreases on further increase in Zn concentration. The particle size decreases with the increase in the Zn concentration for both Co-Zn and Mn-Zn ferrites. The estimation of associated water content, which increases with the Zn concentration, plays a vital role for the correct determination of cation contents. The Curie temperature and the temperature at which maximum value of thermomagnetic coefficient observed simultaneously decrease with the increase in the initial substitution degree of zinc.

  19. Microstructure, magnetic and microwave absorptive behavior of doped W-type hexaferrite nanoparticles prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Gordani, Gholam Reza, E-mail: gordani@gmail.com; Mohseni, Marzieh; Ghasemi, Ali; Hosseini, Sayed Rahman

    2016-04-15

    Highlights: • High frequency properties of substituted W-type Sr-hexaferrite. • Saturation magnetization of samples is decreased with increasing of dopants content. • The ferrite sample covers about 6 GHz of bandwidth in K{sub u} band. • The optimum substituted samples can be used as a potential magnetic loss material. • Sample contain x = 0.4 of dopants have shown greater than 90% of reflection loss. - Abstract: Substituted W-type hexaferrite nanoparticles of SrZn{sub 2−x}Co{sub x/2}Ni{sub x/2}Fe{sub 16}O{sub 27} were synthesized by a chemical co-precipitation method. The X-ray diffraction results confirmed that W-type ferrite was identified as the main phase in whole samples in the range of x = 0–0.4. According to magnetic hysteresis loops, with increasing of substituted cations, saturation of magnetization increased and coercivity decreased due to crystalline site occupation of Zn with Ni and Co cations. The microwave reflection loss analysis results in the K{sub u} band (12–18 GHz) show that the highest value of reflection loss of samples was −29.11 dB at frequency of 14.57 GHz with an absorption bandwidth of more than 6 GHz by choosing reflection loss value of −10 dB as a reference. The results indicate that, the sample with appropriate amount of substituted cations hold great promise for microwave device applications.

  20. Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: A model based study

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Hans-Christian; Schwaminger, Sebastian P.; Schindler, Michael [Bioseparation Engineering Group, Technische Universität München, Boltzmannstraße 15, Garching d-85748 (Germany); Wagner, Friedrich E. [Technische Universität München, Physics Department El5, Garching d-85748 (Germany); Berensmeier, Sonja, E-mail: s.berensmeier@tum.de [Bioseparation Engineering Group, Technische Universität München, Boltzmannstraße 15, Garching d-85748 (Germany)

    2015-03-01

    The study, presented here, focuses on the impact of synthesis parameters on the co-precipitation process of superparamagnetic iron oxide nanoparticles. Particle diameters between 3 and 17 nm and saturation magnetizations from 26 to 89 Am{sup 2} kg{sup −1} were achieved by variation of iron salt concentration, reaction temperature, ratio of hydroxide ions to iron ions and ratio of Fe{sup 3+}/Fe{sup 2+}. All synthesis assays were conceived according to the “design of experiments” method. The results were fitted to significant models. Subsequent validation experiments could confirm the models with an accuracy>95%. The characterization of the chemical composition, as well as structural and magnetic properties was carried out using powder X-ray diffraction, transmission electron microscopy, Raman and Mössbauer spectroscopy and superconducting quantum interference device magnetometry. The results reveal that the particles' saturation magnetization can be enhanced by the employment of high iron salt concentrations and a molar ratio of Fe{sup 3+}/Fe{sup 2+} below 2:1. Furthermore, the particle size can be increased by higher iron salt concentrations and a hyperstoichiometric normal ratio of hydroxide ions to iron ions of 1.4:1. Overall results indicate that the saturation magnetization is directly related to the particle size. - Highlights: • We model the impact of synthesis parameters in the Massart process. • Optimization of synthesis parameters according to particle size and magnetization. • Particles are fully characterized with XRD, TEM and SQUID magnetometry.

  1. Adsorption and co-precipitation behavior of arsenate, chromate, selenate and boric acid with synthetic allophane-like materials.

    Science.gov (United States)

    Opiso, Einstine; Sato, Tsutomu; Yoneda, Tetsuro

    2009-10-15

    Pollution caused by boric acid and toxic anions such as As(V), Cr(VI) and Se(VI) is hazardous to human health and environment. The sorption characteristics of these environmentally significant ionic species on allophane-like nanoparticles were investigated in order to determine whether allophane can reduce their mobility in the subsurface environment at circum-neutral pH condition. Solutions containing 100 or 150 mmol of AlCl(3)x6H(2)O were mixed to 100 mmol of Na(4)SiO(4) and the pH were adjusted to 6.4+/-0.3. The mineral suspensions were shaken for 1h and incubated at 80 degrees C for 5 days. Appropriate amounts of As, B, Cr and Se solutions were added separately during and after allophane precipitation. The results showed that As(V) and boric acid can be irreversibly fixed during co-precipitation in addition to surface adsorption. However, Cr(VI) and Se(VI) retention during and after allophane precipitation is mainly controlled by surface adsorption. The structurally fixed As(V) and boric acid were more resistant to release than those bound on the surface. The sorption characteristics of oxyanions and boric acid were also influenced by the final Si/Al molar ratio of allophane in which Al-rich allophane tend to have higher uptake capacity. The overall results of this study have demonstrated the role of allophane-like nanoparticles and the effect of its Si/Al ratio on As, B, Cr and Se transport processes in the subsurface environment.

  2. Synthesis and Bactericidal Ability of TiO2 and Ag-TiO2 Prepared by Coprecipitation Method

    Directory of Open Access Journals (Sweden)

    Robert Liu

    2012-01-01

    Full Text Available Preparation of photocatalysts of TiO2 and Ag-TiO2 was carried out by coprecipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD, SEM, EDX, and XRF analysis. The disinfection of E. coli, a model indicator organism for the safe water supply, was investigated by using TiO2 and Ag-TiO2 under different light sources. The treatment efficacy for the inactivation of E. coli would be UV/Ag-TiO2; visible/Ag-TiO2; dark/Ag-TiO2; UV (all 100% > UV/TiO2 (99% > visible/TiO2 (96% > dark/TiO2 (87% > visible (23% > dark (19%. The order of disinfection efficiency by their corresponding kinetic initial apparent rate constants, app, (min−1 would be UV/Ag-TiO2; visible/Ag-TiO2 (both 6.67 > UV (6.6 > dark/Ag-TiO2 (6.56 > UV/TiO2 (1.62 > visible/TiO2 (1.08 > dark/TiO2 (0.7 > visible (0.28 > dark (0.03. The application of TiO2 doped with silver strongly improved the ability of disinfection treatment. The study of mineralization of E. coli by measurement of TOC (total organic carbon removal percentage showed that the visible light may effectively be applied for the disinfection unit of water and wastewater treatment system by using photocatalysts of Ag-TiO2.

  3. Green up-conversion of C12A7–Ho{sup 3+} prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Liao, SongYi; Yao, Rui; Liu, YuChen; Chen, XiaoYu; Hu, XueYi [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Zheng, Feng, E-mail: fzheng@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Phase Diagram and Materials Design Center, Central South University, Changsha, Hunan 410083 (China)

    2015-09-05

    Highlights: • C12A7 polycrystals growing in 3D with bulk nucleation. • Activation energy calculated by classical and modified Ozawa/Kissinger methods. • Green up-conversion of C12A7–Ho{sup 3+} attributed to dual-photons process. • Successive energy transfer and cross relaxation for up-conversion of {sup 5}F{sub 4}/{sup 5}S{sub 2} → {sup 5}I{sub 8}. - Abstract: 7CaO⋅12Al{sub 2}O{sub 3} (C12A7) and Ho{sup 3+}-doped 7CaO⋅12Al{sub 2}O{sub 3} (C12A7–Ho{sup 3+}) polycrystal powders were synthesized via co-precipitation followed by sintering at 1173 K. Crystal structures, thermodynamics characters and optical properties of crashed samples were examined by XRD, DSC/TG, FT-IR and Raman spectra analysis, respectively. Activation energy of crystallization for C12A7 polycrystals was calculated according to both Ozawa/Kissinger and modified Ozawa/Kissinger methods to be 813 or 791 (for the former, only considering crystallization) and 1084 or 1077 kJ mol{sup −1} (for the latter, taking both crystallization and nucleation into consideration) respectively. Growth morphology parameter (m) and crystallization mechanism index (n) of C12A7 were determined to be m = 3 and n = 4. Fluorescence effects of Raman spectra around 2000–2300 cm{sup −1} and pure visible up-conversion emission centered at 540 nm were observed from C12A7–Ho{sup 3+} (1, 2 and 5 mol.%) powders under 488 nm laser diode and 808 nm Xe lamp excitation, respectively. Two mechanisms were proposed to explain up-conversion of pure green light process.

  4. Determination of specific alpha-emitting radionuclides (uranium, plutonium, thorium and polonium) in water using [Ba+Fe]-coprecipitation method.

    Science.gov (United States)

    Suarez-Navarro, J A; Pujol, Ll; Suarez-Navarro, M J

    2017-09-23

    The indicative dose (ID) is one of the parameters established in the current European directive for water intended for human consumption. To determine the ID, it is necessary to know the activity concentration of: (238)U, (234)U, (226)Ra, (210)Po, (239,240)Pu and (241)Am. The existing methods to determine these radionuclides involve complex radiochemical separations (ionic exchange columns, extraction chromatography, etc.), followed by measurements with a semiconductor detector, laboratory procedures that are time-consuming and costly. As a lower cost alternative that reduces measuring and preparation times, avoids the need for a self-absorption correction and the use of tracers, and above all that can be used in any laboratory, methods based on liquid-liquid extraction and selective co-precipitation were developed. These methodologies offer high separation recovery and selectivity, and the measurements are made using a gas proportional counter or a solid ZnS(Ag) scintillation counter. The separation factor ranged between 91.4% and 100.0% for all alpha-emitting radionuclides across the different methods. The activity concentration for each method was computed through linear equations that represent the relationship between the activity and selectivity of the different alpha-emitting radionuclides. This mathematical procedure simplifies the radiochemical separations and provides more accurate activity concentrations. The results of the internal and external validation studies proved that the proposed method is suitable for determining (241)Am, (226)Ra, uranium, plutonium, thorium and (210)Po in water samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Synthesis and magnetic properties of (Eu–Ni) substituted Y-type hexaferrite by surfactant assisted co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Irshad, E-mail: irshadalibzu@gmail.com [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Islam, M.U. [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Sadiq, Imran [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Centre of Excellence in Solid State Physics, University of The Punjab, Lahore (Pakistan); Karamat, Nazia [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan); Iftikhar, Aisha [Department of Physics, BahauddinZakariya University, Multan, P.O# 60800 (Pakistan); Khan, M. Azhar [Department of Physics, Islamia University of Bahawalpur, 63100 Pakistan (Pakistan); Shah, Afzal [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Athar, Muhammad [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan); Shakir, Imran [Sustainable Energy Technologies (SET) Center, College of Engineering, King Saud University (Saudi Arabia); Ashiq, Muhammad Naeem, E-mail: naeemashiqqau@yahoo.com [Institute of Chemical Science, Bahauddin Zakariya University, Multan 60800 (Pakistan)

    2015-07-01

    A series of (Eu–Ni) substituted Y-type hexaferrite with composition Sr{sub 2}Co{sub (2−x)}Ni{sub x}Eu{sub y}Fe{sub (12−y)}O{sub 22} (x=0.0–1, Y=0.0–0.1) were prepared by the surfactant assisted co-precipitation method. The present samples were sintered at 1050 °C for 8 h. The shape of the particles is plate-like which is very advantageous for various applications and the grain size varies from 73 to 269 nm. The values of saturation magnetization (M{sub s}), remanent magnetization (M{sub r}) and magnetic moment (n{sub B}) were found to decrease which are attributed to the weakening of super exchange interactions. The values of in-plane Squareness ratios (M{sub r}/M{sub s}) ranging from 0.41 to 0.65 whereas in case of out of plane measurement it varies from 0.30 to 0.62.The investigated samples can be used in perpendicular recording media (PRM) due to high value of coercivity 2300 Oe which is analogous to the those of M-type and W-type hard magnetic. - Highlights: • The present samples sintered at 1050 °C for 8 h. • The grain size varies from 73 to 269 nm. • The magnetic moment varies from 15.27 to 6.07. • The shape of grains is plate like for microwave devices. • The present samples can be used in PRM due to high value of coercivity i.e. 2300 Oe.

  6. The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics.

    Science.gov (United States)

    Bretcanu, O; Spriano, S; Verné, E; Cöisson, M; Tiberto, P; Allia, P

    2005-07-01

    Ferrimagnetic glass-ceramics are potential candidates for magnetic induction hyperthermia, which is one form of inducing deep-regional hyperthermia, by using a magnetic field. The aim of this work was to analyse the influence of the amount of crystallised magnetite on the magnetic properties of glass-ceramic samples. Thus, two different ferrimagnetic glass-ceramics with the composition of the system Na(2)O-CaO-SiO(2)-P(2)O(5)-FeO-Fe(2)O(3) were prepared by melting at 1500 degrees C for 30 min of the coprecipitation-derived starting products. The X-ray diffraction patterns show the presence of nanometric magnetite crystals in a glassy matrix after cooling from melting temperature. The estimated amount of crystallised magnetite varies between 20 and 45 wt.%, as a function of the chemical composition. The morphology of the crystals was studied by scanning electron micrography and transmission electron micrography. Glass transition temperature and thermal stability were investigated by differential thermal analysis. Magnetic hysteresis cycles were analysed using a vibrating sample magnetometer with a maximum applied field of 17 kOe, at room temperature, in quasi-static conditions. Calorimetric measurements were carried out using a magnetic induction furnace. The power losses estimated from calorimetric measurements under a magnetic field of 40 kA/m and 440 kHz are 65 W/g for the glass-ceramic with lower iron oxides content and 25 W/g for the glass-ceramic with higher iron oxide content.

  7. Synthesis, Properties and Application of Glucose Coated Fe3O4 Nanoparticles Prepared by Co-precipitation Method

    Science.gov (United States)

    Sari, Ayu Y.; Eko, A. S.; Candra, K.; Hasibuan, Denny P.; Ginting, M.; Sebayang, P.; Simamora, P.

    2017-07-01

    Synthesis of glucose coated Fe3O4 magnetic nanoparticles have been successfully prepared with co-precipitation method. Raw material of natural iron-sand was obtained from Buaya River, Deliserdang, Indonesia. The milled iron-sand was dissolved in HCl (37 mole %), and stirred in 300 rpm at 70°C for 90 minutes. Glucose was added to the filtered powder with varied content of 0.01, 0.02, and 0.03 mole, and precipitated by NH3 (25 mole%). After drying process, the final product subsequently was glucose coated magnetite (Fe3O4) nanoparticles. The characterizations performed were true density measurement, FTIR, VSM, XRD, BET, and adsorbent performance by AAS. The FTIR analysis showed that M-O (bending) with M=Fe (stretching vibration) with υ = 570.92 and 401.19 cm-1. While glucose coated well on nanoparticle Fe3O4, proved by functional groups C=O (stretching), M-O (stretching) and C-H (bending) with υ = 1404.17, 570.92, and 2368.58 cm-1, respectively. Single phase of magnetite (Fe3O4) structure was determined from XRD analysis with cubic spinel structure and lattice parameter of 8.396 Å. The optimum conditions, obtained on the Fe3O4 nanoparticles with 0.01 mole of glucose addition, which has true density value of 4.57 g/cm3, magnetic saturation, M s = 35,41 emu/g, coercivity, H cJ = 83.58 Oe, average particle size = 12.3 nm and surface area = 124.88 m2/g. This type magnetic nanoparticles of glucose-coated Fe3O4 was capable to adsorbed 93.78 % of ion Pb. Therefore, the glucose-coated Fe3O4 nanoparticle is a potential candidate to be used as heavy metal removal from wastewater.

  8. Theoretical and experimental study of the incorporation of tobramycin and strontium-ions into hydroxyapatite by means of co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Baochang [Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S 100 44 Stockholm (Sweden); Lilja, Mirjam, E-mail: mirjam.lilja@sandvik.com [Division for Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, 751 21 Uppsala (Sweden); Sandvik Coromant Sverige AB, 12680 Stockholm (Sweden); Ma, Taoran [Applied Materials Physics, Department of Materials and Engineering, Royal Institute of Technology (KTH), S 100 44 Stockholm (Sweden); Sörensen, Jan; Steckel, Hartwig [Department of Pharmaceutics and Biopharmaceutics, Christian Albrecht University Kiel, Kiel (Germany); Ahuja, Rajeev [Condensed Matter Theory, Uppala University (Sweden); Strømme, Maria, E-mail: maria.stromme@angstrom.uu.se [Division for Nanotechnology and Functional Materials, The Ångström Laboratory, Uppsala University, 751 21 Uppsala (Sweden)

    2014-09-30

    Highlights: • We investigate incorporation of tobramycin into hydroxyapatite using co-precipitation by theory and experiment. • The drug molecule shows larger adsorption energy on a submicron HA surface compared to a TiO{sub 2} surface. • Strontium substitution allows for production of thinner coatings with enhanced drug incorporation capacity. - Abstract: Antibiotic incorporation into hydroxyapatite (HA) coatings by co-precipitation and the impact of bone relevant doping elements on the adsorption kinetics are investigated from both theoretical and experimental points of view. Tobramycin interactions with bioactive TiO{sub 2} and HA surfaces are analyzed using density functional theory. According to the calculations, the drug molecule has larger adsorption energy than the Ca{sup +} ion on both surfaces under study in Phosphate Buffered Saline (PBS). The results support the experimental observations that HA nucleation and growth are strongly limited on TiO{sub 2} surfaces in the presence of clinically relevant antibiotic concentrations in PBS. The drug molecule is more likely to adopt parallel arrangement onto the HA surface, as the adsorption energy of such arrangement is higher compared to a perpendicular one. Strontium substitution of the HA surface is found to results in a weaker drug–surface interaction, and leads also to a decrease in coating thickness. However, the presence of strontium gives rise to a coating morphology with enhanced drug incorporation capacity and slower antibiotic release compared to non-substituted, co-precipitated counterparts. Our theoretical calculation results were found to be in excellent agreement with experimental data and provide a powerful tool to understand the interaction mechanism between drug and different surface chemistries necessary for development of future versatile orthopedic and dental implant surfaces.

  9. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    Directory of Open Access Journals (Sweden)

    K. Eusterhues

    2014-04-01

    Full Text Available Ferrihydrite (Fh is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter (OM in the environment. This mineral-bound OM entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated the reactivity of 2-line Fh, Fh with adsorbed OM and Fh coprecipitated with OM towards microbial and abiotic reduction of Fe(III. As a surrogate for dissolved soil OM we used a water extract of a Podzol forest floor. Fh-OM associations with different OM-loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound OM. At similar OM-loadings, coprecipitated Fhs were more reactive than Fhs with adsorbed OM. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small OM loadings this led to even faster Fe reduction rates than found for pure Fh. The amount of mineral-bound OM also affected the formation of secondary minerals: goethite was only found after reduction of OM-free Fh and siderite was only detected when Fhs with relatively low amounts of mineral-bound OM were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited when blocked by OM. Consequently, mineral-bound OM shall be taken into account besides Fe(II accumulation as a further widespread mechanism to slow down reductive dissolution.

  10. Co-precipitation of DEAE-dextran coated SPIONs: how synthesis conditions affect particle properties, stem cell labelling and MR contrast.

    Science.gov (United States)

    Barrow, Michael; Taylor, Arthur; García Carrión, Jaime; Mandal, Pranab; Park, B Kevin; Poptani, Harish; Murray, Patricia; Rosseinsky, Matthew J; Adams, Dave J

    2016-09-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are widely used as contrast agents for stem cell tracking using magnetic resonance imaging (MRI). The total mass of iron oxide that can be internalised into cells without altering their viability or phenotype is an important criterion for the generation of contrast, with SPIONs designed for efficient labelling of stem cells allowing for an increased sensitivity of detection. Although changes in the ratio of polymer and iron salts in co-precipitation reactions are known to affect the physicochemical properties of SPIONs, particularly core size, the effects of these synthesis conditions on stem cell labelling and magnetic resonance (MR) contrast have not been established. Here, we synthesised a series of cationic SPIONs with very similar hydrodynamic diameters and surface charges, but different polymer content. We have investigated how the amount of polymer in the co-precipitation reaction affects core size and modulates not only the magnetic properties of the SPIONs but also their uptake into stem cells. SPIONs with the largest core size and lowest polymer content presented the highest magnetisation and relaxivity. These particles also had the greatest uptake efficiency without any deleterious effect on either the viability or function of the stem cells. However, for all particles internalised in cells, the T2 and T2(*) relaxivity was independent of the SPION's core size. Our results indicate that the relative mass of iron taken up by cells is the major determinant of MR contrast generation and suggest that the extent of SPION uptake can be regulated by the amount of polymer used in co-precipitation reactions. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Energy Technology Data Exchange (ETDEWEB)

    Pušnik, Klementina; Goršak, Tanja [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia); Drofenik, Miha [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Faculty of Chemistry and Chemical Engineering, University of Maribor, 2000 Maribor (Slovenia); Makovec, Darko [Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana (Slovenia); Jožef Stefan International Postgraduate School, 1000 Ljubljana (Slovenia)

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles’ formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe{sup 3+} ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH. - Highlights: • Co-precipitation of Fe{sup 3+}/Fe{sup 2+} ions in the presence of aspartic amino acid (Asp). • Through analysis of nanoparticle formation mechanism. • Presence of Asp changes the mechanism of the nanoparticles’ formation. • Asp forms a coordination complex with the Fe{sup 3+} ions. • Asp impedes the formation of iron oxyhydroxide phase and suppresses the growth of iron-oxide nanoparticles. • The aspartic-acid-absorbed nanoparticles form stable aqueous suspensions.

  12. Comparison of structural and luminescence properties of Dy{sub 2}O{sub 3} nanopowders synthesized by co-precipitation and green combustion routes

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekhar, M. [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Department of Physics, Acharya Institute of Technology, Bangalore 560 107 (India); Nagabhushana, H., E-mail: bhushanvlc@gmail.com [Prof. C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur 572 103 (India); Sudheerkumar, K.H. [Department of Chemistry, B.M.S. Institute of Technology, Bangalore 560 064 (India); Dhananjaya, N. [Department of Physics, B.M.S. Institute of Technology, Bangalore 560 064 (India); Sharma, S.C. [Vice chancellor, Chhattisgarh Swamy Vivekananda Technical University, North Park Avenue, Sector – 8, Bhilai, Chhattisgarh 490 009 (India); Kavyashree, D. [Department of Physics, Channabasaveshwara Institute of Technology, Gubbi 572 216 (India); Shivakumara, C. [Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 (India); Nagabhushana, B.M. [Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore 560 054 (India)

    2014-07-01

    Highlights: • Dy{sub 2}O{sub 3} nanopowders were prepared by co-precipitation and eco-friendly green combustion route using plant latex. • Both the products show excellent chromaticity coordinates in the white region, which were quite useful for white LED’s. • Thermoluminescence response of the Dy{sub 2}O{sub 3} product prepared by green synthesis was higher when compared to co-precipitation route. • Structural parameters of Dy{sub 2}O{sub 3} were estimated using Rietveld refinement. • The development of nanosize materials using eco-friendly resources was an attractive non-hazardous chemical route. - Abstract: Dysprosium oxide (Dy{sub 2}O{sub 3}) nanopowders were prepared by co-precipitation (CP) and eco-friendly green combustion (GC) routes. SEM micrographs prepared by CP route show smooth rods with various lengths and diameters while, GC route show porous, agglomerated particles. The results were further confirmed by TEM. Thermoluminescence (TL) responses of the nanopowder prepared by both the routes were studied using γ-rays. A well resolved glow peak at 353 °C along with less intense peak at 183 °C was observed in GC route while, in CP a single glow peak at 364 °C was observed. The kinetic parameters were estimated using Chen’s glow peak route. Photoluminescence (PL) of Dy{sub 2}O{sub 3} shows peaks at 481, 577, 666 and 756 nm which were attributed to Dy{sup 3+} transitions of {sup 4}F{sub 9/2}⟶{sup 6}H{sub 15/2}, {sup 6}H{sub 13/2}, {sup 6}H{sub 11/2} and {sup 6}H{sub 9/2}, respectively. Color co-ordinate values were located in the white region as a result the product may be useful for the fabrication of WLED’S.

  13. Characterization of Co{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} nanoparticles synthesized by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, G. [Department of Physics, Pondicherry Engineering College, Pondicherry 605014 (India)], E-mail: gvn_pec@yahoo.com; Sendhilnathan, S. [Department of Physics, Sri Manakula Vinayagar Engineering College, Pondicherry 605107 (India)], E-mail: sendhil29@yahoo.co.in

    2008-07-01

    Fine nanoparticles of Co{sub 1-x}Zn{sub x}Fe{sub 2}O{sub 4} with stoichiometric proportion (x) varying from 0 to 1.0 were prepared by the chemical co-precipitation method. The samples were characterized utilizing X-ray diffraction (XRD), vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR) techniques. The specific saturation magnetization (M{sub S}) of the particles was measured at room temperature. The precipitated particles were coated with oleic acid as the surfactant by suitable method for the preparation of ferrofluid.

  14. Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization

    Science.gov (United States)

    Pokrovsky, O. S.; Pokrovski, G. S.; Schott, J.; Galy, A.

    2006-07-01

    Adsorption of germanium on goethite was studied at 25 °C in batch reactors as a function of pH (1-12), germanium concentration in solution (10 -7 to 0.002 M) and solid/solution ratio (1.8-17 g/L). The maximal surface site density determined via Ge adsorption experiments at pH from 6 to 10 is equal to 2.5 ± 0.1 μmol/m 2. The percentage of adsorbed Ge increases with pH at pH Model (SCM) which implies a constant capacitance of the electric double layer and postulates the presence of two Ge complexes, >FeO-Ge(OH)30 and >FeO-GeO(OH)2-, at the goethite-solution interface. Coprecipitation of Ge with iron oxy(hydr)oxides formed during Fe(II) oxidation by atmospheric oxygen or by Fe(III) hydrolysis in neutral solutions led to high Ge incorporations in solid with maximal Ge/Fe molar ratio close to 0.5. The molar Ge/Fe ratio in precipitated solid is proportional to that in the initial solution according to the equation (Ge/Fe) solid = k × (Ge/Fe) solution with 0.7 ⩽ k ⩽ 1.0. The structure of adsorbed and coprecipitated Ge complexes was further characterized using XAFS spectroscopy. In agreement with previous data on oxyanions adsorption on goethite, bi-dentate bi-nuclear surface complexes composed of tetrahedrally coordinated Ge attached to the corners of two adjacent Fe octahedra represent the dominant contribution to the EXAFS signal. Coprecipitated samples with Ge/Fe molar ratios >0.1, and samples not aged in solution (hydroxide at Ge/Fe molar ratio ⩽0.0001. These conditions are likely to be met in many superficial aquatic environments at the contact of anoxic groundwaters with surficial oxygenated solutions. Adsorption and coprecipitation of Ge with solid Fe oxy(hydr)oxides and organo-mineral colloids and its consequence for Ge/Si fractionation and Ge geochemical cycle are discussed.

  15. A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry

    OpenAIRE

    Ferreira, Sergio Luis Costa; Saracoglu, S.; Soylak, Mustafa; Peker, D. S. Kacar; Elci, L.; Santos, W. N. L. dos; Lemos, Valfredo Azevedo

    2006-01-01

    Texto completo: acesso restrito. p.133–137 The present paper proposes a pre-concentration procedure for determination of lead and iron in several samples by flame atomic absorption spectrometry. In it, lead(II) and iron(III) ions are coprecipitated using the violuric acid–copper(II) system as collector. Afterwards, the precipitate is dissolved with 1 M HNO3 solution and the metal ions are determined. The optimization step was performed using factorial design involving the variables: pH, v...

  16. Stable iron isotope fractionation between aqueous Fe(II) and model Archean ocean Fe-Si coprecipitates and implications for iron isotope variations in the ancient rock record

    Science.gov (United States)

    Wu, Lingling; Percak-Dennett, Elizabeth M.; Beard, Brian L.; Roden, Eric E.; Johnson, Clark M.

    2012-05-01

    Iron isotope fractionation between aqueous Fe(II) (Fe(II)aq) and two amorphous Fe(III) oxide-Si coprecipitates was investigated in an aqueous medium that simulated Archean marine conditions, including saturated amorphous silica, low sulfate, and zero dissolved oxygen. The equilibrium isotope fractionation (in 56Fe/54Fe) between Fe(II)aq and Fe(III)-Si coprecipitates at circum-neutral pH, as inferred by the three-isotope method, was -3.51 ± 0.20 (2σ)‰ and -3.99 ± 0.17 (2σ)‰ for coprecipitates that had Fe:Si molar ratios of 1:2 and 1:3, respectively. These results, when combined with earlier work, indicate that the equilibrium isotope fractionation factor between Fe(II)aq and Fe(III)-Si coprecipitates changes as a function of Fe:Si ratio of the solid. Isotopic fractionation was least negative when Fe:Si = 1:1 and most negative when Fe:Si = 1:3. This change corresponds with changes in the local structure of iron, as revealed by prior spectroscopic studies. The kinetics of isotopic exchange was controlled by movement of Fe(II) and Si, where sorption of Fe(II) from aqueous to solid phase facilitated atom exchange, but sorption of Si hindered isotopic exchange through blockage of reactive surface sites. Although Fe(II)-Fe(III) isotopic exchange rates were a function of solid and solution compositions in the current study, in all cases they were much higher than that determined in previous studies of aqueous Fe(III) and ferrihydrite interaction, highlighting the importance of electron exchange in promoting Fe atom exchange. When compared to analogous microbial reduction experiments of overlapping Fe(II) to Fe(III) ratios, isotopic exchange rates were faster in the biological experiments, likely due to promotion of atom exchange by the solid-phase Fe(II) produced in the biological experiments. These results provide constraints for interpreting the relatively large range of Fe isotope compositions in Precambrian marine sedimentary rocks, and highlight important

  17. Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol

    OpenAIRE

    Cheng- Hsin Kuo; Donny Lesmana; Ho Shing Wu

    2013-01-01

    This study addresses the catalytic performance of Cu/ZnO/Al2O3/Cr2O3 in low-temperature of autothermal reforming (ATR) reaction. Various operating conditions were used to decide the optimum reaction conditions: type of promoter (ZrO2, CeO2, and Cr2O3), precipitation temperature, precipitation pH, operation temperature, molar ratio of O2/CH3OH (O/C), and weight hourly space velocity (WHSV). The catalysts were prepared using the oxalic coprecipitation method. Characterization of the catalyst wa...

  18. Effect of Gallium and Indium Co-Substituting on Upconversion Properties of Er/Yb:Yttrium Aluminum Garnet Powders Prepared by the Co-Precipitation Method.

    Science.gov (United States)

    Zhang, Wei; Liang, Yun-Ling; Hu, Zheng-Fa; Feng, Zu-Yong; Lun, Ma; Zhang, Xiu-ping; Sheng, Xia; Liu, Qian; Luo, Jie

    2016-04-01

    Gallium and Indium co-substituted Yb, Er:YAG was fabricated through the chemical co-precipitation method. The formation process and structure of the Ga3+ and In3+ substituted phosphor powders were characterized by the X-ray diffraction, thermo-gravimetry analyzer, infrared spectra, and X-ray photoelectron spectroscopy, and the effects of Ga3+ and In3+ concentration on the luminescence properties were investigated by spectrum. The results showed that the blue shift occurred after the substitution of Ga3+ and In3+ for Al3+ in matrix, and the intensity of emission spectrum was affected by the concentration of Ga3+ and In3+.

  19. Filterless pre-concentration by co-precipitation by formation of crystalline precipitate in the analysis of barium by FIA-FAES

    DEFF Research Database (Denmark)

    Plamboeck, C.; Westtoft, H.C.; Pedersen, S.A.;

    2003-01-01

    A novel method based on flow injection analysis (FIA) and flame atomic emission spectrometry (FAES) is presented. It was developed for direct determination of barium in drinking water, in natural water, in digested samples of bone and liver, in saline water and in a standard reference material...... (NIST SRM 1640). It was found that digestion of bone by an incineration procedure was required, in order to extract most of the barium. In the FIA manifold, barium was pre-concentrated by co-precipitation with lead chromate leading to a crystalline deposit that adhered well to the inner walls of a nylon...

  20. Highly selective hydrogenation of CO2 to methanol over CuO-ZnO-ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method

    Science.gov (United States)

    Li, Li; Mao, Dongsen; Yu, Jun; Guo, Xiaoming

    2015-04-01

    A series of CuO-ZnO-ZrO2 catalysts are synthesized by a surfactant-assisted co-precipitation method and tested for the synthesis of methanol from CO2 hydrogenation. The effects of calcination temperature on the physicochemical properties of as-prepared catalysts are investigated extensively by TG-DSC, N2 adsorption/desorption, XRD, N2O chemisorption, SEM/TEM, EDX, XPS, TPR, H2-TPD and CO2-TPD techniques. The results show that the size of copper particles increases with the increase in calcination temperature, leading to the decrease in turnover frequency (TOF) for methanol formation. Moreover, compared with the counterparts prepared by the conventional co-precipitation method, the CuO-ZnO-ZrO2 catalysts prepared by this novel method show significantly high methanol selectivity. The superior property of the prepared CuO-ZnO-ZrO2 catalyst can be attributed to the formation of more amounts of Cu-ZnOx and/or Cu-ZrOx species resulted from the homogeneous element distribution, intimate interface contact of Cu species with ZnO and/or ZrO2, and to porous structure with larger pore size.

  1. Effect of preparation conditions on Nickel Zinc Ferrite nanoparticles: A comparison between sol–gel auto combustion and co-precipitation methods

    Directory of Open Access Journals (Sweden)

    Manju Kurian

    2016-09-01

    Full Text Available The experimental conditions used in the preparation of nano crystalline mixed ferrite materials play an important role in the particle size of the product. In the present work a comparison is made on sol–gel auto combustion methods and co-precipitation methods by preparing Nickel Zinc Ferrite (Ni0.5Zn0.5Fe2O4 nano particles. The prepared ferrite samples were calcined at different temperatures and characterized by using standard methods. X-ray diffraction analysis indicated the formation of single phase ferrite nanoparticles for samples calcined at 500 °C. The lattice parameter range of 8.32–8.49 Å confirmed the cubic spinel structure. Average crystallite size estimated from X-ray diffractogram was found to be between 17 and 40 nm. The IR spectra showed two main absorption bands, the high frequency band ν1 around 600 cm−1 and the low frequency band ν2 around 400 cm−1 arising from tetrahedral (A and octahedral (B interstitial sites in the spinel lattice. TEM pictures showed particles in the nanometric range confirming the XRD data. The studies revealed that the sol–gel auto combustion method was superior to the co-precipitation method for producing single phase nano particles with smaller crystallite size.

  2. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Harzali, Hassen, E-mail: harzali@mines-albi.fr [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Saida, Fairouz; Marzouki, Arij; Megriche, Adel [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Baillon, Fabien; Espitalier, Fabienne [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi CT cedex 09 (France); Mgaidi, Arbi [Laboratory of Applied Mineral Chemistry, Faculty of Sciences, University Tunis ElManar, Campus University, Farhat Hached El-Manar, 2092 Tunis (Tunisia); Taibah University, Faculty of Sciences & art, Al Ula (Saudi Arabia)

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni–Cu–Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power P{sub diss}=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10–25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite. - Highlights: • Coprecipitation experiments were carried out with ultrasound. • The spinel ferrite NiCuZn was perfectly synthesized by ultrasound. • The saturation magnetization and crystals size are found to be correlated as the dissipated power was varied.

  3. Co-precipitation of phosphate and iron limits mitochondrial phosphate availability in Saccharomyces cerevisiae lacking the yeast frataxin homologue (YFH1).

    Science.gov (United States)

    Seguin, Alexandra; Santos, Renata; Pain, Debkumar; Dancis, Andrew; Camadro, Jean-Michel; Lesuisse, Emmanuel

    2011-02-25

    Saccharomyces cerevisiae cells lacking the yeast frataxin homologue (Δyfh1) accumulate iron in the mitochondria in the form of nanoparticles of ferric phosphate. The phosphate content of Δyfh1 mitochondria was higher than that of wild-type mitochondria, but the proportion of mitochondrial phosphate that was soluble was much lower in Δyfh1 cells. The rates of phosphate and iron uptake in vitro by isolated mitochondria were higher for Δyfh1 than wild-type mitochondria, and a significant proportion of the phosphate and iron rapidly became insoluble in the mitochondrial matrix, suggesting co-precipitation of these species after oxidation of iron by oxygen. Increasing the amount of phosphate in the medium decreased the amount of iron accumulated by Δyfh1 cells and improved their growth in an iron-dependent manner, and this effect was mostly transcriptional. Overexpressing the major mitochondrial phosphate carrier, MIR1, slightly increased the concentration of soluble mitochondrial phosphate and significantly improved various mitochondrial functions (cytochromes, [Fe-S] clusters, and respiration) in Δyfh1 cells. We conclude that in Δyfh1 cells, soluble phosphate is limiting, due to its co-precipitation with iron.

  4. Structural, electrical and magnetic studies of nickel-zinc nanoferrites prepared by simplified sol-gel and co-precipitation methods

    Energy Technology Data Exchange (ETDEWEB)

    Nasir, S; Anis-ur-Rehman, M, E-mail: marehman@comsats.edu.pk [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2011-08-01

    Ferrite nanoparticles, particularly nickel-zinc ferrite nanoparticles, are novel materials for high-frequency applications. Nanoparticles with a composition of Ni{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} were prepared by two different processes, namely the co-precipitation and simplified sol-gel methods. Powder x-ray diffraction (XRD) patterns confirmed the single-phase spinel structure for the as-prepared samples. Samples were sintered at 555 and 755 {sup 0}C, after which the structural, electrical and magnetic properties were studied. The crystallite sizes, as determined from XRD data, increased with sintering temperature. The dc electrical resistivity measurements were performed as a function of temperature, with the two-probe method in the temperature range from room temperature to 450 {sup 0}C. The activation energy and drift mobility were calculated from the temperature-dependent dc electrical resistivity measurements. The dielectric constant and dielectric loss tangent for all the samples were determined as a function of frequency, and the frequency range used was from 20 Hz to 3 MHz at room temperature. The samples prepared using the simplified sol-gel method have lower dielectric constant values compared to those of the samples prepared using the co-precipitation method, and those prepared by the former method are more suitable for high-frequency applications. For the magnetic properties, a vibrating sample magnetometer was used. Saturation magnetization and coercivity increased with an increase in sintering temperature.

  5. Simultaneous determinations of zirconium, hafnium, yttrium and lanthanides in seawater according to a co-precipitation technique onto iron-hydroxide.

    Science.gov (United States)

    Raso, Maria; Censi, Paolo; Saiano, Filippo

    2013-11-15

    Very low concentrations (pg mL(-1) or sub-pg mL(-1) level) along with the high salinity are the main problems in determining trace metal contents in seawater. This problem is mainly considered for investigations of naturally occurring YLOID (Y and Lanthanides) and Zr and Hf in order to provide precise and accurate results. The inductively coupled plasma mass spectrometry (ICP-MS), both in high and low resolution, offers many advantages including simultaneous analyses of all elements and their quantitative determination with detection limits of the order of pg mL(-1). However in the analysis of YLOID in seawater, a better determination needs an efficient combination of ICP-MS measurement with a pre-concentration technique. To perform an ultra-trace analysis in seawater, we have validated an analytical procedure involving an improved modified co-precipitation on iron hydroxides to ensure the simultaneous quantitative recovery of YLOID, Zr and Hf contents with measurement by a quadrupole ICP-MS. The validity of the method was assessed through a series of co-precipitation experiments and estimation of several quality control parameters for method validation, namely working range and its linearity, detection limit, quantification limit, precision and spike recoveries, and the methodological blank choice, are introduced, evaluated and discussed. Analysis of NASS-6, is the first report on the latest seawater reference material for YLOID, hafnium and zirconium. © 2013 Elsevier B.V. All rights reserved.

  6. Facile synthesis of radial-like macroporous superparamagnetic chitosan spheres with in-situ co-precipitation and gelation of ferro-gels.

    Directory of Open Access Journals (Sweden)

    Chih-Hui Yang

    Full Text Available Macroporous chitosan spheres encapsulating superparamagnetic iron oxide nanoparticles were synthesized by a facile and effective one-step fabrication process. Ferro-gels containing ferrous cations, ferric cations and chitosan were dropped into a sodium hydroxide solution through a syringe pump. In addition, a sodium hydroxide solution was employed for both gelation (chitosan and co-precipitation (ferrous cations and ferric cations of the ferro-gels. The results showed that the in-situ co-precipitation of ferro-ions gave rise to a radial morphology with non-spheroid macro pores (large cavities inside the chitosan spheres. The particle size of iron oxide can be adjusted from 2.5 nm to 5.4 nm by tuning the concentration of the sodium hydroxide solution. Using Fourier Transform Infrared Spectroscopy and X-ray diffraction spectra, the synthesized nanoparticles were illustrated as Fe(3O(4 nanoparticles. In addition, the prepared macroporous chitosan spheres presented a super-paramagnetic behaviour at room temperature with a saturation magnetization value as high as ca. 18 emu/g. The cytotoxicity was estimated using cell viability by incubating doses (0∼1000 µg/mL of the macroporous chitosan spheres. The result showed good viability (above 80% with alginate chitosan particles below 1000 µg/mL, indicating that macroporous chitosan spheres were potentially useful for biomedical applications in the future.

  7. XRD line-broadening characteristics of M-oxides (M = Mg, Mg-Al, Y, Fe) nanoparticles produced by coprecipitation method

    Science.gov (United States)

    Pratapa, S.; Susanti, L.; Insany, Y. A. S.; Alfiati, Z.; Hartono, B.; Mashuri, Taufiq, Ahmad; Fuad, Abdullah; Triwikantoro, Baqiya, M. A.; Purwaningsih, S.; Yahya, E.; Darminto

    2010-10-01

    Simple coprecipitation method has been used to produce nanoparticles of MgO (magnesia), MgOṡAl2O3 (spinel), Y2O3 (yttria) and Fe3O4 (ferrite). The raw materials were, in respective, magnesium powder, magnesium and aluminium powders, ytrria powder, and natural sand. The coprecipitation included the use of suitable acid and base to dissolve the powders or sand and to produce precipitates, as well as the use of water to wash and purify the precipitates, and drying at relatively low temperatures, namely lower than 100° C, followed by heating at 450° C, 750° C, 600° C and 200° C to produce magnesia, spinel, yttria and ferrite nanopowders, respectively. X-ray diffractometry was used to characterise the purity and nanocrystallinity of the final powders. It was found qualitatively that the powders were of high purity. Further line-broadening analysis using single-line and Rietveld-based softwares was performed to reveal the nanocrystallinity of the powders. Different line breadth values were found for the powders, indicating different crystallite sizes. It was also found that, particularly for spinel and yttria, the diffraction peaks exhibited `longer' tails, indicating broader crystallite size distribution. The average crystallite size for the powders ranged from 3 to 70 nm. The results could then be used as `fingerprints' for nanocrystallinity using x-ray diffractometry. The XRD crystallite sizes for yttria and ferrite nanocrystals are in fair agreement with their counterparts from electron microscopy observation.

  8. Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes.

    Science.gov (United States)

    Yang, Yue; Xu, Shengming; He, Yinghe

    2017-06-01

    A novel process for extracting transition metals, recovering lithium and regenerating cathode materials based on facile co-extraction and co-precipitation processes has been developed. 100% manganese, 99% cobalt and 85% nickel are co-extracted and separated from lithium by D2EHPA in kerosene. Then, Li is recovered from the raffinate as Li2CO3 with the purity of 99.2% by precipitation method. Finally, organic load phase is stripped with 0.5M H2SO4, and the cathode material LiNi1/3Co1/3Mn1/3O2 is directly regenerated from stripping liquor without separating metal individually by co-precipitation method. The regenerative cathode material LiNi1/3Co1/3Mn1/3O2 is miro spherical morphology without any impurities, which can meet with LiNi1/3Co1/3Mn1/3O2 production standard of China and exhibits good electrochemical performance. Moreover, a waste battery management model is introduced to guarantee the material supply for spent battery recycling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application

    Directory of Open Access Journals (Sweden)

    Zahra Rezay Marand

    2014-09-01

    Full Text Available Abstract Objective(s: This paper describes synthesizing of magnetic nanocomposite with co-precipitation method. Materials and Methods: Magnetic ZnxFe3-xO4 nanoparticles with 0-14% zinc doping (x=0, 0.025, 0.05, 0.075, 0.1 and 0.125 were successfully synthesized by co-precipitation method. The prepared zinc-doped Fe 3O4 nanoparticles were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FTIR, vibrating sample magnetometer (VSM and UV-Vis spectroscopy. Results: results obtained from X-ray diffraction pattern have revealed the formation of single phase nanoparticles with cubic inverse spinal structures which size varies from 11.13 to 12.81 nm. The prepared nanoparticles have also possessed superparamagnetic properties at room temperature and high level of saturation magnetization with the maximum level of 74.60 emu/g for x=0.075. Ms changing in pure magnetite nanoparticles after impurities addition were explained based on two factors of “particles size” and “exchange interactions”. Optical studies results revealed that band gaps in all Zn-doped NPs are higher than pure Fe 3O4. As doping percent increases, band gap value decreases from 1.26 eV to 0.43 eV. Conclusion: these magnetic nanocomposite structures since having superparamagnetic property offer a high potential for biosensing and biomedical application.

  10. Synthesis of aqueous suspensions of magnetic nanoparticles with the co-precipitation of iron ions in the presence of aspartic acid

    Science.gov (United States)

    Pušnik, Klementina; Goršak, Tanja; Drofenik, Miha; Makovec, Darko

    2016-09-01

    There is increasing demand for the production of large quantities of aqueous suspensions of magnetic iron-oxide nanoparticles. Amino acids are one possible type of inexpensive, nontoxic, and biocompatible molecules that can be used as the surfactants for the preparation of stable suspensions. This preparation can be conducted in a simple, one-step process based on the co-precipitation of Fe3+/Fe2+ ions in the presence of the amino acid. However, the presence of this amino acid changes the mechanism of the magnetic nanoparticles' formation. In this investigation we analyzed the influence of aspartic amino acid (Asp) on the formation of magnetic iron-oxide nanoparticles during the co-precipitation. The process of the nanoparticles' formation was followed using a combination of TEM, x-ray diffractometry, magnetic measurements, in-situ FT-IR spectroscopy, and chemical analysis, and compared with the formation of nanoparticles without the Asp. The Asp forms a coordination complex with the Fe3+ ions, which impedes the formation of the intermediate iron oxyhydroxide phase and suppresses the growth of the final magnetic iron-oxide nanoparticles. Slower reaction kinetics can lead to the formation of nonmagnetic secondary phases. The aspartic-acid-absorbed nanoparticles can be dispersed to form relatively concentrated aqueous suspensions displaying a good colloidal stability at an increased pH.

  11. IMPACT OF MgCl2 ADDITION ON THE FORMATION OF NANO-CRYSTALLINE HERCYNITE SYNTHESISED BY CO-PRECIPITATION METHOD

    Directory of Open Access Journals (Sweden)

    Ali Baghaei

    2015-09-01

    Full Text Available In this paper, the effect of MgCl2 addition on the synthesis of hercynite was investigated. For this reason, hercynite was prepared by co-precipitation of AlCl3.6H2O and FeCl2.4H2O along with various amounts of MgCl2 at 60 C. Then, the co-precipitated materials were calcined at 1300, 1400 and 1500 C in air atmosphere. Afterwards, phase composition and microstructure of samples were studied by X-ray diffraction (XRD analysis and scanning electron microscopy (SEM. The results showed that the formation of hercynite simply took place with the presence of MgCl2 due to the release of Mg2+ cations and then, the formation of spinel structure and its evolution to hercynite structure. Moreover, the addition of MgCl2 influences the amount of hercynite phase. Calcination temperature affects hercynite crystallite sizes so that hercynite crystallite sizes increas by the increasing of calcination temperature from 1300 C to 1500 C.

  12. Influence of adsorption versus coprecipitation on the retention of rice straw-derived dissolved organic carbon and subsequent reducibility of Fe-DOC systems

    Science.gov (United States)

    Sodano, Marcella; Lerda, Cristina; Martin, Maria; Celi, Luisella; Said-Pullicino, Daniel

    2016-04-01

    The dissimilatory reduction of Fe oxides is the main organic C-consuming process in paddy soils under anoxic conditions. The contribution of Fe(III) reduction to anaerobic C mineralization depends on many factors, but most importantly on the bioavailability of labile organic matter and a reducible Fe pool as electron donors and acceptors, respectively. On the other hand, the strong affinity of these minerals for organic matter and their capability of protecting it against microbial decomposition is well known. Natural Fe oxides in these soils may therefore play a key role in determining the C source/sink functions of these agro-ecosystems. Apart from contributing to C stabilization, the interaction between Fe oxides and dissolved organic C (DOC) may influence the structure and reactivity of these natural oxides, and selectively influence the chemical properties of DOC. Indeed, Fe-DOC associations may not only reduce the availability of DOC, but may also limit the microbial reduction of Fe oxides under anoxic conditions. In fact, the accessibility of these minerals to microorganisms, extracellular enzymes, redox active shuttling compound or reducing agents may be impeded by the presence of sorbed organic matter. In soils that are regularly subjected to fluctuations in redox conditions the interaction between DOC and Fe oxides may not only involve organic coatings on mineral surfaces, but also Fe-DOC coprecipitates that form during the rapid oxidation of soil solutions containing important amounts of DOC and Fe(II). However, little is known on how these processes influence DOC retention, and the structure and subsequent reducibility of these Fe-DOC associations. We hypothesized that the nature and extent of the interaction between DOC and Fe oxides may influence the accessibility of the bioavailable Fe pool and consequently its reducibility. We tested this hypothesis by synthesizing a series of Fe-DOC systems with increasing C:Fe ratios prepared by either surface

  13. 新颖氧化镁纳米带共沉淀法合成与表征%Synthesis and Characterization of New-type MgO Nanobelts via Co-precipitation Synthetic Way

    Institute of Scientific and Technical Information of China (English)

    陈晨; 庄京; 王定胜; 王训

    2005-01-01

    MgO nanobehs were successfully synthesized via a co-precipitation synthetic way by employing ammonia and salvolatile as co-precipitator. TEM characterization showed that these nanobehs were composed of uniform hexagonal shaped MgO nanocrystals. The formation of this new-type nanostructures was attributed to the crystal structures of the MgCO3·3H2O precursor. TG was adopted to show the gradual conversion process of from MgCO3·3H2O to MgO. Due to the large surface areas and the largely exposed (100) surfaces, these nanobelts may lind their applications in catalysis fields.

  14. An analytical method for hydrogeochemical surveys: Inductively coupled plasma-atomic emission spectrometry after using enrichment coprecipitation with cobalt and ammonium pyrrolidine dithiocarbamate

    Science.gov (United States)

    Hopkins, D.M.

    1991-01-01

    Trace metals that are commonly associated with mineralization were concentrated and separated from natural water by coprecipitation with ammonium pyrollidine dithiocarbamate (APDC) and cobalt and determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The method is useful in hydrogeochemical surveys because it permits preconcentration near the sample sites, and selected metals are preserved shortly after the samples are collected. The procedure is relatively simple: (1) a liter of water is filtered; (2) the pH is adjusted; (3) Co chloride and APDC are added to coprecipitate the trace metals; and (4) later, the precipitate is filtered, dissolved, and diluted to 10 ml for a 100-fold concentration enrichment of the separated metals. Sb(III), As(III), Cd, Cr, Cu, Fe, Pb, Mo, Ni, Ag, V, and Zn can then be determined simultaneously by ICP-AES. In an experiment designed to measure the coprecipitation efficiency, Sb(III), Cd and Ag were recovered at 70 to 75% of their original concentration. The remaining metals were recovered at 85 to 100% of their original concentrations, however. The range for the lower limits of determination for the metals after preconcentration is 0.1 to 3.0 ??g/l. The precision of the method was evaluated by replicate analyses of a Colorado creek water and two simulated water samples. The accuracy of the method was estimated using a water reference standard (SRM 1643a) certified by the U.S. National Bureau of Standards. In addition, the method was evaluated by analyzing groundwater samples collected near a porphyry copper deposit in Arizona and by analyzing meltwater from glacier-covered areas favorable for mineralization in south-central Alaska. The results for the ICP-AES analyses compared favorably with those obtained using the sequential technique of GFAAS on the acidified but unconcentrated water samples. ICP-AES analysis of trace-metal preconcentrates for hydrogeochemical surveys is more efficient than GFAAS because a

  15. 共沉淀氢氧化铁酸奶的研制%Preparation of Co-precipitation Ferric Hydroxide Yogurt

    Institute of Scientific and Technical Information of China (English)

    洪南华; 李诚; 吴思慧

    2013-01-01

    以鲜牛奶为原料,通过添加适量的共沉淀氢氧化铁,以Hansen公司的YF-L812为发酵剂,对制备共沉淀氢氧化铁发酵乳进行了研究。通过单因素试验和正交试验,确定了最佳工艺条件。结果表明,当铁添加量为20 mg/kg,接种量为5%,白砂糖添加量为6%(均为质量分数)在42℃条件下发酵5 h即可得到优质的共沉淀氢氧化铁酸奶制品。在此条件下制备的酸奶与未添加共沉淀氢氧化铁酸奶在7 d保藏期内,除酸度有显著差异外,乳酸菌数和TBA值均无显著性差异。%For preparation of co-precipitation ferric hydroxide yogurt , fresh milk was used as a raw material and an appropriate amount of co-precipitation ferric hydroxide ,the YF-L812 starter culture from Hansen corporation were added to product yogurt. Based on one-factor-at-a-time investigations ,orthogonal array designs were employed to optimize the fermentation conditions.The results showed that ,adding 20 mg/kg iron, 5 % inoculums size,6 % sugar and at 42 ℃ 5 hours fermentation time can achieve the high quality co-precipitation ferric hydroxide yogurt.During the 7 days storage ,between fortified and unfortified yogurt ,there was no significant differences in the number of lactic acid bacteria and the TBA value ,only in the acidity.

  16. Co-precipitation synthesis and luminescence properties of K₂TiF₆:Mn⁴⁺ red phosphors for warm white light-emitting diodes.

    Science.gov (United States)

    Liao, Jinsheng; Nie, Liling; Zhong, Laifu; Gu, Qingjie; Wang, Qi

    2016-05-01

    K2TiF6:Mn(4+) red phosphors with different Mn(4+) doping concentrations were obtained using the co-precipitation method. X-Ray diffraction, scanning electron microscopy, Raman spectra, Fourier transform infrared spectroscopy, photoluminescence excitation and emission spectra and decay curves were used to characterize the properties of K2TiF6:Mn(4+) phosphors. Under excitation at 470 nm, an intense red emission peak around 631 nm corresponding to the (2)E(g)-(4)A2 transition of Mn(4+) was observed for 2.48 mol% K2TiF6:Mn(4+) phosphors and was used as the optimum doping concentration. The excellent luminescent properties of K2TiF6:Mn(4+) suggest that this material might be a promising red phosphor for generating warm white light in phosphor-converted white light-emitting diodes.

  17. Catalytic combustion of ethyl acetate over CeMnOx and CeMnZrOx compounds synthesized by coprecipitation method

    Institute of Scientific and Technical Information of China (English)

    Xiaoshuang Li; Jianli Wang; Chuanwen Liao; Hongyan Cao; Yaoqiang Chen; Maochu Gong

    2011-01-01

    Ce0.6Mn0.4O2 catalysts with different sources of manganese and Ce0.6-xZrxMn0.4O2 mixed oxide catalysts were prepared by coprecipitation method and were characterized by N2 adsorption-desorption,TPR,XRD,and XPS techniques.The activities of the prepared catalysts for ethyl acetate combustion,and the effects of calcination temperature and space velocity on catalytic activity were investigated.The results showed that partial replacement of Mn(NO3)2 with KMnO4 as sources of manganese could improve activities of catalysts.Ceo.45Zro.15Mno.4O2 catalyst exhibited the best catalytic activity and high thermal stability,e.g.,T90 could be still below 210 ℃ even if space velocity was up to 20000 h-1.

  18. Defect related microstructure, optical and photoluminescence behaviour of Ni, Cu co-doped ZnO nanoparticles by co-precipitation method

    Science.gov (United States)

    Anbuselvan, D.; Muthukumaran, S.

    2015-04-01

    In the present study Ni-doped ZnO and Ni, Cu-doped ZnO nanoparticles were successfully synthesized by co-precipitation method. Structural studies confirmed the dominant presence of hexagonal wurtzite ZnO phase at lower Cu concentration and CuO phase was observed at higher Cu (Cu = 5%) concentration. The existence of Cu2+ ions were dominant at Cu ⩽ 3% (responsible for lattice shrinkage) and the presence of Cu+ ions were dominant at Cu > 3% (responsible for lattice expansion). The change in UV-visible absorption and energy gap were discussed by secondary phase generation and charge carrier density. The low absorption loss and high transmittance at Cu = 3% doped samples is used as potential candidate for opto-electronic devices. The increase of green band intensity and decrease of UV band at higher Cu concentration confirmed the existence of more defect related states.

  19. A novel co-precipitation method for preparation of Mn--Ce/TiO2 composites for NOx reduction with NH3 at low temperature.

    Science.gov (United States)

    Sheng, Zhongyi; Hu, Yufeng; Xue, Jianming; Wang, Xiaoming; Liao, Weiping

    2012-01-01

    Mn--Ce/TiO2 catalyst prepared by a novel co-precipitation method was used in this study for low-temperature selective catalytic reduction (SCR) of NOx with ammonia. The catalyst showed high activity and good SO2 resistance. The NO conversion on the catalyst increased to 100% when 700 ppm of SO2 flowed in, and reached 60.8% in 2.5 h. The characterized results indicated that the catalyst prepared by the new method had good dispersion of the active phase, uniform micro-size particles and large Brunauer-Emmett-Teller surface. The temperature programmed reduction and temperature programmed desorption experiments showed that the improvement in SCR activity on the Mn--Ce/TiO2 catalyst might be due to the increase of active oxygen species and the enhancement of NH3 chemisorption, both of which were conducive to NH3 activation.

  20. Synthesis and characterization of polyethylene glycol (PEG) coated Fe3O4 nanoparticles by chemical co-precipitation method for biomedical applications.

    Science.gov (United States)

    Anbarasu, M; Anandan, M; Chinnasamy, E; Gopinath, V; Balamurugan, K

    2015-01-25

    Polyethylene glycol (PEG) coated Fe3O4 nanoparticles were synthesized by chemical co-precipitation method. With polyethylene glycol (PEG) as a stabilizer and dispersant. The X-ray diffraction and selected area electron diffraction (SAED) results show that the cubic inverse spinel structure of pure phase polycrystalline Fe3O4 was obtained. The scanning electron microscopy (SEM) and field emission transmission electron microscopy (FE-TEM) results exhibited that the resulted Fe3O4 nanoparticles were roughly spherical in shape with narrow size distribution and homogenous shape. Fourier transform infrared spectroscopy (FT-IR) results suggested that PEG indicated with Fe3O4 via its carbonyl groups. Results of vibrating sample magnetometer (VSM) indicated that the prepared Fe3O4 nanoparticles exhibit superparamagnetic behavior and high saturation magnetization at room temperature. Such Fe3O4 nanoparticles with favorable size and tunable magnetic properties are promising biomedical applications.

  1. Y2O3-CeO2-ZrO2 Powder Prepared by Co-Precipitation and As-Plasma-Sprayed Coating

    Institute of Scientific and Technical Information of China (English)

    SHAO Gang-qin; ZHANG Wen-xi; HOU Zhong-tao; YUAN Run-zhang

    2004-01-01

    The Y2O3-CeO2-ZrO2 powders were prepared using a co-precipitation process and the corresponding coatings were prepared by plasma spraying. The results show that an optimal composition exists in Y2O3-doped CeO2-ZrO2, but not in CeO2-doped Y2O3-ZrO2. The powders mainly contain tetragonal phase and a trace amount of monoclinic phase. The homogeneity in composition, large agglomerate size, ideal particle size distribution and high flowability were obtained. The as-sprayed coatings are composed of non-transformable tetragonal phase, tz′structure, and resistant to transformation under thermal or mechanical stresses.

  2. Superacid Catalyst SO42-/ZrO2-La2O3 Prepared by Ultrasonic Co-precipitation and Low Temperature Aging

    Institute of Scientific and Technical Information of China (English)

    Tong-yun Chen; Xiang-feng Chu; Ke-liang Hu

    2009-01-01

    Sulfated zirconia-lanthana (SO42-/ZrO2-La2O3) precursors were prepared by ultrasonic co-precipitation method and followed by aging at different temperature. The precursors were treated by 0.5 mol/L H2SO4. Samples of SO42-/ZrO2-La2O3 nano-crystalline catalysts were obtained by baking the treated precursors at different temperatures. The acidic properties of SO42-/ZrO2-La2O3were tested by the Hammett indicator method. The phase composition, specific area, particle structure, and surface state were characterized by X-ray diffraction, BET, transmission electron microscopy, infrared spectrum, and X-ray photoelectron spec-troscopy. The catalytic activities were estimated by esterification of acetic acid with glycerin. It was shown that the catalyst prepared by ultrasonic stirring and low temperature (-15℃) exhibited highly active sites and high catalytic property.

  3. Copper(II)-8-hydroxquinoline coprecipitation system for preconcentration and separation of cobalt(II) and manganese(II) in real samples.

    Science.gov (United States)

    Soylak, Mustafa; Kaya, Betul; Tuzen, Mustafa

    2007-08-25

    A separation-preconcentration procedure based on the coprecipitation of cobalt(II) and manganese(II) ions with copper(II)-8-hydroxquinoline system has been developed. The analytical parameters including pH, amount of copper(II) as carrier element, amount of 8-hydroxquinoline, sample volume, etc., was investigated for the quantitative recoveries of Co(II) and Mn(II). No interferic effects were observed from the concomitant ions which are present in real samples. The detection limits for analyte ions by three sigma criteria were 0.86microgL(-1) for cobalt and 0.98microgL(-1) for manganese. The validation of the presented preconcentration procedure was performed by the analysis of NIST SRM 2711 Montana soil and GBW 07605 Tea certified reference materials. The procedure presented was applied to the analyte contents of real samples including natural waters and some food samples with successfully analytical results.

  4. Synthesis and luminescence properties of SrAl2O4∶Eu2+,Dy3+ hollow microspheres via a solvothermal co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    XUE Zhiping; DENG Suqing; LIU Yingliang; LEI Bingfu; XIAO Yong; ZHENG Mingtao

    2013-01-01

    SrAl2O4:Eu2+,Dy3+ hollow microspheres were successfully prepared through a facile and mild solvothermal co-precipitation combining with a postcalcining process.The stnucture and particle morphology were investigated by X-ray diffraction (XRD),scanning and transmission electron microscopy (SEM and TEM) pictures,respectively.The mechanism for the formation of spherical SrAl2O4:Eu2+,Dy3+ phosphor was preliminary presented.After being irradiated with ultraviolet (UV) light,the spherical phosphor emitted long-lasting green phosphorescence.Both the photoluminescence (PL) spectra and luminance decay,compared with that of commercial bulky powders,revealed that the phosphors had efficient luminescent and long lasting properties.It was considered that the SrA12O4:Eu2+,Dy3+ hollow microspheres had promising long-lasting phosphorescence with potential scale-dependent applications in photonic devices.

  5. High energy milling of zirconia-titania powders synthesized by coprecipitation; Moagem de alta energia em pos de zirconia-titania sintetizados por co-precipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano M.B.; Marchi, Juliana; Lazar, Dolores R.R.; Ussui, Valter, E-mail: vussui@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Zirconia based ceramics are known by its remarkable mechanical properties as hardness and fracture toughness and in biomedical applications are classified as bioinert. By its turn, titania ceramics has been studied due to its ability to bond directly to bone tissue, but are structurally brittle. Properties of ceramics are strongly dependent of physical and chemical characteristics of its former powders. In the present work, research done for the synthesis of zirconia-titania ceramics by the coprecipitation route are presented, emphasizing the conditioning process through a high energy milling in a atritor mill, classifying of powders in vibratory sieves and forming of cylindrical ceramic samples followed by a sintering process at 1500 deg C for 01 hour. The intermediary samples produced in the various steps of the process were characterized by scanning electronic microscope, X-ray diffraction, nitrogen gas adsorption and granulometric analysis. (author)

  6. Effect of pH variation on the stability and structural properties of In(OH){sub 3} nanoparticles synthesized by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Kian Wei; Wong, Yew Hoong [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering, Kuala Lumpur (Malaysia); Johan, Mohd Rafie [University of Malaya, Department of Mechanical Engineering, Faculty of Engineering, Kuala Lumpur (Malaysia); University of Malaya, Nanotechnology and Catalysis Research Centre, Kuala Lumpur (Malaysia)

    2016-10-15

    Indium hydroxide (In(OH){sub 3}) nanoparticles were synthesized at various pH values (8-11) by co-precipitation method. Its properties were characterized by X-ray diffractometer, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscope. The electrostatic stability of nanoparticles is carried out through zeta potential measurement. The crystallite size of nanoparticles calculated by Scherrer equation has similar trend with the values obtained from William-Hall plot. TEM images show that the particles size is within the range of 11.76-20.76 nm. The maximum zeta potential is 3.68 mV associated with the smallest particle size distribution of 92.6 nm occurred at pH 10. Our work clearly confirms the crystallite size, stability and the morphology of In(OH){sub 3} NPs are strongly depending on the pH of precursor solution. (orig.)

  7. The Effect of Calcination Temperature on Synthesis of B4C-Nano Tib2 Composite by Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Saeid Abedini Khorrami

    2016-08-01

    Full Text Available Titanium diboride is one of the candidate materials for high temperature applications and also for control rod elements in high temperature reactors. This paper presents the experimental data on the composites of B4C-nano TiB2 that were synthesized successfully by co-precipitation method at temperatures between 973 and 1523K. Titanium tetraisopropoxide, boron carbide and isopropanol were used as the precursor materials. The phase constitution and microstructure of B4C-nano TiB2 during synthesis were investigated. X-ray diffraction (XRD and scanning electron microscopy (SEM were used to determine phase and microstructure of TiB2-B4C composites. The DTA/DDTA and TG/DTG results improve that the first exothermic reaction is TiO2 phase and second exothermic reaction takes place at 1523K which is TiB2 phase

  8. Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation

    Science.gov (United States)

    Harzali, Hassen; Saida, Fairouz; Marzouki, Arij; Megriche, Adel; Baillon, Fabien; Espitalier, Fabienne; Mgaidi, Arbi

    2016-12-01

    Sonochemically assisted co-precipitation has been used to prepare nano-sized Ni-Cu-Zn-ferrite powders. A suspension of constituent hydroxides was ultrasonically irradiated for various times at different temperatures with high intensity ultrasound radiation using a direct immersion titanium horn. Structural and magnetic properties were investigated using X-diffraction (XRD), FT-IR spectroscopy, transmission electron microscopy (TEM), Nitrogen adsorption at 77 K (BET) and Vibrating sample magnetometer (VSM). Preliminary experimental results relative to optimal parameters showed that reaction time t=2 h, temperature θ=90 °C and dissipated Power Pdiss=46.27 W. At these conditions, this work shows the formation of nanocrystalline single-phase structure with particle size 10-25 nm. Also, ours magnetic measurements proved that the sonochemistry method has a great influence on enhancing the magnetic properties of the ferrite.

  9. Photodegradation of Acid Black 1 and Removing Heavy Metals from the Water by an Inorganic Nanocomposite Synthesized via Simple Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Marziyeh Mohammadi

    2016-07-01

    Full Text Available In this experimental work, PbS/ZnS/ZnO nanocomposite was synthesized via a simple co-precipitation method. The effect of Zn2+/Pb2+ mole ratio was investigated on the product size and morphology. The products were characterized via scanning electron microscopy to obtain product size and morphology. The optical properties of the nanocomposites were studied by ultra violet-visible spectroscopy. Photocatalytic activity of the product was examine by decomposition of acid black 1 as dye. To investigation of the effect of as synthesized nanocomposite on the water treatment, the influences of the nanocomposite to remove heavy ions was studied by atomic absorption spectroscopy. The results showed that the synthesized nanocomposite has well optical properties, photocatalytic and water treatment activities.

  10. Effect of pH variation on the stability and structural properties of In(OH)3 nanoparticles synthesized by co-precipitation method

    Science.gov (United States)

    Goh, Kian Wei; Johan, Mohd Rafie; Wong, Yew Hoong

    2016-10-01

    Indium hydroxide (In(OH)3) nanoparticles were synthesized at various pH values (8-11) by co-precipitation method. Its properties were characterized by X-ray diffractometer, Fourier transform infrared spectroscopy, Raman spectroscopy and transmission electron microscope. The electrostatic stability of nanoparticles is carried out through zeta potential measurement. The crystallite size of nanoparticles calculated by Scherrer equation has similar trend with the values obtained from William-Hall plot. TEM images show that the particles size is within the range of 11.76-20.76 nm. The maximum zeta potential is 3.68 mV associated with the smallest particle size distribution of 92.6 nm occurred at pH 10. Our work clearly confirms the crystallite size, stability and the morphology of In(OH)3 NPs are strongly depending on the pH of precursor solution.

  11. Photocatalytic properties of BiVO{sub 4} prepared by the co-precipitation method: Degradation of rhodamine B and possible reaction mechanisms under visible irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-de la Cruz, A., E-mail: azael70@yahoo.com.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico); Perez, U.M. Garcia [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Ciudad Universitaria, C.P. 66451, San Nicolas de los Garza, N.L. (Mexico)

    2010-02-15

    Bismuth vanadate (BiVO{sub 4}) was synthesized by the co-precipitation method at 200 {sup o}C. The photocatalytic activity of the oxide was tested for the photodegradation of rhodamine B under visible light irradiation. The analysis of the total organic carbon showed that the mineralization of rhodamine B over a BiVO{sub 4} photocatalyst ({approx}40% after 100 h of irradiation) is feasible. In the same way, a gas chromatography analysis coupled with mass spectroscopy revealed the existence of organic intermediates during the photodegradation process such as ethylbenzene, o-xylene, m-xylene, and phthalic anhydride. The modification of variables such as dispersion pH, amount of dissolved O{sub 2}, and irradiation source was studied in order to know the details about the photodegradation mechanism.

  12. Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol

    Directory of Open Access Journals (Sweden)

    Cheng- Hsin Kuo

    2013-12-01

    Full Text Available This study addresses the catalytic performance of Cu/ZnO/Al2O3/Cr2O3 in low-temperature of autothermal reforming (ATR reaction. Various operating conditions were used to decide the optimum reaction conditions: type of promoter (ZrO2, CeO2, and Cr2O3, precipitation temperature, precipitation pH, operation temperature, molar ratio of O2/CH3OH (O/C, and weight hourly space velocity (WHSV. The catalysts were prepared using the oxalic coprecipitation method. Characterization of the catalyst was conducted using a porosity analyzer, XRD, and SEM. The methanol conversion and volumetric percentage of hydrogen using the best catalyst (Cu/ZnO/Al2O3/Cr2O3 exceeded 93% and 43%, respectively. A catalyst prepared by precipitation at -5 oC and at pH of 1 converted methanol to 40% H2 and less than 3000 ppm CO at reaction temperature of 200 oC. The size and dispersion of copper and the degradation rate and turnover frequency of the catalyst was also calculated. Deactivation of the Cu catalyst at a reaction temperature of 200 oC occurred after 30 h. © 2013 BCREC UNDIP. All rights reservedReceived: 8th May 2013; Revised: 10th August 2013; Accepted: 18th August 2013[How to Cite: Cheng, H.K., Lesmana, D., Wu, H.S. (2013. Modification the Oxalic Co-precipitation Method on a Novel Catalyst Cu/Zn/Al2O3/Cr2O3 for Autothermal Reforming Reaction of Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (2: 110-124. (doi:10.9767/bcrec.8.2.4844.110-124][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.2.4844.110-124

  13. Modeling and optimization of effective parameters on the size of synthesized Fe{sub 3}O{sub 4} superparamagnetic nanoparticles by coprecipitation technique using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ghazanfari, Mohammad Reza, E-mail: Ghazanfari.mr@gmail.com [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Jaafari, Mahmoud Reza [Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2016-05-01

    Generally, the statistical methods are defined as appropriate techniques to study the processes trends. In current research, the Fe{sub 3}O{sub 4} superparamagnetic nanoparticles were synthesized by coprecipitation method. In order to investigate the size properties of synthesized particles, the experimental design was done using central composite method (CCD) of response surface methodology (RSM) while the temperature, pH, and cation ratio of reaction were selected as influential factors. After particles synthesis based on designed runs, the different responses such as hydrodynamic size of particles (both freeze dried and air dried), size distribution, crystallite size, magnetic size, and zeta potential were evaluated by different techniques i.e. dynamic light scattering (DLS), X-ray diffraction (XRD), and vibrating sample magnetometer (VSM). Based on these results, the quadratic polynomial model was fitted for each response that could predict the response amounts. In following, the study of factors effects was carried out that showed the temperature, pH, and their interactions had higher effectiveness. Finally, by optimizing, it was clear that the minimum amounts of particle size (10.15 nm) and size distribution (13.01 nm) were reached in the minimum temperature (70 °C) and cation ratio (0.5) amounts and maximum pH amount (10.5). Moreover, the characterizations showed the particles size was about 10 nm while the amounts of M{sub s}, H{sub c}, and M{sub r} were equal to 60 (emu/g), 0.2 (Oe) and 0.22 (emu/g), respectively. - Highlights: • The Fe{sub 3}O{sub 4} nanoparticles were successfully synthesized by coprecipitation method. • By RSM technique, some predicted models were presented for particles size. • Temperature, pH and their interactions had most effectiveness on the particles size. • The drying techniques can effect on the size properties.

  14. Effects of Gd on the magnetic, electric and structural properties of BiFeO{sub 3} nanstructures synthesized by co-precipitation followed by microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, S.; Shokrollahi, H., E-mail: Shokrollahi@sutech.ac.ir; Basiri, M.H.

    2015-02-01

    The ultrafine of Bi{sub 1−x}Gd{sub x}FeO{sub 3} with x=0, 0.05, 0.1, 0.15 were synthesized by the co-precipitation method. These powders were defined by the X-ray diffraction analysis, transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). The dielectric constant and dielectric loss were measured by an inductance–capacitance–resistance (LCR) meter. The X-ray diffraction analysis showed that increasing the asymmetry and decreasing the second phases occur by increasing the amount of gadolinium. A phase transformation began from the rhombohedral phase to the orthorhombic one by adding gadolinium in about x=0.15. Gd-doping improved the magnetic properties because the cycloid spins were distorted by adding Gd instead of Bi. Furthermore, the dielectric properties were improved as a result of the reduction in Fe{sup 2+} and oxygen vacancies. The microwave sintering method was used to densify the compact pellets for electrical tests. FESEM images showed that microwave sintering leads to the enhancement of ferroelectric properties due to the high densities of the sintered pellets and the prevention of grain growth. - Highlights: • We synthesized Bi{sub 1−x}Gd{sub x}FeO{sub 3} with x=0, 0.05, 0.1, 0.15 by co-precipitation. • We highlighted the role of Gd on the magnetic, electric and structural properties. • Gd improved the magnetic and dielectric properties. • Microwave sintering improved the bulk density and other properties.

  15. Structural and magnetic studies of the nickel doped CoFe{sub 2}O{sub 4} ferrite nanoparticles synthesized by the chemical co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashok, E-mail: ashok.physics22@gmail.com [Department of Physics, Deenbandhu Chhotu Ram University of Science & Technology, Murthal, 131039 Haryana (India); Yadav, Nisha; Rana, Dinesh S. [Department of Instrumentation, Kurukshetra University, Kurukshetra, 136119 Haryana (India); Kumar, Parmod [Materials Science Division, Inter University Accelerator Center, 110067 New Delhi (India); Arora, Manju; Pant, R.P. [CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, 110012 New Delhi (India)

    2015-11-15

    The physical properties of nickel doped cobalt ferrite nanoparticles Ni{sub x}Co{sub 1−x}Fe{sub 2}O{sub 4} (x=0.5, 0.75, 0.9) derived by the chemical co-precipitation route are characterized by XRD, FTIR, TEM, EPR, search coil and ac susceptibility techniques to develop stable kerosene based ferrofluid. XRD patterns and TEM images confirm the single phase formation of Ni{sub x}Co{sub 1-x}Fe{sub 2}O{sub 4} nanoparticles whose crystallite size increases and lattice parameters decreases with the increase in Ni content. EPR resonance signal peak-to-peak line width and resonance field value decreases with the increase in Ni concentration in these samples. The broad nature of resonance signal is attributed to the ferromagnetic nature of the as-prepared nanoparticles and the increase in super exchange interaction among Ni{sup 2+}-O-Co{sup 2+} facilitate the shifting of resonance value to lower field. The hysteresis loops of these nickel doped cobalt ferrite analogs exhibits highly magnetic nature of these nanoparticles at ambient temperature whose saturation magnetization, coerecivity and remanence magnetization decreases linearly with the increase in Ni-concentration in cobalt ferrite. The magnetic susceptibility with temperature curve shows increasing trend of blocking temperature with rise in nickel ion concentration. - Graphical abstract: Magnetic Characteristics variation in Nickel Doped cobalt ferrite nanoparticles with nickel content through structural and morphological correlation. - Highlights: • Nickel doped Cobalt ferrite nanoparticles (NPs) synthesis by the co-precipitation route. • Explored magnetic properties variation with nickel content. • Lattice parameter decreases and crystallite size increases with Ni{sup 2+} content. • NPs Ferromagnetic nature is confirmed by EPR and search coil studies. • Magnetocrystalline anisotropy of Ni{sup 2+} ions increases blocking temperature.

  16. Fe(II)–Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Luo, Kun; Wu, Xiuqiong [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Li, Xiaoming, E-mail: xmli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Liu, Yang [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Urban and Rural Garbage Disposal Technology Research Center, Hunan Province, Changsha 410082 (China); Tang, Wangwang; Zeng, Guangming; Peng, Bo [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2013-04-15

    Highlights: ► Fe(II)–Al(III) LDHs were synthesized by ultrasound-assisted co-precipitation method. ► The Fe–Al (30 min) exhibited highly reduction reactivity on bromate. ► Pseudo-first-order model described the experimental data well. ► The mechanisms of bromate removal were proposed. -- Abstract: Bromate is recognized as an oxyhalide disinfection byproduct in drinking water. In this paper, Fe(II)–Al(III) layered double hydroxides (Fe–Al LDHs) prepared by the ultrasound-assisted co-precipitation method were used for the reduction of bromate in solution. The Fe–Al LDHs particles were characterized by X-ray diffractometer, scanning electron microscopy and thermogravimetry–differential scanning calorimetry. It was found that ultrasound irradiation assistance promoted the formation of the hydrotalcite-like phase and then improved the removal efficiency of bromate. In addition, the effects of solid-to-solution ratio, contact time, initial bromate concentration, initial pH, coexisting anions on the bromate removal were investigated. The results showed the bromate with an initial concentration of 1.56 μmol/L could be completely removed from solution by Fe–Al LDHs within 120 min. When the initial bromate concentration was 7.81 μmol/L, the Fe–Al LDHs with irradiation time of 30 min exhibited the optimum removal efficiency and the bromate removal capacity (q{sub e}) was 6.80 μmol/g. In addition, the appearance of sulfate and production of bromide were observed simultaneously in this process, which suggested that ion-exchange between sulfate and bromate, and the reduction of bromate to bromide by Fe{sup 2+} were the main mechanisms responsible for the bromate removal by Fe–Al LDHs.

  17. Effect of precipitants on Ni-CeO2 catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    王路辉; 刘辉; 刘源; 陈英; 杨淑清

    2013-01-01

    A series of Ni-CeO2 catalysts were prepared by co-precipitation method with Na2CO3, NaOH, and mixed precipitant (Na2CO3:NaOH;1:1 ratio) as precipitant, respectively. The effect of the precipitants on the catalytic performance, physical and chemical properties of Ni-CeO2 catalysts was investigated with the aid of X-ray diffraction (XRD), Brumauer-Emmett-Teller method (BET), Fou-rier-transform infrared spectroscopy (FT-IR), thermogravimetry (TG), and H2-TPR characterizations. The Ni-CeO2 catalysts were exam-ined with respect to their catalytic performance for the reverse water-gas shift reaction, and their catalytic activities were ranked as:Ni-CeO2-CP (Na2CO3:NaOH=1:1)>Ni-CeO2-CP(Na2CO3)>Ni-CeO2-CP(NaOH). Correlating to the characteristic results, it was found that the catalyst prepared by co-precipitation with mixed precipitant (Na2CO3:NaOH; 1:1 ratio) as precipitant had the most amount of oxygen vacancies accompanied with highly dispersed Ni particles, which made the corresponding Ni-CeO2-CP(Na2CO3:NaOH=1:1) catalyst exhibit the highest catalytic activity. While the precipitant of Na2CO3 or NaOH resulted in less or no oxygen vacancies in Ni-CeO2 catalysts. As a result, Ni-CeO2-CP(Na2CO3) and Ni-CeO2-CP(NaOH) catalysts presented poor catalytic performance.

  18. Investigation of NdxY0.25-xZr0.75O1.88 inert matrix fuel materials made by a co-precipitation synthetic route

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, John R.; Grosvenor, Andrew P. (Saskatchewan)

    2016-05-06

    Yttria-stabilized zirconia (YSZ) is a material that we are considering in our inert matrix fuel nuclear reactors, but a complete characterization of these materials is required for them to be licensed for use. A series of NdxY0.25–xZr0.75O1.88 materials have been synthesized using a co-precipitation method, and the thermal stability of these materials has been studied by annealing them at 1400 and 1500 °C. (Nd was used as surrogate for Am.) The long-range and local structures of the materials were characterized via powder X-ray diffraction, scanning electron microscopy, wavelength dispersive spectroscopy, and X-ray absorption spectroscopy at the Zr K- and Y K-edges. These results were compared with the previous characterization of Nd-YSZ materials synthesized using a ceramic method. Moreover, the results indicated that the ordering in the local metal–oxygen polyhedral remains relatively unaffected by the synthetic method, but there was increased long-range disorder in the materials prepared by the co-precipitation method. Further, it was found that the materials produced by the co-precipitation method were unexpectedly unstable when annealed at high temperature. This study highlights the importance of determining the effect of synthetic method on material properties and demonstrates how the co-precipitation route could be used to produce inert matrix fuels.

  19. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Energy Technology Data Exchange (ETDEWEB)

    Barahuie, Farahnaz [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Hussein, Mohd Zobir, E-mail: mzobir@putra.upm.edu.my [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Arulselvan, Palanisamy [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Fakurazi, Sharida [Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Zainal, Zulkarnain [Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2014-09-15

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro. - Highlights: • We intercalated chlorogenic into Zn/Al-layered double hydroxide by ion-exchange and coprecipitation methods. • The two methods gave nanocomposites

  20. Anisotropy and magnetic property of M-type SrAl4Fe8O19 powders prepared via co-precipitation method.

    Science.gov (United States)

    He, Haiyan

    2010-01-01

    Al-substituted M-type hexaferrite is a high anisotropy material. In this paper, we report the coprecipitation synthesis of SrAl4Fe8O19 powder and the effects of preheating temperature and calcining time on the anisotropy and magnetic property of the powders. The XRD analysis indicated that the SrAl4Fe8O19 powder requests a calcining time of 3 h for formation of pure hexagonal platelike particle, and preheat treatment at 300 degrees C was favorable for the formation of single phase SrAl4Fe8O19. Calculation of c/a value with XRD data indicated that the Al-substitution and preheat treatment induced notable increase of the atomic lattice anisotropy. SEM analysis revealed that shape anisotropy of the samples decreases with the preheating. Magnetic measurement indicates that coercivity decrease and magnetization increase as decrease in shape anisotropy, but have no concern with the atomic lattice anisotropy. The no-preheated sample has a maximum coercivity up to 3.9947 kG and the sample preheated at 400 degrees C has a maximum magnetization up to 32.266 A.m2.kg(-1). The present article discusses some important patents related to catalysis of Mg-containing spinel compounds.

  1. Nanostructured BiVO4 photocatalysts synthesized via a polymer-assisted coprecipitation method and their photocatalytic properties under visible-light irradiation

    Science.gov (United States)

    García-Pérez, U. M.; Sepúlveda-Guzmán, S.; Martínez-de la Cruz, A.

    2012-03-01

    Nanostructured BiVO4 photocatalysts were synthesized by a coprecipitation process in the presence of sodium carboxymethylcellulose (CMC), which acts as a steric stabilizer during the formation and growth of the BiVO4 nanoparticles. Samples with different contents of CMC were prepared in order to study the effect of the polymer on the final morphology of the oxide. The synthesized samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and adsorption-desorption isotherms (BET). The presence of CMC during the first stage of BiVO4 synthesis, promoted the formation of granular particles controlling its morphology and favoring its dispersion. The BiVO4 monoclinic polymorph (m-BiVO4) was obtained free of the tetragonal crystalline form (t-BiVO4) by annealing at different temperatures, which were influenced by CMC content: 400 °C (0.5 wt %), 450 °C (3.0 wt %), and 350 °C (6.0 and 9.0 wt %). BiVO4 nanoparticles showed photocatalytic activity, as they bleached an aqueous solution of rhodamine B (rhB) under visible-light irradiation. The photocatalytic activity of the BiVO4 samples was directly correlated with the amount of CMC added during the synthesis process.

  2. Impedance response and dielectric relaxation in co-precipitation derived ferrite (Ni,Zn)Fe{sub 2}O{sub 4} ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D. G.; Tang, X. G.; Liu, Q. X.; Jiang, Y. P.; Ma, C. B.; Li, R. [School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006 (China)

    2013-06-07

    Dielectric spectra and magnetization hysteresis loops were used to investigate the grain size effect with temperature on the electrical and magnetic response of co-precipitation derived spinel (Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} (NZFO) ceramics. Remarkable dielectric relaxation phenomena of non-Debye type have been observed in each NZFO ceramics as confirmed by two kinds of Cole-Cole plots of the 1100 Degree-Sign C sintered samples, mainly due to the electron-hopping mechanism between n-type and p-type carriers and interfacial ion effect when applied an increase of temperature. The high and low response of grain and grain-boundary regions were determined by modeling the impedance experimental results on two equivalent RC circuits taking into account grain deep trap states. By employing the modified Arrhenius equation, activation energy values of different sintering temperatures were calculated and analyzed in combination with oxygen vacancy. In addition, the magnetization of various sintering temperature samples is dominated by cation distribution and surface effect in different particle ranges.

  3. Structural and magnetic properties of Co{sub 1-} {sub x} Zn {sub x} Fe{sub 2}O{sub 4} nanoparticles by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Vaidyanathan, G. [Department of Physics, Pondicherry Engineering College, Pondicherry 605014 (India)]. E-mail: gvn_pec@yahoo.com; Sendhilnathan, S. [Department of Physics, Sri Manakula Vinayagar Engineering College, Pondicherry 605 107 (India)]. E-mail: sendhil29@yahoo.co.in; Arulmurugan, R. [Department of Physics, Pondicherry Engineering College, Pondicherry 605014 (India)]. E-mail: arulphysics@rediffmail.com

    2007-06-15

    Co{sub 1-} {sub x} Zn {sub x} Fe{sub 2}O{sub 4} nanoparticles were prepared by co-precipitation method with x varying from 0 to 1.0. The powder samples were characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). The average crystallite sizes of the particles were determined from XRD. X-ray analysis showed that the samples were cubic spinel. The average crystallite size (D {sub aveXR}) of the particles precipitated was found to vary from 6.92 to 12.02 nm decreasing with the increase in zinc substitution. The lattice constant (a {sub o}) increased with the increase in zinc substitution. The specific saturation magnetization (M {sub S}) of the particles was measured at room temperature. The magnetic parameters such as M {sub S}, H {sub c}, and M {sub r} were found to decrease with the increase in zinc substitution. FTIR spectra of the Co{sub 1-} {sub x} Zn {sub x} Fe{sub 2}O{sub 4} with x varying from 0 to 1.0 in the range 400-4000 cm{sup -1} were reported. The spinel structure and the crystalline water adsorption of Co{sub 1-} {sub x} Zn {sub x} Fe{sub 2}O{sub 4} nanoparticles were studied by using FTIR.

  4. A pre-concentration procedure using coprecipitation for determination of lead and iron in several samples using flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Saracoglu, S. [Erciyes University, Faculty of Education, 38039 Kayseri (Turkey); Soylak, M. [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)]. E-mail: soylak@erciyes.edu.tr; Peker, D.S. Kacar [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey); Elci, L. [Pamukkale University, Faculty of Science and Arts, Chemistry Department, 20020 Denizli (Turkey); Santos, W.N.L. dos [Universidade Estadual de Santa Cruz lheus, Bahia (Brazil); Lemos, V.A. [Universidade Estadual do Sudoeste da Bahia, Nucleo de Quimica Analitica da Bahia (NQA), Laboratorio de Quimica Analitica (LQA), Campus de Jequie, 45200-000 Jequie, BA (Brazil); Ferreira, S.L.C. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280 Salvador, BA (Brazil)

    2006-08-04

    The present paper proposes a pre-concentration procedure for determination of lead and iron in several samples by flame atomic absorption spectrometry. In it, lead(II) and iron(III) ions are coprecipitated using the violuric acid-copper(II) system as collector. Afterwards, the precipitate is dissolved with 1 M HNO{sub 3} solution and the metal ions are determined. The optimization step was performed using factorial design involving the variables: pH, violuric acid mass (VA) and copper concentration (Cu). Using the optimized experimental conditions, the proposed procedure allows the determination these metals with detection limits of 0.18 {mu}g L{sup -1} for iron and 0.16 {mu}g L{sup -1} for lead. The effects of foreign ions on the pre-concentration procedure were also evaluated and the results demonstrated that this method could be applied for determination of iron and lead in several real samples. The proposed method was successfully applied to the analysis of seawater, urine, mineral water, soil and physiological solution samples. The concentrations of lead and iron achieved in these samples agree well with others data reported in the literature.

  5. Structural and morphological properties of Zn1- x Zr x O with room-temperature ferromagnetism and fabricated by using the co-precipitation technique

    Science.gov (United States)

    Hassan, M.; Irfan, R.; Riaz, S.; Naseem, S.; Hussain, S. S.; Murtaza, G.

    2017-03-01

    In this study, ZnO was doped with various concentrations of zirconium ( x Zr = 0 - 5 mole%), by using the co-precipitation method so as to achieve successful formation of a single-phase diluted magnetic semiconductor. X-Ray diffraction results showed that the crystal structure of Zn1- x Zr x O was that of hexagonal wurtzite. The structural properties showed no additional phases at low impurity contents ( x Zr values found in the literature. For undoped ZnO, the average calculated particle size was 75.35 nm, and calculated bond length was 1.98 Å. The residual strains and the secondary phases of ZrO2 were found to affect the lattice parameters and the bond lengths. The scanning electron microscopy images showed a porous structure with non-uniform surface morphology. However, a few nano-scale dendrite-type structures were also present, indicating the potential applications of Zr-doped ZnO in nano-devices. Vibrating sample magnetometry (VSM) was employed to measure the magnetic properties, and the measurements showed undoped ZnO to be diamagnetic; however, doping with Zr induced a small ferromagnetic character at small magnetic fields. On the otherhand, a paramagnetic behavior was evident at higher magnetic fields. The magnetization at 1T was observed to degrade with increasing Zr content in the ZnO host lattice, which was due to the residual strains and the secondary phases.

  6. Microstructure and magnetic characteristics of nanocrystalline Ni0.5Zn0.5 ferrite synthesized by a spraying-coprecipitation method

    Institute of Scientific and Technical Information of China (English)

    Liu Yin; Qiu Tai

    2007-01-01

    Nanocrystalline Ni0.5Zn0.5 ferrite with average grain sizes ranging from 10 to 100 nm is prepared by using a spraying-coprecipitation method. The results indicate that the nanocrystalline Ni0.5Zn0.5 ferrite is ferromagnetic without the superparamagnetic phenomenon observed at room temperature. Specific saturation magnetization of nanocrystalline Ni0.5Zn0.5 ferrite increases from 40.2 to 75.6 emu/g as grain size increases from 11 to 94nm. Coercivity of nanocrystalline Ni0.5Zn0.5 ferrite increases monotonically when d < 62 nm. The relationship between the coercivity and the mean grain size is well fitted into a relation Hc ~ d3. A theoretically evaluated value of the critical grain size is 141nm larger than the experimental value 62nm for nanocrystalline Ni0.5Zn0.5 ferrite. The magnetic behaviour of nanocrystalline Ni0.5Zn0.5 ferrite may be explained by using the random anisotropy theory.

  7. Investigation of structural and magnetic properties of co-precipitated Mn-Ni ferrite nanoparticles in the presence of α-Fe2O3 phase

    Science.gov (United States)

    Tirupanyam, B. V.; Srinivas, Ch.; Meena, S. S.; Yusuf, S. M.; Satish Kumar, A.; Sastry, D. L.; Seshubai, V.

    2015-10-01

    A systematic study on structural and magnetic properties of co-precipitated MnxNi1-xFe2O4 (x=0.5, 0.6, 0.7) ferrite nanoparticles annealed at 800 °C was carried out using XRD, FE-SEM, VSM and MÖSSBAUER techniques. Anti-ferromagnetic α-Fe2O3 phase was observed along with the magnetic spinel phase in the XRD patterns. It is observed that both lattice parameter and crystallite size of spinel phase increase with increase in concentration of Mn2+ along with the amount of α-Fe2O3 phase. The saturation magnetization (Ms) decreases while coercivity (Hc) increases with increase of Mn2+ ion concentration. Mössbauer spectra indicate that iron ions present in A and B sites are in the Fe3+ state and Fe2+ is absent. The results are interpreted in terms of observed anti-ferromagnetic α-Fe2O3 phase, core-shell interactions and cation redistribution.

  8. Structural and magnetic characterization of co-precipitated Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, Ch., E-mail: srinivas.chintoju75@gmail.com [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Tirupanyam, B.V. [Department of Physics, Government College (Autonomous), Rajamahendravaram 533103 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085 (India); Babu, Ch. Seshu [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Ramakrishna, K.S. [Department of Physics, Srinivasa Institute of Engineering and Technology, Amalapuram 533222 (India); Potukuchi, D.M. [Department of Physics, University College of Engineering, Jawaharlal Nehru Technological University, Kakinada 533003 (India); Sastry, D.L., E-mail: dl_sastry@rediffmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India)

    2016-06-01

    A series of Ni{sub x}Zn{sub 1−x}Fe{sub 2}O{sub 4} (x=0.5, 0.6 and 0.7) ferrite nanoparticles have been synthesized using a co-precipitation technique, in order to understand the doping effect of nickel on their structural and magnetic properties. XRD and FTIR studies reveal the formation of spinel phase of ferrite samples. Substitution of nickel has promoted the growth of crystallite size (D), resulting the decrease of lattice strain (η). It was also observed that the lattice parameter (a) increases with the increase of Ni{sup 2+} ion concentration. All particles exhibit superparamagnetism at room temperature. The hyperfine interaction increases with the increase of nickel substitution, which can be assumed to the decrease of core–shell interactions present in the nanoparticles. The Mössbauer studies witness the existence of Fe{sup 3+} ions and absence of Fe{sup 2+} ions in the present systems. These superparamagnetic nanoparticles are supposed to be potential candidates for biomedical applications. The results are interpreted in terms of microstructure, cation redistribution and possible core–shell interactions. - Highlights: • Thermodynamic solubility of Ni{sup 2+} in zinc ferrite influences the crystallite sizes. • At room temperature the ferrite systems exhibit superparamagnetism. • Core–shell model was exactly suited to explain magnetic behavior. • Core–shell interactions decrease with increase in Ni{sup 2+} ion concentration.

  9. Effect of calcination temperature on the photocatalytic activity of TiO2 powders prepared by co-precipitation of TiCl3

    Science.gov (United States)

    Yudoyono, Gatut; Ichzan, Nur; Zharvan, Vicran; Daniyati, Rizqa; Santoso, Hadi; Indarto, Bachtera; Pramono, Yono Hadi; Zainuri, Mochamad; Darminto

    2016-04-01

    The adsorption of basic dye methylene blue (MB) onto titanium dioxide (titania) powder that were prepared by coprecipitation method of TiCl3 and NH4OH as iniatial material with different calcination temperature was studied to examine the photocatalytic activity. Synthesis process carried out by the solution pH was adjusted to be 8. Effect of calcination temperature on the titania powder were characterized with Differential Scanning Calorimetry/Thermogravimetry (DSC/TG), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). The result of TG and XRD showed that the NH4Cl decomposed between 235-372°C. The XRD result showed that the anatase TiO2 only contained a single phase when the calcination temperature of the precursor at 800°C, and over which it began to grow rutile phase. The influence of synthesis condition on the photocatalytic activity of TiO2 powder was determined by the photodegradation of MB dye under UV light.

  10. Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors

    Science.gov (United States)

    Xu, Yanjie; Wang, Lincai; Cao, Peiqi; Cai, Chuanlin; Fu, Yanbao; Ma, Xiaohua

    2016-02-01

    A simple co-precipitation method utilizing SDS (sodium dodecyl sulfate) as template and ammonia as precipitant is successfully employed to synthesize nickel cobalt oxide/graphene oxide (NiCo2O4/GO) composite. The as-prepared composite (NCG-10) exhibits a high capacitance of 1211.25 F g-1, 687 F g-1 at the current density of 1 A g-1, 10 A g-1 and good cycling ability which renders NCG-10 as promising electrode material for supercapacitors. An asymmetric supercapacitor (ASC) (full button cell) has been constructed with NCG-10 as positive electrode and lab-made reduced graphene oxide (rGO) as negative electrode. The fabricated NCG-10//rGO with an extended stable operational voltage of 1.6 V can deliver a high specific capacitance of 144.45 F g-1 at a current density of 1 A g-1. The as-prepared NCG-10//rGO demonstrates remarkable energy density (51.36 W h kg-1 at 1 A g-1), high power density (50 kW kg-1 at 20 A g-1). The retention of capacitance is 88.6% at the current density of 8 A g-1 after 2000 cycles. The enhanced capacitive performance can be attributed to the improved specific surface area and 3D open area of NCG-10 generated by the pores and channels with the substantial function of SDS.

  11. Sintering study of NiO-YSZ composite obtained by coprecipitation route; Estudo de sinterabilidade do composito de NiO-YSZ obtido pela rota de coprecipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Yoshito, W.K.; Resitivo, T.A.G.; Ussui, V.; Lazar, D.R.R.; Paschoal, J.O.A., E-mail: wyoshito@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (CCTM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais

    2009-07-01

    NiO-YSZ composite is a widely used anode material for solid oxide fuel cell. The main purpose of the present work was the evaluation of the appropriate conditions of ceramic processing, by sintering behavior study of NiO-YSZ pressed powders, synthesized by hydroxide coprecipitation route. Using the empirical rate equation developed by Makipirtti-Meng, it was analyzed shrinkage rate in the temperature ranges of 900-1400 deg C as function of time. The powders were characterized by X-ray diffraction, scanning electron microscopy, gas adsorption, laser diffraction and helium picnometry. The microstructural characterization of the samples was evaluated by X-ray diffraction, scanning electron microscopy and relative density by the Archimedes method. It was found that activation energy value is 48,3 kJ.mol{sup -1} in the temperature range of 900-950 deg C and 604,83 kJ.mol{sup -1} for 1000-1200 deg C. These values correspond to the change that occurs in the microstructure during the heat treatment process. The sintering process was evaluated by the dilatometry date treatment. (author)

  12. Nanostructure copper oxocobaltate fabricated by co-precipitation route using copper and cobalt nitrate as precursors: characterization by combined diffuse reflectance and FT infrared spectra.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Rezvani, Zoya

    2014-09-15

    Nanostructure copper oxocobaltate has been fabricated by a co-precipitation route using copper and cobalt nitrate as precursors. The physicochemical properties of copper cobaltate have been characterized via X-ray powder diffractometry (XRD) and field emission scanning electron microscopy (FESEM). The X-ray diffraction patterns indicates the presence of a spinel crystalline phase, (Cu0.30Co0.70)Co2O4, copper oxocobaltate with face-centered cubic lattice and Fd3m space group. FESEM images also illustrated a typical hexagonal morphology with particle size 25 nm, showing a good nanoscale crystalline morphology, which corresponds well with their XRD results. The FTIR spectra confirmed the presence of hydroxyl groups bonded to the metals, stretching vibration of the cobalt-oxygen bond in an octahedral coordination and the characteristic band assigned to the vibration of Cu-O bond. UV-VIS diffuse reflectance spectrum shows a broad band over the whole visible range and broad band between 200 nm and 390 nm ascribed to the ligand to metal charge transfer.

  13. Effect of Thermal Annealing on the Structural and Optical Properties Nanostructured Cobalt-Manganese and Cobalt-Nickel Oxides Prepared by Co-Precipitation

    Science.gov (United States)

    Indulal, C. R.; Kumar, G. Sajeev; Vaidyan, A. V.; Raveendran, R.

    2011-10-01

    Cobalt-Manganese and Cobalt-Nickel oxide (CoMnO and CoNiO) nanoparticles were synthesized via chemical co-precipitation method by decomposition of their respective metal sulfides and sodium carbonate using ethylene diamene tetra acetic acid as the capping agent. The samples were heated at 400, 600 and 800 °C. The average particle sizes were determined from the X-ray line broadening. The diffractogram were compared with JCPDS data to identify the crystallographic phase and cubic structure of the particles. The samples were characterized by XRD, FTIR and UV analyses. The internal elastic micro strains were calculated and it was seen that as the particle size increases strain decreases. The FTIR studies have been used to confirm the metal oxide formation. The chemical compositions of the samples were verified using EDX spectra. The surface morphologies of the samples were studied from the SEM images. The absorption spectra of the materials in the UV-Vis-NIR range were recorded. From the analysis of the absorption spectra, the direct band gaps of the materials were calculated.

  14. Enhanced UVB emission and analysis of chemical states of Ca5(PO4)3OH:Gd3+,Pr3+ phosphor prepared by co-precipitation

    Science.gov (United States)

    Mokoena, P. P.; Nagpure, I. M.; Kumar, Vinay; Kroon, R. E.; Olivier, E. J.; Neethling, J. H.; Swart, H. C.; Ntwaeaborwa, O. M.

    2014-08-01

    Hydroxyapatite (Ca5(PO4)3OH) is a well-known bioceramic material used in medical applications because of its ability to form direct chemical bonds with living tissues. This mineral is currently used as a host for rare-earth ions (e.g. Gd3+, Pr3+, Tb3+, etc.) to prepare phosphors that can be used in light emitting devices of different types. In this study Ca5(PO4)3OH:Gd3+,Pr3+ phosphors were prepared by the co-precipitation method and were characterised by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and photoluminescence spectroscopy. The x-ray diffraction pattern was consistent with the hexagonal phase of Ca5(PO4)3OH referenced in JCPDS card number 73-0293. The x-ray photoelectron spectroscopy data indicated that Ca2+ occupied two different lattice sites, referred to as Ca1 and Ca2. The photoluminescence data exhibited a narrowband emission located at 313 nm, which is associated with the 6P7/2→8S7/2 transition of the Gd3+ ion. This emission is classified as ultraviolet B and it is suitable for use in phototherapy lamps to treat various skin diseases. The photoluminescence intensity of the 313 nm emission was enhanced considerably by Pr3+ co-doping.

  15. Determination of the platinum - Group elements (PGE) and gold (Au) in manganese nodule reference samples by nickel sulfide fire-assay and Te coprecipitation with ICP-MS

    Science.gov (United States)

    Balaram, V.; Mathur, R.; Banakar, V.K.; Hein, J.R.; Rao, C.R.M.; Gnaneswara, Rao T.; Dasaram, B.

    2006-01-01

    Platinum group elements (PGE) and Au data in polymetallic oceanic ferromanganese nodule reference samples and crust samples obtained by inductively coupled plasma mass spectrometry (ICP-MS), after separation and pre-concentration by nickel sulfide fire-assay and Te coprecipitation, are presented. By optimizing several critical parameters such as flux composition, matrix matching calibration, etc., best experimental conditions were established to develop a method suitable for routine analysis of manganese nodule samples for PGE and Au. Calibrations were performed using international PGE reference materials, WMG-1 and WMS-1. This improved procedure offers extremely low detection limits in the range of 0.004 to 0.016 ng/g. The results obtained in this study for the reference materials compare well with previously published data wherever available. New PGE data arc also provided on some international manganese nodule reference materials. The analytical methodology described here can be used for the routine analysis of manganese nodule and crust samples in marine geochemical studies.

  16. Co-precipitation of rare-earth-doped Ysub>2sub>Osub>3sub> and MgO nanocomposites for mid-infrared solid-state lasers.

    Science.gov (United States)

    Blair, Victoria L; Fleischman, Zackery D; Merkle, Larry D; Ku, Nicholas; Moorehead, Carli A

    2017-01-20

    Mid-infrared, solid-state laser materials face three main challenges: (1) need to dissipate heat generated in lasing; (2) luminescence quenching by multiphonon relaxation; and (3) trade-off in high thermal conductivity and small maximum phonon energy. We are tackling these challenges by synthesizing a ceramic nanocomposite in which multiple phases will be incorporated into the same structure. The undoped majority species, MgO, will be the main carrier of high thermal conductivity, and the minority species, Er:Ysub>2sub>Osub>3sub>, will have low maximum phonon energy. There is also an inherent challenge in attempting to make a translucent part from a mixture of two different materials with two different indexes of refraction. A simple, co-precipitation technique has been developed in which both components are synthesized in situ to obtain intimate mixing. These powders compare well to commercially available ceramics, including their erbium spectroscopy, even when mixed as a composite, and can be air-fired to ∼96% of theoretical density, yielding translucent parts. As the amount of Er:Ysub>2sub>Osub>3sub> increases, the translucency decreases as the number of scattering sites start to coalesce into large patches. If the amount of Er:Ysub>2sub>Osub>3sub> is sufficiently small and dispersed, the yttria grains will be pinned as individuals in a sea of MgO, leading to optimal translucency.

  17. Nano cube of CaSnO3: Facile and green co-precipitation synthesis, characterization and photocatalytic degradation of dye

    Science.gov (United States)

    Moshtaghi, Saeed; Gholamrezaei, Sousan; Salavati Niasari, Masoud

    2017-04-01

    In this work, nanocubes of CaSnO3 have been prepared by a simple and green co-precipitation method. In this technique, for preparation of calcium stannate, we have used from a complex structure of calcium as a new precursor and the synthesis of CaSnO3 have been done in water as a green solvent. Using of complexing precursors were created a congestion in reaction medium. Different conditions have been studied in synthetic approaches and optimized the effect of different parameters on the morphology of product such as precipitation agent (alkaline), pH, temperature, the rate of stirrer, surfactants and the mole ratio of surfactants for preparation product and obtain the best product in terms of quality and morphology. By using of this CaSnO3, two types of azo dyes (acid blue 92 and acid brown 14) have been degraded at presence of ultraviolet light from aqueous solution. Results display that the powder shows appropriate catalytic behavior for degradation of dyes (77% acid brown 14 and 67% acid black 92). Therefore these nano-cube structures have been used as photocatalysts in presence of UV light for degradation of azo dyes.

  18. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Science.gov (United States)

    Nikumbh, A. K.; Pawar, R. A.; Nighot, D. V.; Gugale, G. S.; Sangale, M. D.; Khanvilkar, M. B.; Nagawade, A. V.

    2014-04-01

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRExFe2-xO4 (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like MS, HC and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe2O4 exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio MR/MS and magnetic moments may be due to dilution of the magnetic interaction.

  19. Effect of calcination temperature on the photocatalytic activity of TiO{sub 2} powders prepared by co-precipitation of TiCl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yudoyono, Gatut, E-mail: gyudoyono@physics.its.ac.id; Ichzan, Nur; Zharvan, Vicran; Daniyati, Rizqa; Santoso, Hadi; Indarto, Bachtera; Pramono, Yono Hadi; Zainuri, Mochamad; Darminto, E-mail: darminto@physics.its.ac.id [Department of Physics, Institut Teknologi Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2016-04-19

    The adsorption of basic dye methylene blue (MB) onto titanium dioxide (titania) powder that were prepared by coprecipitation method of TiCl{sub 3} and NH{sub 4}OH as iniatial material with different calcination temperature was studied to examine the photocatalytic activity. Synthesis process carried out by the solution pH was adjusted to be 8. Effect of calcination temperature on the titania powder were characterized with Differential Scanning Calorimetry/Thermogravimetry (DSC/TG), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM). The result of TG and XRD showed that the NH{sub 4}Cl decomposed between 235-372°C. The XRD result showed that the anatase TiO{sub 2} only contained a single phase when the calcination temperature of the precursor at 800°C, and over which it began to grow rutile phase. The influence of synthesis condition on the photocatalytic activity of TiO{sub 2} powder was determined by the photodegradation of MB dye under UV light.

  20. Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions.

    Science.gov (United States)

    Tang, Sheng; Lee, Hian Kee

    2013-08-06

    Three types of magnesium-aluminum layered double hydroxides were synthesized and employed as solid-phase extraction (SPE) sorbents to extract several aromatic acids (protocatechuic acid, mandelic acid, phthalic acid, benzoic acid, and salicylic acid) from aqueous samples. An interesting feature of these sorbents is that they dissolve when the pH of the solution is lower than 4. Thus, the analyte elution step, as needed in conventional sorbent-based extraction, was obviated by dissolving the sorbent in acid after extraction and separation from the sample solution. The extract was then directly injected into a high-performance liquid chromatography-ultraviolet detection system for analysis. In the key adsorption process, both dispersive SPE and co-precipitation extraction with the sorbents were conducted and experimental parameters such as pH, temperature, and extraction time were optimized. The results showed that both extraction methods provided low limits of detection (0.03-1.47 μg/L) and good linearity (r(2) > 0.9903). The optimized extraction conditions were applied to human urine and sports drink samples. This new and interesting extraction approach was demonstrated to be a fast and efficient procedure for the extraction of organic anions from aqueous samples.

  1. Quality-by-Design (QbD): an integrated process analytical technology (PAT) approach for real-time monitoring and mapping the state of a pharmaceutical coprecipitation process.

    Science.gov (United States)

    Wu, Huiquan; Khan, Mansoor A

    2010-03-01

    In this work, an integrated PAT approach was developed for monitoring a pharmaceutical (naproxen) and a polymer (eudragit) coprecipitation process: real-time in-line near-infrared (NIR) absorbance monitoring, real-time on-line turbidity monitoring, and in situ crystal size monitoring. The data and information obtained through these three monitoring techniques confirmed the observation of the onsets of three distinct stages: incubation, nucleation, and crystal growth. The process trajectory constructed based on results of applying principal component analysis (PCA) to either process NIR spectra data or process turbidity profile, clearly demonstrated that various distinguishable process events, including incubation, nucleation, and crystal growth, could be accurately tracked and differentiated. These findings were further supported by process knowledge and information, such as process design, process sequence, thermodynamic and mass-transfer analysis. Therefore, this work provides a case study that illustrated a rational approach to develop a science-based and knowledge-based process monitoring strategy, which is essential for establishing both a suitable process control strategy and an operational process space for a pharmaceutical unit operation. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Effect of CeO2 coprecipitation on the electrochemical performance of Li(Li,Ni,Mn,Co)O2-CeO2-C composite cathode materials

    Science.gov (United States)

    Kurilenko, K. A.; Shlyakhtin, O. A.; Petukhov, D. I.; Garshev, A. V.

    2017-06-01

    Composite electrode materials Li[Li0.13Ni0.2Mn0.47Co0.2]O2 (LNMC)-CeO2-C are obtained by the coprecipitation of Co, Ni, Mn and Ce hydroxides followed by the coating of LNMC-CeO2 composites with pyrolytic carbon. The introduction of 5% CeO2 promotes the reduction of LNMC grain size from 190-230 to 100-170 nm and the corresponding increase in the electrochemical capacity of LNMC-CeO2 composite. The pyrolytic coating consists of the network of 2-5 nm polymer-carbon particles at the surface of LNMC crystallites. The electrochemical impedance spectroscopy data, which was performed after the galvanostatic cycling, demonstrated considerably lower charge transfer resistance of the carbon-coated composites compared to the bare LNMC and the LNMC-CeO2 composites. The values of the discharge capacity of LNMC-CeO2-C composites are superior to the capacity of LMNC-CeO2 and LMNC-C composites at all discharge rates (C/10 - 5C). The increase of the upper boundary of potentials to 4.8 V after cycling at 5C (U - 2÷4.6 V) promotes the increase of low rate electrochemical capacity of LNMC-CeO2-C composite to 220 mAh g-1.

  3. Room Temperature Synthesis of Magnetite (Fe{sub 3-{delta}O4}) Nanoparticles by a Simple Reverse Co-Precipitation Method

    Energy Technology Data Exchange (ETDEWEB)

    Mahmed, N; Soederberg, O; Hannula, S-P [Aalto University School of Science and Technology, Department of Materials Science and Engineering, PO Box 16200, FI-00076 Aalto (Finland); Heczko, O, E-mail: norsuria@cc.hut.f [Institute of Physics, Academy of Sciences, Czech Republic Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic)

    2011-10-29

    Magnetite (Fe{sub 3-{delta}O4}) nanoparticles with the size less than 30 nm have been synthesized by using a simple reverse co-precipitation method at room temperature. During the process, ferrous sulfate (FeSO{sub 4{center_dot}}7H{sub 2}O) powder was used as an iron precursor, and ammonium hydroxide (NH{sub 4}OH) as a precipitating agent. The experiment was carried out in ambient atmosphere without any surfactant added. In this method, the base solution for the precipitation process was adjusted to have a pH value suitable for the formation of the magnetite phase. The iron salt precursor was added into the solution during the synthesis by two different synthesis protocols. The phase, morphology and magnetic characteristic of differently synthesized magnetite particles were characterized by using an X-ray diffraction (XRD), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The morphologies of the particles were spherical or irregular in shape depending on the synthesis protocol used. Magnetic measurement shows that the particles are ferromagnetic at room temperature with relatively high saturation magnetization and low hysteresis. The saturation magnetization and magnetic hysteresis of the particles varied with preparation reaction conditions and the resulting oxidation state of the particles.

  4. The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe2+) in ambient atmosphere

    Science.gov (United States)

    Mahmed, N.; Heczko, O.; Lancok, A.; Hannula, S.-P.

    2014-03-01

    The synthesis of iron oxide nanoparticles, i.e., magnetite was attempted by using only ferrous ion (Fe2+) as a magnetite precursor, under an ambient atmosphere. The room temperature reverse co-precipitation method was used, by applying two synthesis protocols. The freshly prepared iron oxide was also immediately coated with Stöber silica (SiO2) layer, forming the coreshell structure. The phase, stoichiometry, crystallite and the particle size of the synthesized powders were determined by using X-ray diffraction (XRD) and transmission electron microscope (TEM), while the magnetic and oxidation behaviors were studied by using the vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. Based on the results, the bare iron oxide nanoparticles are in the stoichiometry between the magnetite and the maghemite stoichiometry, i.e., oxidation occurs. This oxidation is depending on the synthesis protocols used. With the silica coating, the oxidation can be prevented, as suggested by the fits of Mössbauer spectra and low temperature magnetic measurement.

  5. Influence of pH on the formulation of TiO2 powder prepared by co-precipitation of TiCl3 and photocatalytic activity

    Science.gov (United States)

    Yudoyono, Gatut; Zharvan, Vicran; Ichzan, Nur; Daniyati, Rizqa; Indarto, Bachtera; Pramono, Yono Hadi; Zainuri, Mochamad; Darminto

    2016-02-01

    Titanium dioxide (titania) nanoparticle were synthesized by coprecipitation process of titanium trichloride (TiCl3) in aqueous medium, with NH4OH as pH regulator. The pH solution was varied during the synthesis process between pH 3-8.4, and all samples were calcined temperature at 400°C for 3 hours. Characteristics and properties of the TiO2 powder were investigated using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM). XRD results show that the single-phase rutile formed when the pH is less than 5, anatase single phase formed began pH 8, and the pH of the solution between 5-8 formed mixed phase rutile-anatase-brookite, rutile-brookite or anatase-brookite. Methylene Blue (MB) photodegradation test were performed in order to evaluate photocatalytic activity. Nanoparticles TiO2 rutile, anatase phase, and mixed phase rutile-brookite, anatase-brookite used to test the photocatalytic activity by measuring the absorbance spectrum photodegradation using UV-Vis spectrometer. The test results showed that the mixture phase of rutile-brookite provide the greatest photodegradation than other phases.

  6. Investigation of the Role of Ce3+ Substituted Ions on Dielectric Properties of Co-Cr Ferrites Prepared by Co-precipitation Method

    Science.gov (United States)

    Mustafa, Ghulam; Islam, M. U.; Zhang, Wenli; Arshad, M. I.; Jamil, Yasir; Anwar, Hafeez; Murtaza, G.; Hussain, Mudassar; Ahmad, Mukhtar

    2016-11-01

    A series of a CoCr0.04Ce x Fe1.96- x O4 spinel ferrite system with 0 ≤ x ≤ 0.1 (in steps of 0.02) has been synthesized by the co-precipitation technique. The synthesized samples were characterized using a Fourier transform infrared spectroscope (FT-IR), Raman spectroscopy, a scanning electron microscope (SEM), and dielectric measurements. The typical FT-IR spectrum of the samples annealed at 850°C exhibited two frequency bands due to the formation of octahedral (B-site) and tetrahedral (A-site) clusters of metal oxide, respectively. The SEM images showed the spherical morphology of synthesized material and confirmed the grain size in the range of (0.33-0.44) μm. The decrease of permittivity with the increase of frequency in the range of 1 MHz to 3 GHz follows the Maxwell-Wagner model. Moreover, the Ce3+substituted materials have smaller values of loss tangent and dielectric constant especially for x = 0.10, which is favorable for the applications where low losses are desired. The value of ac (alternating current) conductivity increases with an increase in the frequency and decreases with Ce3+ substitution, which reflects the hopping mechanism at respective sites. Such characteristics of these materials may be suitable for potential applications such as electromagnetic attenuation materials, switching applications, and microwave devices.

  7. Co-precipitation synthesis and sintering of nanoscaled Nd:Gd{sub 3}Ga{sub 5}O{sub 12} polycrystalline material

    Energy Technology Data Exchange (ETDEWEB)

    Sun Dunlu [Anhui Institude of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei 230031 (China)]. E-mail: dlsun@aiofm.ac.cn; Zhang Qingli [Anhui Institude of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei 230031 (China); Wang Zhaobing [Anhui Institude of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei 230031 (China); Su Jing [Anhui Institude of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei 230031 (China); Gu Changjiang [Anhui Institude of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei 230031 (China); Wang Aihua [Anhui Institude of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei 230031 (China); Yin Shaotang [Anhui Institude of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei 230031 (China)

    2005-02-15

    Nanoscaled Nd:Gd{sub 3}Ga{sub 5}O{sub 12} (Nd:GGG) polycrystalline material was prepared with Ga and Gd{sub 2}O{sub 3} successfully at a lower sintering temperature (800 deg. C) and shorter holding time (6 h). The process of co-precipitation synthesis and sintering were described in detail. The thermal behavior of the Nd:GGG precursor was characterized by thermal weight analysis (TGA) and differential thermal analysis (DTA). Its phase transition temperature was determined by infrared spectra (IR), X-ray diffraction (XRD) and Raman spectra. The results show that the weight loss of the precursor occurred below 650 deg. C and its crystallization temperature was 800 deg. C. Transmission electron microscope (TEM) observation and XRD line broadening calculation reveal that the particle size of the material became larger remarkably with increasing sintering temperature, and the particle size of the sample sintered at 800 deg. C was 30-40 nm.

  8. HSP86 and HSP84 exhibit cellular specificity of expression and co-precipitate with an HSP70 family member in the murine testis

    Science.gov (United States)

    Gruppi, C. M.; Wolgemuth, D. J.

    1993-01-01

    This study extends to the protein level our previous observations, which had established the stage and cellular specificity of expression of hsp86 and hsp84 in the murine testis in the absence of exogenous stress. Immunoblot analysis was used to demonstrate that HSP86 protein was present throughout testicular development and that its levels increased with the appearance of differentiating germ cells. HSP86 was most abundant in the germ cell population and was present at significantly lower levels in the somatic cells. By contrast, the HSP84 protein was detected in the somatic cells of the testis rather than in germ cells. The steady-state levels of HSP86 and HSP84 paralleled the pattern of the expression of their respective mRNAs, suggesting that regulation at the level of translation was not a major mechanism controlling hsp90 gene expression in testicular cells. Immunoprecipitation analysis revealed that a 70-kDa protein coprecipitated with the HSP86/HSP84 proteins in testicular homogenates. This protein was identified as an HSP70 family member by immunoblot analysis, suggesting that HSP70 and HSP90 family members interact in testicular cells.

  9. Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method.

    Science.gov (United States)

    Raja, K; Ramesh, P S; Geetha, D

    2014-01-01

    Ni doped ZnO (Zn1-xNixO, x=0.0, 0.03, 0.06 and 0.09) nanorods have been synthesized by Co-precipitation method. Zinc acetate dehydrate [Zn(CH3COO)2⋅2H2O], nickel nitrate [Ni(NO3)3⋅6H2O], sodium hydroxide and poly (vinyl pyrrolidone) (PVP) were mixed together. The morphology, optical and microstructure were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive spectrum (EDS), atomic force microscopy (AFM), UV-DRS spectrum, photoluminescence spectra (PL) and Fourier transformer infrared spectroscopy (FT-IR). The presence of functional groups and chemical bonding is confirmed by FTIR. PL spectra of the Zn1-xNixO systems shows that the shift in near band edge (NBE) UV emission from 321 to 322 nm and a shift in red band (RB) emission from 620 to 631 nm which conforms the substitution of Ni into the ZnO lattice. The investigation conformed that the products were of the wurtzite structure of ZnO. The hexagonal nanorods have edge length 31 nm and thickness of 39 nm. EDS result showed that the amount of Ni in the product is about 9%, these Ni doped hexagonal nanorods exhibits a blue shifts and weak (UV) emission peak, compared with pure ZnO, which may be induced by the Ni-doping different concentrations 0.0, 0.3, 0.6 and 0.9 M. The growth mechanism of the doped hexagonal nanorods was also discussed.

  10. BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing.

    Science.gov (United States)

    Liu, Tie; Zheng, Yuanna; Wu, Gang; Wismeijer, Daniel; Pathak, Janak L; Liu, Yuelian

    2017-01-31

    Most materials used clinically for filling critical-sized bone defects (CSBD), such as deproteinized bovine bone (DBB), lack osteoinductivity so that their therapeutic effects are far from satisfactory. The effect of bone morphogenic protein 2 (BMP2)-coprecipitated biomimetic calcium phosphate granules (BMP2-cop.BioCaP) on osteoinduction of DBB graft(s) during CSBD healing is still unknown. We investigated whether BMP2-cop.BioCaP affects the osteoinductivity of DBB, bone formation, and foreign body reaction during CSBD healing. DBB + BMP2-cop.BioCaP, DBB, DBB + BMP2, DBB + BioCaP, and autologous bone grafts were implanted in the CSBD of sheep. Bone formation, DBB/BioCaP degradability, foreign body reaction, and osteoinductivity of DBB were analyzed histologically and histomorphometrically at week 4 and 8. Combination of BMP2-cop.BioCaP and DBB healed CSBD as effectively as autologous bone grafts. About 95% of the BMP2-cop.BioCaP had been degraded and replaced by new bone at week 8 in the DBB + BMP2-cop.BioCaP-group. Foreign body reaction was reduced in the DBB + BMP2-cop.BioCaP-group compared to the other groups. The independent use of the BMP2-cop.BioCaP did not achieve a satisfactory bone repair. In conclusion, the BMP2-cop.BioCaP showed good degradability and biocompatibility, and enhanced osteoinductivity of DBB during CSBD healing in sheep, suggesting BMP2-cop.BioCaP as a potential osteoinducer to enhance the therapeutic effects of the graft materials in clinic.

  11. Structural, electrical, magnetic and dielectric properties of rare-earth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Nikumbh, A.K., E-mail: aknik@chem.unipune.ac.in; Pawar, R.A.; Nighot, D.V.; Gugale, G.S.; Sangale, M.D.; Khanvilkar, M.B.; Nagawade, A.V.

    2014-04-15

    Pure nanoparticles of the rare-earth substituted cobalt ferrites CoRE{sub x}Fe{sub 2−x}O{sub 4} (where RE=Nd, Sm and Gd and x=0.1 and 0.2) were prepared by the chemical co-precipitation method. X-ray diffraction, Transmission electron microscopy (TEM), d.c. electrical conductivity, Magnetic hysteresis and Thermal analysis are utilized in order to study the effect of variation in the rare-earth substitution and its impact on particle size, magnetic properties like M{sub S}, H{sub C} and Curie temperature. The phase identification of the materials by X-ray diffraction reveals the single-phase nature of the materials. The lattice parameter increased with rare-earth content for x≤0.2. The Transmission electron micrographs of Nd-, Sm- and Gd-substituted CoFe{sub 2}O{sub 4} exhibit the particle size 36.1 to 67.8 nm ranges. The data of temperature variation of the direct current electrical conductivity showed definite breaks, which corresponds to ferrimagnetic to paramagnetic transitions. The thermoelectric power for all compound are positive over the whole range of temperature. The dielectric constant decreases with frequency and rare-earth content for the prepared samples. The magnetic properties of rare-earth substituted cobalt ferrites showed a definite hysteresis loop at room temperature. The reduction of coercive force, saturation magnetization, ratio M{sub R}/M{sub S} and magnetic moments may be due to dilution of the magnetic interaction.

  12. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  13. Drug delivery system for an anticancer agent, chlorogenate-Zn/Al-layered double hydroxide nanohybrid synthesised using direct co-precipitation and ion exchange methods

    Science.gov (United States)

    Barahuie, Farahnaz; Hussein, Mohd Zobir; Arulselvan, Palanisamy; Fakurazi, Sharida; Zainal, Zulkarnain

    2014-09-01

    A nano-structured drug-inorganic clay hybrid involving an active anticancer compound, which is chlorogenic acid (CA) intercalated into Zn/Al-layered double hydroxide, has been assembled via ion-exchange and co-precipitation methods to form a nanohybrid CZAE (a chlorogenic acid-Zn/Al nanohybrid synthesised using an ion-exchange method) and CZAC (a chlorogenic acid-Zn/Al nanohybrid synthesised using a direct method), respectively. The X-ray diffraction (XRD) results confirmed that the CA-LDH had a hybrid structure in which the anionic chlorogenate is arranged between the interlayers as a horizontal monolayer at 90 and 20° angles from the x axis for CZAE and CZAC, respectively. Both nanohybrids have the properties of mesoporous materials. The high loading percentage of chlorogenic acid (approximately 43.2% for CZAE and 45.3% for CZAC) with basal spacings of 11.7 and 12.6 Å for CZAE and CZAC, respectively, corroborates the successful intercalation of chlorogenic acid into the interlayer gallery of layered double hydroxides. Free chlorogenic acid and the synthesised nanocomposites (CZAE, CZAC) were assessed for their cytotoxicity against various cancer cells. The Fourier transform infrared data supported the formation of both nanohybrids, and a thermal analysis showed that the nanohybrids are more thermally stable than their counterparts. The chlorogenate shows a sustained release, and the release rate of chlorogenate from CZAE and CZAC nanohybrids at pH 7.4 is remarkably lower than that at pH 4.8 due to their different release mechanisms. The release rate of chlorogenate from both nanohybrids can be described as pseudo-second order. The present investigation revealed the potential of the nanohybrids to enhance the in vitro anti-tumour effect of chlorogenic acid in liver and lung cancer cells in vitro.

  14. Synthesis, characterization and magnetic properties of La{sup 3+} added Mg-Cd ferrites prepared by oxalate co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Gadkari, A.B., E-mail: ashokgadkari88@yahoo.com [Department of Physics, GKG College, Subash Road, Kolhapur, Maharashtra 416 012 (India); Shinde, T.J. [Department of Physics, KRP Kanya Mahavidylaya, Isalampur 415 409 (India); Vasambekar, P.N. [Department of Electronics, Shivaji University, Kolhapur 416 004 (India)

    2011-01-21

    Research highlights: > XRD study shows orthoferrite phase in addition to cubic spinel phase by La{sup 3+}addition in Mg-Cd ferrite. > The lattice constant, grain size, are found to decrease where as X-ray density, porosity increases and are higher than that of pure Mg-Cd ferrite. > Crystallite size of the samples lies in the nanoparticle range. The grain size (0.36-0.66 {mu}m) increases with increase in Cd{sup 2+} content and is smaller than pure samples as well as reported by ceramic method. > The absorption band {upsilon}{sub 2} shift to higher frequency side and also broadens, which confirms the occupancy of La{sup 3+} ions on octahedral B site. > The saturation magnetization and magnetic moment increases up to x = 0.4 and further decreases. > The coercivity and saturation magnetization shows size dependant behavior. > The reduction in grain size and crystallite size as compared to pure samples improves the structural and magnetic properties. - Abstract: Nanosized powders of Mg-Cd-La ferrite synthesized by oxalate co-precipitation method using high purity sulphates are presented. The powder has been characterized by X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The phase identification of powder reveals biphasic nature of materials. The lattice constant, X-ray and physical density, porosity, crystallite size, site radii and bond length were directly affected by addition of rare earth ion (La{sup 3+}) in Mg-Cd ferrite. The crystallite size of the samples lies in the range 25.67-30.55 nm. FT-IR spectra show two absorption bands in the frequency range from 3.5 x 10{sup 4} to 8.0 x 10{sup 4} m{sup -1} which are attributed to stretching vibration of tetrahedral and octahedral complex Fe{sup 3+}-O{sup 2-} respectively. The addition of La{sup 3+} alters the characters of powder and decreases the grain size which suppresses the abnormal grain growth. The addition of La{sup 3+} resulted increase in saturation

  15. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO{sub 2} nanopowders by a simple coprecipitation process without adding surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Shang-Wei [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Department of Life Science, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung 811, Taiwan (China); Ko, Horng-Huey [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Chiang, Hsiu-Mei [Department of Cosmeceutics, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Chen, Yen-Ling, E-mail: yelichen@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Lee, Jian-Hong [Clean Energy and Eco-Technology Center, Industrial Technology Research Institute, 8 Gongyan Road, Tainan 734, Taiwan (China); Wen, Chiu-Ming [Department of Life Science, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China)

    2014-11-15

    Highlights: • The TiO{sub 2} precursor powder contained anatase and 19.5% NH{sub 4}Cl. • Mesoporous anatase TiO{sub 2} nanopowders were successfully synthesized. • Uncalcined precursor powder contained the phases of type I NH{sub 4}Cl and anatase TiO{sub 2}. • Anatase size increases from 3.3 to 14.3 nm when calcined at 473–773 K for 2 h. • The average pore size between 3.80 and 14.0 nm when calcined between 473 and 773 K. - Abstract: In situ synthesis of mesoporous TiO{sub 2} nanopowders using titanium tetrachloride (TiCl{sub 4}) and NH{sub 4}OH as initial materials has been successfully fabricated by a coprecipitation process without the addition of surfactant. Characteristics and properties of the mesoporous TiO{sub 2} nanopowders were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrent–Joyner–Halenda (BJH) analyses, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high resolution TEM (HRTEM). The results of TG and XRD showed that the NH{sub 4}Cl decomposed between 513 and 673 K. XRD results showed that the anatase TiO{sub 2} only contained a single phase when the calcination temperature of the precursor powder was less than 673 K. Whereas phases of anatase and rutile TiO{sub 2} coexist after calcining at 773 K for 2 h. The crystalline size of the anatase and rutile TiO{sub 2} was 14.3 and 26.6 nm, respectively, when the precursor powder was calcined at 773 K for 2 h. The BET and BJH results showed a significant increase in surface area and pore volumes when the NH{sub 4}Cl was completely decomposed. The maximum values of BET specific surface area and volume were 172.8 m{sup 2}/g and 0.392 cm{sup 3}/g, respectively. The average pore sizes when calcination was at 473 and 773 K for 2 h were 3.8 and 14.0 nm, respectively.

  16. Co-precipitation synthesis and optical properties of green-emitting Ba{sub 2}MgSi{sub 2}O{sub 7}:Eu{sup 2+} phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Tam, T.T.H.; Du, N.V.; Kien, N.D.T.; Thang, C.X.; Cuong, N.D.; Huy, P.T. [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam); Chien, N.D. [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam); School of Engineering Physics (SEP), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam); Nguyen, D.H., E-mail: hung.nguyenduy@hust.edu.vn [Advanced Institute of Science and Technology (AIST), Hanoi University of Science and Technology (HUST), 01 Dai Co Viet, Hanoi (Viet Nam)

    2014-03-15

    Green-emitting Ba{sub 2−x}MgSi{sub 2}O{sub 7}:xEu{sup 2+} phosphor was prepared by co-precipitation. The dependence of the phase and emission spectra of the phosphor on sintered temperature was investigated. The photoluminescence (PL) intensities of the phosphors with various Eu{sup 2+} contents from 0.04 to 0.07 showed concentration quenching at 0.05. The substitution of Ba{sup 2+} by dopant Eu{sup 2+} at 0.05 in the Ba{sub 2}MgSi{sub 2}O{sub 7} host matrix did not change the unit cell volume and of the SiOSi angle. The PL decay times at the peak and cross band of the spectrum present carrier lifetimes with similar values at 550 ns for Ba{sub 1.95}MgSi{sub 2}O{sub 7}:0.05Eu{sup 2+} phosphor. The carrier lifetimes at different excitation wavelengths indicated that the phosphor prepared by co-precipitation is a superior candidate for fabricating white light. -- Highlights: • Green emitting Ba{sub 2−x}MgSi{sub 2}O{sub 7}:xEu{sup 2+} was prepared by co-precipitation method. • Annealing temperature affects strongly the host phase and optical properties. • Eu{sup 2+} doping into the host did not affect the cell volume and angle of SiOSi bonding. • Average size of the phosphor particles is in the range of 100–150 nm. • Ba{sub 1.95}MgSi{sub 2}O{sub 7}:Eu{sub 0.05} phosphor is an attractive candidate for white LED application.

  17. Synthesis of ferromagnetic semiconductor 0.67FeTiO{sub 3}-0.33Fe{sub 2}O{sub 3} powder by chemical co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Yan Shiming [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Ge Shihui, E-mail: yashm05@lzu.c [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Qiao Wen; Zuo Yalu [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2010-04-15

    0.67FeTiO{sub 3}-0.33Fe{sub 2}O{sub 3} (IH33) solid solution powder was successfully synthesized by a chemical co-precipitation method using a mixture of ferrous and ferric salts as start material. Single phase of IH33 was obtained when the preparation was performed in argon atmosphere in order to protect Fe{sup 2+} ions from oxidization. Investigation of X-ray photoelectron spectroscopy confirmed the presence of Fe{sup 2+} ions in the IH33 powder. Magnetic measurement showed that the IH33 powder exhibited room-temperature ferromagnetism with a coercivity of 160 Oe.

  18. The Role of the Coprecipitation Sequence of Salt Precursors on the Genesis of Cu-ZnO-Al2O3 Catalysts: Synthesis, Characterization and Activity for Low Temperature Shift Reaction

    Directory of Open Access Journals (Sweden)

    R.T. Figueiredo

    1998-06-01

    Full Text Available Cu-ZnO-Al2O3 catalysts for the low-temperature water-gas shift reaction were prepared using methods of direct and reverse coprecipitation. The catalysts obtained were characterized by DRX, TPR, XPS, N2O chemisorption, Hg-Porosimetry and BET surface area. It was observed that the precipitation sequence of the precursors led to significant differences in values of copper dispersion and consequently in the activity of the catalyst for the water-gas shift reaction.

  19. Measurement by liquid scintillation of {sup 226} Ra coprecipitated in BaSO{sub 4}; Medicion por centelleo liquido de {sup 226} Ra coprecipitado en BaSO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Davila R, J.I.; Badillo A, V.E.; Mireles G, F.; Quirino T, L.; Lugo R, J.F.; Pinedo V, J.L.; Rios M, C. [UAEN-UAZ, A.P. 579C, Cipres 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)]. e-mail: idavila@cantera.reduaz.mx

    2003-07-01

    The {sup 226} Ra is one of the more radio toxic nuclides since when entering to the organism it continues metabolically to the calcium, accumulating mainly in the bone tissue where it becomes in an internal radiation source. For the analysis of radium in water the methods of radon emanation are generally applied and coprecipitation with barium sulfate. This last is quick and efficient, and the radium in the precipitate can be measured by alpha or gamma spectrometry, or liquid scintillation dissolving the precipitate one with EDTA. In this work it is proposed a procedure for the radium measurement in water based on the coprecipitation with barium sulfate and in the detection by liquid scintillation. The precipitate of Ba(Ra)SO{sub 4} it is carried with water and blended with the liquid scintillator OptiPhase Hi Safe 3, avoiding the dissolution with EDTA. A 92{+-} 1.4% of radium it was recovered and it was reached a minimum activity detectable of 4.2 {+-} 0.9 mBq{sup -1}. The procedure was essayed with natural mineral water with a knew activity in concentration of {sup 226} Ra. The analytic result it coincided with the reported value with a relative error of 9%. (Author)

  20. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 87016 CO-PRECIPITATION OF TRACE METALS IN GROUNDWATER AND VADOSE ZONE CALCITE: IN SITU CONTAINMENT AND STABILIZATION OF STRONTIUM-90 AND OTHER DIVALENT METALS AND RADIONUCLIDES AT ARID WESTERN DOE SITES

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, F. Grant; Fujita, Yoshiko; Smith, Robert W.

    2004-06-15

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. In situ containment and stabilization of these contaminants in vadose zones or groundwater is a cost-effective treatment strategy. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal coprecipitation) by increasing groundwater pH and alkalinity (Fujita et al., 2000; Warren et al., 2001). Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation processes are irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from groundwater. The rate at which trace metals are incorporated into calcite is a function of calcite precipitation kinetics, adsorption interactions between the calcite surface and the trace metal in solution (Zachara et al., 1991), solid solution properties of the trace metal in calcite (Tesoriero and Pankow, 1996), and also the surfaces upon which the calcite is precipitating. A fundamental understanding of the coupling of calcite precipitation and trace metal partitioning, and how this occurs in aquifers and vadose environments is lacking. This report summarizes work undertaken during the second year of this project.

  1. ENVIRONMENTALMANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 87016 CO-PRECIPITATION OF TRACEMETALS INGROUNDWATER AND VADOSE ZONE CALCITE: IN SITU CONTAINMENT AND STABILIZATION OF STRONTIUM-90 ANDOTHER DIVALENT METALS AND RADIONUCLIDES AT ARIDWESTERN DOE SITES

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, F. Grant; Fujita, Yoshiko; Smith, Robert W.; Cosgrove, Donna M.; Colwell, F. S.

    2004-06-15

    Radionuclide and metal contaminants are present in the vadose zone and groundwater throughout the U.S. Department of Energy (DOE) weapons complex. In situ containment and stabilization of these contaminants in vadose zones or groundwater is a cost-effective treatment strategy. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal coprecipitation) by increasing groundwater pH and alkalinity (Fujita et al., 2000; Warren et al., 2001). Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation processes are irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from groundwater. The rate at which trace metals are incorporated into calcite is a function of calcite precipitation kinetics, adsorption interactions between the calcite surface and the trace metal in solution (Zachara et al., 1991), solid solution properties of the trace metal in calcite (Tesoriero and Pankow, 1996), and also the surfaces upon which the calcite is precipitating. A fundamental understanding of the coupling of calcite precipitation and trace metal partitioning, and how this occurs in aquifers and vadose environments is lacking. This report summarizes work undertaken during the second year of this project.

  2. Structural, dielectric and magnetic properties of Bi{sub 1−x}Y{sub x}FeO{sub 3} (0⩽x⩽0.2) obtained by acid–base co-precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Leila María Saleh [Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina); Jorge, Guillermo A. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Martín Negri, R., E-mail: rmn@qi.fcen.uba.ar [Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (Argentina)

    2014-04-01

    Highlights: • Yttrium-substituted bismuth-iron oxides were prepared by co-precipitation synthesis. • Single-phase materials with absence of other bismuth-oxides were obtained. • Strong dependence of magnetic and electrical properties with yttrium percentage at RT. • Magnetic and electric properties are related to particle size and structural changes. - Abstract: Bismuth–iron oxides with partial substitution of bismuth by yttrium, referred as (Bi{sub 1−x}Y{sub x})FeO{sub 3}, were synthesized by simple-low cost acid–base co-precipitation method, which constitutes a difference with the currently used synthetic methods for obtaining BiFeO{sub 3}-doped compounds (e.g. polymer assisted sol–gel, solid state, microwave, etc.) Samples were characterized by XRD, EDS, SEM, TEM, DSC and FTIR. The influence of yttrium (Y) substitution on magnetization curves of (Bi{sub 1−x}Y{sub x})FeO{sub 3} powders were studied at room temperature by VSM. The particle size systematically decreases with the Y percentage. Ferromagnetic curves were obtained at room temperature for Y-percentage lower than 20% with relatively large values of the coercive field, H{sub c}, which increases with Y-substitution, while for 20% yttrium a superparamagnetic behavior is observed. The electrical impedance of compressed disks were investigated also by impedance analysis in the range 1Hz–1MHz and the results were successfully fitted by a simple parallel R–C model. The dc-leakage currents are lower than previously reported for (Bi{sub 1−x}Y{sub x})FeO{sub 3} compounds and for most of the doped-BiFeO{sub 3} ceramics. As a difference with the influence on the magnetic behavior, the doping with yttrium does not seem to have a large influence on the dielectrical properties. These results suggest that magnetization can be systematically modified by the relatively simple co-precipitation synthesis while keeping invariable the dielectrical properties.

  3. Determination of {sup 234}U and {sup 238}U in seawater samples by alpha spectrometry after concentration of U(VI) onto hydrotalcite and co-precipitation with LaF{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Suc, N.V. [University of Technical Education Ho Chi Minh City (Viet Nam); Bich, T.T. [Center for Nuclear Techniques, Ho Chi Minh City (Viet Nam)

    2013-07-01

    This paper presents a simple and accurate method for determination of uranium isotopes ({sup 234}U and {sup 238}U) in seawater samples using alpha spectrometry. Uranium is pre-concentrated from seawater samples via adsorption on hydrotalcite at pH 6.5. The absorbent is dissolved into 50 ml of 8M HNO{sub 3}; then filtered through a Dowex-1 column. U(VI) in the elution solution is reduced to U(IV) using zinc metal in 4M solution of HCl and then co-precipitated with LaF{sub 3}. The chemical separation efficiency is found to be 97.12 {+-} 2.68%, eliminating the need of using {sup 232}U tracer in other published methods. This method is validated via comparison with results obtained using inductively coupled plasma mass spectrometry (ICP-MS) and neutron activation analysis (NAA) for three seawater samples. (orig.)

  4. Chemical co-precipitation synthesis and photoluminescence of Eu{sup 3+} or Dy{sup 3+} doped Zn{sub 3}Nb{sub 2}O{sub 8} microcrystalline phosphors from hybrid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiuzhen [Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092 (China); Yan Bing [Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092 (China)]. E-mail: byan@tongji.edu.cn

    2007-01-25

    Dy{sup 3+}, Eu{sup 3+} activated Zn{sub 3}Nb{sub 2}O{sub 8} phosphors were synthesized via a modified chemical co-precipitation technology with the different concentration. In order to obtain the hybrid precursors, the rare earth coordination polymers with salicylic acid were used as precursors and the polyethylene glycol (PEG) was used as dispersing media. Their microstructure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and scanning electronic microscope (SEM), which indicates that there exist some novel column-like microcrystalline particles with 0.5-5.0 {mu}m sizes in dimension. The characteristic transition of Dy{sup 3+} and Eu{sup 3+} were identified in the emission spectra and the optimum concentration of activators in Zn{sub 3}Nb{sub 2}O{sub 8} was found.

  5. Optimizing and modeling of effective parameters on the structural and magnetic properties of Fe{sub 3}O{sub 4} nanoparticles synthesized by coprecipitation technique using response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Ghazanfari, Mohammad Reza [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Kashefi, Mehrdad, E-mail: m-kashefi@um.ac.ir [Department of Materials Science and Engineering, Ferdowsi University of Mashhad, 9177948974 Mashhad (Iran, Islamic Republic of); Jaafari, Mahmoud Reza [Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad (Iran, Islamic Republic of)

    2016-07-01

    In present work, the Fe{sub 3}O{sub 4} magnetic nanoparticles were successfully synthesized by coprecipitation method. In order to study the effects of influential factors on the structural and magnetic properties of particles, the experimental runs were designed using response surface methodology (RSM) based on central composite design (CCD), while the reaction temperature, Fe{sup 2+}/Fe{sup 3+} cation ratio, and pH of reaction were defined as effective factors on the two responses include the amounts of crystallinity degree and saturation magnetization (M{sub s}). The investigation of structural, magnetic, and microstructural properties of particles were carried out by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. As a result, the predictive quadratic models were fitted on the both responses while the R{sup 2} values were more than 0.97 for both models. The highest amounts of both responses (crystallinity degree: 88.07% and M{sub s}: 65.801 emu/g) are presented when the reaction temperature, cation ratio, and pH amounts are equal to 90 °C, 0.60, and 10.5, respectively. Finally, the TEM results show the particles with size of about 10 nm and narrow size distribution. - Highlights: • The Fe{sub 3}O{sub 4} nanoparticles were successfully synthesized by coprecipitation method. • By RSM technique, the predictive models were presented for crystallinity degree. • By RSM technique, the predictive models were presented for amounts of M{sub s}. • Temperature, pH and their interactions had most effectiveness on the amounts of M{sub s}. • Temperature, cation ratio and their interactions had most effectiveness on the crystallinity degree.

  6. Co-precipitation synthesis and photoluminescence properties of K{sub 2}GdZr (PO{sub 4}){sub 3}:Eu{sup 3+}—a deep red luminomagnetic nanophosphor

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, Santa, E-mail: santa@nplindia.org [CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012 (India); Ravishanker,; Rajkumar,; Khan, A.F.; Kotnala, R.K. [CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012 (India)

    2013-04-15

    Nanoparticles of Eu{sup 3+} activated K{sub 2}GdZr(PO{sub 4}){sub 3} has been successfully synthesized by controlled inclusive co-precipitation method in high alkaline environment to enable complex crystalline phase formation. Much enhanced deep red luminescence, broadened emission bands with unusually prominent {sup 5}D{sub 0}–{sup 7}F{sub 4} transition at 699 nm are defining characteristics of the nanoparticles compared to bulk counterpart synthesized by solid state reaction route. Among various excitation pathways such as charge transfer from O{sup 2−}–Eu{sup 3+}, Gd{sup 3+}–Eu{sup 3+}, the direct excitation of Eu{sup 3+} at 394 nm is the most effective as revealed by photoluminescence and time resolved studies. Occurrence and variation of superparamagnetism in undoped and Eu{sup 3+} doped nanoparticles indicate the role of unpaired 4f electron spin of Gd{sup 3+} in making the nanoparticles superparamagnetic. A room temperature cost effective synthesis process of Eu{sup 3+} doped multimetallic complex phosphate supermagnetic nanophosphor can pave way for applications requiring such functionality. -- Highlights: ► Eu{sup 3+} doped K{sub 2}GdZr(PO{sub 4}){sub 3} nanocrystals have been synthesized successfully by coprecipitation. ► K{sub 2}GdZr(PO{sub 4}){sub 3}:Eu{sup 3+} emit intense deep red fluorescence. ► Red emitting K{sub 2}GdZr(PO{sub 4}){sub 3}:Eu{sup 3+} nanocrystals show superparamagnetism due to Gd{sup 3+}. ► Luminomagnetic KGP:Eu{sup 3+} have application potential in biology, lighting and display.

  7. 共沉淀法锰锌铁氧体的制备及其磁性能%Preparation and magnetic performance of Mn-Zn ferrites by coprecipitation method

    Institute of Scientific and Technical Information of China (English)

    赵慧君; 张娟; 范积伟

    2011-01-01

    Mn - Zn ferrite precursor powder was prepared by co-precipitation method. The Mn - Zn ferrite was obtained by sintering after being pressed,and its particle size of ferrite precursor was analyzed. XRD and magnetic properties of Mn -Zn ferrite were tested and analyzed. Results showed that uniformly distributed nano-particles can be obtained by chemical co-precipitation method under suitable conditions. After sintering,the sample is in a single phase of Mn - Zn ferrite spinel. The prepared Mn - Zn ferrite possessed high magnetic susceptibility and standard hysteresis loop. The magnetic susceptibility of ferrite increased gradually with the zinc volume reducing and the iron content increasing.%采用共沉淀法制备了锰锌铁氧体前驱体粉末,对其进行压块处理后,通过烧结得到锰锌铁氧体.测试分析了锰锌铁氧体前驱体粉末的粒度,并对锰锌铁氧体的X射线衍射及磁性能进行了测试与分析.结果表明:在适当的条件下,采用化学共沉淀法,可以制得分布均匀的纳米级锰锌铁氧体前驱体微粒.经过烧结的样品为单一的尖晶石相锰锌铁氧体.所制得的锰锌铁氧体具有较高的磁化率,标准的磁滞回线,锰锌铁氧体的磁化率随着含锌量的降低、含铁量的增加而逐渐升高.

  8. Carrier element-free coprecipitation with 3-phenly-4-o-hydroxybenzylidenamino-4,5-dihydro-1,2,4-triazole-5-one for separation/preconcentration of Cr(III), Fe(III), Pb(II) and Zn(II) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Celal; Bulut, Volkan N.; Gundogdu, Ali; Ozdes, Duygu; Yildirim, Nuri [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Soylak, Mustafa, E-mail: soylak@erciyes.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri (Turkey); Senturk, H. Basri [Department of Chemistry, Faculty of Arts and Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Elci, Latif [Pamukkale University, Faculty of Arts and Sciences, Department of Chemistry, 20020 Denizli (Turkey)

    2009-08-15

    A separation/preconcentration procedure, based on the coprecipitation of Cr{sup 3+}, Fe{sup 3+}, Pb{sup 2+} and Zn{sup 2+} ions using a new organic coprecipitant, 3-phenly-4-o-hydroxybenzylidenamino-4,5-dihydro-1,2,4-triazole-5-one (POHBAT) without adding any carrier element has been developed. The method, thus, has been called carrier element-free coprecipitation (CEFC). The resultant concentrated elements were determined by flame atomic absorption spectrometric determinations. The influences of some analytical parameters including pH of the solution, amount of the coprecipitant, standing time, centrifugation rate and time, sample volume and diverse ions were investigated on the quantitative recoveries of analyte ions. The validation of the present preconcentration procedure was performed by the analysis of two certified reference materials. The recoveries of understudy analytes were found in the range of 93-98%, while the detection limits were calculated in the range of 0.3-2.0 {mu}g L{sup -1}. The precision of the method evaluated as relative standard deviation (R.S.D.), was in the range of 3-7% depend on the analytes. The proposed method was successfully applied to environmental samples for the determination of the analytes.

  9. 添加共沉淀氢氧化铁对牛乳品质的影响%Effect of Adding Co-precipitated Ferric Hydroxide on the Quality of Milk

    Institute of Scientific and Technical Information of China (English)

    李诚; 全海慧; 石惠民; 付刚; 范丽萍

    2012-01-01

    以共沉淀氧氧化铁用于杀菌牛乳中铁的强化,研究其沉淀氢氧化铁的不同添加量对牛乳感官品质的影响及在4℃贮藏过程中理化指标(pH值、TBA值)的变化。结果表明:5.3mg/100g及其以下的铁添加量的样品感官品质较好;添加共沉淀氢氧化铁的样品pH值增大,且铁添加量越多,pH值增加越多;在贮藏期间,斧样品pH值变化不大,TBA值呈上升趋势,不同铁添加量的样品TBA值差异不显著;贮藏8d后,铁添加量≤5.3mg/100g的样品液中铁含量达添加量的89%。因此,以其沉淀氢氧化铁作为牛乳铁强化剂可行。%Chemically co-precipitated ferric hydroxide was added to sterilized milk at different levels to investigate its effect on the sensory quality and physicochemical indexes (pH and TBA) during storage at 4 ℃ of milk. The milk added with the compound at a level ≤5.3 rag/100 g was good in sensory quality. The iron fotlificant could increase the pH of milk and the increment was positively associated with the addition level. Little changes in pH were observed during storage, but TBA showed an upward trend and had no significant difference when the iron forticant was added at different levels. The iron content of milk accounted for 89% of the iron fortificant added at a level ≤ 5.3 mg/100 g after 8 days of storage. Thus, co-precipitated ferric hydroxide can be used as an iron fortificant in milk.

  10. Structural and microwave absorption properties of Ni{sub (1-x)}Co{sub (x)}Fe{sub 2}O{sub 4} (0.0 {<=} x {<=} 0.5) nanoferrites synthesized via co-precipitation route

    Energy Technology Data Exchange (ETDEWEB)

    Maqsood, Asghari, E-mail: tpl.qau@usa.net [Thermal Transport Laboratory, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Islamabad (Pakistan); Khan, Kishwar, E-mail: kishwar.nust@gmail.com [Thermal Transport Laboratory, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), H-12 Islamabad (Pakistan)

    2011-02-17

    Research highlights: > Nanocrystalline Ni-Co was prepared by co-precipitation method. > The structural morphology was carried out using scanning electron microscope. > The complex relative permittivity ({epsilon}{sub r}) and complex relative permeability ({mu}{sub r}) were measured in the frequency range of 1 MHz to 3 GHz. > The variation of complex relative permittivity ({epsilon}{sub r}) as a function of frequency is explained in accordance with Maxwell-Wagner model and Koop's phenomenological theory. > Effect of frequency and cobalt concentration on permeability are reported. > The reflectivity (R) of nanoferrites is also calculated. > Results indicated that Ni{sub 1-x}Co{sub x}Fe{sub 2}O{sub 4} nanoparticles have excellent microwave absorbing properties, magneto-dielectric properties and have a great potential for military use. - Abstract: Ni-Co nanoferrites show excellent magneto-dielectric properties and these materials can be used to miniaturize the size of the high frequency devices which is the order of the day. Nanocrystalline Ni-Co ferrites having general formula Ni{sub 1-x}Co{sub x}Fe{sub 2}O{sub 4} (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) were prepared by co-precipitation method. The structural morphology of the prepared samples was carried out using scanning electron microscopy. The results showed the spherical shaped nanoparticles varying in the range of 16-40 nm. The complex relative permittivity ({epsilon}{sub r}) and complex relative permeability ({mu}{sub r}) were measured using vector network analyzer for all the samples in the frequency range of 1 MHz to 3 GHz. The variation of complex relative permittivity ({epsilon}{sub r}) as a function of frequency is explained in accordance with Maxwell-Wagner model and Koop's phenomenological theory. The effect of frequency and cobalt concentration on permeability are reported. The reflectivity (R) of nanoferrites is also calculated. The value of minimum reflection loss (RL) is about -18 dB at 2

  11. Preparation of Cobalt-Molybdenum bimetallic oxides supported on alumina by Co-precipitation method%氧化铝负载Co-Mo双金属氧化物的共沉淀制备

    Institute of Scientific and Technical Information of China (English)

    张新波; 张斌; 张雅娟; 秦永华

    2012-01-01

    采用双溶剂体系(硝酸铝和硝酸钴的乙醇溶液与钼酸铵的碳酸铵水溶液)共沉淀制备了氧化铝负载Co-Mo双金属氧化物.研究了双溶剂体系中乙醇和水的体积比对共沉淀的影响,考察了老化时间对氧化物结构参数的影响,研究了焙烧温度对氧化物还原性能的影响.结果表明:乙醇和水体积比对钼酸根离子的沉淀有重要影响,为了保证钼酸根离子的完全沉淀,乙醇的体积要随着MoO3负载量的增加而提高;随着老化时间的增加,氧化物的比表面积先增加后下降,6h 老化的样品具有最大的比表面积;低温焙烧制得的氧化物较容易还原.%Cobalt-molybdenum bimetallic oxides supported on alumina were prepared by co-precipitation method with etha- nol-water binary solvent system,which is composed of ethanol solution of aluminium nitrate and cobalt nitrate, and aqueous solution of ammonium carbonate and ammonium molybdate. The effects of ethanol/water volume ratio and MoO3 loading ore the coprecipitation were invesitigated. X-ray diffraction ( XRD) , N2 physical adsorption and temperature programmed reduction (TPR) were employed to characterize the oxides. Results show that the precipitation of Mo7O246- ions was affected by the ethanol/water volume ratio and MoO3 loading. The volume of ethanol to guarantee the precipitation of Mo7O246~ ions should be increased with the increase of MoO, loading. The specific surface area firstly increased then decreased with the increase of aging time. The oxide with aging time of 6 h has the largest specific surface area. The oxides calcined at low temperature are reduced more easily than that calcined at high temperature.

  12. Effect of nano sized oxalate precursor on the formation of REBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE= Gd, Sm, Ho) ceramic via coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Hamadneh, Imad; Khalili, Fawwaz [Department of Chemistry, Faculty of Science, University of Jordan, 11942 Amman (Jordan); Shaaer, Mazen [Deanship of Research, University of Jordan, 11942 Amman (Jordan); Rosli, Ahmad Mustaza, E-mail: imad72@hotmail.co [Department of chemistry, Faculty of Science, Universiti Putra Malaysia 43400 Serdang, Selangor (Malaysia)

    2010-06-01

    The formation REBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE= Gd, Sm and Ho) superconducting ceramics from metal oxalate precursors with average grain size less than 50 nm using the coprecipitation method is reported. The metal oxalate powders were heated at 900{sup o}C for 12 hours, pelletized and then sintered at 920{sup 0}C for 15 hr. The high-T{sub C} phase was observed for all samples as an evidence for the single step transition of (R-T) curves. The T{sub C(R=0)} for samples Gd123, Ho123 and Sm123 were 95 K, 93 K, 91 K, respectively. XRD data showed single phase of an orthorhombic structure for Sm123 and Ho123 samples, small amount of impurities (Gd211) phase were detected for Gd123. SEM micrographs showed large grain sizes that are randomly distributed. These results showed that COP method using nano sized metal oxalates starting powders is very effective to synthesize high quality superconductors and shorten the sintering time required. The formation Gd211 phase for the Gd123 sample might act as a pinning centre explaining the enhancement of the transport properties.

  13. Agglomeration Control of Ultrafine Y2 O3-ZrO2 and (MgO, Y2 O3)-ZrO2 Powders Synthesized by Coprecipitation Process

    Institute of Scientific and Technical Information of China (English)

    MA Yalu; ZHANG Yu; ZHENG Junping

    2005-01-01

    Chemical coprecipitation was used to produce ultrafine and easily sinterable Y2O3-stabilized and (Y2O3,MgO)-stabilized ZrO2 powders. Six precipitation processes for preparation of ZrO2-based ultrafine powders were designed separately, meanwhile different techniques used to control the agglomeration formation were proposed. By means of TEM, SEM, Raman spectroscopy and IR spectroscopy, the mechanisms of agglomeration control in the precipitation processes and post-precipitation and drying process were investigated. The experimental results show that adding appropriate anion surface active agents (such as PAA1460) or polymer (PEG1540 matching with PEG200) in aqueous solution systems during precipitation processes could reinforce charge effect and location effect for gel particles interface. Adding wetting agents to wet gels washing with distilled water during drying process could change interface structure of gel particles and decrease surface tension between gel particles. The agglomeration control in the precipitation, post-precipitation and drying processes had remarkable influence on the characteristics of powders. By adding various macromolecules in the processes, the agglomeration state could be controlled efficiently, and the characteristics of powders were improved.

  14. Influence of pH on the formulation of TiO{sub 2} powder prepared by co-precipitation of TiCl{sub 3} and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yudoyono, Gatut, E-mail: gyudoyono@physics.its.ac.id; Zharvan, Vicran; Ichzan, Nur; Daniyati, Rizqa; Indarto, Bachtera; Pramono, Yono Hadi; Zainuri, Mochamad; Darminto, E-mail: darminto@physics.its.ac.id [Department of Physics, Institute of Technology Sepuluh Nopember (ITS), Kampus ITS Sukolilo, Surabaya 60111 (Indonesia)

    2016-02-08

    Titanium dioxide (titania) nanoparticle were synthesized by coprecipitation process of titanium trichloride (TiCl{sub 3}) in aqueous medium, with NH{sub 4}OH as pH regulator. The pH solution was varied during the synthesis process between pH 3-8.4, and all samples were calcined temperature at 400°C for 3 hours. Characteristics and properties of the TiO{sub 2} powder were investigated using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM). XRD results show that the single-phase rutile formed when the pH is less than 5, anatase single phase formed began pH 8, and the pH of the solution between 5-8 formed mixed phase rutile-anatase-brookite, rutile-brookite or anatase-brookite. Methylene Blue (MB) photodegradation test were performed in order to evaluate photocatalytic activity. Nanoparticles TiO{sub 2} rutile, anatase phase, and mixed phase rutile-brookite, anatase-brookite used to test the photocatalytic activity by measuring the absorbance spectrum photodegradation using UV-Vis spectrometer. The test results showed that the mixture phase of rutile-brookite provide the greatest photodegradation than other phases.

  15. Synthesis, microstructure and thermal expansion studies on Ca0.5+/2Sr0.5+/2Zr4P6−2Si2O24 system prepared by co-precipitation method

    Indian Academy of Sciences (India)

    Basavaraj Angadi; M R Ajith; A M Umarji

    2013-02-01

    We report on the synthesis, microstructure and thermal expansion studies on Ca0.5+/2Sr0.5+/2Zr4P6−2Si2O24 ( = 0.00 to 1.00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures were in pure NZP phase up to = 0.37. For ≥ 0.5, in addition to NZP phase, ZrSiO4 and Ca2P2O7 form as secondary phases after sintering. The bulk thermal expansion behaviour of the members of this system was studied from 30 to 850 °C. The thermal expansion coefficient increases from a negative value to a positive value with the silicon substitution in place of phosphorous and a near zero thermal expansion was observed at = 0.75. The amount of hysteresis between heating and cooling curves increases progressively from = 0.00 to 0.37 and then decreases for ≥ 0.37. The results were analysed on the basis of formation of the silicon based glassy phase and increase in thermal expansion anisotropy with silicon substitution.

  16. Synthesis of mesoporous TiO(2-x)N(x) spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination.

    Science.gov (United States)

    Parida, K M; Naik, Brundabana

    2009-05-01

    The article presents preparation, characterization and catalytic activity evaluation of an efficient nitrogen doped mesoporous titania sphere photo-catalyst for degradation of methylene blue (MB) and methyl orange (MO) under visible light illumination. Nitrogen doped titania was prepared by soft chemical route i.e. template free, slow and controlled homogeneous co-precipitation from titanium oxysulfate sulfuric acid complex hydrate, urea, ethanol and water. The molar composition of TiOSO(4) to urea was varied to prepare different atomic % nitrogen doped titania. Mesoporous anatase TiO(2-x)N(x) spheres with average crystallite size of 10 nm and formation of titanium oxynitride center were confirmed from HRTEM, XRD and XPS study. UV-vis DRS showed a strong absorption in the range of 400-500 nm which supports its use in visible spectrum of light. Nitrogen adsorption-desorption study supports the porous nature of the doped material. All the TiO(2-x)N(x) samples showed higher photo-catalytic activity than Degussa P(25) and undoped mesoporous titania. Sample containing around one atomic % nitrogen showed highest activity among the TiO(2-x)N(x) samples.

  17. The magnetic and oxidation behavior of bare and silica-coated iron oxide nanoparticles synthesized by reverse co-precipitation of ferrous ion (Fe{sup 2+}) in ambient atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Mahmed, N., E-mail: norsuria.mahmed@aalto.fi [Aalto University School of Chemical Technology, Department of Materials Science and Engineering, P.O. Box 16200, FI-00076 Aalto (Finland); School of Materials Engineering, Kompleks Pusat Pengajian UniMAP, Taman Muhibbah, Universiti Malaysia Perlis, 02600 Jejawi, Perlis (Malaysia); Heczko, O., E-mail: heczko@fzu.cz [Institute of Physics, Academy of Sciences, Czech Republic Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic); Lancok, A., E-mail: Lancok@seznam.cz [Institute of Physics, Academy of Sciences, Czech Republic Na Slovance 2, CZ-182 21 Praha 8 (Czech Republic); Hannula, S-P., E-mail: simo-pekka.hannula@aalto.fi [Aalto University School of Chemical Technology, Department of Materials Science and Engineering, P.O. Box 16200, FI-00076 Aalto (Finland)

    2014-03-15

    The synthesis of iron oxide nanoparticles, i.e., magnetite was attempted by using only ferrous ion (Fe{sup 2+}) as a magnetite precursor, under an ambient atmosphere. The room temperature reverse co-precipitation method was used, by applying two synthesis protocols. The freshly prepared iron oxide was also immediately coated with Stöber silica (SiO{sub 2}) layer, forming the coreshell structure. The phase, stoichiometry, crystallite and the particle size of the synthesized powders were determined by using X-ray diffraction (XRD) and transmission electron microscope (TEM), while the magnetic and oxidation behaviors were studied by using the vibrating sample magnetometer (VSM) and Mössbauer spectroscopy. Based on the results, the bare iron oxide nanoparticles are in the stoichiometry between the magnetite and the maghemite stoichiometry, i.e., oxidation occurs. This oxidation is depending on the synthesis protocols used. With the silica coating, the oxidation can be prevented, as suggested by the fits of Mössbauer spectra and low temperature magnetic measurement. - Highlights: • Synthesis of magnetite was attempted by using ferrous ion (Fe{sup 2+}) in air. • The synthesized particle has a stoichiometry in between magnetite and maghemite. • Silica shell partly prevented the oxidation as suggested by magnetic and Mössbauer study.

  18. Effect of electron irradiation exposure on phase formation, microstructure and mechanical strength of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} superconductor prepared via co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Mohiju, Zaahidah ' Atiqah; Hamid, Nasri A., E-mail: Nasri@uniten.edu.my; Kannan, V. [Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia); Abdullah, Yusof [Materials Technology Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    In this work the effect of electron irradiation on the mechanical properties of Bi2Sr2CaCu2O8 (Bi-2212) superconductor was studied by exposing the Bi-2212 superconductor with different doses of electron irradiation. Bi-2212 samples were prepared by using co-precipitation method. Irradiation was performed with irradiation dose of 100 kGray and 200 kGray, respectively. Characterization of the samples was performed by using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Instron Universal Testing machine was used to measure the strength of the samples. The XRD patterns for the non-irradiated and irradiated samples show well-defined peaks of which could be indexed on the basis of a Bi-2212 phase structure. XRD patterns also indicate that electron irradiation did not affect the Bi-2212 superconducting phase. SEM micrographs show disorientation in the texture of the microstructure for irradiated samples. Sample exposed to 200 kGray electron irradiation dose shows enhancement of grain size. Their grain growth and texture improved slightly compared to other sample. The results also show that enlargement of grain size resulted in higher mechanical strength.

  19. Synthesis, microstructure and EPR of CaMnO{sub 3} and Eu{sub x}Ca{sub 1-x}MnO{sub 3} manganite, obtained by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Santiago T, M.; Hernandez C, L.; Legorreta G, F. [Universidad Autonoma del Estado de Hidalgo, AACTyM, Carretera Pachuca-Tulancingo Km 4.5, 42074 Pachuca, Hidalgo (Mexico); Montiel S, H. [UNAM, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Departamento de Tecnociencias, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Alvarez L, G. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, U. P. Adolfo Lopez Mateos, Edif. 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Flores G, M. A., E-mail: mar200878@hotmail.com [Universidad Politecnica de Pachuca, Laboratorio de Nanotecnologia y Bioelectromagnetismo Aplicado, Carretera Pachuca-Cd. Sahagun Km 20, Ex-Hacienda de Santa Barbara, 43830 Zempoala, Hidalgo (Mexico)

    2011-07-01

    The synthesis of CaMnO{sub 3} and Eu{sub x}Ca{sub 1-x}MnO{sub 3} obtained by coprecipitation method is showed. The synthesized samples were characterized by X-ray diffraction and scanning electronic microscopy, the powders showed orthorhombic structure and pnma space group. When it was doped with Europium, their morphology tendency was spherical. Measurements were carried out on electron paramagnetic resonance (EPR) with constant frequency = 9.4 GHz (band X) and dc magnetic field (H dc) 0-0.8 T, measurements were at 300 K and 77 K. EPR spectra showed significant differences between both samples, indicating that the substitution of divalent alkaline earth cations by trivalent rare earth ions, allowing the formation of a mixed valence state of manganese, Mn{sup 3+} and Mn{sup 4+}. A 77 K, the manganite of concentration x = 0.30 had a magnetic ordering, noted by the presence of hysteresis. (Author)

  20. Co-precipitation synthesis of nano-composites consists of zinc and tin oxides coatings on glass with enhanced photocatalytic activity on degradation of Reactive Blue 160 KE2B.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mardani, Maryam

    2015-02-25

    Nano-composite containing zinc oxide-tin oxide was obtained by a facile co-precipitation route using tin chloride tetrahydrate and zinc chloride as precursors and coated on glass by Doctor Blade deposition. The crystalline structure and morphology of composites were evaluated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The XRD results showed peaks relative to zinc oxide with hexagonal wurtzite structure and tin oxide with tetragonal structure. FESEM observations showed that the nano-composite consisted of aggregates of particles with an average particle size of 18 nm. The photocatalytic activity of the pure SnO2, pure ZnO, ZnSnO3-Zn2SnO4 and ZnO-SnO2 nano-structure thin films was examined using the degradation of a textile dye Reactive Blue 160 (KE2B). ZnO-SnO2 nano-composite showed enhanced photo-catalytic activity than the pure zinc oxide and tin oxide. The enhanced photo-catalytic activity of the nano-composite was ascribed to an improved charge separation of the photo-generated electron-hole pairs.

  1. The synthesis and luminescence of YP {sub x}V{sub 1-x}O{sub 4}:Dy{sup 3+} microcrystalline phosphors by in situ co-precipitation composition of hybrid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Su Xueqing [Department of Chemistry, Tongji University, Shanghai 200092 (China); Yan Bing [Department of Chemistry, Tongji University, Shanghai 200092 (China)]. E-mail: byan@tongji.edu.cn

    2005-10-15

    Dy{sup 3+} activated YP {sub x}V{sub 1-x}O{sub 4} phosphors were synthesized via an in situ chemical co-precipitation process with fixed Dy{sup 3+} concentration (2 mol%) and varying x (x = 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, respectively). In order to obtain the hybrid precursors, the rare earth coordination polymers with salicylic acid were used as precursors and the polyethylene glycol (PEG) was used as dispersing media. Their microstructure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and scanning electronic microscope (SEM), which indicates that there exist some novel cobblestone-like microcrystalline particles. The characteristic transitions of Dy{sup 3+} due to {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 15/2} (blue) and {sup 4}F{sub 9/2} {yields} {sup 6}H{sub 13/2} (yellow) were detected in the emission spectra and the yellow-to-blue intensity ratio decreased with the increase of x value.

  2. Luminescence of rare earth ions activated YNb{sub 0.5}M{sub 0.5}O{sub 4} (M = P, V) phosphors by chemical co-precipitation composing hybrid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiuxhen [Department of Chemistry, Tongji University, Shanghai 200092 (China); Yan Bing [Department of Chemistry, Tongji University, Shanghai 200092 (China)], E-mail: byan@tongji.edu.cn

    2008-01-10

    A novel synthesis technology was applied to fabricate YP{sub 0.5}Nb{sub 0.5}O{sub 4}:RE{sup 3+} and YNb{sub 0.5}V{sub 0.5}O{sub 4}:RE{sup 3+} phosphors. In this method, the rare earth coordination polymers with salicylic acid were used as precursors and the polyethylene glycol (PEG) was used as dispersing media. By a modified co-precipitation process, the hybrid precursors have been prepared, and then were calcinated to obtain the samples. Both SEM indicated that the particles present cobble-like crystalline state, especially YNb{sub 0.5}V{sub 0.5}O{sub 4}:RE{sup 3+} phosphors. Besides this, crystalline grain sizes were in the range of around 0.5-1 {mu}m. The optical properties of all the powder presented that the characteristic transitions of rare earth ions were detected.

  3. Detailed crystallization study of co-precipitated Y{sub 1.47} Gd{sub 1.53} Fe{sub 5} O{sub 12} and relevant magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Serra, Rogerio Arving [Instituto de Criminalistica Carlos Eboli (ICCE), Rio de Janeiro, RJ (Brazil); Ogasawara, Tsuneharu; Ogasawara, Angelica Soares [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Dept. de Engenharia Metalurgica e de Materiais]. E-mail: ogasawat@metalmat.ufrj.br

    2007-07-01

    The crystallization process of co-precipitated Y{sub 1.5}Gd{sub 1.5}Fe{sub 5}O{sub 12} powder heated up to 1000 deg C at rate of 5 deg C min{sup -1} was investigated. Above 810 deg C crystalline Y{sub 1.47}Gd{sub 1.53}Fe{sub 5}O{sub 12} was obtained with a lattice parameter of 12.41 A and a theoretical density of 5.84 g cm{sup -3}. Dry pressed rings were sintered at 1270 and 1320 deg C, increasing the grain-size from 3.1 to 6.5 {mu}m, the theoretical density by 87.6 to 95.3% and decreasing H{sub c} from 2.9725 to 1.4005 Oe. Additionally, Hc increased when the frequency of the hysteresis graph varied from 60 Hz to 10 kHz, the curie temperature was 282.4 deg C and Ms equalled 9.25 emu g{sup -1} (0.17 kG) agreeing well with the B{sub s}-value of the hysteresis graph and literature values. (author)

  4. ANNUAL REPORT FOR ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 87016 CO-PRECIPITATION OF TRACE METALS IN GROUNDWATER AND VADOSE ZONE CALCITE: IN SITU CONTAINMENT AND STABILIZATION OF STRONTIUM-90 AND OTHER DIVALENT METALS AND RADIONUCLIDES AT ARID WESTERN DOE SITES

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W.; Fujita, Yoshiko; Ferris, F. Grant; Cosgrove, Donna M.; Colwell, F. S.

    2003-06-15

    Radionuclide and metal contaminants such as 90Sr are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., 90Sr) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the coprecipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).

  5. Synthesis of Nano-Structured La0.6Sr0.4Co0.2Fe0.8O3 Perovskite by Co-Precipitation Method

    Directory of Open Access Journals (Sweden)

    Ebrahim Mostafavi

    2015-06-01

    Full Text Available Nano-structured lanthanum strontium cobalt ferrite, La0.6Sr0.4Co0.2Fe0.8O3 (LSCF, was successfully synthesized via co-precipitation method using metal nitrates as starting materials. Effects of precipitating agent and calcination temperature on the phase composition and morphology of synthesized powders were systematically studied using X-ray diffraction (XRD and field emission scanning electron microscopy (FESEM, respectively. XRD analysis revealed that a single phase La0.6Sr0.4Co0.2Fe0.8O3 perovskite was obtained in the processed sample using ammonium carbonate as precipitating agent with a NH4+/NO3-molar ratio of 2 after calcination at 1000C for 1 h. The phase composition of products was also affected by changing pH values. Moreover, using sodium hydroxide as a precipitant resulted in a mixture of La0.6Sr0.4Co0.2Fe0.8O3 and cobalt ferrite (CoFe2O4 phases. Careless washing of the precursors can also led to the formation of mixed phase after calcination of final powders. Mean crystallite size of the obtained powders was not noticeably affected by varying calcination temperature from 900 to 1050C and remained almost the same at 10 nm, however increasing calcination temperature to 1100C resulted in sharp structural coarsening. FESEM studies demonstrate that relatively uniform particles with mean particle size of 90 nm were obtained in the sample processed with a NH4+/NO3- molar ratio of 2 after calcination at 1000C for 1 h.

  6. High Tap Density Spherical Li[Ni0.5Mn0.3Co0.2]O2 Cathode Material Synthesized via Continuous Hydroxide Coprecipitation Method for Advanced Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Shunyi Yang

    2012-01-01

    Full Text Available Spherical [Ni0.5Mn0.3Co0.2](OH2 precursor with narrow size distribution and high tap density has been successfully synthesized by a continuous hydroxide coprecipitation, and Li[Ni0.5Mn0.3Co0.2]O2 is then prepared by mixing the precursor with 6% excess Li2CO3 followed by calcinations. The tap density of the obtained Li[Ni0.5Mn0.3Co0.2]O2 powder is as high as 2.61 g cm−3. The powders are characterized by X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, scanning electron microscope (SEM, particle size distribution (PSD, and charge/discharge cycling. The XRD studies show that the prepared Li[Ni0.5Mn0.3Co0.2]O2 has a well-ordered layered structure without any impurity phases. Good packing properties of spherical secondary particles (about 12 μm consisted of a large number of tiny-thin plate-shape primary particles (less than 1 μm, which can be identified from the SEM observations. In the voltage range of 3.0–4.3 V and 2.5–4.6 V, Li[Ni0.5Mn0.3Co0.2]O2 delivers the initial discharge capacity of approximately 175 and 214 mAh g−1 at a current density of 32 mA g−1, and the capacity retention after 50 cycles reaches 98.8% and 90.2%, respectively. Besides, it displays good high-temperature characteristics and excellent rate capability.

  7. Investigation of structural and magnetic properties of co-precipitated Mn–Ni ferrite nanoparticles in the presence of α-Fe{sub 2}O{sub 3} phase

    Energy Technology Data Exchange (ETDEWEB)

    Tirupanyam, B.V. [Department of Physics, Government Arts College (Autonomous), Rajahmundry 533401 (India); Srinivas, Ch., E-mail: srinivas.chintoju75@gmail.com [Department of Physics, Sasi Institute of Technology and Engineering, Tadepalligudem 534101 (India); Meena, S.S.; Yusuf, S.M. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Satish Kumar, A. [Department of Physics, Rajiv Gandhi University of Knowledge Technologies, Nuzvid 521201 (India); Sastry, D.L., E-mail: dl_sastry@rediffmail.com [Department of Physics, Andhra University, Visakhapatnam 530003 (India); Seshubai, V. [Department of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2015-10-15

    A systematic study on structural and magnetic properties of co-precipitated Mn{sub x}Ni{sub 1−x}Fe{sub 2}O{sub 4} (x=0.5, 0.6, 0.7) ferrite nanoparticles annealed at 800 °C was carried out using XRD, FE-SEM, VSM and MÖSSBAUER techniques. Anti-ferromagnetic α-Fe{sub 2}O{sub 3} phase was observed along with the magnetic spinel phase in the XRD patterns. It is observed that both lattice parameter and crystallite size of spinel phase increase with increase in concentration of Mn{sup 2+} along with the amount of α-Fe{sub 2}O{sub 3} phase. The saturation magnetization (M{sub s}) decreases while coercivity (H{sub c}) increases with increase of Mn{sup 2+} ion concentration. Mössbauer spectra indicate that iron ions present in A and B sites are in the Fe{sup 3+} state and Fe{sup 2+} is absent. The results are interpreted in terms of observed anti-ferromagnetic α-Fe{sub 2}O{sub 3} phase, core–shell interactions and cation redistribution. - Highlights: • The anti-ferromagnetic α-Fe{sub 2}O{sub 3} phase influences the saturation magnetization. • The anti-ferromagnetic α-Fe{sub 2}O{sub 3} phase may be formed predominantly in the shell region. • The anti-ferromagnetic α-Fe{sub 2}O{sub 3} phase reduced the core–shell interactions. • Even though the particle size is small, the superparamagnetism is absent. • The mole percentage of anti-ferromagnetic α-Fe{sub 2}O{sub 3} phase is estimated.

  8. Preparing WC-Co Composite Powder by Co-precipitation and Direct Carbonized In-situ Synthesized Method%共沉淀-直接碳化原位合成WC-Co复合粉的研究

    Institute of Scientific and Technical Information of China (English)

    王玉香; 文小强; 周健; 袁德林; 郭春平

    2016-01-01

    Using ammonium metatungstate, cobalt nitrate, ammonium hydroxide, and carbon black as the raw materials, the WC-Co composite powder was produced by co-precipitation and direct carbonized in-situ synthesized method. The synthesis process of precursor and effects of reduction carbonization process parameters on phase of product were studied. The powder morphology, phase compositions of WC-Co composite powder were characterized by SEM, XRD, and the reduction carbonization process was studied. The results show that each precursor powder has some larger particles, which make up by lots of minute particles, and the diameter is about 500 nm. Precursor powders are carbonized completely at 1000℃, then prepared composite powder has WC and Co phases, which have good dispersion and uniform distribution.%以偏钨酸铵、硝酸钴、氨水、炭黑为原材料,采用共沉淀-直接碳化原位合成法制备了WC-Co复合粉.研究了前驱体的制备过程,考察了还原碳化工艺参数对所得产物物相的影响.利用SEM、XRD分析方法对粉末样品的微观形貌和物相组成进行了表征,并对还原碳化过程进行了探讨.结果表明:采用共沉淀法制备的前驱体粉末为许多小颗粒团聚而成的大颗粒,小颗粒均匀细小,粒径在500 nm左右,前驱体粉末经1000℃还原碳化可以得到物相纯净的WC-Co复合粉,WC-Co复合粉分散性好,粒度分布均匀.

  9. Determination of Gold, Platinum and Palladium in Copper Slag by ICP-AES with Coprecipitation Separation and Enrichment%共沉淀分离富集-ICP-AES法测定铜灰渣中金、铂、钯

    Institute of Scientific and Technical Information of China (English)

    何一芳; 张学彬

    2014-01-01

    An analysis method for determination of gold, platinum and palladium in copper slag by inductively coupled plasma atomic emission spectrometry (ICP-AES) with tellurium co-precipitation separation and enrichment was developed. The factors affecting determination were investigated, and the optimal detection conditions were determined. The detection limits were 5.6 (Au) µg/L,8.2 (Pt) µg/L and 3.6 (Pd) µg/L, the recovery ratio was 93.2%~102%, the relative standard derivation (RSD) was 1.21%(Au)~3.45% (Pt). The determination results were in good agreement with fire assaying. The method was accurate, simple and fast, and easy to master.%建立了碲共沉淀分离富集、电感耦合等离子体原子发射光谱法(ICP-AES)测定铜灰渣样品中微量元素金、铂、钯的方法。研究了影响测量的各种因素,确定了最佳测定条件。方法的检出限为:Au 5.6µg/L、Pd 8.2µg/L、Pt 3.6µg/L,回收率93.2%~102%,相对标准偏差(RSD)为:1.21%(Au)~3.45%(Pd),方法测定结果与火试金法一致。方法准确、简便快速,易于掌握。

  10. Chemical co-precipitation synthesis and photoluminescence of LnP {sub x}V{sub 1-x}O{sub 4}:Dy{sup 3+} (Ln = Gd, La) derived from assembling hybrid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Bing [Department of Chemistry, Tongji University, Shanghai 200092 (China)]. E-mail: byan@tongji.edu.cn; Su, Xue-Qing [Department of Chemistry, Tongji University, Shanghai 200092 (China)

    2007-04-04

    A novel synthesis technology was applied to obtain GdP {sub x}V{sub 1-x}O{sub 4}:Dy{sup 3+} (x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7) and LaP {sub x}V{sub 1-x}O{sub 4}:Dy{sup 3+} (x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) phosphors for the first time. And the doping concentration of Dy{sup 3+} ions was 3 mol.% in the two systems. Besides this, GdVO{sub 4} and LaVO{sub 4} doped with different concentration of Dy{sup 3+} ions were also synthesized. The rare earth coordination polymers with salicylic acid were used as precursors and the polyethylene glycol (PEG) was used as dispersing media. By an in situ co-precipitation process, we obtained the hybrid precursors. Both XRD and SEM indicated that the particles present good crystalline state, whose crystalline grain sizes were in the range of around 0.5-1 {mu}m. The optical properties of all the powder presented that the characteristic transitions of Dy{sup 3+} due to {sup 4}F{sub 9/2} {sup {yields}} {sup 6}H{sub 15/2} (blue) and {sup 4}F{sub 9/2} {sup {yields}} {sup 6}H{sub 13/2} (yellow) were detected. Besides this, in the system of GdP {sub x}V{sub 1-x}O{sub 4}:Dy{sup 3+}, the yellow-to-blue intensity ration (Y/B) depended on the value of P/V greatly, with the increasing of x value, the Y/B decreasing.

  11. Technetium Removal Using Tc-Goethite Coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Wang, Guohui; Jung, Hun Bok; Peterson, Reid A.

    2013-11-18

    This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Low temperature waste forms coupled with technetium removal using an alternative immobilization process such as Fe(II) treated-goethite precipitation” to increase our understanding of 99Tc long-term stability in goethite mineral form and the process that controls the 99Tc(VII) reduction and removal by the final Fe (oxy)hydroxide forms. The overall objectives of this task were to 1) evaluate the transformation process of Fe (oxy)hydroxide solids to the more crystalline goethite (α-FeOOH) mineral for 99Tc removal and 2) determine the mechanism that limits 99Tc(IV) reoxidation in Fe(II)-treated 99Tc-goethite mineral and 3) evaluate whether there is a long-term 99Tcoxidation state change for Tc sequestered in the iron solids.

  12. Thermal behavior and phase transformation of ZrO{sub 2}–10%SiO{sub 2} precursor powder prepared by a co-precipitation route without adding stability agent

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Hsueh-Liang [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, Cheng-Li [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Lee, Kuen-Chan [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Huang, Hong-Hsin [Department of Electrical Engineering, Cheng Shiu University, 840 Cheng Ching Road, Niaosong, Kaohsiung 83347, Taiwan (China); Lee, Huey-Er, E-mail: huerle@kmu.edu.tw [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University, 100 Tzyou 1st Road, Kaohsiung 807, Taiwan (China)

    2014-12-15

    Highlights: • The precursor powders contained about 68.3 wt% ZrO{sub 2}, which corresponds to ZrO{sub 2}·1/8 H{sub 2}O. • The exothermic peak temperature of tetragonal ZrO{sub 2} formation occurred at 1014 K. • The activation energy of ZrO{sub 2}–10%SiO{sub 2} precursors crystallization is 993.7 kJ/mol. • Only the tetragonal ZrO{sub 2} formed when the precursor calcined at 1173–1373 K for 2 h. • As calcined at 1473 K for 2 h, tetragonal ZrO{sub 2} fully converted to monoclinic ZrO{sub 2}. - Abstract: Thermal behavior and phase transformation of ZrO{sub 2}–10%SiO{sub 2} precursor powder prepared by a co-precipitation route without adding stability agent has been studied using different thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED), high-resolution TEM (HRTEM) and energy-dispersive X-ray spectrometer (EDS). The TG results show that four weight loss regions were from 298 to 443 K, 443 to 743 K, 743 to 793 K and 793 to 1400 K. The DTA result shows that the ZrO{sub 2} freeze-dried precursor powders crystallization at 1014 K. The activation energy of 993.7 kJ/mol was obtained for tetragonal ZrO{sub 2} crystallization using a non-isothermal process. The XRD result shows that only a single phase of tetragonal ZrO{sub 2} appears when the freeze-dried precursor powders after calcination between 1173 and 1373 K for 2 h. Moreover, when calcined at 1473 K for 2 h, the phase transformation from tetragonal ZrO{sub 2} fully converted to monoclinic ZrO{sub 2} occurred.

  13. Co-precipitation Synthesis and Thermal Stability of Zircon Encapsulated Carbon Black%共沉淀法制备硅酸锆包裹炭黑及其高温稳定性

    Institute of Scientific and Technical Information of China (English)

    彭诚; 张楚鑫; 吕明; 李智鸿; 吴建青

    2013-01-01

    以正硅酸乙酯和氧氯化锆为原料,采用溶胶共沉淀法制备了硅酸锆包裹炭黑复合粉体.利用XRD、SEM、色度计和粒度分析仪等手段对样品进行了表征.采用正交试验考察了前驱体pH值、煅烧温度、矿化剂种类和用量等工艺条件对复合粉体高温稳定性的影响.结果表明,矿化剂和煅烧温度是最重要的影响因素.最佳的工艺条件是前驱溶液pH为5、矿化剂为5wt%LiF、煅烧温度为1 150℃.该工艺条件下形成的球形镶嵌结构能够有效防止炭黑被氧化.获得的硅酸锆包裹炭黑粉体具有较好的高温稳定性,粒度分布符合陶瓷色料的要求.该粉体用于熔块釉中,1000℃烧成仍然具有较好的发色效果.%Zircon encapsulated carbon black powders were synthesized by a co-precipitation method using TEOS and zirconium oxychloride as starting materials.X-ray diffraction (XRD),scanning electronic microscope (SEM),colorimeter and laser grain size analyzer were used to investigate the phase structure,morphology,thermal stability and size distribution of the prepared composite powders,respectively.The effect of experimental conditions including the pH of the precursor solution,the calcination temperature,the type and amount of mineralizers on their thermal stability was studied by orthogonal test.The optimal conditions were accordingly determined as follows:precursor solution pH=5,calcination temperature 1150℃ and 5% LiF mineralizer.Under these conditions,zircon encapsulated carbon black with embedded structures can be obtained.The composite powder has high thermal stability and adequate size distribution,and thus it is a good candidate material for black ceramic pigment.When calcined at 1000℃ in the frit glaze,the powder shows considerable tilting strength.

  14. Upconversion luminescence properties of Y2O2S:Er3+@Y2O2S:Yb3+,Tm3+ core-shell nanoparticles prepared via homogeneous co-precipitation

    Science.gov (United States)

    Tian, Ying; Lu, Fei; Xing, Mingming; Ran, Jincheng; Fu, Yao; Peng, Yong; Luo, Xixian

    2017-02-01

    The Y2O2S:Er3+@Y2O2S:Yb3+,Tm3+ core-shell upconversion (UC) nanoparticles with average diameter of 95 nm were synthesized by the homogeneous co-precipitation method combining with the solid-gas sulfidation route. The increases of nanocrystaline size after the shell coating was observed both in the X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. This indicates the composition homogeneity core-shell Y2O2S nanocrystals. Meanwhile, the luminescence of both the Er3+ and Tm3+ ions are realized for the first time in the novel core-shell Y2O2S:Er3+@Y2O2S:Yb3+,Tm3+ nanoparticles under the excitations of both 980 and 1550 nm. When excited by a 980 nm laser diode, the Y2O2S:Er3+@Y2O2S:Yb3+,Tm3+ phosphor exhibits blue (≈475 nm), green (≈548 nm) and red (≈670 nm) emissions in the visible region, which correspond to the 1G4 → 3H6 transition of Tm3+ions, 4S3/2, 2H11/2 → 4I15/2 and 4F9/2 → 4I15/2 transitions of Er3+ ions, respectively. The very strong emission at the near infrared (NIR) region is mainly due to the 3H4 → 3H6 transition of Tm3+ ions. The emission from both of Er3+ and Tm3+ ions under 980 nm excitation reveals the energy transfers of Yb3+ → Tm3+ within the shell layer and Yb3+ → Er3+ between the shell and the core. When pumping at 1550 nm, although only Er3+ ions can efficiently absorb the excitation energy, the strong UC emissions from Tm3+ ions were also observed. This is owing to the energy transfer between the core and the shell through Er3+ → Yb3+ → Tm3+ ions.

  15. Effect of Ca and Li additions on densification and electrical conductivity of 10 mol% gadolinia-doped ceria prepared by the coprecipitation technique; Efeito de adicoes de litio e calcio na densificacao e na condutividade eletrica da ceria-10% mol gadolinia preparada pela tecnica de co-precipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Porfirio, T.C.

    2010-07-01

    Ceria containing rare-earth ceramics are potential candidates for application in intermediate-temperature solid oxide fuel cells. One of the main problems related to these ceramic materials is their relatively low sinterability. In this work, the effects of Ca and Li additions on densification and electrical conductivity of 10 mol% gadolinia-doped ceria was investigated. Ceramic compositions containing 1.5 mol% Ca or Li were prepared by the oxalate coprecipitation technique. Results of sintered density and electrical conductivity were compared to those of ceramic samples obtained by solid state reactions showing the effects of the synthesis method on densification and total electrical conductivity of the sintered materials. (author)

  16. Influence of Feeding Methods on Synthesis of YAG Nano-powders by Co-precipitation Method%不同加料方式对共沉淀法制备YAG纳米粉体的影响

    Institute of Scientific and Technical Information of China (English)

    马飞; 曹林洪; 蒋晓东; 叶鑫; 周信达; 黄进

    2013-01-01

    用共沉淀法制备了钇铝石榴石(Y3Al5O12)纳米粉体,研究了正滴定、反滴定和一步注入工艺对钇铝石榴石纳米粉体合成过程及最终产物的影响.利用X射线衍射仪、傅立叶红外光谱仪、同步热分析仪、场发射电子显微镜对YAG前驱体及不同温度煅烧后的粉体进行表征.结果表明:通过正滴定、反滴定和一步注入工艺,分别制备出化学组成为10[8.9Al(OH)3+1.1NH4Al·(OH)2CO3]·3 [Y2(CO3)3· 3H2O]、10[7.3Al(OH)3 +2.7NH4Al·(OH)2CO3]·3[Y2(CO3)3·3H2O]、10[Al(OH)3]·3[Y2(CO3)3·3H2O]的前驱体.前驱体经900℃煅烧2h后,正、反滴定工艺得到的粉体主相为YAG(Y3Al5O12),但有少量的YAP(YAlO3),一步注入工艺则得到纯的YAG相.晶粒尺寸分别为85 nm、70 nm和65nm,且一步注入工艺获得的粉体粒径分布较窄,分散性良好.%The yttrium aluminum garnet (Y3A15O12) nano-powders were successfully prepared by co-precipitation method. The impact of different feeding methods on YAG nano-powders synthesis process and final product was studied. The precursor and calcined nano-powders were characterized by X-ray diffraction(XRD), Fourier transform infrared spectroscopy ( FTIR) , thermogravimetry and differential thermal analysis (TG-DTA) and field emission scanning electron microscope (FESEM ) measurements. The result shows that: the chemical composition of the precursors obtained by forward-titration, reverse-titration and one-step injection are 10[8.9A1(OH)3 +1. 1NH4A1-(OH)2CO3]·3[ Y2(CO3)3 ·3H2O] 、 10[7.3A1(OH)3+2.7NH4A1·(OH)2C03]·3[Y2(CO3)3·3H2O] and 10[A1(OH)3]·3[Y2(CO3)3· 3H2O] respectively. The YAG nano-powders are obtained by calcining the precursors at 900 ℃ for 2 h. The powders obtained by forward-titration and reverse-titration were of major-phase YAG and a trace amount of YAP with average particle size about 85 run and 75 nm respectively,while the powder by one-step injection was of pure-phase YAG with average particle size about 65

  17. Catalytic Polarographic Determination of Available Molybdenum in Soil after Separation by Co-precipitation with Manganese Hydroxide%氢氧化锰共沉淀分离-催化极谱法测定土壤中有效钼

    Institute of Scientific and Technical Information of China (English)

    付爱瑞; 肖凡; 罗治定; 查晓康; 孙连伟

    2012-01-01

    土壤样品中有效钼用草酸铵-草酸混合溶液(pH 3.3)振摇提取,所得悬浮液用干滤纸过滤,分取部分滤液蒸缩体积后加入10 g.L-1酸性高锰酸钾溶液并蒸发至近干,趁热加0.25 mol.L-1氢氧化钠溶液进行共沉淀分离。分取部分上清液,用硫酸(1+1)溶液酸化后加入混合底液(其中含有二苯基乙醇酸、二苯胍及氯酸钠)及少许钛铁试剂溶液作为与钼(Ⅵ)进行催化反应的试剂体系。用JP-303极谱仪进行测定。在-220 mV峰电位处测得的峰电流值与其相应的钼(Ⅵ)的质量浓度在0.8~20μg.L-1范围内呈线性关系。此方法的检出限(3s/k)为0.002 6μg.g-1。用此方法分析了5个土壤标准物质,所测得有效钼的含量与其认定值相符。%Available molybdenum (Ⅵ) in soil sample was extracted by shaking with a mixed solution of (NH4)2C2O4 and H2C2O4 (pH 3. 3). The suspended solution was filtered on a dry filter paper and an aliquot of the filtrate was evaporated to near dryness after addition of 10 g.L^-1 KMnO4 acidic solution. 0. 25 mol. L^-1 NaOH solution was added for co-precipitation and an aliquot of the supernatant was taken and acidified with H2 SO4 ( 1+ 1). A mixed base solution (containing diphenyLglycollie acid, diphenylguanidine and sodium chlorate) together with tiron solution, acting as reagents for the catalytic reaction with Mo (Ⅵ), was added, and the polarographic determination of Mo( Ⅵ) was made with the JP-303 polarograph. Values of peak current at the peak potential of -220 mV were found to keep linear relationship with mass concentration of Mo(Ⅵ) in the range of 0. 8--20μg . L^-1. Detection limit (3s/k) of the method found was 0. 002 6 μg .g^-1. The proposed method was used in the determination of molybdenum in 5 CRM's of soil, giving results in consistency with the certified values.

  18. 化学共沉淀法与溶胶凝胶自蔓延法制备微米级片状BaFe12O19及其对比研究%Preparation of Plate-like BaFe12O19 by Co-precipitation Method and Sol-gel Method and Comparative Study

    Institute of Scientific and Technical Information of China (English)

    关山月; 孟锦宏; 郭晓宇; 曹晓晖

    2013-01-01

    BaFe12 O19 can be prepared by co-precipitation method and sol-gel method. BaFe12O19 can be presented hexagonal-plate shape by co-precipitation method. Its average particle size is between 0.4 ~ 1 μm, radius-thickness ratio between 2 ~5, and Ms and He is 59. 57emu/g and 1975Oe respectively. BaFe12O19 was synthesized by sol-gel combustion method presented hexagonal-plate and nearly hexagonal-plate shape. Its particle size is 1.5 ~2μm, radius-thickness ratio is 10 ~ 15, and Ms and He is 60.28emu/g and 2813Oe respectively. Compared with BaFe12O19 synthesized by co-precipitation method, BaFe12O19 synthesized by sol-gel combustion had higher crystalline level, particle size and radius-thickness, and thus presented higher Ms and He.%采用化学共沉淀法和溶胶凝胶自蔓延法均制备得到二维片状BaFe12O19.化学共沉淀法制备的BaFe12O19呈明显六角片状,颗粒径向尺寸0.4 ~ 1μm,径厚比2~5,Ms 和Hc分别为59.57emu/g和1975Oe.溶胶凝胶自蔓延法制备的BaFe12 O19呈六角片状和近六角片状,颗粒径向尺寸为1.5~2μm,径厚比为10~15,Ms与Hc值分别为61.96emu/g和2813Oe.与化学共沉淀法制备BaFe12 O19相比,溶胶凝胶自蔓延法制备的BaFe12Oi9具有相对较高的结晶有序程度和颗粒径向尺寸及径厚比,使其呈现出相对高的Ms与Hc值.

  19. Influence of the use of NaOH and NH{sub 4}OH the synthesis of iron oxide nanoparticles by coprecipitation; Influencia da utilizacao de NaOH e NH{sub 4}OH na sintese de nanoparticulas de oxido de ferro por coprecipitacao

    Energy Technology Data Exchange (ETDEWEB)

    Panta, P.C.; Zampiva, R.Y.S., E-mail: pr.priscila@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil). Programa de Pos-Graduaco em Engenharia de Minas, Metalurgica e de Materiais; Campos, H.G.; Bergmann, C.P. [Universidade Federal do Rio Grande do Sul (UFRGS), RS (Brazil), Escola de Engenharia

    2012-07-01

    Numerous chemical methods can be used to synthesize iron oxide nanoparticles, including, microemulsion, sol-gel, polyol among others. This work was used because of advantages such as coprecipitation simplicity and large scale production. The goal is to control the characteristics and stability of nanoparticles. Thus, it is a reaction in aqueous iron salts with a base (NaOH, NH{sub 4}OH, etc.) In which parameters such as quality and the molar ratio of base used were varied to control the morphology that the particles, and consequently varying the grain size. Factors such as reaction time and temperature, pH, influence on morphology, and magnetic. There were measures of X-ray diffraction and scanning electron microscopy to obtain the phases and average diameters. The results show that as the choice of base used and its molar concentration variation occurring in the sizes of the iron oxide nanoparticles. (author)

  20. 壳聚糖分子对共沉淀法合成羟基磷灰石/壳聚糖粉体材料晶体形貌的影响%Effects of CS Molecules on the Morphology of HA/CS Composite Powders Prepared by Co-precipitation Method

    Institute of Scientific and Technical Information of China (English)

    杨辉; 张园园

    2012-01-01

    A co-precipitation method and urea as pH regulator were used in boiling water bath to prepare HA/CS composite powders. The crystal component, chemical composition and morphologies of the composite were characterized by XRD, FTIR and SEM. The effects of CS average molecular weight, CS addition and concentration of reaction solution on the crystal morphology were investigated. The results indicated that HA/CS composite powders can be prepared in short time by boiling water bath co-precipitation. The concentration of reaction solution has significant influence on the crystal morphology, and the morphology of HA/CS composite crystal changed from needle-like and sphere to almost all spherical shape. CS average molecular weight and CS addition have slight effect on the morphology of HA/CS.%采用沸腾水浴共沉淀法,以尿素为pH调节剂制备羟基磷灰石/壳聚糖(HA/CS)复合粉体材料,通过XRD、FTIR和SEM对晶体组成、形貌进行表征,考察了壳聚糖平均分子量、添加量及反应物浓度对HA/CS晶体形貌的影响.结果表明,沸腾水浴共沉淀法可在较短时间内制备HA/CS复合粉体,改变反应物浓度可使晶体形貌由针状与球状同时存在转变为几乎全部是球状晶体,而CS平均分子量和添加量的影响较小.

  1. 共沉淀分离富集偏最小二乘法在茶叶重金属测定中的应用%Determination of Heavy Metals in Tea Through Coprecipitation Separation and Enrichment Combined with Partial Least Square-Spectrophotometry

    Institute of Scientific and Technical Information of China (English)

    苏琴

    2016-01-01

    Using the copper reagent as the coprecipitator under the alkaline condition of pH 10. 0, the rapid coprecipitation enrichment of trace metal ions Ni2+, Pb2+and Cd2+and Cu2+in tea had been carried out, and the optimal conditions for the formation of complexes of copper reagent with metal ions were analyzed. 4-(2-pyridylazo) resorcinol (PAR) was used as the color developing agent for the four heavy metals, in the spectrophotometric analysis. Partial least square-UV-visible spectrophotometry was used to determine the simulate mixed sample of the four components of the metal ions at the same time, with those in tea. This method is simple, the result is reliable, and is of certain practical value to the determination of heavy metals in tea.%以铜试剂为共沉淀剂,在pH值为10.0的条件下,共沉淀分离富集茶叶中痕量金属离子Ni2+、Pb2+、Cd2+和Cu2+,并分析了铜试剂与金属离子形成配合物的最佳沉淀条件.用4-(2-吡啶偶氮)间苯二酚(PAR)作为这4种重金属离子的显色剂进行分光光度测定,采用偏最小二乘-紫外可见光度法同时测定了四组分金属离子的模拟混合试样,并在茶叶中进行上述金属离子含量的测定.方法操作简便、结果可靠,对茶叶中重金属测定有一定实用价值.

  2. Fate of nickel ion in (II-III hydroxysulphate green rust synthesized by precipitation and coprecipitation Adsorção de íon níquel em (II-III green rust hidroxisulfato sintetizado por precipitação e co-precipitação

    Directory of Open Access Journals (Sweden)

    Lucia Helena Garófalo Chaves

    2007-08-01

    Full Text Available In order to investigate the efficiency of sulfate green rust (GR2 to remove Ni from solution, GR2 samples were synthesized under controlled laboratory conditions. Some GR2 samples were synthesized from Fe(II and Fe(III sulfate salts by precipitation. Other samples were prepared by coprecipitation, of Ni(II, Fe(II and Fe(III sulfate salts, i.e., in the presence of Ni. In another sample, Ni(II sulfate salt was added to pre-formed GR2. After an initial X-ray diffraction (XRD characterization all samples were exposed to ambient air in order to understand the role of Ni in the transformation of the GR2 samples. XRD was repeated after 45 days. The results showed that Nious GR2 prepared by coprecipitation is isomorphous to Ni-free GR2, i.e. Ni is incorporated into the crystalline structure. Fe(II was not replaced by Ni(II in the crystalline structure of GR2 formed prior to exposure to solution-phase Ni. This suggests Ni was adsorbed to the GR2 surface. Sulfate green rust is more efficient in removing Ni from the environment by coprecipitation.Com objetivo de investigar a eficiência do "sulfate green rust" (GR2 na remoção de Ni da solução, amostras de GR2 foram sintetizadas em laboratório sob condições controladas. Algumas amostras de GR2 foram sintetizadas pela precipitação de sais de Fe(II e de Fe(III; outras amostras, pela co-precipitação de sais de Ni(II, Fe(II e de Fe(III; e em outras amostras, o sulfato de Ni(II foi adicionado às amostras GR2 pré-formadas. Após caracterização inicial, por difração de raios X, todas as amostras ficaram expostas ao ar atmosférico durante 45 dias, a fim de se avaliar o papel do Ni na transformação delas. Após esse período, a difração de raios X das amostras foi repetida. Os resultados mostraram que Ni-GR2 preparado por co-precipitação é isomórfico do GR2, estando o íon Ni na estrutura cristalina deste. Fe(II não foi substituído por Ni(II na estrutura cristalina de GR2 formado a priori

  3. Preparation and Particle Size Controllability of Mg-AI Layered Double Hydroxides via Coprecipitation Method Using T-type Microchannel Reactor%T形微反应器共沉淀法制备Mg-Al层状双金属氢氧化物及其粒径可控性

    Institute of Scientific and Technical Information of China (English)

    孙美玉; 庞秀江; 马秀明; 侯万国

    2013-01-01

    采用T形微反应器通过共沉淀法制备了Mg-Al层状双金属氢氧化物(LDHs)纳米颗粒,考察了流速、混合盐溶液浓度和温度等对产物粒径及其分布的影响.实验结果表明,所制备的LDHs样品的形貌和晶体结构与传统共沉淀法结果一致,但本方法制备的样品粒径小、分布窄.随着流速增大,温度升高,所合成的LDHs样品平均粒径减小,分布变窄;而随着混合盐溶液浓度的增大,所得LDHs样品粒径增大,分布变宽.%A T-type microchannel reactor was used to prepare Mg-Al layered double hydroxides (LDHs) via the coprecipitation method.The effects of flow rate of reactant solutions,concentration of mixed salt solution and temperature on the particle size and the particle size distribution of the LDH samples were examined.The results show that the morphology and crystal structure of the LDH samples obtained using the T-type microchannel reactor are similar to those of the materials synthesized by the conventional coprecipitation method.However,the T-type microchannel reactor route could afford smaller particle size and very narrow distribution of particle size for the materials.The flow rate,concentration of mixed salt solution and temperature have an important influence on the particle size and the particle size distribution of the obtained LDH samples.With the increases of the flow rate and temperature,the particle size and the particle size distribution of the obtained LDH samples decreased,while with the increase of the concentration of mixed salt solution,those increased.A major advantage of the T-type microchannel reactor route is that the particle size and the particle size distribution of the as-obtained samples can be simply and effectively controlled by the flow rates of the reactant solutions.

  4. Coprecipitation of nickel zinc malonate: A facile and reproducible synthesis route for Ni{sub 1−x}Zn{sub x}O nanoparticles and Ni{sub 1−x}Zn{sub x}O/ZnO nanocomposites via pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lontio Fomekong, Roussin, E-mail: lonforou@yahoo.fr [Inorganic Chemistry Department, University of Yaoundé I, B.P. 812, Yaoundé (Cameroon); Institut de la Matière Condensée et des Nanosciences, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-La-Neuve (Belgium); Kenfack Tsobnang, Patrice [Inorganic Chemistry Department, University of Yaoundé I, B.P. 812, Yaoundé (Cameroon); Magnin, Delphine; Hermans, Sophie; Delcorte, Arnaud [Institut de la Matière Condensée et des Nanosciences, Université Catholique de Louvain, Croix du Sud 1, 1348 Louvain-La-Neuve (Belgium); Lambi Ngolui, John [Chemistry Department, Higher Teacher Training College, University of Yaoundé I, B.P. 47, Yaoundé (Cameroon)

    2015-10-15

    Nanoparticles of Ni{sub 1−x}Zn{sub x}O and Ni{sub 1−x}Zn{sub x}O/ZnO, which can be good candidates for selective gas sensors, were successfully obtained via a two-step synthetic route, in which the nickel zinc malonate precursor was first synthesized by co-precipitation from an aqueous solution, followed by pyrolysis in air at a relatively low temperature (~500 °C). The precursor was characterized by ICP-AES, FTIR and TG and the results indicate the molecular structure of the precursor to be compatible with Ni{sub 1−x}Zn{sub x}(OOCCH{sub 2}COO)·2H{sub 2}O. The decomposition product, characterized using various techniques (FTIR, XRD, ToF-SIMS, SEM, TEM and XPS), was established to be a doped nickel oxide (Ni{sub 1−x}Zn{sub x}O for 0.01≤x≤0.1) and a composite material (Ni{sub 1−x}Zn{sub x}O/ZnO for 0.2≤x≤0.5). To elucidate the form in which the Zn is present in the NiO structure, three analytical techniques were employed: ToF-SIMS, XRD and XPS. While ToF SIMS provided a direct evidence of the presence of Zn in the NiO crystal structure, XRD showed that Zn actually substitutes Ni in the structure and XPS is a bit more specific by indicating that the Zn is present in the form of Zn{sup 2+} ions. - Highlights: • Coprecipitation synthesis of nickel zinc malonate single bath precursor was achieved. • The as synthesized precursors are an homogeneous mixture of nickel and zinc malonate. • XRD, ToF-SIMS, XPS, SEM and TEM was used to characterized decomposition products. • Ni{sub 1−x}Zn{sub x}O nanoparticles (0.01≤x≤0.1) formed after pyrolysis (~500 °C) of precursor. • Ni{sub 1−x}Zn{sub x}O/ZnO nanocomposite (0.2≤x≤0.5) formed after pyrolysis at 500 °C of precursor.

  5. Eco friendly green and yellow ceramic pigments based on calcium-doped Pr{sub 2}Mo{sub 2}O{sub 9} obtained by addition of mineralizers and chemical coprecipitation.; Ecopigmentos ceramicos verdes y amarillos de Pr{sub 2}Mo{sub 2}O{sub 9} dopados con calcio obtenidos en presencia de mineralizadores y por coprecipitacion quimica

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R.; Garcori, C.; Llusar, M.; Garcia, A.; Badenes, J.; Monros, G.

    2011-07-01

    In this paper the synthesis of (Pr{sub 2}-xCa{sub x})Mo{sub 2}O{sub 9} solid solutions by ceramic route is presented. Crystallography and colour evolution from green to yellow described on literature have been checked. When enamelled in a lead free double firing ceramic glaze, pigments produces light yellow colours not better than b*=19. Using NH{sub 4}Cl, NaF and Na{sub 2}SiF{sub 6} as mineralizers in the (Pr{sub 2}-xCa{sub x})Mo{sub 2}O{sub 9} x=0,1 composition with the same molar addition of halogens (0.84 mols per formula weight), a structural effect of fluoride ion is observed but the yellow colour on enamelled samples do not improve. Finally, using an ammonia coprecipitation method in the x=0.6 sample, a similar crystallization to the homologous ceramic sample is detected, but x ray diffraction peaks are more intense and less wide, pointing to a more regular and higher crystal size crystallization which is checked by electronic scanning microscopy. This microstructure give more intense yellow coloured powders and improve their resistance against glaze, producing significantly best yellow colours than ceramic samples. (Author) 14 refs.

  6. In situ co-precipitation synthesis and luminescence of GdVO{sub 4}: Eu{sup 3+} and Y {sub x}Gd{sub 1-x}VO{sub 4}: Eu{sup 3+} microcrystalline phosphors derived from the assembly of hybrid precursors

    Energy Technology Data Exchange (ETDEWEB)

    Su Xueqing [Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092 (China); Yan Bing [Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092 (China)]. E-mail: byan@tongji.edu.cn; Huang Honghua [Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092 (China)

    2005-08-16

    GdVO{sub 4}: Eu{sup 3+} and Y {sub x}Gd{sub 1-} {sub x}VO{sub 4}: Eu{sup 3+} phosphors have been synthesized by a new wet-chemical method named as in situ co-precipitation from multicomponent hybrid precursors. Their microstructure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and scanning electronic microscope (SEM), which indicates that there exist some novel cobblestone-like microcrystalline particles, especially for GdVO{sub 4}: Eu{sup 3+}. The optical characteristic of Y {sub x}Gd{sub 1-x}VO{sub 4}: Eu{sup 3+} presents that the luminescence intensity reaches the strongest when the molar ratio of Y/Gd is 0.4/0.6 among x = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and the phosphor particles show a strong red emission at 618 nm originating from the hypersensitive transition {sup 5}D{sub 0} {yields} {sup 7}F{sub 2} of Eu{sup 3+} ions.

  7. Evaluation of the structure and microstructure of Ni{sub x}Mg{sub 1-x}O oxides obtained by co-precipitation; Evaluacion de la estructura y microestructura de oxidos de Ni{sub x}Mg{sub 1-x}O obtenidos por co-precipitacion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez L, G.; Kryshtab, T. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Av. Instituto Politecnico Nacional s/n, Edif. 9, 07738 Mexico D. F. (Mexico); Hesiquio G, M. [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Av. Instituto Politecnico Nacional s/n, Edif. 6, 07738 Mexico D. F. (Mexico); Kryvko, A., E-mail: marloz7@yahoo.com.mx [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, Departamento de Sistemas, Av. Instituto Politecnico Nacional s/n, Edif. Z-4, 07738 Mexico D. F. (Mexico)

    2013-06-01

    Ni{sub x}Mg{sub 1-x}O oxides were prepared by thermal treatment at temperatures of 400, 600 and 800 C from a hydrotalcite-like precursor obtained by co-precipitation at constant ph. The oxides obtained were characterized by X-ray diffraction methods. From the obtained results we concluded that the oxides calcined at temperatures of 400, and 600 C are unstable that means that there exists the effect of memory and with a time they return to the precursor. Presence of Ni in Mg oxide provides stability of the compounds thermally treated at 800 C. In order to analyze the structure and microstructure, the reflections 111, 200 and 220 were used. The positions of the maxima of the diffraction peaks are shifted with respect to the simulated ones for Mg O and Ni O. This result reveals that in solid solutions studied compressive strains or vacation are present. The parameters of the microstructure (coherent domain size and micro deformations) were evaluated. The coherent domain size was found to be in the range of 8 - 10 nm and the presence of residual strains of micro deformation can be associated with the existence of extended defects. (Author)

  8. Mn(Ⅱ)-5-Br-PADAP共沉淀-火焰原子吸收光谱法测定虾、贝样中的镉%Determination of Cadmium in Shrimp and Shell Fish Samples by Coprecipitation Enrichment with Mn(Ⅱ)-5-Br-PADAP Flame Atomic Absorption Spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈清慧; 万瑶宇; 李倩; 姚俊学

    2016-01-01

    提出了一种测量痕量重金属镉的新方法。该方法创新性地以 Mn (Ⅱ)作为载体离子,以2-(5-溴-2-吡啶偶氮)-5-二乙氨基苯酚(5-Br-PADAP)作为共沉淀剂,共沉淀分离富集虾、贝样品中的镉,同时采用火焰原子吸收法进行测定。重点探讨了共沉淀剂加入量、载体离子加入量、pH 值、共沉淀时间、共存离子的干扰等因素对共沉淀分离富集效果的影响,从而确定了 Mn(Ⅱ)-5-Br-PADAP 共沉淀分离富集测定镉的最佳共沉淀条件。实验结果表明,当pH 7且大量干扰离子存在的条件下,Mn(Ⅱ)-5-Br-PADAP体系对镉有良好的共沉淀分离富集效果,很好地克服了基体干扰。共沉淀体系中镉含量在0.1~1.0 mg·L-1范围内时镉含量与吸光度呈线性关系。该方法的灵敏度为0.147(mg·L-1)-1,精密度为0.73%,对镉的检出限(3σ)为4.27μg ·L-1。食品样品比较复杂,对其中痕量重金属含量的测定必须经过消化、分离富集等一系列预处理过程才能得到最准确地答案。所以通过对比直接用火焰原子吸收法与应用本方法测定样品中镉含量的区别,进一步说明了 Mn(Ⅱ)-5-Br-PADAP体系对样品中重金属镉有很好的分离富集效果。根据该方法,采用标准加入法测得干贝样品中镉的含量为1.85 mg·kg-1,干虾样品中镉的含量为1.74 mg·kg-1,基本符合国际食品法典委员会的标准。为了证明该方法的可靠性与真实性,做了加标回收实验,结果显示干虾干贝样品中镉的加标回收率范围为99.9%~100.3%,相对标准偏差为0.15%~0.83%。用 Mn(Ⅱ)-5-Br-PADAP共沉淀分离富集样品中的痕量镉具有重现性好、准确度高、简单快速等的优点,分析结果令人满意。%A separation/preconcentration procedure with coprecipitation has been proposed for the flame atomic absorption spec-trometric (FAAS)determination of cadmium at trace level in food and environmental samples.Manganese(Ⅱ)was used

  9. Preparation of Y2O3 : Er3+ by Coprecipitation Method and Influence of Initial pH on the Luminescent Properties%Y2O3:Er3的共沉淀法制备和pH值对发光性质的影响

    Institute of Scientific and Technical Information of China (English)

    王晓纯; 任博; 郭常新; 姜桂铖; 尹民

    2011-01-01

    采用共沉淀法,通过氨水调节沉淀剂碳酸氢铵的pH值,制备了一系列YO:1%Er样品.傅里叶变换红外光谱以及兀素分析表明,沉淀剂pH值在8.0~9.5之间变化时,前驱沉淀物化学结构基本不变;而X射线荧光潜仪分析与SEM形貌表征的结果表明,pH值改变时不仅会导致前驱沉淀物中Er含量的变化.而且使得煅烧后粉末颗粒的粒径及其分布发生改变.测量煅烧后粉末样晶的荧光光谱,结果显示,pH值变化引起的Er含最和颗粒粒径的变化,都会导致粉末样品发光性质产生差异.%Samples of Y2O3 : l%Er were prepared by coprecipitation method and the pH value of precipitant ammonium bicarbonate was adjusted by ammonia. Results of Fourier transform infrared spectra (FTIR) and elemental analysis showed that the chemical construction of precursors at pH range of 8. 0~9. 5 had little change. By X-ray fluorescence spectrometer (XRF) and scanning electron microscope (SEM) analysis, it was found that the pH value of precipitant had a significant impact on the content of erbium in precursor and it can influence particle size as well as its distribution of the products, both of which had important effects on the luminescent properties of the products.

  10. Caracterização estrutural, textural e morfológica de aluminato de lítio (LiAlO2 sintetizado por coprecipitação Structural, textural and morphological characterization of lithium aluminate (LiAlO2 synthesized by coprecipitation

    Directory of Open Access Journals (Sweden)

    A. C. Nascimento

    2012-12-01

    Full Text Available Aluminato de lítio (LiAlO2 foi sintetizado por coprecipitação. O material foi calcinado em diferentes temperaturas e caracterizado por difração de raios X, espectroscopia na região do infravermelho com transformada de Fourier, adsorção gasosa, microscopia eletrônica de varredura (MEV e microscopia eletrônica de transmissão (MET, possibilitando sua caracterização estrutural, morfológica e textural. Diferentes fases cristalinas foram observadas à medida que a temperatura foi elevada de 550 para 1150 ºC. Texturalmente o material foi classificado como não-poroso e particulado a 550 e 750 ºC, apresentando microporos a 950 ºC. Análises comparativas de imagens de MET e MEV possibilitaram a identificação nanoflocos e microfolhas como as principais morfologias presentes no material.Lithium aluminate (LiAlO2 was synthesized by coprecipitation. The material was calcined at different temperatures and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, gas adsorption, scanning electron microscopy (SEM and transmission electron microscopy (TEM, providing a structural, morphological and textural characterization. Different crystalline phases were observed as the temperature was raised from 550 to 1150 ºC. Texturally, the material was classified as non-porous and particulate at 550 and 750 ºC showing micropores at 950 ºC. Comparative analysis of TEM and SEM images allowed the identification of nanoflakes and microsheets as the main morphology present in the material.

  11. Fotocatálise heterogênea com TiO2 para oxidação de arsênio e sua remoção de águas por coprecipitação com sulfato férrico Heterogeneous photocatalysis with TiO2 for the oxidation of arsenic and its removal from water by coprecipitation with ferric sulfate

    Directory of Open Access Journals (Sweden)

    Gisele Mendes

    2009-01-01

    Full Text Available The oxidation of arsenic (As(III to As(V in water samples was performed by heterogeneous photocatalysis using a TiO2 film immobilized inside a photochemical reactor. After oxidation, As(V was removed from the water samples by coprecipitation with ferric sulfate. The final conditions of oxidation and arsenic removal (TiO2 film prepared with a suspension: 10% (w/v; pH: 7.0; oxidation time: 30 min and Fe3+ concentration: 50 mg L-1 were applied in natural water samples which were supplemented with 1.0 mg L-1 of As(III to verify the influence of the matrix. After treatment, more than 99% of arsenic was removed from the water.

  12. Effects from Feeding Ways during Preparing Li[Li0.2Co0.13Ni0.13Mn0.54]O2 by Carbonate Co-precipitation Method%碳酸盐共沉淀法制备Li[Li0.2Co0.13Ni0.13Mn0.54]O2中加料方式对产物性能的影响

    Institute of Scientific and Technical Information of China (English)

    杜柯; 赵军峰; 王伟刚; 黄霞; 曹雁冰; 胡国荣; 彭忠东

    2012-01-01

    采用碳酸钠和碳酸氢铵作为沉淀剂和络合剂,在水溶液中共沉淀Mn2+、Ni2+和Co2+以获得混合过渡金属元素的碳酸盐沉淀前驱体Mn0.675Ni01625Co1625CO3.并进一步合成高容量锂离子电池正极材料Li[Li0.2Co0.13Ni013Mn0.54]O2.考察了3种不同加料方式对共沉淀前驱体的结构、形貌和元素比例的影响,以及对最终产物的结构、形貌和电化学性能的影响.%The precursor of Mn0.675Ni0.1625Co0.1625CO3 has been synthesized by a carbonate co-precipitation method, which was used to prepare a high capacity cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion batteries. Three kinds of raw materials feeding ways during co-precipitation process were compared. The chemical and physical properties of the precursor and Li[Li0.2Mn0.54Ni0.13Co0.13]O2 have been systematically studied.

  13. Arsenite sorption and co-precipitation with calcite

    CERN Document Server

    Roman-Ross, Gabriela; Turrillas, Xavier; Fernandez-Martinez, Alejandro; Charlet, Laurent

    2008-01-01

    Sorption of As(III) by calcite was investigated as a function of As(III) concentration, time and pH. The sorption isotherm, i.e. the log As(III) vs. log [As(OH)3 degrees / Assat] plot is S-shaped and has been modelled on an extended version of the surface precipitation model. At low concentrations, As(OH)3 degrees is adsorbed by complexation to surface Ca surface sites, as previously described by the X-ray standing wave technique. The inflexion point of the isotherm, where As(OH)3 degrees is limited by the amount of surface sites (ST), yields 6 sites nm-2 in good agreement with crystallographic data. Beyond this value, the amount of sorbed arsenic increases linearly with solution concentration, up to the saturation of arsenic with respect to the precipitation of CaHAsO3(s). The solid solutions formed in this concentration range were examined by X-ray and neutron diffraction. The doped calcite lattice parameters increase with arsenic content while c/a ratio remains constant. Our results made on bulk calcite on...

  14. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    The chromium (Cr) isotopic composition of carbonates can potentially be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenvironmental changes, for example related to the rise of oxygen during the Ar...... et al., 2007, Water Air Soil Poll. 179, 381-390. [2] Sánchez-Pastor et al., 2011, Cryst. Growth Des. 11, 3081-3089....

  15. Preparation of zirconia-alumina powder by co-precipitation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A zirconia-alumina powder with a near spherical shape and an average size of 0.1 ~ 0.2μm was prepared byco-precipitation. XRD analysis shows that α-Al2O3 phase may be directly transformed from amorphous in calcining the hydroxide composite. The ZrO2-Al2O3 composite ceramics manufactured from this powder has the maximum fracture toughness of 9 M Pa·m- 1/2 at 15 % ZrO2 and 740 MPa fracture strength at 5 % ZrO2. Zirconia grains about 1 μm in diameter aredispersed uniformly in the alumina ceramic matrix

  16. Fractionation behavior of chromium isotopes during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes;

    2015-01-01

    Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track paleoenviro......Interest in chromium (Cr) isotope incorporation into carbonates arises from the observation that Cr isotopic composition of carbonates could be used as a paleoclimate proxy to elucidate past fluctuations of oxygen contents in atmosphere and hydrosphere. The use of Cr isotopes to track...

  17. Chromium isotope fractionation during coprecipitation with calcium carbonate

    DEFF Research Database (Denmark)

    Rodler, Alexandra; Sánchez-Pastor, Nuria; Fernández-Díaz, Lurdes

    the Archaean and Protoerozoic, needs careful assessment of the signal robustness and necessitates a thorough understanding of the Cr cycle in Earth system processes. We conducted experiments testing the incorporation and isotopic fractionation of chromate into the calcite lattice. Our experiments indicate...... et al., 2007, Water Air Soil Poll. 179, 381-390. [2] Sánchez-Pastor et al., 2011, Cryst. Growth Des. 11, 3081-3089....

  18. Synthesis of manganese spinel nanoparticles at room temperature by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Autret-Lambert, C.; Mathieu, C.; Chartier, T.; Delorme, F. [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Seron, A [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS Cedex 2 (France)

    2012-08-15

    This paper is focused on a new route to synthesize Mn{sub 3}O{sub 4} nanoparticles by alkalisation by sodium hydroxide on a manganeous solution at room temperature. The precipitates obtained at different pH values have been characterized by XRD and TEM. Since the first addition of sodium hydroxide, a white Mn(OH){sub 2} precipitate appears. At pH=7, {gamma}-MnOOH phase is predominant with needle like shaped particles. At pH=10, hausmanite nanoparticles, which exhibits well defined cubic shape in the range 50-120 nm are obtained. This new precipitation route is a fast and easy environmentally friendly process to obtain well crystallized hausmanite nanoparticles. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particles after a precipitation at pH=10. Highlights: Black-Right-Pointing-Pointer A new route to synthesize Mn{sub 3}O{sub 4} nanoparticles has been demonstrated. Black-Right-Pointing-Pointer Synthesis has been performed by precipitation at room temperature. Black-Right-Pointing-Pointer The size of the Mn{sub 3}O{sub 4} nanoparticles is between 50 and 120 nm.

  19. Transition metal co-precipitation mechanisms in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Buonassisi, T. [Department of Materials Science and Engineering, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)], E-mail: buonassisi@alumni.nd.edu; Heuer, M.; Istratov, A.A.; Pickett, M.D. [Department of Materials Science and Engineering, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Marcus, M.A. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lai, B.; Cai, Z.; Heald, S.M. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Weber, E.R. [Department of Materials Science and Engineering, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2007-10-15

    Formation mechanisms of precipitates containing multiple-metal species in silicon are elucidated by nano-scale morphology and phase investigations performed by synchrotron-based X-ray microprobe techniques. Precipitates formed at low (655 deg. C) and high (1200 deg. C+) temperatures exhibit distinguishing features indicative of unique formation mechanisms. After lower-temperature annealing, co-localized single-metal silicide phases are observed, consistent with classical models predicting that dissolved, supersaturated metal atoms will precipitate into solid second-phase particles. Precise precipitate morphologies are found to depend on the local crystallographic environment. In precipitates formed during slow cooling from higher-temperature anneals, nano-scale phase separation and intermetallic phases are evident, suggestive of a high-temperature transition through a liquid phase. Based on experimental results and phase diagram information, it is proposed that under certain conditions, liquid metal-silicon droplets may form within the silicon matrix, possibly with the potential to getter additional metal atoms via liquid-solid segregation.

  20. Nanocrystalline Zn{sub 1−x} Co{sub 0.5x}Ni{sub 0.5x} Fe{sub 2}O{sub 4} ferrites: Fabrication via co-precipitation route with enhanced magnetic and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Amna; Azhar Khan, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahid, Muhammad [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Asghar, M. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shakir, Imran [Deanship of Scientific Research, College of Engineering, P.O. Box 800, King Saud University, Riyadh 11421 (Saudi Arabia); Naseem, Shahzad; Riaz, Saira [Centre of Excellence in Solid State Physics, University of the Punjab, Lahore 54590 (Pakistan); Farooq Warsi, Muhammad, E-mail: farooq.warsi@iub.edu.pk [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2015-11-01

    Co and Ni substituted znic ferrite nanoparticles (Zn{sub 1−x}Co{sub 0.5x}Ni{sub 0.5x}Fe{sub 2}O{sub 4}) (0.00≤x≥0.75) were synthesized by co-precipitation method. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the single phase spinel structure. The lattice constant decreased with the increased Co and Ni contents. The bulk density was found less as compared to the X-ray density and this difference was explained in terms of porosity. The crystallite size was calculated by Scherrer's formula and found in the range 20–50 nm. Two prominent stretching bands were observed in FTIR spectra around 400–600 cm{sup −1}. These two bands confirmed the spinel structure of the prepared nanoparticles. The saturation magnetization was found to increase upto x=0.60 from 1.31 emu/g to 81.2 emu/g then it decreased for x=0.75 to the value of 75.1 emu/g. The coercivity and retentivity were found in the range 35.36–226.125 Oe and 0.0135–19.8 emu/g, respectively. Dielectric parameters were decreased with the increased Ni–Co contents. About nine fold increase in the DC-electrical resistivity was obtained for the Zn{sub 0.25}Co{sub 0.375}Ni{sub 0.375}Fe{sub 2}O{sub 4} (2.8979×10{sup 10} Ω cm) as compared to the ZnFe{sub 2}O{sub 4} (0.2974×10{sup 10} Ω cm) nanoparticles. - Highlights: • Zn{sub 1−x}Co{sub 0.5x}Ni{sub 0.5x}Fe{sub 2}O{sub 4} nano-ferrites were fabricated in the range 20–50 nm. • XRD and FTIR confirmed the cubic spinal structure. • Six fold increase in Hc was observed for Zn{sub 0.25}Co{sub 0.375}Ni{sub 0.375}Fe{sub 2}O{sub 4}.

  1. Effect of CaF2 on content of free CaO in tricalcium silicate by co-precipitation process%氟化钙对共沉淀法硅酸三钙中游离氧化钙含量的影响

    Institute of Scientific and Technical Information of China (English)

    赵慧娟; 刘璨; 王凯; 杨洪

    2012-01-01

    以硝酸钙、硅酸钠、碳酸钠、氟化铵为原料,采用共沉淀反应法制备掺杂氟化钙的硅酸三钙.研究不同氟化钙掺杂量对合成硅酸三钙中游离氧化钙含量的影响.用甘油无水乙醇法测定游离氧化钙的含量,扫描电子显微镜 (SEM)和X射线分析(XRD)对硅酸三钙的微观形貌和晶相组成进行表征.结果表明,氟化钙的加入使得样品在煅烧过程中形成了低共融化合物,明显降低了游离氧化钙的含量,缩短了反应时间,降低了煅烧温度,氟化钙掺杂量为0.6%(质量分数)时,在1 350℃下保温4 h可以得到游离氧化钙含量很低的硅酸三钙.%Calcium fluoride-doped tricalcium silicate (3CaO·SiO2,C3S) were synthesized by co-precipitation process with calcium nitrate tetrahydrate [Ca(NO3)2-4H2O] .sodium silicate nonahydrate (Na2Si03 · 9H2O),sodium carbonate (Na2CO3), and ammonium fluoride (NH4F) as raw materials.Effects of different doping amounts of CaF2 on the content of free CaO (f?CaO) in the synthesized C3S were investigated.The content of f-CaO in C3S was determined by glycol-anhydrous alcohol method,and the micro morphology and phase composition of C3S were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM).Results indicated that the addition of CaF2 caused the formation of eutectic mixture,apparently reduced the content of f-CaO, shorten the reaction time and decreased the sintering temperature; and while the doping content of CaF2 (mass fraction) was 0.6%, C3S with little f—CaO could be obtained at 1 350 ℃ for 4 h.

  2. Luminescence properties of Sr2Al14O25:Eu2+,Dy3+phosphors prepared by co-precipitation hydrothermal method%Sr2Al14O25:Eu2+,Dy3+的共沉淀-水热合成及其发光性能

    Institute of Scientific and Technical Information of China (English)

    杜红丽; 王丽影; 许佳斌; 陈研文; 武利民; 郭栋才

    2014-01-01

    以氨水或碳酸铵为沉淀剂,采用共沉淀-水热合成法制备稀土掺杂铝酸锶发光纳米材料,并优化制备稀土掺杂铝酸锶发光材料的工艺条件。对激活剂、助激活剂、助熔剂的用量、体系的酸碱度和灼烧温度对目标产物发光性能的影响规律进行研究。结果表明:目标产物Sr2Al14O25:Eu2+,Dy3+属正交晶系,为蓝绿色长余辉纳米材料,主激发峰均在360 nm左右;氨水共沉淀法制备的产物主发射峰在490 nm,磷光衰减寿命约30 s;碳酸铵沉淀法制备的产物主发射峰在460 nm,磷光衰减寿命约15 s。%Europium and dysprosium co-doped strontium aluminate nanomaterials were prepared by co-precipitation hydrothermal method using ammonia and ammonium carbonate as precipitating agent, and the optimal conditions were determined. The influences, such as the amount of the activator, co-activator, flux, calcined temperature and pH, of the system on the luminescence properties of the products were investigated. The results show that the compound Sr2Al14O25:Eu2+,Dy3+is orthorhombic aquamarine blue long afterglow nanomaterials, the main excitation peak is around 360 nm, the main emission peak of the phosphors obtained using ammonia as precipitation agent is around 490 nm, with the phosphorescence decay lifetime of 30 s, the main emission peak of the products with ammonium carbonate as precipitation agent is around 460 nm, and its phosphorescence decay lifetime is 15 s. The target products with good long afterglow properties are hopeful to be applied in coating, ceramics, photonic devices and other related fields.

  3. 阳离子配比对共沉淀法制备的镍锌铁陵盐纳米颗粒的结构和磁性的影响%Effect of Cation Proportion on the Structural and Magnetic Properties of Ni-Zn Ferrites Nano-Size Particles Prepared By Co-Precipitation Technique

    Institute of Scientific and Technical Information of China (English)

    Santosh S.Jadhav; Sagar E.Shirsath; B.G.Toksha; S.J.Shukla; K.M.Jadhav

    2008-01-01

    用共沉淀法制备了结构式为Ni1-xZnxFe2O4(x=0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7)的铁酸盐纳米颗粒,并对这些纳米颗粒进行了X射线衍射,磁化和交流易感性的测量.X射线衍射的分析结果确认了样品中形成的单相结构.从X射线衍射嘴获得的晶格参数随锌的配比x的增大而增大.通过X射线衍射强度比的计算获得了阳离子分布.磁化研究的结果表明在x0.4时没有共线性关系.交流易感性测量获得的居里温度TC被发现随xz的升高而降低.%Ferrites having general formula Ni1-xZnxFe2O4 with x=0.0,0.1,0.2,0.3,0.4,0.5,0.6,and 0.7 were prepared by wet chemical co-precipitation method.The structural and magnetic properties were studied by means of X-ray diffraction,magnetization,and AC susceptibility measurements.The X-ray analysis confirmed the single-phase formation of the samples.The lattice parameter obtained from XRD data was found to increase with Zn content x.The cation distribution Was studied by X-ray intensity ratio calculations.Magnetization results exhibit collinear ferrimagnetic structure for x≤0.4,and which changes to non-collinear for x>0.4.Curie temperature Tc obtained from AC susceptibility data decreases with increasing x.

  4. 共沉淀法制备铬酸钬粉体及铬酸钬气敏元件的气敏性能%Preparation of HoCrO3 Powders by Co-Precipitation Method and Gas-Sensing Properties of HoCrO3 Gas Sensors

    Institute of Scientific and Technical Information of China (English)

    储向峰; 朱小华; 葛秀涛; 董永平; 陈同云; 叶明富

    2012-01-01

    HoCrO3 precursors were prepared by a co-precipitation method and HoCrO3 nano powders were obtained through heattreating these precursors under different conditions. The crystal structure and micro-morphology of the samples were characterized by X-ray diffractometer and scanning electron microscope. The effects of heat treatment conditions on HoCrO3 gas-sensing properties were investigated via gas response tests of the sensors prepared by HoCrO3 powders. The results showed that the samples were nanocrystalline and its mean grain size is 50 nm or so and samples were perovskite type composite oxides. HoCrO3 calcined at 800 ℃ for 2 h had high sensitivity, selectivity and stability to trimethylamine (TMA). The detection limit of the sensor to TMA was as low as 1 × 10^-7 (volume fraction) and the response could reach 3. So HoCrO3 is a kind of prospective semiconductor material to detect TMA.%采用共沉淀法制备HoCrO3前驱体,将前驱体在不同条件下热处理得到铬酸钬纳米粉体。利用X射线衍射仪和扫描电子显微镜对HoCrO3纳米粉体的晶体结构和微观形貌进行了表征,对用HoCrO3纳米粉制作的元件进行气敏性能测试,研究了热处理条件对HoCrO3气敏元件气敏性能的影响。结果表明:所制备的HoCrO3粉体为纳米颗粒,平均粒径约为50nm,属于钙钛矿型复合氧化物;采用800℃保温2h制备的HoCrO3气敏元件对三甲胺气体具有较高的灵敏度、良好的选择性和稳定性;样品的检测限较低,对体积分数为1×10^-7三甲胺的灵敏度为3。HoCrO3是检测三甲胺的一种很有应用前景的半导体气敏材料。

  5. Influence of Reaction Time of Urea Hydrolysis-Based Co-precipitation on the Structure of ZnA! Layered Double Hydroxides and the Phosphate Adsorption%尿素分解共沉淀法中反应时间对ZnAl类水滑石结构和磷吸附性能的影响

    Institute of Scientific and Technical Information of China (English)

    陆英; 程翔; 邢波; 孙中恩; 孙德智

    2012-01-01

    A series of ZnAl layered double hydroxides(LDHs) were prepared by urea hydrolysis-based homogeneous co-precipitation for studying their structure and phosphate adsorption capacities.The results show that all the samples exhibited a typical layered structure as the reaction time extended from 12 h to 96 h,whereas Zn/Al molar ratio in the ZnAls decreased from 2.06 to 0.70 and the specific surface area markedly increased to be 7.6-fold higher than that of ZnAl-12.Phosphate adsorption capacity of the ZnAl was in general increased gradually with the reaction time extension,which can be attributed to the surface area rising as well as the increased positive charge of LDHs layer caused by a higher proportion of Al.This reveals that physicochemical adsorption on LDHs surface would have played an important role during the phosphate adsorption.With a reaction time of 24 h,a high amount of exchangeable interlayer anions was observed,giving rise to a highest phosphate uptake of 34.1 mg·g-1 by the ZnAl-24.It indicates the ion exchange was another major pathway for the phosphate removal.For all the ZnAls with different reaction times,the phosphate adsorption isotherms fit well with Langmuir-type equations;the adsorption kinetics followed pseudo-second-order models.%采用尿素分解均匀共沉淀法合成了一系列反应时间不同的ZnAl类水滑石,考察了其结构特征及其对水中磷酸根的吸附性能.结果表明,随着反应时间由12 h增加至96 h,制得的ZnAl均具有典型的类水滑石层状结构,但其中的n(Zn)/n(Al)由2.06降至0.70,比表面积升至ZnAl-12的7.6倍.样品中Al比例升高引起的层板正电性增加以及样品比表面积的升高引起了ZnAl对水中磷酸根的吸附性能总体上随着其制备反应时间的增加逐渐增强,同时表明表面的物理化学吸附在磷酸根的去除过程中具有重要作用.当反应时间为24 h时,制备得到的ZnAl类水滑石由于其很高的可交换阴离子

  6. Electrochemical Properties of Co-doped LiFePO4/C Prepared by Coprecipitation-microwave Method%Co掺杂LiFePO4/C的共沉淀——微波合成及电化学性能

    Institute of Scientific and Technical Information of China (English)

    张勇; 杜培培; 王力臻; 张爱勤

    2011-01-01

    采用共沉淀-微波法制备了Co掺杂的锂离子电池正极材料LiFe1-xCoxPO4/C(x=0.00、0.01、0.03、0.05、0.07、0.09).研究了微波时间、柠檬酸量、掺Co量等因素对材料结构、形貌和电性能的影响.XRD、SEM和电化学测试表明:该方法制备的样品为橄榄石型非晶结构,粒径尺寸为0.5~5 μm,颗粒分布比较均匀.微波15 min、柠檬酸量为20wt%时,LiFePO4/C电化学性能最优,0.1C倍率放电可达124 mA·h/g,第20次循环的比容量为117mA·h/g.掺杂Co在很大程度上可以提高LiFePO4/C的电化学性能,当Co含量为5wt%时,LiFe0.95Co0.05PO4/C的比容量为最大值,0.1C倍率放电可达136 mA·h/g,第20次循环的比容量为125 mA· h/g,容量保持率为91.9%.%Stoichiometric Co-doped lithium iron phosphates LiFe,,,Co,PO4 /C (x=0.00, 0.01, 0.03, 0.05, 0.07, 0.09) cathode materials for lithium ion batteries was synthesized by coprecipitation-microwave method. The effects of microwave time, the amount of citric acid, the content of doped cobalt on the microstructure, morphology and electrochemical properties of LiFeCozPO4 /C were analyzed. The results show that the optimal condition is: microwave time of 15 min, the amount of citric acid reaches 20wt%. Under this condition, the sample has an olivine-type amorphous structure and grain size is in the range from 0.5 u,m to 5 fim. When charge-discharge at 0.1 C, its initial specific discharge capacity is 124 raA · h/g, the specific capacity at the 20th cycle is 117 mA · h/g. The content of Co is an important factor to influence the performance of LiFePO4. Charge-discharge test shows that the cathode materials with the Co content of 5wt% possess excellent charge/discharge capacities, about 136mA-h/g at 0.1 C rate and 125mA-h/g in the 20th cycle, the capacity retention is 91.9%.

  7. Characterization of magnetic nano particles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} prepared by the chemical co-precipitation method; Caracterizacion de nanoparticulas magneticas de CoFe{sub 2}O{sub 4} y CoZnFe{sub 2}O{sub 4} preparadas por el metodo de coprecipitacion quimica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.; Zambrano, G.; Gomez, M. E. [Universidad del Valle, Departamento de Fisica, Laboratorio de Peliculas Delgadas, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Prieto, P. [Universidad del Valle, Centro de Excelencia en Nuevos Materiales, Ciudad Universitaria Melendez, 25360 Cali (Colombia); Espinoza B, F. J., E-mail: javierlo21@gmail.com [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Queretaro (Mexico)

    2012-07-01

    Magnetic cobalt ferrite nanoparticles of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} were prepared by co-precipitation technique from aqueous salt solutions of Co (II), ZnSO{sub 4} and Fe (III), in an alkaline medium. CoFe{sub 2}O{sub 4} powder samples were structurally characterized by X-ray diffraction, showing the presence of the most intense peat at 2{theta} = 413928{sup o} (Co K{alpha}1) corresponding to the (311) crystallographic orientation of the CoFe{sub 2}O{sub 4} spinel phase. The mean size of the crystalline of CoFe{sub 2}O{sub 4} and CoZnFe{sub 2}O{sub 4} nanoparticles determined from the full width at half maximum of the strongest reflection of the (311) peak by using the Scherrer approximation was calculated to be 11.4 and 7.0 ({+-} o.2) nm, respectively. Transmission electron microscopy studies permitted determining nanoparticle size of CoZnFe{sub 2}O{sub 4}. Fourier transform infrared spectroscopy was used to confirm the formation of Fe-O bonds, allowing identifying the presence of ferrite spinel structure. Magnetic properties were investigated with the aid of a vibrating sample magnetometer at room temperature Herein, the sample showed superparamagnetic behavior, determined by the hysteresis loop finally, due to the hysteresis loop of the CoZnFe{sub 2}O{sub 4} is very small, our magnetic nanoparticles can be considered as a soft magnetic material. These magnetic nanoparticles have interesting technological applications in biomedicine given their biocompatibility, in nano technology, and in ferro fluid preparation. (Author)

  8. Photoluminescence study of Mn doped ZnS nanoparticles prepared by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, M. P., E-mail: vishwadeshpande@yahoo.co.in; Patel, Kamakshi, E-mail: kamphysics@gmail.com; Gujarati, Vivek P.; Chaki, S. H. [Department of Physics, Sardar Patel University, VallabhVidyanagr-388120,Anand, Gujarat, India. (India)

    2016-05-06

    ZnS nanoparticles co-doped with different concentration (5,10,15%) of Mn were synthesized using polyvinylpyrrolidone (PVP) as a capping agent under microwave irradiation. We confirmed doping of Mn in the host ZnS by EDAX whereas powder X-ray diffractogram showed the cubic zinc blende structure of all these samples. TEM images did showed agglomeration of particles and SAED pattern obtained indicated polycrystalline nature. From SAED pattern we calculated lattice parameter of the samples which have close resemblance from that obtained from XRD pattern. The band gap values of pure and doped ZnS nanoparticles were calculated from UV-Visible absorption spectra. ZnS itself is a luminescence material but when we dope it with transition metal ion such as Mn, Co, and Cu they exhibits strong and intense luminescence in the particular region. The photoluminescence spectra of pure ZnS nanoparticles showed an emission at 421 and 485nm which is blue emission which was originated from the defect sites of ZnS itself and also sulfur deficiency and when doped with Mn{sup 2+} an extra peak with high intensity was observed at 530nm which is nearly yellow-orange emission which isrelated to the presence of Mn in the host lattice.

  9. Coprecipitation and redox reactions of manganese oxides with copper and nickel

    Science.gov (United States)

    Hem, J.D.; Lind, Carol J.; Roberson, C.E.

    1989-01-01

    Open-system, continuous-titration experiments have been done in which a slow flux of ???0.02 molar solution of Mn2+ chloride, nitrate, or perchlorate with Cu2+ or Ni2+ in lesser concentrations was introduced into an aerated reactor solution held at constant temperature and at constant pH by a pH-stat titrator that added dilute NaOH. The resulting mixtures of metal oxyhydroxides and their native solutions were aged for periods as long as 2 1/2 years. Fresh and aged precipitates were characterized by chemical analysis, oxidation state determinations, X-ray and electron diffraction, and electron microscopy. The precipitates can be described as mixtures of oxide and oxyhydroxide species, using concepts of equilibrium and nonequilibrium chemical thermodynamics. The metal-ion content of the aged precipitates in systems that contained copper is distributed among three principal components. One of these is a mixed oxide Cu2Mn3O8 in which all Mn is in the 4+ oxidation state. A major component in all precipitates is feitknechtite, ??MnOOH. These forms are supplemented by CuO or by birnessite or ramsdellite forms of MnO2 where stoichiometry and thermodynamic calculations predict them. In systems that contained nickel and manganese, identifiable components included ??MnOOH, Ni(OH)2, and the same two forms of MnO2. The oxidation number of the precipitated manganese increased during aging, and the pH of the supernatant solution decreased. The maximum Mn oxidation number observed was 3.55 in an Mn + Cu precipitate aged for 18 months. Concentrations of Cu2+ and Ni2+ generally decreased to values substantially below those predicted by oxide or hydroxide equilibrium. Scavenging effects of this type are common in natural aqueous systems. ?? 1989.

  10. Effect of agglomeration during coprecipitation: Delayed spinellization of magnesium aluminate hydrate

    Indian Academy of Sciences (India)

    Soumen Pal; A K Bandyopadhyay; S Mukherjee; B N Samaddar; P G Pal

    2010-08-01

    Precipitation of magnesium aluminate hydrate with faster addition of ammonia at desired pH causes agglomeration. Agglomerated powder, without any further treatment, on calcination forms intermediate compounds at low temperatures (≤ 900°C). The intermediate compounds on further heat treatment (≥ 1000°C) decompose into MgO, MgAl2O4 and -Al2O3. Effect of agglomeration and absorption of foreign ions such as Cl–, SO$^{2-}_{4}$, and NH$^{+}_{4}$ in complex compounds probably cause loss of Al3+ and Mg2+ ions during heat treatment, and stoichiometry changes. Powders prepared by continuous method with better control of process parameters than batch process yields better spinellization.

  11. Synthesis of Al doped ZnO nanoparticles by aqueous coprecipitation

    OpenAIRE

    Giovannelli, Fabien; Ngo Ndimba, P.; Diaz-Chao, P.; Motelica-Heino, Mikael; Raynal, P.I.; Autret, C.; Delorme, F.

    2014-01-01

    International audience; Al-doped ZnO particles were obtained by a simple route: soda addition in aqueous cationic solution. The effects of temperature, hydrolysis duration, reagent concentration and time were investigated. A non-topotactic reaction mechanism, involving firstly the precipitation of various hydroxide compounds depending on the route (low or high pH), followed by the dissolution-recrystallization of the hydroxide species into ZnO was demonstrated. The Al concentration in the fin...

  12. Uranium Isotope Fractionation during Adsorption, (Co)precipitation, and Biotic Reduction.

    Science.gov (United States)

    Dang, Duc Huy; Novotnik, Breda; Wang, Wei; Georg, R Bastian; Evans, R Douglas

    2016-12-06

    Uranium contamination of surface environments is a problem associated with both U-ore extraction/processing and situations in which groundwater comes into contact with geological formations high in uranium. Apart from the environmental concerns about U contamination, its accumulation and isotope composition have been used in marine sediments as a paleoproxy of the Earth's oxygenation history. Understanding U isotope geochemistry is then essential either to develop sustainable remediation procedures as well as for use in paleotracer applications. We report on parameters controlling U immobilization and U isotope fractionation by adsorption onto Mn/Fe oxides, precipitation with phosphate, and biotic reduction. The light U isotope ((235)U) is preferentially adsorbed on Mn/Fe oxides in an oxic system. When adsorbed onto Mn/Fe oxides, dissolved organic carbon and carbonate are the most efficient ligands limiting U binding resulting in slight differences in U isotope composition (δ(238)U = 0.22 ± 0.06‰) compared to the DOC/DIC-free configuration (δ(238)U = 0.39 ± 0.04‰). Uranium precipitation with phosphate does not induce isotope fractionation. In contrast, during U biotic reduction, the heavy U isotope ((238)U) is accumulated in reduced species (δ(238)U up to -1‰). The different trends of U isotope fractionation in oxic and anoxic environments makes its isotope composition a useful tracer for both environmental and paleogeochemical applications.

  13. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    an improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence...... of precipitated (ferrihydrite surface) and dissolved iron enhanced arsenic oxidation in comparison to solution with absence of precipitated iron in laboratory scale experiments. However, in the pilot scale studies the adsorption of arsenite on ferrihydrite was found to be the main process occurring during...... implementation of the process in the waterworks that are struggling with arsenic related issues....

  14. Treatment Of Metal-Mine Effluents By Limestone Neutralization And Calcite Co-Precipitation

    Science.gov (United States)

    The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...

  15. Treatment Of Metal-Mine Effluents By Limestone Neutralization And Calcite Co-Precipitation (Presentation)

    Science.gov (United States)

    The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...

  16. Circular RNAs Co-Precipitate with Extracellular Vesicles: A Possible Mechanism for circRNA Clearance.

    Directory of Open Access Journals (Sweden)

    Erika Lasda

    Full Text Available Backspliced circular RNAs (circRNAs are prevalent in many eukaryotic systems and are spliced from thousands of different genes. Where examined, circRNAs are often highly stable and the mechanisms by which cells degrade and/or clear circRNAs from the cells are unknown. Here we investigated the possibility that cells can eliminate circRNAs into extracellular space, possibly within released vesicles such as exosomes and microvesicles. From three different cell lines and examining multiple circRNAs, we show that extracellular vesicle (EVs preparations recovered from cell culture conditioned media contain established circRNAs. Moreover, these circRNAs are enriched over their linear counterparts within EV preparations when compared to the producing cells. This supports the idea that expulsion from cells into extracellular space, as by EVs release, can be a mechanism by which cells clear circRNAs. Moreover, since EVs can be taken up by other cells, excreted circRNAs could contribute to cell to cell communication.

  17. Development and validation of an equilibrium model for struvite formation with calcium co-precipitation

    Science.gov (United States)

    Lee, Sang-Hun; Yoo, Byeoung-Hak; Lim, Seung Joo; Kim, Tak-Hyun; Kim, Sun-Kyoung; Kim, Jun Young

    2013-06-01

    This study developed an equilibrium model to predict the P recovery and struvite amounts by newly incorporating two separate equilibrium constants on the struvite formation with HPO42- and PO43-, as well as free ammonium (NH4+), phosphate (PO4), magnesium (Mg2+), and calcium (Ca2+) ion species. The equilibrium struvite reaction and its solubility constant with HPO42- species was verified by deriving a reasonable correlation between solution pH and the conditional solubility products that were obtained from the equilibrium reaction. Also, based on the Visual MINTEQ software program, the potentially precipitated Ca phosphates and struvite precipitates were selected, and these compounds were utilized as target precipitants for the modeling to simulate P recovery and struvite formation under the competitive inhibition of Ca ions. The resultant simulated P recovery data were validated by experimental data with synthetic wastewater. The model data showed good agreement with the experimental results (R2>95%). The model also confirmed that the purity of struvite in the precipitate and the pH that maximizes the struvite fraction are dependent on the initial concentrations of NH4+, Mg2+, and PO4. Because only PO43-, not HPO42-, was regarded in Ca precipitation, Ca phosphate precipitation was underestimated as compared with the experimental results.

  18. COPRECIPITATION PREPARATION AND VOLTAGE SENSITIVE CHARACTERISTICS OF DOPED ZnO VARISTOR

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    ZnOvaristorhasbeenwidelyusedinprotectiondevicesforsmalcurentelectroniccircuitsaswelasforlargecurenttransmisionlines[1].Theor...

  19. Effect of Coprecipitation Parameters on Powder Characteristics and on Densification of PZT Ceramics.

    Science.gov (United States)

    1982-09-01

    34* diffraction using a Phillips Norelco Diffractometer with filtered Ni K radiati-n. The powders were also subjected to DTA and TGA analysis using... TGA analysis showed the first two peaks to be associated with weight loss, the maximum loss occurring near 300oC. From Fig. 4a it is evident that I0

  20. Co-precipitation of ettringite of rapid and slow formation. Consequence: Expansive Synergic Effect. Its demonstration by mortars and concretes

    Directory of Open Access Journals (Sweden)

    Talero, R.

    2011-09-01

    Full Text Available Several prior papers have shown that enough pozzolans can bring about rapid formation ettringite (from its Al2O3r-. It has likewise been found that the formation rate of this ettringite is higher than the of slower forming ettringite originating from OPC (from its C3A. In this context: What type of effect will they ultimately produce? Addition? Synergism? Antagonism? or perhaps Inversion of final expansive action?. To reply to these questions, 4 PC and 12 blended cements containing 20%, 30% or 40% metakaolin, were tested using the ASTM C 452-68, EN 196-1 and RT-86:ΔL tests and also concrete specimens. The experimental results have shows that the joint precipitation in a common sulfate medium, of ettringite from pozzolan and from OPC, was always more synergic than additive, and the technical consequences of the Expansive Synergic Effect may be classified as beneficial, adverse or indifferent according to its sulfates content in excess is more or less adequate.En investigaciones anteriores se ha demostrado que bastantes puzolanas pueden originar ettringita de rápida formación (de su Al2O3r- cuya velocidad es mayor que la de la ettringita de lenta formación, o de origen CPO (de su C3A. En este contexto: ¿qué tipo de efecto será el que produzcan finalmente ambas ettringitas?, ¿adición?, ¿sinergismo?, ¿antagonismo? o ¿inversión de la acción expansiva?. Para responder a estas cuestiones, 4 CPO y 12 cementos con 20%, 30% y 40% de metakaolín fueron ensayados mediante los métodos ASTM C 452-68, EN 196-1 y RT-86:ΔL, y también mediante hormigones. Los resultados obtenidos han demostrado que la precipitación conjunta en un medio selenitoso común, de ettringita de origen puzolana y de origen CPO, es siempre cuantitativamente hablando, más que aditiva, sinérgica, pudiendo ser por ello las consecuencias técnicas del Efecto Sinérgico Expansivo, beneficiosas, adversas o indiferentes, según que el exceso de sulfatos presentes sea más o menos adecuado.

  1. Synthetic Smectite Colloids: Characterization of Nanoparticles after Co-Precipitation in the Presence of Lanthanides and Tetravalent Elements (Zr, Th

    Directory of Open Access Journals (Sweden)

    Muriel Bouby

    2015-09-01

    Full Text Available The magnesian smectite hectorite is a corrosion product frequently detected in nuclear waste glass alteration experiments. The structural incorporation of a single trivalent lanthanide was previously demonstrated. Hectorite was presently synthesized, for the first time, in the presence of several lanthanides (La, Eu, Yb following a multi-step synthesis protocol. The smallest-sized particles (nanoparticles, NPs were isolated by centrifugation and analyzed by asymmetrical flow field-flow fractionation (AsFlFFF coupled to ICP-MS, in order to obtain information on the elemental composition and distribution as a function of the size. Nanoparticles can be separated from the bulk smectite phase. The particles are able to accommodate even the larger-sized lanthanides such as La, however, with lower efficiency. We, therefore, assume that the incorporation proceeds by substitution for octahedral Mg accompanied by a concomitant lattice strain that increases with the size of the lanthanides. The presence of a mixture does not seem to affect the incorporation extent of any specific element. Furthermore, syntheses were performed where in addition the tetravalent zirconium or thorium elements were admixed, as this oxidation state may prevail for many actinide ions in a nuclear waste repository. The results show that they can be incorporated as well.

  2. Synthesis of CaMoO{sub 4} hierarchical structures via a simple slow-release co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Yubin; Song, Jimei, E-mail: jmsongsss@163.com; Hu, Gang; Liu, Ya

    2015-09-15

    Graphical abstract: - Highlights: • Erythrocyte-like CaMoO{sub 4} with uniform shape were successfully synthesized. • The slow-release of MoO{sub 4}{sup 2−} affected the final CaMoO{sub 4} morphology. • Erythrocyte-like CaMoO{sub 4} exhibited high removal rate for the methylene blue. - Abstract: In this paper, erythrocyte-like calcium molybdate (CaMoO{sub 4}) hierarchical structures were successfully synthesized by a modified slow-release strategy. The structure of the as-prepared products was characterized by X-ray diffraction, Fourier transform infrared and Raman spectroscopy. The morphology was observed with scanning electron microscopy. A series of experiments of reaction conditions including reaction time, initial pH and molybdenum source were carefully carried out. The results showed that the slow release of MoO{sub 4}{sup 2−} played a key role in the morphology of the products. Moreover, the photoluminescence spectrum of the erythrocyte-like CaMoO{sub 4} revealed a strong and broad emission peak at 536 nm. The erythrocyte-like CaMoO{sub 4} exhibited high removal rate for the methylene blue (MB), suggesting its potential application in water treatment.

  3. Coprecipitation of (14)C and Sr with carbonate precipitates: The importance of reaction kinetics and recrystallization pathways.

    Science.gov (United States)

    Hodkin, David J; Stewart, Douglas I; Graham, James T; Burke, Ian T

    2016-08-15

    This study investigated the simultaneous removal of Sr(2+) and (14)CO3(2-) from pH>12 Ca(OH)2 solution by the precipitation of calcium carbonate. Initial Ca(2+):CO3(2-) ratios ranged from 10:1 to 10:100 (mM:mM). Maximum removal of (14)C and Sr(2+) both occurred in the system containing 10mM Ca(2+) and 1mM CO3(2-) (99.7% and 98.6% removal respectively). A kinetic model is provided that describes (14)C and Sr removal in terms of mineral dissolution and precipitation reactions. The removal of (14)C was achieved during the depletion of the initial TIC in solution, and was subsequently significantly affected by recrystallization of the calcite precipitate from an elongate to isotropic morphology. This liberated >46% of the (14)C back to solution. Sr(2+) removal occurred as Ca(2+) became depleted in solution and was not significantly affected by the recrystallization process. The proposed reaction could form the basis for low cost remediation scheme for (90)Sr and (14)C in radioactively contaminated waters (<$0.25 reagent cost per m(3) treated).

  4. A novel BMP2-coprecipitated, layer-by-layer assembled biomimetic calcium phosphate particle: a biodegradable and highly efficient osteoinducer

    NARCIS (Netherlands)

    Zheng, Y.; Wu, G.; Liu, T.; Liu, Y.; Wismeijer, D.; Liu, Y.

    2014-01-01

    Purpose To repair large-size bone defects, most bone-defect-filling materials in clinic need to obtain osteoinductivity either by mixing them with particulate autologous bone or adsorbing bone morphogenetic protein 2 (BMP2). However, both approaches encounter various limitations. In this study, we h

  5. Co-precipitation of asiatic acid and poly( l-lactide) using rapid expansion of subcritical solutions into liquid solvents

    Science.gov (United States)

    Sane, Amporn; Limtrakul, Jumras

    2011-09-01

    Poly( l-lactide) (PLLA) nanoparticles loaded with asiatic acid (AA) were successfully produced by rapid expansion of a subcritical solution into an aqueous receiving solution containing a dispersing agent. A mixture of carbon dioxide (CO2) and ethanol (EtOH) with a weight ratio of 1:1 was used as the solvent for AA and PLLA. Two surfactants, Pluronic F127 and sodium dodecyl sulfate were employed. The former was found to be more effective for stabilizing AA-loaded PLLA nanoparticles, as a rapid expansion into a 0.1 wt% Pluronic F127 solution produced a stable nanosuspension consisting mainly of well-dispersed, individual nanoparticles. The effects of rapid expansion-processing conditions—AA to PLLA weight ratio and pre-expansion temperature (Tpre)—on the size and morphology of composite nanoparticles, and the loading capacity and entrapment efficiency of AA in PLLA nanoparticles, were systematically investigated. It was found that AA-loaded PLLA nanoparticles with a size range of 30-100 nm were consistently fabricated by rapid expansion at Tpre of 70-100 °C and AA to PLLA weight ratios of 1:2 and 1:4, and with a constant pre-expansion pressure of 330 bar. The Tpre and AA to PLLA weight ratio had no significant effects on the size of the nanoparticles. The AA to PLLA weight ratio is a controlling parameter for both the loading capacity and the entrapment efficiency of AA in PLLA nanoparticles. The loading capacity and entrapment efficiency increased from 8-11 to 16-21 wt%, and 38-57 to 50-62 wt%, respectively, when the AA to PLLA weight ratio changed from 1:4 to 1:2. However, increasing the Tpre from 70 to 100 °C decreased both the loading capacity and entrapment efficiency of AA in PLLA nanoparticles by 20-30%.

  6. Co-precipitation of asiatic acid and poly(l-lactide) using rapid expansion of subcritical solutions into liquid solvents

    Energy Technology Data Exchange (ETDEWEB)

    Sane, Amporn, E-mail: amporn.s@ku.ac.th; Limtrakul, Jumras [Kasetsart University, NANOTEC Center of Excellence, National Nanotechnology Center (Thailand)

    2011-09-15

    Poly(l-lactide) (PLLA) nanoparticles loaded with asiatic acid (AA) were successfully produced by rapid expansion of a subcritical solution into an aqueous receiving solution containing a dispersing agent. A mixture of carbon dioxide (CO{sub 2}) and ethanol (EtOH) with a weight ratio of 1:1 was used as the solvent for AA and PLLA. Two surfactants, Pluronic F127 and sodium dodecyl sulfate were employed. The former was found to be more effective for stabilizing AA-loaded PLLA nanoparticles, as a rapid expansion into a 0.1 wt% Pluronic F127 solution produced a stable nanosuspension consisting mainly of well-dispersed, individual nanoparticles. The effects of rapid expansion-processing conditions-AA to PLLA weight ratio and pre-expansion temperature (T{sub pre})-on the size and morphology of composite nanoparticles, and the loading capacity and entrapment efficiency of AA in PLLA nanoparticles, were systematically investigated. It was found that AA-loaded PLLA nanoparticles with a size range of 30-100 nm were consistently fabricated by rapid expansion at T{sub pre} of 70-100 Degree-Sign C and AA to PLLA weight ratios of 1:2 and 1:4, and with a constant pre-expansion pressure of 330 bar. The T{sub pre} and AA to PLLA weight ratio had no significant effects on the size of the nanoparticles. The AA to PLLA weight ratio is a controlling parameter for both the loading capacity and the entrapment efficiency of AA in PLLA nanoparticles. The loading capacity and entrapment efficiency increased from 8-11 to 16-21 wt%, and 38-57 to 50-62 wt%, respectively, when the AA to PLLA weight ratio changed from 1:4 to 1:2. However, increasing the T{sub pre} from 70 to 100 Degree-Sign C decreased both the loading capacity and entrapment efficiency of AA in PLLA nanoparticles by {approx}20-30%.

  7. Structural and magnetic properties of zinc- and aluminum-substituted cobalt ferrite prepared by co-precipitation method

    Indian Academy of Sciences (India)

    S T Alone; K M Jadhav

    2008-01-01

    Spinal ferrites having the general formula Co1-ZnFe2-AlO4 ( = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) were prepared using the wet chemical co-operation technique. The samples were annealed at 800°C for 12 h and were studied by means of X-ray diffraction, magnetization and low field AC susceptibility measurements. The X-ray analysis showed that all the samples had single-phase cubic spinel structure. The variation of lattice constant with Zn and Al concentration deviates from Vegard's law. The saturation magnetization and magneton number B measured at 300 K using high field hysteresis loop technique decreases with increasing , suggesting decrease in ferrimagnetic behaviour. Curie temperature C deduced from AC susceptibility data decreases with , suggesting a decrease in ferrimagnetic behaviour.

  8. Comparison of the structural, magnetic, electronic, and optical properties for ZnCoO and Co-precipitation samples

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Jin; Cho, Yong-Chan; Kim, Su-Jae; Lee, Seung-Hun; Kim, Won-Kyung; Jeong, Se-Young; Cho, Chae Ryong [Pusan National University, Miryang (Korea, Republic of); Bae, Jong-Seong [Korea Basic Science Institute, Busan Center, Busan (Korea, Republic of); Park, Sung-Kyun; Jeong, Il-Kyoung [Pusan National University, Busan (Korea, Republic of)

    2010-04-15

    In order to investigate the ferromagnetism of Co-doped ZnO, we systematically fabricated Zn{sub 1-x}Co{sub x}O (x = 0, 0.05, 0.1, 0.2, 0.4) thin films on (0001) Al{sub 2}O{sub 3} substrates by rf-sputtering and measured their structural, electronic, optical, and magnetic properties. Below 20 mol% of Co, the Co ion could be successfully substituted at Zn site and showed clear paramagnetism in superconducting quantum interference devices (SQUID) and magnetic circular dichroism (MCD) measurements. However, secondary phases, including Co metal clustering, were found in the ZnO matrix at a 40-mol% Co concentration, showing a strong ferromagnetism due to the contributes of microscopic precipitates of Co ions. Consequently, the clear paramagnetic behaviors of all the fabricated ZnCoO thin films in the magneto-optic MCD results revealed that the spin-polarized band structure, an intrinsic property of ferromagnetism diluted ferromagnetic semiconductors (DMSs), could not be induced by the substituted Co ions themselves. Importantly, these results indicate that any intrinsic ferromagnetism in ZnCoO cannot be induced without the contribution of hydrogen.

  9. Studies on plutonium-zirconium co-precipitation and carbothermal reduction in the internal gelation process for nitride fuel preparation

    Science.gov (United States)

    Hedberg, Marcus; Ekberg, Christian

    2016-10-01

    Sol-gel based techniques are one way to lower the handling of highly radioactive powders when producing transuranium-containing fuel. In this work inert matrix (Zr0.6,Pu0.4)N fuel has been produced by internal gelation followed by carbothermal reduction. No co-gelation was observed during internal gelation and a two phase material could be detected by scanning electron microscopy in the nitrided microspheres. Sintering has been performed in both Ar and N2. X-ray diffraction revealed that sintering in N2 produced a solid solution, while sintering in Ar did not. The final metal composition in the microspheres was determined by ICP-MS to be about 41% Pu and 59% Zr. Vegard's law was applied to estimate the nitride purity in the solid solution pellet to be Zr0.6Pu0.4N0.87C0.13 making the final material more of a carbonitride than a pure nitride.

  10. Preparation and Physical Characterization of a Diclofenac-Ranitidine Co-precipitate for Improving the Dissolution of Diclofenac.

    Science.gov (United States)

    Gaitano, Robertino O; Calvo, Natalia L; Narda, Griselda E; Kaufman, Teodoro S; Maggio, Rubén M; Brusau, Elena V

    2016-03-01

    Mixing aqueous solutions of sodium diclofenac (DIC-Na) and ranitidine hydrochloride (RAN·HCl) afforded an off-white solid (DIC-RAN) that was investigated from the microscopic, thermal, diffractometric, spectroscopic, and functional (chemometrics-assisted dissolution) points of view. The solid has a 2:1 (DIC:RAN) molar ratio according to (1)H nuclear magnetic resonance spectroscopy. It is thermally stable, displaying a broad endothermic signal centered at 105°C in the thermogram, and its characteristic reflections in the powder X-ray diffractogram remained unchanged after a 3-month aging period. Scanning electron microscopy micrographs uncovered its morphology, whereas the spectral data suggested an interaction between the carboxylic acid of DIC and the alkyldimethylamino moiety of RAN. The dissolution of DIC-RAN was monitored at different pH values by an ultraviolet/chemometrics procedure, being complete within 5 min at pH 6.8. This compares favorably with the dissolution of a DIC-Na sample of the same particle size.

  11. Coprecipitation of {sup 14}C and Sr with carbonate precipitates: The importance of reaction kinetics and recrystallization pathways

    Energy Technology Data Exchange (ETDEWEB)

    Hodkin, David J. [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Stewart, Douglas I. [School of Civil Engineering, University of Leeds (United Kingdom); Graham, James T. [National Nuclear Laboratory, Sellafield, Cumbria (United Kingdom); Burke, Ian T., E-mail: I.T.Burke@leeds.ac.uk [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2016-08-15

    This study investigated the simultaneous removal of Sr{sup 2+} and {sup 14}CO{sub 3}{sup 2−} from pH > 12 Ca(OH){sub 2} solution by the precipitation of calcium carbonate. Initial Ca{sup 2+}:CO{sub 3}{sup 2−} ratios ranged from 10:1 to 10:100 (mM:mM). Maximum removal of {sup 14}C and Sr{sup 2+} both occurred in the system containing 10 mM Ca{sup 2+} and 1 mM CO{sub 3}{sup 2−} (99.7% and 98.6% removal respectively). A kinetic model is provided that describes {sup 14}C and Sr removal in terms of mineral dissolution and precipitation reactions. The removal of {sup 14}C was achieved during the depletion of the initial TIC in solution, and was subsequently significantly affected by recrystallization of the calcite precipitate from an elongate to isotropic morphology. This liberated > 46% of the {sup 14}C back to solution. Sr{sup 2+} removal occurred as Ca{sup 2+} became depleted in solution and was not significantly affected by the recrystallization process. The proposed reaction could form the basis for low cost remediation scheme for {sup 90}Sr and {sup 14}C in radioactively contaminated waters (<$0.25 reagent cost per m{sup 3} treated). - Highlights: • 99.7% of {sup 14}C and 98.6% of Sr removed from aqueous solution by CaCO{sub 3} precipitation. • Remobilization of {sup 14}C observed during calcium carbonate recrystallization. • Sr displayed variable distribution coefficient (possibly affected by Ca:Sr ratio). • Reagent cost of $0.22/m{sup 3} of treated groundwater.

  12. Bacterial reduction and release of adsorbed arsenate on Fe(Ⅲ)-, Al-and coprecipitated Fe(Ⅲ)/Al-hydroxides

    Institute of Scientific and Technical Information of China (English)

    Xuexia Zhang; Yongfeng Jia; Shaofeng Wang; Rongrong Pan; Xudong Zhang

    2012-01-01

    Mobilization of arsenic under anaerobic conditions is of great concern in arsenic contaminated soils and sediments.Bacterial reduction of As(Ⅴ)and Fe(Ⅲ)influences the cycling and partitioning of arsenic between solid and aqueous phase.We investigated the impact of bacterially mediated reductions of Fe(Ⅲ)/A1 hydroxides-bound arsenic(Ⅴ)and iron(Ⅲ)oxides on arsenic release.Our results suggested that As(Ⅴ)reduction occurred prior to Fe(Ⅲ)reduction,and Fe(Ⅲ)reduction did not enhance the release of arsenic.Instead,Fe(Ⅲ)hydroxides retained their dissolved concentrations during the experimental process,even though the new iron mineral-magnetite formed.In contrast,the release of reduced As(Ⅲ)was promoted greatly when aluminum hydroxides was incorporated.Thus,the substitution of aluminum hydroxides may be responsible for the release of arsenic in the contaminated soils and sediments,since aluminum substitution of Fe(Ⅲ)hydroxides universally occurs under natural conditions.

  13. In Situ Synthesis of 3Y-TZP/MgAl2O4 Nanoparticle Composite Through Co-precipitation

    Science.gov (United States)

    Opoku, Michael; Kanakala, Raghunath

    2016-06-01

    3 Mole pct yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) and spinel (MgAl2O4) nanocomposite was synthesized by co-precipitation—calcination method. The powders were made to a composition of 70 vol pct 3Y-TZP and 30 vol pct MgAl2O4. The composite made of 70 pct 3Y-TZP and 30 pct MgAl2O4 is well known for its superplastic ability at high temperatures. Reverse drop method was utilized to precipitate metal ions simultaneously, resulting in a homogenous composition on a molecular scale and crystalline after calcination at 1273 K (1000 °C) for 2 hours. The characterization results showed that the powders were phase pure tetragonal zirconia and spinel, fairly not forming a ternary complex between Spinel and 3Y-TZP. From the TEM and DLS analyses, the average particle size was determined to be about 50 to 100 nm with some level of agglomeration. Raman peaks E g (156 cm-1), E g (274 cm-1), B 1g (332 cm-1), E g (474 cm-1), A 1g (605 cm-1), and B 1g (653 cm-1), due to the tetragonal phase of 3Y-TZP and E g (487 cm-1) due to cubic phase of MgAl2O4, are observed in the sample. HRTEM results show interplanar spacing of (311) of the spinel and (101) of the yttria-stabilized zirconia, which indicates the high-level homogeneity in the nanoparticle composite powders.

  14. Synthesis of gadolinium-doped thorium dioxide via a wet chemical route: Limitations of the co-precipitation method

    Science.gov (United States)

    Zsabka, Péter; Leinders, Gregory; Baena, Angela; Cardinaels, Thomas; Binnemans, Koen; Verwerft, Marc

    2017-06-01

    A wet chemical route (oxalate precipitation) was chosen to prepare gadolinium-doped thoria powders as a feed for pellet fabrication. The oxalate and derived oxide powders were characterized by thermogravimetric analysis coupled to evolved gas analysis, BET, XRD and SEM. Dilatometry was used to study the sintering behavior. From homogeneous solutions containing selected mixtures of gadolinium (III) and thorium (IV) nitrates solid precipitates were obtained, that were composed of two phases. Calcination at 700 °C or 1000 °C was insufficient to obtain single phases for any of the compositions. Rietveld analysis of calcined powders confirmed the presence of both a Th-rich phase (ThxGd1-xO2-x/2) and a Gd-rich phase ((GdyTh1-y)2O3+(1-y)) in which limited substitution of the foreign element (Gd or Th, respectively) occurred. A fluorite-type solid solution formed during sintering at 1750 °C. The unit cell parameters of sintered pellets were determined for ThxGd1-xO2-(1-x)/2 mixed oxides in the composition range: 0 ≤ x ≤ 0.30 and agree with reported values.

  15. Effect of temperature on structural, optical and photoluminescence studies on ZnO nanoparticles synthesized by the standard co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Raj, K. Pradeev [Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Department of Physics, CSI College of Engineering, Ooty 643215, Tamil Nadu (India); Sadayandi, K. [Department of Physics, Alagappa Government Arts College, Karaikudi, Sivagangai 630003, Tamil Nadu (India)

    2016-04-15

    This present study brings the synthesis of Zinc oxide (ZnO) nanoparticles (NPs) by the standard aqueous chemical route technique. The impact of calcination temperature on the extent of the ZnO nanoparticles is studied for its lattice constraints. X-ray diffraction (XRD) affirms the hexagonal Wurtzite structure of the synthesized ZnO nanoparticles. From the Williamson–Hall (W–H) plot, positive slope is inferred for pure and calcined ZnO NPs and confirms the presence of tensile strain. From the SEM images it is found that the crystallinity enhances with calcination temperature. From the optical studies, it is found that the band gap energy decreases with improved transmission. The Photoluminescence (PL) spectrum reveals the UV emission is strong near the band-edge. The emission peaks around 400–480 nm result in blue emission and the peaks around 540–560 nm result in green emission. Decrease in band gap energy and enhancement in PL studies reveal the red shift of the calcined ZnO exhibiting solid quantum confinements.

  16. Fe_3O_4磁粉的合成与结构表征%Preparation of Fe3O4 Nanoparticle by Liquid - phase Coprecipitation

    Institute of Scientific and Technical Information of China (English)

    霍涌前; 陈小利; 王升文; 崔华莉; 王潇

    2012-01-01

    Nanometer magnetite Fe3O4 particles were prepared by chemical co -precipitation, NH3·H2O was cho- sen as precipitating agent and added to the mixed aqueous solution containing ferric and ferrous ions to produce nanometer Fe3O4 particles. Some influence factors on the size were investigated. The phase structure of the particle was measured by XRD test, and the average size was about 28 nm.%采用化学共沉淀法制备纳米磁性Fe3O4粒子。选用NH3.H2O作为沉淀剂,加入到Fe2+和Fe3+的混合盐溶液中,制得了纳米磁性Fe3O4粒子。考察了影响产物粒径的一些实验因素。通过X-Ray谱图证实了产物结构特征,平均粒径在37 nm左右,平均晶粒度只有28 nm左右的均分散。

  17. Dielectric relaxation behavior in co-precipitation derived ferrite (Zn1-xNix)Fe2O4 (0.2 ≤ x ≤ 0.5) ceramics

    Science.gov (United States)

    Jiang, Y. P.; Li, R.; Tang, X. G.; Liu, Q. X.; Chen, D. G.

    2016-01-01

    The influence of nickel doping on the electrical properties and dielectric relaxation in Zn1-xNixFe2O4 (ZNFO, 0.2 ≤ x ≤ 0.5) ceramics has been investigated via the dielectric and complex impedance spectra measurements. According to the modified Curie-Weiss law, the diffusivity factor of the ZNFO ceramics from 1.69 to 2.02 with x increasing from 0.2 to 0.5, respectively. Two relaxation peaks are observed in the nickel doped samples, by employing the modified Arrhenius equation, two activation energy values of different sintering temperatures were calculated and analyzed in combination with oxygen vacancy. The Cole-Cole plots showed that the semicircular arcs which are nonideal Debye type, and the grain boundaries resistance increases with increasing Ni concentration.

  18. ZnFe{sub 2}O{sub 4}/ZnO nanoparticles obtained by coprecipitation route, XPS and TEM study

    Energy Technology Data Exchange (ETDEWEB)

    Kaszewski, Jaroslaw; Moszynski, Dariusz; Borowiak-Palen, Ewa; Narkiewicz, Urszula [West Pomeranian University of Technology - Institute of Chemical and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin (Poland); Lojkowski, Witold [Institute of High Pressure Physics of the Polish Academy of Sciences, ul. Sokolowska 29/37, 01-142 Warsaw (Poland); Sibera, Daniel

    2010-05-15

    The paper deals with preparation of nanocrystalline zinc oxide doped with iron oxide obtained via calcination process. A mixture of iron and zinc hydroxides of various compositions was used as precursors of nanopowders. The samples were prepared by wet chemistry method - precipitation from the corresponding metals' nitrates' solutions using ammonia. The obtained hydroxides were filtered, dried and calcined at 573 K for 1 hour. A series of samples containing 5 to 95 wt.% of Fe{sub 2}O{sub 3} was obtained. The phase composition of the samples was determined using XRD. Depending on the chemical composition the phases of hexagonal ZnO, and/or romboedric Fe{sub 2}O{sub 3} and/or cubic ZnFe{sub 2}O{sub 4} were identified. The mean crystallite size of ZnFe{sub 2}O{sub 4} phase present in all the samples, determined using Scherrer's formula, varied from 8 to 12 nm. The morphology of the samples was investigated using SEM and HRTEM. X-ray photoelectron spectra of all the samples were analysed. A detailed spectroscopic and morphological analysis of the samples suggests a core-shell structure of the produced grains. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling

    DEFF Research Database (Denmark)

    Lim, Ai Wei; Löbmann, Korbinian; Grohganz, Holger;

    2016-01-01

    OBJECTIVES: The objective was to characterize the structural behaviour of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems (1 : 1 molar ratio) prepared by quench cooling, co-evaporation and ball milling. METHODS: Powder X-ray diffraction (PXRD) and DSC were used to characterise...... the samples. Structural relaxation (i.e. molecular mobility) behaviour was obtained from the Kohlrausch-Williams-Watts (KWW) relationship. KEY FINDINGS: A glass transition temperature (Tg ), on average 20 °C higher than the predicted Tg (calculated from the Fox equation), was observed in all samples...... by quench cooling (ln τ(β) = 2.4) and co-evaporation (ln τ(β) = 2.5). In contrast, molecular mobility of the naproxen-cimetidine samples followed the order co-evaporation (ln τ(β) = 0.8), quench cooling (ln τ(β) = 1.6) and ball milling (ln τ(β) = 1.8). CONCLUSION: The estimated relaxation times by the DSC...

  20. Effect of heat treatment on structural and Mössbauer spectroscopic properties of coprecipitated Mn0.5Ni0.5Fe2O4 ferrite nanoparticles

    Science.gov (United States)

    Srinivas, Ch.; Tirupanyam, B. V.; Meena, S. S.; Babu, Ch. Seshu; Sastry, D. L.

    2015-06-01

    Results obtained in a systamatic study by X-ray diffraction and Mösssbauer spectroscopy on the structural and magnetic properties on Mn0.5Ni0.5Fe2O4 ferrite nanoparticles heat treated at 200 °C, 500 °C and 800 °C are reported. Average crystallite sizes are estimated to be in the range (2.6nm - 12.8nm). It is observed that crystallite sizes increase with increase in sintering temperature and random variation in lattice parameter was observed. At relatively low sintering temperatures the samples exhibit superparamagnetism and complete ferrite phase was observed at higher heat treatment.

  1. Physical Properties and Selective CO Oxidation of Coprecipitated CuO/CeO2 Catalysts Depending on the CuO in the Samples

    Directory of Open Access Journals (Sweden)

    Akkarat Wongkaew

    2013-01-01

    Full Text Available This paper investigates the effects of CuO contents in the CuO-CeO2 catalysts to the variation in physical properties of CuO/CeO2 catalysts and correlates them to their catalytic activities on selective CO oxidation. The characteristic of crystallites were revealed by X-ray diffraction, and their morphological developments were examined with TEM, SEM, and BET methods. Catalytic performance of catalysts was investigated in the temperature range of 90–240°C. The results showed that the catalyst was optimized at CuO loading of 20 wt.%. This was due to the high dispersion of CuO, high specific surface area, small crystallite sizes, and low degree of CuO agglomeration. Complete CO conversion with near 100% selectivity was achieved at a temperature below 120°C. The optimal performance was seen as a balance between CuO content and dispersion observed with growth, morphology, and agglomeration of nanostructures.

  2. Preparation of Ce0.65Zr0.35O2 by co-precipitation: The role of hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    HUANG Lihua; CHEN Shanhu; ZHU Yi; GONG Maochu; CHEN Yaoqiang

    2013-01-01

    The effect of H2O2 on the properties of Ce0.65Zr0.35O2 was explored by treating cerium nitrate and zirconium nitrate with a mixed aqueous solution of ammonia and ammonia-carbonate in the presence/absence of H2O2.The resultant products were characterized by X-ray diffraction (XRD),X-ray photoelectron spectroscopy (XPS),nitrogen adsorption/desorption,oxygen storage capacity (OSC) and H2-temperature-prograrnmed reduction (H2-TPR).The presence of H2O2 was found to have profound effect on powder properties such as surface area,crystallite size of the samples.It was also shown that the addition of H2O2 favored the incorporation of Zr4+ into CeO2 lattice,which facilitated the formation of CeO2-ZrO2 solid solution,and enhanced the thermal stability of the samples.OSC and H2-TPR studies indicated that the use ofH2O2 enhanced the OSC and redox properties.Catalytic activity tests showed that as a support,the Ce0.65Zr0.35O2 prepared in the presence of H2O2 was more suitable for three-way catalyst.The corresponding Pd-only three-way catalyst demonstrated outstanding performance:wide air to fuel operation window,low light-off and total conversion temperature for the conversion of C3H8,NO and CO.

  3. Adsorption of Reactive Red 2 from aqueous solutions using Fe{sub 3}O{sub 4} nanoparticles prepared by co-precipitation in a rotating packed bed

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chia-Chang, E-mail: higee@mail.cgu.edu.tw [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Lin, Yu-Shung [Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China); Ho, Jui-Min [Graduate Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan, ROC (China)

    2016-05-05

    A rotating packed bed (RPB) that was operated at a rotating speed of 1800 rpm with liquid flow rates of 0.5 L/min was used to prepare Fe{sub 3}O{sub 4} nanoparticles (RPB-Fe{sub 3}O{sub 4}). The RPB-Fe{sub 3}O{sub 4} had a smaller average size and a narrower size distribution than the Fe{sub 3}O{sub 4} that was obtained from Aldrich, and so had a greater capacity to adsorb RR2. The effects of pH, Fe{sub 3}O{sub 4} dosage, initial RR2 concentration, and temperature on the adsorption of RR2 were examined experimentally using RPB-Fe{sub 3}O{sub 4}. A thermodynamic study revealed that the adsorption process was spontaneous and exothermic. The adsorption behavior was more consistent with the Langmuir model than with the Freundlich model, and the maximum adsorption capacity was 97.8 mg/g. At pH 3, 25 °C, an Fe{sub 3}O{sub 4} dosage of 0.30 g/L, and an initial RR2 concentration of 10 mg/L, RPB-Fe{sub 3}O{sub 4} effectively adsorbed RR2 with a removal efficiency of approximately 95% in 10 min. These promising results clearly reveal the potential of RPB-Fe{sub 3}O{sub 4} for use in the effective removal of dyes from aqueous solutions. - Highlights: • A novel magnetic adsorbent (Fe{sub 3}O{sub 4} nanoparticles) was prepared in RPB. • 95% removal of RR2 was achieved in 10 min using Fe{sub 3}O{sub 4} nanoparticles. • This investigation provides a novel treatment of dye-contaminated wastewater.

  4. Investigation of in situ gelling alginate formulations as a sustained release vehicle for co-precipitates of dextromethrophan and Eudragit S 100

    Directory of Open Access Journals (Sweden)

    Maghraby Gamal Mohamed El

    2014-03-01

    Full Text Available Alginate vehicles are capable of forming a gel matrix in situ when they come into contact with gastric medium in the presence of calcium ions. However, the gel structure is pH dependent and can break after gastric emptying, leading to dose dumping. The aim of this work was to develop modified in situ gelling alginate formulations capable of sustaining dextromethorphan release throughout the gastrointestinal tract. Alginate solution (2 %, m/m was used as a vehicle for the tested formulations. Solid matrix of the drug and Eudragit S 100 was prepared by dissolving the drug and polymer in acetone. The organic solvent was then evaporated and the deposited solid matrix was micronized, sieved and dispersed in alginate solution to obtain candidate formulations. The release behavior of dextromethorphan was monitored and evaluated in a medium simulating the gastric and intestinal pH. Drug-polymer compatibility and possible solid-state interactions suggested physical interaction through hydrogen bonding between the drug and the polymer. A significant decrease in the rate and extent of dextromethorphan release was observed with increasing Eudragit S 100 concentration in the prepared particles. Most formulations showed sustained release profiles similar to that of a commercial sustained-release liquid based on ion exchange resin. The release pattern indicated strict control of drug release both under gastric and intestinal conditions, suggesting the potential advantage of using a solid dispersion of drug-Eudragit S 100 to overcome the problem of dose dumping after the rupture of the pH dependent alginate gels

  5. Investigation of in situ gelling alginate formulations as a sustained release vehicle for co-precipitates of dextromethrophan and Eudragit S 100.

    Science.gov (United States)

    El Maghraby, Gamal Mohamed; Elzayat, Ehab Mostafa; Alanazi, Fars Kaed

    2014-03-01

    Alginate vehicles are capable of forming a gel matrix in situ when they come into contact with gastric medium in the presence of calcium ions. However, the gel structure is pH dependent and can break after gastric emptying, leading to dose dumping. The aim of this work was to develop modified in situ gelling alginate formulations capable of sustaining dextromethorphan release throughout the gastrointestinal tract. Alginate solution (2 %, m/m) was used as a vehicle for the tested formulations. Solid matrix of the drug and Eudragit S 100 was prepared by dissolving the drug and polymer in acetone. The organic solvent was then evaporated and the deposited solid matrix was micronized, sieved and dispersed in alginate solution to obtain candidate formulations. The release behavior of dextromethorphan was monitored and evaluated in a medium simulating the gastric and intestinal pH. Drug-polymer compatibility and possible solid-state interactions suggested physical interaction through hydrogen bonding between the drug and the polymer. A significant decrease in the rate and extent of dextromethorphan release was observed with increasing Eudragit S 100 concentration in the prepared particles. Most formulations showed sustained release profiles similar to that of a commercial sustained-release liquid based on ion exchange resin. The release pattern indicated strict control of drug release both under gastric and intestinal conditions, suggesting the potential advantage of using a solid dispersion of drug-Eudragit S 100 to overcome the problem of dose dumping after the rupture of the pH dependent alginate gels.

  6. Assessment of the radium-barium co-precipitation and its potential influence on the solubility of Ra in the near-field

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Merino, Joan; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-08-15

    Radium 226 is one of the main contributors to radiological dose in some of the scenarios contemplated in the recent SR Can safety assessment. The relative contribution of the 226Ra dose is clearly dependent on the source term value for this radionuclide, which is directly connected to its solubility behaviour. Most of the source term calculations performed for this radionuclide pessimistically assume that its solubility is controlled by the individual solubility of RaSO{sub 4}(s), the most insoluble phase under near field conditions, while the abundant information from early radiochemical research, natural system studies and anthropogenic systems would indicate that Ra(II) is mainly associated to BaSO{sub 4}(s) precipitation. In this work we have investigated the extensive literature concerning the mechanisms and processes controlling the co-precipitation/solid solution formation behaviour of the Ra(II)/Ba(II) sulphate system. We have also established the necessary thermodynamic moles to model the solubility behaviour in the vicinity of the spent fuel system. Calculations using an ATM-104 fuel at 40 MWd/kg U show that barium and radium inventories per canister progressively grow with time after deposition, most of the barium is produced in the initial 500 years. In the unlikely event of a contact of sulphate-containing groundwaters with the fuel, Ba(II) will precipitate as BaSO{sub 4}(s). The production of 226Ra reaches its peak some 300,000 years after deposition. This substantial time gap indicates that most of the BaSO{sub 4}(s) will be present when and if radium is released from the fuel, even if some Ra(II) and Ba(II) will be released contemporaneously. Two potential scenarios have been addressed from the mechanistic point of view. In the event of a simultaneous release of Ra with Ba, the former will be readily incorporated into the precipitating BaSO{sub 4} to build a Ra Ba sulphate solid solution. All the existing evidence indicates, that in this case, the behaviour of the system can be described by the established aqueous-solid solution thermodynamic formalism and assuming that the system behaves ideally. In the case when 226Ra is released from a secondary source, like a UO{sub 2} precipitate away from the fuel but within the canister, there is not sufficient experimental information at the molecular level to establish when and how the system will reach equilibrium and, therefore, it is not clear to which extent the aqueous solid solution thermodynamic formalism can be applied. Nevertheless, the long contact times expected under repository conditions together with the small mass transfer processes involved would indicate that it is quite likely that equilibrium will be reached. Dedicated experimental investigations are under way in collaboration with INE-KFZ to establish the mechanism and rates of this critical process in order to support the solid solution thermodynamic approximation. We have performed a number of scoping calculations in order to establish the absolute and relative effects of RaBaSO{sub 4}(ss) formation on 226Ra solubility. We have assumed that the free volume per canister filled by water in case of intrusion is roughly 1 m3. By using the standard fuel dissolution rate of 1.0x10-7/y, and a congruent release of barium, the calculated radium and barium concentrations after one year of contact at the disposal time of 300,000 years (when the 226Ra content is largest), are 1.3x10-12 and 4.9x10-9 mol/L, respectively. If we apply the thermodynamics of aqueous-solid solution equilibria the resulting solid phase in equilibrium has a calculated nominal composition of (Ba{sub 0.99942}Ra{sub 0.00057})SO{sub 4} (ss) and the resulting dissolved Ra(II) is in the 10-11 mol/L range. This is in the upper range of any observed Ra(II) concentration in natural and anthropogenic environment. If the solubility of Ra(II) is assumed to be controlled by the precipitation of a pure sulphate phase, the resulting concentration is three orders of magnitude higher. A concentration never observed in natural systems. Since sulp

  7. Aluminum colloid formation and its effect on co-precipitation of zinc during acid rock drainage remediation with clinoptilolite in a slurry bubble column

    Science.gov (United States)

    Xu, W.; Li, L. Y.; Grace, J. R.

    2012-04-01

    Zinc and other metal ions were adsorbed in a laboratory slurry bubble column (SBC) by natural clinoptilolite sorbent particles. During the remediation process, significant white precipitates were sometimes observed. Both zinc and aluminum were detected in the colloidal mixtures. It is shown that Al leached from clinoptilolite during the agitation, contributing to the precipitate. As a result of the Al leaching and increase of pH during the remediation process, the formation of an Al colloid and zinc adsorption onto it could significantly improve ARD remediation, given the high adsorption capacity of the colloid. Sorption of cations increased with increasing colloid formation. Various conditions were tested to investigate their impact on (a) dealumination of clinoptilolite; (b) Al hydrolysis/colloid formation; and (c) adsorption onto the colloidal mixture. The test results indicate that dealumination contributes to the excess aluminum in the aqueous phase and to precipitates. The excess dealumination varies with pH and agitation time. Al hydrolysis occurs with increasing pH due to the neutralization effect of clinoptilolite. A significant proportion of zinc adsorbed onto the collectible aluminum precipitates.

  8. 铟锡氧化物ITO纳米粉体的共沉淀法合成%Synthesis of ITO Nanoparticles by Coprecipitation Method

    Institute of Scientific and Technical Information of China (English)

    张建荣; 曹洋; 穆劲; You Sang-Yul

    2005-01-01

    In2O3、SnO2、ZnO等宽带半导体等由于其在光电领域,气体传感器等方面具有非常大的应用潜力近几年成为研究热点。特别是通过向上述基体材料中掺杂相应的高价离子,如向In2O3中添加Sn元素,SnO2中添加Sb元素,ZnO中添加Al元素后,材料中的载流子电子的浓度由1017cm-3提高到1020cm-3以上,相应的电导率也得到大幅度增加.

  9. Determination of platinum group elements by inductively coupled plasma-mass spectrometry combined with nickel sulfide fire assay and tellurium coprecipitation

    Science.gov (United States)

    Sun, Yali; Guan, Xiyun; Du, Andao

    1998-09-01

    A method was developed for the determination of trace platinum group elements (PGEs) by nickel sulfide fire assay inductively coupled plasma-mass spectrometry (ICP-MS). With isotope dilution, the improved technique gives precise Os content data. Through the purification of the reagent nickel oxide, reagent blank was greatly reduced. Results obtained for the standard reference materials (SRM) GPt-1-GPt-7(GBW 07288-07294, China), DZ Σ-2 (GBW 07102, China) and Guilin Cu-Ni Ore are in good agreement with the recommended values for platinum group elements. The detection limits ranged from 0.01 to 0.39 ng/g. The relative standard deviations for Ru, Rh, Pd and Ir were less than 5%, for Os less than 1%, and Pt less than 8% for SRM GPt-6.

  10. Preparation of Cu-Al layered double hydroxide intercalated with ethylenediaminetetraacetate by coprecipitation and its uptake of rare earth ions from aqueous solution

    Science.gov (United States)

    Kameda, Tomohito; Hoshi, Kazuaki; Yoshioka, Toshiaki

    2013-03-01

    A Cu-Al layered double hydroxide intercalated with ethylenediaminetetraacetate (edta•Cu-Al LDH) was prepared by the dropwise addition of a Cu-Al nitrate solution to an edta solution at constant pH values of 8.0, 9.0, and 10.0. The edta•Cu-Al LDH had Hedta3- in the interlayer. Furthermore, the preparation at pH 8.0 resulted in the intercalation of Cu(edta)2-. The edta•Cu-Al LDH was found to take up rare earth ions from aqueous solution. The uptake of Sc3+ and Y3+ by edta•Cu-Al LDH was attributed to both the chelating functions of the edta ion in the interlayer and the chemical properties of Cu-Al LDH itself. The uptake of La3+ by edta•Cu-Al LDH was primarily caused by the chelating function of edta ions in the interlayer. The edta ions in the edta•Cu-Al LDH interlayer formed chelate complexes in the order Sc3+ > Y3+ > La3+ due to their relative stabilities, Sc(edta)- > Y(edta)- > La(edta)-. Thus, edta ions retain their chelating function even when intercalated in a Cu-Al LDH interlayer.

  11. Assessment of the radium-barium co-precipitation and its potential influence on the solubility of Ra in the near-field

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Merino, Joan; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-08-15

    Radium 226 is one of the main contributors to radiological dose in some of the scenarios contemplated in the recent SR Can safety assessment. The relative contribution of the 226Ra dose is clearly dependent on the source term value for this radionuclide, which is directly connected to its solubility behaviour. Most of the source term calculations performed for this radionuclide pessimistically assume that its solubility is controlled by the individual solubility of RaSO{sub 4}(s), the most insoluble phase under near field conditions, while the abundant information from early radiochemical research, natural system studies and anthropogenic systems would indicate that Ra(II) is mainly associated to BaSO{sub 4}(s) precipitation. In this work we have investigated the extensive literature concerning the mechanisms and processes controlling the co-precipitation/solid solution formation behaviour of the Ra(II)/Ba(II) sulphate system. We have also established the necessary thermodynamic moles to model the solubility behaviour in the vicinity of the spent fuel system. Calculations using an ATM-104 fuel at 40 MWd/kg U show that barium and radium inventories per canister progressively grow with time after deposition, most of the barium is produced in the initial 500 years. In the unlikely event of a contact of sulphate-containing groundwaters with the fuel, Ba(II) will precipitate as BaSO{sub 4}(s). The production of 226Ra reaches its peak some 300,000 years after deposition. This substantial time gap indicates that most of the BaSO{sub 4}(s) will be present when and if radium is released from the fuel, even if some Ra(II) and Ba(II) will be released contemporaneously. Two potential scenarios have been addressed from the mechanistic point of view. In the event of a simultaneous release of Ra with Ba, the former will be readily incorporated into the precipitating BaSO{sub 4} to build a Ra Ba sulphate solid solution. All the existing evidence indicates, that in this case, the behaviour of the system can be described by the established aqueous-solid solution thermodynamic formalism and assuming that the system behaves ideally. In the case when 226Ra is released from a secondary source, like a UO{sub 2} precipitate away from the fuel but within the canister, there is not sufficient experimental information at the molecular level to establish when and how the system will reach equilibrium and, therefore, it is not clear to which extent the aqueous solid solution thermodynamic formalism can be applied. Nevertheless, the long contact times expected under repository conditions together with the small mass transfer processes involved would indicate that it is quite likely that equilibrium will be reached. Dedicated experimental investigations are under way in collaboration with INE-KFZ to establish the mechanism and rates of this critical process in order to support the solid solution thermodynamic approximation. We have performed a number of scoping calculations in order to establish the absolute and relative effects of RaBaSO{sub 4}(ss) formation on 226Ra solubility. We have assumed that the free volume per canister filled by water in case of intrusion is roughly 1 m3. By using the standard fuel dissolution rate of 1.0x10-7/y, and a congruent release of barium, the calculated radium and barium concentrations after one year of contact at the disposal time of 300,000 years (when the 226Ra content is largest), are 1.3x10-12 and 4.9x10-9 mol/L, respectively. If we apply the thermodynamics of aqueous-solid solution equilibria the resulting solid phase in equilibrium has a calculated nominal composition of (Ba{sub 0.99942}Ra{sub 0.00057})SO{sub 4} (ss) and the resulting dissolved Ra(II) is in the 10-11 mol/L range. This is in the upper range of any observed Ra(II) concentration in natural and anthropogenic environment. If the solubility of Ra(II) is assumed to be controlled by the precipitation of a pure sulphate phase, the resulting concentration is three orders of magnitude higher. A concentration never observed in natural systems. Since sulphate concentration can be highly variable due to changes in the nature of the groundwaters flowing into the near field, we have performed a sensitivity study of the influence of the sulphate concentrations in the expected concentration range. In the case when the lowest concentration is assumed ([SO{sub 4}2-] = 3x10-4 mol/L), the calculated radium solubility increases up to 7.1x10-10 mol/L when equilibrium with the solid solution is considered

  12. Degradation process of lead chromate in paintings by Vincent van Gogh studied by means of spectromicroscopic methods. 4. Artificial aging of model samples of co-precipitates of lead chromate and lead sulfate.

    Science.gov (United States)

    Monico, Letizia; Janssens, Koen; Miliani, Costanza; Van der Snickt, Geert; Brunetti, Brunetto Giovanni; Cestelli Guidi, Mariangela; Radepont, Marie; Cotte, Marine

    2013-01-15

    Previous investigations about the darkening of chrome yellow pigments revealed that this form of alteration is attributable to a reduction of the original Cr(VI) to Cr(III), and that the presence of sulfur-containing compounds, most often sulfates, plays a key role during this process. We recently demonstrated that different crystal forms of chrome yellow pigments (PbCrO(4) and PbCr(1-x)S(x)O(4)) are present in paintings by Vincent van Gogh. In the present work, we show how both the chemical composition and the crystalline structure of lead chromate-based pigments influence their stability. For this purpose, oil model samples made with in-house synthesized powders of PbCrO(4) and PbCr(1-x)S(x)O(4) were artificially aged and characterized. We observed a profound darkening only for those paint models made with PbCr(1-x)S(x)O(4), rich in SO(4)(2-) (x ≥ 0.4), and orthorhombic phases (>30 wt %). Cr and S K-edge micro X-ray absorption near edge structure investigations revealed in an unequivocal manner the formation of up to about 60% of Cr(III)-species in the outer layer of the most altered samples; conversely, independent of the paint models' chemical composition, no change in the S-oxidation state was observed. Analyses employing UV-visible diffuse reflectance and Fourier transform infrared spectroscopy were performed on unaged and aged model samples in order to obtain additional information on the physicochemical changes induced by the aging treatment.

  13. 共沉淀法制备正极材料LiFePO4的研究%Synthesis of Cathode Material LiFePO4 for Rechargeable Lithium-Ion Battery by Co-Precipitation Method

    Institute of Scientific and Technical Information of China (English)

    杨蓉; 赵铭姝; 杜宝中; 宋晓平; 孙占波

    2007-01-01

    以氢氧化锂、硫酸亚铁铵和磷酸氢二铵为原料,研究了液相共沉淀法制备LiFePO4正极材料和掺杂Co2+的LiFePO4改性正极材料,并对其进行XRD、SEM分析和电化学性能测试.结果表明掺杂Co2+对正极材料的初始充电比容量为156.7 mAh·g-1,且循环60次后,容量仍有138.7 mAh·g-1,容量衰减率仅为11.4%.

  14. DETERMINATION OF TRACE LEAD IN SAUCE BY FLAME ATOM ABSORPTION WITH BISMITH SALT COPRECIPITATION SEPARATION%铋盐共沉淀分离富集火焰原子吸收法测定酱中的微量铅

    Institute of Scientific and Technical Information of China (English)

    吕国良

    2008-01-01

    研究了铋盐共沉淀分离富集及火焰法测定铅的最佳条件,在pH 8.9的溶液中,用氨水定量沉淀铅.样品中微量铅测定结果的相对标准偏差为1.2%~1.8%,加标回收率为98.8%~101.5%.方法可用于酱中微量铅的测定,且共存物不产生干扰.

  15. 微乳液-共沉淀-煅烧法制备不同形貌的钛酸钡纳米粒子%PREPARATION OF BARIUM TITANATE NANOPARTICLES WITH DIFFERENT MORPHOLOGIES BY THE MICROEMULSION-COPRECIPITATION-CALCINATION METHOD

    Institute of Scientific and Technical Information of China (English)

    孙旭峰; 朱启安; 赵蓉芳; 张琪; 龚敏; 张超

    2008-01-01

    A precursor, BaTiO(C2O4)2-4H2O, was synthesized in reverse microemulsion consisting of water, t-octylphenoxypolye-thoxyethanol, n-hexanol and cyclohexane, using Ti(OC4H9)4,H2C2O4-2H2O and BaCl2-2H2O as starting materials. Barium titanate (BaTiO3) spherical nanoparticles with diameters of 40-80nm and BaTiO3 rod-like nanoparticles with diameters of 50-80nm and lengths of 180-300nm were fabricated by calcining the precursors at 700℃ for 4h and were characterized by X-ray diffraction, transmission electron microscope, selected area electronic diffraction, Fourier transform infrared spectroscopy, and thermogravimetry. The results show that the as-prepared BaTiO3 nanoparticles with uniform sizes and a single crystal structure belong to a cubic crystal system. The sizes and morphologies of BaTiO3 nanoparticles can be controlled by changing the molar ratio of water to surfactant.%以Ti(OC4H9)4,H2C2O4-2H2O和BaCl2-2H2O为原料,在水溶液/辛基酚聚氧乙烯(9)醚/正己醇/环己烷反相微乳液体系中制得了前驱体BaTiO(C2O4)2-4H2O.在700℃煅烧前驱体BaTiO(C2O4)2-4H2O4h分别制得直径约为40~80nm的BaTiO3球形纳米粒子和长约180~300nm、直径为50~80nm的BaTiO3纳米棒.用X射线衍射、透射电镜、选区电子衍射、Fourier红外光谱分析和热重分析表征了所制备的BaTiO3纳米粒子的结构和性能.结果表明:所制备的BaTiO3纳米粒子大小均匀,属立方相,具有单晶结构.改变水与表面活性剂的摩尔比能控制BaTiO3纳米粒子的大小和形貌.

  16. In situ ultrasound-assisted preparation of Fe3O4@MnO2 core-shell nanoparticles integrated with ion co-precipitation for multielemental analysis by total reflection X-ray fluorescence

    Science.gov (United States)

    Nourbala-Tafti, Elaheh; Romero, Vanesa; Lavilla, Isela; Dadfarnia, Shayesteh; Bendicho, Carlos

    2017-05-01

    In this work, a new analytical approach based on in situ ultrasound-assisted preparation of manganese dioxide coated magnetite nanoparticles (Fe3O4@MnO2 NPs) was applied for extraction and preconcentration of Ni, Cu, Zn, Tl, Pb, Bi and Se. The Fe3O4@MnO2 core-shell nanocomposite was synthesized by application of high-intensity sonication to an aqueous reaction medium in the presence of the target analytes, which are trapped during NPs formation. In this way, synthesis of the nanosorbent and extraction can be simultaneously accomplished within only 30 s. After the extraction step, the resulting Fe3O4@MnO2 NPs enriched with the target analytes were separated by an external magnetic field, so that filtration or centrifugation steps were unnecessary. A 10 μL aliquot of the solid phase was deposited onto a sample carrier (quartz reflector) and directly analyzed by total-reflection X-ray fluorescence (TXRF) without the need for an elution step. A comprehensive characterization of the Fe3O4@MnO2 NPs was carried out by transmission electron microscopy and TXRF. Detection limits ranged from 0.19 to 0.98 μg L- 1 depending on the analyte. Enrichment factors in the range of 402-540 were obtained. The repeatability expressed as relative standard deviation was around 1.7% (N = 5). The accuracy of the proposed method was assessed by analyzing the certified reference material BCR®-610 (groundwater). An effective, simple, rapid and sensitive procedure for multielemental analysis of water samples was accomplished.

  17. Determination of Ultra-trace Amounts of Arsenic(III) by Flow Injection Hydride Generation Atomic Absorption Spectrometry with On-line Preconcentration by Coprecipitation with Lanthanum Hydroxide or Hafnium Hydroxide

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Sloth, Jens Jørgen; Hansen, Elo Harald

    1996-01-01

    (III) is more effectively collected by lanthanum hydroxide than by hafnium hydroxide, the sensitivity achieved by the former being ca. 25% better. With optimal experimental conditions and with a sample consumption of 6.7 ml per assay, an enrichment factor of 32 was obtained at a sample frequency of 33 samples...

  18. PRESERVATION OF AS(III) AND AS(V) IN DRINKING WATER SUPPLY SAMPLES FROM ACROSS THE UNITED STATES USING EDTA AND ACETIC ACID AS A MEANS OF MINIMIZING IRON-ARSENIC CO-PRECIPITATION

    Science.gov (United States)

    This paper evaluates seven different treatment/storage conditions for the preservation of the native As(III)/As(V) found in ten drinking water supplies from across the US. These ten waters were chosen because they have different As(III)/As(V) distributions; six of these waters c...

  19. Effect of heat treatment on structural and Mössbauer spectroscopic properties of coprecipitated Mn{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, Ch.; Babu, Ch. Seshu [Department of physics, Sasi Institute of Technology and Engineering, Tadepalligudem-534101 (India); Tirupanyam, B. V. [Department of physics, Government Arts College (Autonomous), Rajahmundry-533401 (India); Meena, S. S. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-4000085 (India); Sastry, D. L., E-mail: dl-sastry@gmail.com [Department of physics, Andhra University, Visakhapatnam-530003 (India)

    2015-06-24

    Results obtained in a systamatic study by X-ray diffraction and Mösssbauer spectroscopy on the structural and magnetic properties on Mn{sub 0.5}Ni{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanoparticles heat treated at 200 °C, 500 °C and 800 °C are reported. Average crystallite sizes are estimated to be in the range (2.6nm – 12.8nm). It is observed that crystallite sizes increase with increase in sintering temperature and random variation in lattice parameter was observed. At relatively low sintering temperatures the samples exhibit superparamagnetism and complete ferrite phase was observed at higher heat treatment.

  20. Fe-Mn-Ce mixed oxides prepared by co-precipitation for selective catalyticreduction of NO with NH3%复合金属氧化物脱硝剂的制备及其性能研究

    Institute of Scientific and Technical Information of China (English)

    赵海; 黄新章; 刘俊清

    2011-01-01

    采用共沉淀法制备了铁锰铈复合金属氧化物催化剂,对其前躯体进行了热重(TG)和红外光谱(FTIR)研究,并采用扫描电子透镜(TEM)、穆斯堡尔谱(M6ssbauer)和X-射线光电子能谱(XPS)等设备表征了催化剂的晶型和形貌.研究了不同温度下催化剂的催化活性,结果表明,在250~450℃的温度范围内,以铁锰铈氧化物为主体的催化剂具有较高的SCR催化活性,且性能稳定,脱硝效率可达到90%以上.

  1. Preparation of spherical SrAl2O4 powders by coprecipitation-calcination process%共沉淀-焙烧法制备球形铝酸锶粉体

    Institute of Scientific and Technical Information of China (English)

    杨丛林; 沈湘黔; 周建新

    2006-01-01

    以碳酸氢铵、硫酸铝铵和硝酸锶为原料,采用共沉淀法制备了化学组成为SrCO3·2Al(OH)3·7H2O的前体,此前体在较低温度下可合成SrAl2O4粉体.利用红外光谱(FTIR)、扫描电镜(SEM)及能量散射分光光谱(EDS)、X射线衍射(XRD)和热分析(TG-DSC)表征了前体及其热处理产物的特征.结果表明,锶铝物质的量比和pH值对粉体成分和颗粒形貌有显著影响,n(Sr):n(Al)=1:1.6、pH=7.6条件下制备了球形前体,此前体在1100℃于空气气氛中焙烧2h获得了单分散、球形SrAl2O4粉体,合成温度较传统高温固相法低约400℃.

  2. Crystallization behavior of ZrO{sub 2}−3Y{sub 2}O{sub 3}−xSrO precursor powders synthesized by a coprecipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Hsueh-Liang [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta- Hsueh Road, Tainan 70101, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta- Hsueh Road, Tainan 70101, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta- Hsueh Road, Tainan 70101, Taiwan (China); Du, Je-Kang [Department of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Department of Dentistry, Kaohsiung Medical University, Chung Ho Memorial Hospital, 100 Tzyou 1st Road, Kaohsiung 80708, Taiwan (China); Chen, Ker-Kong, E-mail: enamel@kmu.edu.tw [Department of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Department of Dentistry, Kaohsiung Medical University, Chung Ho Memorial Hospital, 100 Tzyou 1st Road, Kaohsiung 80708, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2016-09-05

    Crystallization behaviors of ZrO{sub 2}−3Y{sub 2}O{sub 3}−xSrO precursor powders were studied with zirconium nitrate (Zr(NO{sub 3}){sub 4}·xH{sub 2}O), yttrium nitrate (Y(NO{sub 3}){sub 3}·6H{sub 2}O) and strontium nitrate (Sr(NO{sub 3}){sub 2}) constituting the initial materials. Differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED) and high-resolution TEM (HRTEM) were utilized to characterize the crystallization behavior of ZrO{sub 2}−3Y{sub 2}O{sub 3}−xSrO precursor powders. The activation energies of tetragonal ZrO{sub 2} (t-ZrO{sub 2}) crystallization were 389.1, 327.6, and 315.1 kJ/mol with SrO content for 1, 2, and 3 mol%, respectively, obtained with a non-isothermal method. The growth morphology parameter and growth mechanism index were close to 2.0 and 1.0, respectively, showing that t-ZrO{sub 2} had a plate-like morphology. - Highlights: • The single phase of tetragonal ZrO{sub 2} formed when calcined at 923 K for 2 h. • ZrO{sub 2}−3Y{sub 2}O{sub 3}−2SrO precursor powders crystallization is at 765.6 K. • The activation energy of t-ZrO{sub 2} crystallization was 389.1 kJ/mol with 1 mol% SrO. • The growth morphology and index of crystallization were close to 2.0 and 1.0.

  3. Preservation of As(III) and As(V) in drinking water supply samples from across the United States using EDTA and acetic acid as a means of minimizing iron-arsenic coprecipitation.

    Science.gov (United States)

    Gallagher, Patricia A; Schwegel, Carol A; Parks, Amy; Gamble, Bryan M; Wymer, Larry; Creed, John T

    2004-05-15

    Seven different treatment/storage conditions were investigated for the preservation of the native As(III)/As(V) found in 10 drinking water supplies from across the United States. These 10 waters were chosen because they have different As(III)/As(V) distributions; six of these waters contained enough iron to produce an iron precipitate during shipment. The waters were treated and stored under specific conditions and analyzed periodically over a span of approximately 75 days. Linear least squares (LLS) was used to estimate the change in As(III) and As(V) over the study period. Point estimates for the first and last analyses days and 95% confidence bounds were calculated from the LLS. The difference in the point estimates for the first and last day were then evaluated with respect to drinking water treatment decision making. Three primary treatments were evaluated: EDTA/AcOH-treatment and AcOH treatment as well as no treatment. The effect of temperature was explored for all treatments, while the effect of aeration was evaluated for only the EDTA/AcOH treated samples. The nontreated samples experienced a 0-40% reduction in the native arsenic concentration due to the formation of Fe/As precipitates. The Fe/As precipitates were resolubilized and shown to contain elevated concentrations of As(V) relative to the native distribution. Once this Fe/As precipitate was removed from solution using a 0.45 and 0.2 microm filter, the resulting arsenic concentration (As(III) + As(V)) was relatively constant (the largest LLS slope was -1.4 x 10(-2) (ng As g water(-1)) day(-1)). The AcOH treatment eliminated the formation of the Fe/As precipitate observed in the nontreated samples. However, two of the AcOH water samples produced analytically significant changes in the As(III) concentration. The LLS slopes for these two waters were -5.7 x 10(-2) (ng As(III) g water(-1)) day(-1) and -1.0 x 10(-1) (ng As(III) g water(-1)) day(-1). This corresponds to a -4.3 ng/g and a -7.8 ng/g change in the As(III) concentration over the study period, which is a 10% shift in the native distribution. The third and final treatment was EDTA/AcOH. This treatment eliminated the Fe/As precipitate that formed in the nontreated sample. The LLS slopes were less than -7.5 x 10(-3) (ng As(III) g water(-1)) day(-1) for the above-mentioned waters, corresponding to a 0.6 ng/g change over the study period. One of the EDTA/AcOH treated waters did indicate that using the 5 degrees C storage temperature minimized the rate of conversion relative to 20 degrees C storage.

  4. Preparation of Sb Doped SnO2 Powder by Wet Chemical Coprecipitation and Conductive Mechanism%湿化学共沉淀法制备Sb掺杂SnO2粉体导电机理研究

    Institute of Scientific and Technical Information of China (English)

    王贵青

    2011-01-01

    采用化学共沉淀法,以SnCl·5HO和SbCl为原料,制备了Sb掺杂SnO(ATO)微晶粉体.电导率、XPS测试表明:Sb掺杂量、煅烧温度对Sb在SnO晶粒中的分布、Sb价态的存在形式、电导率的变化有较大的影响.Sb掺杂SnO(ATO)的导电机理由有效施主Sb和有效氧空位共同控制.当低摩尔分数(小于12%)掺杂或低温煅烧(小于500℃)时,Sb→Sb/Sb>1,Sb逐渐占主导地位,ATO的导电载流子浓度主要由有效施主Sb提供;当高摩尔分数(大于12%)掺杂或高温煅烧(大于500℃)时,Sb→Sb,Sb/Sb≤1,Sb逐渐占主导地位,ATO的导电载流子浓度主要由有效氧空位提供.

  5. 共沉淀法制备超细LaCoO3中分散剂的作用研究%Function of Additive-PEG in Preparation of Ultrafine Power LaCoO3 via Coprecipitation

    Institute of Scientific and Technical Information of China (English)

    卫芝贤; 欧海峰; 李延斌; 李军

    2006-01-01

    通过zeta电位、红外光谱等研究了用共沉淀方法制备LaCoO3时分散剂-聚乙二醇(PEG-6000)的作用机制;通过粘度测定选择其适宜的使用量.结果表明:聚乙二醇(PEG-6000)的防团聚性能是通过在超细粉体的前驱体上吸附,进而主要通过空间位阻稳定机制进行作用的.其使用量的多少直接影响了粉体的粒度大小,当其使用量为前驱体质量的2.0%时,可制备出团聚程度轻、分散性良好的超细LaCoO3粉体.此研究方法可为其他超细粉体湿法制备过程中的团聚控制所借鉴.

  6. Preparation of Nanocrystal Mo-Cu composite powders by Chemical Coprecipitation-Closed Circulation Hydrogen Reduction%化学共沉淀-封闭循环氢还原法制备纳米Mo-CU复合粉

    Institute of Scientific and Technical Information of China (English)

    李在元; 翟玉春; 田彦文

    2004-01-01

    以(NH4)6 Mo7O24·2H2O和CuSO4·5H2O(Mo:Cu=70:30)为原料,采用化学共沉淀法制备Mo-Cu化合物粉末,再用封闭循环氢还原法制备纳米Mo-Cu复合粉.结果表明,化学共沉淀反应最适宜条件为反应温度50±5℃,pH 5.1±0.1,陈化时间9±1h.在此条件下得到平均粒径为1.21μm的Mo-Cu化合物粉末.封闭循环氢还原温度为650℃,得到的Mo-Cu复合粉粒径小于100nm.

  7. 均匀共沉淀法合成纳米Gd2O3:Eu粉体及其发光特性%Homogeneous co-precipitation synthesis and photoluminescence properties of Gd2O3:Eu nanoparticles

    Institute of Scientific and Technical Information of China (English)

    刘志刚; 孙旭东; 李晓东; 连景宝

    2009-01-01

    以六次甲基网胺(hexamethylenetetramine,(CH2)6N4,HMT)为沉淀剂,在GdCl3和EuCl3混合溶液中,利用均匀共沉淀法制得了纳米颗粒.结果表明,获得的Gd2O3:Eu纳米颗粒近似为球形,尺寸均匀,平均粒径为100 nm,且每个球形颗粒由平均粒径为20 nm的微晶聚并而成.Gd2O3:Eu荧光粉在波长612 nm的红光发射来自Eu3+的5D0-7F2电偶极跃迁,发光强度随煅烧温度提高而增强,随Eu3+掺杂摩尔分数的提高而增强.Eu3+掺杂摩尔分数超过7%时,发生浓度淬灭,发光强度减弱.

  8. Mg掺杂ZnO纳米晶的低温共沉淀法制备及光学性质%Luminescent Property of Mg Doped ZnO Nanocrystals Synthesized by Co-precipitation at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    景磊; 潘登余; 任兆玉; 冯娟娟; 郑继明

    2010-01-01

    采用共沉淀(co-precipitation)法制备了Mg掺杂ZnO纳米晶,分别用X射线衍射(XRD)、傅立叶变换红外光谱(FTIR)、紫外可见吸收(UV-Vis)光谱、光致发光(PL)光谱、透射电镜(TEM)、电子顺磁共振(EPR)等分析手段对样品进行了表征.探究了Mg离子在ZnO纳米晶中的存在状态,ZnO纳米晶颗粒尺寸和发射光谱随Mg掺杂浓度的变化,并对其发光机理进行了分析.结果表明:Mg离子在ZnO晶格中以部分晶格位,部分间隙位的方式存在,没有形成MgO表面壳层结构;随Mg掺杂浓度的增大,ZnO纳米晶的颗粒尺寸变小,发射光的光强增大.发射光的最佳激发波长为342nm,中心波长为500nm.荧光量子产率为22.8%.实验分析表明:Mg离子的掺杂在ZnO纳米晶中引入了锌空位(Vzn),间隙位的镁离子(Img),提供了新的复合中心,从而增强了ZnO纳米晶的光致发光.

  9. 共沉淀法合成钠离子电池正极材料磷酸铁%Synthesizing sodium-ion battery cathode material iron phosphate by co-precipitation method

    Institute of Scientific and Technical Information of China (English)

    徐硕炯; 张俊喜; 刘瑶

    2013-01-01

    用共沉淀法合成纳米磷酸铁(FePO4)颗粒,并分别在380℃、460℃、550℃及650℃下煅烧3h.对样品的结构和形貌用XRD和场发射扫描电子显微进行分析,对组装的钠离子电池的电化学性能进行循环伏安、电化学阻抗谱和恒流充放电测试.在550℃下煅烧的FePO4样品具有一定的结晶度,电化学性能最好,以0.1C在1.5 ~4.2 V充放电,首次和第20次循环的放电比容量分别为148.5 mAh/g、134.8 mAh/g.

  10. Recovery of zinc and manganese, and other metals (Fe, Cu, Ni, Co, Cd, Cr, Na, K) from Zn-MnO2 and Zn-C waste batteries: Hydroxyl and carbonate co-precipitation from solution after reducing acidic leaching with use of oxalic acid

    Science.gov (United States)

    Sobianowska-Turek, A.; Szczepaniak, W.; Maciejewski, P.; Gawlik-Kobylińska, M.

    2016-09-01

    The article discusses the current situation of the spent batteries and portable accumulators management. It reviews recycling technologies of the spent batteries and portable accumulators which are used in the manufacturing installations in the world. Also, it presents the authors' research results on the reductive acidic leaching of waste material of the zinc-carbon batteries (Zn-C) and zinc-manganese batteries (alkaline Zn-MnO2) delivered by a company dealing with mechanical treatment of this type of waste stream. The research data proved that the reductive acidic leaching (H2SO4 + C2H2O4) of the battery's black mass allows to recover 85.0% of zinc and 100% of manganese. Moreover, it was found that after the reductive acidic leaching it is possible to recover nearly 100% of manganese, iron, cadmium, and chromium, 98.0% of cobalt, 95.5% of zinc, and 85.0% of copper and nickel from the solution with carbonate method. On the basis of the results, it is possible to assume that the carbonate method can be used for the preparation of manganese-zinc ferrite.

  11. Preparation of Cr-Mn Mixed Oxide by Coprecipitation and Its Performance for Low-Temperature Selective Catalytic Reduction of Nox%共沉淀法制备Cr-Mn复合氧化物及其低温催化还原NOx性能

    Institute of Scientific and Technical Information of China (English)

    李雪辉; 李华; 高翔; 陈志航; 杨青; 王芙蓉; 王乐夫

    2011-01-01

    采用共沉淀法制备了一系列具有CrMn1.5O4晶相的新型Cr-Mn复合氧化物催化剂并用于低温有氧条件下氨选择性催化还原(SCR)NOx.结果表明,NOx转化率随着Cr/(Cr+Mn)摩尔比从0.1到0.4的增加而升高.其中Cr(0.4)-MnOx具有较高的低温活性,在140℃,空速为30 000h-1的条件下,NOx转化率可高达90%.利用N2吸附法,X射线衍射及X射线光电子能谱对系列催化剂进行了表征,发现通过添加Cr元素,可形成新型CrMn1.5O4活性物相;由于Cr元素对催化剂表面电子性能具有调变作用,Mn元素主要以高氧化态形式Mn4+及Mn3+富集,不仅可以促进对NO的氧化,而且有利于对NH3的吸附和活化,从而使该催化剂具有较好的低温SCR活性.

  12. 共沉淀法制备Ag/AgCl-TiO2空心复合纳米微球及其光催化性能%Preparation of Ag/AgCl-TiO2 Hollow Nanoparticles by Co-precipitation and Their Photocatalytic Property

    Institute of Scientific and Technical Information of China (English)

    王金刚; 姬平利; 孔祥正

    2013-01-01

    通过甲基丙烯酸与苯乙烯聚合制备了表面负电性的聚苯乙烯(PSt)纳米乳胶粒.在乙醇与水的混合溶剂中,用硅烷偶联剂乙烯基三甲氧基硅烷对其进行表面改性后加入钛酸四丁酯、氯化钠和硝酸银,以PSt乳胶粒为模板采用共沉淀法制备了PSt-AgCl-TiO2复合微球.在180℃对其进行液相预处理及煅烧去除PSt模板后制备了Ag/AgCl-TiO2空心复合粒子.对各阶段产物的形貌、晶体结构和比表面积等进行了表征.结果表明,所得产物为Ag/AgC1与锐钛矿型TiO2复合的空心粒子,其比表面远大于商品TiO2(P25).考察了Ag/AgCl-TiO2复合粒子在紫外光与可见光下对罗丹明B(RhB)降解的催化活性.结果表明,在紫外光下n(Ag)/n(Ti)=0.1%的Ag/AgCl-TiO2复合粒子活性最高,30 min时对RhB的降解率比不含Ag/AgC1的TiO2空心微球提高了13%;虽然Ag/AgCl-TiO2在可见光下的催化活性远比紫外光下低,但与纯TiO2空心纳米微球相比其催化活性仍明显增强.n(Ag)/n(Ti)=2.0%的Ag/AgCl-TiO2复合粒子催化活性最高,120 min时对RhB的降解率比不含Ag/AgCl的TiO2空心微球提高了38%.

  13. Co-precipitation Synthesis and Oxygen Ionic Conducting Properties of Gd-or Sm-doped CeO2%Gd(Sm)掺杂CeO2的沉淀法合成与导电性能研究

    Institute of Scientific and Technical Information of China (English)

    吉春艳; 徐庆; 廖园富; 陈文; 徐开群

    2006-01-01

    采用碳酸盐共沉淀法合成Ce0.8Gd0.2O1.9和Ce0.8Sm0.2O1.9粉体,并用交流阻抗谱法研究其氧离子导电性能.结果表明,在600 ℃的热处理温度下,可以合成出单一萤石结构的超微细粉体(~200 nm),在1 400 ℃烧结后其相对密度达到95 %以上.在测试温度为800 ℃时,Ce0.8Gd0.2O1.9和Ce0.8Sm0.2O1.9的氧离子电导率分别达到7.8×10-1 S·cm-1和8.5×10-1 S·cm-1.在400~800 ℃范围内,其氧离子导电活化能分别为0.80 eV和0.72 eV.

  14. Synthesis and properties of Mn{sub 1.05−y}Co{sub 1.95−x−z−w}Ni{sub x}Mg{sub y}Al{sub z}Fe{sub w}O{sub 4} NTC ceramic by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Junbo [Key Laboratory of Functional Materials and Devices Under Special Environments, Chinese Academy of Sciences (CAS), Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, Qing, E-mail: zhaoq@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices Under Special Environments, Chinese Academy of Sciences (CAS), Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Chang, Aimin, E-mail: changam@ms.xjb.ac.cn [Key Laboratory of Functional Materials and Devices Under Special Environments, Chinese Academy of Sciences (CAS), Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China); Zhang, Bo [Key Laboratory of Functional Materials and Devices Under Special Environments, Chinese Academy of Sciences (CAS), Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry, CAS, Urumqi 830011 (China)

    2015-10-15

    Mn{sub 1.05−y}Co{sub 1.95−x−z−w}Ni{sub x}Mg{sub y}Al{sub z}Fe{sub w}O{sub 4} negative temperature coefficient (NTC) material was synthesized by double precipitation reacting method. The synthesis condition was optimized. Fourier infrared (FI) spectrometer indicated that the precursor was consisted of oxalate and hydroxide. The powder was studied by X–ray diffraction (XRD) to obtain the optimum calcination temperature of 800 °C. The ceramics were mainly in the cubic spinel structure except for the minority of cubic cobalt oxide. Scanning electron microscope (SEM) image showed that the grain size decreased with the increase of Al{sub 2}O{sub 3} content in the ceramic. While the room temperature resistivity ρ{sub 25} increased from 3027 Ω cm to 16,911 Ω cm with increasing Al{sub 2}O{sub 3} content. The material constants B{sub 25/85} and activity energies were in the range of 3592–3977 K and 0.3112–0.3330 eV, respectively. Complex impedance analysis indicated that the grain boundary resistivity increased with increasing Al{sub 2}O{sub 3} content, whereas, the grain resistance remains virtually unchanged. - Highlights: • Powder with composition near to starting component was synthesized by precipitation. • The grain size of the ceramic decreased with increasing Al{sub 2}O{sub 3} content. • Only the grain boundary resistivity increased with Al{sub 2}O{sub 3} concentration.

  15. 醇-水溶液共沉淀法制备纳米尖晶石型ZnFexCr(2-x)O4%Synthesis of Spinel-Type ZnFexCr(2-x)O4 Nanoparticles by Alcohol-Aqueous Salt Solution Coprecipitation

    Institute of Scientific and Technical Information of China (English)

    王秀宇; 杨桂琴; 严乐美; 孙艺环; 崔小亮; 孟建华

    2004-01-01

    在醇-水体系中采用沉淀法制成复合氢氧化物,再经高温煅烧制成纳米尖晶石型ZnFexCr(2-x)O4粉体材料,并用XRD,TEM和IR等方法对纳米晶进行表征.通过与传统的水溶液共沉淀法相比较,表明该方法得到的样品粉体粒径尺寸小、分布范围窄和团聚少.

  16. 共沉淀法制备锂离子电池正极材料LiFePO4的研究进展%RESEARCH DEVELOPMENT OF LiFePO4 AS CATHODE MATERIAL IN LI-ION BATTERIES BY COPRECIPITATION METHOD

    Institute of Scientific and Technical Information of China (English)

    任强; 沈金锦; 武秀兰

    2010-01-01

    LiFePO4是一种很有潜力的锂离子电池正极材料.本文介绍了LiFePO4材料的共沉淀制备方法,利用碳包裹和金属离子掺杂两种改性方法可以提高LiFePO4材料的电化学性能,指出了LiFePO4材料改性的方向.

  17. 共沉淀法制备超细LaCoO3中聚乙二醇的作用研究%Effects of Additive-PEG in Preparation of Ultrafine Powder LaCoO3 via Coprecipitation

    Institute of Scientific and Technical Information of China (English)

    姚根有; 李延斌; 逯宝娣; 卫芝贤

    2007-01-01

    通过zeta电位、红外光谱等研究了用共沉淀方法制备LaCoO3时分散剂-聚乙二醇PEG-4000)的作用机制;通过粘度测定选择其适宜的使用量. 结果表明: 聚乙二醇的防团聚性能是通过在超细粉体的前驱体上吸附, 进而主要通过空间位阻稳定机制发挥作用的. 当其使用量为前驱体质量的3.0%时, 可制备出团聚程度轻、分散性良好的超细LaCoO3粉体.

  18. Determination of Phosphorus in High-Sulfur and High-Phosphorus Copper Magnetite by Phosphomolybdate Coprecipitation and Nitric Acid Backing Titration%磷钼酸铵沉淀-硝酸返滴定法测定高硫高磷铜磁铁矿中磷含量

    Institute of Scientific and Technical Information of China (English)

    蒋晓光; 王秀颖; 张彦甫; 李卫刚; 褚宁; 王艳君

    2015-01-01

    建立了磷钼酸铵沉淀-硝酸返滴定法测定高硫高磷铜磁铁矿中磷含量的方法.先焙烧试样,再用盐酸、硝酸和高氯酸分解焙烧后的试料;残渣用氢氟酸除硅,碳酸钠熔融;采用氨水沉淀法收集磷,用盐酸溶解沉淀,在酸性介质中,磷酸根与钼酸铵生成磷钼酸铵沉淀,经过滤、洗涤后,将沉淀溶解于过量的氢氧化钠标准溶液中,以酚酞为指示剂,用硝酸标准滴定溶液返滴定过量的氢氧化钠以测定磷量.磷含量在0.20%-6.5%之间,方法的相对标准偏差为0.60%-3.2%;与电感耦合等离子体-原子发射光谱法和X射线荧光光谱法的相对误差小于5.0%,重复性限为r=0.0069x+0.0591,再现性限为R=0.0638x+0.0515,可作为常规方法使用.

  19. Drug: D08703 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D08703 Mixture, Drug L-Glutamic acid - pipethanate hydrochloride - aluminum hydroxide-sodium bicarbonate co-...ydrochloride [DR:D01521], Aluminum hydroxide-sodium bicarbonate co-precipitate Therapeutic category: 2329 Th...rochloride - aluminum hydroxide-sodium bicarbonate co-precipitate mixt PubChem: 96025386 ...

  20. Phase I and II Results from Sr and TRU Precipitation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, W.

    2000-07-27

    The BNFL removal processes for strontium and transuranic components from the AN-102 and AN-107 supernate originally proposed are co-precipitation methods. In initial testing, the precipitates formed during the strontium and ferric nitrate additions were not filterable.

  1. Distribution of REEs and yttrium among major geochemical phases of marine Fe–Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits

    Digital Repository Service at National Institute of Oceanography (India)

    SuryaPrakash, L.; Ray, D.; Paropkari, A.L.; Mudholkar, A.V.; Satyanarayanan, M.; Sreenivas, B.; Chandrasekharam, D.; Kota, D.; KameshRaju, K.A.; Kaisary, S.; Balaram, V.; Gurav, T.

    in hydrothermal oxides is described in terms of co-precipitation and adsorption of their halide complexes and available free ions in hydrothermal solutions. Instead, adsorption of major carbonate species from seawater primarily regulates the partitioning of REEs...

  2. Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles

    Indian Academy of Sciences (India)

    Binu P Jacob; Ashok Kumar; R P Pant; Sukhvir Singh; E M Mohammed

    2011-12-01

    Nickel ferrite nanoparticles of very small size were prepared by sol–gel combustion and co-precipitation techniques. At the same annealing temperature sol–gel derived particles had bigger crystallite size. In both methods, crystallite size of the particles increased with annealing temperature. Sol–gel derived nickel ferrite particles were found to be of almost spherical shape and moderate particle size with a narrow size distribution; while co-precipitation derived particles had irregular shape and very small particle size with a wide size distribution. Nickel ferrite particles produced by sol–gel method exhibited more purity. Sol–gel synthesized nanoparticles were found to be of high saturation magnetization and hysteresis. Co-precipitation derived nickel ferrite particles, annealed at 400°C exhibited superparamagnetic nature with small saturation magnetization. Saturation magnetization increased with annealing temperature in both the methods. At the annealing temperature of 600°C, co-precipitation derived particles also became ferrimagnetic.

  3. Corrosion Resistance of the Superhydrophobic Mg(OH)2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys

    National Research Council Canada - National Science Library

    Zhang, Fen; Zhang, Changlei; Zeng, Rongchang; Song, Liang; Guo, Lian; Huang, Xiaowen

    2016-01-01

      Coatings of the Mg(OH)2/Mg-Al layered double hydroxide (LDH) composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition...

  4. Research Article

    African Journals Online (AJOL)

    2016-06-18

    Jun 18, 2016 ... PREPARED BY SIMPLE CO-PRECIPITATION METHOD ... characterized by high resolution transmission electron microscopy (HRTEM), field effect ... coupled nanocomposite magnets, ultrahigh density recording ... their composition, shape, size and magnetic properties [18, 19] because other phases, in.

  5. Mössbauer and magnetization studies of nanosize chromium ferrite

    African Journals Online (AJOL)

    user

    Synthesized chromium ferrite powders were in good phase and .... This could be because in smaller particles sample defect density is very high due to more broken .... nanosize particles using co-precipitation technique followed by ball milling, ...

  6. Influence of preparation methods on CuO-CeO2 catalysts in the preferential oxidation of CO in excess hydrogen

    Institute of Scientific and Technical Information of China (English)

    Zhigang Liu; Renxian Zhou; Xiaoming Zheng

    2008-01-01

    Influence of three different preparation methods, i.e. impregnation, coprecipitation, and inverse coprecipitation, on the preferential oxidation of CO in excess hydrogen (PROX) over CuO-CeO2 catalysts has been investigated and CuO-CeO2 catalysts are characterized using BET, XPS, XRD, UV Raman, and TPR techniques. The results show that the catalysts prepared by coprecipitation have smaller particle sizes, well-dispersed CuOx species, more oxygen vacancies, and are more active in the PROX than those prepared by the other methods. However, the inverse coprecipitation depresses the catalytic performance of CuO-CeO2 catalysts and causes the growth of CuO-CeO2 because of different pH value in the precipitation process.

  7. SOLID PHASE EXTRACTION OF TRACE AMOUNTS OF ZINC AND ...

    African Journals Online (AJOL)

    ions in the water and food samples and satisfactory results were obtained. ... extraction, cloud point extraction, coprecipitation, membrane filtration .... Approximately 5.0 g of dry rice, spaghetti, bread and black tea samples were taken in four.

  8. A new oxalate co-conversion technology based on liquid/liquid extraction columns

    Energy Technology Data Exchange (ETDEWEB)

    Borda, Gilles; Ode, Denis; Duhamet, Jean; Allegri, Patrick [CEA Nuclear Energy Division - Fuel Cycle Technology Division - System and Chemical Engineering Device Marcoule - 30207 Bagnols sur Ceze (France)

    2008-07-01

    The current objective of fabricating non proliferating nuclear fuel by 'direct' coprecipitation of uranium, plutonium and minor actinides requires a new process to replace the (co)precipitation step. The technological impact of an increased capacity on the work zone could require the development of a different concept for a continuous device capable of ensuring the proposed goal. A new type of device designed and patented by the Cea was tested in 2007. The patent is for organic confinement in a pulsed column. First, precipitation of cerium or neodymium alone has been carried out in this device, with satisfactory results. Moreover, a recent test campaign demonstrated that a uranium-cerium co-precipitate easily forms when the two nitrates are mixed in a pulsed column of the same size operating under very similar process conditions. Qualitatively, the co-precipitate meets the process requirements. (authors)

  9. A hydrothermal route for production of dense, nanostructured Y-TZP

    NARCIS (Netherlands)

    Boutz, M.M.R.; Boutz, M.M.R.; olde Scholtenhuis, R.J.M.; Winnubst, Aloysius J.A.; Burggraaf, Anthonie; Burggraaf, A.J.

    1994-01-01

    Y-TZP powders were prepared either by calcination in air or crystallization under hydrothermal conditions of a hydrous gel, obtained by coprecipitation. Differences in powder properties, green compact structure and sinterability were examined. Crystallization under hydrothermal conditions occurs at

  10. Rapid Multisample Analysis for Simultaneous Determination of Anthropogenic Radionuclides in Marine Environment

    DEFF Research Database (Denmark)

    Qiao, Jixin; Shi, Keliang; Hou, Xiaolin

    2014-01-01

    An automated multisample processing flow injection (FI) system was developed for simultaneous determination of technetium, neptunium, plutonium, and uranium in large volume (200 L) seawater. Ferrous hydroxide coprecipitation was used for the preliminary sample treatment providing the merit...

  11. Morphology and Composition of Nanocrystalline Stabilized Zirconia using Sem-Eds System

    OpenAIRE

    Sunday Adesunloye JONAH; Patrick Ovie AKUSU; Tajudeen Oladele AHMED; Rabiu NASIRU

    2011-01-01

    Bismuth oxide of known mole percentages has been incorporated into zirconia matrix via co-precipitation method. The co-precipitated powders containing mixed oxides of bismuth and zirconium are dried and calcined in air at 200°C and 800°C respectively to obtain nanosized-stabilized zirconia. The microstructures and the composition of the nanosized-stabilized zirconia are investigated using Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS) at a low accel...

  12. Stability of Ferrihydrite and Organic Matter in Ferrihydrite-Organic Matter Associations

    Science.gov (United States)

    Eusterhues, K.; Totsche, K. U.

    2015-12-01

    Iron oxides can bind particularly large amounts of organic matter (OM) and seem to be an important control on OM storage in many soils. To better understand the interactions between Fe oxides and OM, we produced ferrihydrite-OM associations by adsorption and coprecipitation in laboratory experiments. Because ferrihydrites are often formed in OM-rich solutions, we assume that coprecipitation is a common process in nature. In contrast to adsorption on pre-existing ferrihydrite surfaces, coprecipitation involves adsorption, occlusion (physical entrapment of OM), formation of Fe-OM complexes, and poisoning of ferrihydrite growth. The reactivity of coprecipitates may therefore differ from ferriydrites with adsorbed OM. Incubation experiments with an inoculum extracted from a Podzol forest-floor were carried out to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of associated OM led to decreasing initial reaction rates and a decreasing degree of dissolution. Reduction of coprecipitated ferrihydrites was faster than reduction of ferrihydrites with adsorbed OM. Our data demonstrate that the association with ferrihydrite can effectively stabilize labile polysaccharides. Vice versa, these polysaccharides may protect ferrihydrite from reduction by Geobacter-like bacteria. However, a challenge for future studies will be to link formation and degradation of mineral-organic associations to natural porous systems, that is, to the complex interplay of mass transport and microbial distribution in the

  13. Insights into the Synthesis of Layered Double Hydroxide (LDH) Nanoparticles: Part 2. Formation Mechanisms of LDH

    OpenAIRE

    Sun, Xiaodi; Dey, Sandwip K.

    2015-01-01

    This study demonstrates the effect of (co)intercalated anion compositions on nanostructure evolution to understand the formation mechanisms of layered double hydroxide (LDH) nanoparticles following coprecipitation and hydrothermal treatments (HT). Initially, the room temperature coprecipitation resulted in amorphous primary nanoparticles that agglomerated at the edges due to low surface charge densities. The reversibility of such agglomeration was determined by the crystalline quality upon HT...

  14. Synthesis and functionalisation of metal and metal oxide nanoparticles for theranostics

    OpenAIRE

    2013-01-01

    Metal and metal oxide nanoparticles including calcium oxide, gold, and superparamagnetic iron oxide nanoparticles (SPIOs) were synthesised using a range of techniques including reduction, co-precipitation and spinning disc technology. SPIOs were primarily synthesised via a co-precipitation method using iron (II) chloride, iron (III) chloride and ammonia; a spinning disc reactor and gaseous ammonia were trialled successfully for scale up, producing spherical particles of 10-40 nm in diameter a...

  15. Preparation and characterization of starch-metal silicate Co-precipitates--evaluation as tablet superdisintegrant.

    Science.gov (United States)

    Singh, Inderbir; Kaur, Birender; Juneja, Prateek

    2014-01-01

    Starch is a potential biomaterial used for various pharmaceutical applications because of its unique physicochemical and functional characteristics. A number of modification techniques, such as physical, chemical, enzymatic and genetic or a combination of any of these methods have been reported with the aim of enhancing the positive attributes and eliminating the shortcomings of the native starches. The present studies deal with the development of co-precipitates of corn starch with different silicates (Mg, Ca, Al) with an aim of using it as a tablet superdisintegrant. Co-precipitates of starch with different silicates were prepared and FTIR-ATR, XRD and SEM techniques were used for the characterization of conjugates. The conjugate were analyzed for various powder evaluation test like angle of repose, bulk density, tapped density, Hausner's ratio, Carr's index, swelling index and effective pore radius. The prepared co-precipitates were found to possess good powder flow properties. The swelling and effective pore radius of all co-precipitates (SMgC, SAlC and SCaC) was found in the range between 30-100% and 15.89-21.71 μm respectively. Different ratios of the prepared co-precipitates were used to formulate fast disintegrating tablets. Fast disintegrated tablets formulated using starch silicate conjugates as superdisintegrant were evaluated for diameter, thickness, hardness, friability, tensile strength, in vitro tablet disintegration, water absorption ratio, wetting time and in vitro dissolution studies. The effective pore radius and swelling of the co-precipitates were correlated with the in vitro disintegration, water absorption ratio and wetting time of the tablets. It was concluded that silicated co-precipitates of starch could be used as superdisintegrants in pharmaceutical tablet formulations.

  16. Effect of modification methods on the surface properties and n-butane isomerization performance of La/Ni-promoted SO42-/ZrO2-Al2O3

    Science.gov (United States)

    Wang, Pengzhao; Zhang, Jiaoyu; Han, Chaoyi; Yang, Chaohe; Li, Chunyi

    2016-08-01

    The La and/or Ni was introduced into alumina-promoted sulfated zirconia by impregnation and co-precipitation to improve the catalytic property of n-butane isomerization. Catalysts characterization shows that the addition of La/Ni has a remarkable influence on the surface and textual properties depending on the modification method. The impregnation of La/Ni facilitates the transformation of a small amount of tetragonal zirconia into monoclinic phase, while the co-precipitation improves the stability of tetragonal ZrO2. H2-TPR indicates that the addition of La/Ni changes the interaction between SO42- and supports, which affects the acidity on the surface. Specifically, the Lewis acidity is significantly enhanced by either modification method. The co-precipitation reserves almost all of the Brønsted acid sites, while the impregnation causes a remarkable decrease of Brønsted acid sites. Reaction results demonstrate that the co-precipitation exhibits a significant advantage over impregnation that the higher conversion of n-butane and selectivity to isobutane are obtained on the catalyst prepared by co-precipitation. The increase of catalytic activity is ascribed to the accelerated activation rate of n-butane molecules by hydride subtraction on the Lewis acid sites at higher reaction temperature. Furthermore, the addition of La/Ni improves the selectivity to isobutane by inhibiting the bimolecular reaction.

  17. Uranium extraction from laboratory-synthesized, uranium-doped hydrous ferric oxides.

    Science.gov (United States)

    Smith, Steven C; Douglas, Matthew; Moore, Dean A; Kukkadapu, Ravi K; Arey, Bruce W

    2009-04-01

    The extractability of uranium (U) from synthetic uranium-hydrous ferric oxide (HFO) coprecipitates has been shown to decrease as a function of mineral ripening, consistent with the hypothesis that the ripening process will decrease uranium lability. To evaluate this process, three HFO suspensions were coprecipitated with uranyl (UO2(2+)) and maintained at pH 7.0 +/- 0.1. Uranyl was added to the HFO postprecipitation in a fourth suspension. Two suspensions also contained either coprecipitated silicate (Si-U-HFO) or phosphate (P-U-HFO). After precipitation of the HFOs, at time intervals of 1 week, 1 month, 6 months, 1 year, and 2 years, aliquots of each suspension were contacted with five extractant solutions for a range of time. Uranium was preferentially extracted over Fe in varying degrees from all coprecipitates, by all extractants. The preference was dependent on the duration of mineral ripening and adjunct anion. Micro-X-ray diffraction analysis provides evidence for the transformation from amorphous material to phases containing substantial proportions of crystalline goethite and hematite, except the P-U-HFO, which remained primarily amorphous. Analysis of the U-HFO coprecipitate bythe Mössbauertechnique and scanning electron microscopy provides confirmation of an increase in particle size and evidence of mineral ripening to crystalline phases.

  18. Influence of preparation method on supported Cu-Ni alloys and their catalytic properties in high pressure CO hydrogenation

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Eriksen, Winnie L.; Duchstein, Linus Daniel Leonhard

    2014-01-01

    to impregnation, the coprecipitation and deposition-coprecipitation methods are more efficient for preparation of small and homogeneous Cu-Ni alloy nanoparticles. In order to examine the stability of Cu-Ni alloys in high pressure synthesis gas conversion, they have been tested for high pressure CO hydrogenation......Silica supported Cu-Ni (20 wt% Cu + Ni on silica, molar ratio of Cu/Ni = 2) alloys are prepared via impregnation, coprecipitation, and deposition- coprecipitation methods. The approach to co-precipitate the SiO2 from Na2SiO3 together with metal precursors is found to be an efficient way to prepare...... high surface area silica supported catalysts (BET surface area up to 322 m2 g-1, and metal area calculated from X-ray diffraction particle size up to 29 m2 g-1). The formation of bimetallic Cu-Ni alloy nanoparticles has been studied during reduction using in situ X-ray diffraction. Compared...

  19. ENCAPSULATION OF EXTRACT FROM WINERY INDUSTRY RESIDUE USING THE SUPERCRITICAL ANTI-SOLVENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    N. Mezzomo

    Full Text Available Abstract Grape pomace (seed, skin and stem is a winery byproduct with high levels of biologically active compounds, such as antioxidants and antimicrobials, that could be converted into high added-value products. Since these components are easily degraded by oxygen, light and high temperature exposure, stabilization is important, for instance, by a microencapsulation process. Therefore, the objective of this study was to investigate the influence on the particle characteristics of the operational conditions applied in the Supercritical Anti-Solvent (SAS process for the co-precipitation of grape pomace extract and poly(-lactic-co-glycolic acid (PLGA. The morphology and size of the particles formed, their stability and thermal profile were evaluated, and also the co-precipitation efficiency. The conditions studied allowed the production of microparticles with spherical shape for all operational conditions, with estimated particle size between 4 ± 2 and 11 ± 5 µm, and very good co-precipitation efficiencies (up to 94.4 ± 0.6%. The co-precipitated extract presented higher stability compared to the crude extract, indicating the effectiveness of the co-precipitation process and coating material against degradation processes.

  20. Catalytic properties of Cu/Co/Zn/Zr oxides prepared by various methods

    Institute of Scientific and Technical Information of China (English)

    Limin Shi; Wei Chu; Siyu Deng; Huiyuan Xu

    2008-01-01

    The new Cu-Co based (Cu/Co/Zn/Zr) catalysts for higher-alcohol synthesis were prepared using coprecipitation method, plasma enhanced method and reverse coprecipitation method under ultrasound irradiation. The catalysts were investi-gated by the means of BET, SEM, XRD, H2-TPR and XPS. Catalytic properties of the catalysts prepared by various methods were examined using CO hydrogenation reaction. It was found that plasma enhanced method and reverse coprecipitation method under ultrasound irradiation were both effective in enhancing the catalytic properties of Cu/Co/Zn/Zr mixed oxides. The small particle size, high dispersion of active components, the improvement of specific surface area and surface contents of active phases could account for the excellent performance of the experimental Cu/Co/Zn/Zr catalysts.

  1. Influence of the Ratio of Ethanol to Water on the Agglomeration of Al2O3/Y2O3-ZrO2 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Li Xiuhua; Du Juanjuan; Zhu Liying; Cheng Huijie; Wang Lingwei

    2007-01-01

    A method of heating ethanol-aqueous salt solution combined with co-precipitation was used to synthesize Al2O3/ZrO2 nanoparticles. The analysis of DSC and XRD revealed that the transformation temperature from amorphous to crystal phase was about 850℃. The grain size was increased with the raising of calcine temperature. The alcohol-water ratio did not affect the formation of main crystal phases, but affected the agglomeration of nanoparticles based on the results of TEM. When alcohol-water ratio was 5:1, the dispersion of nanoparticles was good. When there was not alcohol, the dispersion of nanoparticles was poor because there was only pure co-precipitation reaction and the speed of co-precipitation reaction was too high to have enough time of PEG. dispersing particles.

  2. Comparison of sample preparation methods for reliable plutonium and neptunium urinalysis using automatic extraction chromatography.

    Science.gov (United States)

    Qiao, Jixin; Xu, Yihong; Hou, Xiaolin; Miró, Manuel

    2014-10-01

    This paper describes improvement and comparison of analytical methods for simultaneous determination of trace-level plutonium and neptunium in urine samples by inductively coupled plasma mass spectrometry (ICP-MS). Four sample pre-concentration techniques, including calcium phosphate, iron hydroxide and manganese dioxide co-precipitation and evaporation were compared and the applicability of different techniques was discussed in order to evaluate and establish the optimal method for in vivo radioassay program. The analytical results indicate that the various sample pre-concentration approaches afford dissimilar method performances and care should be taken for specific experimental parameters for improving chemical yields. The best analytical performances in terms of turnaround time (6h) and chemical yields for plutonium (88.7 ± 11.6%) and neptunium (94.2 ± 2.0%) were achieved by manganese dioxide co-precipitation. The need of drying ashing (≥ 7h) for calcium phosphate co-precipitation and long-term aging (5d) for iron hydroxide co-precipitation, respectively, rendered time-consuming analytical protocols. Despite the fact that evaporation is also somewhat time-consuming (1.5d), it endows urinalysis methods with better reliability and repeatability compared with co-precipitation techniques. In view of the applicability of different pre-concentration techniques proposed previously in the literature, the main challenge behind relevant method development is pointed to be the release of plutonium and neptunium associated with organic compounds in real urine assays. In this work, different protocols for decomposing organic matter in urine were investigated, of which potassium persulfate (K2S2O8) treatment provided the highest chemical yield of neptunium in the iron hydroxide co-precipitation step, yet, the occurrence of sulfur compounds in the processed sample deteriorated the analytical performance of the ensuing extraction chromatographic separation with chemical

  3. [Entrapment of herbal extracts in biodegradable microcapsules].

    Science.gov (United States)

    Borodina, T N; Rumsh, L D; Kunizhev, S M; Sukhorukov, G B; Vorozhtsov, G N; Fel'dman, B M; Rusanova, A V; Vasil'eva, T V; Strukova, S M; Markvicheva, E A

    2007-01-01

    The microcapsules with entrapped herbal water-soluble extracts Plantago major and Calendula officinalis L. (HE) were prepared by LbL-adsorption of carrageenan and modificated chitosan onto CaCO3 microparticles with their subsequent dissolving after the treatment of EDTA. Entrapment of HE was performed by adsorption and co-precipitation techniques. The co-precipitation provided better entrapment of HE compared to adsorption. In vitro release kinetics in an artificial gastric juice (AGJ) was studied. The HE release was shown to accelerate gastric ulcer treatment in a rat model.

  4. TRLFS characterization of Eu(III)-doped synthetic organo-hectorite.

    Science.gov (United States)

    Finck, Nicolas; Stumpf, Thorsten; Walther, Clemens; Bosbach, Dirk

    2008-12-12

    Europium(III) was coprecipitated with the clay mineral hectorite, a magnesian smectite, following a multi-step synthesis procedure. Different Eu(III) species associated with the proceeding synthetic hectorite were characterized by selectively exciting the 5D0-->7F0 transition at low temperature (T mineral. The excitation spectra indicated that the substitution of the divalent Mg by the trivalent Eu induced local structural deformation. This investigation implements the molecular-level understanding of the f element structural incorporation into the octahedral layer of sheet silicates by coprecipitation with clay minerals from salt solutions at 100 degrees C.

  5. Preparation of uniform mixed metal oxide and superconductive oxides

    Energy Technology Data Exchange (ETDEWEB)

    Barder, T.J.

    1991-04-30

    This paper describes a method for producing a uniform mixed metal oxide. It includes dissolving metals as their salts of a carboxylic acid in an aliphatic alcohol in the substantial absence of water, the metals are in the same proportions as in the corresponding mixed metal oxide; co-precipitating the metals as their oxalates by mixing the alcohol solution with oxalic acid; separating the co-precipitated metal oxalates and calcining the oxalates in air or oxygen above about 500{degrees} C to convert the oxalates to the corresponding metal oxides.

  6. [Pharmaceutical technology of Cordaflex tablets].

    Science.gov (United States)

    Erdös, S

    1996-01-01

    First the possibilities of solubilization and the photosensibility of nifedipine (the active ingredient of Cordaflex tablets) were investigated. The technology of retard tablet involves the preparation of a coprecipitate through spraying a solution containing nifedipine, a hydrotropic and a reardizing substance on carrier. After drying the produced granulated material was blended with common auxiliary ingredients, compressed into tablet and coated. The ratio of the two types of coprecipitating substances has a direct effect on the dissolution, so it proved predictable. The reproducibility of technology was good.

  7. Effect of key parameters on synthesis of superparamagnetic nanoparticles (SPIONs

    Directory of Open Access Journals (Sweden)

    Malhotra Ankit

    2016-09-01

    Full Text Available There are various methods to synthesize superparamagnetic nanoparticles (SPIONs useful for MPI (magnetic particle imaging and in therapy (Hypothermia such as co-precipitation, hydrothermal reactions etc. In this research, the focus is to analyse the effects of crucial parameters such as effect of molecular mass of dextran and temperature of the co-precipitation. These parameters play a crucial role in the inherent magnetic properties of the resulting SPIONs. The amplitude spectrum and hysteresis curve of the SPIONs is analysed with MPS (magnetic particle spectrometer. PCCS (photon cross-correlation spectroscopy measurements are done to analyse the size distribution of hydrodynamic diameter the resulting SPIONs.

  8. The effects of cyclodextrins on drug release from fatty suppository bases : I. In vitro observations

    NARCIS (Netherlands)

    Frijlink, H.W.; Eissens, Anko; Schoonen, Adelbert; Lerk, C.F.

    1991-01-01

    The effect of cyclodextrins on suppository drug release was investigated. Complexes of several lipophilic drugs with β- and/or γ-cyclodextrin were prepared using the coprecipitation method. The formation of true complexes was confirmed by DSC and an 'ether-wash' method. Witepsol H15 suppositories we

  9. A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by mc-ICP-MS

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Baker, J.A.; Ulfbeck, D.

    2003-01-01

    metaborate. High field strength elements (HFSE) and rare earth elements (REE) are separated from this solution by co-precipitation with iron hydroxide. The dissolved precipitate (in 2 mol l HCl) is loaded directly onto a standard cation exchange column which separates remaining sample matrix from the heavy...

  10. Study on the Structure of Supramolecular Inclusion Complex of b-Cyclodextrin with Retinoic Acid

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Inclusion compound of retinoic acid with b-cyclodextrin was prepared by coprecipitating method, the structure of resulting product was studied by elemental analysis, differential scanning caloriemetry(DSC) analysis, FT-IR spectroscopy and X-ray diffractometry, and the formed supramolecule self-assembles in aqueous solution according to molar ratio 2:1 of host-guest.