WorldWideScience

Sample records for copperii carboxylate promoted

  1. Structural observations of heterometallic uranyl copper(II) carboxylates and their solid-state topotactic transformation upon dehydration.

    Science.gov (United States)

    Olchowka, Jakub; Falaise, Clément; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2013-02-04

    The hydrothermal reactions of uranyl nitrate and metallic copper with aromatic polycarboxylic acids gave rise to the formation of five heterometallic UO(2)(2+)-Cu(2+) coordination polymers: (UO(2))Cu(H(2)O)(2)(1,2-bdc)(2) (1; 1,2-bdc = phthalate), (UO(2))Cu(H(2)O)(2)(btec)⋅4 H(2)O (2) and (UO(2))Cu(btec) (2'; btec = pyromellitate), (UO(2))(2)Cu(H(2)O)(4)(mel) (3; mel = mellitate), and (UO(2))(2)O(OH)(2)Cu(H(2)O)(2)(1,3-bdc)⋅H(2)O (4; 1,3-bdc = isophthlalate). Single-crystal X-ray diffraction (XRD) analysis of compound 1 revealed 2D layers of chains of UO(8) and CuO(4)(H(2)O)(2) units that were connected through the phthalate ligands. In compound 2, these sheets were connected to each other through the two additional carboxylate arms of the pyromellitate, thus resulting in a 3D open-framework with 1D channels that trapped water molecules. Upon heating, free and bonded water species (from Cu-OH(2)) were evacuated from the structure. This thermal transition was followed by in situ XRD and IR spectroscopy. Heating induced a solid-state topotactic transformation with the formation of a new set of Cu-O interactions in the crystalline anhydrous structure (2'), in order to keep the square-planar environment around the copper centers. The structure of compound 3 was built up from trinuclear motifs, in which one copper center, CuO(4)(OH(2))(2), was linked to two uranium units, UO(5)(H(2)O)(2). The assembly of this trimer, "U(2)Cu", with the mellitate generated a 3D network. Complex 4 contained a tetranuclear uranyl core of UO(5)(OH)(2) and UO(6)(OH) units that were linked to two copper centers, CuO(OH)(2)(H(2)O)(2), which were then connected to each other through isophthalate ligands and U=O-Cu interactions to create a 3D structure. The common structural feature of these different compounds is a bridging oxo group of U=O-Cu type, which is reflected by apical Cu-O distances in the range 2.350(3)-2.745(5) Å. In the case of a shorter Cu-O distance, a slight lengthening

  2. Structural observations of heterometallic uranyl copper(II) carboxylates and their solid-state topotactic transformation upon dehydration

    International Nuclear Information System (INIS)

    Olchowka, Jakub; Falaise, Clement; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2013-01-01

    The hydrothermal reactions of uranyl nitrate and metallic copper with aromatic polycarboxylic acids gave rise to the formation of five heterometallic UO 2 2+ -Cu 2+ coordination polymers: (UO 2 )Cu(H 2 O) 2 (1,2-bdc) 2 (1; 1,2-bdc=phthalate), (UO 2 )Cu(H 2 O) 2 (btec).4 H 2 O (2) and (UO 2 )Cu(btec) (2'; btec=pyromellitate), (UO 2 ) 2 Cu(H 2 O) 4 (mel) (3; mel=mellitate), and (UO 2 ) 2 O(OH) 2 Cu(H 2 O) 2 (1,3-bdc).H 2 O (4; 1,3-bdc=isophthlalate). Single-crystal X-ray diffraction (XRD) analysis of compound 1 revealed 2D layers of chains of UO 8 and CuO 4 (H 2 O) 2 units that were connected through the phthalate ligands. In compound 2, these sheets were connected to each other through the two additional carboxylate arms of the pyromellitate, thus resulting in a 3D open-framework with 1D channels that trapped water molecules. Upon heating, free and bonded water species (from Cu-OH 2 ) were evacuated from the structure. This thermal transition was followed by in situ XRD and IR spectroscopy. Heating induced a solid-state topotactic transformation with the formation of a new set of Cu-O interactions in the crystalline anhydrous structure (2'), in order to keep the square-planar environment around the copper centers. The structure of compound 3 was built up from trinuclear motifs, in which one copper center, CuO 4 (OH 2 ) 2 , was linked to two uranium units, UO 5 (H 2 O) 2 . The assembly of this trimer, ''U 2 Cu'', with the mellitate generated a 3D network. Complex 4 contained a tetranuclear uranyl core of UO 5 (OH) 2 and UO 6 (OH) units that were linked to two copper centers, CuO(OH) 2 (H 2 O) 2 , which were then connected to each other through isophthalate ligands and U=O-Cu interactions to create a 3D structure. The common structural feature of these different compounds is a bridging oxo group of U=O-Cu type, which is reflected by apical Cu-O distances in the range 2.350(3)-2.745(5) Aa. In the case of a shorter Cu-O distance, a slight

  3. Structural observations of heterometallic uranyl copper(II) carboxylates and their solid-state topotactic transformation upon dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Olchowka, Jakub; Falaise, Clement; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry [Unite de Catalyse et Chimie du Solide (UCCS), UMR CNRS 8181, Universite de Lille Nord de France, USTL-ENSCL, Villeneuve d' Ascq (France)

    2013-02-04

    The hydrothermal reactions of uranyl nitrate and metallic copper with aromatic polycarboxylic acids gave rise to the formation of five heterometallic UO{sub 2}{sup 2+}-Cu{sup 2+} coordination polymers: (UO{sub 2})Cu(H{sub 2}O){sub 2}(1,2-bdc){sub 2} (1; 1,2-bdc=phthalate), (UO{sub 2})Cu(H{sub 2}O){sub 2}(btec).4 H{sub 2}O (2) and (UO{sub 2})Cu(btec) (2'; btec=pyromellitate), (UO{sub 2}){sub 2}Cu(H{sub 2}O){sub 4}(mel) (3; mel=mellitate), and (UO{sub 2}){sub 2}O(OH){sub 2}Cu(H{sub 2}O){sub 2}(1,3-bdc).H{sub 2}O (4; 1,3-bdc=isophthlalate). Single-crystal X-ray diffraction (XRD) analysis of compound 1 revealed 2D layers of chains of UO{sub 8} and CuO{sub 4}(H{sub 2}O){sub 2} units that were connected through the phthalate ligands. In compound 2, these sheets were connected to each other through the two additional carboxylate arms of the pyromellitate, thus resulting in a 3D open-framework with 1D channels that trapped water molecules. Upon heating, free and bonded water species (from Cu-OH{sub 2}) were evacuated from the structure. This thermal transition was followed by in situ XRD and IR spectroscopy. Heating induced a solid-state topotactic transformation with the formation of a new set of Cu-O interactions in the crystalline anhydrous structure (2'), in order to keep the square-planar environment around the copper centers. The structure of compound 3 was built up from trinuclear motifs, in which one copper center, CuO{sub 4}(OH{sub 2}){sub 2}, was linked to two uranium units, UO{sub 5}(H{sub 2}O){sub 2}. The assembly of this trimer, ''U{sub 2}Cu'', with the mellitate generated a 3D network. Complex 4 contained a tetranuclear uranyl core of UO{sub 5}(OH){sub 2} and UO{sub 6}(OH) units that were linked to two copper centers, CuO(OH){sub 2}(H{sub 2}O){sub 2}, which were then connected to each other through isophthalate ligands and U=O-Cu interactions to create a 3D structure. The common structural feature of these different compounds is

  4. Carbon dioxide utilization via carbonate-promoted C-H carboxylation.

    Science.gov (United States)

    Banerjee, Aanindeeta; Dick, Graham R; Yoshino, Tatsuhiko; Kanan, Matthew W

    2016-03-10

    Using carbon dioxide (CO2) as a feedstock for commodity synthesis is an attractive means of reducing greenhouse gas emissions and a possible stepping-stone towards renewable synthetic fuels. A major impediment to synthesizing compounds from CO2 is the difficulty of forming carbon-carbon (C-C) bonds efficiently: although CO2 reacts readily with carbon-centred nucleophiles, generating these intermediates requires high-energy reagents (such as highly reducing metals or strong organic bases), carbon-heteroatom bonds or relatively acidic carbon-hydrogen (C-H) bonds. These requirements negate the environmental benefit of using CO2 as a substrate and limit the chemistry to low-volume targets. Here we show that intermediate-temperature (200 to 350 degrees Celsius) molten salts containing caesium or potassium cations enable carbonate ions (CO3(2-)) to deprotonate very weakly acidic C-H bonds (pKa > 40), generating carbon-centred nucleophiles that react with CO2 to form carboxylates. To illustrate a potential application, we use C-H carboxylation followed by protonation to convert 2-furoic acid into furan-2,5-dicarboxylic acid (FDCA)--a highly desirable bio-based feedstock with numerous applications, including the synthesis of polyethylene furandicarboxylate (PEF), which is a potential large-scale substitute for petroleum-derived polyethylene terephthalate (PET). Since 2-furoic acid can readily be made from lignocellulose, CO3(2-)-promoted C-H carboxylation thus reveals a way to transform inedible biomass and CO2 into a valuable feedstock chemical. Our results provide a new strategy for using CO2 in the synthesis of multi-carbon compounds.

  5. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng; Pahovnik, David; Gnanou, Yves; Hadjichristidis, Nikolaos

    2014-01-01

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation

  6. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    Science.gov (United States)

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis

  7. CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 at room temperature

    International Nuclear Information System (INIS)

    Yu, B.; Yang, Z.Z.; Zhao, Y.F.; Zhang, H.Y.; Yang, P.; Gao, X.; Liu, Z.M.

    2017-01-01

    A CsF-promoted carboxylation of aryl(hetaryl) terminal alkynes with atmospheric CO_2 in the presence of trimethylsilylacetylene was developed to give functionalized propiolic acid products at room temperature. A wide range of propiolic acids bearing functional groups was successfully obtained in good to excellent yields. Mechanistic studies demonstrate that in the carboxylation process the alkynyl-silane intermediate was first in situ generated, which was then trapped by CO_2, giving rise to the corresponding functionalized propiolic acids after acidification. The advantages of this approach include avoiding use of transition-metal catalysts, wide substrate scope together with excellent functional group tolerance, ambient conditions and a facile work-up procedure. (authors)

  8. Phosphazene-promoted metal-free ring-opening polymerization of ethylene oxide initiated by carboxylic acid

    KAUST Repository

    Zhao, Junpeng

    2014-03-11

    The effectiveness of carboxylic acid as initiator for the anionic ring-opening polymerization of ethylene oxide was investigated with a strong phosphazene base (t-BuP4) used as promoter. Kinetic study showed an induction period, i.e., transformation of carboxylic acid to hydroxyl ester, followed by slow chain growth together with simultaneous and fast end-group transesterification, which led to poly(ethylene oxide) (PEO) consisting of monoester (monohydroxyl), diester, and dihydroxyl species. An appropriate t-BuP4/acid ratio was proven to be essential to achieve better control over the polymerization and low dispersity of PEO. This work provides important information and enriches the toolbox for macromolecular and biomolecular engineering with protic initiating sites. © 2014 American Chemical Society.

  9. Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex

    Science.gov (United States)

    Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.

    2002-08-01

    Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.

  10. Copper(II) and zinc(II) as metal-carboxylate coordination complexes based on (1-methyl-1H-benzo[d]imidazol-2-yl) methanol derivative: Synthesis, crystal structure, spectroscopy, DFT calculations and antioxidant activity

    Science.gov (United States)

    Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali

    2018-05-01

    This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.

  11. Interactions between copper(II) and DOM in the urban stormwater runoff: modeling and characterizations.

    Science.gov (United States)

    Zhao, Chen; Wang, Chong-Chen; Li, Jun-Qi; Wang, Peng; Ou, Jia-Qi; Cui, Jing-Rui

    2018-01-01

    Dissolved organic matter (DOM) can strongly interact with both organic and inorganic contaminants to influence their transportation, transformation, bioavailability, toxicity and even their ultimate fate. Within this work, DOM was extracted from urban stormwater runoff samples collected from a regular sampling site of a typical residential area in Beijing, China. Copper(II) ions were selected as model to investigate the interactions between DOM and typical heavy metals. Both ultraviolet (UV) absorbance and fluorescence titration methods were introduced to determine the complex capacities (C L ) and conditional stability constants (log K M ) of bonding between DOM and copper (II) ions, which revealed that the values of C L were 85.62 and 87.23 μmol mg -1 and the log K M values were 5.37 and 5.48, respectively. The results suggested the successful complexation between DOM and copper(II) ions. Furthermore, morphology of the DOM binding to copper(II) ions was confirmed by both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), which can facilitate to clarify the corresponding mechanism. The Cu 2p 3/2 peak at 933.7 eV and the characteristic shake-up peaks of Cu-O were found in the XPS spectra, implying that copper(II) ions might coordinate with hydroxyl (aliphatic or phenolic) or carboxyl groups. With these profitable results, it can be concluded that DOM in urban stormwater runoff has a strong binding affinity with copper(II) ions, which may further lead to potentially significant influence on their migration and transformation.

  12. A ubiquitin carboxyl extension protein secreted from a plant-parasitic nematode Globodera rostochiensis is cleaved in planta to promote plant parasitism.

    Science.gov (United States)

    Chronis, Demosthenis; Chen, Shiyan; Lu, Shunwen; Hewezi, Tarek; Carpenter, Sara C D; Loria, Rosemary; Baum, Thomas J; Wang, Xiaohong

    2013-04-01

    Nematode effector proteins originating from esophageal gland cells play central roles in suppressing plant defenses and in formation of the plant feeding cells that are required for growth and development of cyst nematodes. A gene (GrUBCEP12) encoding a unique ubiquitin carboxyl extension protein (UBCEP) that consists of a signal peptide for secretion, a mono-ubiquitin domain, and a 12 amino acid carboxyl extension protein (CEP12) domain was cloned from the potato cyst nematode Globodera rostochiensis. This GrUBCEP12 gene was expressed exclusively within the nematode's dorsal esophageal gland cell, and was up-regulated in the parasitic second-stage juvenile, correlating with the time when feeding cell formation is initiated. We showed that specific GrUBCEP12 knockdown via RNA interference reduced nematode parasitic success, and that over-expression of the secreted Gr(Δ) (SP) UBCEP12 protein in potato resulted in increased nematode susceptibility, providing direct evidence that this secreted effector is involved in plant parasitism. Using transient expression assays in Nicotiana benthamiana, we found that Gr(Δ) (SP) UBCEP12 is processed into free ubiquitin and a CEP12 peptide (GrCEP12) in planta, and that GrCEP12 suppresses resistance gene-mediated cell death. A target search showed that expression of RPN2a, a gene encoding a subunit of the 26S proteasome, was dramatically suppressed in Gr(Δ) (SP) UBCEP12 but not GrCEP12 over-expression plants when compared with control plants. Together, these results suggest that, when delivered into host plant cells, Gr(Δ) (SP) UBCEP12 becomes two functional units, one acting to suppress plant immunity and the other potentially affecting the host 26S proteasome, to promote feeding cell formation. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  13. Structural requirement of carboxyl-terminal globular domains of laminin alpha 3 chain for promotion of rapid cell adhesion and migration by laminin-5.

    Science.gov (United States)

    Hirosaki, T; Mizushima, H; Tsubota, Y; Moriyama, K; Miyazaki, K

    2000-07-21

    The basement membrane protein laminin-5, a heterotrimer of laminin alpha3, beta3, and gamma2 chains, potently promotes cellular adhesion and motility. It has been supposed that the carboxyl-terminal globular region of the alpha3 chain consisting of five distinct domains (G1 to G5) is important for its interaction with integrins. To clarify the function of each G domain, we transfected cDNAs for the full-length (wild type (WT)) and five deletion derivatives (DeltaGs) of the alpha3 chain into human fibrosarcoma cell line HT1080, which expressed and secreted the laminin beta3 and gamma2 chains but not the alpha3 chain. The transfectants with the alpha3 chain cDNAs lacking G5 (DeltaG(5)), G4-5 (DeltaG(4-5)), G3-5 (DeltaG(3-5)), and G2-5 (DeltaG(2-5)) secreted laminin-5 variants at levels comparable to that with WT cDNA. However, the transfectant with the cDNA without any G domains (DeltaG(1-5)) secreted little laminin-5, suggesting that the G domains are essential for the efficient assembly and secretion of the heterotrimer alpha3beta3gamma2. The transfectants with WT, DeltaG(5), and DeltaG(4-5) cDNAs survived in serum-free medium longer than those with DeltaG(3-5), DeltaG(2-5), and DeltaG(1-5) cDNAs. The transfectants with WT, DeltaG(5), and DeltaG(4-5) cDNAs secreted apparently the same size of laminin-5, which lacked G4 and G5 due to proteolytic cleavage between G3 and G4, and these laminin-5 forms potently promoted integrin alpha(3)beta(1)-dependent cell adhesion and migration. However, the laminin-5 forms of DeltaG(3-5) and DeltaG(2-5) hardly promoted the cell adhesion and motility. These findings demonstrate that the G3 domain, but not the G4 and G5 domains, of the alpha3 chain is essential for the potent promotion of cell adhesion and motility by laminin-5.

  14. Photocleavage of DNA by copper(II) complexes

    Indian Academy of Sciences (India)

    The chemistry of ternary and binary copper(II) complexes showing efficient visible lightinduced DNA cleavage activity is summarized in this article. The role of the metal in photo-induced DNA cleavage reactions is explored by designing complex molecules having a variety of ligands. Ternary copper(II) complexes with amino ...

  15. Preconcentration and extraction of copper(II) on activated carbon ...

    African Journals Online (AJOL)

    Activated carbon modified method was used for the preconcentration and ... in real samples such as tap water, wastewater and a synthetic water sample by flame ... KEY WORDS: Copper(II), Solid phase extraction, Activated carbon, Flame ...

  16. Synthesis, Characterization and DNA Cleavage of Copper(II ...

    African Journals Online (AJOL)

    Keywords: DNA shearing, Copper(II) complex, Dithiothreitol, Attenuated total reflectance-Fourier transform .... confirm the fragmentation of DNA by the newly .... sperm. Biochem Biophys Acta 1986; 884: 124-134. 7. Cornell NW, Crivaro KE.

  17. Domains of apolipoprotein E contributing to triglyceride and cholesterol homeostasis in vivo. Carboxyl-terminal region 203-299 promotes hepatic very low density lipoprotein-triglyceride secretion

    NARCIS (Netherlands)

    Kypreos, K.E.; Dijk, K.W. van; Zee, A. van der; Havekes, L.M.; Zannis, V.I.

    2001-01-01

    Apolipoprotein (apo) E has been implicated in cholesterol and triglyceride homeostasis in humans. At physiological concentration apoE promotes efficient clearance of apoE-containing lipoprotein remnants. However, high apoE plasma levels correlate with high plasma triglyceride levels. We have used

  18. CARBOXYLIC ACIDS ELECTROOXIDATION ON SHUNGITE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Oleksandr Davydenko

    2017-03-01

    carboxylic acid electrooxidation of waste oils during their regeneration can promote the increase of oil yield without formation of dangerous by-products.

  19. Uranium (IV) carboxylates - I

    Energy Technology Data Exchange (ETDEWEB)

    Satpathy, K C; Patnaik, A K [Sambalpur Univ. (India). Dept. of Chemistry

    1975-11-01

    A few uranium(IV) carboxylates with monochloro and trichloro acetic acid, glycine, malic, citric, adipic, o-toluic, anthranilic and salicylic acids have been prepared by photolytic methods. The I.R. spectra of these compounds are recorded and basing on the spectral data, structure of the compounds have been suggested.

  20. The carboxyl terminus of FANCE recruits FANCD2 to the Fanconi Anemia (FA) E3 ligase complex to promote the FA DNA repair pathway.

    Science.gov (United States)

    Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D; Kee, Younghoon

    2014-03-07

    Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair.

  1. The Carboxyl Terminus of FANCE Recruits FANCD2 to the Fanconi Anemia (FA) E3 Ligase Complex to Promote the FA DNA Repair Pathway*

    Science.gov (United States)

    Polito, David; Cukras, Scott; Wang, Xiaozhe; Spence, Paige; Moreau, Lisa; D'Andrea, Alan D.; Kee, Younghoon

    2014-01-01

    Fanconi anemia (FA) is a genome instability syndrome characterized by bone marrow failure and cellular hypersensitivity to DNA cross-linking agents. In response to DNA damage, the FA pathway is activated through the cooperation of 16 FA proteins. A central player in the pathway is a multisubunit E3 ubiquitin ligase complex or the FA core complex, which monoubiquitinates its substrates FANCD2 and FANCI. FANCE, a subunit of the FA core complex, plays an essential role by promoting the integrity of the complex and by directly recognizing FANCD2. To delineate its role in substrate ubiquitination from the core complex assembly, we analyzed a series of mutations within FANCE. We report that a phenylalanine located at the highly conserved extreme C terminus, referred to as Phe-522, is a critical residue for mediating the monoubiquitination of the FANCD2-FANCI complex. Using the FANCE mutant that specifically disrupts the FANCE-FANCD2 interaction as a tool, we found that the interaction-deficient mutant conferred cellular sensitivity in reconstituted FANCE-deficient cells to a similar degree as FANCE null cells, suggesting the significance of the FANCE-FANCD2 interaction in promoting cisplatin resistance. Intriguingly, ectopic expression of the FANCE C terminus fragment alone in FA normal cells disrupts DNA repair, consolidating the importance of the FANCE-FANCD2 interaction in the DNA cross-link repair. PMID:24451376

  2. Synthesis, Characterization and DNA Cleavage of Copper(II ...

    African Journals Online (AJOL)

    Purpose: To study deoxyribonucleic acid (DNA) shearing capability of copper(II) complex of dithiothreitol (DTT) and to fevaluate its potential application in cancer therapy. Methods: A parrot green complex was synthesized by grinding copper acetate monohydrate and DTT in 1:2 molar ratio in a mortar until no fumes of acetic ...

  3. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone

    Science.gov (United States)

    Montangero, Marc

    2015-01-01

    When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…

  4. COPPER(II) COMPLEXES OF o -VANILLIN ACETYLHYDRAZONE ...

    African Journals Online (AJOL)

    A hydrazonic ligand, o-vanillin acetylhydrazone (H2L) has been prepared and used as chelating agent towards copper(II) ion. The ligand acts like a tridentate ligand in the monodeprotonated (HL-) and dideprotonated (L2-) states. Monoanionic complexes [{Cu(HL)(H2O)}2]•2BF4 and [{Cu(HL)(Hpz)(H2O)}]•NO3 have been ...

  5. Copper(II) Complexes of Phenanthroline and Histidine Containing Ligands: Synthesis, Characterization and Evaluation of their DNA Cleavage and Cytotoxic Activity.

    Science.gov (United States)

    Leite, Sílvia M G; Lima, Luís M P; Gama, Sofia; Mendes, Filipa; Orio, Maylis; Bento, Isabel; Paulo, António; Delgado, Rita; Iranzo, Olga

    2016-11-21

    Copper(II) complexes have been intensely investigated in a variety of diseases and pathological conditions due to their therapeutic potential. The development of these complexes requires a good knowledge of metal coordination chemistry and ligand design to control species distribution in solution and tailor the copper(II) centers in the right environment for the desired biological activity. Herein we present the synthesis and characterization of two ligands HL1 and H 2 L2 containing a phenanthroline unit (phen) attached to the amino group of histidine (His). Their copper(II) coordination properties were studied using potentiometry, spectroscopy techniques (UV-vis and EPR), mass spectrometry (ESI-MS) and DFT calculations. The data showed the formation of single copper complexes, [CuL1] + and [CuL2], with high stability within a large pH range (from 3.0 to 9.0 for [CuL1] + and from 4.5 to 10.0 for [CuL2]). In both complexes the Cu 2+ ion is bound to the phen unit, the imidazole ring and the deprotonated amide group, and displays a distorted square pyramidal geometry as confirmed by single crystal X-ray crystallography. Interestingly, despite having similar structures, these copper complexes show different redox potentials, DNA cleavage properties and cytotoxic activity against different cancer cell lines (human ovarian (A2780), its cisplatin-resistant variant (A2780cisR) and human breast (MCF7) cancer cell lines). The [CuL2] complex has lower reduction potential (E pc = -0.722 V vs -0.452 V for [CuL1] + ) but higher biological activity. These results highlight the effect of different pendant functional groups (carboxylate vs amide), placed out of the coordination sphere, in the properties of these copper complexes.

  6. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    International Nuclear Information System (INIS)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C.T.; Haraveen, K.J.S.; Tee, Tiam-Ting; Rahmat, A.R.

    2015-01-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  7. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Haraveen, K.J.S.; Tee, Tiam-Ting [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2015-10-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  8. 1-Azaniumylcyclobutane-1-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2014-02-01

    Full Text Available In the title compound, C5H9NO2·H2O, the amino acid is in the usual zwitterionic form involving the α-carboxylate group. The cyclobutane backbone of the amino acid is disordered over two conformations, with occupancies of 0.882 (7 and 0.118 (7. In the crystal, N—H...O and O—H...O hydrogen bonds link the zwitterions [with the water molecule involved as both acceptor (with the NH3+ and donor (through a single carboxylate O from two different aminocyclobutane carboxylate moities], resulting in a two-dimensional layered structure lying parallel to (100.

  9. Antioxidant, DNA interaction, VEGFR2 kinase, topoisomerase I and in vitro cytotoxic activities of heteroleptic copper(II) complexes of tetrazolo[1,5-a]pyrimidines and diimines

    Energy Technology Data Exchange (ETDEWEB)

    Haleel, A.; Mahendiran, D. [Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014 (India); Veena, V.; Sakthivel, N. [Department of Biotechnology, Pondicherry University, Pondicherry 605 014 (India); Rahiman, A. Kalilur, E-mail: akrahmanjkr@gmail.com [Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai 600 014 (India)

    2016-11-01

    A series of heteroleptic mononuclear copper(II) complexes of the type [Cu(L{sup 1–3})(diimine)]ClO{sub 4} (1–6) containing three tetrazolo[1,5-a]pyrimidine core ligands, ethyl 5-methyl-7-(2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 1}), ethyl 5-methyl-7-(4-diethylamino-2-hydroxyphenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 2}) or ethyl 5-methyl-7-(2-hydroxy-4-nitrophenyl)-4,7-dihydrotetrazolo[1,5-a] pyrimidine-6-carboxylate (HL{sup 3}), and two diimine coligands, 2,2′-bipyridyl (bpy) or 1,10-phenanthroline (phen) have been synthesized and characterized by spectral methods. The geometry of complexes have been determined with the help of electronic absorption and EPR splitting patterns, which suggest four coordinated square planar geometry around copper(II) ion. The lowering of HOMO–LUMO band gap value of complex 4 implies its higher biological activity compared to other complexes. Antioxidant studies revealed that the complexes possess considerable radical scavenging potency against DPPH. The binding studies of the complexes with calf thymus DNA (CT–DNA) revealed groove mode of binding, which was further supported by docking simulation. The complexes 3 and 4 strongly inhibit the topoisomerase I, and also strongly interact with VEGFR2 kinase receptor via π–π, σ–π and hydrogen bonding interaction. Gel electrophoresis experiments demonstrated the ability of the complexes to cleave plasmid DNA in the absence of activators. In vitro cytotoxic activities of the complexes were examined on three cancerous cell lines such as human lung (A549), cervical (HeLa) and colon (HCT-15), and two normal cells such as human embryonic kidney (HEK) and peripheral blood mononuclear cells (PBMCs). The live cell and fluorescent imaging of cancer cells were observed with acridine orange/ethidium bromide staining assay. All encouraging chemical and biological findings indicate that the complex 4 is a suitable candidate

  10. Synthesis, X-ray crystal structures, and phosphate ester cleavage properties of bis(2-pyridylmethyl)amine copper(II) complexes with guanidinium pendant groups.

    Science.gov (United States)

    Belousoff, Matthew J; Tjioe, Linda; Graham, Bim; Spiccia, Leone

    2008-10-06

    Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.

  11. Carboxyl group reactivity in actin

    Energy Technology Data Exchange (ETDEWEB)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs.

  12. Carboxyl group reactivity in actin

    International Nuclear Information System (INIS)

    Elzinga, M.

    1986-01-01

    While earlier work showed that the carboxyl groups of proteins could be quantitatively coupled to amino groups at pH 4.75 in the presence of EDC and a denaturing agent, the work presented here indicates that under milder conditions the modification of sidechain carboxyls is limited and somewhat specific. Most of the incorporated glycine ethyl ester (GEE) is apparently bound to five carboxyls. The total GEE incorporated was 3 to 4 moles/mole of protein as measured by an increase in Gly upon acid hydrolysis and amino acid analysis, as well as total radioactivity. 3.55 residues were found in peptides, 2.75 bound to residues 1 to 4, and 0.8 bound to Gly-100. 9 refs., 2 figs., 2 tabs

  13. The thermal decomposition of copper(II) oxalate revisited

    International Nuclear Information System (INIS)

    Lamprecht, Emmanuel; Watkins, Gareth M.; Brown, Michael E.

    2006-01-01

    DSC, TG and TG-FT-IR, and XRPD have been used to examine the effects of supposedly inert atmospheres of argon and nitrogen on the mechanism of the thermal decomposition of copper(II) oxalate. The DSC curves in pure argon at 10 deg. C min -1 show a broad endotherm with onset at about 280 deg. C and maximum at about 295 deg. C. In mixtures of argon and nitrogen, as the proportion of argon gas is decreased, the endothermic character of the decomposition decreases until, when nitrogen is the main component, the decomposition exhibits a complex broad exothermic character. XRPD studies showed that, regardless of the proportions of nitrogen and argon, the DSC residues consisted of mainly copper metal with small amounts of copper(I) oxide (cuprite) and, under some conditions, traces of copper(II) oxide (tenorite). Various explanations for this behaviour are discussed and a possible answer lies in the disproportionation of CO 2 (g) to form small quantities of O 2 (g) or monatomic oxygen. The possibility exists that the exothermicity in nitrogen could be explained by reaction of the nitrogen with atomic oxygen to form N 2 O(g), but this product could not be detected using TG-FT-IR

  14. The thermal decomposition of copper(II) oxalate revisited

    Energy Technology Data Exchange (ETDEWEB)

    Lamprecht, Emmanuel [Chemistry Department, Rhodes University, Grahamstown 6140 (South Africa); Watkins, Gareth M. [Chemistry Department, Rhodes University, Grahamstown 6140 (South Africa); Brown, Michael E. [Chemistry Department, Rhodes University, Grahamstown 6140 (South Africa)]. E-mail: m.brown@ru.ac.za

    2006-07-01

    DSC, TG and TG-FT-IR, and XRPD have been used to examine the effects of supposedly inert atmospheres of argon and nitrogen on the mechanism of the thermal decomposition of copper(II) oxalate. The DSC curves in pure argon at 10 deg. C min{sup -1} show a broad endotherm with onset at about 280 deg. C and maximum at about 295 deg. C. In mixtures of argon and nitrogen, as the proportion of argon gas is decreased, the endothermic character of the decomposition decreases until, when nitrogen is the main component, the decomposition exhibits a complex broad exothermic character. XRPD studies showed that, regardless of the proportions of nitrogen and argon, the DSC residues consisted of mainly copper metal with small amounts of copper(I) oxide (cuprite) and, under some conditions, traces of copper(II) oxide (tenorite). Various explanations for this behaviour are discussed and a possible answer lies in the disproportionation of CO{sub 2}(g) to form small quantities of O{sub 2}(g) or monatomic oxygen. The possibility exists that the exothermicity in nitrogen could be explained by reaction of the nitrogen with atomic oxygen to form N{sub 2}O(g), but this product could not be detected using TG-FT-IR.

  15. Template Syntheses, Crystal Structures and Supramolecular Assembly of Hexaaza Macrocyclic Copper(II) Complexes

    International Nuclear Information System (INIS)

    Kim, Taehyung; Kim, Ju Chang; Lough, Alan J.

    2013-01-01

    Two new hexaaza macrocyclic copper(II) complexes were prepared by a template method and structurally characterized. In the solid state, they were self-assembled by intermolecular interactions to form the corresponding supramolecules 1 and 2, respectively. In the structure of 1, the copper(II) macrocycles are bridged by a tp ligand to form a macrocyclic copper(II) dimer. The dimer extends its structure by intermolecular forces such as hydrogen bonds and C-H···π interactions, resulting in the formation of a double stranded 1D supramolecule. In 2, the basic structure is a monomeric copper(II) macrocycle with deprotonated imidazole pendants. An undulated 1D hydrogen bonded array is achieved through hydrogen bonds between imidazole pendants and secondary amines, where the imidazole pendants act as a hydrogen bond acceptor. The 1D hydrogen bonded supramolecular chain is supported by C-H···π interactions between the methyl groups of acetonitrile ligands and imidazole pendants of the copper(II) macrocycles. In both complexes, the introduction of imidazoles to the macrocycle as a pendant plays an important role for the formation of supramolecules, where they act as intermolecular hydrogen bond donors and/or acceptors, C-H···π and π-π interactions

  16. Synthesis and characterization of carboxylic acid functionalized silicon nanoparticles

    Science.gov (United States)

    Shaner, Ted V.

    Silicon nanoparticles are of great interest in a great number of fields. Silicon nanoparticles show great promise particularly in the field of bioimaging. Carboxylic acid functionalized silicon nanoparticles have the ability to covalently bond to biomolecules through the conjugation of the carboxylic acid to an amine functionalized biomolecule. This thesis explores the synthesis of silicon nanoparticles functionalized by both carboxylic acids and alkenes and their carboxylic acid functionality. Also discussed is the characterization of the silicon nanoparticles by the use of x-ray spectroscopy. Finally, the nature of the Si-H bond that is observed on the surface of the silicon nanoparticles will be investigated using photoassisted exciton mediated hydrosilation reactions. The silicon nanoparticles are synthesized from both carboxylic acids and alkenes. However, the lack of solubility of diacids is a significant barrier to carboxylic acid functionalization by a mixture of monoacids and diacids. A synthesis route to overcome this obstacle is to synthesize silicon nanoparticles with terminal vinyl group. This terminal vinyl group is distal to the surface of the silicon nanoparticle. The conversion of the vinyl group to a carboxylic acid is accomplished by oxidative cleavage using ozonolysis. The carboxylic acid functionalized silicon nanoparticles were then successfully conjugated to amine functionalized DNA strand through an n-hydroxy succinimide ester activation step, which promotes the formation of the amide bond. Conjugation was characterized by TEM and polyacrylamide gel electrophoresis (PAGE). The PAGE results show that the silicon nanoparticle conjugates move slower through the polyacrylamide gel, resulting in a significant separation from the nonconjugated DNA. The silicon nanoparticles were then characterized by the use of x-ray absorption near edge spectroscopy (Xanes) and x-ray photoelectron spectroscopy (XPS) to investigate the bonding and chemical

  17. Tetranuclear copper(II) complexes bridged by alpha-D-glucose-1-phosphate and incorporation of sugar acids through the Cu4 core structural changes.

    Science.gov (United States)

    Kato, Merii; Sah, Ajay Kumar; Tanase, Tomoaki; Mikuriya, Masahiro

    2006-08-21

    Tetranuclear copper(II) complexes containing alpha-D-glucose-1-phosphate (alpha-D-Glc-1P), [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(bpy)4(H2O)2]X3 [X = NO3 (1a), Cl (1b), Br (1c)], and [Cu4(mu-OH){mu-(alpha-D-Glc-1P)}2(phen)4(H2O)2](NO3)3 (2) were prepared by reacting the copper(II) salt with Na2[alpha-D-Glc-1P] in the presence of diimine ancillary ligands, and the structure of 2 was characterized by X-ray crystallography to comprise four {Cu(phen)}2+ fragments connected by the two sugar phosphate dianions in 1,3-O,O' and 1,1-O mu4-bridging fashion as well as a mu-hydroxo anion. The crystal structure of 2 involves two chemically independent complex cations in which the C2 enantiomeric structure for the trapezoidal tetracopper(II) framework is switched according to the orientation of the alpha-D-glucopyranosyl moieties. Temperature-dependent magnetic susceptibility data of 1a indicated that antiferromagnetic spin coupling is operative between the two metal ions joined by the hydroxo bridge (J = -52 cm(-1)) while antiferromagnetic interaction through the Cu-O-Cu sugar phosphate bridges is weak (J = -13 cm(-1)). Complex 1a readily reacted with carboxylic acids to afford the tetranuclear copper(II) complexes, [Cu4{mu-(alpha-D-Glc-1P)}2(mu-CA)2(bpy)4](NO3)2 [CA = CH3COO (3), o-C6H4(COO)(COOH) (4)]. Reactions with m-phenylenediacetic acid [m-C6H4(CH2COOH)2] also gave the discrete tetracopper(II) cationic complex [Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)(CH2COOH))2(bpy)4](NO3)2 (5a) as well as the cluster polymer formulated as {[Cu4{mu-(alpha-D-Glc-1P)}2(mu-m-C6H4(CH2COO)2)(bpy)4](NO3)2}n (5b). The tetracopper structure of 1a is converted into a symmetrical rectangular core in complexes 3, 4, and 5b, where the hydroxo bridge is dissociated and, instead, two carboxylate anions bridge another pair of Cu(II) ions in a 1,1-O monodentate fashion. The similar reactions were applied to incorporate sugar acids onto the tetranuclear copper(II) centers. Reactions of 1a with delta

  18. Surface Structures Formed by a Copper(II Complex of Alkyl-Derivatized Indigo

    Directory of Open Access Journals (Sweden)

    Akinori Honda

    2016-10-01

    Full Text Available Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM analysis revealed that the copper(II complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed.

  19. RECOVERY OF COPPER(II) AND CHROMIUM(III) FROM NITRATE ...

    African Journals Online (AJOL)

    Guerdouh A and Barkat D

    2016-05-01

    May 1, 2016 ... The ionic strength of the aqueous medium was ... phases were separated completely, concentrations of the copper(II) and chromium(III) ..... [18] Huff M M, Otu E O. Solvent Extraction and Ion Exchange, 2004, 22(4), 695-712.

  20. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  1. Mixed-ligand copper(II) complexes of dipicolylamine and 1,10 ...

    Indian Academy of Sciences (India)

    Unknown

    DNA repair mechanism.13,14 Copper(II) complexes containing heterocyclic bases have received consid- erable current interest in nucleic acid chemistry due to their diverse applications following the discovery of the “chemical nuclease” activity of the [Cu. (phen)2]+ (phen = 1,10-phenanthroline) complex in the presence of ...

  2. Recovery of copper(II) and chromium(III) from nitrate medium with ...

    African Journals Online (AJOL)

    The solvent extraction of copper(II) and chromium(III) from nitrate medium with salicylideneaniline (HL) is studied as a function of various parameters: pH, concentration of salicylideneaniline, contact time and the nature of anoin (nitrate and sulfate) in aqueous phase. Chromium(III) is not extracted by salicylideneaniline ...

  3. Synthesis and properties of a trinuclear copper(II) complex with trithiocyanurate bridge

    Czech Academy of Sciences Publication Activity Database

    Kopel, P.; Čermáková, Š.; Doležal, Karel; Kalińska, B.; Bieńko, A.; Mroziński, J.

    2007-01-01

    Roč. 81, č. 3 (2007), s. 327-335 ISSN 0137- 5083 Institutional research plan: CEZ:AV0Z50380511 Keywords : copper(II) * trithiocyanuric acid complexes * magnetic properties Subject RIV: CA - Inorganic Chemistry Impact factor: 0.483, year: 2007 http://ichf.edu.pl/pjch/pj-2007/pj-2007-03a.pdf

  4. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder.

    Science.gov (United States)

    Ofomaja, A E; Naidoo, E B; Modise, S J

    2010-08-01

    Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. The ligational behavior of an isatinic quinolyl hydrazone towards copper(II- ions

    Directory of Open Access Journals (Sweden)

    Mousa Marwa A

    2011-04-01

    Full Text Available Abstract Background The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring. Quinoline ring has therapeutic and biological activities whereas, the indole ring occurs in Jasmine flowers and Orange blossoms. As a ligand, the isatin moiety is potentially ambidentate and can coordinate the metal ions either through its lactam or lactim forms. In a previous study, the ligational behavior of a phenolic quinolyl hydrazone towards copper(II- ions has been studied. As continuation of our interest, the present study is planned to check the ligational behavior of an isatinic quinolyl hydrazone. Results New homo- and heteroleptic copper(II- complexes were obtained from the reaction of an isatinic quinolyl hydrazone (HL with several copper(II- salts viz. Clˉ, Brˉ, NO3ˉ, ClO4-, SO42- and AcO-. The obtained complexes have Oh, Td and D4h- symmetry and fulfill the strong coordinating ability of Clˉ, Brˉ, NO3ˉ and SO42- anions. Depending on the type of the anion, the ligand coordinates the copper(II- ions either through its lactam (NO3ˉ and ClO4- or lactim (the others forms. Conclusion The effect of anion for the same metal ion is obvious from either the geometry of the isolated complexes (Oh, Td and D4h or the various modes of bonding. Also, the obtained complexes fulfill the strong coordinating ability of Clˉ, Brˉ, NO3ˉ and SO42- anions in consistency with the donor ability of the anions. In case of copper(II- acetate, a unique homoleptic complex (5 was obtained in which the AcO- anion acts as a base enough to quantitatively deprotonate the hydrazone. The isatinic hydrazone uses its lactim form in most complexes.

  6. Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Kautzky, Jacob A; Wang, Tao; Evans, Ryan W; MacMillan, David W C

    2018-05-14

    Herein we disclose an efficient method for the conversion of carboxylic acids to trifluoromethyl groups via the combination of photoredox and copper catalysis. This transformation tolerates a wide range of functionality including heterocycles, olefins, alcohols, and strained ring systems. To demonstrate the broad potential of this new methodology for late-stage functionalization, we successfully converted a diverse array of carboxylic acid-bearing natural products and medicinal agents to the corresponding trifluoromethyl analogues.

  7. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  8. Steric Effects on the Binding of Phosphate and Polyphosphate Anions by Zinc(II) and Copper(II) Dinuclear Complexes of m-Xylyl-bis-cyclen.

    Science.gov (United States)

    Esteves, Catarina V; Esteban-Gómez, David; Platas-Iglesias, Carlos; Tripier, Raphaël; Delgado, Rita

    2018-05-11

    The triethylbenzene-bis-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) compound (tbmce) was designed with an imposed structural rigidity at the m-xylyl spacer to be compared to a less restrained and known parent compound (bmce). The framework of both compounds differs only in the substituents of the m-xylyl spacer. The study was centered in the differences observed in the acid-base reactions of both compounds, their copper(II) and zinc(II) complexation behaviors, as well as in the uptake of phosphate and polyphosphate anions (HPPi 3- , ATP 4- , ADP 3- , AMP 2- , PhPO 4 2- , and HPO 4 2- ). On the one hand, the acid-base reactions showed lower values for the third and fourth protonation constants of tbmce than for bmce, suggesting that the ethyl groups of the spacer in tbmce force the two cyclen units to more conformational restricted positions. On the other hand, the stability constant values for copper(II) and zinc(II) complexes revealed that bmce is a better chelator than tbmce pointing out to additional conformational restraints imposed by the triethylbenzene spacer. The binding studies of phosphates by the dinuclear copper(II) and zinc(II) complexes showed much smaller effective association constants for the dicopper complexes. Single-crystal X-ray and computational (density functional theory) studies suggest that anion binding promotes the formation of tetranuclear entities in which anions are bridging the metal centers. Our studies also revealed the dinuclear zinc(II) complex of bmce as a promising receptor for phosphate anions, with the largest effective association constant of 5.94 log units being observed for the formation of [Zn 2 bmce(HPPi)] + . Accordingly, a colorimetric study via an indicator displacement assay to detect phosphates in aqueous solution found that the [Zn 2 bmce] 4+ complex acts as the best receptor for pyrophosphate displaying a detection limit of 2.5 nM by changes visible to naked eye.

  9. Copper(II tetrafluoroborate as mild and versatile catalyst for the

    Directory of Open Access Journals (Sweden)

    Jihillu. S. Yadav

    2008-12-01

    Full Text Available A variety of -acetamido ketones and ketoesters are readily prepared in high yields under extremelymild conditions via a three component coupling of aromatic aldehydes, enolizable ketones or -ketoesters andnitriles in the presence of 10 mol% of copper(II tetrafluoroborate and a stoichiometric amount of acetylchloride. A solution of 10 mol% of Cu(BF42 in acetonitrile provides a convenient reaction medium to carry out athree component reaction under mild conditions

  10. The crystal structure of paramagnetic copper(ii) oxalate (CuC2O4):

    DEFF Research Database (Denmark)

    Christensen, Axel Nørlund; Lebech, Bente; Andersen, Niels Hessel

    2014-01-01

    Synthetic copper(ii) oxalate, CuC2O4, was obtained in a precipitation reaction between a copper(ii) solution and an aqueous solution of oxalic acid. The product was identified from its conventional X-ray powder patterns which match that of the copper mineral Moolooite reported to have...... the composition CuC2O4·0.44H2O. Time resolved in situ investigations of the thermal decomposition of copper(ii) oxalate using synchrotron X-ray powder diffraction showed that in air the compound converts to Cu2O at 215 °C and oxidizes to CuO at 345 °C. Thermo gravimetric analysis performed in an inert Ar....... The crystal structure consists of a random stacking of CuC2O4 micro-crystallites where half the Cu-atoms are placed at (2a) and the other half at (2b) positions with the corresponding oxalate molecules centred around the corresponding (2b) and (2a) site positions, respectively. The diffraction patterns...

  11. Novel Polymers with Carboxylic Acid Loading

    DEFF Research Database (Denmark)

    Thomsen, Anders Daugaard; Malmström, Eva; Hvilsted, Søren

    2006-01-01

    Click chemistry has been used to prepare a range of novel polymers with pendant carboxylic acid side groups. Four azido carboxylic acids, either mono- or difunctional and aliphatic or aromatic, have been prepared and thoroughly characterized. Extensive model reactions with 1-ethyl-4-hydroxybenzene......, the simplest model for poly(4-hydroxystyrene), and the four azido carboxylic acids have been conducted to establish the proper reaction conditions and provide an analytical frame for the corresponding polymers. Poly(4-hydroxystyrene) moieties in three different polymers—poly(4-hydroxystyrene), poly(4...... the polymers in general exhibit [when poly(4-hydroxystyrene) is a substantial part] significant changes in the glass-transition temperature from the polar poly(4-hydroxystyrene) (120–130 °C) to the much less polar alkyne polymers (46–60 °C). A direct correlation between the nature of the pendant groups...

  12. Properties of the Carboxylate ion exchange resins

    International Nuclear Information System (INIS)

    Allard, Bert; Dario, Maarten; Boren, Hans; Torstenfelt, Boerje; Puigdomenech, Ignasi; Johansson, Claes

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  13. Mass spectrometric behaviour of carboxylated polyethylene glycols and carboxylated octylphenol ethoxylates.

    Science.gov (United States)

    Frańska, Magdalena; Zgoła, Agnieszka; Rychłowska, Joanna; Szymański, Andrzej; Łukaszewski, Zenon; Frański, Rafał

    2003-01-01

    Mass spectrometric behaviour of mono- and di-carboxylated polyethylene glycols (PEGCs and CPEGCs) and carboxylated octylphenol ethoxylates (OPECs) are discussed. The tendency for ionisation (deprotonation, protonation and cationisation by alkali metal cations) of carboxylated PEGs was compared with that of non-carboxylated correspondents by using both secondary ion mass spectrometry (SIMS) and electrospray ionisation (ESI). The fragmentation of the PEGCs and CPEGCs is discussed and also compared with their neutral correspondents, PEGs. The B/E mass spectra were recorded, using secondary ion mass spectrometry as a method for generation, for deprotonated and protonated molecules and molecules cationised by alkali metal cations. The fragmentation behaviour of PEGs is found to be different from that of CPEGCs, The presence of carboxylic groups may be confirmed not only by the determination of molecular weights of the ethoxylates studied, but also on the basis of the fragment ions formed. The metastable decomposition of the [OPEC-H](-) ions proceed through the cleavage of the bond between the octylphenol moiety and the ethoxylene chain leading to the octylphenoxy anions. It permits determination of the mass of the hydrophobic moiety of the studied carboxylated alkylphenol ethoxylate. ESI mass spectra recorded in the negative ion mode were found to be more suitable for the determination of the average molecular weight of carboxylated ethoxylates than SI mass spectra.

  14. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  15. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II oxalate precursor layers

    Directory of Open Access Journals (Sweden)

    Kai Rückriem

    2016-06-01

    Full Text Available Copper(II oxalate grown on carboxy-terminated self-assembled monolayers (SAM using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS. Helium ion microscopy (HIM reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.

  16. FEATURES OF INITIATION OF STYRENE POLYMERIZATION BY CUMENE HYDROPEROXIDE IN PRESENCE OF ACETULACETONATE OF COPPER(II

    Directory of Open Access Journals (Sweden)

    A. V. Grekova

    2016-04-01

    Full Text Available Kinetics of sectional styrene polymerization initiated by cumene hydroperoxide, acetylacetonate of copper(II and by the system of cumene hydroperoxide — acetylacetonate of copper(II in a temperature range 333-363 K is studied. Kinetic parameters of polymerization process are determined. It is shown, that system of cumene hydroperoxide — acetylacetonate of copper(II is in 5-6 times more effective on the initiating ability comparatively to application of its individual components. From findings ensues that decline of energy of activating of initiation from 110 kdzh/mol’ to 87 kdzh/mol’ for cumene hydroperoxide at the use of the studied system is caused with participating of monomer in preliminary complexation facilitating formation of free radicals.

  17. Methyl 3-(Quinolin-2-ylindolizine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Roumaissa Belguedj

    2015-12-01

    Full Text Available A novel compound, methyl 3-(quinolin-2-ylindolizine-1-carboxylate (2 has been synthesized by cycloaddition reaction of 1-(quinolin-2-ylmethylpyridinium ylide (1 with methyl propiolate in presence of sodium hydride in THF. The structure of this compound was established by IR, 1H-NMR, 13C-NMR and MS data

  18. 2-Isopropyl-5-methylcyclohexyl quinoline-2-carboxylate

    Directory of Open Access Journals (Sweden)

    E. Fazal

    2014-01-01

    Full Text Available In the title compound, C20H25NO2, the cyclohexyl ring adopts a slightly disordered chair conformation. The dihedral angle between the mean planes of the quinoline ring and the carboxylate group is 22.2 (6°. In the crystal, weak C—H...N interactions make chains along [010].

  19. Study of the interaction mechanism in the biosorption of copper(II) ions onto posidonia oceanica and peat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Marta; Marzal, Paula; Gabaldon, Carmen [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, Valencia (Spain); Silvetti, Margherita; Castaldi, Paola [Dipartimento di Scienze Ambientali e Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Sassari (Italy)

    2012-04-15

    A systematic approach was used to characterize the biosorption of copper(II) onto two biosorbents, Posidonia oceanica and peat, focusing on the interaction mechanisms, the copper(II) sorption-desorption process and the thermal behavior of the biosorbents. Sorption isotherms at pH 4-6 were obtained and the experimental data were fitted to the Langmuir model with a maximum uptake (q{sub max}) at pH 6 of 85.78 and 49.69 mg g{sup -1}, for P. oceanica and peat, respectively. A sequential desorption (SD) with water, Ca(NO{sub 3}){sub 2}, and EDTA was applied to copper-saturated biosorbents. Around 65-70% copper(II) were desorbed with EDTA, indicating that this heavy metal was strongly bound. The reversibility of copper(II) sorption was obtained by desorption with HCl and SD. Fourier transform IR spectroscopy (FTIR) analysis detected the presence of peaks associated with OH groups in aromatic and aliphatic structures, CH, CH{sub 2}, and CH{sub 3} in aliphatic structures, COO{sup -} and COOH groups and unsaturated aromatic structures on the surface of both biosorbents, as well as peaks corresponding to Si-O groups on the surface of peat. The results of SEM-EDX and FTIR analysis of copper-saturated samples demonstrated that ion exchange was one of the mechanisms involved in copper(II) retention. Thermal analysis of biosorbent samples showed that copper(II) sorption-desorption processes affected the thermal stability of the biosorbents. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    Science.gov (United States)

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  1. Modulating p-hydroxycinnamate behavior as a ditopic linker or photoacid in copper(ii) complexes with an auxiliary pyridine ligand.

    Science.gov (United States)

    Soldevila-Sanmartín, Joan; Calvet, Teresa; Font-Bardia, Merce; Domingo, Concepción; Ayllón, José A; Pons, Josefina

    2018-05-08

    The reaction of copper(ii) acetate monohydrate with p-hydroxycinnamic acid (HpOHcinn) and different pyridine derivatives (4-tert-butylpyridine, 4-tBupy; 4-acetylpyridine, 4-Acpy; 3-phenylpyridine, 3-Phpy; 4-phenylpyridine, 4-Phpy) was essayed in methanol solvent at room temperature. The crystal structures of the resulting compounds were elucidated. Their analysis shows that the choice of pyridine ligands determines different coordination modes of the pOHcinn ligand and the Cu(ii) coordination, nuclearity and geometry. The pOHcinn acts as a monodentate carboxylate ligand in combination with 4-tBupy or 4-Phpy, yielding monomers and dimers, associated by hydrogen bonds into supramolecular networks in which the phenol group plays a key role. Conversely, in combination with 4-Acpy or 3-Phpy, the phenol group coordinates directly to the Cu(ii), acting as a ditopic ligand and yielding 2D coordination polymers. The compound containing 3-Phpy shows interesting MeOH-H2O reversible exchange behavior. Not only has the pyridine auxiliary ligand had a tremendous effect on the coordination mode of pOHcinn, but also its reactivity is influenced. Particularly, in the case of the compound containing 4-Phpy, it undergoes a photoinduced process, in which the phenol group deprotonates and coordinates to Cu(ii) as a phenoxy ligand. This yields a coordination polymer in which two different dimers alternate, bridged by the resulting pOcinn ligand. The magneto-structural correlation of this compound is also discussed.

  2. Recovery and esterification of aqueous carboxylates by using CO

    NARCIS (Netherlands)

    Cabrera-Rodríguez, Carlos I.; Paltrinieri, Laura; Smet, De Louis C.P.M.; Wielen, Van Der Luuk A.M.; Straathof, Adrie J.J.

    2017-01-01

    The recovery of carboxylic acids from fermentation broth is one of the main bottlenecks for the industrial production of bio-based esters. This paper proposes an alternative for the recovery of carboxylates produced by fermentations at pH values above the pKa of the carboxylic acid. In this

  3. Production of carboxylic acid and salt co-products

    Science.gov (United States)

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  4. Correction: Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones.

    Science.gov (United States)

    Yin, Feng; Garifullina, Ainash; Tanaka, Fujie

    2018-04-25

    Correction for 'Synthesis of pyrrolidine-3-carboxylic acid derivatives via asymmetric Michael addition reactions of carboxylate-substituted enones' by Feng Yin et al., Org. Biomol. Chem., 2017, 15, 6089-6092.

  5. Development of starch biofilms using different carboxylic acids as plasticizers

    International Nuclear Information System (INIS)

    Cruz, L.C.; Miranda, C.S.; Santos, W.J. dos; Goncalves, A.P.B.; Oliveira, J.C.; Jose, N.M.

    2014-01-01

    Biodegradable films have become a widely exploited issue among scientists because of their positive environmental impact, besides their potential to promote better food conservation and an increase in shelf life. Starch has been studied in this field due to its availability, low cost and biodegradability. However, starch films tend to be brittle and they need addition of a plasticizer to enable their usage. In this work, starch films were synthesized with different carboxylic acids as plasticizers, aiming to observe the effect of the acids chain size in the final films properties. The acids used were: oxalic, succinic and adipic. The materials were produced by casting and characterized by DSC, TG, DRX e FTIR. It was observed that the acids chain size influenced on the thermal and structural properties of the films. (author)

  6. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tarlani, Aliakbar, E-mail: Tarlani@ccerci.ac.ir [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Narimani, Khashayar [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Mohammadipanah, Fatemeh; Hamedi, Javad [Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14155-6455 (Iran, Islamic Republic of); University of Tehran Biocompound Collection (UTBC), Microbial Technology and Products Research Center, University of Tehran, Tehran (Iran, Islamic Republic of); Tahermansouri, Hasan [Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol (Iran, Islamic Republic of); Amini, Mostafa M. [Department of Chemistry, Shahid Behshti University, 1983963113, Tehran (Iran, Islamic Republic of)

    2015-06-30

    Graphical abstract: In an antibacterial test, grafted copper(II) macrocyclic complex on the surface of MWCNT showed higher antibacterial activity against Bacillus subtilis compared to the individual MWCNT-COOH and the complex. - Highlights: • Copper(II) tetraaza macrocyclic complex covalently bonded to modified MWCNT. • Grafting of the complex carried out via an interaction between −C(=O)Cl group and NH of the ligand. • The samples were subjected in an antibacterial assessment to compare their activity. • Immobilized complex showed higher antibacterial activity against Bacillus subtilis ATCC 6633 compared to separately MWCNT-C(C=O)-OH and CuTAM. - Abstract: In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the I{sub D}/I{sub G} ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  7. trans-Bis(perchlorato-κOtetrakis(1H-pyrazole-κN2copper(II

    Directory of Open Access Journals (Sweden)

    Viktor Zapol'skii

    2008-10-01

    Full Text Available The title compound, [Cu(ClO42(C3H4N24], was obtained unexpectedly by the reaction of copper(II perchlorate hexahydrate with equimolar amounts of 1-chloro-1-nitro-2,2,2-tripyrazolylethane in methanol solution. The crystal structure comprises octahedrally coordinated Cu2+ ions, located on an inversion centre, with four pyrazole ligands in the equatorial plane. The average Cu—N distance is 2.000 (1 Å. Two perchlorate ions are coordinated to copper in trans positions [Cu—O = 2.4163 (11 Å].

  8. Carboxylic acid exchangers in analytical chemistry

    International Nuclear Information System (INIS)

    Venkateswarlu, Ch.

    1976-01-01

    The literature on the use of carboxylic acid exchangers in inorganic analytical chemistry is reviewed. It is classified under two heads, based on the ionic form in which the exchanger is employed, viz., the salt form and the acid form. In the salt form, the separations reported in the beginning are mostly carried out in alkaline medium, employing ammonia and its derivatives as complexing agents to hold cations in solution. This was followed by the use of ammonium ion as an eluent from heavy weakly or neutral solutions. There are a few separations reported making use of EDTA as eluent. It appears that separation of some anions from cations can be achieved with greater ease with these exchangers than with sulphonic acid type. Contary to the general belief, carboxylic acid exchangers are used in H + form to achieve some analytical separations of cations of interest. These exchangers exhibit better sorption of some cations in presence of complexing agents containing basic nitrogen as a donor. In fact, a careful study of these exchangers with different matrices might yield really selective exchangers, than the chelating ones known commercially. From the separation cited, carboxylic acid exchangers appear to have greater potentialities in their applications, than what is normally expected. (author)

  9. Carboxylated Polyurethanes Containing Hyperbranched Polyester Soft Segments

    Directory of Open Access Journals (Sweden)

    Žigon, M.

    2006-09-01

    Full Text Available hyperbranched polyester soft segments (HB PU with functional carboxylic groups in order to enable the preparation of stable HB PU dispersions. Carboxylated hyperbranched polyurethanes were synthesized using a hyperbranched polyester based on 2,2-bis(methylolpropionic acid of the fourth pseudo-generation (Boltorn H40 and hexamethylene (HDI or isophorone diisocyanate (IPDI. The reactivity of hyperbranched polyester with HDI was lower than expected, possibly due to the presence of less reactive hydroxyl groups in the linear repeat units. A gel was formed at mole ratios rNCO/OH = 1:2 or 1:4. The synthesis of HB PU was performed with partly esterified hyperbranched polyester with lowered hydroxyl functionality. The carboxyl groups were incorporated in the HB PU backbone by reaction of residual hydroxyl groups with cis-1,2-cyclohexanedicarboxylic anhydride. HB PU aqueous dispersions were stable at least for two months, although their films were brittle. The tensile strength and Young's modulus of blends of linear and HB PU decreased with increasing content of HB PU whereas elongation at break remained nearly constant, which was explained in terms of looser chain packing due to more open tree-like hyperbranched structures.

  10. Fluorescent copper(II complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2017-01-01

    Full Text Available Dinuclear copper(II complexes with formula [Cu2(L2(N32] (1 and [Cu2(L2(NCS2] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized by controlling the molar ratio of Cu(OAC2·6H2O, HL, sodium azide (1 and ammonium thiocyanate (2. The end on bridges appear exclusively in azide and thiocyanate to copper complexes. The electron transfer mechanism of copper(II complexes is examined by cyclic voltammetry indicating copper(II complexes are Cu(II/Cu(I couple. The interactions of copper(II complexes towards bovine serum albumin (BSA were examined with the help of absorption and fluorescence spectroscopic tools. We report a superficial solution-based route for the synthesis of micro crystals of copper complexes with BSA. The antibacterial activity of the Schiff base and its copper complexes were investigated by the agar disc diffusion method against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia and Bacillus cereus. It has been observed that the antibacterial activity of all complexes is higher than the ligand.

  11. Structural and magnetic characterization of a tetranuclear copper(II) cubane stabilized by intramolecular metal cation-π interactions.

    Science.gov (United States)

    Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry

    2013-05-20

    A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.

  12. Effect of Phosphorylation and Copper(II or Iron(II Ions Enrichment on Some Physicochemical Properties of Spelt Starch

    Directory of Open Access Journals (Sweden)

    Jacek Rożnowski

    Full Text Available ABSTRACT: This paper provides an assessment of the effect of saturation of spelt starch and monostarch phosphate with copper or iron ions on selected physicochemical properties of the resulting modified starches. Native and modified spelt starch samples were analyzed for selected mineral element content using Atomic Absorption Spectroscopy (AAS. Thermodynamic properties were measured using DSC, and pasting properties by RVA. Flow curves of 5% pastes were plotted and described using the Herschel-Bulkley model. The structure recovery ratio was measured. AAS analysis established the presence of iron(II and copper(II ions in the samples of modified starches and that potassium and magnesium ions had leached from them. In comparison to unfortified samples, enriching native starch with copper(II ions decreases value of all temperatures of phase transformation about 1.3-2.7 °C, but in case of monostarch phosphates bigger changes (2.8-3.7 °C were observed. Fortified native spelt starch with copper(II ions caused increasing the final viscosity of paste from 362 to 429 mPa·s. However, presence iron(II ions in samples caused reduced its final viscosity by 170 (spelt starch and 103 mPa·s (monostarch phosphate. Furthermore, enriching monostarch phosphate contributed to reduce degree of structure recovery of pastes from 70.9% to 66.6% in case of copper(II ions and to 59.9% in case of iron(II ions.

  13. Performance Evaluation of Monolith Based Immobilized Acetylcholinesterase Flow-Through Reactor for Copper(II Determination with Spectrophotometric Detection

    Directory of Open Access Journals (Sweden)

    Parawee Rattanakit

    2014-01-01

    Full Text Available A monolith based immobilized acetylcholinesterase (AChE flow-through reactor has been developed for the determination of copper(II using flow injection spectrophotometric system. The bioreactor was prepared inside a microcapillary column by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, and 2,2-dimethoxy-1,2-diphynyletane-1-one in the presence of 1-decanol, followed by vinyl azlactone functionalization and AChE immobilization. The behavior of AChE before and after being immobilized on the monolith was evaluated by kinetic parameters from Lineweaver and Burk equation. The detection was based on measuring inhibition effect on the enzymatic activity of AChE by copper(II using Ellman’s reaction with spectrophotometric detection at 410 nm. The linear range of the calibration graph was obtained over the range of 0.02–3.00 mg L−1. The detection limit, defined as 10% inhibition (I10, was found to be 0.04 mg L−1. The repeatability was 3.35 % (n=5 for 1.00 mg L−1 of copper(II. The proposed method was applied to the determination of copper(II in natural water samples with sampling rate of 4 h−1.

  14. Changes in magnetic properties from solid state to solution in a trinuclear linear copper(II) complex

    NARCIS (Netherlands)

    Koval, I.A.; Akhideno, H.; Tanase, S.; Belle, C.; Duboc, C.; Saint-Aman, E.; Gamez, P.; Tooke, D.M.; Spek, A.L.; Pierre, J.-L.; Reedijk, J.

    2007-01-01

    A linear trinuclear copper(II) complex containing phenoxido- and alkoxido-bridges between the metal centers has been isolated and structurally characterized. The complex cation consists of a linear array of three copper ions, assembled by means of two doubly deprotonated ligands. The octahedral

  15. Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.

    Science.gov (United States)

    Hiraide, M; Mizuike, A

    1975-06-01

    Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.

  16. Cooperation of phosphates and carboxylates controls calcium oxalate crystallization in ultrafiltered urine.

    Science.gov (United States)

    Grohe, Bernd; Chan, Brian P H; Sørensen, Esben S; Lajoie, Gilles; Goldberg, Harvey A; Hunter, Graeme K

    2011-10-01

    Osteopontin (OPN) is one of a group of proteins found in urine that are believed to limit the formation of kidney stones. In the present study, we investigate the roles of phosphate and carboxylate groups in the OPN-mediated modulation of calcium oxalate (CaOx), the principal mineral phase found in kidney stones. To this end, crystallization was induced by addition of CaOx solution to ultrafiltered human urine containing either human kidney OPN (kOPN; 7 consecutive carboxylates, 8 phosphates) or synthesized peptides corresponding to residues 65-80 (pSHDHMDDDDDDDDDGD; pOPAR) or 220-235 (pSHEpSTEQSDAIDpSAEK; P3) of rat bone OPN. Sequence 65-80 was also synthesized without the phosphate group (OPAR). Effects on calcium oxalate monohydrate (COM) and dihydrate (COD) formation were studied by scanning electron microscopy. We found that controls form large, partly intergrown COM platelets; COD was never observed. Adding any of the polyelectrolytes was sufficient to prevent intergrowth of COM platelets entirely, inhibiting formation of these platelets strongly, and inducing formation of the COD phase. Strongest effects on COM formation were found for pOPAR and OPAR followed by kOPN and then P3, showing that acidity and hydrophilicity are crucial in polyelectrolyte-affected COM crystallization. At higher concentrations, OPAR also inhibited COD formation, while P3, kOPN and, in particular, pOPAR promoted COD, a difference explainable by the variations of carboxylate and phosphate groups present in the molecules. Thus, we conclude that carboxylate groups play a primary role in inhibiting COM formation, but phosphate and carboxylate groups are both important in initiating and promoting COD formation.

  17. Copper(II) complex with 6-methylpyridine-2-carboxyclic acid: Experimental and computational study on the XRD, FT-IR and UV-Vis spectra, refractive index, band gap and NLO parameters.

    Science.gov (United States)

    Altürk, Sümeyye; Avcı, Davut; Başoğlu, Adil; Tamer, Ömer; Atalay, Yusuf; Dege, Necmi

    2018-02-05

    Crystal structure of the synthesized copper(II) complex with 6-methylpyridine-2-carboxylic acid, [Cu(6-Mepic) 2 ·H 2 O]·H 2 O, was determined by XRD, FT-IR and UV-Vis spectroscopic techniques. Furthermore, the geometry optimization, harmonic vibration frequencies for the Cu(II) complex were carried out by using Density Functional Theory calculations with HSEh1PBE/6-311G(d,p)/LanL2DZ level. Electronic absorption wavelengths were obtained by using TD-DFT/HSEh1PBE/6-311G(d,p)/LanL2DZ level with CPCM model and major contributions were determined via Swizard/Chemissian program. Additionally, the refractive index, linear optical (LO) and non-nonlinear optical (NLO) parameters of the Cu(II) complex were calculated at HSEh1PBE/6-311G(d,p) level. The experimental and computed small energy gap shows the charge transfer in the Cu(II) complex. Finally, the hyperconjugative interactions and intramolecular charge transfer (ICT) were studied by performing of natural bond orbital (NBO) analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. EPR studies on binuclear copper(II) complexes with N,N',N'',N'''-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraaza-cyclotetradecane in solutions

    International Nuclear Information System (INIS)

    Jezierska, J.; Ozarowski, A.; Vuckovic, G.

    1997-01-01

    Binuclear copper(II) complexes of macrocyclic ligand TMPC (tetraazamacrocycle with four pendant 2-pirydylmethyl groups attached to the ring nitrogen atoms) with various anions forming bridge between copper ions, or coordinating to copper(II) ions at the apex, were prepared and their frozen solutions in DMF and NMF were investigated by EPR. The spectroscopic results have been interpreted in terms of molecular structure of investigated complexes

  19. Preconcentration and extraction of copper(II) on activated carbon using ethyl-2-quinolyl-β (p-carboxyphenyl hydrazone)dioxo propionate

    OpenAIRE

    Mehrorang Ghaedi; Farshid Ahmadi; M.R. Baezat; J. Safari

    2008-01-01

    Activated carbon modified method was used for the preconcentration and determination of copper content in real samples such as tap water, wastewater and a synthetic water sample by flame atomic absorption spectrometry. The copper(II) was adsorbed quantitatively on activated carbon due to its complexation with ethyl-2-quinolyl-β(p-carboxyphenyl hydrazone)dioxo propionate (EQCPDP). The adsorbed copper(II) ion on solid phase was eluted quantitatively by using nitric acid. The important parameter...

  20. Metal extraction by amides of carboxylic acids

    International Nuclear Information System (INIS)

    Skorovarov, D.I.; Chumakova, G.M.; Rusin, L.I.; Ul'anov, V.S.; Sviridova, R.A.; Sviridov, A.L.

    1988-01-01

    Extraction ability of various amides was studied. Data on extraction of rare earths, vanadium, molybdenum, rhenium, uranium, niobium, tantalum by N,N-dibutyl-amides of acetic, nonanic acids and fatly synthetic acids of C 7 -C 9 fractions are presented. Effect of salting-out agents, inorganic acid concentrations on extraction process was studied. Potential ability of using amides of carboxylic acids for extractional concentration of rare earths as well as for recovery and separation of iron, rhenium, vanadium, molybdenum, uranium, niobium, and tantalum was shown

  1. Methyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Petr Štěpnička

    2009-10-01

    Full Text Available The title compound, [Fe(C5H5(C19H16O2P], obtained serendipitously during recrystallization of 1-hydroxybenzotriazolyl (Sp-2-(diphenylphosphinoferrocene-1-carboxylate from methanol, crystallizes in the chiral space group P212121. Its crystal structure not only confirms the anticipated absolute configuration but also establishes a rather regular geometry for the ferrocene unit, devoid of any significant deformation due to the attached substituents. In the crystal, symmetry-related molecules are linked via weak C—H...O interactions.

  2. Phenazine-1-carboxylic acid influences biofilm development and turnover of rhizobacterial biomass in a soil moisture-dependent manner

    Science.gov (United States)

    Rhizobacterial biofilm development influences terrestrial carbon and nitrogen cycles with ramifications for crop and soil health. Phenazine-1-carboxylic acid (PCA) is a redox-active metabolite produced by rhizobacteria in dryland wheat fields of Washington and Oregon, USA. PCA promotes biofilm dev...

  3. Characterization of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase-Containing Pseudomonas spp. in the Rhizosphere of Salt-Stressed Canola

    NARCIS (Netherlands)

    Akhgar, A.; Arzanlou, M.; Bakker, Peter; Hamidpour, M.

    2014-01-01

    When exposed to biotic or abiotic stress conditions, plants produce ethylene from its immediate precursor 1-aminocyclopropane-1- carboxylate (ACC), leading to retarded root growth and senescence. Many plant growth-promoting rhizobacteria contain the enzyme ACC deaminase and this enzyme can cleave

  4. Complexation of carboxylate on smectite surfaces.

    Science.gov (United States)

    Liu, Xiandong; Lu, Xiancai; Zhang, Yingchun; Zhang, Chi; Wang, Rucheng

    2017-07-19

    We report a first principles molecular dynamics (FPMD) study of carboxylate complexation on clay surfaces. By taking acetate as a model carboxylate, we investigate its inner-sphere complexes adsorbed on clay edges (including (010) and (110) surfaces) and in interlayer space. Simulations show that acetate forms stable monodentate complexes on edge surfaces and a bidentate complex with Ca 2+ in the interlayer region. The free energy calculations indicate that the complexation on edge surfaces is slightly more stable than in interlayer space. By integrating pK a s and desorption free energies of Al coordinated water calculated previously (X. Liu, X. Lu, E. J. Meijer, R. Wang and H. Zhou, Geochim. Cosmochim. Acta, 2012, 81, 56-68; X. Liu, J. Cheng, M. Sprik, X. Lu and R. Wang, Geochim. Cosmochim. Acta, 2014, 140, 410-417), the pH dependence of acetate complexation has been revealed. It shows that acetate forms inner-sphere complexes on (110) in a very limited mildly acidic pH range while it can complex on (010) in the whole common pH range. The results presented in this study form a physical basis for understanding the geochemical processes involving clay-organics interactions.

  5. Short Carboxylic Acid–Carboxylate Hydrogen Bonds Can Have Fully Localized Protons

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiusheng; Pozharski, Edwin; Wilson, Mark A.

    2017-01-17

    Short hydrogen bonds (H-bonds) have been proposed to play key functional roles in several proteins. The location of the proton in short H-bonds is of central importance, as proton delocalization is a defining feature of low-barrier hydrogen bonds (LBHBs). Experimentally determining proton location in H-bonds is challenging. Here, bond length analysis of atomic (1.15–0.98 Å) resolution X-ray crystal structures of the human protein DJ-1 and its bacterial homologue, YajL, was used to determine the protonation states of H-bonded carboxylic acids. DJ-1 contains a buried, dimer-spanning 2.49 Å H-bond between Glu15 and Asp24 that satisfies standard donor–acceptor distance criteria for a LBHB. Bond length analysis indicates that the proton is localized on Asp24, excluding a LBHB at this location. However, similar analysis of the Escherichia coli homologue YajL shows both residues may be protonated at the H-bonded oxygen atoms, potentially consistent with a LBHB. A Protein Data Bank-wide screen identifies candidate carboxylic acid H-bonds in approximately 14% of proteins, which are typically short [O–O> = 2.542(2) Å]. Chemically similar H-bonds between hydroxylated residues (Ser/Thr/Tyr) and carboxylates show a trend of lengthening O–O distance with increasing H-bond donor pKa. This trend suggests that conventional electronic effects provide an adequate explanation for short, charge-assisted carboxylic acid–carboxylate H-bonds in proteins, without the need to invoke LBHBs in general. This study demonstrates that bond length analysis of atomic resolution X-ray crystal structures provides a useful experimental test of certain candidate LBHBs.

  6. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  7. New trends and applications in carboxylation for isotope chemistry.

    Science.gov (United States)

    Bragg, Ryan A; Sardana, Malvika; Artelsmair, Markus; Elmore, Charles S

    2018-05-08

    Carboxylations are an important method for the incorporation of isotopically labeled 14 CO 2 into molecules. This manuscript will review labeled carboxylations since 2010 and will present a perspective on the potential of recent unlabeled methodology for labeled carboxylations. The perspective portion of the manuscript is broken into 3 major sections based on product type, arylcarboxylic acids, benzylcarboxylic acids, and alkyl carboxylic acids, and each of those sections is further subdivided by substrate. © 2018 AstraZeneca. Journal of Labelled Compounds and Radiopharmaceuticals Published by John Wiley & Sons, Ltd.

  8. Determination of HCl and VOC Emission from Thermal Degradation of PVC in the Absence and Presence of Copper, Copper(II Oxide and Copper(II Chloride

    Directory of Open Access Journals (Sweden)

    Ahamad J. Jafari

    2009-01-01

    Full Text Available Polyvinyl chloride (PVC has played a key role in the development of the plastic industry over the past 40 years. Thermal degradation of PVC leads to formation of many toxic pollutants such as HCl, aromatic and volatile organic carbon vapors. Thermal degradation of PVC and PVC in the present of copper, cupric oxide and copper(II chloride were investigated in this study using a laboratory scale electrical furnace. HCl and Cl- ion were analyzed by a Dionex ion chromatograph and VOCs compounds were analyzed using GC or GC-MS. The results showed that HCl plus Cl- ion and benzene formed about 99% and 80% respectively in the first step of thermal degradation under air atmosphere. The presence of cupric oxide increases the percentage of short chain hydrocarbons more than 184% and decreases the amount of the major aromatic hydrocarbon and HCl plus Cl- ion to 90% and 65% respectively. The total aromatic hydrocarbon emitted less than when atmosphere was air and difference was statistically significant (Pvalue<0.000

  9. Electrical conductivity of solutions of copper(II) nitrate crystalohydrate in dimethyl sulfoxide

    Science.gov (United States)

    Mamyrbekova, Aigul K.; Mamitova, A. D.; Mamyrbekova, Aizhan K.

    2016-06-01

    Conductometry is used to investigate the electric conductivity of Cu(NO3)2 ṡ 3H2O solutions in dimethyl sulfoxide in the 0.01-2.82 M range of concentrations and at temperatures of 288-318 K. The limiting molar conductivity of the electrolyte and the mobility of Cu2+ and NO 3 - ions, the effective coefficients of diffusion of copper(II) ions and nitrate ions, and the degree and constant of electrolytic dissociation are calculated for different temperatures from the experimental results. It is established that solutions containing 0.1-0.6 M copper nitrate trihydrate in DMSO having low viscosity and high electrical conductivity can be used in electrochemical deposition.

  10. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    Science.gov (United States)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  11. Rational design of carboxyl groups perpendicularly attached to a graphene sheet: a platform for enhanced biosensing applications.

    Science.gov (United States)

    Bonanni, Alessandra; Chua, Chun Kiang; Pumera, Martin

    2014-01-03

    Graphene oxide (GO)-based materials offer great potential for biofunctionalization with applications ranging from biosensing to drug delivery. Such biofunctionalization utilizes specific functional groups, typically a carboxyl moiety, as anchoring points for biomolecule. However, due to the fact that the exact chemical structure of GO is still largely unknown and poorly defined (it was postulated to consist of various oxygen-containing groups, such as epoxy, hydroxyl, carboxyl, carbonyl, and peroxy in varying ratios), it is challenging to fabricate highly biofunctionalized GO surfaces. The predominant anchoring sites (i.e., carboxyl groups) are mainly present as terminal groups on the edges of GO sheets and thus account for only a fraction of the oxygen-containing groups on GO. Herein, we suggest a direct solution to the long-standing problem of limited abundance of carboxyl groups on GO; GO was first reduced to graphene and consequently modified with only carboxyl groups grafted perpendicularly to its surface by a rational synthesis using free-radical addition of isobutyronitrile with subsequent hydrolysis. Such grafted graphene oxide can contain a high amount of carboxyl groups for consequent biofunctionalization, at which the extent of grafting is limited only by the number of carbon atoms in the graphene plane; in contrast, the abundance of carboxyl groups on "classical" GO is limited by the amount of terminal carbon atoms. Such a graphene platform embedded with perpendicularly grafted carboxyl groups was characterized in detail by X-ray photoelectron spectroscopy, cyclic voltammetry, and electrochemical impedance spectroscopy, and its application was exemplified with single-nucleotide polymorphism detection. It was found that the removal of oxygen functionalities after the chemical reduction enhanced the electron-transfer rate of the graphene. More importantly, the introduction of carboxyl groups promoted a more efficient immobilization of DNA probes on the

  12. 3-Carboxyquinolin-1-ium-2-carboxylate monohydrate

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2012-03-01

    Full Text Available The title compound, C11H7NO4·H2O, contains a 3-carboxyquinolin-1-ium-2-carboxylate (qda zwitterion and one water molecule. In the crystal, pairs of N—H...O hydrogen bonds link the molecules into inversion dimers, and these dimers are further connected by O—H...O hydrogen bonds into a three-dimensional supramolecular architecture. In addition, π–π interactions occur between pyridine and benzene rings from different qda ligands [centroid–centroid distance = 3.749 (1 Å] and the dihedral angles of the –CO2H and –CO2 groups to the quinoline system are 8.47 (3 and 88.16 (6°, respectively.

  13. Ion exchange properties of carboxylate bagasse

    International Nuclear Information System (INIS)

    Nada, A.M.A.; Hassan, M.L.

    2005-01-01

    Bagasse fibers were chemically modified using three different reactions: esterification using monochloro acetic acid, esterification using succinic anhydride, and oxidation using sodium periodate and sodium chlorite to prepare cation exchanger bearing carboxylic groups. Bagasse was crosslinked using epichlorohydrin before chemical modification to avoid loss of its constituents during the chemical modification. The structure of the prepared derivatives was proved using Fourier transform infrared (FTIR) and chemical methods. The ability of the prepared bagasse cation exchangers to adsorb heavy metal ions (Cu +2 , Ni +2 , Cr +3 , Fe +3 ), on a separate basis or in a mixture of them, at different metal ion concentration was tested. Thermal stability of the different bagasse derivative was studied using thermogravimetric analysis (TGA)

  14. Hydrated electron: a destroyer of perfluorinated carboxylates?

    International Nuclear Information System (INIS)

    Huang Li; Dong Wenbo; Hou Huiqi

    2006-01-01

    As a class, perfluorinated carboxylate (PFCA) was ranked among the most prominent organohalogen contaminants in environment with respect to thermal, chemical and biological inertness. Hydrated electron (e aq - ), a highly reactive and strongly reductive species, has been reported to readily decompose perfluoroaromatic compounds via intermolecular electron transfer process in aqueous solution. Question then arose: what would happen if perfluorinated carboxylates encountered with hydrated electron? Original laboratory trial on the interaction between F(CF 2 ) n COO - (n=1, 3, 7) and hydrated electron was attempted by using laser flash photolysis technique in this research work. Abundant hydrated electron (e aq - ) could be produced by photolysis of 1.25 x 10 -4 M K 4 Fe(CN) 6 in nitrogen saturated water. In the presence of F(CF 2 ) n COO - (n=1, 3, 7), the decay of e aq - was observed to enhance dramatically, indicating e aq - was able to attack PFCAs. On addition of perfluorinated carboxylates, the loss of e aq - was mainly due to the following channels. By mixing the solution of K 4 Fe(CN) 6 with excess K 3 Fe(CN) 6 and PFCAs, e aq - turned to decayed corresponding to mixed first- and second-order kinetics. Rate constants for the reactions of e aq - with PFCAs could be then easily determined by monitoring the decay of e aq - absorption at 690 nm. Since perfluorinated carboxylates were salts, the influence of ionic strength on k 3 was examined systematically by carrying out experiments of varying ionic strength ranging from 0.009 up to 0.102 M by adding NaClO 4 . In this manner, the second order rate constants for e-aq with CF 3 COO - , C 3 F 7 COO - , C 7 F 15 COO - were derived to be (1.9±0.2) x 10 6 M -1 S -1 (μ=0), (7.1±0.2) x 10 6 M -1 S -1 (μ=0) and (1.7±0.5) x10 7 M -1 S -1 (μ=0.009 M) respectively. Apparently, the length of F(CF 2 ) n group exerted substantial influence on the rate constant. Further study on byproducts analysis by ion chromatography

  15. RECOVERY OF COPPER(II AND CHROMIUM(III FROM NITRATE MEDIUM WITH SALICYLIDENEANILINE DISSOLVED IN 1-OCTANOL

    Directory of Open Access Journals (Sweden)

    A. Guerdouh

    2016-05-01

    Full Text Available The solvent extraction of copper(II and chromium(III from nitrate medium with salicylideneaniline (HL is studied as a function of various parameters: pH, concentration of salicylideneaniline, contact time and the nature of anoin (nitrate and sulfate in aqueous phase. Chromium(III is not extracted by salicylideneaniline  diluted in 1-octanol. Copper(II is only extracted by salicylideneaniline and it was found that the highest extractability achieved to 95% at pH 4.9, The stoichiometry of the extracted species was determined by using the method of slope analysis. Elemental analysis, UV–vis and IR-spectra were used to confirm the structure. It is found that the copper (II is extracted as CuL2.2H2O Their equilibrium constant, distribution coefficient, percentage extraction (%E and free energy are also calculated.

  16. Green and selective synthesis of N-substituted amides using water soluble porphyrazinato copper(II) catalyst

    International Nuclear Information System (INIS)

    Ghodsinia, Sara S.E.; Akhlaghinia, Batool; Eshghi, Hossein; Safaei, Elham

    2013-01-01

    N, N',N , N ' -Tetramethyl tetra-2,3-pyridinoporphyrazinato copper(II) methyl sulfate ([Cu(2,3-tmtppa)](MeSO 4 ) 4 ) efficiently catalyzed the direct conversion of nitriles to N-substituted amides. The one pot selective synthesis of the N-substituted amides from nitriles and primary amines was performed in refluxing H 2 O. The catalyst was recovered and reused at least four times, maintaining its efficiency. (author)

  17. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper(II) complex.

    Science.gov (United States)

    Mondal, Biplab; Kumar, Pankaj; Ghosh, Pokhraj; Kalita, Apurba

    2011-03-14

    The quenched fluorescent intensity of a copper(II) complex, 1, of a fluorescent ligand, in degassed methanol or aqueous (buffered at pH 7.2) solution, was found to reappear on exposure to nitric oxide. Thus, it can function as a fluorescence based nitric oxide sensor. It has been found that the present complex can be used to sense nanomolar quantities of nitric oxide in both methanol and pH 7.2 buffered-water medium.

  18. Human Cells as Platform to Produce Gamma-Carboxylated Proteins.

    Science.gov (United States)

    de Sousa Bomfim, Aline; de Freitas, Marcela Cristina Corrêa; Covas, Dimas Tadeu; de Sousa Russo, Elisa Maria

    2018-01-01

    The gamma-carboxylated proteins belong to a family of proteins that depend on vitamin K for normal biosynthesis. The major representative gamma-carboxylated proteins are the coagulation system proteins, for example, factor VII, factor IX, factor X, prothrombin, and proteins C, S, and Z. These molecules have harbored posttranslational modifications, such as glycosylation and gamma-carboxylation, and for this reason they need to be produced in mammalian cell lines. Human cells lines have emerged as the most promising alternative to the production of gamma-carboxylated proteins. In this chapter, the methods to generate human cells as a platform to produce gamma-carboxylated proteins, for example the coagulation factors VII and IX, are presented. From the cell line modification up to the vitamin K adaptation of the produced cells is described in the protocols presented in this chapter.

  19. Standard molar enthalpies of formation of copper(II) {beta}-diketonates and monothio-{beta}-diketonates

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro da Silva, Manuel A.V. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)]. E-mail: risilva@fc.up.pt; Santos, Luis M.N.B.F. [Centro de Investigacao em Quimica, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)

    2006-07-15

    The standard (p{sup o}=0.1MPa) molar enthalpies of formation of the crystalline complexes of dibenzoylmethane (Hdbm), thenoyltrifluoroacetone (Httfa), monothiodibenzoylmethane (HdbmS), and monothiothenoyltrifluoroacetone (HttfaS) of copper(II) were determined, at T=298.15K, by high precision solution-reaction calorimetry. The standard molar enthalpies of sublimation of the copper(II) {beta}-diketonate complexes were measured by high-temperature Calvet microcalorimetry. From the standard molar enthalpies of formation of the complexes in the gaseous state, the mean molar dissociation enthalpies copper(II)-ligand, (Cu-L), were derived. {delta}{sub f}H{sub m}{sup o} (cr){delta}{sub cr}{sup g}H{sub m}{sup o} kJ.mol{sup -1}kJ.mol{sup -1}Bis(dibenzoylmethanate)copper(II), Cu(dbm){sub 2}-364.0+/-3.9230.7+/-8.2Bis(thenoyltrifluoroacetonate)copper(II), Cu(ttfa){sub 2}-1824.3+/-8.3167.9+/-7.4Bis(monothiodibenzoylmethanate)copper(II), Cu(dbmS){sub 2}35.6+/-7.7[241+/-15]Bis(monothiothenoyltrifluoroacetonate) copper(II), Cu(ttfaS){sub 2}-1405.7+/-8.3[177+/-15].

  20. Standard molar enthalpies of formation of copper(II) β-diketonates and monothio-β-diketonates

    International Nuclear Information System (INIS)

    Ribeiro da Silva, Manuel A.V.; Santos, Luis M.N.B.F.

    2006-01-01

    The standard (p o =0.1MPa) molar enthalpies of formation of the crystalline complexes of dibenzoylmethane (Hdbm), thenoyltrifluoroacetone (Httfa), monothiodibenzoylmethane (HdbmS), and monothiothenoyltrifluoroacetone (HttfaS) of copper(II) were determined, at T=298.15K, by high precision solution-reaction calorimetry. The standard molar enthalpies of sublimation of the copper(II) β-diketonate complexes were measured by high-temperature Calvet microcalorimetry. From the standard molar enthalpies of formation of the complexes in the gaseous state, the mean molar dissociation enthalpies copper(II)-ligand, m >(Cu-L), were derived. Δ f H m o (cr)Δ cr g H m o kJ.mol -1 kJ.mol -1 Bis(dibenzoylmethanate)copper(II), Cu(dbm) 2 -364.0+/-3.9230.7+/-8.2Bis(thenoyltrifluoroacetonate)copper(II), Cu(ttfa) 2 -1824.3+/-8.3167.9+/-7.4Bis(monothiodibenzoylmethanate)copper(II), Cu(dbmS) 2 35.6+/-7.7[241+/-15]Bis(monothiothenoyltrifluoroacetonate) copper(II), Cu(ttfaS) 2 -1405.7+/-8.3[177+/-15

  1. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    Science.gov (United States)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  2. CFD simulation of copper(II) extraction with TFA in non-dispersive hollow fiber membrane contactors.

    Science.gov (United States)

    Muhammad, Amir; Younas, Mohammad; Rezakazemi, Mashallah

    2018-04-01

    This study presents computational fluid dynamics (CFD) simulation of dispersion-free liquid-liquid extraction of copper(II) with trifluoroacetylacetone (TFA) in hollow fiber membrane contactor (HFMC). Mass and momentum balance Navier-Stokes equations were coupled to address the transport of copper(II) solute across membrane contactor. Model equations were simulated using COMSOL Multiphysics™. The simulation was run to study the detailed concentration distribution of copper(II) and to investigate the effects of various parameters like membrane characteristics, partition coefficient, and flow configuration on extraction efficiency. Once-through extraction was found to be increased from 10 to 100% when partition coefficient was raised from 1 to 10. Similarly, the extraction efficiency was almost doubled when porosity to tortuosity ratio of membrane was increased from 0.05 to 0.81. Furthermore, the study revealed that CFD can be used as an effective optimization tool for the development of economical membrane-based dispersion-free extraction processes.

  3. Strong copper(II) species in estuarine and sea waters investigated by a method with high detection window.

    Science.gov (United States)

    Alberti, Giancarla; Biesuz, Raffaela; D'Agostino, Girolamo; Scarponi, Giuseppe; Pesavento, Maria

    2007-02-15

    The distribution of copper(II) in species of different stability in some estuarine and sea water samples (Adriatic Sea) was investigated by a method based on the sorption of the metal ion on a strongly sorbing resin, Chelex 100, whose sorbing properties have been previously characterized. From them, it is possible to predict very high values of detection windows at the considered conditions, for example side reaction coefficient as high as 10(10) at pH 7.5. Strong copper(II) species in equilibrium with Chelex 100 were detected, at concentration 2-20nM, with a reaction coefficient approximately 10(10.6) at pH 7.45 in sea water, strictly depending on the acidity. They represent 50-70% of the total metal ion and are the strongest copper(II) complexes found in sea water. Weak complexes too were detected in all the samples, with reaction coefficient lower than ca. 10(9) at the same pH. The method applied, named resin titration (RT), was described in a previous investigation, and is here modified in order to be carried out on oceanographic boat during a cruise in the Adriatic Sea.

  4. Volatility of atmospherically relevant alkylaminium carboxylate salts.

    Science.gov (United States)

    Lavi, Avi; Segre, Enrico; Gomez-Hernandez, Mario; Zhang, Renyi; Rudich, Yinon

    2015-05-14

    Heterogeneous neutralization reactions of ammonia and alkylamines with sulfuric acid play an important role in aerosol formation and particle growth. However, little is known about the physical and chemical properties of alkylaminium salts of organic acids. In this work we studied the thermal stability and volatility of alkylaminium carboxylate salts of short aliphatic alkylamines with monocarboxylic and dicarboxylic acids. The enthalpy of vaporization and saturation vapor pressure at 298 K were derived using the kinetic model of evaporation and the Clausius-Clapeyron relation. The vapor pressure of alkylaminium dicarboxylate salts is ∼10(-6) Pa, and the vaporization enthalpy ranges from 73 to 134 kJ mol(-1). Alkylaminium monocarboxylate salts show high thermal stability, and their thermograms do not follow our evaporation model. Hence, we inferred their vapor pressure from their thermograms as comparable to that of ammonium sulfate (∼10(-9) Pa). Further characterization showed that alkylaminium monocarboxylates are room temperature protic ionic liquids (RTPILs) that are more hygroscopic than ammonium sulfate (AS). We suggest that the irregular thermograms result from an incomplete neutralization reaction leading to a mixture of ionic and nonionic compounds. We conclude that these salts are expected to contribute to new particle formation and particle growth under ambient conditions and can significantly enhance the CCN activity of mixed particles in areas where SO2 emissions are regulated.

  5. Synthesis and characterization of mononuclear copper(II complex of tetradentate N2S2 donor set and the study of DNA and bovine serum albumin binding

    Directory of Open Access Journals (Sweden)

    Sandipan Sarkar

    2014-12-01

    Full Text Available One mononuclear copper(II complex, containing neutral tetradentate NSSN-type ligands, of formulation [Cu II(L 1Cl]ClO 4 (1, was synthesized and isolated in pure form [where L 1˭ 1,3-bis(3-pyridylmethylthiopropane]. Green-colored copper(II complex was characterized by physicochemical, spectroscopic methods and conductivity measurement. These experimental data matched well with the proposed structure of the complex. Biological activity of the complex (1 toward calf thymus DNA and bovine serum albumin has been examined systematically and groove-binding behavior of the Copper(II complex 1 with calf thymus DNA has been observed from the spectral study.

  6. Copper(II) complexes of methimazole, an anti Grave's disease drug. Synthesis, characterization and its potential biological behavior as alkaline phosphatase inhibitor.

    Science.gov (United States)

    Urquiza, Nora M; Manca, Silvia G; Moyano, María A; Dellmans, Raquel Arrieta; Lezama, Luis; Rojo, Teófilo; Naso, Luciana G; Williams, Patricia A M; Ferrer, Evelina G

    2010-04-01

    Methimazole (MeimzH) is an anti-thyroid drug and the first choice for patients with Grave's disease. Two new copper(II) complexes of this drug: [Cu(MeimzH)(2)(NO(3))(2)]*0.5H(2)O and [Cu(MeimzH)(2)(H(2)O)(2)](NO(3))(2)*H(2)O were synthesized and characterized by elemental analysis, dissolution behavior, thermogravimetric analysis and UV-vis, diffuse reflectance, FTIR and EPR spectroscopies. As it is known that copper(II) cation can act as an inhibitor of alkaline phosphatase (ALP), the inhibitory effect of methimazole and its copper(II) complexes on ALP activity has also been investigated.

  7. Modification of polysulfone with pendant carboxylic acid functionality ...

    Indian Academy of Sciences (India)

    polysulfone (PSF) by in situ generated chloromethyl radical in presence of stannic chloride in tetrachloroethane and .... vert the nitrile group to carboxylic acid was reported (Reddy ..... PEG molecular weight vs rejection at 35 psi pressure.

  8. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  9. A novel aggregation induced emission active cyclometalated Ir(III) complex as a luminescent probe for detection of copper(II) ion in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei; Yan, Liqiang; Tian, Wenwen; Cui, Xia; Qi, Zhengjian, E-mail: qizhengjian@seu.edu.cn; Sun, Yueming, E-mail: sun@seu.edu.cn

    2016-09-15

    We report the synthesis and characterization of a novel aggregation induced emission (AIE) active cyclometalated Ir(III) complex, namely [Ir(dfppy){sub 2}(phen-DPA)]PF{sub 6}, where dfppy and phen-DPA represent 2-(2,4-difluorophenyl)pyridine and 2-(bis(pyridin-2-ylmethyl)amino)-N-(1,10-phenanthrolin-5-yl)acetamide, respectively. The complex showed remarkable selectivity for copper(II) in aqueous solution over other competitive ions. Furthermore, this sensor showed a rapid and reversible response to copper(II) in aqueous solution with a detection limit of 65 nM.

  10. Copper(II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions.

    Science.gov (United States)

    Aresta, M; Boscolo, M; Franco, D W

    2001-06-01

    The role of copper(II) species in the oxidation of inorganic cyanide to cyanate and in the conversion of cyanate or urea into ethyl carbamate was investigated. The oxidation process has been shown to be independent from the dissolved oxygen. Elemental analysis and infrared spectroscopy have shown the formation of a mixed copper carbonate/hydroxide in the process of oxidation of cyanide to cyanate in water/ethanol. The complexation to Cu(II) of cyanate formed upon cyanide oxidation makes the former more susceptible to nucleophilic attack from ethanol, with conversion into ethyl carbamate. Comparatively, urea has a minor role with respect to cyanide in the formation of ethyl carbamate. Therefore, the urea present in some samples of Brazilian sugar cane spirit (cachaça) has been shown to have almost no influence on the ethyl carbamate content of cachaças, which comes essentially from cyanide. Fe(II,III) affords results similar to those found with Cu(II). Some suggestions are presented to avoid ethyl carbamate formation in spirits during distillation.

  11. Copper(II) oxide solubility behavior in aqueous sodium phosphate solutions at elevated temperatures

    International Nuclear Information System (INIS)

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    1990-02-01

    A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of copper(II) oxide (CuO) in aqueous sodium phosphate solutions at temperatures between 292 and 535 K. Copper solubilities are observed to increase continuously with temperature and phosphate concentration. The measured solubility is examined via a Cu(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reactions are obtained from a least- squares analysis of the data. Altogether, thermochemical properties are established for five anionic complexes: Cu(OH) 3 - , Cu(OH) 4 = , Cu(OH) 2 (HPO 4 ) = , Cu(OH) 3 (H 2 PO 4 ) = , and Cu(OH) 2 (PO 4 ) ≡ . Precise thermochemical parameters are also derived for the Cu(OH) + hydroxocomplex based on CuO solubility behavior previously observed in pure water (*) at elevated temperatures. The relative ease of Cu(II) ion hydrolysis is such that Cu(OH) 3 - species become the preferred hydroxocomplex for pH ≥ 9.4. 20 refs., 8 figs., 6 tabs

  12. Synthesis, thermogravimetric, spectroscopic and theoretical characterization of copper(II) complex with 4-chloro-2-nitrobenzenosulfonamide

    Science.gov (United States)

    Camí, G.; Chacón Villalba, E.; Di Santi, Y.; Colinas, P.; Estiu, G.; Soria, D. B.

    2011-05-01

    4-Chloro-2-nitrobenzenesulfonamide (ClNbsa) was purified and characterized. A new copper(II) complex, [Cu(ClNbsa) 2(NH 3) 2], has been prepared using the sulfonamide as ligand. The thermal behavior of both, the ligand and the Cu(II) complex, was investigated by thermogravimetric analyses (TG) and differential thermal analysis (DT), and the electronic characteristics analyzed by UV-VIS, FTIR, Raman and 1H NMR spectroscopies. The experimental IR, Raman and UV-VIS spectra have been assigned on the basis of DFT calculations at the B3LYP level of theory using the standard (6-31 + G ∗∗) basis set. The geometries have been fully optimized in vacuum and in modeled dimethylsulfoxide (DMSO) solvent, using for the latter a continuum solvation model that reproduced the experimental conditions of the UV-VIS spectroscopy. The theoretical results converged to stable conformations for the free sulfonamide and for the complex, suggesting for the latter a distorted square planar geometry in both environments.

  13. Determination of carboxyl groups in wood fibers by headspace gas chromatography

    Science.gov (United States)

    X.-S. Chai; Q.X. Hou; J.Y. Zhu; S.-L. Chen; S.F. Wang; L. Lucia

    2003-01-01

    The phase reaction conversion (PRC) headspace gas chromatographic (HSGC) technique was employed to develop a method for the determination of the content of carboxyl groups in wood fibers. Acid treatment of the wood fibers using hydrochloric was applied to convert carboxyl groups to carboxyl acids. Bicarbonate solution is then used to react with carboxyl acids on the...

  14. High stability and biological activity of the copper(II) complexes of alloferon 1 analogues containing tryptophan.

    Science.gov (United States)

    Kadej, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Urbański, Arkadiusz; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2016-10-01

    Copper(II) complex formation processes between the alloferon 1 (Allo1) (HGVSGHGQHGVHG) analogues where the tryptophan residue is introducing in the place His residue H1W, H6W, H9W and H12W have been studied by potentiometric, UV-visible, CD and EPR spectroscopic, and MS methods. For all analogues of alloferon 1 complex speciation have been obtained for a 1:1 metal-to-ligand molar ratio and 2:1 of H1W because of precipitation at higher (2:1, 3:1 and 4:1) ratios. At physiological pH7.4 and a 1:1 metal-to-ligand molar ratio the tryptophan analogues of alloferon 1 form the CuH -1 L and/or CuH -2 L complexes with the 4N binding mode. The introduction of tryptophan in place of histidine residues changes the distribution diagram of the complexes formed with the change of pH and their stability constants compared to the respective substituted alanine analogues of alloferon 1. The CuH -1 L, CuH -2 L and CuH -3 L complexes of the tryptophan analogues are more stable from 1 to 5 log units in comparison to those of the alanine analogues. This stabilization of the complexes may result from cation(Cu(II))-π and indole/imidazole ring interactions. The induction of apoptosis in vivo, in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 was studied. The biological results show that copper(II) ions in vivo did not cause any apparent apoptotic features. The most active were the H12W peptide and Cu(II)-H12W complex formed at pH7.4. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Improving the Response of Copper(II) Selective PVC Membrane Electrode by Modification of N2S2 Donor Ligand.

    Science.gov (United States)

    Brinić, Slobodan; Buzuk, Marijo; Generalić, Eni; Bralić, Marija

    2010-06-01

    S,S'-bis(2-aminophenyl)ethanebis(thioate), (APhET), is reported as N2S2 ligand which form chelate with copper of high stability as compared to the other metals. Two modification of APhET, simpler 1,2-di-(o-aminophenylthio)ethane (DAPhTE), and the complex one 1,2-di-(o-salicylaldiminophenylthio)ethane (SAPhTE), were examined as the active material for copper(II) ion selective PVC membrane electrodes, and observed results are correlated. The obtained results with DAPhTE based electrodes show that only coordination abilities of ligand are insufficient for preparing the efficient membrane material. On the other hand, the results that are achieved with electrodes based on SAPhTE actuate interaction of ligand with polymer membrane matrix and necessity of ionophore immobilization in membrane. Optimized SAPhTE based membrane electrode has a linear range down to 10-6 mol L-1, with slope of 27.0 mV per decade, very rapid response time (under 5 seconds) and detection limit of 5.1 × 10-7 mol L-1. Such electrode is suitable for determination of copper(II) in analytical measurements by direct potentiometry and in potentiometric titrations, within pH between 2 and 7. The electrode is selective for copper(II) ions over a large number of metal ions, with the exception on Hg2+ ion when is present in concentrations above 2 × 10-5 mol L-1.

  16. Chemical rescue of the post-translationally carboxylated lysine mutant of allantoinase and dihydroorotase by metal ions and short-chain carboxylic acids.

    Science.gov (United States)

    Ho, Ya-Yeh; Huang, Yen-Hua; Huang, Cheng-Yang

    2013-04-01

    Bacterial allantoinase (ALLase) and dihydroorotase (DHOase) are members of the cyclic amidohydrolase family. ALLase and DHOase possess similar binuclear metal centers in the active site in which two metals are bridged by a post-translationally carboxylated lysine. In this study, we determined the effects of carboxylated lysine and metal binding on the activities of ALLase and DHOase. Although DHOase is a metalloenzyme, purified DHOase showed high activity without additional metal supplementation in a reaction mixture or bacterial culture. However, unlike DHOase, ALLase had no activity unless some specific metal ions were added to the reaction mixture or culture. Substituting the metal binding sites H59, H61, K146, H186, H242, or D315 with alanine completely abolished the activity of ALLase. However, the K146C, K146D and K146E mutants of ALLase were still active with about 1-6% activity of the wild-type enzyme. These ALLase K146 mutants were found to have 1.4-1.7 mol metal per mole enzyme subunit, which may indicate that they still contained the binuclear metal center in the active site. The activity of the K146A mutant of the ALLase and the K103A mutant of DHOase can be chemically rescued by short-chain carboxylic acids, such as acetic, propionic, and butyric acids, but not by ethanol, propan-1-ol, and imidazole, in the presence of Co2+ or Mn2+ ions. However, the activity was still ~10-fold less than that of wild-type ALLase. Overall, these results indicated that the 20 natural basic amino acid residues were not sufficiently able to play the role of lysine. Accordingly, we proposed that during evolution, the post-translational modification of carboxylated lysine in the cyclic amidohydrolase family was selected for promoting binuclear metal center self-assembly and increasing the nucleophilicity of the hydroxide at the active site for enzyme catalysis. This kind of chemical rescue combined with site-directed mutagenesis may also be used to identify a binuclear metal

  17. Metal-Catalyzed Intra- and Intermolecular Addition of Carboxylic Acids to Alkynes in Aqueous Media: A Review

    Directory of Open Access Journals (Sweden)

    Javier Francos

    2017-11-01

    Full Text Available The metal-catalyzed addition of carboxylic acids to alkynes is a very effective tool for the synthesis of carboxylate-functionalized olefinic compounds in an atom-economical manner. Thus, a large variety of synthetically useful lactones and enol-esters can be accessed through the intra- or intermolecular versions of this process. In order to reduce the environmental impact of these reactions, considerable efforts have been devoted in recent years to the development of catalytic systems able to operate in aqueous media, which represent a real challenge taking into account the tendency of alkynes to undergo hydration in the presence of transition metals. Despite this, different Pd, Pt, Au, Cu and Ru catalysts capable of promoting the intra- and intermolecular addition of carboxylic acids to alkynes in a selective manner in aqueous environments have appeared in the literature. In this review article, an overview of this chemistry is provided. The synthesis of β-oxo esters by catalytic addition of carboxylic acids to terminal propargylic alcohols in water is also discussed.

  18. Iodometric determination of peroxydiphosphate in the presence of copper(II) or iron(II) as catalyst.

    Science.gov (United States)

    Kapoor, S; Sharma, P D; Gupta, Y K

    1975-09-01

    Peroxydiphosphate can be determined iodometrically in the presence of a large excess of potassium iodide with copper(II) or iron(II) as catalyst through the operation of the Cu(II)/Cu(I) or Fe(II)/Fe(III) cycle. The method is applicable in HClO(4), H(2)SO(4), HCl and CH(3)COOH acid media in the range 0.1-1.0M studied. Nickel, manganese(II), cobalt(II), silver, chloride and phosphate are without effect.

  19. Kinetics of the oxidative hydroxylation of tetraphosphorus in the presence of copper(II) chloride modified by humic (fulvo-) acid

    OpenAIRE

    Zhaksyntay Kairbekov; Dina Akbayeva; Zh. Eshova

    2012-01-01

    It was established that in mild conditions (50-70 oC, РО2= 1 atm) white phosphorus effectively is oxidized by oxygen in water-toluene solutions of copper(II) chloride modified by humic (fulvo-) acid to give mainly phosphoric acid. Humic (fulvo-) acid was extracted from brown coal of domestic deposit Kiyakty. For determination of optimum parameters of fulvo-acid extraction the laboratory experiments were carried out using the method of experiment planning. The kinetics, intermediate and final ...

  20. Green and selective synthesis of N-substituted amides using water soluble porphyrazinato copper(II) catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsinia, Sara S.E.; Akhlaghinia, Batool; Eshghi, Hossein, E-mail: akhlaghinia@um.ac.ir [Ferdowsi University of Mashhad (Iran, Islamic Republic of). Faculty of Sciences. Department of Chemistry; Safaei, Elham [Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan (Iran, Islamic Republic of). Department of Chemistry

    2013-06-15

    N, N',N{sup ,} N{sup '}-Tetramethyl tetra-2,3-pyridinoporphyrazinato copper(II) methyl sulfate ([Cu(2,3-tmtppa)](MeSO{sub 4}){sub 4}) efficiently catalyzed the direct conversion of nitriles to N-substituted amides. The one pot selective synthesis of the N-substituted amides from nitriles and primary amines was performed in refluxing H{sub 2}O. The catalyst was recovered and reused at least four times, maintaining its efficiency. (author)

  1. Scalable room-temperature conversion of copper(II) hydroxide into HKUST-1 (Cu3 (btc)2).

    Science.gov (United States)

    Majano, Gerardo; Pérez-Ramírez, Javier

    2013-02-20

    Copper(II) hydroxide is converted directly to HKUST-1 (Cu(3) (btc)(2) ) after only 5 min at room-temperature in aqueous ethanolic solution without the need of additional solvents. Scale up to the kilogram scale does not influence porous properties yielding pure-phase product with a remarkable total surface area exceeding 1700 m(2) g(-1) featuring aggregates of nanometer-sized crystals (<600 nm) and extremely high space-time yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis and spectral characterization of mono- and binuclear copper(II) complexes derived from 2-benzoylpyridine-N4-methyl-3-thiosemicarbazone: Crystal structure of a novel sulfur bridged copper(II) box-dimer

    Science.gov (United States)

    Jayakumar, K.; Sithambaresan, M.; Aiswarya, N.; Kurup, M. R. Prathapachandra

    2015-03-01

    Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N4-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ = 0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)sbnd I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g|| > g⊥ > 2.0023 and the g values in frozen DMF are consistent with the dx2-y2 ground state. The thermal stabilities of some of the complexes were also determined.

  3. Synthesis and spectral characterization of mono- and binuclear copper(II) complexes derived from 2-benzoylpyridine-N⁴-methyl-3-thiosemicarbazone: crystal structure of a novel sulfur bridged copper(II) box-dimer.

    Science.gov (United States)

    Jayakumar, K; Sithambaresan, M; Aiswarya, N; Kurup, M R Prathapachandra

    2015-03-15

    Mononuclear and binuclear copper(II) complexes of 2-benzoylpyridine-N(4)-methyl thiosemicarbazone (HL) were prepared and characterized by a variety of spectroscopic techniques. Structural evidence for the novel sulfur bridged copper(II) iodo binuclear complex is obtained by single crystal X-ray diffraction analysis. The complex [Cu2L2I2], a non-centrosymmetric box dimer, crystallizes in monoclinic C2/c space group and it was found to have distorted square pyramidal geometry (Addison parameter, τ=0.238) with the square basal plane occupied by the thiosemicarbazone moiety and iodine atom whereas the sulfur atom from the other coordinated thiosemicarbazone moiety occupies the apical position. This is the first crystallographically studied system having non-centrosymmetrical entities bridged via thiolate S atoms with Cu(II)I bond. The tridentate thiosemicarbazone coordinates in mono deprotonated thionic tautomeric form in all complexes except in sulfato complex, [Cu(HL)(SO4)]·H2O (1) where it binds to the metal centre in neutral form. The magnetic moment values and the EPR spectral studies reflect the binuclearity of some of the complexes. The spin Hamiltonian and bonding parameters are calculated based on EPR studies. In all the complexes g||>g⊥>2.0023 and the g values in frozen DMF are consistent with the d(x2-y2) ground state. The thermal stabilities of some of the complexes were also determined. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Characterisation of spin-waves in copper(II) deuteroformate tetradeuterate: A square ¤S¤=1/2 Heisenberg antiferromagnet

    DEFF Research Database (Denmark)

    Clarke, S.J.; Harrison, A.; Mason, T.E.

    1999-01-01

    Copper(II) formate tetrahydrate (CFTH) is a model square S = 1/2 Heisenberg antiferromagnet with T-N = 16.54 +/- 0.05 K. The dispersion of spin-waves in the magnetic layers of a fully deuterated sample of this material has been mapped at 4.3 K by inelastic neutron scattering from the zone centre ...

  5. Cyclam Derivatives with a Bis(phosphinate) or a Phosphinato-Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications

    Czech Academy of Sciences Publication Activity Database

    David, T.; Kubíček, V.; Gutten, Ondrej; Lubal, P.; Kotek, J.; Pietzsch, H.-J.; Rulíšek, Lubomír; Hermann, P.

    2015-01-01

    Roč. 54, č. 24 (2015), s. 11751-11766 ISSN 0020-1669 R&D Projects: GA ČR(CZ) GA14-31419S Grant - others:COST(XE) TD1004 Institutional support: RVO:61388963 Keywords : cyclam derivatives * radiolabelling * quantum chemical calculations * copper(II) chelation Subject RIV: CA - Inorganic Chemistry Impact factor: 4.820, year: 2015

  6. In vitro Solubility of Copper(II) Sulfate and Dicopper Chloride Trihydroxide for Pigs.

    Science.gov (United States)

    Park, C S; Kim, B G

    2016-11-01

    This study was conducted to determine the solubility of copper (Cu) in two sources of copper(II) sulfate (CuSO 4 ) including monohydrate and pentahydrate and three sources of dicopper chloride trihydroxide (dCCTH) including α-form (dCCTH-α), β-form (dCCTH-β), and a mixture of α- and β-form (dCCTH-αβ) at different pH and a 3-step in vitro digestion assay for pigs. In Exp. 1, Cu sources were incubated in water-based buffers at pH 2.0, 3.0, 4.8, and 6.8 for 4 h using a shaking incubator at 39°C. The CuSO 4 sources were completely dissolved within 15 min except at pH 6.8. The solubility of Cu in dCCTH-α was greater (pCopper in dCCTH sources were non-soluble at pH 6.8. In Exp. 2, the solubility of Cu was determined during the 3-step in vitro digestion assay for pigs. All sources of Cu were completely dissolved in step 1 which simulated digestion in the stomach. In Exp. 3, the solubility of Cu in experimental diets including a control diet and diets containing 250 mg/kg of additional Cu from five Cu sources was determined during the in vitro digestion assay. The solubility of Cu in diets containing additional Cu sources were greater (p<0.05) than the control diet in step 1. In conclusion, the solubility of Cu was influenced by pH of digesta but was not different among sources based on the in vitro digestion assay.

  7. Nitrile rubber and carboxylated nitrile rubber resistance to soybean biodiesel

    Directory of Open Access Journals (Sweden)

    Felipe Nunes Linhares

    2018-03-01

    Full Text Available Abstract Biodiesel has been considered a suitable substitute for petroleum diesel, but their chemical composition differs greatly. For this reason, biodiesel interacts differently than petroleum diesel with various materials, including rubbers. Therefore, the resistance of some elastomers should be thoroughly evaluated, specifically those which are commonly used in automotive industry. Nitrile rubber (NBR is widely used to produce vehicular parts that are constantly in contact with fuels. This paper aimed to assess the resistance of carboxylated nitrile rubber (XNBR with 28% of acrylonitrile content to soybean biodiesel in comparison with non-carboxylated nitrile rubber samples, with high and medium acrylonitrile content (33 and 45%. NBR with medium acrylonitrile content showed little resistance to biodiesel. However, carboxylated nitrile rubber even with low acrylonitrile content had similar performance to NBR with high acrylonitrile content.

  8. Synthesis and study of dioxouranium (6) carboxylate complexes with ammonia

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Mazo, G.N.; Dunaev, K.M.; Santalova, N.A.

    1980-01-01

    Heterophase synthesis of a series of ammonia complexes of dioxouranium (6) carboxylates namely, UO 2 (HCOO) 2 x2NH 3 , UO 2 (CH 3 COO) 2 x2NH 3 , UO 2 (CH 3 CH 2 OO) 2 x2NH 3 is presented and their properties and structure are studied. Comparison of infrared spectra of dioxouranium (6) carboxylates and their ammonia complexes has shown that NH 3 molecule introduction changes in principle the coordination of azidoligand turning out bridge carboxylate groups into island ones and weakening their bonds with central cations. In spectra of all diammiacates the shift of bands of deformational and valent oscillations of N-H bond in comparison with spectrum of pure ammonia tells about NH 3 coordination with metal. Complexes thermolysis has been studied under iso- and polythermal conditions. General diagram of thermal decay is presented [ru

  9. Copper(II) Thiosemicarbazone Complexes and Their Proligands upon UVA Irradiation: An EPR and Spectrophotometric Steady-State Study.

    Science.gov (United States)

    Hricovíni, Michal; Mazúr, Milan; Sîrbu, Angela; Palamarciuc, Oleg; Arion, Vladimir B; Brezová, Vlasta

    2018-03-21

    X- and Q-band electron paramagnetic resonance (EPR) spectroscopy was used to characterize polycrystalline Cu(II) complexes that contained sodium 5-sulfonate salicylaldehyde thiosemicarbazones possessing a hydrogen, methyl, ethyl, or phenyl substituent at the terminal nitrogen. The ability of thiosemicarbazone proligands to generate superoxide radical anions and hydroxyl radicals upon their exposure to UVA irradiation in aerated aqueous solutions was evidenced by the EPR spin trapping technique. The UVA irradiation of proligands in neutral or alkaline solutions and dimethylsulfoxide (DMSO) caused a significant decrease in the absorption bands of aldimine and phenolic chromophores. Mixing of proligand solutions with the equimolar amount of copper(II) ions resulted in the formation of 1:1 Cu(II)-to-ligand complex, with the EPR and UV-Vis spectra fully compatible with those obtained for the dissolved Cu(II) thiosemicarbazone complexes. The formation of the complexes fully inhibited the photoinduced generation of reactive oxygen species, and only subtle changes were found in the electronic absorption spectra of the complexes in aqueous and DMSO solutions upon UVA steady-state irradiation. The dark redox activity of copper(II) complexes and proligand/Cu(II) aqueous solutions towards hydrogen peroxide which resulted in the generation of hydroxyl radicals, was confirmed by spin trapping experiments.

  10. Template synthesis of poly aza macrocyclic copper(II) and nickel(II) complexes: Spectral characterization and antimicrobial studies

    Energy Technology Data Exchange (ETDEWEB)

    Gurumoorthy, P.; Ravichandran, J.; Kaliur Rahiman, A. [The New College, Chennai (India); Karthikeyan, N.; Palani, P. [Univ. of Madras, Chennai (India)

    2012-07-15

    The template synthesis of copper(II) and nickel(II) complexes derived from 2,6-diformyl-4-methylphenol with diethylenetriamine or 1,2-bis(3-amino propylamino)ethane produce the 12-membered N{sub 3}O and 17-membered N{sub 4}O macrocyclic complexes, respectively. The geometry of the complexes has been determined with the help of electronic and EPR spectroscopic values and found to be five coordinated square pyramidal and, six coordinated distorted tetragonal for 12-membered and 17-membered macrocyclic complexes, respectively. Electrochemical studies of the mononuclear N{sub 3}O and N{sub 4}O copper(II) complexes show one irreversible one electron reduction wave at E{sup pc} = .1.35 and .1.15 V respectively, and the corresponding nickel(II) complexes show irreversible one-electron reduction wave at E{sup pc} = .1.25 and .1.22 V, respectively. The nickel(II) complexes show irreversible one-electron oxidation wave at Epa = +0.84 and +0.82 V, respectively. All the complexes were evaluated for in vitro antimicrobial activity against the human pathogenic bacteria and fungi.

  11. Preparation and testing of a tetra-amine copper(II) chitosan bead system for enhanced phosphate remediation.

    Science.gov (United States)

    Kumar, Ilango Aswin; Viswanathan, Natrayasamy

    2018-03-01

    A tetra-amine copper(II) chitosan bead system (TAC@CS composite beads) was developed by grafting tetra-amine copper(II) (TAC) with chitosan (CS) and utilized for phosphate removal. The prepared TAC@CS composite beads possess enhanced phosphate sorption capacity (SC) of 41.42 ± 0.071 mg/g than copper grafted chitosan (Cu@CS) composite, TAC and chitosan which were found to be 37.01 ± 0.803, 33.20 ± 0.650 and 7.24 ± 0.059 mg/g respectively. In batch mode, various adsorption influencing parameters like contact time, initial phosphate concentration, solution pH, co-anions and temperature were optimized for maximum phosphate sorption. The prepared adsorbents were characterized by FTIR, XRD, UV-Visible, SEM and EDAX analysis. The adsorption isotherms and thermodynamic parameters of the adsorbent were studied. The feasible phosphate uptake mechanism of TAC@CS biocomposite beads was reported. The reusability studies of TAC@CS composite beads were carried out using NaOH as elutant. The suitability of TAC@CS composite beads at field conditions was tested with phosphate contaminated field water samples collected from nearby areas of Dindigul district. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Template Synthesis, Crystal Structure, and Magnetic Properties of a Dinuclear Copper(II) Complex with Cooperative Hydrogen Bonding

    International Nuclear Information System (INIS)

    Kang, Shin Geol; Nam, Kwang Hee; Min, Kil Sik; Lee, Uk

    2011-01-01

    The dinuclear complex with cooperative hydrogen bonds can be prepared by the metal-directed reaction of Eq. This work shows that the coordinated hydroxyl group trans to the secondary amino group is deprotonated more readily than that trans to the tertiary amino group and acts as the hydrogen-bond accepter. The lattice water molecules in act as bridges between the two mononuclear units through hydrogen bonds. The complex is quite stable as the dimeric form even in various polar solvents. The complex exhibits a weak antiferromagnetic interaction between the metal ions in spite of relatively long Cu···Cu distance. This strongly supports the suggestion that the antiferromagnetic behavior is closely related to the cooperative hydrogen bonds. The design and synthesis of polynuclear transition metal complexes have received much attention because of their potential applications in various fields, such as catalysis, supramolecular chemistry, and materials chemistry. Until now, various types of dinuclear copper(II) complexes have been prepared and investigated. Some dinuclear copper(II) complexes resulting from cooperative hydrogen bonding, such as containing two N_2O_2 donor sets, are also reported

  13. Synthesis and bioactivities of Phenazine-1-carboxylic acid derivatives based on the modification of PCA carboxyl group.

    Science.gov (United States)

    Xiong, Zhipeng; Niu, Junfan; Liu, Hao; Xu, Zhihong; Li, Junkai; Wu, Qinglai

    2017-05-01

    Phenazine-1-carboxylic acid (PCA) as a natural product widely exists in microbial metabolites of Pseudomonads and Streptomycetes and has been registered for the fungicide against rice sheath blight in China. To find higher fungicidal activities compounds and study the effects on fungicidal activities after changing the carboxyl group of PCA, we synthesized a series of PCA derivatives by modifying the carboxyl group of PCA and their structures were confirmed by 1 H NMR and HRMS. Most compounds exhibited significant fungicidal activities in vitro. In particular, compound 6 exhibited inhibition effect against Rhizoctonia solani with EC 50 values of 4.35mg/L and compound 3b exhibited effect against Fusarium graminearum with EC 50 values of 8.30mg/L, compared to the positive control PCA with its EC 50 values of 7.88mg/L (Rhizoctonia solani) and 127.28mg/L (Fusarium graminearum), respectively. The results indicated that the carboxyl group of PCA could be modified to be amide group, acylhydrazine group, ester group, methyl, hydroxymethyl, chloromethyl and ether group etc. And appropriate modifications on carboxyl group of PCA were useful to extend the fungicidal scope. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Properties of the Carboxylate ion exchange resins; Karboxylatjonbytarmassans egenskaper

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Bert; Dario, Maarten [Oerebro Univ. (Sweden); Boren, Hans [Linkoepings Univ. (Sweden); Torstenfelt, Boerje [Swedpower, Stockholm (Sweden); Puigdomenech, Ignasi; Johansson, Claes [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2002-09-01

    Weakly acidic, carboxylic resin has been selected, together with strong base anion resins, for water purification at the Forsmark 1 and 2 reactors. For the strong (but not the weak) ion exchange resin the Nuclear Power Inspectorate has given permission to dispose the spent resins in the SFR 1 (the Final Repository for Radioactive Operational Waste). This report gives a review of the carboxylic resins and comes to the conclusion that the resins are very stable and that there should not exist any risks for increased leaching of radionuclides from SFR 1 if these resins are disposed (compared to the strong resins)

  15. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  16. Analytical study of zirconium and hafnium α-hydroxy carboxylates

    International Nuclear Information System (INIS)

    Terra, V.R.

    1991-01-01

    The analytical study of zirconium and hafnium α-hydroxy carboxylates was described. For this purpose dl-mandelic, dl-p-bromo mandelic, dl-2-naphthyl glycolic, and benzilic acids were prepared. These were used in conjunction with glycolic, dl-lactic, dl-2-hydroxy isovaleric, dl-2-hydroxy hexanoic, and dl-2-hydroxy dodecanoic acids in order to synthesize the zirconium(IV) and hafnium(IV) tetrakis(α-hydroxy carboxylates). The compounds were characterized by melting point determination, infrared spectroscopy, thermogravimetric analysis, calcination to oxides and X-ray diffractometry by the powder method. (C.G.C)

  17. Cyclodextrin derivatives with cyanohydrin and carboxylate groups as artificial glycosidases

    DEFF Research Database (Denmark)

    Bols, Mikael; Ortega-Caballero, Fernando

    2006-01-01

    Two cyclodextrin derivatives (1 and 2) were prepared in an attempt to create glycosidase mimics with a general acid catalyst and a nucleophilic carboxylate group. The catalysts 1 and 2 were found to catalyse the hydrolysis of 4-nitrophenyl beta-D-glucopyranoside at pH 8.0, but rapidly underwent...... decomposition with loss of hydrogen cyanide to convert the cyanohydrin to the corresponding aldehyde. The initial rate of the catalysis shows that the cyanohydrin group in these molecules functions as a good catalyst, but that the carboxylate has no positive effect. The decomposition product aldehydes display...

  18. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    International Nuclear Information System (INIS)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying; Kim, Nayoung; Wang, Jing

    2015-01-01

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH 3 CO 2 NH 4 ) and sodium acetate (CH 3 CO 2 Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example

  19. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying [ETH Zurich, Institute of Environmental Engineering (Switzerland); Kim, Nayoung [EMPA, Building Energy Materials and Components (Switzerland); Wang, Jing, E-mail: jing.wang@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering (Switzerland)

    2015-10-15

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH{sub 3}CO{sub 2}NH{sub 4}) and sodium acetate (CH{sub 3}CO{sub 2}Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example.

  20. The carboxyl terminal tyrosine 417 residue of NOK has an autoinhibitory effect on NOK-mediated signaling transductions

    International Nuclear Information System (INIS)

    Li Yinghua; Zhong Shan; Rong Zhili; Ren Yongming; Li Zhiyong; Zhang Shuping; Chang Zhijie; Liu Li

    2007-01-01

    Receptor protein tyrosine kinases (RPTKs) are essential mediators of cell growth, differentiation, migration, and metabolism. Recently, a novel RPTK named NOK has been cloned and characterized. In current study, we investigated the role of the carboxyl terminal tyrosine 417 residue of NOK in the activations of different signaling pathways. A single tyrosine to phenylalanine point mutation at Y417 site (Y417 F) not only dramatically enhanced the NOK-induced activation of extracellular signal-regulated kinase (ERK), but also markedly promoted the NOK-mediated activation of both signal transducer and activator of transcription 1 and 3 (STAT1 and 3). Moreover, the proliferation potential of NIH3T3-NOK (Y417F) stable cells were significantly elevated as compared with that of NIH3T3-NOK. Overall, our results demonstrate that the tyrosine Y417 residue at the carboxyl tail of NOK exhibits an autoinhibitory role in NOK-mediated signaling transductions

  1. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    Science.gov (United States)

    Nicholson, John W.; Wilson, Alan

    2004-09-01

    This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .

  2. Ovalbumin with Glycated Carboxyl Groups Shows Membrane-Damaging Activity

    Directory of Open Access Journals (Sweden)

    Ching-Chia Tang

    2017-02-01

    Full Text Available The aim of the present study was to investigate whether glycated ovalbumin (OVA showed novel activity at the lipid-water interface. Mannosylated OVA (Man-OVA was prepared by modification of the carboxyl groups with p-aminophenyl α-dextro (d-mannopyranoside. An increase in the number of modified carboxyl groups increased the membrane-damaging activity of Man-OVA on cell membrane-mimicking vesicles, whereas OVA did not induce membrane permeability in the tested phospholipid vesicles. The glycation of carboxyl groups caused a notable change in the gross conformation of OVA. Moreover, owing to their spatial positions, the Trp residues in Man-OVA were more exposed, unlike those in OVA. Fluorescence quenching studies suggested that the Trp residues in Man-OVA were located on the interface binds with the lipid vesicles, and their microenvironment was abundant in positively charged residues. Although OVA and Man-OVA showed a similar binding affinity for lipid vesicles, the lipid-interacting feature of Man-OVA was distinct from that of OVA. Chemical modification studies revealed that Lys and Arg residues, but not Trp residues, played a crucial role in the membrane-damaging activity of Man-OVA. Taken together, our data suggest that glycation of carboxyl groups causes changes in the structural properties and membrane-interacting features of OVA, generating OVA with membrane-perturbing activities at the lipid-water interface.

  3. Synthesis of first row transition metal carboxylate complexes by ring ...

    Indian Academy of Sciences (India)

    tion of pyromellitic dianhydride with methanol and ring opening of pyromellitic dianhydride takes place. The corresponding carboxylate complex formed dur- ing the process can be crystallised by adding biden- tate nitrogen donor ligands such as 1,10-phenanthroline or 2,2 - bipyridine.20 From the reaction with 1,10-.

  4. Kinetics study of thermal decomposition of calcium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2013-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (calcium acetate, and two types of mixed calcium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for calcium acetate was 556.75 kJ mol −1 , and the activation energies for the two mixed calcium carboxylate salts were 232.87, and 176.55 kJ mol −1 . In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak–Berggren model provides the best universal fit for all three salt types. -- Highlights: •Calcium carboxylate salts from fermentation broth thermally decompose to ketones. •Activation energy varies with conversion for all three salt types. •Sestak–Berggren model provides best fit overall for all three salt types

  5. Kinetics study of thermal decomposition of sodium carboxylate salts

    International Nuclear Information System (INIS)

    Landoll, Michael P.; Holtzapple, Mark T.

    2012-01-01

    The MixAlco™ process ferments lignocellulosic biomass to carboxylate salts that are thermally decomposed into ketones, which are then chemically converted to a wide variety of chemicals and fuels. To perform these decompositions, suitable reaction models are necessary to properly design, scale, and optimize commercial reactors. For three salt types (sodium acetate, and two types of mixed sodium carboxylate salts), activation energy was determined using three isoconversional methods that employed TGA curves at different heating rates. For all three salt types, activation energy varied significantly with conversion. The average activation energy for sodium acetate was 226.65 kJ/mol, and the activation energies for the two mixed sodium carboxylate salts were 195.61, and 218.18 kJ/mol. In addition, three functions of conversion were employed to see which one best modeled the experimental data. The Sestak-Berggren model fits all three salt types best. -- Highlights: ► Sodium carboxylate salts from fermentation broth thermally decompose to ketones. ► Activation energy varies with conversion for all three salt types. ► Sestak-Berggren model provides best fit for all three salt types.

  6. catalysed ortho-carboxylation of acetanilide with CO

    Indian Academy of Sciences (India)

    Abstract. The mechanism of palladium(II)-catalysed carboxylation of acetanilide with CO has been investi- gated using density functional theory calculation done at the B3LYP/6-31G(d, p)(SDD for Pd) level of theory. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum.

  7. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  8. Photodecarboxylative Cyclizations of ω-Phthalimido-para-phenoxy Carboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ae Rhan; Lee, Younsik; Yoo, Dong Jin [Chonbuk National Univ., Jeonju (Korea, Republic of); Cho, Hyunseung [Seonam Univ., Namwon (Korea, Republic of)

    2012-10-15

    The chemistry of electronically-excited phthalimides is dictated by electron and/or hydrogen transfer reactions. The photochemistry of phthalimides has been intensively studied, and numerous synthetically useful transformations with high chemical and quantum yields have been developed. 3 Among the synthetic applications, intra- and intermolecular photodecarboxylation (PDC) of ω-phthalimidoalkyl carboxylates has been developed by Griesbeck and coworkers as a versatile pathway to medium- and large-ring heterocycles. Model reactions were further realized on macro- and micro-scales. We recently described PDC cyclizations of ω-phthalimidoalkynoates to produce macrocyclic alkynes with ring-sizes up to 17. In recent study, we expanded the portfolio of this reaction and investigated the photochemistry of related aryl-linked phthalimides in Scheme 1. Based on these approaches, we demonstrated that ω-phthalimido-ortho/meta-phenoxy carboxylates undergo efficient PDC cyclizations. While the yields of ω-phthalimido-ortho-phenoxy carboxylates steadily decreased with increasing chain-length and the maximum yield of the 6-membered product was obtained in 75%, the yields of meta-phenoxy carboxylates steadily increased with increasing chain-length and the extended 16-membered product was subsequently obtained in 48% yield.

  9. Cloning of phenazine carboxylic acid genes of Fusarium fujikuroi ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... genetic modification can improve the efficacy of biological control agents (Van Loon, 1998). Bacterial secondary ... WCS358r was modified to produce the antifungal com- pound phenazine-1-carboxylic acid (PCA) ( ..... control of Rhizoctonia solani in tomato. J. Biotechnol. 6: 115-127. Raaijmakers JM ...

  10. Light dependence of carboxylation capacity for C3 photosynthesis models

    Science.gov (United States)

    Photosynthesis at high light is often modelled by assuming limitation by the maximum capacity of Rubisco carboxylation at low carbon dioxide concentrations, by electron transport capacity at higher concentrations, and sometimes by triose-phosphate utilization rate at the highest concentrations. Pho...

  11. Dimerization of Carboxylic Acids: An Equation of State Approach

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Kontogeorgis, Georgios; Panayiotou, Costas

    2017-01-01

    The association term of the nonrandom hydrogen bonding theory, which is an equation of state model, is extended to describe the dimerization of carboxylic acids in binary mixtures with inert solvents and in systems of two different acids. Subsequently, the model is applied to describe the excess...

  12. Coordination polymers: trapping of radionuclides and chemistry of tetravalent actinides (Th, U) carboxylates

    International Nuclear Information System (INIS)

    Falaise, Clement

    2014-01-01

    The use of nuclear energy obviously raises the question of the presence of radionuclides in the environment. Currently, their mitigation is a major issue associated with nuclear chemistry. This thesis focuses on both the trapping of radionuclides by porous solids called Metal-Organic Frameworks (MOF) and the crystal chemistry of the carboxylate of tetravalent actinides (AnIV). The academic knowledge of the reactivity of carboxylate of AnIV could help the understanding of actinides speciation in environment. We focused on the sequestration of iodine by aluminum based MOF. The functionalization (electron-donor group) of the MOF drastically enhances the iodine capture capacity. The removal of light actinides (Th and U) from aqueous solution was also investigated as well as the stability of (Al)-MOF under γ radiation. More than twenty coordination polymers based on tetravalent actinides have been synthesized and characterized by single crystal X-ray diffraction. The use of controlled hydrolysis promotes the formation of coordination polymers exhibiting polynuclear cluster ([U 4 ], [Th 6 ], [U 6 ] and [U 38 ]). In order to understand the formation of the largest cluster, the ex-situ study of the solvo-thermal synthesis of compound {U 38 } has also been investigated. (author)

  13. Solubility of Copper(II Sulfate and Dicopper Chloride Trihydroxide for Pigs

    Directory of Open Access Journals (Sweden)

    C. S. Park

    2016-11-01

    Full Text Available This study was conducted to determine the solubility of copper (Cu in two sources of copper(II sulfate (CuSO4 including monohydrate and pentahydrate and three sources of dicopper chloride trihydroxide (dCCTH including α-form (dCCTH-α, β-form (dCCTH-β, and a mixture of α- and β-form (dCCTH-αβ at different pH and a 3-step in vitro digestion assay for pigs. In Exp. 1, Cu sources were incubated in water-based buffers at pH 2.0, 3.0, 4.8, and 6.8 for 4 h using a shaking incubator at 39°C. The CuSO4 sources were completely dissolved within 15 min except at pH 6.8. The solubility of Cu in dCCTH-α was greater (p<0.05 than dCCTH-β but was not different from dCCTH-αβ during 3-h incubation at pH 2.0 and during 2-h incubation at pH 3.0. At pH 4.8, there were no significant differences in solubility of Cu in dCCTH sources. Copper in dCCTH sources were non-soluble at pH 6.8. In Exp. 2, the solubility of Cu was determined during the 3-step in vitro digestion assay for pigs. All sources of Cu were completely dissolved in step 1 which simulated digestion in the stomach. In Exp. 3, the solubility of Cu in experimental diets including a control diet and diets containing 250 mg/kg of additional Cu from five Cu sources was determined during the in vitro digestion assay. The solubility of Cu in diets containing additional Cu sources were greater (p<0.05 than the control diet in step 1. In conclusion, the solubility of Cu was influenced by pH of digesta but was not different among sources based on the in vitro digestion assay.

  14. A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Patricia B. da Silva

    2015-12-01

    Full Text Available The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II complexes. New compounds with the general formulae [CuX2(INH2]·nH2O (X = Cl− and n = 1 (1; X = NCS− and n = 5 (2; X = NCO− and n = 4 (3; INH = isoniazid, a drug widely used to treat tuberculosis derived from the reaction between the copper(II chloride and isoniazid in the presence or absence of pseudohalide ions (NCS− or NCO− were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR spectroscopy, elemental analysis, melting points and complexometry with 2,2′,2′′,2′′′-(Ethane-1,2-diyldinitrilotetraacetic acid (EDTA. The characterization techniques allowed us to confirm the formation of the copper(II complexes. The Cu(II complexes were loaded into microemulsion (MEs composed of 10% phase oil (cholesterol, 10% surfactant [soy oleate and Brij® 58 (1:2] and 80% aqueous phase (phosphate buffer pH = 7.4 prepared by sonication. The Cu(II complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC® 25923 and Escherichia coli ATCC® 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50 against the Vero cell line (ATCC® CCL-81TM were used to calculate the selectivity index (SI. Among the free compounds, only compound 2 (MIC 500 μg/mL showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC’s 125, 125 and 500 μg/mL, respectively and S. aureus (MICs 250, 500 and 125 μg/mL, respectively. The loaded compounds were less toxic against the Vero

  15. Controlled clustering of carboxylated SPIONs through polyethylenimine

    Energy Technology Data Exchange (ETDEWEB)

    Nesztor, Dániel; Bali, Krisztina; Tóth, Ildikó Y.; Szekeres, Márta; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    Clusters of magnetite nanoparticles (MNPs) were synthesized using poly(acrylic acid-co-maleic acid) coated MNPs (PAM@MNP) and branched polyethylenimine (PEI). Materials were characterized by potentiometric titration, zeta potential and dynamic light scattering (DLS) measurements. PEI and PAM@MNP are oppositely charged as characterized by zeta potential measurements (+8, −34 mV respectively) and titration (10.30 mmol −NH{sub 3}{sup +}/g PEI; 0.175 mmol −COO{sup −}/g PAM@MNP) at pH 6.5±0.2; therefore magnetic clusters are formed by electrostatic adhesion. Two different preparation methods and the effect of PEI and electrolyte (NaCl) concentration on the cluster formation was studied. Choosing an optimal concentration of PEI (charge ratio of PEI to PAM@MNP: 0.17) and electrolyte (10 mM), a concentrated (10 g MNP/L) product containing PEI–PAM@MNP nanoclusters with size of 165±10 nm was prepared. Its specific absorption rate (SAR) measured in AC magnetic field (110 kHz, 25 mT) is 12 W/g Fe. The clustered product is expected to have enhanced contrast efficiency in MRI. - Highlights: • SPION clusters of controlled size were prepared by means of electrostatic adhesion. • Nanocluster formation optimum was at 0.17 charge ratio of PEI to PAM@MNP. • Huge aggregates form at higher PEI to PAM@MNP charge ratio. • Higher ionic strength promotes the formation of clusters at lower PEI concentrations.

  16. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali...

  17. COMPOSITIONS BASED ON PALLADIUM(II AND COPPER(II COMPOUNDS, HALIDE IONS, AND BENTONITE FOR OZONE DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2017-05-01

    bromide ion. For Cu(II-KBr/N-Bent composition, kinetic and calculation data show that, in the presence of bromide ions, copper(II inhibits the ozone decomposition. For Pd(II-KBr/NBent composition, it has been found that the maximum activity is attained at СPd(II = 1.02·10-5 mol/g. For bimetallic Pd(II- Cu(II-KBr/N-Bent composition, changes in τ0, τ1/2, k1/2, and Q1/2 parameters depending on a Pd(II content are similar to those for monometallic Pd(II-KBr/NBent composition; however, values of the parameters are higher for the monometallic system. Thus, the inhibiting effect of Cu(II is observed even in the presence of palladium(II.

  18. Kinetics of the oxidative hydroxylation of tetraphosphorus in the presence of copper(II chloride modified by humic (fulvo- acid

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-12-01

    Full Text Available It was established that in mild conditions (50-70 oC, РО2= 1 atm white phosphorus effectively is oxidized by oxygen in water-toluene solutions of copper(II chloride modified by humic (fulvo- acid to give mainly phosphoric acid. Humic (fulvo- acid was extracted from brown coal of domestic deposit Kiyakty. For determination of optimum parameters of fulvo-acid extraction the laboratory experiments were carried out using the method of experiment planning. The kinetics, intermediate and final products, optimum conditions of new catalytic reaction of P4 oxidation by oxygen in water medium were defined by kinetics, volumometry, redox-potentiometry, 31Р{1Н} NMR spectroscopy and  titration. 

  19. Multitarget trehalose-carnosine conjugates inhibit Aβ aggregation, tune copper(II) activity and decrease acrolein toxicity.

    Science.gov (United States)

    Grasso, Giuseppa Ida; Bellia, Francesco; Arena, Giuseppe; Satriano, Cristina; Vecchio, Graziella; Rizzarelli, Enrico

    2017-07-28

    Increasing evidence is accumulating, showing that neurodegenerative disorders are somehow associated with the toxicity of amyloid aggregates, metal ion dyshomeostasis as well as with products generated by oxidative stress. Within the biological oxidation products, acrolein does have a prominent role. A promising strategy to deal with the above neurogenerative disorders is to use multi-functions bio-molecules. Herein, we show how a class of bio-conjugates takes advantage of the antiaggregating, antioxidant and antiglycating properties of trehalose and carnosine. Their ability to sequester acrolein and to inhibit both self- and metal-induced aggregation is here reported. The copper(II) coordination properties of a new trehalose-carnosine conjugate and the relative antioxidant effects have also been investigated. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Copper(II) and palladium(II) complexes with tridentate NSO donor Schiff base ligand: Synthesis, characterization and structures

    Science.gov (United States)

    Kumar, Sujit Baran; Solanki, Ankita; Kundu, Suman

    2017-09-01

    Mononuclear copper(II) complex [CuL2] and palladium(II) complexes [Pd(X)L] where X = benzoate(bz) or salicylate(sal) and HL = 2-(methylthio)phenylimino)methyl)phenol, a Schiff base ligand with NSO coordination sites have been synthesized and characterized by microanalyses, IR, UV-Visible spectra, conductivity measurement and magnetic studies. Crystal structures of all the complexes have been solved by single crystal X-ray diffraction studies and showed that there are two molecules in a unit cell in the [CuL2] complex - one molecule has square planar geometry whereas second molecule has distorted square pyramidal geometry and palladium(II) complexes have distorted square planar geometry.

  1. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    Science.gov (United States)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  2. Adsorption of lead(II) and copper(II) on activated carbon by complexation with surface functional groups

    International Nuclear Information System (INIS)

    Pesavento, Maria; Profumo, Antonella; Alberti, Giancarla; Conti, Fabio

    2003-01-01

    The adsorption of lead(II) and copper(II) on an activated carbon (Filtrasorb 300, Chemviron) was characterized assuming that it takes place by formation of complexes with functional groups, present in the activated carbon. Their concentration and conditional adsorption coefficients were determined for each metal by titration of the carbon in suspension in aqueous phase, at constant acidity, with the metal itself. For each titration point, the concentration of the metal in the solution phase after equilibration was determined, and the data were processed by the Ruzic linearization method, to obtain the concentration of the active sites involved in the sorption, and the conditional constant. The effect of the pH was also examined, in the range 4-6, obtaining that the adsorption increases at increasing pH. The protonation and adsorption constants were determined from the conditional adsorption coefficients obtained at the different acidities. The concentration of the active sites is 0.023 and 0.042 mmol g -1 , and the protonation constants are 1.0x10 6 and 4.6x10 4 M -1 for Pb(II) and Cu(II). The corresponding adsorption constants are respectively 1.4x10 5 and 6.3x10 3 M -1 . All the parameters are affected by a large uncertainty, probably due to the heterogeneity of the active groups in the activated carbon. Even if so, these parameters make it possible a good prediction of the adsorption in a wide range of conditions. Other sorption mechanism can be set up at different conditions, in particular at different pH, as it has been demonstrated in the case of copper(II)

  3. Adsorption of lead(II) and copper(II) on activated carbon by complexation with surface functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Pesavento, Maria; Profumo, Antonella; Alberti, Giancarla; Conti, Fabio

    2003-03-17

    The adsorption of lead(II) and copper(II) on an activated carbon (Filtrasorb 300, Chemviron) was characterized assuming that it takes place by formation of complexes with functional groups, present in the activated carbon. Their concentration and conditional adsorption coefficients were determined for each metal by titration of the carbon in suspension in aqueous phase, at constant acidity, with the metal itself. For each titration point, the concentration of the metal in the solution phase after equilibration was determined, and the data were processed by the Ruzic linearization method, to obtain the concentration of the active sites involved in the sorption, and the conditional constant. The effect of the pH was also examined, in the range 4-6, obtaining that the adsorption increases at increasing pH. The protonation and adsorption constants were determined from the conditional adsorption coefficients obtained at the different acidities. The concentration of the active sites is 0.023 and 0.042 mmol g{sup -1}, and the protonation constants are 1.0x10{sup 6} and 4.6x10{sup 4} M{sup -1} for Pb(II) and Cu(II). The corresponding adsorption constants are respectively 1.4x10{sup 5} and 6.3x10{sup 3} M{sup -1}. All the parameters are affected by a large uncertainty, probably due to the heterogeneity of the active groups in the activated carbon. Even if so, these parameters make it possible a good prediction of the adsorption in a wide range of conditions. Other sorption mechanism can be set up at different conditions, in particular at different pH, as it has been demonstrated in the case of copper(II)

  4. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    Science.gov (United States)

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Synthesis, characterization and catalytic oxidation properties of multi-wall carbon nanotubes with a covalently attached copper(II) salen complex

    Science.gov (United States)

    Salavati-Niasari, Masoud; Bazarganipour, Mehdi

    2009-06-01

    Hydroxyl functionalized copper(II) Schiff-base, N,N'-bis(4-hydroxysalicylidene)-ethylene-1,2-diaminecopper(II), [Cu((OH) 2-salen)], has been covalently anchored on modified MWCNTs. The new modified MWCNTs ([Cu((OH) 2-salen)]-MWCNTs) have been characterized by TEM, thermal analysis, XRD, XPS, UV-vis, DRS, FT-IR spectroscopy and elemental analysis. The modified copper(II) MWCNTs solid was used to affect the catalytic oxidation of ethylbenzene with tert-butylhydroperoxide as the oxidant at 333 K. The system is truly heterogeneous (no leaching observed) and reusable (no decrease in activity) in three consecutive runs. Acetophenone was the major product though small amounts of o- and p-hydroxyacetophenones were also formed revealing that C-H bond activation takes place both at benzylic and aromatic ring carbon atoms. Ring hydroxylation was more over the "neat" complexes than over the encapsulated complexes.

  6. Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features.

    Science.gov (United States)

    Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P

    2013-11-01

    Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics. © 2013.

  7. Giant regular polyhedra from calixarene carboxylates and uranyl

    Science.gov (United States)

    Pasquale, Sara; Sattin, Sara; Escudero-Adán, Eduardo C.; Martínez-Belmonte, Marta; de Mendoza, Javier

    2012-01-01

    Self-assembly of large multi-component systems is a common strategy for the bottom-up construction of discrete, well-defined, nanoscopic-sized cages. Icosahedral or pseudospherical viral capsids, built up from hundreds of identical proteins, constitute typical examples of the complexity attained by biological self-assembly. Chemical versions of the so-called 5 Platonic regular or 13 Archimedean semi-regular polyhedra are usually assembled combining molecular platforms with metals with commensurate coordination spheres. Here we report novel, self-assembled cages, using the conical-shaped carboxylic acid derivatives of calix[4]arene and calix[5]arene as ligands, and the uranyl cation UO22+ as a metallic counterpart, which coordinates with three carboxylates at the equatorial plane, giving rise to hexagonal bipyramidal architectures. As a result, octahedral and icosahedral anionic metallocages of nanoscopic dimensions are formed with an unusually small number of components. PMID:22510690

  8. Substrate specificity within a family of outer membrane carboxylate channels.

    Directory of Open Access Journals (Sweden)

    Elif Eren

    2012-01-01

    Full Text Available Many Gram-negative bacteria, including human pathogens such as Pseudomonas aeruginosa, do not have large-channel porins. This results in an outer membrane (OM that is highly impermeable to small polar molecules, making the bacteria intrinsically resistant towards many antibiotics. In such microorganisms, the majority of small molecules are taken up by members of the OprD outer membrane protein family. Here we show that OprD channels require a carboxyl group in the substrate for efficient transport, and based on this we have renamed the family Occ, for outer membrane carboxylate channels. We further show that Occ channels can be divided into two subfamilies, based on their very different substrate specificities. Our results rationalize how certain bacteria can efficiently take up a variety of substrates under nutrient-poor conditions without compromising membrane permeability. In addition, they explain how channel inactivation in response to antibiotics can cause resistance but does not lead to decreased fitness.

  9. CARBOXYLIC ACIDS OF HERB OF THYMUS CRETACEUS KLOK. ET SCHOST

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2014-01-01

    Full Text Available We have studied carboxylic acids of the herb of Thymus cretaceus Klok. et Schost which is widespread on a territory of some regions (Belgorod, Voronezh. The study was carried out using gas-liquid chromatography at Agilent Technologies 6890 chromatographer with massspectrometric detector 5973 N. Acids concentration was calculated by means of inner standard.We have established that carboxylic acids of Thymus cretaceus are represented by 34 compounds. Palmitic (1779.02 mg/kg, behenic (1084.15 mg/kg, levulinic (986.24 mg/kg and linoleic acids (678.82 mg/kg predominate among fatty acids; citric (9835.14 mg/kg, malonic (447.91 mg/kg and oxalic acids (388.32 mg/kg predominate among organic acids; andferulic acid predominate amongphenolcarbonic acids.

  10. 2-Oxo-1,2-dihydroquinoline-4-carboxylic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Yassir Filali Baba

    2016-06-01

    Full Text Available In the title compound, C10H7NO3·H2O, O—H...O hydrogen bonds involving the carboxyl groups, the keto groups and the lattice water molecules form stepped sheets approximately parallel to {010} which are tied together by pairwise N—H...O interactions. The asymmetric unit contains two independent quinolone derivatives and two water molecules, one of which is disordered over two positions, of equal occupancy.

  11. Crystal structure of ethyl 2,4-dichloroquinoline-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Alberto Cabrera

    2015-12-01

    Full Text Available In the crystal structure of the title compound, C12H9Cl2NO2, the mean planes through the quinoline and carboxylate groups have r.m.s. deviations of 0.006 and 0.021 Å, respectively, and form a dihedral angle of 87.06 (19°. In the crystal, molecules are linked via very weak C—H...O hydrogen bonds, forming chains, which propagate along the c-axis direction.

  12. Identification of Key Residues for Enzymatic Carboxylate Reduction

    Directory of Open Access Journals (Sweden)

    Holly Stolterfoht

    2018-02-01

    Full Text Available Carboxylate reductases (CARs, E.C. 1.2.1.30 generate aldehydes from their corresponding carboxylic acid with high selectivity. Little is known about the structure of CARs and their catalytically important amino acid residues. The identification of key residues for carboxylate reduction provides a starting point to gain deeper understanding of enzymatic carboxylate reduction. A multiple sequence alignment of CARs with confirmed activity recently identified in our lab and from the literature revealed a fingerprint of conserved amino acids. We studied the function of conserved residues by multiple sequence alignments and mutational replacements of these residues. In this study, single-site alanine variants of Neurospora crassa CAR were investigated to determine the contribution of conserved residues to the function, expressability or stability of the enzyme. The effect of amino acid replacements was investigated by analyzing enzymatic activity of the variants in vivo and in vitro. Supported by molecular modeling, we interpreted that five of these residues are essential for catalytic activity, or substrate and co-substrate binding. We identified amino acid residues having significant impact on CAR activity. Replacement of His 237, Glu 433, Ser 595, Tyr 844, and Lys 848 by Ala abolish CAR activity, indicating their key role in acid reduction. These results may assist in the functional annotation of CAR coding genes in genomic databases. While some other conserved residues decreased activity or had no significant impact, four residues increased the specific activity of NcCAR variants when replaced by alanine. Finally, we showed that NcCAR wild-type and mutants efficiently reduce aliphatic acids.

  13. Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(II) complexes for hydrophobic environments.

    Science.gov (United States)

    Rangel, Maria; Leite, Andreia; Silva, André M N; Moniz, Tânia; Nunes, Ana; Amorim, M João; Queirós, Carla; Cunha-Silva, Luís; Gameiro, Paula; Burgess, John

    2014-07-07

    In this work we report the synthesis and characterization of a set of 3-hydroxy-4-pyridinone copper(ii) complexes with variable lipophilicity. EPR spectroscopy was used to characterize the structure of copper(ii) complexes in solution, and as a tool to gain insight into solvent interactions. EPR spectra of solutions of the [CuL2] complexes recorded in different solvents reveal the presence of two copper species whose ratio depends on the nature of the solvent. Investigation of EPR spectra in the pure solvents methanol, dimethylsulfoxide, dichloromethane and their 50% (v/v) mixtures with toluene allowed the characterization of two types of copper signals (gzz = 2.30 and gzz = 2.26) whose spin-Hamiltonian parameters are consistent with solvated and non-solvated square-planar copper(ii) complexes. Regarding the potential biological application of ligands and complexes and to get insight into the partition properties in water-membrane interfaces, EPR spectra were also obtained in water-saturated octanol, an aqueous solution buffered at pH = 7.4 and liposome suspensions, for three compounds representative of different hydro-lipophilic balances. Analysis of the EPR spectra obtained in liposomes allowed establishment of the location of the complexes in the water and lipid phases. In view of the results of this work we put forward the use of EPR spectroscopy to assess the affinity of copper(ii) complexes for a hydrophobic environment and also to obtain indirect information about the lipophilicity of the ligands and similar EPR silent complexes.

  14. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  15. Copper(II) and molybdenum(VI) complexes of a tridentate ONN donor isothiosemicarbazone: synthesis, characterization, X-ray, TGA and DFT

    Czech Academy of Sciences Publication Activity Database

    Fasihizad, A.; Akbari, A.; Ahmadi, M.; Dušek, Michal; Henriques, Margarida Isabel Sousa; Pojarová, Michaela

    2016-01-01

    Roč. 115, Sep (2016), s. 297-305 ISSN 0277-5387 R&D Projects: GA ČR(CZ) GA14-03276S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : isothiosemicarbazone * Copper(II) complex * molybdenum(VI) complex * crystal structure * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.926, year: 2016

  16. Transition metal-catalyzed carboxylation reactions with carbon dioxide.

    Science.gov (United States)

    Martin, Ruben; Tortajada, Andreu; Juliá-Hernández, Francisco; Borjesson, Marino; Moragas, Toni

    2018-05-03

    Driven by the inherent synthetic potential of CO2 as an abundant, inexpensive and renewable C1 chemical feedstock, the recent years have witnessed renewed interest in devising catalytic CO2 fixations into organic matter. Although the formation of C-C bonds via catalytic CO2 fixation remained rather limited for a long period of time, a close look into the recent literature data indicates that catalytic carboxylation reactions have entered a new era of exponential growth, evolving into a mature discipline that allows for streamlining the synthesis of carboxylic acids, building blocks of utmost relevance in industrial endeavours. These strategies have generally proven broadly applicability and convenient to perform. However, substantial challenges still need to be addressed reinforcing the need to cover metal-catalyzed carboxylation arena in a conceptual and concise manner, delineating the underlying new principles that are slowly emerging in this vibrant area of expertise. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    International Nuclear Information System (INIS)

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-01-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N 2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples

  18. First principles study of edge carboxylated graphene quantum dots

    Science.gov (United States)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-05-01

    The structure stability and electronic properties of edge carboxylated hexagonal and triangular graphene quantum dots are investigated using density functional theory. The calculated binding energies show that the hexagonal clusters with armchair edges have the highest stability among all the quantum dots. The binding energy of carboxylated graphene quantum dots increases by increasing the number of carboxyl groups. Our study shows that the total dipole moment significantly increases by adding COOH with the highest value observed in triangular clusters. The edge states in triangular graphene quantum dots with zigzag edges produce completely different energy spectrum from other dots: (a) the energy gap in triangular zigzag is very small as compared to other clusters and (b) the highest occupied molecular orbital is localized at the edges which is in contrast to other clusters where it is distributed over the cluster surface. The enhanced reactivity and the controllable energy gap by shape and edge termination make graphene quantum dots ideal for various nanodevice applications such as sensors. The infrared spectra are presented to confirm the stability of the quantum dots.

  19. Synthesis and fluorescence study of phenylcoumarin/cyanophenylbenzocoumarin-3-carboxylates

    Directory of Open Access Journals (Sweden)

    Hosanagara N. Harishkumar

    2012-01-01

    Full Text Available The absorption and fluorescence spectra of phenylcoumarin and cyanophenylbenzocoumarin-3-carboxylates 6a-f and 9a-e have been investigated in chloroform, acetonitrile and ethanol. The substituting groups with varying electron donating ability such as N,N-diethyl amine and morpholine at 7-position, in phenylcoumarin-3-carboxylate 6a-f exhibits fluorescence at a longer wavelength i.e. 420-460 nm in chloroform and 460-504 nm in acetonitrile. However the morpholine derivatives 6f-j did not show fluorescence in chloroform. In another series of cyanophenylbenzocoumarin-3-carboxylates 9a-e, the compound 9c exhibits fluorescence at 546 nm in ethanol and 256 nm in acetonitrile, and lower emission wavelength i.e. 356 nm in chloroform. Further the compounds 6e , 9b, 9d and 9e exhibited high quantum yield in ethanol i.e., Φ F = 0.79, 0.70, 0.80 and 0.74 respectively compare to Rhodamine B ( Φ F = 0.24 in ethanol.

  20. Preconcentration and extraction of copper(II on activated carbon using ethyl-2-quinolyl-β (p-carboxyphenyl hydrazonedioxo propionate

    Directory of Open Access Journals (Sweden)

    Mehrorang Ghaedi

    2008-12-01

    Full Text Available Activated carbon modified method was used for the preconcentration and determination of copper content in real samples such as tap water, wastewater and a synthetic water sample by flame atomic absorption spectrometry. The copper(II was adsorbed quantitatively on activated carbon due to its complexation with ethyl-2-quinolyl-β(p-carboxyphenyl hydrazonedioxo propionate (EQCPDP. The adsorbed copper(II ion on solid phase was eluted quantitatively by using nitric acid. The important parameters such as pH, amount of carrier, flow rate, amount of activated carbon and type and concentration of eluting agent for obtaining maximum recovery were optimized. The method at optimum conditions gives linear concentration range of 0.05-1.0 μg mL-1 of copper(II with correlation coefficient of 0.9994 and the detection limit of 0.99 ng mL-1. The preconcentration leads to enrichment factor of 175 and break through volume of 1750 mL. The method has good tolerance limit of interfering ions and selectivity and it has been successfully applied for determination of copper content in real sample such as blood, wastewater and river sample.

  1. Adsorption of UO2+2 by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group

    International Nuclear Information System (INIS)

    Choi, Seong-Ho; Nho, Young Chang

    2000-01-01

    The polyethylene (PE) adsorbents were prepared by a radiation-induced grafting of acrylonitrile (AN), acrylic acid (AA), and the mixture of AN/AA onto PE film, and by subsequent amidoximation of cyano groups of poly-AN graft chains. With an increase of AA composition in AN/AA monomer mixture, the water uptake of the grafted polyethylene film increased. In AN/AA mixture, the maximum adsorption of UO 2+ 2 was observed in the adsorbent with a ratio of AN/AA (50/50, mol%) in copolymer. The amidoxime, carboxyl, and amidoxime/carboxyl groups onto PE acted as a chelating site for the selected UO 2+ 2 . The complex structure of polyethylene with three functional groups and UO 2+ 2 was confirmed by Fourier Transform Infrared (FTIR) spectroscopy. (author)

  2. Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties

    Directory of Open Access Journals (Sweden)

    H. F. Xie

    2012-09-01

    Full Text Available Carboxyl-modified multi-walled carbon nanotubes (MWCNT–COOHs as nanofillers were incorporated into diglycidyl ether of bisphenol A (DGEBA toughened with carboxyl-terminated butadiene-acrylonitrile (CTBN. The carboxyl functional carbon nanotubes were characterized by Fourier-transform infrared spectroscopy and thermogravimetric analysis. Furthermore, cure kinetics, glass transition temperature (Tg, mechanical properties, thermal stability and morphology of DGEBA/CTBN/MWCNT–COOHs nanocomposites were investigated by differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, universal test machine, thermogravimetric analysis and scanning electron microscopy (SEM. DSC kinetic studies showed that the addition of MWCNT–COOHs accelerated the curing reaction of the rubber-toughened epoxy resin. DMA results revealed that Tg of rubber-toughened epoxy nanocomposites lowered with MWCNT–COOH contents. The tensile strength, elongation at break, flexural strength and flexural modulus of DGEBA/CTBN/MWCNT-COOHs nanocomposites were increased at lower MWCNT-COOH concentration. A homogenous dispersion of nanocomposites at lower MWCNT–COOH concentration was observed by SEM.

  3. Pd(II)/Bipyridine-Catalyzed Conjugate Addition of Arylboronic Acids to α,β-Unsaturated Carboxylic Acids. Synthesis of β-Quaternary Carbons Substituted Carboxylic Acids.

    Science.gov (United States)

    Liu, Rui; Yang, Zhenyu; Ni, Yuxin; Song, Kaixuan; Shen, Kai; Lin, Shaohui; Pan, Qinmin

    2017-08-04

    Pd(II)/bipyridine-catalyzed conjugate addition of arylboronic acids to α,β-unsaturated carboxylic acids (including β,β-disubstituted acrylic acids) was developed and optimized, which provided a mild and convenient method for the highly challenging synthesis of β-quaternary carbons substituted carboxylic acids.

  4. Crystal Structure and Magnetic Behavior of Two New Dinuclear Carbonato-Bridged Copper(II) Compounds. Superexchange Pathway for the Different Coordination Modes of the Carbonato Bridge in Polynuclear Copper(II) Compounds.

    Science.gov (United States)

    Escuer, Albert; Mautner, Franz A.; Peñalba, Evaristo; Vicente, Ramon

    1998-08-24

    Four new &mgr;-CO(3)(2-) copper(II) complexes with different coordination modes for the carbonato bridge have been obtained by fixation of atmospheric CO(2): {(&mgr;(3)-CO(3))[Cu(3)(ClO(4))(3)(Et(3)dien)(3)]}(ClO(4)) (1), Et(3)dien = N,N',N"-triethylbis(2-aminoethane)amine; {(&mgr;-CO(3))[Cu(2)(H(2)O)(Et(4)dien)(2)]}(ClO(4))(2).H(2)O (2), Et(4)dien = N,N,N",N"-tetraethyl-bis(2-aminoethane)amine; {(&mgr;-CO(3))[Cu(2)(H(2)O)(2)(EtMe(4)dien)(2)]} (ClO(4))(2).2H(2)O (3), EtMe(4)dien = N'-ethyl-N,N,N",N"-tetramethylbis(2-aminoethane)amine; and {(&mgr;-CO(3))[Cu(2)(H(2)O)(Me(5)dien)(2)]}(ClO(4))(2).H(2)O (4), Me(5)dien = N,N,N',N",N"-pentamethylbis(2-aminoethane)amine. The crystal structures have been solved for 2, monoclinic system, space group P2(1)/n, formula [C(25)H(62)Cl(2)Cu(2)N(6)O(13)] with a = 12.763(6) Å, b = 25.125(8) Å, c = 13.261(4) Å, beta = 111.85(3) degrees, Z = 4, and for 3, triclinic system, space group P&onemacr;, formula [C(21)H(58)Cl(2)Cu(2)N(6)O(15)] with a = 8.412(3) Å, b = 14.667(4) Å, c = 16.555(5) Å, alpha = 99.66(2) degrees, beta = 102.14(2) degrees, gamma = 104.72(2) degrees, Z = 2. Susceptibility measurements show ferromagnetic behavior (J = +6.7(6) cm(-)(1)) for the trinuclear compound 1 whereas 2-4 are antiferromagnetically coupled with J = -17.8(8), -125.5(9), and -21.2(3) cm(-)(1) respectively. Certain synthetic aspects that may be related to the nuclearity of the copper(II) &mgr;-CO(3)(2-) compounds and the superexchange pathway for the different coordination modes of the carbonato bridge are discussed.

  5. A Capillary Electrochromatographic Microchip Packed with Self-Assembly Colloidal Carboxylic Silica Beads

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, In Sun; Kim, Shin Seon; Park, Jong Man [Konkuk University, Seoul (Korea, Republic of)

    2012-04-15

    An electrochromatographic microchip with carboxyl-group-derivatized mono-disperse silica packing was prepared from the corresponding colloidal silica solution by utilizing capillary action and self-assembly behavior. The silica beads in water were primed by the capillary action toward the ends of cross-patterned microchannel on a cyclic olefinic copolymer (COC) substrate. Slow evaporation of water at the front of packing promoted the self-assembled packing of the beads. After thermally binding a cover plate on the chip substrate, reservoirs for sample solutions were fabricated at the ends of the microchannel. The packing at the entrances of the microchannel was silver coated to fix utilizing an electroless silver-plating technique to prevent the erosion of the packed structure caused by the sudden switching of a high voltage DC power source. The electrochromatographic behavior of the microchip was explored and compared to that of the microchip with bare silica packing in basic borate buffer. Electrophoretic migration of Rhodamine B was dominant in the microchip with the carboxyl-derivatized silica packing that resulted in a migration approximated twice as fast, while the reversible adsorption was dominant in the bare silica-packed microchip. Not only the faster migration rates of the negatively charged FITC-derivatives of amino acids but also the different migration due to the charge interaction at the packing surface were observed. The electrochromatographic characteristics were studied in detail and compared with those of the bare silica packed microchip in terms of the packing material, the separation potential, pH of the running buffer, and also the separation channel length

  6. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-08-01

    The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10-10-10-11 M s-1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10-12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10-14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.

  7. Modeling Donnan Dialysis Separation for Carboxylic Anion Recovery

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Møllerhøj, Martin; Jørgensen, Sten Bay

    2010-01-01

    layers and membranes. Donnan equilibrium, flux continuity of the transported ions, the electroneutrality condition and Faraday's law are employed to describe the electrical potential and concentration discontinuities at the interfaces. The Nernst-Planck equation is used to model the ion transport though...... boundary layers and membranes. The model consists of a system of partial differential equations that are solved numerically. The aim of this paper is to corroborate this general model for several monoprotic carboxylic acids reported in the literature. The model reproduces satisfactorily experimental fluxes...

  8. Effect of organic bases on extraction of gadolinium carboxylates

    International Nuclear Information System (INIS)

    Sukhan, V.V.; Frankovskij, V.A.

    1982-01-01

    The effect of pyridine, 2-aminopyridine, benzylamine, antipyrine and o-phenanthroline on the extraction of capronates and bromocapronates of gadolinium with chloroform is studied. Out of the studied organic bases benzylamine produces the highest synergetic effect. In the absence of organic bases gadolinium carboxylates, solvated by three molecules of carbonic acids, are extracted into organic phase. A possihility of extractional separation of gadolinium from comparable amounts of iron with the mixture of 1 M solutions of caproic or bromocaproic acids with 1 M benzylamine from 0.1 M solution of tartaric acids is shown [ru

  9. Transition Metal Catalyzed Synthesis of Carboxylic Acids, Imines, and Biaryls

    DEFF Research Database (Denmark)

    Santilli, Carola; Madsen, Robert

    the carboxylate.  Manganese catalyzed radical Kumada-type reaction between aryl halidesand aryl Grignard reagents. The reaction between aryl halides and aryl Grignard reagents catalyzed by MnCl2 has been extended to several methyl-substituted aryl iodide reagents byperforming the reaction at 120 ˚C in a microwave...... oven (Scheme ii). A limitation of the heterocoupling process is the concomitant dehalogenation of the aryl halide and homocoupling of the Grignard reagent leading low to moderate yields of the desired heterocoupling product. The mechanism of the cross-coupling process was investigated by performing two...

  10. Separation and determination of some carboxylic acids by capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Sladkov, V.; Fourest, B

    2006-07-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  11. Separation and determination of some carboxylic acids by capillary electrophoresis

    International Nuclear Information System (INIS)

    Sladkov, V.; Fourest, B.

    2006-01-01

    Separation and determination of some organic acids, mono-carboxylic (formic and acetic), dicarboxylic (oxalic and tartaric), tricarboxylic (citric) acids and aromatic acids (phtalic, benzoic, mellitic and trimellitic), by capillary electrophoresis are reviewed. The method development parameters, such as separation and injection mode, are discussed. Special attention is paid to the comparison of different detection types (spectroscopic and electrochemical). The optimisation of the carrier electrolyte composition (choice of carrier electrolyte, effect of pH, ionic strength, electro-osmotic flow modifier) is treated. Different additives (alkali-earth and transition metal ions, cyclodextrins and alcohol), which are often used for improving organic acid separation, are also considered. (authors)

  12. l-2-Nitrimino-1,3-diazepane-4-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Harutyun A. Karapetyan

    2008-05-01

    Full Text Available The cyclic form of l-nitroarginine, C6H10N4O4, crystallizes with two independent molecules in the asymmetric unit. According to the geometrical parameters, similar in both molecules, the structure corresponds to that of l-2-nitrimino-1,3-diazepane-4-carboxylic acid; there are, however, conformational differences between the independent molecules, one of them being close to a twisted chair while the other might be described as a rather flattened boat. All six active H atoms in the two molecules are involved in hydrogen bonds, two of which are intramolecular and four intermolecular, forming an infinite chain of molecules along the b axis.

  13. (2S,4R-4-Fluoropyrrolidinium-2-carboxylate

    Directory of Open Access Journals (Sweden)

    David B. Hobart Jr

    2012-08-01

    Full Text Available The crystal structure of the title compound, C5H8FNO2, at 100 K, displays intermolecular N—H...O hydrogen bonding between the ammonium and carboxylate groups as a result of its zwitterionic nature in the solid state. The five-membered ring adopts an envelope conformation with the C atom at the 3-position as the flap. The compound is of interest with respect to the synthesis and structural properties of synthetic collagens. The absolute structure was determined by comparison with the commercially available material.

  14. Carboxylated fullerene at the oil/water interface

    OpenAIRE

    Li, R; Chai, Y; Jiang, Y; Ashby, PD; Toor, A; Russell, TP

    2017-01-01

    © 2017 American Chemical Society. The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust,...

  15. Radiation-induced grafting of sweet sorghum stalk for copper(II) removal from aqueous solution

    International Nuclear Information System (INIS)

    Dong, Jing; Hu, Jun; Wang, Jianlong

    2013-01-01

    Highlights: • Radiation-induced grafting was used to modify the stalk. • Cellulose, hemicellulose and lignin participated in grafting reaction. • Both the structure and composition of stalk had influence on grafting. • The sorption capacity of the grafted stalk increased about five times. -- Abstract: The influence of main components (cellulose, hemicellulose and lignin) of the sweet sorghum stalk on radiation-induced grafting reaction and adsorption of copper from aqueous solution was investigated. Sweet sorghum stalk was grafted with acrylic acid induced by γ-irradiation. The results showed that the grafted stalk contained 1.6 mmol/g carboxyl groups, and its maximal adsorption capacity was 13.32 mg/g. The cellulose, hemicellulose and lignin of the raw materials were confirmed to involve in grafting reaction through comparing the grafting yield and the structure of the grafted materials. Both the structure and the composition of the sweet sorghum stalk had influence on the grafting reaction and adsorption capacity. The adsorption capacity of the grafted sweet sorghum stalk increased about five times, and the adsorption isotherm of the grafted materials conformed to the Langmuir model. The main mechanism for copper adsorption involved in ion exchange

  16. Diaquabis(4-bromobenzoato-κObis(nicotinamide-κN1copper(II

    Directory of Open Access Journals (Sweden)

    Hacali Necefoğlu

    2011-07-01

    Full Text Available The asymmetric unit of the title mononuclear CuII complex, [Cu(C7H4BrO22(C6H6N2O2(H2O2], contains one half-molecule, the CuII atom being located on an inversion center. The unit cell contains two nicotinamide (NA, two 4-bromobenzoate (PBB ligands and two coordinated water molecules. The four O atoms in the equatorial plane around the CuII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxylate group and the adjacent benzene ring is 22.17 (16°, while the pyridine ring and the benzene ring are oriented at a dihedral angle of 82.80 (6°. In the crystal, N—H...O, O—H...O and C—H...O hydrogen bonds link the molecules into a three-dimensional network. A weak C—H...π interaction is also observed.

  17. Halogen-bonded network of trinuclear copper(II 4-iodopyrazolate complexes formed by mutual breakdown of chloroform and nanojars

    Directory of Open Access Journals (Sweden)

    Stuart A. Surmann

    2016-11-01

    Full Text Available Crystals of bis(tetrabutylammonium di-μ3-chlorido-tris(μ2-4-iodopyrazolato-κ2N:N′tris[chloridocuprate(II] 1,4-dioxane hemisolvate, (C16H36N2[Cu3(C3H2IN23Cl5]·0.5C4H8O or (Bu4N2[CuII3(μ3-Cl2(μ-4-I-pz3Cl3]·0.5C4H8O, were obtained by evaporating a solution of (Bu4N2[{CuII(μ-OH(μ-4-I-pz}nCO3] (n = 27–31 nanojars in chloroform/1,4-dioxane. The decomposition of chloroform in the presence of oxygen and moisture provides HCl, which leads to the breakdown of nanojars to the title trinuclear copper(II pyrazolate complex, and possibly CuII ions and free 4-iodopyrazole. CuII ions, in turn, act as catalyst for the accelerated decomposition of chloroform, ultimately leading to the complete breakdown of nanojars. The crystal structure presented here provides the first structural description of a trinuclear copper(II pyrazolate complex with iodine-substituted pyrazoles. In contrast to related trinuclear complexes based on differently substituted 4-R-pyrazoles (R = H, Cl, Br, Me, the [Cu3(μ-4-I-pz3Cl3] core in the title complex is nearly planar. This difference is likely a result of the presence of the iodine substituent, which provides a unique, novel feature in copper pyrazolate chemistry. Thus, the iodine atoms form halogen bonds with the terminal chlorido ligands of the surrounding complexes [mean length of I...Cl contacts = 3.48 (1 Å], leading to an extended two-dimensional, halogen-bonded network along (-110. The cavities within this framework are filled by centrosymmetric 1,4-dioxane solvent molecules, which create further bridges via C—H...Cl hydrogen bonds with terminal chlorido ligands of the trinuclear complex not involved in halogen bonding.

  18. Biocompatibility studies of polyacrylonitrile membranes modified with carboxylated polyetherimide

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, S.; Rajesh, S.; Jayalakshmi, A.; Mohan, D., E-mail: mohantarun@gmail.com

    2013-10-15

    Poly (ether-imide) (PEI) was carboxylated and used as the hydrophilic modification agent for the preparation of polyacrylonitrile (PAN) membranes. Membranes were prepared with different blend compositions of PAN and CPEI by diffusion induced precipitation. The modified membranes were characterized by thermo gravimetric analysis (TGA), mechanical analysis, scanning electron microscopy (SEM) and contact angle measurement to understand the influence of CPEI on the properties of the membranes. The biocompatibility studies exhibited reduced plasma protein adsorption, platelet adhesion and thrombus formation on the modified membrane surface. The complete blood count (CBC) results of CPEI incorporated membranes showed stable CBC values and significant decrease in the complement activation were also observed. In addition to good cytocompatibility, monocytes cultured on these modified membranes exhibited improved functional profiles in 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Thus it could be concluded that PAN/CPEI membranes with excellent biocompatibility can be useful for hemodialysis. Highlights: • Carboxylated PEI was prepared and utilized as hydrophilic modification agent. • CPEI incorporated into PAN to improved biocompatibility and cyto compatibility • Biocompatibility of membranes was correlated with morphology and hydrophilicity. • Antifouling studies of the PAN/CPEI membranes was studied by BSA as model foulant.

  19. On the intermediacy of carboxyphosphate in biotin-dependent carboxylations

    International Nuclear Information System (INIS)

    Ogita, Takeshi; Knowles, J.R.

    1988-01-01

    In the ATP-dependent carboxylation of biotin that is catalyzed by most biotin-dependent carboxylases, a fundamental mechanistic question is whether the ATP activates bicarbonate (via the formation of carboxyphosphate as an intermediate) or whether the ATP activates biotin (via the formation of O-phosphobiotin). The authors have resorted to three mechanistic tests using the biotin carboxylase subunit of acetyl-CoA carboxylase from Escherichia coli: positional isotope exchange, intermediate trapping, and 18 O tracer experiments on the ATPase activity. First, no catalysis of positional isotope exchange in adenosine 5'-([α,β- 18 O,β,β- 18 O 2 ]triphosphate) was observed when either biotin or bicarbonate was absent, nor was any exchange seen in the presence of both N-1-methylbiotin and bicarbonate. Second, the putative carboxyphosphate intermediate could not be trapped as its trimethyl ester, under conditions of incubation and analysis where the authentic triester was shown to be adequately stable. In the third test, however, they showed that the ATPase activity of biotin carboxylase that is seen in the absence of biotin, an activity that is known to parallel the normal carboxylase reaction when biotin is present, occurs with the transfer of an 18 O label directly from [ 18 O]bicarbonate into the product P i . This result suggests that the bicarbonate-dependent biotin-independent ATPase reaction catalyzed by biotin carboxylase goes via carboxyphosphate and that the carboxylation of biotin itself may proceed analogously

  20. Rare configuration of tautomeric benzimidazolecarboxylate ligands in cadmium(II) and copper(II) coordination polymers

    International Nuclear Information System (INIS)

    Wu, Jing-Yun; Yang, Ciao-Wei; Chen, Hui-Fang; Jao, Yu-Chen; Huang, Sheng-Ming; Tsai, Chiitang; Tseng, Tien-Wen; Lee, Gene-Hsiang; Peng, Shie-Ming; Lu, Kuang-Lieh

    2011-01-01

    Two Cd(HBimc)-based isomers, [Cd(HBimc N )(HBimc T )(H 2 O)].3.5H 2 O.EtOH (1a.3.5H 2 O.EtOH, H 2 Bimc=1H-benzimidazole-5-carboxylic acid) and [Cd(HBimc N )(HBimc T )(H 2 O)] (1b), and two Cu(HMBimc)-based coordination polymers, [Cu(HMBimc N ) 2 (H 2 O)].1/2H 2 O (2.1/2H 2 O, H 2 MBimc=2-methyl-1H-benzimidazole-5-carboxylic acid) and [Cu(HMBimc T ) 2 ].2THF.H 2 O (3.2THF.H 2 O), were self-assembled from Cd(ClO 4 ) 2 .6H 2 O/H 2 Bimc and Cu(ClO 4 ) 2 .6H 2 O/H 2 MBimc systems, respectively. Compound 1a adopts a ladder-like chain structure, comprised of a hydrogen-bond-stabilized Cd 2 (HBimc N ) 2 -metallocyclic stair and a 1D straight -(Cd-HBimc T ) n - edge, whereas compound 1b exhibits a 2D (4,4)-rhombus layered structure, intercrossed by 1D -(Cd-HBimc N ) n - chains and -(Cd-HBimc T ) n - chains. Compound 2 shows a 1D double-stranded wave-like chain from two single-stranded wave-like -(Cu-HMBimc N ) n - chains and compound 3 adopts a 2D (4,4)-topological layer structure, intercrossed by subunits of 1D -(Cu-HMBimc T ) n - chains. Interestingly, a pair of tautomeric HBimc building blocks-normal (N or HBimc N ) and tautomer (T or HBimc T )-is simultaneously included in the structures of 1a and 1b, whilst the N- and T-configured HMBimc building blocks are present as separate entities in Cu species, 2 and 3, respectively. The existence of only a tautomer (T) mode of the benzimidazolecarboxylate-based ligand in a Cu(II) network is observed for the first time. - Graphical abstract: A pair of tautomeric HBimc building blocks (normal (N) and tautomer (T)) is found simultaneously in two Cd(II) networks, whereas, the normal and tautomer modes of HMBimc are present as separate entities in two Cu(II) frameworks. The isolation of a Cu(II) network with only a tautomer (T) mode of the benzimidazolecarboxylate-based ligand is achieved for the first time. Highlights: →Benzimidazolecarboxylates could exhibit normal (N) and tautomer (T) configurations. → A pair of N- and T

  1. Do carboximide–carboxylic acid combinations form co-crystals? The role of hydroxyl substitution on the formation of co-crystals and eutectics

    Directory of Open Access Journals (Sweden)

    Ramanpreet Kaur

    2015-05-01

    Full Text Available Carboxylic acids, amides and imides are key organic systems which provide understanding of molecular recognition and binding phenomena important in biological and pharmaceutical settings. In this context, studies of their mutual interactions and compatibility through co-crystallization may pave the way for greater understanding and new applications of their combinations. Extensive co-crystallization studies are available for carboxylic acid/amide combinations, but only a few examples of carboxylic acid/imide co-crystals are currently observed in the literature. The non-formation of co-crystals for carboxylic acid/imide combinations has previously been rationalized, based on steric and computed stability factors. In the light of the growing awareness of eutectic mixtures as an alternative outcome in co-crystallization experiments, the nature of various benzoic acid/cyclic imide combinations is established in this paper. Since an additional functional group can provide sites for new intermolecular interactions and, potentially, promote supramolecular growth into a co-crystal, benzoic acids decorated with one or more hydroxyl groups have been systematically screened for co-crystallization with one unsaturated and two saturated cyclic imides. The facile formation of an abundant number of hydroxybenzoic acid/cyclic carboximide co-crystals is reported, including polymorphic and variable stoichiometry co-crystals. In the cases where co-crystals did not form, the combinations are shown invariably to result in eutectics. The presence or absence and geometric disposition of hydroxyl functionality on benzoic acid is thus found to drive the formation of co-crystals or eutectics for the studied carboxylic acid/imide combinations.

  2. Ammonia, phosphate, phenol, and copper(II) removal from aqueous solution by subsurface and surface flow constructed wetland.

    Science.gov (United States)

    Mojiri, Amin; Ahmad, Zakiah; Tajuddin, Ramlah Mohd; Arshad, Mohd Fadzil; Gholami, Ali

    2017-07-01

    Water pollution is a global problem. During current study, ammonia, phosphate, phenol, and copper(II) were removed from aqueous solution by subsurface and surface flow constructed wetland. In current investigation, distilled water was polluted with four contaminants including ammonia, phosphate, copper (Cu), and phenol. Response surface methodology and central composite design were applied to optimize pollutant removal during treatment by subsurface flow constructed wetland (SSFCW). Contact time (12 to 80 h) and initial pollutant concentration (20 to 85 mg/L) were selected as independent factors; some upper and lower ranges were also monitored for accuracy. In SSFCW, water hyacinth transplanted in two substrate layers, namely zeolite and cockle shell. SSFCW removed 87.7, 81.4, 74.7, and 54.9% of ammonia, phosphate, Cu, and phenol, respectively, at optimum contact time (64.5 h) and initial pollutant concentration (69.2 mg/L). Aqueous solution was moved to a surface flow constructed wetland (SFCW) after treating via SSFCW at optimum conditions. In SFCW, Typha was transplanted to a fixed powdered substrate layer, including bentonite, zeolite, and cockle shell. SFCW could develop performance of this combined system and could improve elimination efficacy of the four contaminants to 99.99%. So this combined CW showed a good performance in removing pollutants. Graphical abstract Wetlands arrangement for treating aqueous solution in current study.

  3. Selective adsorption of silver(I) ions over copper(II) ions on a sulfoethyl derivative of chitosan.

    Science.gov (United States)

    Petrova, Yulia S; Pestov, Alexandr V; Usoltseva, Maria K; Neudachina, Ludmila K

    2015-12-15

    This study presents a simple and effective method of preparation of N-(2-sulfoethyl) chitosan (NSE-chitosan) that allows obtaining a product with a degree of modification up to 1.0. The chemical structure of the obtained polymers was confirmed by FT-IR and 1H NMR spectroscopies. Cross-linking of N-(2-sulfoethyl) chitosans by glutaraldehyde allows preparation of sorbents for removal and concentration of metal ions. Capacity of sorbents towards hydroxide ions was determined depending on the degree of sulfoethylation under static and dynamic conditions. Dissociation constants of functional amino groups of the analyzed sorbents were determined by potentiometric titration. It was shown that basicity of the amino groups decreased (wherein pKa decreased from 6.53 to 5.67) with increase in degree of sulfoethylation. It explains the significant influence of sulfo groups on selectivity of sorption of metal ions on N-(2-sulfoethyl) chitosan-based sorbents. The investigated substances selectively remove copper(II) and silver(I) ions from solutions of complex composition. Wherein the selectivity coefficient KAg/Cu increased to 20 (pH 6.5, ammonium acetate buffer solution) with increase in degree of sulfoethylation of the sorbent up to 1.0. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    Science.gov (United States)

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.

  5. XAFS Study of the Ferro- and Antiferromagnetic Binuclear Copper(II) Complexes of Azomethine Based Tridentate Ligands

    International Nuclear Information System (INIS)

    Vlasenko, Valery G.; Vasilchenko, Igor S.; Shestakova, Tatiana E.; Uraev, Ali I.; Burlov, Anatolii S.; Garnovskii, Alexander D.; Pirog, Irina V.

    2007-01-01

    Binuclear copper complexes are known to be models for metalloenzymes containing copper active sites, and some of them are of considerable interest due to their magnetic and charge transfer properties. The reactions of the complex formation of bibasic tridentate heterocyclic imines with copper acetate leads to two types of chelates with mono deprotonated ligands and with totally deprotonated ligands. Cu K-edge EXAFS has been applied to determine the local structure around the metal center in copper(II) azomethine complexes with five tridentate ligands: 1-(salycilideneimino)- or 1-(2-tosylaminobenzilideneimino)-2-amino(oxo, thio)benzimidazoles. It has been found that some of the chelates studied are bridged binuclear copper complexes, and others are mononuclear complexes. The copper-copper interatomic distances in the bridged binuclear copper complexes were found to be 2.85-3.01 A. Variable temperature magnetic susceptibility data indicate the presence of both ferromagnetic and antiferromagnetic interactions within the dimer, the former is dominating at low temperatures and the latter at high temperatures

  6. Ternary copper(II) complex: NCI60 screening, toxicity studies, and evaluation of efficacy in xenograft models of nasopharyngeal carcinoma

    Science.gov (United States)

    Chu, Tai-Lin; Abdul Aziz, Norazlin; Mohd Kornain, Noor-Kaslina; Samiulla, D. S.; Lo, Kwok-Wai; Ng, Chew-Hee

    2018-01-01

    Copper(II) ternary complex, [Cu(phen)(C-dmg)(H2O)]NO3 was evaluated against a panel of cell lines, tested for in vivo efficacy in nasopharyngeal carcinoma xenograft models as well as for toxicity in NOD scid gamma mice. The Cu(II) complex displayed broad spectrum cytotoxicity against multiple cancer types, including lung, colon, central nervous system, melanoma, ovarian, and prostate cancer cell lines in the NCI-60 panel. The Cu(II) complex did not cause significant induction of cytochrome P450 (CYP) 3A and 1A enzymes but moderately inhibited CYP isoforms 1A2, 2C9, 2C19, 2D6, 2B6, 2C8 and 3A4. The complex significantly inhibited tumor growth in nasopharyngeal carcinoma xenograft bearing mice models at doses which were well tolerated without causing significant or permanent toxic side effects. However, higher doses which resulted in better inhibition of tumor growth also resulted in toxicity. PMID:29329342

  7. Coordination of different ligands to copper(II) and cobalt(III) metal centers enhances Zika virus and dengue virus loads in both arthropod cells and human keratinocytes.

    Science.gov (United States)

    Dutta, Shovan; Celestine, Michael J; Khanal, Supreet; Huddleston, Alexis; Simms, Colin; Arca, Jessa Faye; Mitra, Amlan; Heller, Loree; Kraj, Piotr J; Ledizet, Michel; Anderson, John F; Neelakanta, Girish; Holder, Alvin A; Sultana, Hameeda

    2018-01-01

    Trace elements such as copper and cobalt have been associated with virus-host interactions. However, studies to show the effect of conjugation of copper(II) or cobalt(III) metal centers to thiosemicarbazone ligand(s) derived from either food additives or mosquito repellent such as 2-acetylethiazole or citral, respectively, on Zika virus (ZIKV) or dengue virus (serotype 2; DENV2) infections have not been explored. In this study, we show that four compounds comprising of thiosemicarbazone ligand derived from 2-acetylethiazole viz., (E)-N-ethyl-2-[1-(thiazol-2-yl)ethylidene]hydrazinecarbothioamide (acetylethTSC) (compound 1), a copper(II) complex with acetylethTSC as a ligand (compound 2), a thiosemicarbazone ligand-derived from citral (compound 3) and a cobalt(III) complex with a citral-thiosemicarbazone ligand (compound 4) increased DENV2 and ZIKV replication in both mosquito C6/36 cells and human keratinocytes (HaCaT cells). Treatment of both cell lines with compounds 2 or 4 showed increased dengue viral titers at all three tested doses. Enhanced dengue viral plaque formation was also noted at the tested dose of 100μM, suggesting higher production of infectious viral particles. Treatment with the compounds 2 or 4 enhanced ZIKV and DENV2 RNA levels in HeLa cell line and primary cultures of mouse bone marrow derived dendritic cells. Also, pre- or post treatments with conjugated compounds 2 or 4 showed higher loads of ZIKV or DENV2 envelope (E) protein in HaCaT cells. No changes in loads of E-protein were found in ZIKV-infected C6/36 cells, when compounds were treated after infection. In addition, we tested bis(1,10-phenanthroline)copper(II) chloride ([Cu(phen) 2 ]Cl 2 , (compound 5) and tris(1,10-phenanthroline)cobalt(III) chloride ([Co(phen) 3 ]Cl 3 , (compound 6) that also showed enhanced DENV2 loads. Also, we found that copper(II) chloride dehydrate (CuCl 2 ·2H 2 O) or cobalt(II) chloride hexahydrate (CoCl 2 ·6H 2 O) alone had no effects as "free" cations

  8. deaminase from plant growth promoting rhizobacteria in Striga

    African Journals Online (AJOL)

    Experiments were conducted in pots to determine the growth effect of different rhizobacteria on maize under Striga hermonthica infestation. Three bacteria were selected based on their plant growth promoting effects. Whole bacterial cells of the rhizobacteria were used to amplify 1-amino-cyclopropane-1-carboxylic acid ...

  9. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Directory of Open Access Journals (Sweden)

    M. Vaïtilingom

    2011-08-01

    Full Text Available The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2 as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10−10–10−11 M s−1. The chemical composition (marine or continental origin had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5.

    In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10−12 M led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10−14 M, microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach.

    Combining these two approaches (experimental and theoretical, our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more

  10. Functional microporous materials of metal carboxylate: Gas-occlusion properties and catalytic activities

    International Nuclear Information System (INIS)

    Mori, Wasuke; Sato, Tomohiko; Ohmura, Tesushi; Nozaki Kato, Chika; Takei, Tohru

    2005-01-01

    Copper(II) terephthalate is the first transition metal complex found capable of adsorbing gases. This complex has opened the new field of adsorbent complex chemistry. It is recognized as the lead complex in the construction of microporous complexes. This specific system has been expanded to a systematic series of derivatives of other isomorphous transition metals, molybdenum(II), ruthenium(II, III), and rhodium(II). These complexes with open frameworks are widely recognized as very useful materials for applications to catalysis, separation at molecular level, and gas storage. - Graphical abstract: Novel microporous intramolecular reaction systems

  11. Synthesis, characterization, and antimicrobial activity of silver(I) and copper(II) complexes of phosphate derivatives of pyridine and benzimidazole.

    Science.gov (United States)

    Kalinowska-Lis, Urszula; Szewczyk, Eligia M; Chęcińska, Lilianna; Wojciechowski, Jakub M; Wolf, Wojciech M; Ochocki, Justyn

    2014-01-01

    Two silver(I) complexes--[Ag(4-pmOpe)]NO₃}(n) and [Ag(2-bimOpe)₂]NO₃--and three copper(II) complexes--[Cu₄Cl₆O(2-bimOpe)₄], [CuCl₂(4-pmOpe)₂], and [CuCl₂(2-bis(pm)Ope]--were synthesized by reaction of silver(I) nitrate or copper(II) chloride with phosphate derivatives of pyridine and benzimidazole, namely diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe), 1H-benzimidazol-2-ylmethyl diethyl phosphate (2-bimOpe), and ethyl bis(pyridin-2-ylmethyl)phosphate (2-bis(pm)Ope). These compounds were characterized by ¹H, ¹³C, and ³¹P NMR as well as IR spectroscopy, elemental analysis, and ESIMS spectrometry. Additionally, molecular and crystal structures of {[Ag(4-pmOpe)]NO₃}n and [Cu₄Cl₆O(2-bimOpe)₄] were determined by single-crystal X-ray diffraction analysis. The antimicrobial profiles of synthesized complexes and free ligands against test organisms from the ATCC and clinical sources were determined. Silver(I) complexes showed good antimicrobial activities against Candida albicans strains (MIC values of ∼19 μM). [Ag(2-bimOpe)₂]NO₃ was particularly active against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus epidermidis, with MIC values of ∼5 and ∼10 μM, respectively. Neither copper(II) complexes nor the free ligands inhibited the growth of test organisms at concentrations below 500 μg mL⁻¹. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Preparation of CuO nanoparticles by thermal decomposition of double-helical dinuclear copper(II Schiff-base complexes

    Directory of Open Access Journals (Sweden)

    Aliakbar Dehno Khalaji

    2015-12-01

    Full Text Available In this paper, two double helical dinuclear copper(II complexes of bis-N,O-bidentate Schiff base ligands bis(3-methoxy-N-salicylidene-4,4'-diaminodiphenylsulfone (L1 and bis(5-bromo-N-salicylidene-4,4'-diaminodiphenylsulfone (L2 were prepared and characterized by elemental analyses (CHN, as well as thermal analysis. Elemental analyses (CHN suggested that the reaction between ligands and copper salt has been occurred in 1:1 molar ratio. In these complexes the Schiff base ligands behaves as an anionic and bis-bidentate chelate and is coordinated to the copper(II ion via two phenolic oxygen and two iminic nitrogen atoms. In these double helical dinuclear complexes, each copper(II center has a pseudo-tetrahedral coordination sphere two-wrapped ligands. Thermal analysis of ligands and their complexes were studied in the range of room temperature to 750 °C with a heating rate of 10 °C min-1. TG plots show that the ligands and their complexes are thermally decomposed via 2 and 3 thermal steps, respectively. In addition, the complexes thermally decomposed in air at 520 °C for 3 h. The obtained solids characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray powder diffraction (XRD and transmission electron microscopy (TEM. The X-ray pattern result shows that the CuO nanoparticles are pure and single phase. The TEM result shows the as prepared CuO nanoparticles were very small and similar shape with particle size about

  13. Ru(II)-Catalyzed Oxidative Heck-Type Olefination of Aromatic Carboxylic Acids with Styrenes through Carboxylate-Assisted C-H Bond Activation.

    Science.gov (United States)

    Dana, Suman; Mandal, Anup; Sahoo, Harekrishna; Mallik, Sumitava; Grandhi, Gowri Sankar; Baidya, Mahiuddin

    2018-02-02

    A straightforward synthesis of 2-styrylbenzoic acids from aryl carboxylic acids is disclosed through a carboxylate-assisted coupling under Ru(II) catalysis. This protocol is simple and exhibits broad scope with high tolerance of common organic functional groups, providing good to excellent yields of diverse olefinated products. The efficacy of this protocol has been showcased through sequential syntheses of isochromanone, isocoumarin, and formal synthesis of anacardic acid derivative in good yields.

  14. Interaction between metals and nucleic acids. Part 3. Synthesis and structural studies of copper(II) complexes with Schiff base ligands derived from barbituric acid

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, I.; Gaudemer, A.; Chiaroni, A.; Riche, C.

    1986-02-17

    Schiff bases have been prepared from 5-formylbarbituric acid and 5-formyl-1,3-dimethyl-barbituric acid and various di- or tri-amines. The structure of the corresponding copper(II) complexes have been established by elemental analysis and spectroscopic methods. The molecular structure of one of the complexes, Cu(DiMeBardpt), was determined by X-ray diffraction. Electrochemical study shows that these complexes are reduced at slightly more negative potentials than the corresponding complexes obtained from uracil, which suggests that these new ligands are better electron-donors.

  15. Isolation of a new two-dimensional honeycomb carbonato-bridged copper(II) complex exhibiting long-range ferromagnetic ordering.

    Science.gov (United States)

    Majumder, Arpi; Choudhury, Chirantan Roy; Mitra, Samiran; Rosair, Georgina M; El Fallah, M Salah; Ribas, Joan

    2005-04-28

    Atmospheric CO2 fixation by an aqueous solution containing Cu(ClO4)2.6H2O and 4-aminopyridine (4-apy) yields a novel example of a two-dimensional mu3-CO3 bridged copper(II) complex {[Cu(4-apy)2]3(mu3-CO3)2(ClO4)2.(1/2)CH3OH}n that has been characterized by IR, UV and X-ray crystallography; preliminary magnetic measurements show that complex exhibits long-range ordered ferromagnetic coupling.

  16. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  17. An efficient, cost effective, sensing behaviour liquid-liquid extraction and spectrophotometric determination of copper(II) incorporated with 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole: Analysis of food samples, leafy vegetables, fertilizers and environmental samples.

    Science.gov (United States)

    Barache, Umesh B; Shaikh, Abdul B; Lokhande, Tukaram N; Kamble, Ganesh S; Anuse, Mansing A; Gaikwad, Shashikant H

    2018-01-15

    The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414nm which remains stable for >48h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5μgmL -1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5μgmL -1 to 17.5μgmL -1 . The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813×10 4 Lmol -1 cm -1 , 0.01996μgcm -2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4'-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples, leafy

  18. An efficient, cost effective, sensing behaviour liquid-liquid extraction and spectrophotometric determination of copper(II) incorporated with 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole: Analysis of food samples, leafy vegetables, fertilizers and environmental samples

    Science.gov (United States)

    Barache, Umesh B.; Shaikh, Abdul B.; Lokhande, Tukaram N.; Kamble, Ganesh S.; Anuse, Mansing A.; Gaikwad, Shashikant H.

    2018-01-01

    The aim of the present work is to develop an efficient, simple and selective moreover cost-effective method for the extractive spectrophotometric determination of copper(II) by using the Schiff base 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole [CBIMMT]. This chromogenic reagent forms a yellow coloured complex with copper(II) in acetate buffer at pH 4.2. The copper(II) complex with ligand is instantly extracted into chloroform and shows a maximum absorbance at 414 nm which remains stable for > 48 h. The composition of extracted complex is found to be 1:2 [copper(II): reagent] which was ascertained using Job's method of continuous variation, mole ratio method and slope ratio method. Under optimal conditions, the copper(II) complex in chloroform adheres to Beer's law up to 17.5 μg mL- 1 of copper(II). The optimum concentration range obtained from Ringbom's plot is from 5 μg mL- 1 to 17.5 μg mL- 1. The molar absorptivity, Sandell's sensitivity and enrichment factor of the extracted copper(II) chelate are 0.33813 × 104 L mol- 1 cm- 1, 0.01996 μg cm- 2 and 2.49 respectively. In the extraction of copper(II), several affecting factors including the solution pH, ligand concentration, equilibrium time, effect of foreign ions are optimized. The interfering effects of various cations and anions were also studied and use of masking agents enhances the selectivity of the method. The chromogenic sulphur containing reagent, 4-(4‧-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole has been synthesized in a single step with high purity and yield. The synthesized reagent has been successfully applied first time for determination of copper(II). The reagent forms stable chelate with copper(II) in buffer medium instantly and quantitatively extracted in chloroform within a minute. The method is successfully applied for the determination of copper(II) in various synthetic mixtures, complexes, fertilizers, environmental samples such as food samples

  19. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  20. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    黄承志; 李原芳; 黄新华; 范美坤

    2000-01-01

    The microarray of DNA probes with 5’ -NH2 and 5’ -Tex/3’ -NH2 modified terminus on 10 um carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) is characterized in the preseni paper. it was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentra-tion of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  1. Microarray of DNA probes on carboxylate functional beads surface

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The microarray of DNA probes with 5′-NH2 and 5′-Tex/3′-NH2 modified terminus on 10 m m carboxylate functional beads surface in the presence of 1-ethyl-3-(3-dimethylaminopropyl)- carbodiimide (EDC) is characterized in the present paper. It was found that the microarray capacity of DNA probes on the beads surface depends on the pH of the aqueous solution, the concentration of DNA probe and the total surface area of the beads. On optimal conditions, the minimum distance of 20 mer single-stranded DNA probe microarrayed on beads surface is about 14 nm, while that of 20 mer double-stranded DNA probes is about 27 nm. If the probe length increases from 20 mer to 35 mer, its microarray density decreases correspondingly. Mechanism study shows that the binding mode of DNA probes on the beads surface is nearly parallel to the beads surface.

  2. Catalytic transformation of functionalized carboxylic acids using multifunctional rhenium complexes.

    Science.gov (United States)

    Naruto, Masayuki; Agrawal, Santosh; Toda, Katsuaki; Saito, Susumu

    2017-06-13

    Carboxylic acids (CAs) are one of the most ubiquitous and important chemical feedstocks available from biorenewable resources, CO 2 , and the petrochemical industry. Unfortunately, chemoselective catalytic transformations of CH n CO 2 H (n = 1-3) groups into other functionalities remain a significant challenge. Herein, we report rhenium V complexes as extremely effective precatalysts for this purpose. Compared to previously reported heterogeneous and homogeneous catalysts derived from high- or low-valent metals, the present method involves a α-C-H bond functionalization, a hydrogenation, and a hydrogenolysis, which affords functionalized alcohols with a wide substrate scope and high chemoselectivity under relatively mild reaction conditions. The results represent an important step toward a paradigm shift from 'low-valent' to 'high-valent' metal complexes by exploring a new portfolio of selective functional group transformations of highly oxygenated organic substrates, as well as toward the exploitation of CAs as a valuable biorenewable feedstock.

  3. Photosynthetic carboxylating enzymes in Phaeodactylum tricornutum: assay methods and properties

    Energy Technology Data Exchange (ETDEWEB)

    Mukerji, D [Bigelow Lab. for Ocean Sciences, West Boothbay Harbor, ME; Morris, I

    1976-01-01

    Rapid freezing (in liquid nitrogen) of the marine diatom Phaeodactylum tricornutum Bohlin followed by thawing permits a convenient and sensitive measurement of the activities of carboxylating enzymes without the need to prepare a cell-free extract. Using this method, the properties of RuDP and PEP carboxylases have been compared with those assayed in cell-free extracts. The most significant difference was in the Michaelis' constants (K/sub m/'s), the values being lower in the freeze/thaw assay. The absolute rate of carbon-dioxide fixation by the enzymes was less than the rate of photosynthesis by the intact alga. Significantly, the activity of PEP carboxylase was comparable (in some experiments, greater) to that of RuDP carboxylase. The significance of this and the possibility of an enzymatic approach to measurements of marine primary productivity are discussed.

  4. Performance analysis of automobile radiator using carboxyl graphene nanofluids

    Science.gov (United States)

    Rao Ponangi, Babu; Sumanth, S.; Krishna, V.; Seetharam, T. R.; Seetharamu, K. N.

    2018-04-01

    A feasible solution to increase the effectiveness of the radiator will be the use of stabilized nanofluid. A mixture of small amount of solid particle, whose size is less than 100nm in the fluid phase, is termed as nanofluid. In current work, a small concentration of carboxyl-graphene nanostructure sheets/flakes are used as the solid medium, where conventional Ethylene glycol is used as the fluid medium. Visible checking method has been adopted, to check the stability of the nanofluid. The results showed the promising level of improvement in the values of Nusselt number and Effectiveness of the radiator, without changing the actual design of radiator. Examination of Pressure drop shows, a very small increase in its value even though the nanofluid has been used. About 19% improvement in the value of Effectiveness has been achieved at very small concentrations.

  5. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    International Nuclear Information System (INIS)

    Tazhibayeva, Irina; Baklanov, Viktor; Ponkratov, Yuriy; Abdullin, Khabibulla; Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna; Lyublinski, Igor; Vertkov, Alexey; Skakov, Mazhyn

    2017-01-01

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  6. Facile synthesis of α-hydroxy carboxylic acids from the corresponding α-amino acids

    DEFF Research Database (Denmark)

    Stuhr-Hansen, Nicolai; Padrah, Shahrokh; Strømgaard, Kristian

    2014-01-01

    An effective and improved procedure is developed for the synthesis of α-hydroxy carboxylic acids by treatment of the corresponding protonated α-amino acid with tert-butyl nitrite in 1,4-dioxane-water. The amino moiety must be protonated and located α to a carboxylic acid function in order...

  7. Development of technology for fabrication of lithium CPS on basis of CNT-reinforced carboxylic fabric

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibayeva, Irina, E-mail: tazhibayeva@ntsc.kz [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Baklanov, Viktor; Ponkratov, Yuriy [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Abdullin, Khabibulla [Institute of Experimental and Theoretical Physics of Kazakh National University, Almaty (Kazakhstan); Kulsartov, Timur; Gordienko, Yuriy; Zaurbekova, Zhanna [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan); Lyublinski, Igor [JSC «Red Star», Moscow (Russian Federation); NRNU «MEPhI», Moscow (Russian Federation); Vertkov, Alexey [JSC «Red Star», Moscow (Russian Federation); Skakov, Mazhyn [Institute of Atomic Energy, National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • Preliminary study of carboxylic fabric wettability with liquid lithium is presented. • Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673,773 and 873 К in vacuum during long time. • A scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. • The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed. - Abstract: The paper describes the analysis of liquid lithium interaction with materials based on carbon, the manufacture technology of capillary-porous system (CPS) matrix on basis of CNT-reinforced carboxylic fabric. Preliminary study of carboxylic fabric wettability with liquid lithium is presented. The development of technology includes: microstructural studies of carboxylic fabric before its CNT-reinforcing; validation of CNT-reinforcing technology; mode validation of CVD-method for CNT synthesize; study of synthesized carbon structures. Preliminary studies of carboxylic fabric wettability with liquid lithium consist in carrying out of experiments at temperatures 673, 773 and 873 К in vacuum during long time. The scheme of experimental device for manufacturing of lithium CPS and matrix filling procedure with liquid lithium are presented. The concept of lithium limiter with CPS on basis of CNT-reinforced carboxylic fabric is proposed.

  8. Preparations and applications in UV curing coatings of epoxy acrylates containing carboxyl

    International Nuclear Information System (INIS)

    Wu Yu Min

    1999-01-01

    This paper introduces preparations of epoxy acrylates containing carboxyl through the reactions of epoxy acrylates with butanedioic anhydride, pentanedioic anhydride, cis-butenedioic anhydride, phthalic anhydride, tetrabromophthalic anhydride and -tetrahydrophthalic anhydride. These epoxy acrylates containing carboxyl have been applied to UV-curing coatings and their effects on properties of UV-curing coatings have been studied

  9. 40 CFR 721.2088 - Carboxylic acids, (C6-C9) branched and linear.

    Science.gov (United States)

    2010-07-01

    ... linear. 721.2088 Section 721.2088 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.2088 Carboxylic acids, (C6-C9) branched and linear. (a) Chemical... as carboxylic acids, (C6-C9) branched and linear (PMNs P-93-313, 314, 315, and 316) are subject to...

  10. Self-assembled nanoformulation of methylprednisolone succinate with carboxylated block copolymer for local glucocorticoid therapy.

    Science.gov (United States)

    Kamalov, Marat I; Đặng, Trinh; Petrova, Natalia V; Laikov, Alexander V; Luong, Duong; Akhmadishina, Rezeda A; Lukashkin, Andrei N; Abdullin, Timur I

    2018-04-01

    A new self-assembled formulation of methylprednisolone succinate (MPS) based on a carboxylated trifunctional block copolymer of ethylene oxide and propylene oxide (TBC-COOH) was developed. TBC-COOH and MPS associated spontaneously at increased concentrations in aqueous solutions to form almost monodisperse mixed micelles (TBC-COOH/MPS) with a hydrodynamic diameter of 19.6 nm, zeta potential of -27.8 mV and optimal weight ratio ∼1:6.3. Conditions for the effective formation of TBC-COOH/MPS were elucidated by comparing copolymers and glucocorticoids with different structure. The micellar structure of TBC-COOH/MPS persisted upon dilution, temperature fluctuations and interaction with blood serum components. TBC-COOH increased antiradical activity of MPS and promoted its intrinsic cytotoxicity in vitro attributed to enhanced cellular availability of the mixed micelles. Intracellular transportation and hydrolysis of MPS were analyzed using optimized liquid chromatography tandem mass spectrometry with multiple reaction monitoring which showed increased level of both MPS and methylprednisolone in neuronal cells treated with the formulated glucocorticoid. Our results identify TBC-COOH/MPS as an advanced in situ prepared nanoformulation and encourage its further investigation for a potential local glucocorticoid therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Corrosion of stainless steel in alcohol solutions of the simplest carboxylic acids

    International Nuclear Information System (INIS)

    Vigdorovich, V.I.; Korneeva, T.V.; Tsygankova, L.E.

    1975-01-01

    The behaviour of stainless Kh18N10T steel is considered in the methanol and ethanol solutions of formic and acetic acids, respectively. Consideration is given to the effect of the concentration (C) of the acid (0.01-1.00 N), water (0.1-20.0 mass.%) and temperature (room temperature, 40 and 60 deg C). Curves of anodic polarization were plotted. In the course of time in 1.0 and 0.5 N anhydrous methanol solutions of HCOOH at room temperature in the absence of the external anode current one can observe an increase in the electrode potential. Continued reduction of the formic acid concentration results in an improvement on the initial potential (psi) and a practical constancy of psi in time. It is shown that depending on the acid concentration the additions of water are capable of producing both a passivating and an activating effect. It is assumed that the growth in the length of the hydrocarbon radical of carboxylic acid promotes the adsorption displacement of water and alcohols from the metal surface and enhancement of the corrosion rate

  12. Oligo-m-phenyleneoxalamide copper(II) mesocates as electro-switchable ferromagnetic metal-organic wires.

    Science.gov (United States)

    Pardo, Emilio; Ferrando-Soria, Jesús; Dul, Marie-Claire; Lescouëzec, Rodrigue; Journaux, Yves; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc; Cañadillas-Delgado, Laura; Pasán, Jorge; Ruiz-Pérez, Catalina

    2010-11-15

    Double-stranded copper(II) string complexes of varying nuclearity, from di- to tetranuclear species, have been prepared by the Cu(II)-mediated self-assembly of a novel family of linear homo- and heteropolytopic ligands that contain two outer oxamato and either zero (1 b), one (2 b), or two (3 b) inner oxamidato donor groups separated by rigid 2-methyl-1,3-phenylene spacers. The X-ray crystal structures of these Cu(II) (n) complexes (n=2 (1 d), 3 (2 d), and 4 (3 d)) show a linear array of metal atoms with an overall twisted coordination geometry for both the outer CuN(2)O(2) and inner CuN(4) chromophores. Two such nonplanar all-syn bridging ligands 1 b-3 b in an anti arrangement clamp around the metal centers with alternating M and P helical chiralities to afford an overall double meso-helicate-type architecture for 1 d-3 d. Variable-temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 d-3 d show the occurrence of S=nS(Cu) (n=2-4) high-spin ground states that arise from the moderate ferromagnetic coupling between the unpaired electrons of the linearly disposed Cu(II) ions (S(Cu)=1/2) through the two anti m-phenylenediamidate-type bridges (J values in the range of +15.0 to 16.8 cm(-1)). Density functional theory (DFT) calculations for 1 d-3 d evidence a sign alternation of the spin density in the meta-substituted phenylene spacers in agreement with a spin polarization exchange mechanism along the linear metal array with overall intermetallic distances between terminal metal centers in the range of 0.7-2.2 nm. Cyclic voltammetry (CV) and rotating-disk electrode (RDE) electrochemical measurements for 1 d-3 d show several reversible or quasireversible one- or two-electron steps that involve the consecutive metal-centered oxidation of the inner and outer Cu(II) ions (S(Cu)=1/2) to diamagnetic Cu(III) ones (S(Cu)=0) at relatively low formal potentials (E values in the range of

  13. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao; Croue, Jean-Philippe

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation

  14. Synthesis, structures and Helicobacter pylori urease inhibitory activity of copper(II) complexes with tridentate aroylhydrazone ligands.

    Science.gov (United States)

    Pan, Lin; Wang, Cunfang; Yan, Kai; Zhao, Kedong; Sheng, Guihua; Zhu, Hailiang; Zhao, Xinlu; Qu, Dan; Niu, Fang; You, Zhonglu

    2016-06-01

    A series of new copper(II) complexes were prepared. They are [CuL(1)(NCS)] (1), [CuClL(1)]·CH3OH (2), [CuClL(2)]·CH3OH (3), [CuL(3)(NCS)]·CH3OH (4), [CuL(4)(NCS)]·0.4H2O (5), and [CuL(5)(bipy)] (6), where L(1), L(2), L(3) and L(4) are the deprotonated form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, 4-bromo-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, N'-(2-hydroxy-5-methoxybenzylidene)-3-methylbenzohydrazide and 2-chloro-N'-(2-hydroxy-5-methoxybenzylidene)benzohydrazide, respectively, L(5) is the dianionic form of N'-(2-hydroxybenzylidene)-3-methylbenzohydrazide, and bipy is 2,2'-bipyridine. The complexes were characterized by infrared and UV-Vis spectra and single crystal X-ray diffraction. The Cu atoms in complexes 1, 2, 3, 4 and 5 are coordinated by the NOO donor set of the aroylhydrazone ligands, and one Cl or thiocyanate N atom, forming square planar coordination. The Cu atom in complex 6 is in a square pyramidal coordination, with the NOO donor set of L(1), and one N atom of bipy defining the basal plane, and with the other N atom of bipy occupying the apical position. Complexes 1, 2, 3, 4 and 5 show effective urease inhibitory activities, with IC50 values of 5.14, 0.20, 4.06, 5.52 and 0.26μM, respectively. Complex 6 has very weak activity against urease, with IC50 value over 100μM. Molecular docking study of the complexes with the Helicobacter pylori urease was performed. The relationship between structures and urease inhibitory activities indicated that copper complexes with square planar coordination are better models for urease inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide

    Science.gov (United States)

    Nunes, Julia Helena Bormio; de Paiva, Raphael Enoque Ferraz; Cuin, Alexandre; da Costa Ferreira, Ana Maria; Lustri, Wilton Rogério; Corbi, Pedro Paulo

    2016-05-01

    New ternary copper(II) complexes of sulfathiazole (SFT, C9H8N3O2S2) or nimesulide (NMS, C13H11N2O5S) and 2,2‧-bipyridine (bipy) were synthesized, and characterized by chemical and spectroscopic techniques. Elemental analyses indicated a 2:1:1 sulfonamide/copper/bipy composition for both complexes. Mass spectrometric measurements permitted identifying the molecular ions [Cu(SFT)2(bipy)+H]+ and [Cu(NMS)2(bipy)+H]+ at m/z 728 and 835, respectively, confirming the proposed compositions. Crystal structure of the [Cu(SFT)2(bipy)] complex was solved by powder X-ray diffraction analysis (PXRD), attesting that the Cu(II) ion is hexacoordinated in a distorted octahedral geometry. Each SFT molecule coordinates to the metal ion by the nitrogen atoms of the SO2-N group and of the heterocyclic ring. The coordination sphere is completed by a bipyridine. Electronic paramagnetic resonance (EPR) studies were carried out for the [Cu(NMS)2(bipy)] complex, indicating a tetragonal environment around the metal ion. It was suggested that NMS coordinates to Cu(II) by the nitrogen and oxygen atoms of the SO2-N group, which was confirmed by infrared spectroscopic studies. Biological studies showed the antibacterial activity of both Cu-SFT and Cu-NMS complexes, with the minimum inhibitory concentration (MIC) values ranging from 0.10 to 0.84 mmol L-1 against Gram-negative bacteria for [Cu(SFT)2(bipy)], and from 1.50 to 3.00 mmol L-1 against Gram-positive and -negative bacteria for [Cu(NMS)2(bipy)].

  16. Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, 57Fe Moessbauer spectroscopy and thermal studies

    International Nuclear Information System (INIS)

    Travnicek, Zdenek; Herchel, Radovan; Mikulik, Jiri; Zboril, Radek

    2010-01-01

    Three heterobimetallic cyanido-bridged copper(II) nitroprusside-based complexes of the compositions [Cu(tet)Fe(CN) 5 NO].H 2 O (1), where tet=N,N'-bis(3-aminopropyl)ethylenediamine, [Cu(hto)Fe(CN) 5 NO].2H 2 O (2), where hto=1,3,6,9,11,14-hexaazatricyclo[12.2.1.1 6,9 ]octadecane and [Cu(nme) 2 Fe(CN) 5 NO].H 2 O (3), where nme=N-methylethylenediamine, were synthesized and characterized by elemental analyses, 57 Fe Moessbauer and FTIR spectroscopies, thermal analysis, magnetic measurements and single-crystal X-ray analysis. The products of thermal degradation processes of 2 and 3 were studied by XRD, 57 Fe Moessbauer spectroscopy, SEM and EDS, and they were identified as mixtures of CuFe 2 O 4 and CuO. - Three heterobimetallic cyano-bridged copper(II) nitroprusside-based complexes of the general compositions of [Cu(L)Fe(CN) 5 NO].xH 2 O, where L=N,N'-bis(3-aminopropyl)ethylenediamine (complex 1), 1,3,6,9,11,14-hexaazatricyclo[12.2.1.1 6,9 ]-octadecane (complex 2) and N-methylethylenediamine (complex 3), were synthesized, and fully structurally and magnetically characterized. SEM, EDS, XRD and 57 Fe Moessbauer experiments were used for characterization of thermal decomposition products of complexes 2 and 3.

  17. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole

    Science.gov (United States)

    Li, Mei; kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-01

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  18. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent.

    Science.gov (United States)

    Ciesielczyk, Filip; Bartczak, Przemysław; Klapiszewski, Łukasz; Jesionowski, Teofil

    2017-04-15

    A study was made concerning the removal of copper(II) ions from model and galvanic waste solutions using a new sorption material consisting of lignin in combination with an inorganic oxide system. Specific physicochemical properties of the material resulted from combining the activity of the functional groups present in the structure of lignin with the high surface area of the synthesized oxide system (585m 2 /g). Analysis of the porous structure parameters, particle size and morphology, elemental composition and characteristic functional groups confirmed the effective synthesis of the new type of sorbent. A key element of the study was a series of tests of adsorption of copper(II) ions from model solutions. It was determined how the efficiency of the adsorption process was affected by the process time, mass of sorbent, concentration of adsorbate, pH and temperature. Potential regeneration of adsorbent, which provides the possibility of its reusing and recovering the adsorbed copper, was also analyzed. The sorption capacity of the material was measured (83.98mg/g), and the entire process was described using appropriate kinetic models. The results were applied to the design of a further series of adsorption tests, carried out on solutions of real sewage from a galvanizing plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Thermoelectrical and thermal analyses of copper(II) acetate monohydrate ZnO-matrix composite powder obtained by freeze-drying

    International Nuclear Information System (INIS)

    Bellini, Jusmar Valentin; Pineda, Edgardo Alfonso Gomez; Rocha, Raquel de Almeida; Ponzoni, Andre Luis de Lima; Paesano, Andrea

    2006-01-01

    The thermal history of freeze-dried mixtures of composite powders containing ZnO-matrix and (CH 3 COO) 2 Cu.H 2 O (copper(II) acetate monohydrate) was undertaken by thermal analysis (TA) coupled to thermoelectrical analysis (TEA). Experiments were carried out on compacted samples, under non-isothermal conditions, in air, up to 350 deg. C, by measuring the electrical resistance during heating, called thermoelectrical resistometry (TER), and by differential scanning calorimetry (DSC). Activation energy (E a ) for exothermal events related to the decomposition of (CH 3 COO) 2 Cu (copper(II) acetate, CuAc 2 ), observed within the range 225-325 deg. C, was estimated according to ASTM E 698 method. Values of E a equal to 154 and 155 kJ/mol were obtained by TER and DSC, respectively. TER showed that the thermal decomposition of CuAc 2 involves the liberation of electrons. Results also indicated that TER may be used as an alternative or complementary method for the study of the thermal decomposition mechanisms of transition metal(II) acetates

  20. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    Science.gov (United States)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  1. Synthesis of mononuclear copper(II) complexes of N3O2 and N4O2 donors containing Schiff base ligands: Theoretical and biological observations

    Science.gov (United States)

    Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.

    2017-09-01

    A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.

  2. Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II and Iron(III Ions and Their Application in Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Olimpo García-Beltrán

    2014-01-01

    Full Text Available Two new coumarin-based “turn-off” fluorescent probes, (E-3-((3,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS1 and (E-3-((2,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS2, were synthesized and their detection of copper(II and iron(III ions was studied. Results show that both compounds are highly selective for Cu2+ and Fe3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3 and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II or iron(III ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10−5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ and Fe3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.

  3. Ferromagnetic interaction in an asymmetric end-to-end azido double-bridged copper(II) dinuclear complex: a combined structure, magnetic, polarized neutron diffraction and theoretical study.

    Science.gov (United States)

    Aronica, Christophe; Jeanneau, Erwann; El Moll, Hani; Luneau, Dominique; Gillon, Béatrice; Goujon, Antoine; Cousson, Alain; Carvajal, Maria Angels; Robert, Vincent

    2007-01-01

    A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.

  4. In situ Recovery of Bio-Based Carboxylic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Eric M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Saboe, Patrick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Manker, Lorenz [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Michener, William E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Peterson, Darren J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brandner, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Deutch, Stephen P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Cywar, Robin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beckham, Gregg T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kumar, Manish [Pennsylvania State University

    2018-03-16

    The economics of chemical and biological processes is often dominated by the expense of downstream product separations from dilute product streams. Continuous separation techniques, such as in situ product recovery (ISPR), are attractive in that they can concentrate products from a reactor and minimize solvent loss, thereby increasing purity and sustainability of the process. In bioprocesses, ISPR can have an additional advantage of increasing productivity by alleviating product inhibition on the microorganism. In this work, we developed a liquid-liquid extraction (LLE)-based ISPR system integrated with downstream distillation to selectively purify free carboxylic acids, which were selected as exemplary bioproducts due to their ability to be produced at industrially relevant titers and productivities. Equilibrium constants for the extraction of carboxylic acids into a phosphine-oxide based organic phase were experimentally determined. Complete recovery of acids from the extractant and recyclability of the organic phase were demonstrated through multiple extraction-distillation cycles. Using these data, an equilibrium model was developed to predict the acid loading in the organic phase as a function of the extraction equilibrium constant, initial aqueous acid concentration, pH, organic to aqueous volume ratio, and temperature. A distillation process model was then used to predict the energy input required to distill neat acid from an organic phase as a function of the acid loading in the organic phase feed. The heat integrated distillation train can achieve neat recovery of acetic acid with an energy input of 2.6 MJ kg-1 of acetic acid. This LLE-based ISPR system integrated with downstream distillation has an estimated carbon footprint of less than 0.36 kg CO2 per kg of acetic acid, and provides a green approach to enable both new industrial bioprocesses, and process intensification of existing industrial operations by (1) increasing the productivity and titer of

  5. Thermal stability of carboxylic acid functionality in coal; Sekitanchu ni sonzaisuru karubokishiruki no netsubunkai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Y.; Aida, T. [Kinki University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    Carboxyl in coal was focused in discussing its pyrolytic behavior while tracking change of its absolute amount relative to the heating temperatures. A total of four kinds of coals, consisting of two kinds brown coals, sub-bituminous coal and bituminous coal were used. Change in the absolute amount of carboxyl due to heating varies with coalification degree. Decomposition starts in the bituminous coal from around 300{degree}C, and is rapidly accelerated when 400{degree}C is exceeded. Carboxyls in brown coals exist two to three times as much as those in bituminous and sub-bituminous coals, of which 40% is decomposed at a temperature as low as about 300{degree}C. Their pyrolytic behavior at temperatures higher than 400{degree}C resembles that of the bituminous coal. Carboxyls consist of those easy to decompose and difficult to decompose. Aromatic and aliphatic carboxylic acids with simple structure are stable at temperatures lower than 300{degree}C, and decompose abruptly from about 400{degree}C, hence their behavior resembles that of carboxyls in bituminous and sub-bituminous coals. Structure of low-temperature decomposing carboxyls in brown coals is not known, but it is assumed that humic acid originated from natural materials remains in the structure. 4 refs., 3 figs., 1 tab.

  6. Unusual metal-ligand charge transfer in ferrocene functionalized μ3-O iron carboxylates observed with Mössbauer spectroscopy

    International Nuclear Information System (INIS)

    Mereacre, Valeriu; Schlageter, Martin; Eichhöfer, Andreas; Bauer, Thomas; Wolny, Juliusz A.; Schünemann, Volker; Powell, Annie K.

    2016-01-01

    Temperature dependent Mössbauer studies of two ferrocenecarboxylate functionalized {Fe 3 O} complexes in solid state are reported. It was found that conjugation of ferrocene ring orbitals with the π orbitals of the adjacent carboxylic group promotes a shift of electron density from the ferrocene Fe II ion to the cyclopentadienide rings with π-orbital character giving rise to a new type of mixed-valence compound. - Highlights: • In this manuscript we describe a mechanism of electron density shift which stabilizes the trapped mixed-valence state. • The coexistence of ferrocene and ferrocenium in solid state was determined. • A mixed-valence state at room-temperature and a thermally induced electron transfer with gradual interconversion were observed.

  7. Synthesis and characterization of silver nanoparticles from (bis)alkylamine silver carboxylate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Uznanski, Pawel, E-mail: puznansk@cbmm.lodz.pl; Zakrzewska, Joanna [Centre of Molecular and Macromolecular Studies, PAS (Poland); Favier, Frederic, E-mail: fredf@univ-montp2.fr [Université Montpellier II, ICGM - UMR5253- Equipe AIME (France); Kazmierski, Slawomir; Bryszewska, Ewa [Centre of Molecular and Macromolecular Studies, PAS (Poland)

    2017-03-15

    A comparative study of amine and silver carboxylate adducts [R{sub 1}COOAg-2(R{sub 2}NH{sub 2})] (R{sub 1} = 1, 7, 11; R{sub 2} = 8, 12) as a key intermediate in NPs synthesis is carried out via differential scanning calorimetry, solid-state FT-infrared spectroscopy, {sup 13}C CP MAS NMR, powder X-ray diffraction and X-ray photoelectron spectroscopy, and various solution NMR spectroscopies ({sup 1}H and {sup 13}C NMR, pulsed field gradient spin-echo NMR, and ROESY). It is proposed that carboxyl moieties in the presence of amine ligands are bound to silver ions via chelating bidentate type of coordination as opposed to bridging bidentate coordination of pure silver carboxylates resulting from the formation of dimeric units. All complexes are packed as lamellar bilayer structures. Silver carboxylate/amine complexes show one first-order melting transition. The evidence presented in this study shows that phase behavior of monovalent metal carboxylates are controlled, mainly, by head group bonding. In solution, insoluble silver salt is stabilized by amine molecules which exist in dynamic equilibrium. Using (bis)amine-silver carboxylate complex as precursor, silver nanoparticles were fabricated. During high-temperature thermolysis, the (bis)amine-carboxylate adduct decomposes to produce silver nanoparticles of small size. NPs are stabilized by strongly interacting carboxylate and trace amounts of amine derived from the silver precursor interacting with carboxylic acid. A corresponding aliphatic amide obtained from silver precursor at high-temperature reaction conditions is not taking part in the stabilization. Combining NMR techniques with FTIR, it was possible to follow an original stabilization mechanism.

  8. Determination of perfluoroalkyl carboxylic, sulfonic, and phosphonic acids in food.

    Science.gov (United States)

    Ullah, Shahid; Alsberg, Tomas; Vestergren, Robin; Berger, Urs

    2012-11-01

    A sensitive and accurate method was developed and validated for simultaneous analysis of perfluoroalkyl carboxylic acids, sulfonic acids, and phosphonic acids (PFPAs) at low picograms per gram concentrations in a variety of food matrices. The method employed extraction with acetonitrile/water and cleanup on a mixed-mode co-polymeric sorbent (C8 + quaternary amine) using solid-phase extraction. High-performance liquid chromatographic separation was achieved on a C18 column using a mobile phase gradient containing 5 mM 1-methyl piperidine for optimal chromatographic resolution of PFPAs. A quadrupole time-of-flight high-resolution mass spectrometer operating in negative ion mode was used as detector. Method detection limits were in the range of 0.002 to 0.02 ng g(-1) for all analytes. Sample preparation (extraction and cleanup) recoveries at a spiking level of 0.1 ng g(-1) to a baby food composite were in the range of 59 to 98 %. A strong matrix effect was observed in the analysis of PFPAs in food extracts, which was tentatively assigned to sorption of PFPAs to the injection vial in the solvent-based calibration standard. The method was successfully applied to a range of different food matrices including duplicate diet samples, vegetables, meat, and fish samples.

  9. Structural and thermal properties of carboxylic acid functionalized polythiophenes

    Directory of Open Access Journals (Sweden)

    Ariane de França Mescoloto

    2014-01-01

    Full Text Available Polythiophenes functionalized with polar groups at the end of side-chain have emerged as an alternative method to obtain good compatibility between this class of conjugated polymers and electron acceptor compounds. The aim is to prevent phase segregation and to improve the efficiency of the polythiophene technological devices. However, homopolymers synthesized from thiophene rings with high polar groups at the end of the side-chain, such as hydroxyl and carboxylic acid groups, are poorly soluble in common volatile organic solvents. We report on a systematic preparation of copolymers of 3-hexylthiophene (HT and thiophene-3-acetic acid (TAA, using different feed ratios. The chemical structures of the copolymers were confirmed by FTIR and ¹H-NMR. The TAA content in these copolymers were 33, 38 and 54 mol %. HPSEC results did not show any remarkable correlation with TAA contents in the copolymers. In contrast, the thermal analyses showed a decrease in the thermal stability and an increase in rigidity of their backbones, for the copolymers with high amounts of TAA. The solubility and optical property of copolymers were also related to the TAA contents. Thus, the properties of these copolymers can be modulated by a simple control of feed ratio of TAA in the copolymerization.

  10. Carboxylated Fullerene at the Oil/Water Interface.

    Science.gov (United States)

    Li, Rongqiang; Chai, Yu; Jiang, Yufeng; Ashby, Paul D; Toor, Anju; Russell, Thomas P

    2017-10-04

    The self-assembly of carboxylated fullerene with poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) with different molecular weights, poly-2-vinylpyridine, and amine-terminated polystyrene, at the interface between toluene and water was investigated. For all values of the pH, the functionalized fullerene interacted with the polymers at the water/toluene interface, forming a nanoparticle network, reducing the interfacial tension. At pH values of 4.84 and 7.8, robust, elastic films were formed at the interface, such that hollow tubules could be formed in situ when an aqueous solution of the functionalized fullerene was jetted into a toluene solution of PS-b-P2VP at a pH of 4.84. With variation of the pH, the mechanical properties of the fullerene/polymer assemblies can be varied by tuning the strength of the interactions between the functionalized fullerenes and the PS-b-P2VP.

  11. Biocompatible and detectable carboxylated nanodiamond on human cell

    International Nuclear Information System (INIS)

    Liu, K-K; Cheng, C-L; Chang, C-C; Chao, J-I

    2007-01-01

    Surface-modified carboxylated nanometre-sized diamond (cND) has been applied for the conjugation of biological molecules such as DNA and protein. In this study, we evaluated the biocompatibility and detection of cNDs and carbon nanotubes on human lung A549 epithelial cells and HFL-1 normal fibroblasts. Treatment with 5 or 100 nm cND particles, 0.1-100 μg ml -1 , did not reduce the cell viability and alter the protein expression profile in lung cells; however, carbon nanotubes induced cytotoxicity in these cells. The cNDs particles were accumulated in A549 cells, which were observed by atomic force microscopy and laser scanning confocal microscopy. Both 5 and 100 nm cNDs particles exhibited the green fluorescence and were ingested into cells. Moreover, the fluorescence intensities were increased in cells via a concentration-dependent manner after treatment with 5 and 100 nm cNDs, which can be detected by flow cytometer analysis. The fluorescence intensities of 5 nm cNDs were relative higher than 100 nm cNDs in cells at equal concentration treatment. The observation demonstrated that cND-interacting with cell is detectable by a confocal microscope, flow cytometer and atomic force microscope. These nanoparticles may be useful for further biomedical applications based on the properties of uptake ability, detectability and little cytotoxicity in human cells

  12. Variable Denticity in Carboxylate Binding to the Uranyl Coordination Complexes

    International Nuclear Information System (INIS)

    Groenewold, G.S.; De Jong, Wibe A.; Oomens, Jos; Van Stipdonk, Michael J.

    2010-01-01

    Tris-carboxylate complexes of the uranyl (UO2)2+ cation with acetate and benzoate were generated using electrospray ionization mass spectrometry, and then isolated in a Fourier transformion cyclotron resonance mass spectrometer. Wavelength-selective infrared multiple photon dissociation (IRMPD) of the tris-acetatouranyl anion resulted in a redox elimination of an acetate radical, which was used to generate an IR spectrum that consisted of six prominent absorption bands. These were interpreted with the aid of density functional theory calculations in terms of symmetric and antisymmetric -CO2 stretches of both the monodentate and bidentate acetate, CH3 bending and umbrella vibrations, and a uranyl O-U-O asymmetric stretch. The comparison of the calculated and measured IR spectra indicated that the tris-acetate complex contained two acetate ligands bound in a bidentate fashion, while the third acetate was monodentate. In similar fashion, the tris-benzoate uranyl anion was formed and photodissociated by loss of a benzoate radical, enabling measurement of the infrared spectrum that was in close agreement with that calculated for a structure containing one monodentate, and two bidentate benzoate ligands.

  13. Biocompatible and detectable carboxylated nanodiamond on human cell

    Energy Technology Data Exchange (ETDEWEB)

    Liu, K-K [Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan (China); Cheng, C-L [Department of Physics, National Dong Hwa University, Hualien 974, Taiwan (China); Chang, C-C [Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu 300, Taiwan (China); Chao, J-I [Institute of Pharmacology and Toxicology, Tzu Chi University, Hualien 970, Taiwan (China)

    2007-08-15

    Surface-modified carboxylated nanometre-sized diamond (cND) has been applied for the conjugation of biological molecules such as DNA and protein. In this study, we evaluated the biocompatibility and detection of cNDs and carbon nanotubes on human lung A549 epithelial cells and HFL-1 normal fibroblasts. Treatment with 5 or 100 nm cND particles, 0.1-100 {mu}g ml{sup -1}, did not reduce the cell viability and alter the protein expression profile in lung cells; however, carbon nanotubes induced cytotoxicity in these cells. The cNDs particles were accumulated in A549 cells, which were observed by atomic force microscopy and laser scanning confocal microscopy. Both 5 and 100 nm cNDs particles exhibited the green fluorescence and were ingested into cells. Moreover, the fluorescence intensities were increased in cells via a concentration-dependent manner after treatment with 5 and 100 nm cNDs, which can be detected by flow cytometer analysis. The fluorescence intensities of 5 nm cNDs were relative higher than 100 nm cNDs in cells at equal concentration treatment. The observation demonstrated that cND-interacting with cell is detectable by a confocal microscope, flow cytometer and atomic force microscope. These nanoparticles may be useful for further biomedical applications based on the properties of uptake ability, detectability and little cytotoxicity in human cells.

  14. Thermodynamic properties of alkyl 1H-indole carboxylate derivatives: A combined experimental and computational study

    International Nuclear Information System (INIS)

    Carvalho, Tânia M.T.; Amaral, Luísa M.P.F.; Morais, Victor M.F.; Ribeiro da Silva, Maria D.M.C.

    2016-01-01

    Highlights: • Combustion of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate by static bomb calorimetry. • The Knudsen mass-loss effusion technique was used to measure the vapour pressures of compounds at different temperatures. • Enthalpies of sublimation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate. • Gas-phase enthalpies of formation of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate have been derived. • Gas-phase enthalpies of formation estimated from G3(MP2) calculations. - Abstract: The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, at T = 298.15 K, were derived from measurements of the standard massic energies of combustion using a static bomb combustion calorimeter. The Knudsen effusion technique was used to measure the vapour pressures as a function of the temperature, which allowed determining the standard molar enthalpies of sublimation of these compounds. The standard (p"o = 0.1 MPa) molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, yielding −(207.6 ± 3.6) kJ·mol"−"1 and −(234.4 ± 2.4) kJ·mol"−"1, for methyl 1H-indole-3-carboxylate and ethyl 1H-indole-2-carboxylate, respectively. Quantum chemical studies were also conducted, in order to complement the experimental study. The gas-phase enthalpies of formation were estimated from high level ab initio molecular orbital calculations, at the G3(MP2) level, for the compounds studied experimentally, extending the study to the methyl 1H-indole-2-carboxylate and ethyl 1H-indole-3-carboxylate. The results obtained were compared with the experimental data and were also analysed in terms of structural enthalpic group contributions.

  15. Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.

    Science.gov (United States)

    Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong

    2014-12-08

    Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Biosynthesis of quinoxaline antibiotics: Purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus

    International Nuclear Information System (INIS)

    Glund, K.; Schlumbohm, W.; Bapat, M.; Keller, U.

    1990-01-01

    A quinoxaline-2-carboxylic acid activating enzyme was purified to homogeneity from triostin-producing Streptomyces triostinicus. It could also be purified from quinomycin-producing Streptomyces echinatus. Triostins and quinomycins are peptide lactones that contain quinoxaline-2-carboxylic acid as chromophoric moiety. The enzyme catalyzes the ATP-pyrophosphate exchange reaction dependent on quinoxaline-2-carboxylic acid and the formation of the corresponding adenylate. Besides quinoxaline-2-carboxylic acid, the enzyme also catalyzes the formation of adenylates from quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid. No adenylates were seen from quinoline-3-carboxylic acid, quinoline-4-carboxylic acid, pyridine-2-carboxylic acid, and 2-pyrazinecarboxylic acid. Previous work revealed that quinoline-2-carboxylic acid and thieno[3,2-b]pyridine-5-carboxylic acid became efficiently incorporated into the corresponding quinoxaline antibiotic analogues in vivo. Together with the data described here, this suggests that the enzyme is part of the quinoxaline antibiotics synthesizing enzyme system. The enzyme displays a native molecular weight of 42,000, whereas in its denatured form it is a polypeptide of Mr 52,000-53,000. It resembles in its behavior actinomycin synthetase I, the chromophore activating enzyme involved in actinomycin biosynthesis

  17. Phase behavior and micellar properties of carboxylic acid end group modified pluronic surfactants

    NARCIS (Netherlands)

    Custers, J.P.A.; Broeke, van den L.J.P.; Keurentjes, J.T.F.

    2007-01-01

    The micellar behavior of three different carboxylic acid end standing (CAE) surfactants has been characterized using conductometry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. The CAE surfactants are modified high molecular weight Pluronic

  18. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.

    Science.gov (United States)

    Sehaqui, H; Kulasinski, K; Pfenninger, N; Zimmermann, T; Tingaut, P

    2017-01-09

    We report herein the preparation of 4-6 nm wide carboxyl-functionalized cellulose nanofibers (CNF) via the esterification of wheat fibers with cyclic anhydrides (maleic, phtalic, and succinic) followed by an energy-efficient mechanical disintegration process. Remarkable results were achieved via succinic anhydride esterification that enabled CNF isolation by a single pass through the microfluidizer yielding a transparent and thick gel. These CNF carry the highest content of carboxyl groups ever reported for native cellulose nanofibers (3.8 mmol g -1 ). Compared to conventional carboxylated cellulose nanofibers prepared via Tempo-mediated oxidation of wheat fibers, the present esterified CNF display a higher molar-mass and a better thermal stability. Moreover, highly carboxylated CNF from succinic anhydride esterification were effectively integrated into paper filters for the removal of lead from aqueous solution and are potentially of interest as carrier of active molecules or as transparent films for packaging, biomedical or electronic applications.

  19. High-level production of C-11-carboxyl-labeled amino acids

    International Nuclear Information System (INIS)

    Washburn, L.C.; Sun, T.T.; Byrd, B.L.; Hayes, R.L.; Butler, T.A.; Callahan, A.P.

    1979-01-01

    Carbon-11-labeled amino acids have significant potential as agents for positron tomographic functional imaging. We have developed a rapid, high-temperature, high-pressure modification of the Buecherer--Strecker amino acid synthesis and found it to be quite general for the production of C-11-carboxyl-labeled neutral amino acids. Production of C-11-carboxyl-labeled DL-tryptophan requires certain modifications in the procedure. Twelve different amino acids have been produced to date by this technique. Synthesis and chromatographic purification require approximately 40 min, and C-11-carboxyl-labeled amino acids have been produced in yields of up to 425 mCi. Two C-11-carboxyl-labeled amino acids are being investigated clinically for tumor scanning and two others for pancreatic imaging. Over 120 batches of the various agents have been produced for clinical use over a three-year period

  20. Enhancement of carboxylic acid degradation with sulfate radical generated by persulfate activation.

    Science.gov (United States)

    Criquet, J; Nebout, P; Karpel Vel Leitner, N

    2010-01-01

    The aim of this work was to investigate the generation of sulfate radical for the removal of two carboxylic acids in aqueous solution: acetic and citric acids. From photochemical and radiolytic processes, kinetics of the degradation of these two carboxylic acids was studied as a function of the pH of the solution. It was shown that the maximum of acetic acid degradation occurred at pH 5. Above this pH, competitive reactions with the carbon mineralized inhibit the reaction of with the solute. In the case of citric acid, pH has only a little effect on the kinetic of citric acid degradation. The determination of mineralization yields shows several differences depending on carboxylic acids and pH. The degradation of both carboxylic acids was also studied in the radiolysis process whether with or without persulfate addition. A comparison of the processes of sulfate radical production is presented.

  1. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction

    DEFF Research Database (Denmark)

    Persson, Tobias; Yde, Christina W.; Rasmussen, Jakob Ewald

    2007-01-01

    Densely functionalised pyrazole carboxamides and carboxylic acids were synthesised in an expedient manner through saponification and transamidation, respectively, of ester-functionalised pyrazoles. This synthetic protocol allowed for three diversifying steps in which appendages on the pyrazole...

  2. Plastic scintillators with high loading of one or more metal carboxylates

    Science.gov (United States)

    Cherepy, Nerine; Sanner, Robert Dean

    2016-01-12

    In one embodiment, a material includes at least one metal compound incorporated into a polymeric matrix, where the metal compound includes a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands includes a tertiary butyl group, and where the material is optically transparent. In another embodiment, a method includes: processing pulse traces corresponding to light pulses from a scintillator material; and outputting a result of the processing, where the scintillator material comprises at least one metal compound incorporated into a polymeric matrix, the at least one metal compound including a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands has a tertiary butyl group, and where the scintillator material is optically transparent and has an energy resolution at 662 keV of less than about 20%.

  3. Versatile Multicomponent Reaction Macrocycle Synthesis Using α-Isocyano-ω-carboxylic Acids

    NARCIS (Netherlands)

    Liao, George P; Abdelraheem, Eman M M; Neochoritis, Constantinos G; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; McGowan, David C; Dömling, Alexander

    2015-01-01

    The direct macrocycle synthesis of α-isocyano-ω-carboxylic acids via an Ugi multicomponent reaction is introduced. This multicomponent reaction (MCR) protocol differs by being especially short, convergent, and versatile, giving access to 12-22 membered rings.

  4. Enrichment of Nanodiamond Surfaces with Carboxyl Groups for Doxorubicin Loading and Release

    Science.gov (United States)

    Astuti, Y.; Saputra, F. D.; Wuning, S.; Arnelli; Bhaduri, G.

    2017-02-01

    In their pristine state, nanodiamond crystals produced via detonation techniques containing several functional groups present on the surface including amine, amide, alcohol, carbonyl, and carboxyl. These functional groups facilitate nanodiamond to interact drugs so as to nanodiamond is potential for medical application such as drug delivery. Even though research on t he use of nanodiamond for this application has been conducted widely, research on the effect of enrichment of nanodiamond surface with carboxyl functional groups for drug loading and release has not been explored extensively. Therefore, in this paper, the effect of carboxyl-terminated nanodiamond (ND-COOH) on drug loading and release will be presented. The enrichment of nanodiamond with carboxyl groups was undertaken by treating nanodiamond with sulphuric acid and nitric acid. The results show that the doxorubicin (DOX) loading and release efficiencies of ND pristine are higher than that of ND-COOH.

  5. Comparative in vitro toxicity assessment of perfluorinated carboxylic acids.

    Science.gov (United States)

    Mahapatra, Cecon T; Damayanti, Nur P; Guffey, Samuel C; Serafin, Jennifer S; Irudayaraj, Joseph; Sepúlveda, Maria S

    2017-06-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic fluorinated compounds that are highly bioaccumulative and persistent organic pollutants. Perfluorooctanoic acid (PFOA), an eight-carbon chain perfluorinated carboxylic acid, was used heavily for the production of fluoropolymers, but concerns have led to its replacement by shorter carbon chain homologues such as perfluorohexanoic acid (PFHxA) and perfluorobutanoic acid (PFBA). However, limited toxicity data exist for these substitutes. We evaluated the toxicity of PFOA, PFHxA and PFBA on a zebrafish liver cell line and investigated the effects of exposure on cell metabolism. Gross toxicity after 96 h of exposure was highest for PFOA and PFO - , while PFHxA and PFBA exhibited lower toxicity. Although the structural similarity of these compounds to fatty acids suggests the possibility of interference with the transport and metabolism of lipids, we could not detect any differential expression of peroxisome proliferator-activated receptor (ppar-α, -β and -γ), fabp3 and crot genes after 96 h exposure to up to 10 ppm of the test compounds. However, we observed localized lipid droplet accumulation only in PFBA-exposed cells. To study the effects of these compounds on cell metabolism, we conducted fluorescence lifetime imaging microscopy using naturally fluorescent biomarkers, NADH and FAD. The fluorescence lifetimes of NADH and FAD and the bound/free ratio of each of these coenzymes decreased in a dose- and carbon length-dependent manner, suggesting disruption of cell metabolism. In sum, our study revealed that PFASs with shorter carbon chains are less toxic than PFOA, and that exposure to sublethal dosage of PFOA, PFHxA or PFBA affects cell metabolism. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Inactivation of 1-aminocyclopropane-1-carboxylate oxidase involves oxidative modifications.

    Science.gov (United States)

    Barlow, J N; Zhang, Z; John, P; Baldwin, J E; Schofield, C J

    1997-03-25

    1-Aminocyclopropane-1-carboxylate (ACC) oxidase catalyzes the final step in the biosynthesis of the plant signaling molecule ethylene. It is a member of the ferrous iron dependent family of oxidases and dioxygenases and is unusual in that it displays a very short half-life under catalytic conditions, typically less than 20 min, and a requirement for CO2 as an activator. The rates of inactivation of purified, recombinant ACC oxidase from tomato under various combinations of substrates and cofactors were measured. Inactivation was relatively slow in the presence of buffer alone (t1/2 > 1 h), but fast in the presence of ferrous iron and ascorbate (t1/2 approximately 10 min). The rate of iron/ascorbate-mediated inactivation was increased by the addition of ACC, unaffected by the addition of CO2 at saturation (supplied as bicarbonate) but decreased by the addition of catalase or ACC + CO2 at saturation (supplied as bicarbonate). Iron/ascorbate-mediated inactivation was accompanied by partial proteolysis as observed by SDS-PAGE analysis. The fragmentation pattern was altered when ACC was also included, suggesting that ACC can bind to ACC oxidase in the absence of bicarbonate. N-terminal sequencing of fragments resulted in identification of an internal cleavage site which we propose is proximate to active-site bound iron. Thus, ACC oxidase inactivates via relatively slow partial unfolding of the catalytically active conformation, oxidative damage mediated via hydrogen peroxide which is catalase protectable and oxidative damage to the active site which results in partial proteolysis and is not catalase protectable.

  7. Aerosol volatility and enthalpy of sublimation of carboxylic acids.

    Science.gov (United States)

    Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias

    2010-04-08

    The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.

  8. Effectiveness of carboxylic acids from Pichia membranifaciens against coffee rust

    Directory of Open Access Journals (Sweden)

    Rosa Laura Andrade Melchor

    Full Text Available ABSTRACT Coffee rust is a fungal disease that has affected every coffee-producing region in the world. Given that the effectivity of the protectant and systemic fungicides applied routinely to control the spread of the causative agent of the disease (Hemileia vastatrix has gradually diminished, besides are harmful to mammals and ecosystems, the objective of this work was to search for a mixture of harmless natural compounds with the potential to be applied in the field. So, a yeast strain producing a battery of long-chain carboxylic acids (CA with fungicide properties was isolated from soil of coffee crop and identified as Pichia membranifaciens by ITS sequencing. Culture conditions of the yeast were optimized and the CA in the solution were characterized by Gas Chromatography-Mass Spectrometry (GC-MS as ethyl formate (55.5 g L-1, octadecenoic acid (3.5 g L-1, propionic acid (7.2 g L-1, 3-(octadecanoyl-propionic acid (7.2 g L-1 and methyl acetate (8.4 g L-1. Randomized field studies were conducted in three different locations in Chiapas, México. Five treatments were tested including three concentrations of the CA solution (389, 584 and 778 ppm and copper oxychloride (5 000 ppm as conventional control. The initial coffee rust incidence averages varied between sites: Maravillas (3-9%, Santo Domingo (10-16% and Búcaro (16-22%. The treatments of CA solution proved to be effective at slowing down the progress of the rust disease even for the sites where initial incidence was high. Likewise, the CA solution reduced the viability of H. vastatrix spores, as assessed by fluorescence microscopy.

  9. In Vitro Activity of Copper(II Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Patricia B. da Silva

    2016-05-01

    Full Text Available Tuberculosis (TB is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb, presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS composed of 10% phase oil (cholesterol, 10% surfactant (soy phosphatidylcholine, sodium oleate, and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8, and an 80% aqueous phase (phosphate buffer pH = 7.4 as a tactic to enhance the in vitro anti-Mtb activity of the copper(II complexes [CuCl2(INH2]·H2O (1, [Cu(NCS2(INH2]·5H2O (2 and [Cu(NCO2(INH2]·4H2O (3. The Cu(II complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI was calculated using the cytotoxicity index (IC50 against Vero (ATCC® CCL-81, J774A.1 (ATCC® TIB-67, and MRC-5 (ATCC® CCL-171 cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.. These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB.

  10. Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity.

    Science.gov (United States)

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2014-09-01

    Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    Science.gov (United States)

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  12. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    Science.gov (United States)

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  13. Adsorption Equilibrium Equation of Carboxylic Acids on Anion-Exchange Resins in Water.

    Science.gov (United States)

    Kanazawa, Nobuhiro; Urano, Kohei; Kokado, Naohiro; Urushigawa, Yoshikuni

    2001-06-01

    The adsorption of propionic acid and benzoic acid on anion-exchange resins was analyzed, and an adsorption equilibrium equation of carboxylic acids was proposed. The adsorption of carboxylic acids on the anion-exchange resins was considered to be the sum of the physical adsorption of the molecule and the ion-exchange adsorption of the ion, which were independent of each other. For the physical adsorption of carboxylic acids, it was conformed to the Freundlich equation. For the ion-exchange adsorption of carboxylate ions, the equilibrium equation corresponded well with the experimental results for wide ranges of concentration and pH. The equation contains a selectivity coefficient S(A)(Cl) for the chloride ion versus the carboxylate ion, which was considered essentially a constant. The influent of the bicarbonate ion from carbon dioxide in air could also be expressed by the additional equilibrium equation with the selectivity coefficient S(HCO(3))(Cl) for the chloride ion versus the bicarbonate ion. Consequently, an adsorption equilibrium equation can estimate the equilibrium adsorption amounts. Even the effect of a coexisting bicarbonate ion is inconsequential when the parameters of the Freundlich isotherm equation and the selectivity coefficients of the carboxylate ion and the bicarbonate ion in each resin are determined in advance. Copyright 2001 Academic Press.

  14. Highly visible-light luminescence properties of the carboxyl-functionalized short and ultrashort MWNTs

    International Nuclear Information System (INIS)

    Luo Yongsong; Xia Xiaohong; Liang Ying; Zhang Yonggang; Ren Qinfeng; Li Jialin; Jia Zhijie; Tang Yiwen

    2007-01-01

    Luminescence of the short multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups has been studied. The results show that the carboxyl-functionalized short MWNTs could emit luminescence and the emission peak appears at 500 nm with a corresponding optimal excitation wavelength centering at 310 nm. When the short MWNTs are filtered through 0.15 μm polytetrafluoroethylene (PTFE) membrane, the ultrashort MWNTs are obtained from the filtrate. An interesting feature for the ultrashort MWNTs is that the emission intensity is strengthened and the peak is slightly blue shifted to 460 nm. This result indicates that the luminescence properties of MWNTs are strongly affected by the tube length. After chemical oxidization cutting, defects and carboxylic acid groups at the tube end and/or sidewall can be produced; the more shorten of MWNTs, the better dispersion and carboxylic passivation of the nanotubes, and the more intense luminescence emissions. The broad emissions are logically attributed to the trapping of excitation energy by defect sites in the carboxyl-functionalized nanotube structure. - Graphical abstract: Luminescence of the short and ultrashort multiwalled carbon nanotubes (MWNTs) conjugated with carboxylic acid groups, which is logically attributed to the trapping of excitation energy by defect sites, has been studied

  15. Extraction characteristics of trivalent lanthanides and actinides in mixtures of dinonylnaphthalenesulfonic acid and carboxylic acids

    International Nuclear Information System (INIS)

    West, M.H.

    1983-03-01

    Dinonylnaphthalenesulfonic acid (HDNNS) has been shown to be an effective liquid cation exchanger for the extraction of metal ions. This extractant has proven to be successful in the extraction of trivalent lanthanides and actinides in the pH range of 2.0 to 3.0, although it shows little selectivity for individual ions because of its strong acid character. In an effort to improve the selectivity of HDNNS between trivalent lanthanides and actinides, carboxylic acids were added to the organic phase and the effects on the extraction characteristics of HDNNS were investigated. Three carboxylic acids - nonanoic, cyclohexanecarboxylic, and cyclohexanebutyric - were studied with the following metals: Am(III), Cm(III), Ce(III), Eu(III), and Tm(III). The distributions of the metal ions were studied holding the HDNNS concentration constant while varying the carboxylic acid concentrations over a range of 1.0 x 10 -5 M to 1.0 M. Results indicated that the greatest enhancement of the extraction occurred at a carboxylic acid concentration of 1.0 x 10 -2 M with negative effects occurring at 0.5 M and 1.0 M. The effects on the extraction of the trivalent lanthanides and actinides were interpreted in terms of the structural differences of the carboxylic acids, the effect of the carboxylic acids on the HDNNS extraction mechanism, and the ionic properties of the metals studied

  16. Carboxyl-terminal parathyroid hormone fragments: role in parathyroid hormone physiopathology.

    Science.gov (United States)

    D'Amour, Pierre; Brossard, Jean-Hugues

    2005-07-01

    Carboxyl-terminal parathyroid hormone (C-PTH) fragments constitute 80% of circulating PTH. Since the first 34 amino acids of the PTH structure are sufficient to explain PTH classical biological effects on the type I PTH/PTHrP receptor and since C-PTH fragments do not bind to this receptor, they have long been considered inactive. Recent data suggest the existence of a C-PTH receptor through which C-PTH fragments exert biological effects opposite to those of human PTH(1-84) on the type I PTH/PTHrP receptor. This is why a lot of attention has been paid to these fragments recently. In vivo, synthetic C-PTH fragments are able to decrease calcium concentration, to antagonize the calcemic response to human PTH(1-34) and human PTH(1-84) and to decrease the high bone turnover rate induced by human PTH(1-84). In vitro, they inhibit bone resorption, promote osteocyte apoptosis and exert a variety of effects on bone and cartilaginous cells. These effects are opposite to those of human PTH(1-84) on the PTH/PTHrP type I receptor. This suggests that the molecular forms of circulating PTH may control bone participation in calcium homeostasis via two different receptors. Clinically, the accumulation of C-PTH fragments in renal failure patients may cause PTH resistance and may be associated with adynamic bone disease. Rare parathyroid tumors, without a set point error, overproduce C-PTH fragments. The implication of C-PTH fragments in osteoporosis is still to be explored. C-PTH fragments represent a new field of investigation in PTH biology. More studies are necessary to disclose their real importance in calcium and bone homeostasis in health and disease.

  17. Functional properties and structural characterization of rice δ1-pyrroline-5-carboxylate reductase

    Directory of Open Access Journals (Sweden)

    Giuseppe eForlani

    2015-07-01

    Full Text Available The majority of plant species accumulate high intracellular levels of proline to cope with hyperosmotic stress conditions. Proline synthesis from glutamate is tightly regulated at both the transcriptional and the translational levels, yet little is known about the mechanisms for post-translational regulation of the enzymatic activities involved. The gene coding in rice (Oryza sativa L. for δ1-pyrroline-5-carboxylate (P5C reductase, the enzyme that catalyzes the second and final step in this pathway, was isolated and expressed in E. coli. The structural and functional properties of the affinity-purified protein were characterized. As for most species, rice P5C reductase was able to use in vitro either NADH or NADPH as the electron donor. However, strikingly different effects of cations and anions were found depending on the pyridine nucleotide used, namely inhibition of NADH-dependent activity and stimulation of NADPH-dependent activity. Moreover, physiological concentrations of proline and NADP+ were strongly inhibitory for the NADH-dependent reaction, whereas the NADPH-dependent activity was mildly affected. Our results suggest that only NADPH may be used in vivo and that stress-dependent variations in ion homeostasis and NADPH/NADP+ ratio could modulate enzyme activity, being functional in promoting proline accumulation and potentially also adjusting NADPH consumption during the defense against hyperosmotic stress. The apparent molecular weight of the native protein observed in size exclusion chromatography indicated a high oligomerization state. We also report the first crystal structure of a plant P5C reductase at 3.40-Å resolution, showing a decameric quaternary assembly. Based on the structure, it was possible to identify dynamic structural differences among rice, human and bacterial enzymes.

  18. The significant role of carboxylated carbonaceous fragments in the electrochemistry of carbon nanotubes.

    Science.gov (United States)

    Ma, Xiao; Jia, Li; Zhang, Lu; Zhu, Liande

    2014-04-01

    Carbon nanotubes (CNTs) have been widely employed as electrode materials in diverse branches of electrochemistry, which are claimed to display dramatically improved electrochemical behaviour compared to the conventional carbon materials. But a series of recent publications have demonstrated that the electrocatalysis of CNTs might be due to the presence of some impurities, such as metallic catalysts, nanographitic particles and amorphous carbon. For this reason, CNTs are usually purified or treated with nitric acid or nitric and sulphuric acid prior to their versatile applications. However, the strong acidic and oxidative conditions are so aggressive that serious erosion of the tube structures has inevitably taken place, which creates defects on the sidewalls and gives rise to numerous molecular byproducts, commonly referred as carboxylated carbonaceous fragments (CCFs). The adsorption of CCFs on CNTs greatly alters the surface conditions of CNTs which may significantly impact on their electrochemical properties. To this end, we wish to disclose whether the electrocatalysis of the nitric acid purified CNTs is affected by the adsorption of the CCFs. Ascorbic acid (AA) and β-nicotinamide adenine dinucleotide (NADH) as selected as the targeting benchmarks that are known to be insensitive to the presence of metallic impurities, which may guarantee the preclusion of the promoting contributions from the metallic catalysts resident in CNTs. We have demonstrated that the electrocatalytic activities of the CNTs are actually dominated by the adsorbed CCFs generated during the acidic pre-treatment. After removal of the CCFs by base rinse, the electrocatalytic properties of CNTs are greatly deteriorated and degraded to the level similar to the conventional graphite powder. We believe this finding is particularly meaningful to uncover the mysterious electrocatalysis of CNTs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis and Crystal Structure of a 4,4'-bipyridine Linked Dinuclear Copper(II) Complex Derived from 2-{[2-(2-hydroxyethylamino)ethylimino]methyl}-6-methylphenol.

    Science.gov (United States)

    Zhang, Xiu-Zhen; Gu, Yitong; Li, Yuntong; Liu, Andong; Liu, Fuyao; You, Zhonglu; Zhu, Hai-Liang

    2016-12-01

    A novel 4,4'-bipyridine linked dinuclear copper(II) complex, [Cu2L2(bipy)](NO3)2·bipy (L = 2-[2-(2-hydroxyethylamino) ethylimino]methyl-6-methylphenol; bipy = 4,4'-bipyridine), was prepared and characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction. The Cu···Cu distance is 11.129(2) Å. The CuII atom is coordinated by one phenolate O, one imine N, and one amine N atoms of a Schiff base ligand, and one N atom of the bridging 4,4'-bipyridine ligand, forming a square planar geometry. In the crystal structure of the complex, the dinuclear copper complex cations are linked by 4,4'-bipyridine molecules through intermolecular O-H···N hydrogen bonds, to form 1D chains running in the [2 0 -1] direction.

  20. Synthesis and structure elucidation of a copper(II) Schiff-base complex: in vitro DNA binding, pBR322 plasmid cleavage and HSA binding studies.

    Science.gov (United States)

    Tabassum, Sartaj; Ahmad, Musheer; Afzal, Mohd; Zaki, Mehvash; Bharadwaj, Parimal K

    2014-11-01

    New copper(II) complex with Schiff base ligand 4-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-benzoic acid (H₂L) was synthesized and characterized by spectroscopic and analytical and single crystal X-ray diffraction studies which revealed that the complex 1 exist in a distorted octahedral environment. In vitro CT-DNA binding studies were performed by employing different biophysical technique which indicated that the 1 strongly binds to DNA in comparison to ligand via electrostatic binding mode. Complex 1 cleaves pBR322 DNA via hydrolytic pathway and recognizes minor groove of DNA double helix. The HSA binding results showed that ligand and complex 1 has ability to quench the fluorescence emission intensity of Trp 214 residue available in the subdomain IIA of HSA. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Removal of copper(II) from some environmental samples by sorptive-flotation using powdered marble wastes as sorbents and oleic acid as surfactant.

    Science.gov (United States)

    Ghazy, S E; Samra, S E; Mahdy, A F M; El-Morsy, S M

    2004-11-01

    A simple and economic experimental sorptive -flotation procedure is presented for the removal of copper(II) species from aqueous solutions. It is based on using powdered marble wastes (PMW), which are widespread and inexpensive and may represent an environmental problem, as the effective inorganic sorbent and oleic (HOL) as the surfactant. The main parameters (i.e. initial solution pH, sorbent, surfactant and copper concentrations, stirring times, ionic strength, temperature and the presence of foreign ions) influencing the flotation of PMW and /or Cu(II) were examined. Nearly, 100% of PMW and Cu(II) were removed from aqueous solutions at pH7 after stirring for 10 min and at room temperature, (approximately 25 degrees C). The procedure was successfully applied to recover Cu(II) spiked to some natural water samples. A mechanism for sorption and flotation is suggested.

  2. Facile synthesis of gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering

    Science.gov (United States)

    Long, Kailin; Du, Deyang; Luo, Xiaoguang; Zhao, Weiwei; Wu, Zhangting; Si, Lifang; Qiu, Teng

    2014-08-01

    This work reports a facile method to fabricate gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering (SERS) application. The effects of reaction parameters on the shape, size and surface morphology of the products are systematically investigated. The as-prepared 3D hierarchical structures have the advantage of a large surface area available for the formation of hot spots and the adsorption of target analytes, thus dramatically improving the Raman signals. The finite difference time domain calculations indicate that the pine-needle-like model pattern may demonstrate a high quality SERS property owing to the high density and abundant hot spot characteristic in closely spaced needle-like arms.

  3. Stability constants of glutarate complexes of copper(II), zinc(II), cobalt(II) and uranyl(II) by paper electrophoresis

    International Nuclear Information System (INIS)

    Singh, R.K.P.; Yadava, J.R.; Yadava, K.L.

    1981-01-01

    Stability constants of Copper(II), Zinc(II), Cobalt(II) and Uranyl(II) glutarates have been determined by paper electrophoresis. Glutaric acid (0.005 mol dmsup(-3)) was added to the background electrolyte : 0.1 mol dmsup(-3) HClO 4 . The proportions of (CH 2 ) 3 COOH COO - and (CH 2 ) 3 C 2 O 4 2- were varied by changing the pH of the electrolyte. These anions yielded the complexes Cu(CH 2 ) 3 C 2 O 4 , [Zn(CH 2 ) 3 COOH COO] + [Co(CH 2 ) 3 COOH COO] + and UO 2 (CH 2 ) 3 C 2 O 4 whose stability constants are found to be 10sup(3.9), 10sup(2.9), 10sup(2.7) and 10sup(13.5) respectively. (author)

  4. Synthesis and properties of complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine

    International Nuclear Information System (INIS)

    El-Bindary, A.A.; El-Sonbati, A.Z.

    2000-01-01

    Metal complexes of copper(II), nickel(II), cobalt(II) and uranyl ions with 3-(p-tolylsulphonamido)rhodamine (HL) have been prepared and characterized by chemical and thermal analyses, molar conductivity , magnetic susceptibility measurements, and infrared, electronic and EPR spectra. The visible and EPR spectra indicated that the Cu(II) complex has a tetragonal geometry. From EPR spectrum of the Cu(II) complex,various parameters were calculated. The crystal field parameters of Ni(II) complex were calculated and were found to agree fairly well with the values reported for known square pyramidal complexes. The infrared spectral studies showed a monobasic bidentate behaviour with the oxygen and nitrogen donor system. Thermal stabilities of the complexes are also reported. (author)

  5. Development of pyridine-containing macrocyclic copper(II) complexes: potential role in the redox modulation of oxaliplatin toxicity in human breast cells.

    Science.gov (United States)

    Fernandes, Ana S; Costa, Judite; Gaspar, Jorge; Rueff, José; Cabral, M Fátima; Cipriano, Madalena; Castro, Matilde; Oliveira, Nuno G

    2012-09-01

    The unique redox and catalytic chemistry of Cu has justified the development of novel Cu complexes for different therapeutic uses including cancer therapy. In this work, four pyridine-containing aza-macrocyclic copper(II) complexes were prepared (CuL1-CuL4) varying in ring size and/or substituents and their superoxide scavenging activity evaluated. CuL3, the most active superoxide scavenger, was further studied as a modulator of the cytotoxicity of oxaliplatin in epithelial breast MCF10A cells and in MCF7 breast cancer cells. Our results show that CuL3 enhances the therapeutic window of oxaliplatin, by both protecting non-tumour cells and increasing its cytotoxic effect in breast carcinoma cells. CuL3 is thus a promising complex to be further studied and to be used as a lead compound for the optimization of novel chemotherapy sensitizers.

  6. Synthesis, physico-chemical characterization and biological activity of copper(ii and nickel(ii complexes with l-benzoyl-2-methylbenzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2002-01-01

    Full Text Available Chlorides of copper(II and nickel(ll react with 1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole to give complexes of the type [M(LnCln(H20∙Cln (M = Cu or Ni; L = (1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole; n=O, 1 or 2. The complexes were synthesized and characterized by elemental analysis, molar conductivity magnetic susceptibility measurements and IR spectra. These studies suggest that all the complexes possess an octahedral stereochemistry. The antibacterial activity of (1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole and their complexes was evaluated against Escherichia coli and Bacillus sp.

  7. Synthesis, molecular docking and DNA binding studies of phthalimide-based copper(II) complex: In vitro antibacterial, hemolytic and antioxidant assessment

    Science.gov (United States)

    Arif, Rizwan; Nayab, Pattan Sirajuddin; Ansari, Istikhar A.; Shahid, M.; Irfan, Mohammad; Alam, Shadab; Abid, Mohammad; Rahisuddin

    2018-05-01

    In the present research work, we prepared N-substituted phthalimide, 2-(-(2-(2-(2-(1,3-dioxoisoindoline-2-yl-ethylamino)ethylamino)ethyl)isoindoline-1,3-dione (DEEI) and its copper(II) complex. The ligand (DEEI) and its Cu(II) complex were structurally identified using absorption, FTIR, NMR, electron spin resonance, X-ray diffraction spectral studies, thermogravimetric and elemental analyses. The electronic spectrum and magnetic moment value proposed that Cu(II) complex has square planar geometry. The DNA interaction ability of the ligand (DEEI) and Cu(II) complex was studied by means of absorption and fluorescence spectrophotometer, viscosity measurements, cyclic voltammetery, and circular dichroism methods. The extent of DNA binding (Kb) with Calf thymus (Ct-DNA) follows the order of Cu(II) complex (1.11 × 106 M-1) > DEEI (1.0 × 105 M-1), indicating that Cu(II) complex interact with Ct-DNA through groove binding mode and more sturdily than ligand (DEEI). Interestingly, in silico predictions were corroborated with in vitro DNA binding studies. The antibacterial evaluation of these compounds was screened against a panel of bacterial strains Pseudomonas aeruginosa (MTCC 2453), Salmonella enterica (MTCC 3224), Streptococcus pneumoniae (MTCC 655), Enterococcus faecalis (MTCC 439), Klebsiella pneumonia and Escherichia coli (ATCC 25922). The results showed that the copper(II) complex has significant antibacterial potential (IC50 = 0.0019 μg/mL) against Salmonella enteric comparable with ligand (DEEI) and standard drug ciprofloxacin. Growth curve study of Cu(II) complex against only three bacterial strains S. enterica, E. faecalis and S. pneumoniae showed its bactericidal nature. Cu(II) complex showed less than 2% hemolysis on human RBCs indicating its non toxic nature. The results of antioxidant assay demonstrated that scavenging activity of Cu(II) complex is higher as compared to ligand and ascorbic acid as standard.

  8. Unusual saccharin-N,O (carbonyl) coordination in mixed-ligand copper(II) complexes: Synthesis, X-ray crystallography and biological activity

    Science.gov (United States)

    Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed

    2017-07-01

    Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.

  9. Trinuclear rhenium(III) halide clusters with carboxylate ligands

    Science.gov (United States)

    Dougan, Jeffrey Steven

    Four mono(carboxylato)trirhenium complexes and three bis(carboxylato)trirhenium complexes have been synthesized and characterized, principally by mass spectrometry, with supporting evidence from X-ray diffraction. These compounds represent the first trinuclear rhenium carboxylate complexes. The reactions generally proceed readily under comparatively mild conditions. Mass spectrometry has again proved its usefulness as a technique in the field of metal cluster chemistry, having provided the initial identification of the products of the reactions studied. These compounds provide a further base to which future mass spectra of metal cluster compounds can be compared. Re-examination of a reaction reported by Taha and Wilkinson has also cast considerable doubt onto the validity of a conversion widely reported in the literature that transforms (Re3Cl9) x into [Re2(O2CCH3)4Cl 2]. We believe that the literature result is a consequence of the purity of the metal precursor, and suggest that the starting material in the earlier work may have contained ReCl4 or ReCl5. The importance of mass spectrometry in the characterization of the new compounds synthesized in this project has led to a thorough study of calculated isotopic distributions. The information gathered suggests that for isotopically simple molecules, the choice of algorithm for computing an isotopic distribution is unimportant. However, it is important to compute the mass spectrum of an isotopically complex molecule using an algorithm that can, if desired, show the underlying isotopic fine structure of a peak of interest. In the last chapter of this thesis, the results of a project in chemistry education research are presented. Predicting the success of students in general chemistry has long been of interest to the chemistry education community, and several factors have been identified as contributing factors. An off-hand comment by a student inspired an examination of whether continuity with the same instructor for

  10. Non-covalent interactions in 2-methylimidazolium copper(II) complex (MeImH)2[Cu(pfbz)4]: Synthesis, characterization, single crystal X-ray structure and packing analysis

    Science.gov (United States)

    Sharma, Raj Pal; Saini, Anju; Kumar, Santosh; Kumar, Jitendra; Sathishkumar, Ranganathan; Venugopalan, Paloth

    2017-01-01

    A new anionic copper(II) complex, (MeImH)2 [Cu(pfbz)4] (1) where, MeImH = 2-methylimidazolium and pfbz = pentafluorobenzoate has been isolated by reacting copper(II) sulfate pentahydrate, pentafluorobenzoic acid and 2-methylimidazole in ethanol: water mixture in 1:2:2 molar ratio. This complex 1 has been characterized by elemental analysis, thermogravimetric analysis, spectroscopic techniques (UV-Vis, FT-IR) and conductance measurements. The complex salt crystallizes in monoclinic crystal system with space group C2/c. Single crystal X-ray structure determination revealed the presence of discrete ions: [Cu(pfbz)4]2- anion and two 2-methylimidazolium cation (C4H7N2)+. The crystal lattice is stabilized by strong hydrogen bonding and F⋯F interactions between cationic-anionic and the anionic-anionic moieties respectively, besides π-π interactions.

  11. Health Promotion

    DEFF Research Database (Denmark)

    Povlsen, Lene; Borup, I.

    2015-01-01

    and Adolescent Health Promotion', Salutogenesis - from theory to practice' and Health, Stress and Coping'. More than half of all doctoral theses undertaken at NHV during these years had health promotion as their theme. As a derivative, the Nordic Health Promotion Research Network (NHPRN) was established in 2007......In 1953 when the Nordic School of Public Health was founded, the aim of public health programmes was disease prevention more than health promotion. This was not unusual, since at this time health usually was seen as the opposite of disease and illness. However, with the Ottawa Charter of 1986......, the World Health Organization made a crucial change to view health not as a goal in itself but as the means to a full life. In this way, health promotion became a first priority and fundamental action for the modern society. This insight eventually reached NHV and in 2002 - 50 years after the foundation...

  12. Synthesis, spectroscopy, magnetic and redox behaviors of copper(II) complexes with tert-butylated salen type ligands bearing bis(4-aminophenyl)ethane and bis(4-aminophenyl)amide backbones.

    Science.gov (United States)

    Kasumov, Veli T; Yerli, Yusuf; Kutluay, Aysegul; Aslanoglu, Mehmet

    2013-03-01

    New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X=H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X=H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, (1)H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μ(B) per Cu(II)) and 6 (2.79 μ(B) per Cu(II)) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Carboxylic acids in crystallization of macromolecules: learning from successful crystallization experiments.

    Science.gov (United States)

    Offermann, Lesa R; He, John Z; Mank, Nicholas J; Booth, William T; Chruszcz, Maksymilian

    2014-03-01

    The production of macromolecular crystals suitable for structural analysis is one of the most important and limiting steps in the structure determination process. Often, preliminary crystallization trials are performed using hundreds of empirically selected conditions. Carboxylic acids and/or their salts are one of the most popular components of these empirically derived crystallization conditions. Our findings indicate that almost 40 % of entries deposited to the Protein Data Bank (PDB) reporting crystallization conditions contain at least one carboxylic acid. In order to analyze the role of carboxylic acids in macromolecular crystallization, a large-scale analysis of the successful crystallization experiments reported to the PDB was performed. The PDB is currently the largest source of crystallization data, however it is not easily searchable. These complications are due to a combination of a free text format, which is used to capture information on the crystallization experiments, and the inconsistent naming of chemicals used in crystallization experiments. Despite these difficulties, our approach allows for the extraction of over 47,000 crystallization conditions from the PDB. Initially, the selected conditions were investigated to determine which carboxylic acids or their salts are most often present in crystallization solutions. From this group, selected sets of crystallization conditions were analyzed in detail, assessing parameters such as concentration, pH, and precipitant used. Our findings will lead to the design of new crystallization screens focused around carboxylic acids.

  14. Phosphorescent emissions of phosphine copper(I) complexes bearing 8-hydroxyquinoline carboxylic acid analogue ligands

    Energy Technology Data Exchange (ETDEWEB)

    Małecki, Jan G., E-mail: gmalecki@us.edu.pl [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Łakomska, Iwona, E-mail: iwolak@chem.umk.pl [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Maroń, Anna [Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9 street, 40-006 Katowice (Poland); Szala, Marcin [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland); Fandzloch, Marzena [Department of Chemistry, Nicolaus Copernicus University, Toruń (Poland); Nycz, Jacek E., E-mail: jacek.nycz@us.edu.pl [Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice (Poland)

    2015-05-15

    The pseudotetrahedral complexes of [Cu(PPh{sub 3}){sub 2}(L)], where L=8-hydroxy-2-methylquinoline-7-carboxylic acid (1), 8-hydroxy-2,5-dimethylquinoline-7-carboxylic acid (2) or 5-chloro-8-hydroxy-2-methylquinoline-7-carboxylic acid (3) have been synthesized and structurally characterized by X-ray crystallography. Their properties have been examined through combinations of IR, NMR, electronic absorption spectroscopy and cyclic voltammetry. The complexes exhibit extraordinary photophysical properties. Complex (1) in solid state exhibits an emission quantum yield of 4.67% and an excited life time of 1.88 ms (frozen DCM solution up to 6.7 ms). When dissolved in a coordinating solvent (acetonitrile) the charge transfer emission was quenched on a microsecond scale. - Highlights: • Synthesis of copper(I) complexes with 8-hydroxyquinoline carboxylic acid ligands. • Very long lived phosphorescent copper(I) complexes. • [Cu(PPh{sub 3}){sub 2}(L)] where L=8-hydroxy-2-methylquinoline-7-carboxylic acid luminesce in the solid state exhibits extremely long lifetime on millisecond scale (1.9 ms). • In frozen MeOH:EtOH solution lifetime increases to 7 ms. • Quantum efficiency equal to 4.7%.

  15. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    Science.gov (United States)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  16. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Poole, Loree Joanne [Univ. of California, Berkeley, CA (United States); King, C. Judson [Univ. of California, Berkeley, CA (United States)

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO2 and H2S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The

  17. Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.

    Science.gov (United States)

    Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian

    Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.

  18. Carboxylated dithiafulvenes and tetrathiafulvalene vinylogues: synthesis, electronic properties, and complexation with zinc ions

    Directory of Open Access Journals (Sweden)

    Yunfei Wang

    2015-06-01

    Full Text Available A class of carboxyl and carboxylate ester-substituted dithiafulvene (DTF derivatives and tetrathiafulvalene vinylogues (TTFVs has been synthesized and their electronic and electrochemical redox properties were characterized by UV–vis spectroscopic and cyclic voltammetric analyses. The carboxyl-TTFV was applied as a redox-active ligand to complex with Zn(II ions, forming a stable Zn-TTFV coordination polymer. The structural, electrochemical, and thermal properties of the coordination polymer were investigated by infrared spectroscopy, cyclic voltammetry, powder X-ray diffraction, and differential scanning calorimetric analyses. Furthermore, the microscopic porosity and surface area of the Zn-TTFV coordination polymer were measured by nitrogen gas adsorption analysis, showing a BET surface of 148.2 m2 g−1 and an average pore diameter of 10.2 nm.

  19. Precipitation stripping of neodymium from carboxylate extractant with aqueous oxalic acid solutions

    International Nuclear Information System (INIS)

    Konishi, Yasuhiro; Asai, Satoru; Murai, Tetuya

    1993-01-01

    This paper describes a precipitation stripping method in which neodymium ions are stripped from carboxylate extractant in organic solvent and simultaneously precipitated with aqueous oxalic acid solution. For the single-stage process, a quantitative criterion for precipitating oxalate powders was derived theoretically, and stripping experiments were done under the precipitation conditions. The resultant precipitates were neodymium oxalate, which is completely free from contamination by the carboxylate extractant and the organic solvent. The overall rate of stripping was controlled by the transfer of neodymium carboxylate in the organic solution, indicating that the presence of oxalic acid in the aqueous phase has no effect on the stripping rate. These findings demonstrate the feasibility of combining the conventional stripping and precipitation stages in a solvent extraction process for separation and purification of rare earths

  20. Analysis of carboxylate coordination function of the isomeric lanthanide pyridinedicarboxylates by means of vibration spectroscopy

    International Nuclear Information System (INIS)

    Puntus, L.; Zolin, V.; Kudryashova, V.

    2004-01-01

    The investigation of IR spectra of salts of six isomers of pyridinedicarboxylic acid (PDA): 2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-pyridinedicarboxylic acids, have demonstrated that properties of these salts are dependent on the bonding manner of carboxylate groups and on coordination of heterocyclic nitrogen atom. The most prominent differences in properties and spectra of 2,6- and 3,4-PDA salts are conditioned correspondingly by monodentate and bidentate coordination functions of the carboxylate groups in these compounds. The correlation of the breathing vibration frequency, reflecting the rigidity of the heterocyclic ring, with position of the carboxylate substituents, conditioning intramolecular charge transfer (CT), was postulated and proved by shifts of the breathing vibration frequency dependent on the structure of isomeric ligand

  1. Experimental and Theoretical Studies on Corrosion Inhibition of Niobium and Tantalum Surfaces by Carboxylated Graphene Oxide

    Directory of Open Access Journals (Sweden)

    Valbonë Mehmeti

    2018-05-01

    Full Text Available The corrosion of two different metals, niobium and tantalum, in aqueous sulfuric acid solution has been studied in the presence and absence of carboxylated graphene oxide. Potentiodynamic measurements indicate that this nanomaterial inhibits corrosion due to its adsorption on the metal surfaces. The adsorbed layer of carboxylated graphene hinders two electrochemical reactions: the oxidation of the metal and the transport of metal ions from the metal to the solution but also hydrogen evolution reaction by acting as a protective barrier. The adsorption behavior at the molecular level of the carboxylated graphene oxide with respect to Nb, NbO, Ta, and TaO (111 surfaces is also investigated using Molecular Dynamic and Monte Carlo calculations.

  2. The investigation of the reactions of some pyrazole-3-carboxylic acids with various diamines and diols

    Directory of Open Access Journals (Sweden)

    Rahmi Kasımoğulları

    2012-06-01

    Full Text Available In this study, some new derivatives were synthesized of 4-benzoyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (1 and 4-(ethoxycarbonyl-1-(3-nitrophenyl-5-phenyl-1H-pyrazole-3-carboxylic acid (2 that they were pyrazole carboxylic acid derivatives. Firstly, 1 and 2 reacted with SOCl2 to transform them into acyl chlorides (3, 4. Then various bis-carboxamide derivatives (5–8 were obtained from the reaction of 3 and 4 with various diamines and also a ;#946;-hydroxy ester (9 derivative was obtained from the reaction of 3 with ethylene glycol. The structures of synthesized compounds were elucidated with using FT-IR, 1H NMR, 13C NMR and elemental analysis methods.

  3. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform.

    Science.gov (United States)

    Agler, Matthew T; Wrenn, Brian A; Zinder, Stephen H; Angenent, Largus T

    2011-02-01

    Our societies generate increasing volumes of organic wastes. Considering that we also need alternatives to oil, an opportunity exists to extract liquid fuels or even industrial solvents from these abundant wastes. Anaerobic undefined mixed cultures can handle the complexity and variability of organic wastes, which produces carboxylates that can be efficiently converted to useful bioproducts. However, to date, barriers, such as inefficient liquid product separation and persistence of methanogens, have prevented the production of bioproducts other than methane. Here, we discuss combinations of biological and chemical pathways that comprise the 'carboxylate platform', which is used to convert waste to bioproducts. To develop the carboxylate platform into an important system within biorefineries, we must understand the kinetic and thermodynamic possibilities of anaerobic pathways, understand the ecological principles underlying pathway alternatives, and develop superior separation technologies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Carboxylic acid effects on the size and catalytic activity of magnetite nanoparticles.

    Science.gov (United States)

    Hosseini-Monfared, Hassan; Parchegani, Fatemeh; Alavi, Sohaila

    2015-01-01

    Magnetite nanoparticles (Fe3O4-NPs) were successfully synthesized in diethylene glycol in the presence of carboxylic acids. They were characterized using XRD, SEM and FTIR. Carboxylic acid plays a critical role in determining the morphology, particle size and size distribution of the resulting particles. The results show that as-prepared magnetite nanoparticles are monodisperse and highly crystalline. The nanoparticles can be easily dispersed in aqueous media and other polar solvents due to coated by a layer of hydrophilic polyol and carboxylic acid ligands in situ. Easily prepared Fe3O4-NPs have been shown to be an active, recyclable, and highly selective catalyst for the epoxidation of cyclic olefins with aqueous 30% H2O2. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian, E-mail: pnavarre@vtr.ne [Universidad de Chile, Santiago (Chile). Facultad de Ciencias Quimicas y Farmaceuticas. Lab. de Sintesis Organica y Fisicoquimica; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J. [Universidad de Chile, Santiago (Chile). Fac. de Ciencias Quimicas y Farmaceuticas. Lab. de Bioelectroquimica

    2010-07-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  6. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    International Nuclear Information System (INIS)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J.

    2010-01-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  7. Microbial synthesis of a branched-chain ester platform from organic waste carboxylates

    Directory of Open Access Journals (Sweden)

    Donovan S. Layton

    2016-12-01

    Full Text Available Processing of lignocellulosic biomass or organic wastes produces a plethora of chemicals such as short, linear carboxylic acids, known as carboxylates, derived from anaerobic digestion. While these carboxylates have low values and are inhibitory to microbes during fermentation, they can be biologically upgraded to high-value products. In this study, we expanded our general framework for biological upgrading of carboxylates to branched-chain esters by using three highly active alcohol acyltransferases (AATs for alcohol and acyl CoA condensation and modulating the alcohol moiety from ethanol to isobutanol in the modular chassis cell. With this framework, we demonstrated the production of an ester library comprised of 16 out of all 18 potential esters, including acetate, propionate, butanoate, pentanoate, and hexanoate esters, from the 5 linear, saturated C2-C6 carboxylic acids. Among these esters, 5 new branched-chain esters, including isobutyl acetate, isobutyl propionate, isobutyl butyrate, isobutyl pentanoate, and isobutyl hexanoate were synthesized in vivo. During 24 h in situ fermentation and extraction, one of the engineered strains, EcDL208 harnessing the SAAT of Fragaria ananassa produced ~63 mg/L of a mixture of butyl and isobutyl butyrates from glucose and butyrate co-fermentation and ~127 mg/L of a mixture of isobutyl and pentyl pentanoates from glucose and pentanoate co-fermentation, with high specificity. These butyrate and pentanoate esters are potential drop-in liquid fuels. This study provides better understanding of functional roles of AATs for microbial biosynthesis of branched-chain esters and expands the potential use of these esters as drop-in biofuels beyond their conventional flavor, fragrance, and solvent applications. Keywords: Carboxylate platform, Ester platform, Branched-chain ester, Modular cell, Biological upgrading, Organic waste, Lignocellulosic biomass, Isobutyl esters

  8. A Concise Synthesis and the Antibacterial Activity of 5,6-Dimethoxynaphthalene-2-carboxylic Acid

    OpenAIRE

    GÖKSU, Süleyman; UĞUZ, Metin Tansu

    2014-01-01

    5,6-Dimethoxynaphthalene-2-carboxylic acid was synthesized in 7 steps and with an overall yield of 46%. Bromination of 2-naphthol, and methylation with dimethyl sulfate followed by Friedel-Crafts acylation with AcCl gave 2-acetyl-5-bromo-6-methoxynaphthalene. 2-Acetyl-5-bromo-6-methoxynaphthalene was converted to 5-bromo-6- methoxynaphthalene-2-carboxylic acid by a haloform reaction. The esterification of the acid with methanol, methoxylation with NaOCH3 in the presence of CuI and s...

  9. Preparation of conjugated poly(ethyl acetylene carboxylate) as optical limiter of laser radiation

    International Nuclear Information System (INIS)

    Allaf, A. W.; Al-Zier, A.; Al-Naima, D.

    2009-03-01

    The optical limiting action of poly (ethylacetylene carboxylate) dissolved in dichloroethane were investigated under irradiation with 8 ns laser pulses at 532 nm. The optical limiting measurements were performed at a series of concentrations. The threshold limiting fluence was observed for high concentrations at 5 J/cm 2 with a transmission of about 20 %. No optical limiting action was observed at very low concentration of the prepared polymer in the dichloroethane solvent. The observed data show that poly (ethylacetylene carboxylate) has the potential for the use as optical limiting material for future applications. (author)

  10. [Chloroquine analogues from benzofuro- and benzothieno[3,2-b]-4-pyridone-2-carboxylic acid esters].

    Science.gov (United States)

    Gölitzer, K; Meyer, H; Jomaa, H; Wiesner, J

    2004-08-01

    The amides 7 were synthesized from the annulated methyl 4-pyridone-2-carboxylates 4 via the carboxylic acids 5 and their acid chlorides by reacting with the novaldiamine base 6. The alcohol 8b, obtained from DIBAH reduction of the ester 4b, was transformed to the chloromethyl derivative 9 which reacted with 6 and 18-crown-6 leading to the 2-novaldiaminomethyl-4-pyridone 10. Compound 10 was obtained with higher yield from DIBAH reduction of the amide 7b. The substances 7 and 10 were inactive when tested against the chloroquine resistant Plasmodium falciparum strain Dd2.

  11. Silver-Catalyzed Dehydrogenative Synthesis of Carboxylic Acids from Primary Alcohols

    DEFF Research Database (Denmark)

    Ghalehshahi, Hajar Golshadi; Madsen, Robert

    2017-01-01

    A simple silver-catalyzed protocol has been developed for the acceptorless dehydrogenation of primary alcohols into carboxylic acids and hydrogen gas. The procedure uses 2.5 % Ag2 CO3 and 2.5-3 equiv of KOH in refluxing mesitylene to afford the potassium carboxylate which is then converted...... into the acid with HCl. The reaction can be applied to a variety of benzylic and aliphatic primary alcohols with alkyl and ether substituents, and in some cases halide, olefin, and ester functionalities are also compatible with the reaction conditions. The dehydrogenation is believed to be catalyzed by silver...

  12. and copper(ii)

    African Journals Online (AJOL)

    DELL

    Department of Chemistry, Obafemi Awolowo University, Ile-Ife Nigeria. Corresponding Author: Akinyele ... derivatives with aldehydes or ketones (Deepa and. Aravindakshan, 2005). ... used in organic synthesis, especially for the preparation of ...

  13. copper(II)

    Indian Academy of Sciences (India)

    Unknown

    bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) ... Abstract. Equilibrium concentrations of various condensed and gaseous phases have been thermodyna- ... phere, over a wide range of substrate temperatures and total reactor pressures.

  14. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    (II) and copper(II)–zinc(II) complexes. SUBODH KUMAR1, R N PATEL1*, P V KHADIKAR1 and. K B PANDEYA2. 1 Department of Chemistry, APS University, Rewa 486 003, India. 2 CSJM University, Kanpur 208 016, India e-mail: (R N Patel) ...

  15. Effect of alkali metal ions on the pyrrole and pyridine π-electron systems in pyrrole-2-carboxylate and pyridine-2-carboxylate molecules: FT-IR, FT-Raman, NMR and theoretical studies

    Science.gov (United States)

    Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.

    2011-05-01

    The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.

  16. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases

    Directory of Open Access Journals (Sweden)

    Saito Koji

    2005-08-01

    Full Text Available Abstract Background In Arabidopsis, ETO1 (ETHYLENE-OVERPRODUCER1 is a negative regulator of ethylene evolution by interacting with AtACS5, an isoform of the rate-limiting enzyme, 1-aminocyclopropane-1-carboxylate synthases (ACC synthase or ACS, in ethylene biosynthetic pathway. ETO1 directly inhibits the enzymatic activity of AtACS5. In addition, a specific interaction between ETO1 and AtCUL3, a constituent of a new type of E3 ubiquitin ligase complex, suggests the molecular mechanism in promoting AtACS5 degradation by the proteasome-dependent pathway. Because orthologous sequences to ETO1 are found in many plant species including tomato, we transformed tomato with Arabidopsis ETO1 to evaluate its ability to suppress ethylene production in tomato fruits. Results Transgenic tomato lines that overexpress Arabidopsis ETO1 (ETO1-OE did not show a significant delay of fruit ripening. So, we performed yeast two-hybrid assays to investigate potential heterologous interaction between ETO1 and three isozymes of ACC synthases from tomato. In the yeast two-hybrid system, ETO1 interacts with LE-ACS3 as well as AtACS5 but not with LE-ACS2 or LE-ACS4, two major isozymes whose gene expression is induced markedly in ripening fruits. According to the classification of ACC synthases, which is based on the C-terminal amino acid sequences, both LE-ACS3 and AtACS5 are categorized as type 2 isozymes and possess a consensus C-terminal sequence. In contrast, LE-ACS2 and LE-ACS4 are type 1 and type 3 isozymes, respectively, both of which do not possess this specific C-terminal sequence. Yeast two-hybrid analysis using chimeric constructs between LE-ACS2 and LE-ACS3 revealed that the type-2-ACS-specific C-terminal tail is required for interaction with ETO1. When treated with auxin to induce LE-ACS3, seedlings of ETO1-OE produced less ethylene than the wild type, despite comparable expression of the LE-ACS3 gene in the wild type. Conclusion These results suggest that ETO1

  17. Synthesis of aminocarbonyl N-acylhydrazones by a three-component reaction of isocyanides, hydrazonoyl chlorides, and carboxylic acids.

    Science.gov (United States)

    Giustiniano, Mariateresa; Meneghetti, Fiorella; Mercalli, Valentina; Varese, Monica; Giustiniano, Francesco; Novellino, Ettore; Tron, Gian Cesare

    2014-10-17

    A novel one-pot multicomponent synthesis of α-aminocarbonyl N-acylhydrazones starting from readily available hydrazonoyl chlorides, isocyanides, and carboxylic acids is reported. The strategy exploits the ability of the carboxylic acid as a third component to suppress all competing reactions between nitrile imines and isocyanides, channeling the course of the reaction toward the formation of this novel class of compounds.

  18. Solvent-Free Esterification of Carboxylic Acids Using Supported Iron Oxide Nanoparticles as an Efficient and Recoverable Catalyst

    Directory of Open Access Journals (Sweden)

    Fatemeh Rajabi

    2016-07-01

    Full Text Available Supported iron oxide nanoparticles on mesoporous materials (FeNP@SBA-15 have been successfully utilized in the esterification of a variety carboxylic acids including aromatic, aliphatic, and long-chain carboxylic acids under convenient reaction conditions. The supported catalyst could be easily recovered after reaction completion and reused several times without any loss in activity after up to 10 runs.

  19. Functional lignocellulosic material for the remediation of copper(II) ions from water: Towards the design of a wood filter.

    Science.gov (United States)

    Vitas, Selin; Keplinger, Tobias; Reichholf, Nico; Figi, Renato; Cabane, Etienne

    2018-05-09

    In this study, the chemical modification of bulk beech wood is described along with its utilization as biosorbent for the remediation of copper from water. The material was prepared by esterification using anhydrides, and reaction conditions were optimized to propose a greener process, in particular by reducing the amount of solvent. This modification yields a lignocellulosic material whose native structure is preserved, with an increased amount of carboxylic groups (up to 3 mmol/g). We demonstrate that the material can remove up to 95% of copper from low concentration solutions (100- 500 ppm). The adsorption efficiency decreases with concentrated copper solutions, and we show that a limited number of -COOH groups participate in copper binding (ca. 0.1 Cu/-COOH). This result suggests a limited accessibility of -COOH groups in the wood scaffold. This was demonstrated by the characterization of -COOH and copper distributions inside wood. Raman and EDX imaging confirmed that most -COOH groups are located inside the wood cell walls, thereby limiting interactions with copper. According to this study, critical limitations of bulk wood as a biosorbent were identified, and the results will be used to improve the material and design an efficient wood filter for heavy metal remediation. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Structural characterization of copper(II) binding to α-synuclein: Insights into the bioinorganic chemistry of Parkinson's disease

    Science.gov (United States)

    Rasia, Rodolfo M.; Bertoncini, Carlos W.; Marsh, Derek; Hoyer, Wolfgang; Cherny, Dmitry; Zweckstetter, Markus; Griesinger, Christian; Jovin, Thomas M.; Fernández, Claudio O.

    2005-01-01

    The aggregation of α-synuclein (AS) is characteristic of Parkinson's disease and other neurodegenerative synucleinopathies. We demonstrate here that Cu(II) ions are effective in accelerating AS aggregation at physiologically relevant concentrations without altering the resultant fibrillar structures. By using numerous spectroscopic techniques (absorption, CD, EPR, and NMR), we have located the primary binding for Cu(II) to a specific site in the N terminus, involving His-50 as the anchoring residue and other nitrogen/oxygen donor atoms in a square planar or distorted tetragonal geometry. The carboxylate-rich C terminus, originally thought to drive copper binding, is able to coordinate a second Cu(II) equivalent, albeit with a 300-fold reduced affinity. The NMR analysis of AS–Cu(II) complexes reveals the existence of conformational restrictions in the native state of the protein. The metallobiology of Cu(II) in Parkinson's disease is discussed by a comparative analysis with other Cu(II)-binding proteins involved in neurodegenerative disorders. PMID:15767574

  1. In situ EPR studies of reaction pathways in Titania photocatalyst-promoted alkylation of alkenes.

    Science.gov (United States)

    Rhydderch, Shona; Howe, Russell F

    2015-03-03

    In situ EPR spectroscopy at cryogenic temperatures has been used to observe and identify paramagnetic species produced when titania is irradiated in the presence of reactants used in the photocatalytic alkylation of maleimide with t-butyl carboxylic acid or phenoxyacetic acid. It is shown that maleimide acts as an acceptor of conduction band electrons. Valence band holes oxidise t-butyl carboxylic acid to the t-butyl radical and phenoxyacetic acid to the phenoxyacetic acid radical cation. In the presence of maleimide, the phenoxymethyl radical is formed from phenoxyacetic acid. The relevance of these observations to the mechanisms of titania photocatalyst-promoted alkylation of alkenes is discussed.

  2. Exploring the reductive capacity of Pyrococcus furiosus : the reduction of carboxylic acids and pyridine nucleotides

    NARCIS (Netherlands)

    Ban, van den E.C.D.

    2001-01-01

    This Ph.D. project started in 1997 and its main goal was to obtain insight in the reductive capacity of the hyperthermophilic archaeon Pyrococcus furiosus . The research was focused on the biocatalytic reduction of carboxylic

  3. Substituted Amides of Pyrazine-2-carboxylic acids: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Katarina Kralova

    2002-03-01

    Full Text Available Condensation of 6-chloro-, 5-tert-butyl- or 6-chloro-5-tert-butylpyrazine-2-carboxylic acid chloride with ring substituted anilines yielded a series of amides, which were tested for their in vitro antimycobacterial, antifungal and photosynthesis-inhibiting activities. The highest antituberculotic activity (72% inhibition against Mycobacterium tuberculosis and the highest lipophilicity (log P = 6.85 were shown by the 3,5-bistrifluoromethylphenyl amide of 5-tert-butyl-6-chloropyrazine-2-carboxylic acid (2o. The 3-methylphenyl amides of 6-chloro- and 5-tert-butyl-6-chloro-pyrazine-2-carboxylic acid (2d and 2f exhibited only a poor in vitro antifungal effect (MIC = 31.25-500 μmol·dm-3 against all strains tested, although the latter was the most active antialgal compound (IC50 = 0.063 mmol·dm-3. The most active inhibitor of oxygen evolution rate in spinach chloroplasts was the (3,5-bis-trifluoromethylphenylamide of 6-chloropyrazine-2-carboxylic acid (2m, IC50 = 0.026 mmol·dm-3.

  4. Synthesis and characterization of carboxylic cation exchange bio-resin for heavy metal remediation.

    Science.gov (United States)

    Kulkarni, Vihangraj V; Golder, Animes Kumar; Ghosh, Pranab Kumar

    2018-01-05

    A new carboxylic bio-resin was synthesized from raw arecanut husk through mercerization and ethylenediaminetetraacetic dianhydride (EDTAD) carboxylation. The synthesized bio-resin was characterized using thermogravimetric analysis, field emission scanning electron microscopy, proximate & ultimate analyses, mass percent gain/loss, potentiometric titrations, and Fourier transform infrared spectroscopy. Mercerization extracted lignin from the vesicles on the husk and EDTAD was ridged in to, through an acylation reaction in dimethylformamide media. The reaction induced carboxylic groups as high as 0.735mM/g and a cation exchange capacity of 2.01meq/g functionalized mercerized husk (FMH). Potentiometric titration data were fitted to a newly developed single-site proton adsorption model (PAM) that gave pKa of 3.29 and carboxylic groups concentration of 0.741mM/g. FMH showed 99% efficiency in Pb(II) removal from synthetic wastewater (initial concentration 0.157mM), for which the Pb(II) binding constant was 1.73×10 3 L/mol as estimated from modified PAM. The exhaustion capacity was estimated to be 18.7mg/g of FMH. Desorption efficiency of Pb(II) from exhausted FMH was found to be about 97% with 0.1N HCl. The FMH simultaneously removed lead and cadmium below detection limit from a real lead acid battery wastewater along with the removal of Fe, Mg, Ni, and Co. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Optimization of polycrystalline platinum catalytic activity opposite to carboxylic acids oxidation

    International Nuclear Information System (INIS)

    Le Naour, C.; Moisy, P.; Blanc, P.; Madic, C.

    1994-01-01

    In electro nuclear industry, in the aim to reduce the quantity of wastes coming from the spent fuels reprocessing, the use of reagents as some carboxylic acids is considered: after use, these reagents are completely decomposed in gaseous products, which can be filtered and released in environment

  6. Silver(I) and copper(II)-imidazolium carboxylates: Efficient catalysts ...

    Indian Academy of Sciences (India)

    GANESAN PRABUSANKAR

    the reaction between corresponding carboxylic acid ligands and metal salts. These new metal .... g), DMF (2 mL) and water (1 mL) was added; then, the sus- pension was ..... ence of five mol% potassium hydroxide as base in 1 and. Scheme 3.

  7. Low-molecular-weight poly-carboxylate as crystal growth modifier in ...

    Indian Academy of Sciences (India)

    Biomineralization; growth modifier; amino acid; low-molecular-weight chiral poly- carboxylate; calcium ... They are also used as gravity sensors, for metal storage and .... The pH of the solutions was maintained at ~10⋅0 for different periods of ...

  8. Formation of biologically relevant carboxylic acids during the gamma irradiation of acetic acid

    Science.gov (United States)

    Negron-Mendoza, A.; Ponnamperuma, C.

    1976-01-01

    Irradiation of aqueous solutions of acetic acid with gamma rays produced several carboxylic acids in small yield. Their identification was based on the technique of gas chromatography combined with mass spectrometry. Some of these acids are Krebs Cycle intermediates. Their simultaneous formation in experiments simulating the primitive conditions on the earth suggests that metabolic pathways may have had their origin in prebiotic chemical processes.

  9. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in vito

    Science.gov (United States)

    1994-01-06

    L. Narayanan. and B. M. Jamot. ’Effects of Peulluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus Metabolism in...pathways and examined the impact of perfluorocarboxylic acid exposure. This investigative strategy will delineate the metabolic effices exerted by...Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo Principal Investigator: Nicholas V. Reo

  10. A Combinatorial Interplay Among the 1-Aminocyclopropane-1-carboxylate Isoforms Regulates Ethylene Biosynthesis in Arabidopsis thaliana

    Science.gov (United States)

    Ethylene (C2H4) is a unique plant-signaling molecule that regulates numerous developmental processes. The key enzyme in the two-step biosynthetic pathway of ethylene is 1-aminocyclopropane-1-carboxylate synthase (ACS), which catalyzes the conversion of Sadenosyl-methionine (AdoMet) to ACC, the precu...

  11. Li-Carboxylate Anode Structure-Property Relationships from Molecular Modeling

    KAUST Repository

    Burkhardt, Stephen E.

    2013-01-22

    The full realization of a renewable energy strategy hinges upon electrical energy storage (EES). EES devices play a key role in storing energy from renewable sources (which are inherently intermittent), to efficient transmission (e.g., grid load-leveling), and finally into the electrification of transportation. Organic materials represent a promising class of electrode active materials for Li-ion and post-Li-ion batteries. Organics consist of low-cost, lightweight, widely available materials, and their properties can be rationally tuned using the well-established principles of organic chemistry. Within the class of organic EES materials, carboxylates distinguish themselves for Li-ion anode materials based on their observed thermal stability, rate capability, and high cyclability. Further, many of the carboxylates studied to date can be synthesized from renewable or waste feedstocks. This report begins with a preliminary molecular density-functional theory (DFT) study, in which the calculated molecular properties of a set of 12 known Li-ion electrode materials based on carboxylate and carbonyl redox couples are compared to literature data. Based on the agreement between theoretical and experimental data, an expanded study was undertaken to identify promising materials and establish design principles for anodes based on Li-carboxylate salts. Predictive computational studies represent an important step forward for the identification of organic anode materials. © 2012 American Chemical Society.

  12. Use of technical mixtures of carboxylic acids to the extraction of silver

    International Nuclear Information System (INIS)

    Smulek, W.

    1983-01-01

    The application of technical mixtures of carboxylic acids, obtained from a Polish oil mill, to the extraction of silver, gold, and europium is described. The distribution ratio is given as a function of HNO 3 and H 2 SO 4 concentrations, extractant and metal concentrations, and nature of diluent. (author)

  13. Carboxyl-terminated PAMAM dendrimer interaction with 1-palmitoyl-2-oleoyl phosphocholine bilayers

    Science.gov (United States)

    Polycationic polymers and liposomes have a great potential use as individual drug delivery systems and greater potential as a combined drug delivery system. Thus, it is important to better understand the interactions of polymers with phospholipid bilayers. A mechanistic study of carboxyl-terminate...

  14. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, Julien [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)], E-mail: julien.dron@up.univ-mrs.fr; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri [Laboratoire de Chimie et Environnement, Marseille Universites (case 29), 3 place Victor Hugo, 13331 Marseille Cedex 3 (France)

    2007-12-12

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF{sub 3}/methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L{sup -1}. Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices.

  15. Synthesis and protonation behavior of carboxylate-functionalized poly(propylene imine) dendrimers

    NARCIS (Netherlands)

    Duijvenbode, van R.C.; Rajanayagam, A.; Koper, G.J.M.; Baars, M.W.P.L.; Waal, de B.F.M.; Meijer, E.W.; Borkovec, M.

    2000-01-01

    Five generations of carboxylate-functionalized poly(propyleneimine) dendrimers have been synthesized starting from a double Michael addition of amine-functionalized poly(propyleneimine) dendrimers to methyl acrylate followed by basic hydrolysis using LiOH in a water/methanol mixture. The dendritic

  16. Carboxylic acid functional group analysis using constant neutral loss scanning-mass spectrometry

    International Nuclear Information System (INIS)

    Dron, Julien; Eyglunent, Gregory; Temime-Roussel, Brice; Marchand, Nicolas; Wortham, Henri

    2007-01-01

    The present study describes the development of a new analytical technique for the functional group determination of the carboxylic moiety using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS/MS) operated in the constant neutral loss scanning (CNLS) mode. Carboxylic groups were first derivatized into their corresponding methyl esters by reacting with BF 3 /methanol mix and the reaction mixture was then directly injected into the APCI chamber. The loss of methanol (m/z = 32 amu) resulting from the fragmentation of the protonated methyl esters was then monitored. Applying this method together with a statistical approach to reference mixtures containing 31 different carboxylic acids at randomly calculated concentrations demonstrated its suitability for quantitative functional group measurements with relative standard deviations below 15% and a detection limit of 0.005 mmol L -1 . Its applicability to environmental matrices was also shown through the determination of carboxylic acid concentrations inside atmospheric aerosol samples. To the best of our knowledge, it is the first time that the tandem mass spectrometry was successfully applied to functional group analysis, offering great perspectives in the characterization of complex mixtures which are prevailing in the field of environmental analysis as well as in the understanding of the chemical processes occurring in these matrices

  17. 1-Allyl-3-amino-1H-pyrazole-4-carboxylic acid

    Directory of Open Access Journals (Sweden)

    Feng-Ling Yang

    2008-12-01

    Full Text Available The title compound, C7H9N3O2, was prepared by alkaline hydrolysis of ethyl 1-allyl-3-amino-1H-pyrazole-4-carboxylate. The crystal structure is stabilized by three types of intermolecular hydrogen bond (N—H...O, N—H...N and O—H...N.

  18. Growth kinetics of racemic heptahelicene-2-carboxylic acid nanowires on calcite (104)

    Czech Academy of Sciences Publication Activity Database

    Einax, M.; Richter, T.; Nimmrich, M.; Rahe, P.; Stará, Irena G.; Starý, Ivo; Kühnle, A.; Maass, P.

    2016-01-01

    Roč. 145, č. 13 (2016), č. článku 134702. ISSN 0021-9606 Institutional support: RVO:61388963 Keywords : heptahelicene-2-carboxylic acid nanowires * nc-AFM * calcite * growth kinetics Subject RIV: CC - Organic Chemistry Impact factor: 2.965, year: 2016

  19. Measuring the concentration of carboxylic acid groups in torrefied spruce wood.

    Science.gov (United States)

    Khazraie Shoulaifar, Tooran; Demartini, Nikolai; Ivaska, Ari; Fardim, Pedro; Hupa, Mikko

    2012-11-01

    Torrefaction is moderate thermal treatment (∼200-300°C) to improve the energy density, handling and storage properties of biomass fuels. In biomass, carboxylic sites are partially responsible for its hygroscopic. These sites are degraded to varying extents during torrefaction. In this paper, we apply methylene blue sorption and potentiometric titration to measure the concentration of carboxylic acid groups in spruce wood torrefied for 30min at temperatures between 180 and 300°C. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic acid sites. Thus both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction which provides new information to the chemical changes occurring during torrefaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The protonation state of small carboxylic acids at the water surface from photoelectron spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ottosson, N.; Wernersson, Erik; Söderström, J.; Pokapanich, W.; Kaufmann, S.; Svensson, S.; Persson, I.; Öhrwall, G.; Björneholm, O.

    2011-01-01

    Roč. 13, č. 26 (2011), s. 12261-12267 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506 Keywords : water surface * carboxylic acids * photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  1. Basicity of carboxylic acids: resonance in the cation and substituent effects

    Czech Academy of Sciences Publication Activity Database

    Böhm, S.; Exner, Otto

    2005-01-01

    Roč. 29, - (2005), s. 336-342 ISSN 1144-0546 R&D Projects: GA MŠk(CZ) LN00A032 Institutional research plan: CEZ:AV0Z4055905 Keywords : basicity * carboxylic acids Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.574, year: 2005

  2. Immune Modulation in Normal Human Peripheral Blood Mononuclear Cells (PBMCs) (Lymphocytes) in Response to Benzofuran-2-Carboxylic Acid Derivative KMEG during Spaceflight

    Science.gov (United States)

    Okoro, Elvis; Mann, Vivek; Ellis, Ivory; Mansoor, Elvedina; Olamigoke, Loretta; Marriott, Karla Sue; Denkins, Pamela; Williams, Willie; Sundaresan, Alamelu

    2017-08-01

    Microgravity and radiation exposure during space flight have been widely reported to induce the suppression of normal immune system function, and increase the risk of cancer development in humans. These findings pose a serious risk to manned space missions. Interestingly, recent studies have shown that benzofuran-2-carboxylic acid derivatives can inhibit the progression of some of these devastating effects on earth and in modeled microgravity. However, these studies had not assessed the impacts of benzofuran-2- carboxylic acid and its derivatives on global gene expression under spaceflight conditions. In this study, the ability of a specific benzofuran-2-carboxylic acid derivative (KMEG) to confer protection from radiation and restore normal immune function was investigated following exposure to space flight conditions on the ISS. Normal human peripheral blood mononuclear cells (lymphocytes) treated with 10 µ g/ml of KMEG together with untreated control samples were flown on Nanoracks hardware on Spacex-3 flight. The Samples were returned one month later and gene expression was analyzed. A 1g-ground control experiment was performed in parallel at the Kennedy spaceflight center. The first overall subtractive unrestricted analysis revealed 78 genes, which were differentially expressed in space flight KMEG, untreated lymphocytes as compared to the corresponding ground controls. However, in KMEG-treated space flight lymphocytes, there was an increased expression of a group of genes that mediate increased transcription, translation and innate immune system mediating functions of lymphocytes as compared to KMEG-untreated samples. Analysis of genes related to T cell proliferation in spaceflight KMEG-treated lymphocytes compared to 1g-ground KMEG- treated lymphocytes revealed six T cell proliferation and signaling genes to be significantly upregulated (p trafficking, promote early response, mediating C-myc related proliferation, promote antiapoptotic activity and protects

  3. Influence of carboxyl group formation on ammonia adsorption of NiO-templated nanoporous carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Long-Yue [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2012-11-15

    The scope of this work was to control the surface functional groups of nanoporous carbons (NPs) by oxidizing agents (nitric acid and hydrogen peroxide) treatments and to investigate the relation between carboxyl group and ammonia removal efficiency. The NPs were directly prepared from a cation exchange resin by the carbonization of a mixture with Ni acetate at 900 Degree-Sign C. N{sub 2}/-196 Degree-Sign C adsorption, Boehm's titrations, and X-ray photoelectron spectroscopy (XPS) analyzes were employed to confirm the physicochemical properties of NPs. The ammonia removal efficiency was confirmed by temperature programmed desorption (TPD) technique. In the result, the oxygen content of NPs increased after various treatments and the highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. It was also found that the oxidation treatment led to an increase in ammonia removal efficiency of NPs, mainly due to an increase of acid oxygen functional groups (such as carboxyl) on NPs surfaces. -- Graphical abstract: The nanoporous carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate for ammonia adsorption. Highlights: Black-Right-Pointing-Pointer The carbons were prepared from an exchange resin by the carbonization of a mixture with Ni acetate. Black-Right-Pointing-Pointer The carbon surfaces were modified with HNO{sub 3}/H{sub 2}O{sub 2} solution at different volume radio. Black-Right-Pointing-Pointer The highest content of carboxyl group formation appeared at a 2:3 volume ratio of HNO{sub 3}/H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer The acid oxygen functional groups (such as carboxyl) on carbon surfaces led to an increase in ammonia adsorption.

  4. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Science.gov (United States)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-02-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV-Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets' surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50-100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high surface

  5. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Elhadi, S. A.

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, 1 H-and 13 C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  6. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Elhadi, S A [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, {sup 1}H-and {sup 13}C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  7. Vitamin K-Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis.

    Science.gov (United States)

    Nigwekar, Sagar U; Bloch, Donald B; Nazarian, Rosalynn M; Vermeer, Cees; Booth, Sarah L; Xu, Dihua; Thadhani, Ravi I; Malhotra, Rajeev

    2017-06-01

    Matrix Gla protein (MGP) is a potent inhibitor of vascular calcification. The ability of MGP to inhibit calcification requires the activity of a vitamin K-dependent enzyme, which mediates MGP carboxylation. We investigated how MGP carboxylation influences the risk of calciphylaxis in adult patients receiving dialysis and examined the effects of vitamin K deficiency on MGP carboxylation. Our study included 20 patients receiving hemodialysis with calciphylaxis (cases) and 20 patients receiving hemodialysis without calciphylaxis (controls) matched for age, sex, race, and warfarin use. Cases had higher plasma levels of uncarboxylated MGP (ucMGP) and carboxylated MGP (cMGP) than controls. However, the fraction of total MGP that was carboxylated (relative cMGP concentration = cMGP/[cMGP + uncarboxylated MGP]) was lower in cases than in controls (0.58±0.02 versus 0.69±0.03, respectively; P =0.003). In patients not taking warfarin, cases had a similarly lower relative cMGP concentration. Each 0.1 unit reduction in relative cMGP concentration associated with a more than two-fold increase in calciphylaxis risk. Vitamin K deficiency associated with lower relative cMGP concentration in multivariable adjusted analyses ( β =-8.99; P =0.04). In conclusion, vitamin K deficiency-mediated reduction in relative cMGP concentration may have a role in the pathogenesis of calciphylaxis. Whether vitamin K supplementation can prevent and/or treat calciphylaxis requires further study. Copyright © 2017 by the American Society of Nephrology.

  8. Floral Benzenoid Carboxyl Methyltransferases: From in Vitro to in Planta Function

    Energy Technology Data Exchange (ETDEWEB)

    Effmert,U.; Saschenbrecker, S.; Ross, J.; Negre, F.; Fraser, C.; Noel, J.; Dudareva, N.; Piechulla, B.

    2005-01-01

    Benzenoid carboxyl methyltransferases synthesize methyl esters (e.g., methyl benzoate and methyl salicylate), which are constituents of aromas and scents of many plant species and play important roles in plant communication with the surrounding environment. Within the past five years, eleven such carboxyl methyltransferases were isolated and most of them were comprehensively investigated at the biochemical, molecular and structural level. Two types of enzymes can be distinguished according to their substrate preferences: the SAMT-type enzymes isolated from Clarkia breweri, Stephanotis floribunda, Antirrhinum majus, Hoya carnosa, and Petunia hybrida, which have a higher catalytic efficiency and preference for salicylic acid, while BAMT-type enzymes from A. majus, Arabidopsis thaliana, Arabidopsis lyrata, and Nicotiana suaveolens prefer benzoic acid. The elucidation of C. breweri SAMT's three-dimensional structure allowed a detailed modelling of the active sites of the carboxyl methyltransferases and revealed that the SAM binding pocket is highly conserved among these enzymes while the methyl acceptor binding site exhibits some variability, allowing a classification into SAMT-type and BAMT-type enzymes. The analysis of expression patterns coupled with biochemical characterization showed that these carboxyl methyltransferases are involved either in floral scent biosynthesis or in plant defense responses. While the latter can be induced by biotic or abiotic stress, the genes responsible for floral scent synthesis exhibit developmental and rhythmic expression pattern. The nature of the product and efficiency of its formation in plants depend on the availability of substrates, the catalytic efficiency of the enzyme toward benzoic acid and/or salicylic acid, and the transcriptional, translational, and post-translational regulation at the enzyme level. The biochemical properties of benzenoid carboxyl methyltransferases suggest that the genes involved in plant defenses

  9. [Isolation and identification of hydrogen-oxidizing bacteria producing 1-aminocyclopropane-1-carboxylate deaminase and the determination of enzymatic activity].

    Science.gov (United States)

    Fu, Bo; Wang, Weiwei; Tang, Ming; Chen, Xingdu

    2009-03-01

    We used Medicago sativa rhizosphere in Shaanxi province of China to isolate and identify hydrogen-oxidizing bacteria that produced ACC (1-aminocyclopropane-1-carboxylate) deaminase, and then studied the mechanism why they can promote the growth of plants. Hydrogen-oxidizing bacteria were isolated by gas-cycle incubation system. We studied the morphological character, physiological characteristics, 16S rDNA sequence analysis and built the phylogenic tree. Thin layer chromatography was used to isolate the strain that produced ACC deaminase. Ninhydrin reaction was used to test the enzyme activity. In total 37 strains were isolated, 8 of which could oxidize H2 strongly and grow chemolithoautotrophically. We initially identified them as hydrogen-oxidizing bacteria. Only strain WMQ-7 produced ACC deaminase among these 8 strains. Morphological and physiological characteristics analysis showed that strain WMQ-7 was essentially consistent with Pseudomonas putida. The 16S rDNA sequence analysis (GenBank accession number EU807744) suggested that strain WMQ-7 was clustered together with Pseudomonas putida in phylogenetic tree, with the sequence identity of 99%. Based on all these results, strain WMQ-7 was identified as Pseudomonas putida. The enzyme activity of strain WMQ-7 was 0.671 U/microg. A strain producing ACC deaminase was identified and tested.

  10. Effect of Nd3+ ion on carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach

    International Nuclear Information System (INIS)

    Liu Chao; Hong Fashui; Wu Kang; Ma, Hong-bing; Zhang Xueguang; Hong Chengjiao; Wu Cheng; Gao Fengqing; Yang Fan; Zheng Lei; Wang Xuefeng; Liu Tao; Xie Yaning; Xu Jianhua; Li Zhongrui

    2006-01-01

    Neodymium (Nd), as a member of rare earth elements, proved to enhance the photosynthesis rate and organic substance accumulation of spinach through the increase in carboxylation activity of Rubisco. Although the oxygenase activity of spinach Rubisco was slightly changed with the Nd 3+ treatment, the specific factor of Rubisco was greatly increased. It was partially due to the promotion of Rubisco activase (R-A) activity but mainly to the formation of Rubisco-Rubisco activase super-complex, a heavier molecular mass protein (about 1200 kD) comprising both Rubisco and Rubisco activase. This super-complex was found during the extraction procedure of Rubisco by the gel electrophoresis and Western-blot studies. The formation of Rubisco-R-A super-complex suggested that the secondary structure of the protein purified from the Nd 3+ -treated spinach was different from that of the control. Extended X-ray absorption fine structure study of the 'Rubisco' purified from the Nd 3+ -treated spinach revealed that Nd was bound with four oxygen atoms and two sulfur atoms of amino acid residues at the Nd-O and Nd-S bond lengths of 2.46 and 2.89 A, respectively

  11. Characterization of multimetric variants of ubiquitin carboxyl-terminal hydrolase L1 in water by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Naito, Sachio; Mochizuki, Hideki; Yasuda, Toru; Mizuno, Yoshikuni; Furusaka, Michihiro; Ikeda, Susumu; Adachi, Tomohiro; Shimizu, Hirohiko M.; Suzuki, Junichi; Fujiwara, Satoru; Okada, Tomoko; Nishikawa, Kaori; Aoki, Shunsuke; Wada, Keiji

    2006-01-01

    Here, we illustrated that the morphological structures of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) variants and Parkinson's disease (PD) exhibit good pathological correlation by a small-angle neutron scattering (SANS). UCH-L1 is a neuro-specific multiple functional enzyme, deubiquitinating, ubiquityl ligase, and also involved in stabilization of mono-ubiquitin. To examine the relationship between multiple functions of UCH-L1 and the configuration of its variants [wild-type, I93M (linked to familial Parkinson's disease), and S18Y (linked to reduced risk of Parkinson's disease)], in this report, we proposed that these were all self-assembled dimers by an application of a rotating ellipsoidal model; the configurations of these dimers were quite different. The wild-type was a rotating ellipsoidal. The globular form of the monomeric component deformed by the I93M mutation. Conversely, the S18Y polymorphism promoted the globularity. Thus, the multiple functional balance is closely linked to the intermolecular interactions between the UCH-L1 monomer and the final dimeric configuration

  12. Metabolism of Citrate and Other Carboxylic Acids in Erythrocytes As a Function of Oxygen Saturation and Refrigerated Storage

    Directory of Open Access Journals (Sweden)

    Travis Nemkov

    2017-10-01

    Full Text Available State-of-the-art proteomics technologies have recently helped to elucidate the unanticipated complexity of red blood cell metabolism. One recent example is citrate metabolism, which is catalyzed by cytosolic isoforms of Krebs cycle enzymes that are present and active in mature erythrocytes and was determined using quantitative metabolic flux analysis. In previous studies, we reported significant increases in glycolytic fluxes in red blood cells exposed to hypoxia in vitro or in vivo, an observation relevant to transfusion medicine owing to the potential benefits associated with hypoxic storage of packed red blood cells. Here, using a combination of steady state and quantitative tracing metabolomics experiments with 13C1,2,3-glucose, 13C6-citrate, 13C515N2-glutamine, and 13C1-aspartate via ultra-high performance liquid chromatography coupled on line with mass spectrometry, we observed that hypoxia in vivo and in vitro promotes consumption of citrate and other carboxylates. These metabolic reactions are theoretically explained by the activity of cytosolic malate dehydrogenase 1 and isocitrate dehydrogenase 1 (abundantly represented in the red blood cell proteome, though moonlighting functions of additional enzymes cannot be ruled out. These observations enhance understanding of red blood cell metabolic responses to hypoxia, which could be relevant to understand systemic physiological and pathological responses to high altitude, ischemia, hemorrhage, sepsis, pulmonary hypertension, or hemoglobinopathies. Results from this study will also inform the design and testing of novel additive solutions that optimize red blood cell storage under oxygen-controlled conditions.

  13. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    Science.gov (United States)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  14. Biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Uluozlu, Ozgur Dogan; Usta, Canan; Soylak, Mustafa

    2007-01-01

    The biosorption of copper(II), lead(II), iron(III) and cobalt(II) on Bacillus sphaericus-loaded Diaion SP-850 resin for preconcentration-separation of them have been investigated. The sorbed analytes on biosorbent were eluted by using 1 mol L -1 HCl and analytes were determined by flame atomic absorption spectrometry. The influences of analytical parameters including amounts of pH, B. sphaericus, sample volume etc. on the quantitative recoveries of analytes were investigated. The effects of alkaline, earth alkaline ions and some metal ions on the retentions of the analytes on the biosorbent were also examined. Separation and preconcentration of Cu, Pb, Fe and Co ions from real samples was achieved quantitatively. The detection limits by 3 sigma for analyte ions were in the range of 0.20-0.75 μg L -1 for aqueous samples and in the range of 2.5-9.4 ng g -1 for solid samples. The validation of the procedure was performed by the analysis of the certified standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 2711 Montana soil and GBW 07605 Tea). The presented method was applied to the determination of analyte ions in green tea, black tea, cultivated mushroom, boiled wheat, rice and soil samples with successfully results

  15. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    International Nuclear Information System (INIS)

    Xiong, Pingping; Li, Jie; Bu, Huaiyu; Wei, Qing; Zhang, Ruolin; Chen, Sanping

    2014-01-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu 0.5 L] n (1), [Cu(HL) 2 Cl 2 ] n (2), [Cu(HL) 2 Cl 2 (H 2 O)] (3), [Cu(L) 2 (H 2 O)] n (4) and [Cu(L)(phen)(HCO 2 )] n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl - , and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity

  16. Correlation between DNA interactions and cytotoxic activity of four new ternary compounds of copper(II) with N-donor heterocyclic ligands.

    Science.gov (United States)

    Silva, Priscila P; Guerra, Wendell; Dos Santos, Geandson Coelho; Fernandes, Nelson G; Silveira, Josiane N; da Costa Ferreira, Ana M; Bortolotto, Tiago; Terenzi, Hernán; Bortoluzzi, Adailton João; Neves, Ademir; Pereira-Maia, Elene C

    2014-03-01

    Four new ternary complexes of copper(II) were synthesized and characterized: [Cu(hyd)(bpy)(acn)(ClO4)](ClO4)] (1), [Cu(hyd)(phen)(acn)(ClO4)](ClO4)] (2), [Cu(Shyd)(bpy)(acn)(ClO4)](ClO4)] (3) and [Cu(Shyd)(phen)(acn)(ClO4)](ClO4)] (4), in which acn=acetonitrile; hyd=2-furoic acid hydrazide, bpy=2,2-bipyridine; phen=1,10-phenanthroline and Shyd=2-thiophenecarboxylic acid hydrazide. The cytotoxic activity of the complexes in a chronic myelogenous leukemia cell line was investigated. All complexes are able to enter cells and inhibit cellular growth in a concentration-dependent manner, with an activity higher than that of the corresponding free ligands. The substitution of Shyd for hyd increases the activity, while the substitution of bpy for phen renders the complex less active. Therefore, the most potent complex is 4 with an IC50 value of 1.5±0.2μM. The intracellular copper concentration needed to inhibit 50% of cell growth is approximately 7×10(-15)mol/cell. It is worth notifying that a correlation between cytotoxic activity, DNA binding affinity and DNA cleavage was found: 1<3<2<4. © 2013.

  17. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  18. Indirect spectrophotometric determination of sodium ceftriaxone with n-propyl alcohol-ammonium sulfate-water system by extraction flotation of copper(II).

    Science.gov (United States)

    Zhao, Wei; Zhang, Yan; Li, Quanmin

    2008-05-01

    Although the determination methods of sodium ceftriaxone has been increasingly reported, these methods have their inherent limits preventing them from being broadly applied in common laboratories. In order to circumvent this problem, a rapid and simple method for the indirect spectrophotometric determination of sodium ceftriaxone is reported. Sodium ceftriaxone was degraded completely in the presence of 0.20 mol/l sodium hydroxide in boiling water bath for 20 min. The thiol group (-SH) of the degradation product (I) of sodium ceftriaxone could reduce cupric to cuprous ions, and the resulting which was precipitated with the thiol group (-SH) of the degradation product (II) at pH 4.0. By determining the residual amount of copper (II), the indirect determination of sodium ceftriaxone can be achieved. Standard curve of sodium ceftriaxone versus the flotation yield of copper(II) showed that sodium ceftriaxone could be determined in low concentrations. The linear range of sodium ceftriaxone was 0.70-32 microg/ml and the detection limit evaluated by calibration curve (3sigma/k) was found to be 0.60 microg/ml. A simple and efficient method was developed and it has been successfully applied to the determination of sodium ceftriaxone in human serum and urine samples, respectively. It is expected that this method will find broad applications in the detection of cephalosporin derivatives with similar structure.

  19. Selective flotation-spectrophotometric determination of trace copper(II) in natural waters, human blood and drug samples using phenanthraquinone monophenylthiosemicarbazone.

    Science.gov (United States)

    Khalifa, M E; Akl, M A; Ghazy, S E

    2001-06-01

    Copper(II) forms 1:1 and 1:2 intense red complexes with phenanthraquinone monophenylthiosemicarbazone (PPT) at pH 3-3.5 and > or =6.5, respectively. These complexes exhibit maximal absorbance at 545 and 517 nm, the molar absorptivity being 2.3 x 10(4) and 4.8 x 10(4) l mol(-1) cm(-1), respectively. However, the 1:1 complex was quantitatively floated with oleic acid (HOL) surfactant in the pH range 4.5-5.5, providing a highly selective and sensitive procedure for the spectrophotometric determination of CuII. The molar absorptivity of the floated Cu-PPT complex was 1.5 x 10(5) l mol)(-1) cm(-1). Beer's law was obeyed over the range 3-400 ppb at 545 nm. The analytical parameters affecting the flotation process and hence the determination of copper traces were reported. Also, the structure of the isolated solid complex and the mechanism of flotation were suggested. Moreover, the procedure was successfully applied to the analysis of CuII in natural waters, serum blood and some drug samples.

  20. Synthesis, Structure and Electrochemistry of Tetranuclear Oxygen-Centered Copper(II) Clusters with Acetylacetone and Benz-pyrazole Hydrolyzed Derivatives as Ligand.

    Science.gov (United States)

    Vafazadeh, Rasoul; Willis, Anthony C

    2016-01-01

    Two copper(II) clusters Cu(4)OCl(6)(pyrazole)4, 1, and Cu(4)OBr(6)(Br-pyrazole)4, 2, have been synthesized by reacting acetylacetone and benzohydrazide (1:1 ratio) with CuX(2) (X = Cl for 1 and X= Br for 2) in methanol solutions. The structures of both clusters have been established by X-ray crystallography. The clusters contain four Cu, one O, six μ(2)-X atoms, and four pyrazole ligands. The pyrazoles was prepared in situ by the reaction of acetylacetone with benzohydrazide in methanol under reflux. In 2, the methine hydrogens of the pyrazole ligands have been replaced by bromine atoms. The four copper atoms encapsulate the central O atom in a tetrahedral arrangement. All copper atoms are five-coordinate and have similar coordination environments with slightly distorted trigonal bipyramidal geometry. The cyclic voltammogram of the clusters 1 and 2 show a one-electron quasi-reversible reduction wave in the region 0.485 to 0.731 V, and a one-electron quasi-reversible oxidation wave in the region 0.767 to 0.898 V. In 1, one irreversible oxidative response is observed on the positive of side of the voltammogram at 1.512 V and this can be assigned to Cu(II) to Cu(III) oxidation.

  1. Health promotion.

    Science.gov (United States)

    Miyake, S; Lucas-Miyake, M

    1989-01-01

    This article will describe a marketing model for the development of a role for occupational therapy in the industrial market. Health promotion activities are used as a means to diversify existing revenue bases by establishing new referral sources in industry. The technique of need satisfaction -selling or marketing one's services to a customer based on needs expressed by the customer - is reviewed, and implementation of this approach is described from two settings, one in psychiatry and the other in rehabilitation.

  2. Rapid and selective derivatizatin method for the nitrogen-sensitive detection of carboxylic acids in biological fluids prior to gas chromatographic analysis

    NARCIS (Netherlands)

    Lingeman, H.; Haan, H.B.P.; Hulshoff, A.

    1984-01-01

    A rapid and selective derivatization procedure is described for the pre-column labelling of carboxylic acids with a nitrogen-containing label. The carboxylic acid function is activated with 2-bromo-1-methylpyridinium iodide and the activated carboxylic acid function reacts with a primary or a

  3. Unusual metal-ligand charge transfer in ferrocene functionalized μ{sub 3}-O iron carboxylates observed with Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mereacre, Valeriu, E-mail: valeriu.mereacre@kit.edu [Institut für Anorganische Chemie, Karlsruher Institut für Technologie, D-76131 Karlsruhe (Germany); Schlageter, Martin; Eichhöfer, Andreas [Institut für Nanotechnologie, Karlsruher Institut für Technologie, D-76344 Eggenstein-Leopoldshafen (Germany); Bauer, Thomas; Wolny, Juliusz A.; Schünemann, Volker [Department of Physics, University of Kaiserslautern, D-67663 Kaiserslautern (Germany); Powell, Annie K., E-mail: annie.powell@kit.edu [Institut für Anorganische Chemie, Karlsruher Institut für Technologie, D-76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, D-76344 Eggenstein-Leopoldshafen (Germany)

    2016-06-01

    Temperature dependent Mössbauer studies of two ferrocenecarboxylate functionalized {Fe_3O} complexes in solid state are reported. It was found that conjugation of ferrocene ring orbitals with the π orbitals of the adjacent carboxylic group promotes a shift of electron density from the ferrocene Fe{sup II} ion to the cyclopentadienide rings with π-orbital character giving rise to a new type of mixed-valence compound. - Highlights: • In this manuscript we describe a mechanism of electron density shift which stabilizes the trapped mixed-valence state. • The coexistence of ferrocene and ferrocenium in solid state was determined. • A mixed-valence state at room-temperature and a thermally induced electron transfer with gradual interconversion were observed.

  4. Development of starch biofilms using different carboxylic acids as plasticizers; Desenvolvimento de biofilmes de amido utilizando como plastificantes diferentes acidos carboxilicos

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, L.C.; Miranda, C.S.; Santos, W.J. dos; Goncalves, A.P.B.; Oliveira, J.C.; Jose, N.M., E-mail: uanaconceicaocruz@gmail.com [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Programa de Pos-Graduacao em Engenharia Quimica. Grupo de Energia e Ciencias dos Materiais

    2014-07-01

    Biodegradable films have become a widely exploited issue among scientists because of their positive environmental impact, besides their potential to promote better food conservation and an increase in shelf life. Starch has been studied in this field due to its availability, low cost and biodegradability. However, starch films tend to be brittle and they need addition of a plasticizer to enable their usage. In this work, starch films were synthesized with different carboxylic acids as plasticizers, aiming to observe the effect of the acids chain size in the final films properties. The acids used were: oxalic, succinic and adipic. The materials were produced by casting and characterized by DSC, TG, DRX e FTIR. It was observed that the acids chain size influenced on the thermal and structural properties of the films. (author)

  5. Design and synthesis of a tetradentate '3-amine-1-carboxylate' ligand to mimic the metal binding environment at the non-heme iron(II) oxidase active site.

    Science.gov (United States)

    Dungan, Victoria J; Ortin, Yannick; Mueller-Bunz, Helge; Rutledge, Peter J

    2010-04-07

    Non-heme iron(II) oxidases (NHIOs) catalyse a diverse array of oxidative chemistry in Nature. As part of ongoing efforts to realize biomimetic, iron-mediated C-H activation, we report the synthesis of a new 'three-amine-one-carboxylate' ligand designed to complex with iron(II) and mimic the NHIO active site. The tetradentate ligand has been prepared as a single enantiomer in nine synthetic steps from N-Cbz-L-alanine, pyridine-2,6-dimethanol and diphenylamine, using Seebach oxazolidinone chemistry to control the stereochemistry. X-Ray crystal structures are reported for two important intermediates, along with variable temperature NMR experiments to probe the hindered interconversion of conformational isomers of several key intermediates, 2,6-disubstituted pyridine derivatives. The target ligand and an N-Cbz-protected precursor were each then complexed with iron(II) and tested for their ability to promote alkene dihydroxylation, using hydrogen peroxide as the oxidant.

  6. Promoting industrialisation

    International Nuclear Information System (INIS)

    Hayfield, F.

    1986-04-01

    When the first nuclear power programme is decided upon, automatically the country has to initiate in parallel a programme to modify or add to its current industrial structure and resources. The extent of this new industrialisation depends upon many factors which both, the Government and the Industries have to consider. The Government has a vital role which includes the setting up of the background against which the industrial promotion should take place and in many cases may have also to play an active role all along this programme. Equally, the existing industries have an important role so as to achieve the most efficient participation in the nuclear programme. Invariably the industrial promotional programme will incur a certain degree of transfer of technology, the extent depending on the policies adopted. For this technology transfer to take place efficiently, both the donor and the receiver have to recognise each other's legitimate ambitions and fears. The transfer of technology is a process having a high human content and both donor and receiver have to take this into account. This can be further complicated when there is a difference in culture between them. Technology transfer is carried out within a contractual and organisational framework which will identify the donor (licensor) and the receiver (licensee). This framework may take various forms from a simple cooperative agreement, through a joint-venture organisation right to a standard contract between two separate entities. Each arrangement has its advantages and drawbacks and requires investment of different degrees. One of the keys to a successful industrial promotion is having it carried out in a timely fashion which will be parallel with the nuclear power programme. Experience in some countries has shown the problems when the industrialisation is out of phase with the programme whilst in other cases this industrialisation was at a level and scale unjustified. (author)

  7. Transition metal complexes with thiosemicarbazide-based ligands. Part 60. Reactions of copper(II bromide with pyridoxal S-methylisothiosemicarbazone (PLITSC. Crystal structure of [Cu(PLITSC−HH2O]Br•H2O

    Directory of Open Access Journals (Sweden)

    Leovac Vukadin M.

    2014-01-01

    Full Text Available The synthesis and structural characterization of a square-planar copper(II complex with pyridoxal S-methylisothiosemicarbazone (PLITSC of the formula [Cu(PLITSC−HH2O]Br•H2O (1 as the first Cu(II complex with monoanionic form of this ligand were described. Complex 1 together with two previously synthesized complexes [Cu(PLITSCBr2] (2 and [Cu(PLITSCBr(MeOH]Br (3 were characterized by elemental analysis, IR and electronic spectra and also by the methods of thermal analysis, conductometry and magnetochemistry. [Projekat Pokrajisnkog sekretarijata za nauku i tehnoloski razvoj Vojvodine i Ministarstva nauke Republike Srbije, br. 172014

  8. Carboxyl-Functionalized Polymeric Microspheres Prepared by One-Stage Photoinitiated RAFT Dispersion Polymerization

    Directory of Open Access Journals (Sweden)

    Jianbo Tan

    2017-12-01

    Full Text Available Herein, we report a photoinitiated reversible addition-fragmentation chain transfer (RAFT dispersion copolymerization of methyl methacrylate (MMA and methyl methacrylic (MAA for the preparation of highly monodisperse carboxyl-functionalized polymeric microspheres. High rates of polymerization were observed, with more than 90% particle yields being achieved within 3 h of UV irradiation. Effects of reaction parameters (e.g., MAA concentration, RAFT agent concentration, photoinitiator concentration, and solvent composition were studied in detail, and highly monodisperse polymeric microspheres were obtained in most cases. Finally, silver (Ag composite microspheres were prepared by in situ reduction of AgNO3 using the carboxyl-functionalized polymeric microspheres as the template. The obtained Ag composite microspheres were able to catalyze the reduction of methylene blue (MB with NaBH4 as a reductant.

  9. Supramolecular Coordination Assemblies Constructed From Multifunctional Azole-Containing Carboxylic Acids

    Directory of Open Access Journals (Sweden)

    Yuheng Deng

    2010-05-01

    Full Text Available This paper provides a brief review of recent progress in the field of metal coordination polymers assembled from azole-containing carboxylic acids and gives a diagrammatic summary of the diversity of topological structures in the resulting infinite metal-organic coordination networks (MOCNs. Azole-containing carboxylic acids are a favorable kind of multifunctional ligand to construct various metal complexes with isolated complexes and one, two and three dimensional structures, whose isolated complexes are not the focus of this review. An insight into the topology patterns of the infinite coordination polymers is provided. Analyzed topologies are compared with documented topologies and catalogued by the nature of nodes and connectivity pattern. New topologies which are not available from current topology databases are described and demonstrated graphically.

  10. Synthesis and antifungal activity of the derivatives of novel pyrazole carboxamide and isoxazolol pyrazole carboxylate.

    Science.gov (United States)

    Sun, Jialong; Zhou, Yuanming

    2015-03-09

    A series of pyrazole carboxamide and isoxazolol pyrazole carboxylate derivatives were designed and synthesized in this study. The structures of the compounds were elucidated based on spectral data (infrared, proton nuclear magnetic resonance and mass spectroscopy). Then, all of the compounds were bioassayed in vitro against four types of phytopathogenic fungi (Alternaria porri, Marssonina coronaria, Cercospora petroselini and Rhizoctonia solani) using the mycelium growth inhibition method. The results showed that some of the synthesized pyrazole carboxamides displayed notable antifungal activity. The isoxazole pyrazole carboxylate 7ai exhibited significant antifungal activity against R. solani, with an EC50 value of 0.37 μg/mL. Nonetheless, this value was lower than that of the commercial fungicide, carbendazol.

  11. Synthesis and Antifungal Activity of the Derivatives of Novel Pyrazole Carboxamide and Isoxazolol Pyrazole Carboxylate

    Directory of Open Access Journals (Sweden)

    Jialong Sun

    2015-03-01

    Full Text Available A series of pyrazole carboxamide and isoxazolol pyrazole carboxylate derivatives were designed and synthesized in this study. The structures of the compounds were elucidated based on spectral data (infrared, proton nuclear magnetic resonance and mass spectroscopy. Then, all of the compounds were bioassayed in vitro against four types of phytopathogenic fungi (Alternaria porri, Marssonina coronaria, Cercospora petroselini and Rhizoctonia solani using the mycelium growth inhibition method. The results showed that some of the synthesized pyrazole carboxamides displayed notable antifungal activity. The isoxazole pyrazole carboxylate 7ai exhibited significant antifungal activity against R. solani, with an EC50 value of 0.37 μg/mL. Nonetheless, this value was lower than that of the commercial fungicide, carbendazol.

  12. Coupling of carboxylic groups onto the surface of polystyrene parts during fused filament fabrication

    Science.gov (United States)

    Nagel, Jürgen; Zimmermann, Philipp; Schubert, Oliver; Simon, Frank; Schlenstedt, Kornelia

    2017-11-01

    A method for the fabrication of polystyrene parts, modified with carboxylic groups during Fused Filament Fabrication (FFF), is being introduced. This method is based on the application of a thin layer of a reactive polymer carrying carboxylic groups on a substrate surface. A polystyrene film is printed on top of this layer. During contact between the hot melt and the reactive layer, a Friedel-Crafts type acylation using a green catalyst takes place, which attaches the reactive polymer to the polystyrene surface. The modified surface is homogeneous, hydrophilic and able to bind copper ions. The method could be used to fabricate unique parts of polystyrene with tailored surface functionalisation. It could be applied for laboratory use, e.g. for the manufacture of lab-on-a-chip devices.

  13. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  14. Controlled Electrochemical Carboxylation of Graphene To Create a Versatile Chemical Platform for Further Functionalization

    DEFF Research Database (Denmark)

    Bjerglund Pedersen, Emil; Kongsfelt, Mikkel; Shimizu, Kyoko

    2014-01-01

    An electrochemical approach is introduced for the versatile carboxylation of multi-layered graphene in 0.1 M Bu4NBF4/MeCN. First, the graphene substrate (i.e., graphene chemically vapor-deposited on Ni) is negatively charged at -1.9 V versus Ag/AgI in a degassed solution to allow for intercalation...... of Bu4N+ and, thereby, separation of the individual graphene sheets. In the next step, the strongly activated and nucleophilic graphene is allowed to react with added carbon dioxide in an addition reaction, introducing carboxylate groups stabilized by Bu4N+ already present. This procedure may be carried...... solution at the graphene electrode for a given time. The same functionalization degree is obtained for all multi-layered regions, independent of the number of graphene sheets, which is due to the fact that the entire graphene structure is opened in response to the intercalation of Bu4N+. Hence...

  15. Selectivity in stripping of alkali-metal cations from crown ether carboxylate complexes

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Walkowiak, W.; Robison, T.W.

    1992-01-01

    To probe the effect of structural variations within the ionophore upon the efficiency and selectivity of solvent extraction, a variety of crown ether carboxylic acids and phosphonic acid monoesters have been synthesized. In other studies the influence of the organic diluent upon extraction efficiency and selectivity has been probed for such proton-ionizable crown ethers. In the present investigation, attention is focused upon selectivity in the stripping step. Although the efficiency of metal ion stripping is often examined in solvent extraction studies, the selectivity of competitive metal ion release under different conditions is much less frequently considered. In this study, competitive stripping of metal ions from chloroform solutions of five-alkali-metal crown ether carboxylates by varying concentrations of aqueous hydrochloric acid is examined. Alkali metals used were Li, Na, K, Rb, and Cs

  16. Guest-host chemistry with dendrimers—binding of carboxylates in aqueous solution

    DEFF Research Database (Denmark)

    Ficker, Mario; Petersen, Johannes Fabritius; Hansen, Jon Stefan

    2015-01-01

    Recognition and binding of anions in water is difficult due to the ability of water molecules to form strong hydrogen bonds and to solvate the anions. The complexation of two different carboxylates with 1-(4-carbomethoxypyrrolidone)-terminated PAMAM dendrimers was studied in aqueous solution using...... the carboxylate-dendrimer interaction selectively. The binding stoichiometry for 3-hydroxy-2-naphthoate was found to be two strongly bound guest molecules per dendrimer and an additional 40 molecules with weak binding affinity. The NOESY NMR showed a clear binding correlation of sodium 3-hydroxy-2-naphthoate...... with the lyophilic dendrimer core, possibly with the two high affinity guest molecules. In comparison, sodium 2-naphthoate showed a weaker binding strength and had a stoichiometry of two guests per dendrimer with no additional weakly bound guests. This stronger dendrimer interaction with sodium 3-hydroxy-2...

  17. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    International Nuclear Information System (INIS)

    Niedziolka-Joensson, Joanna; Boland, Susan; Leech, Donal; Boukherroub, Rabah; Szunerits, Sabine

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  18. Redshift or adduct stabilization -- a computational study of hydrogen bonding in adducts of protonated carboxylic acids

    DEFF Research Database (Denmark)

    Olesen, Solveig Gaarn; Hammerum, Steen

    2009-01-01

    It is generally expected that the hydrogen bond strength in a D-H-A adduct is predicted by the difference between the proton affinities of D and A, measured by the adduct stabilization, and demonstrated by the IR redshift of the D-H bond stretching vibrational frequency. These criteria do...... not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The delta-PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length...... carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength....

  19. Polyoxyethylene alkyl ether carboxylic acids: An overview of a neglected class of surfactants with multiresponsive properties.

    Science.gov (United States)

    Chiappisi, Leonardo

    2017-12-01

    In this work, an overview on aqueous solutions of polyoxyethylene alkyl ether carboxylic acids is given. Unique properties arise from the combination of the nonionic, temperature-responsive polyoxyethylene block with the weakly ionic, pH-responsive carboxylic acid termination in a single surfactant headgroup. Accordingly, this class of surfactant finds broad application across very different sectors. Despite their large use on an industrial and a technical scale, the literature lacks a systematic and detailed characterization of their physico-chemical properties which is provided herein. In addition, a comprehensive overview is given of their self-assembly and interfacial behavior, of their use as colloidal building blocks and for large-scale applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Synthesis of carboxyl superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles by a novel flocculation-redispersion process

    International Nuclear Information System (INIS)

    Cheng Changming; Kou Geng; Wang Xiaoliang; Wang Shuhui; Gu Hongchen; Guo Yajun

    2009-01-01

    We report a novel flocculation-redispersion method to synthesize and purify the biocompatible superparamagnetic ultrasmall iron oxide (USPIO) nanoparticles coated with carboxyl dextran derivative. First, USPIO nanoparticles were synthesized and flocculated to form the large clusters through bridging effect of polyvinyl alcohol (PVA) during coprecipitation process. Then the flocculated USPIO was separated and purified from the solution conveniently through magnetic sedimentation. Finally, USPIO in the clusters were released again and well dispersed through electrostatic repelling effect of citric acid with the aid of ultrasonic. The dispersed carboxyl-functionalized USPIO was conjugated with the monoclonal antibodies. And it has been proved that the antibodies anchored on USPIO still retained their bioactivity after the conjugation. These results implied that the USPIO synthesized have good potential as active targeting molecular probe in biomedical application.

  1. Thermodynamics of formation of cadmium dicarboxylate and carboxylate mixed complexes with benzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Kharitonov, G V; Bolotov, V M; Kharitonova, R I [Voronezhskij Tekhnologicheskij Inst. (USSR)

    1980-01-01

    Thermodynamic parameters of the mixed complexing of cadmium propionate, butyrate, valerate, succinate, maleinate and malate with benzimidazole in 20 % aqUeous-ethanol solution of 0.1 M KNO/sub 3/ are studied using polarographic method. It is shown that stability of mixed complexes of cadmium carboxylates with benzimidazole is connected with the process enthalpy and is determined by covalency of the metal-carboxylate bond. Increasing length of hydrocarbon chain of acyl group of monobasic acids hampers amine coordination with central complexing agent (..delta..S<0). The presence of dicarboxylate-ion in the inner coordination sphere decreases the enthalpy and increases the entropy of the process (..delta..S>0).

  2. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups

    International Nuclear Information System (INIS)

    Kralj, Slavko; Drofenik, Miha; Makovec, Darko

    2011-01-01

    General and versatile methods for the functionalization of superparamagnetic, silica-coated, maghemite nanoparticles by surface amino and/or carboxyl groups have been established. The nanoparticles were synthesized using co-precipitation from aqueous solutions and coated with a thin layer of silica using the hydrolysis and condensation of tetraethoxysilane (TEOS). For the amino functionalization, 3-(2-aminoethylamino)propylmethyldimethoxysilane (APMS) was grafted onto the nanoparticle surfaces in their aqueous suspensions. The grafting process was followed by measurements of the ζ-potential and a determination of the concentration of the surface amino groups with conductometric titrations. The surface concentration of the amino groups could be varied by increasing the amount of APMS in the grafting process up to approximately 2.3 –NH 2 groups per nm 2 . The carboxyl functionalization was obtained in two ways: (i) by a ring-opening linker elongation reaction of the surface amines at the functionalized nanoparticles with succinic anhydride (SA) in non-aqueous medium, and (ii) by reacting the APMS and SA first, followed by grafting of the carboxyl-terminated reagent onto the nanoparticle surfaces. Using the first method, the SA only reacted with the terminal primary amino groups (–NH 2 ) of the surface-grafted APMS molecules. Infra-red spectroscopy (ATR FTIR) and mass spectrometry (HRMS) showed that the second method enables the bonding of up to two SA molecules per one APMS molecule, since the SA reacted with both the primary (–NH 2 ) and secondary amino (–NH–) groups of the APMS molecule. When using both methods, the ratio between the surface amino and carboxyl groups can be controlled.

  3. Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells

    Czech Academy of Sciences Publication Activity Database

    Smolková, Katarína; Dvořák, Aleš; Zelenka, Jaroslav; Vítek, L.; Ježek, Petr

    2015-01-01

    Roč. 65, AUG 15 (2015), s. 125-133 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GPP301/12/P381; GA MŠk(CZ) LF14001 Institutional support: RVO:67985823 Keywords : reductive carboxylation * NADPH-dependent isocitrate * dehydrogenase IDH2 * hypoxia * 2-hydroxyglutarate Subject RIV: FD - Oncology ; Hematology Impact factor: 3.905, year: 2015

  4. Aminolysis of resin-bound N-nosylaziridine-2-carboxylic acids

    DEFF Research Database (Denmark)

    Olsen, Christian A; Christensen, Caspar; Nielsen, Birgitte

    2006-01-01

    [Structure: see text] Solid-phase synthesis is a rapidly developing area of organic chemistry, of particular importance for medicinal chemistry and chemical biology. Aziridines have previously only rarely been applied in solid-phase synthesis. In the present work, aminolysis of resin-bound, sprin......-loaded N-nitrobenzenesulfonyl-activated aziridine-2-carboxylic acids has been optimized and employed in the synthesis of a number of open-chain and heterocyclic scaffolds, including enantiopure products....

  5. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1994-01-05

    Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus L...Carboxylic Acids and 4Polychiorotrifluoroethylene: A Nuclear Magnetic Resonance G-AFOSR-90-0148 Investigation in Vivo ,IIC 6. AUTHOR(S a Nicholas V. Reo...Maxim um 200 words) This report outlines our research progress regarding toxicological investigations of perifluoro- n-octanoic acid (PFOA) and

  6. Hepatic Metabolism of Perfluorinated Carboxylic Acids: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1995-01-17

    Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic...SUBTITLE 7C 5. FUNDING NUMBERS" Hepatic Metabolism of Perfluorinated Carboxylic Acids : A Nuclear Magnetic Resonance Investigation in Vivo G-AFOSR-90-0148 6...octanoic acid (PFOA) and perfluoro-n-decanoic acid (PFDA). These Air Force chemicals belong to a class of CU’. compounds known as peroxisome

  7. N-Alkylation Using Sodium Triacetoxyborohydride with Carboxylic Acids as Alkyl Sources.

    Science.gov (United States)

    Tamura, Satoru; Sato, Keigo; Kawano, Tomikazu

    2018-01-01

    A versatile N-alkylation was performed using sodium triacetoxyborohydride and carboxylic acid as an alkyl source. The combination of these reagents furnished products different from those given previously by a similar reaction. Moreover, the mild conditions of our method allowed some functional groups to remain through the reaction, whereas they would react and be converted into other moieties in the similar reductive N-alkylation reported previously. Herein, we provide a new procedure for the preparation of various compounds containing nitrogen atoms.

  8. Deep-desulfurization of the petroleum diesel using the heterogeneous carboxyl functionalized poly-ionic liquid

    OpenAIRE

    Kamlesh Rudreshwar Balinge; Avinash Ganesh Khiratkar; Manikandan Krishnamurthy; Dipesh S. Patle; Cheralathan K. K.; Pundlik Rambhau Bhagat

    2016-01-01

    Acidic carboxyl functionalized poly(ionic liquid) (CFPIL) has been synthesized and characterized by various techniques like FT-NMR, Fourier transform infrared spectroscopy (FTIR). In this work, deep oxidative desulfurization of model oil (thiophene dissolved in iso-octane) by CFPIL catalyst was carried out in presence of 30 wt% H2O2 solution as an oxidant. The effects of the hydrogen peroxide, amount of CFPIL, temperature-time and recyclability are scrutinized systematically. It was found tha...

  9. An improved synthesis of carbon-14 labelled carboxylic acids from carbon-14 labelled amino acids

    International Nuclear Information System (INIS)

    Ramamurthy, T.V.; Ravi, S.; Viswanathan, K.V.

    1988-01-01

    Various carbon-14 labelled amino acids including the aromatic ones viz., tyrosine, phenylalanine and tryptophan are converted to the corresponding carboxylic acids in high yield (70-90%) on a micromolar scale synthesis by reaction with hydroxyl-amine-O-sulphonic acid and in a short reaction time. The improvement in yield has been achieved by using aqeuous alcohol as solvent in lieu of water alone as the medium of reaction. (author)

  10. Edge-carboxylated graphene nanoflakes from nitric acid oxidised arc-discharge material

    OpenAIRE

    NICOLOSI, VALERIA

    2010-01-01

    PUBLISHED Graphene nanoflakes (GNFs) with average diameters of 30 nm have been prepared by a single-step oxidation procedure using single-wall carbon nanotube arc-discharge material and nitric acid. The GNFs are predominately single sheets containing a small number of internal defects. The edges are decorated with primarily carboxylic acid groups which allow facile chemical functionalisation and cross-linking of the fragments using multivalent cations

  11. Use of scandium ionic associates with salicylic- or 2-phenylquinoline-4-carboxylic acid and rhodamine C

    Energy Technology Data Exchange (ETDEWEB)

    Kononenko, L.I.; Bel' tyukova, S V; Drobyazko, V N; Poluehktov, N S [AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii; AN Ukrainskoj SSR, Odessa. Inst. Obshchej i Neorganicheskoj Khimii)

    1975-09-01

    With salicylic or 2-phenylquinoline-4-carboxylic acid and rhodamine C scandium forms ion associations whose benzene solutions are capable of luminescence. Optimum conditions for the formation of complexes and the composition of the complex with the ratio of Sc:acid:rhodamine C = 1:2:1 are established. A possibility of luminescence determination of scandium in the presence of rare earths is shown.

  12. tert-Butyl 4-carbamoyl-3-methoxyimino-4-methylpiperidine-1-carboxylate

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2008-12-01

    Full Text Available The title compound, C13H23N3O4, was prepared starting from ethyl N-benzyl-3-oxopiperidine-4-carboxylate through a nine-step reaction, including hydrogenation, Boc (tert-butoxycarbonyl protection, methylation, oximation, hydrolysis, esterification and ammonolysis. In the crystal structure, molecules are linked by intermolecular N—H...O hydrogen bonds to form a porous three-dimensional network with solvent-free hydrophobic channels extending along the c axis.

  13. Synthesis of N-acylurea derivatives from carboxylic acids and N,N ...

    Indian Academy of Sciences (India)

    acid 1 (scheme 1) to the basic nitrogen of the carbodi- imide 2, followed by addition of the carboxylate to form the O-acyl isourea 3. It is known10 that in low dielec- tric constant solvents such as CH2Cl2, formation of 3 occurs instantaneously and, in the absence of a nucle- ophile or a base, it can be stable for many hours.

  14. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    Energy Technology Data Exchange (ETDEWEB)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E.J.; Kaiser, Ralf I. [W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States); Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, HI 96822 (United States)

    2016-06-15

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C{sub 5}H{sub 5}N)-carbon dioxide (CO{sub 2}) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C{sub 5}H{sub 4}NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C{sub 5}H{sub 3}N(COOH){sub 2}) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical–radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  15. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Rupashree Shyama

    2009-02-10

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO{sub 2}{sup 2+}, [UO{sub 2}OH]{sup +}, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  16. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres

    Science.gov (United States)

    Liu, Huiyu; Chen, Dong; Tang, Fangqiong; Du, Gangjun; Li, Linlin; Meng, Xianwei; Liang, Wei; Zhang, Yangde; Teng, Xu; Li, Yi

    2008-11-01

    A new approach towards the design of gold nanoshells on carboxylated polystyrene spheres (GNCPSs) is reported here. Gold nanoshells were self-assembled on the surface of carboxylated polystyrene spheres by a seed growth method. Chitosan (CHI) was used as a functional agent of carboxylated polystyrene spheres for attaching gold seeds. The surface plasmon resonance (SPR) peak of GNCPSs can be tuned, greatly redshifted, over a broad spectral range including the near-infrared (NIR) wavelength region, which provides maximal penetration of light through tissue. Irradiation of GNCPSs at their peak extinction coefficient results in the conversion of light to heat energy that produces a local rise in temperature. Our study revealed that the Lewis lung carcinoma (LLC) in mice treated with GNCPSs exposed to a low dose of NIR light (808 nm, 4 W cm-2) induced irreversible tissue damage. The tumor volumes of the treatment group by GNCPSs were significantly lower than those of control groups, with an average inhibition rate over 55% (P<0.005). This study proves that GNCPSs are promising in plasmonic photothermal tumor therapy.

  17. Vitamin K-dependent carboxylation of pulmonary surfactant-associated proteins

    International Nuclear Information System (INIS)

    Rannels, S.R.; Gallaher, K.J.; Wallin, R.; Rannels, D.E.

    1987-01-01

    Rat type II pneumocytes expressed vitamin K-dependent carboxylase activity that incorporated 14 CO 2 into microsomal protein precursors of molecular weights similar to those of surfactant-associated proteins (SAP). Compared to carboxylated precursor proteins present in the liver, these molecules appeared to be unique to the lung. Antibodies raised against purified rat surfactant reacted with SAP resolved by NaDodSO 4 /PAGE and with surfactant-containing lamellar bodies in type II pneumocyte cytoplasm. NaDodSO 4 /PAGE of microsomal proteins, after carboxylase-catalyzed incorporation of 14 CO 2 , demonstrated radiolabeled, immunoreactive products identical to SAP. The presence of γ-carboxyglutamic acid in these proteins was confirmed by HPLC analysis of SAP hydrolysates. Furthermore, lung carboxylase activity and SAP matured over similar time courses during fetal lung development. These results show that SAP are carboxylated by type II cells via a vitamin K-dependent pathway analogous to that for hepatic carboxylation of clotting factors. Further analogy to the clotting system suggest that γ-carboxyglutamic acid residues in SAP polypeptides play a role in Ca 2+ binding and thus in the known requirements for both cation and SAP in the physiological function of pulmonary surfactant

  18. Biotransformation of fluorophenyl pyridine carboxylic acids by the model fungus Cunninghamella elegans.

    Science.gov (United States)

    Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D

    2017-09-01

    1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3.  19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.

  19. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Zargarian, S. Sh.; Haddadi-Asl, V., E-mail: haddadi@aut.ac.ir; Hematpour, H. [Amirkabir University of Technology, Department of Polymer Engineering and Color Technology (Iran, Islamic Republic of)

    2015-05-15

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  20. Carboxylated magnetic nanoparticles as MRI contrast agents: Relaxation measurements at different field strengths

    Energy Technology Data Exchange (ETDEWEB)

    Jedlovszky-Hajdu, Angela, E-mail: angela.hajdu@net.sote.hu [Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvarad Sq 4, H-1089 Budapest (Hungary); Tombacz, Etelka, E-mail: tombacz@chem.u-szeged.hu [Department of Physical Chemistry and Material Science, University of Szeged, Aradi Vt. Sq 1, Szeged 6720 (Hungary); Banyai, Istvan, E-mail: banyai.istvan@science.unideb.hu [Department of Colloid and Environmental Chemistry, University of Debrecen (Hungary); Babos, Magor, E-mail: babosmagor@yahoo.com [Euromedic Diagnostics Szeged Ltd., Semmelweis St 6, Szeged 6720 (Hungary); Palko, Andras, E-mail: palko@radio.szote.u-szeged.hu [Faculty of Medicine, Department of Radiology, University of Szeged (Hungary)

    2012-09-15

    At the moment the biomedical applications of magnetic fluids are the subject of intensive scientific interest. In the present work, magnetite nanoparticles (MNPs) were synthesized and stabilized in aqueous medium with different carboxylic compounds (citric acid (CA), polyacrylic acid (PAA), and sodium oleate (NaOA)), in order to prepare well stabilized magnetic fluids (MFs). The magnetic nanoparticles can be used in the magnetic resonance imaging (MRI) as contrast agents. Magnetic resonance relaxation measurements of the above MFs were performed at different field strengths (i.e., 0.47, 1.5 and 9.4 T) to reveal the field strength dependence of their magnetic responses, and to compare them with that of ferucarbotran, a well-known superparamagnetic contrast agent. The measurements showed characteristic differences between the tested magnetic fluids stabilized by carboxylic compounds and ferucarbotran. It is worthy of note that our magnetic fluids have the highest r2 relaxivities at the field strength of 1.5 T, where the most of the MRI works in worldwide. - Highlights: Black-Right-Pointing-Pointer Magnetic resonance relaxation measurements were done at different field strengths. Black-Right-Pointing-Pointer Results show characteristic differences between the tested carboxylated MFs. Black-Right-Pointing-Pointer r1 and r2 relaxivities depend on the thickness of the protecting layer. Black-Right-Pointing-Pointer MFs have high r2/r1 ratios at each magnetic field.

  1. Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application

    Science.gov (United States)

    Illés, Erzsébet; Szekeres, Márta; Tóth, Ildikó Y.; Szabó, Ákos; Iván, Béla; Turcu, Rodica; Vékás, Ladislau; Zupkó, István; Jaics, György; Tombácz, Etelka

    2018-04-01

    Biocompatible magnetite nanoparticles (MNPs) were prepared by post-coating the magnetic nanocores with a synthetic polymer designed specifically to shield the particles from non-specific interaction with cells. Poly(ethylene glycol) methyl ether methacrylate (PEGMA) macromonomers and acrylic acid (AA) small molecular monomers were chemically coupled by quasi-living atom transfer radical polymerization (ATRP) to a comb-like copolymer, P(PEGMA-co-AA) designated here as P(PEGMA-AA). The polymer contains pendant carboxylate moieties near the backbone and PEG side chains. It is able to bind spontaneously to MNPs; stabilize the particles electrostatically via the carboxylate moieties and sterically via the PEG moieties; provide high protein repellency via the structured PEG layer; and anchor bioactive proteins via peptide bond formation with the free carboxylate groups. The presence of the P(PEGMA-AA) coating was verified in XPS experiments. The electrosteric (i.e., combined electrostatic and steric) stabilization is efficient down to pH 4 (at 10 mM ionic strength). Static magnetization and AC susceptibility measurements showed that the P(PEGMA-AA)@MNPs are superparamagnetic with a saturation magnetization value of 55 emu/g and that both single core nanoparticles and multicore structures are present in the samples. The multicore components make our product well suited for magnetic hyperthermia applications (SAR values up to 17.44 W/g). In vitro biocompatibility, cell internalization, and magnetic hyperthermia studies demonstrate the excellent theranostic potential of our product.

  2. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    International Nuclear Information System (INIS)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian

    2016-01-01

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL"−"1, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  3. Carboxylic Terminated Thermo-Responsive Copolymer Hydrogel and Improvement in Peptide Release Profile

    Directory of Open Access Journals (Sweden)

    Zi-Kun Rao

    2018-02-01

    Full Text Available To improve the release profile of peptide drugs, thermos-responsive triblock copolymer poly (ε-caprolactone-co-p-dioxanone-b-poly (ethylene glycol-b-poly (ε-caprolactone-co-p-dioxanone (PECP was prepared and end capped by succinic anhydride to give its carboxylic terminated derivative. Both PCEP block copolymer and its end group modified derivative showed temperature-dependent reversible sol-gel transition in water. The carboxylic end group could significantly decrease the sol-gel transition temperature by nearly 10 °C and strengthen the gel due to enhanced intermolecular force among triblock copolymer chains. Furthermore, compared with the original PECP triblock copolymer, HOOC–PECP–COOH copolymer displayed a retarded and sustained release profile for leuprorelin acetate over one month while effectively avoiding the initial burst. The controlled release was believed to be related to the formation of conjugated copolymer-peptide pair by ionic interaction and enhanced solubility of drug molecules into the hydrophobic domains of the hydrogel. Therefore, carboxyl terminated HOOC–PECP–COOH hydrogel was a promising and well-exhibited sustained release carrier for peptide drugs with the advantage of being able to develop injectable formulation by simple mixing.

  4. Interaction of 1-iodochlordecone, as radioactive tracer, with the carboxylate group on activated carbon

    International Nuclear Information System (INIS)

    Gamboa-Carballo, Juan José; Melchor-Rodríguez, Kenia; Hernández-Valdés, Daniel; Jáuregui-Haza, Ulises Javier

    2016-01-01

    Chlordecone is a synthetic organo chlorinated compound that has been used as pesticide. It has been identified and listed as persistent organic pollutant by the Stockholm Convention. The use of activated carbon filters is one of the most widely popular solutions for water decontamination. The chlordecone labeled with radioactive iodine (1-iodochordecone) is a potential radioactive tracer for studying adsorption, environmental availability and bio-distribution of chlordecone. The selection of the best suited activation carbon for this type of contaminants is mainly an empiric process, increasing the costs of research. A simplified activation carbon model, consisting of a seven ring graphene sheet with a functional group (carboxylate) was used to assess the interaction of chlordecone and 1-iodochlordecone with this surface group under neutral pH conditions over the adsorption process. The Multiple Minima Hypersurface methodology with the semiempirical Hamiltonian PM7 was used. The results indicate that for carboxylate, in neutral conditions, significant associations appear which suggest chemisorption in activated carbon. No significant differences were observed for the interactions of chlordecone and 1 iodochlordecone with carboxylate, making 1-iodochlordecone a good candidate as a radioactive tracer in medical research. (author)

  5. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    International Nuclear Information System (INIS)

    Zargarian, S. Sh.; Haddadi-Asl, V.; Hematpour, H.

    2015-01-01

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite

  6. Two types of essential carboxyl groups in Rhodospirillum rubrum proton ATPase

    International Nuclear Information System (INIS)

    Ceccarelli, E.; Vallejos, R.H.

    1983-01-01

    Two different types of essential carboxyl groups were detected in the extrinsic component of the proton ATPase of Rhodospirillum rubrum. Chemical modification of R. rubrum chromatophores or its solubilized ATPase by Woodward's reagent K resulted in inactivation of photophosphorylating and ATPase activities. The apparent order of reaction was nearly 1 with respect to reagent concentration and similar K1 were obtained for the soluble and membrane-bound ATPases suggesting that inactivation was associated with modification of one essential carboxyl group located in the soluble component of the proton ATPase. Inactivation was prevented by adenine nucleotides but not by divalent cations. Dicyclohexylcarbodiimide completely inhibited the solubilized ATPase with a K1 of 5.2 mM and a K2 of 0.81 min-1. Mg2+ afforded nearly complete protection with a Kd of 2.8 mM. Two moles of [14C]dicyclohexylcarbodiimide were incorporated per mole of enzyme for complete inactivation but in the presence of 30 mM MgCl2 only one mole was incorporated and there was no inhibition. The labeling was recovered mostly from the beta subunit. The incorporation of the labeled reagent into the ATPase was not prevented by previous modification with Woodward's reagent K. It is concluded that both reagents modified two different essential carboxyl groups in the soluble ATPase from R. rubrum

  7. A relativistic density functional study of uranyl hydrolysis and complexation by carboxylic acids in aqueous solution

    International Nuclear Information System (INIS)

    Ray, Rupashree Shyama

    2009-01-01

    In this work, the complexation of uranium in its most stable oxidation state VI in aqueous solution was studied computationally, within the framework of density functional (DF) theory. The thesis is divided into the following parts: Chapter 2 briefly summarizes the relevant general aspects of actinide chemistry and then focuses on actinide environmental chemistry. Experimental results on hydrolysis, actinide complexation by carboxylic acids, and humic substances are presented to establish a background for the subsequent discussion. Chapter 3 describes the computational method used in this work and the relevant features of the parallel quantum chemistry code PARAGAUSS employed. First, the most relevant basics of the applied density functional approach are presented focusing on relativistic effects. Then, the treatment of solvent effects, essential for an adequate modeling of actinide species in aqueous solution, will be introduced. At the end of this chapter, computational parameters and procedures will be summarized. Chapter 4 presents the computational results including a comparison to available experimental data. In the beginning, the mononuclear hydrolysis product of UO_2"2"+, [UO_2OH]"+, will be discussed. The second part deals with actinide complexation by carboxylate ligands. First of all the coordination number for uranylacetate will be discussed with respect to implications for the complexation of actinides by humic substances followed by the uranyl complexation of aromatic carboxylic acids in comparison to earlier results for aliphatic ones. In the end, the ternary uranyl-hydroxo-acetate are discussed, as models of uranyl humate complexation at ambient condition.

  8. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    Science.gov (United States)

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Confinement effect of protonation/deprotonation of carboxylic group modified in nanochannel

    International Nuclear Information System (INIS)

    Gao, Hong-Li; Zhang, Hui; Li, Cheng-Yong; Xia, Xing-Hua

    2013-01-01

    Protonation and deprotonation processes are the key step of acid–base reaction and occur in many biological processes. Study on the deprotonation process of molecules and/or functional groups in confined conditions would help us understand the acid–base theory and confinement effect of biomolecules. In this paper, we use a recently established approach to the study of protonation and deprotonation processes of functional groups in porous anodic alumina array nanochannels by measuring the flux of electrochemical active probes (ferricyanide ions) using an Au film electrochemical detector sputtered at the end of nanochannels. The protonation and deprotonation processes of surface functional groups in nanochannels will change the surface charges and in turn modulate the transportation of charged electroactive probes through nanochannels. The titration curve for the deprotonation of carboxylic groups in nanochannel confined conditions is obtained by measuring the current signal of ferricyanide probe flowing through an carboxylic-anchored PAA nanochannels array at different solution pH. Results show that the deprotonation of carboxylic group in nanochannel occurs in one step with a pK 1/2 = 6.2. The present method provides an effective tool to study the deprotonation processes of various functional groups and biomolecules under confined conditions

  10. Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres

    International Nuclear Information System (INIS)

    Liu Huiyu; Chen Dong; Tang Fangqiong; Li Linlin; Meng Xianwei; Li Yi; Du Gangjun; Liang Wei; Zhang Yangde; Teng Xu

    2008-01-01

    A new approach towards the design of gold nanoshells on carboxylated polystyrene spheres (GNCPSs) is reported here. Gold nanoshells were self-assembled on the surface of carboxylated polystyrene spheres by a seed growth method. Chitosan (CHI) was used as a functional agent of carboxylated polystyrene spheres for attaching gold seeds. The surface plasmon resonance (SPR) peak of GNCPSs can be tuned, greatly redshifted, over a broad spectral range including the near-infrared (NIR) wavelength region, which provides maximal penetration of light through tissue. Irradiation of GNCPSs at their peak extinction coefficient results in the conversion of light to heat energy that produces a local rise in temperature. Our study revealed that the Lewis lung carcinoma (LLC) in mice treated with GNCPSs exposed to a low dose of NIR light (808 nm, 4 W cm -2 ) induced irreversible tissue damage. The tumor volumes of the treatment group by GNCPSs were significantly lower than those of control groups, with an average inhibition rate over 55% (P<0.005). This study proves that GNCPSs are promising in plasmonic photothermal tumor therapy.

  11. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation

    Energy Technology Data Exchange (ETDEWEB)

    Meundaeng, Natthaya; Rujiwatra, Apinpus [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prior, Timothy J., E-mail: t.prior@hull.ac.uk [Chemistry, University of Hull, Kingston upon Hull HU6 7RX (United Kingdom)

    2017-01-15

    We have successfully prepared crystals of thiazole-5-carboxylic acid (5-Htza) (L) and three new thiazole-5-carboxylate-based Cu{sup 2+} coordination polymers with different dimensionality, namely, 1D [Cu{sub 2}(5-tza){sub 2}(1,10-phenanthroline){sub 2}(NO{sub 3}){sub 2}] (1), 2D [Cu(5-tza){sub 2}(MeOH){sub 2}] (2), and 3D [Cu(5-tza){sub 2}]·H{sub 2}O (3). These have been characterized by single crystal X-ray diffraction and thermogravimetry. Interestingly, the 2D network structure of 2 can directly transform into the 3D framework of 3 upon removal of methanol molecules at room temperature. 2 can also undergo structural transformation to produce the same 2D network present in the known [Cu(5-tza){sub 2}]·1.5H{sub 2}O upon heat treatment for 2 h. This 2D network can adsorb water and convert to 3 upon exposure to air. - Highlights: • Rare examples of coordination polymers of thiazole-5-carboxylic acid were prepared. • Non-covalent interactions play a key role on the assembly of the complexes in solid state. • Structural transformation of a 2D framework to a 3D upon removal of methanol is observed.

  12. Gold nanostar-enhanced surface plasmon resonance biosensor based on carboxyl-functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiong; Sun, Ying; Ma, Pinyi; Zhang, Di; Li, Shuo; Wang, Xinghua; Song, Daqian, E-mail: songdq@jlu.edu.cn

    2016-03-24

    A new high-sensitivity surface plasmon resonance (SPR) biosensor based on biofunctional gold nanostars (AuNSs) and carboxyl-functionalized graphene oxide (cGO) sheets was described. Compared with spherical gold nanoparticles (AuNPs), the anisotropic structure of AuNSs, which concentrates the electric charge density on its sharp tips, could enhance the local electromagnetic field and the electronic coupling effect significantly. cGO was obtained by a diazonium reaction of graphene oxide (GO) with 4-aminobenzoic acid. Compared with GO, cGO could immobilize more antibodies due to the abundant carboxylic groups on its surface. Testing results show that there are fairly large improvements in the analytical performance of the SPR biosensor using cGO/AuNSs-antigen conjugate, and the detection limit of the proposed biosensor is 0.0375 μg mL{sup −1}, which is 32 times lower than that of graphene oxide-based biosensor. - Highlights: • A sensitive and versatile SPR biosensor was constructed for detection of pig IgG. • Biofunctional gold nanostars were used to amplify the response signals. • The strategy employed carboxyl-functionalized graphene oxide as biosensing substrate. • The detection limit of the proposed biosensor is 32 times lower than that of graphene oxide-based biosensor.

  13. Chemo-spectroscopic sensor for carboxyl terminus overexpressed in carcinoma cell membrane.

    Science.gov (United States)

    Stanca, Sarmiza E; Matthäus, Christian; Neugebauer, Ute; Nietzsche, Sandor; Fritzsche, Wolfgang; Dellith, Jan; Heintzmann, Rainer; Weber, Karina; Deckert, Volker; Krafft, Christoph; Popp, Jürgen

    2015-10-01

    Certain carboxyl groups of the plasma membrane are involved in tumorgenesis processes. A gold core-hydroxyapatite shell (AuHA) nanocomposite is introduced as chemo-spectroscopic sensor to monitor these carboxyl groups of the cell membrane. Hydroxyapatite (HA) plays the role both of a chemical detector and of a biocompatible Raman marker. The principle of detection is based on chemical interaction between the hydroxyl groups of the HA and the carboxyl terminus of the proteins. The AuHA exhibits a surface enhanced Raman scattering (SERS) signal at 954 cm(-1) which can be used for its localization. The bio-sensing capacity of AuHA towards human skin epidermoid carcinoma (A431) and Chinese hamster ovary (CHO) cell lines is investigated using Raman microspectroscopic imaging. The localization of AuHA on cells is correlated with scanning electron microscopy, transmission electron microscopy and structured illumination fluorescence microscopy. This qualitative approach is a step towards a quantitative study of the proteins terminus. This method would enable further studies on the molecular profiling of the plasma membrane, in an attempt to provide accurate cell identification. Using a gold core-hydroxyapatite shell (AuHA) nanocomposite, the authors in this paper showed the feasibility of detecting and differentiating cell surface molecules by surface enhanced Raman scattering. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  15. Effects of carboxylic acids on nC60 aggregate formation

    International Nuclear Information System (INIS)

    Chang Xiaojun; Vikesland, Peter J.

    2009-01-01

    The discovery that negatively charged aggregates of C 60 fullerene (nC 60 ) are stable in water has raised concerns regarding the potential environmental and health effects of these aggregates. In this work, we show that nC 60 aggregates produced by extended mixing in the presence of environmentally relevant carboxylic acids (acetic acid, tartaric acid, citric acid) have surface charge and morphologic properties that differ from those produced by extended mixing in water alone. In general, aggregates formed in the presence of these acids have a more negative surface charge and are more homogeneous than those produced in water alone. Carboxylic acid identity, solution pH, and sodium ion concentration, which are all intricately coupled, play an important role in setting the measured surface charge. Comparisons between particle sizes determined by analysis of TEM images and those obtained by dynamic light scattering (DLS) indicate that DLS results require careful evaluation when used to describe nC 60 aggregates. - The effects of carboxylic acids on the formation of nC 60 aggregates are discussed

  16. Poly[bis(μ-2,6-dimethylpyridinium-3,5-dicarboxylato-κ2O3:O5copper(II

    Directory of Open Access Journals (Sweden)

    Guang-Feng Hou

    2008-12-01

    Full Text Available In the title coordination polymer, [Cu(C9H8NO42]n, the Cu atom, located on a twofold rotation axis, is four coordinate in a distorted square-planar environment. Each 2,6-dimethylpyridinium-3,5-dicarboxylate anion bridges two Cu atoms, forming a two-dimensional coordination polymer. A three-dimensional supramolecular network is built from N—H...O hydrogen bonds involving the pyridinium NH and the carboxyl COO groups.

  17. Syntheses and properties of binuclear copper(II) mixed-ligand complexes involving thiodiglycolic acid. The crystal structures of [(phen)2Cu(m-tdga)Cu(phen)](NO3)2x5H2O and [(H2O)(pmdien)Cu(micro-tdga)Cu(pmdien)(H2O)](ClO4)

    Czech Academy of Sciences Publication Activity Database

    Kopel, P.; Trávníček, Zdeněk; Marek, J.; Korabik, M.; Mrozinski, J.

    2003-01-01

    Roč. 22, - (2003), s. 411-418 ISSN 0277-5387 R&D Projects: GA ČR GA203/99/0067 Institutional research plan: CEZ:AV0Z5038910 Keywords : Copper(II) * Thiodiglycolic acid complexes * Crystal structures Subject RIV: CE - Biochemistry Impact factor: 1.584, year: 2003

  18. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  19. Determination of tetrahydrophtalimide and 2-thiothiazolidine-4-carboxylic acid, urinary metabolites of the fungicide captan, in rats and humans

    NARCIS (Netherlands)

    van Welie, R.T.H.; van Duyn, P; Lamme, E K; Jäger, P; van Baar, B L; Vermeulen, N P

    1991-01-01

    Capillary gas chromatographic (GC) methods using sulphur and mass selective detection for the qualitative and quantitative determination of tetrahydrophtalimide (THPI) and 2-thiothiazolidine-4-carboxylic acid (TTCA), urinary metabolites of the fungicide captan in rat and humans, were developed.

  20. Determination of the Cyanide Metabolite 2-Aminothiazoline-4-Carboxylic Acid in Urine and Plasma by Gas Chromatography-Mass Spectrometry

    National Research Council Canada - National Science Library

    Logue, Brian A; Kirschten, Nicholas P; Petrikovics, Ilona; Moser, Matthew A; Rockwood, Gary A; Baskin, Steven I

    2005-01-01

    The cyanide metabolite 2-aminothiazoline.4-carboxylic acid (ATCA) is a promising biomarker for cyanide exposure because of its stability and the limitations of direct determination of cyanide and more abundant cyanide metabolites...

  1. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Rana; Emami, Shahriar Hojjati, E-mail: semami@aut.ac.ir [Amirkabir University of Technology, Department of Biomedical Engineering (Iran, Islamic Republic of); Faghihi, Shahab, E-mail: shahabeddin.faghihi@mail.mcgill.ca, E-mail: sfaghihi@nigeb.ac.ir [National Institute of Genetic Engineering and Biotechnology, Tissue Engineering and Biomaterials Division (Iran, Islamic Republic of)

    2015-02-15

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  2. Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach

    International Nuclear Information System (INIS)

    Imani, Rana; Emami, Shahriar Hojjati; Faghihi, Shahab

    2015-01-01

    A method for carboxylation of graphene oxide (GO) with chloroacetic acid that precisely optimizes and controls the efficacy of the process for bioconjugation applications is proposed. Quantification of COOH groups on nano-graphene oxide sheets (NGOS) is performed by novel colorimetric methylene blue (MB) assay. The GO is synthesized and carboxylated by chloroacetic acid treatment under strong basic condition. The size and morphology of the as-prepared NGOS are characterized by scanning electron microscopy, transmission electron microscopy (TEM), and atomic force microscopy (AFM). The effect of acid to base molar ratio on the physical, chemical, and morphological properties of NGOS is analyzed by Fourier-transformed infrared spectrometry (FTIR), UV–Vis spectroscopy, X-ray diffraction (XRD), AFM, and zeta potential. For evaluation of bioconjugation efficacy, the synthesized nano-carriers with different carboxylation ratios are functionalized by octaarginine peptide sequence (R8) as a biomolecule model containing amine groups. The quantification of attached R8 peptides to graphene nano-sheets’ surface is performed with a colorimetric-based assay which includes the application of 2,4,6-Trinitrobenzene sulfonic acid (TNBS). The results show that the thickness and lateral size of nano-sheets are dramatically decreased to 0.8 nm and 50–100 nm after carboxylation process, respectively. X-ray analysis shows the nano-sheets interlaying space is affected by the alteration of chloroacetic acid to base ratio. The MB assay reveals that the COOH groups on the surface of NGOS are maximized at the acid to base ratio of 2 which is confirmed by FTIR, XRD, and zeta potential. The TNBS assay also shows that bioconjugation of the optimized carboxylated NGOS sample with octaarginine peptide is 2.5 times more efficient compared to bare NGOS. The present work provides evidence that treatment of GO by chloroacetic acid under an optimized condition would create a functionalized high

  3. Solid state structure of thorium(IV) complexes with common aminopoly-carboxylate ligands

    International Nuclear Information System (INIS)

    Thuery, Pierre

    2011-01-01

    The crystal structures of the complexes formed by reaction of thorium(IV) nitrate with iminodiacetic acid (H 2 IDA), nitrilotriacetic acid (H 3 NTA), and ethylenediaminetetraacetic acid (H 4 EDTA) under hydrothermal conditions are reported. In [Th(HIDA) 2 (C 2 O 4 )].H 2 O (1), the metal atom is chelated by two carboxylate groups from two HIDA - anions and by two oxalate ligands formed in situ; two additional oxygen atoms from two more HIDA - anions complete the ten-coordinate environment of bi-capped square anti-prismatic geometry. The uncoordinated nitrogen atom is protonated and involved in hydrogen bonding. Two different ligands are present in [Th(NTA)(H 2 NTA)(H 2 O)].H 2 O (2), one of them being a O 3 ,N-chelating tri-anion which acts also as a bridge toward two neighboring metal ions, and the other being a bis-monodentate bridging species with an uncoordinated carboxylic arm and a central ammonium group. An aqua ligand completes the nine-coordinated, capped square anti-prismatic metal environment. The EDTA 4- anion in [Th(EDTA)(H 2 O)].2H 2 O (3) is chelating through one oxygen atom from each carboxylate group and the two nitrogen atoms, as in a previously reported molecular complex. Two carboxylate groups are bridging, which, with the addition of an aqua ligand, gives a capped square anti-prismatic coordination polyhedron. Aminopoly-carboxylate ligands have been much investigated in relation with actinide decorporation and nuclear wastes management studies, and the present results add to the structural information available on their complexes with thorium(IV), which has mainly been obtained up to now by extended X-ray absorption fine structure (EXAFS) spectroscopy. In particular, the bridging (non-chelating) coordination mode of H 2 NTA - is a novel feature in this context. All three complexes crystallize as two-dimensional assemblies and are thus novel examples of thorium-organic coordination polymers. (author)

  4. Carboxylated SiO2-coated α-Fe nanoparticles: towards a versatile platform for biomedical applications.

    Science.gov (United States)

    Kohara, Kaori; Yamamoto, Shinpei; Seinberg, Liis; Murakami, Tatsuya; Tsujimoto, Masahiko; Ogawa, Tetsuya; Kurata, Hiroki; Kageyama, Hiroshi; Takano, Mikio

    2013-03-28

    Carboxylated SiO2-coated α-Fe nanoparticles have been successfully prepared via CaH2-mediated reduction of SiO2-coated Fe3O4 nanoparticles followed by surface carboxylation. These α-Fe-based nanoparticles, which are characterized by ease of coating with additional functional groups, a large magnetization of 154 emu per g-Fe, enhanced corrosion resistivity, excellent aqueous dispersibility, and low cytotoxicity, have potential to be a versatile platform in biomedical applications.

  5. Copper(ii) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response

    Science.gov (United States)

    Piret, Jean-Pascal; Jacques, Diane; Audinot, Jean-Nicolas; Mejia, Jorge; Boilan, Emmanuelle; Noël, Florence; Fransolet, Maude; Demazy, Catherine; Lucas, Stéphane; Saout, Christelle; Toussaint, Olivier

    2012-10-01

    The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu2+ released in cell culture medium suggested that Cu2+ cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.The potential toxic effects of two types of copper(ii) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major

  6. Synthesis, CMC Determination, Antimicrobial Activity and Nucleic Acid Binding of A Surfactant Copper(II) Complex Containing Phenanthroline and Alanine Schiff-Base.

    Science.gov (United States)

    Nagaraj, Karuppiah; Sakthinathan, Subramanian; Arunachalam, Sankaralingam

    2014-03-01

    A new water-soluble surfactant copper(II) complex [Cu(sal-ala)(phen)(DA)] (sal-ala = salicylalanine, phen = 1,10-phenanthroline, DA = dodecylamine), has been synthesized and characterized by physico-chemical and spectroscopic methods. The critical micelle concentration (CMC) values of this surfactant-copper(II) complex in aqueous solution were obtained from conductance measurements. Specific conductivity data (at 303, 308, 313. 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG(0)m, ΔH(0)m and ΔS(0)m). The interaction of this complex with nucleic acids (DNA and RNA) has been explored by using electronic absorption spectral titration, competitive binding experiment, cyclic voltammetry, circular dichroism (CD) spectra, and viscosity measurements. Electronic absorption studies have revealed that the complex can bind to nucleic acids by the intercalative binding mode which has been verified by viscosity measurements. The DNA binding constants have also been calculated (Kb = 1.2 × 10(5) M(-1) for DNA and Kb = 1.6 × 10(5) M(-1) for RNA). Competitive binding study with ethidium bromide (EB) showed that the complex exhibits the ability to displace the DNA-bound-EB indicating that the complex binds to DNA in strong competition with EB for the intercalative binding site. The presence of hydrophobic ligands, alanine Schiff-base, phenanthroline and long aliphatic chain amine in the complex were responsible for this strong intercalative binding. The surfactant-copper (II) complex was screened for its antibacterial and antifungal activities against various microorganisms. The results were compared with the standard drugs, amikacin(antibacterial) and ketokonazole(antifungal).

  7. Self-assembled copper(II) metallacycles derived from asymmetric Schiff base ligands: efficient hosts for ADP/ATP in phosphate buffer.

    Science.gov (United States)

    Kumar, Amit; Pandey, Rampal; Kumar, Ashish; Gupta, Rakesh Kumar; Dubey, Mrigendra; Mohammed, Akbar; Mobin, Shaikh M; Pandey, Daya Shankar

    2015-10-21

    Novel asymmetric Schiff base ligands 2-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-phenol (H2L(1)) and 1-{[3-(3-hydroxy-1-methyl-but-2-enylideneamino)-2,4,6-trimethylphenylimino]-methyl}-naphthalen-2-ol (H2L(2)) possessing dissimilar N,O-chelating sites and copper(ii) metallacycles (CuL(1))4 (1) and (CuL(2))4 (2) based on these ligands have been described. The ligands and complexes have been thoroughly characterized by satisfactory elemental analyses, and spectral (IR, (1)H, (13)C NMR, ESI-MS, UV/vis) and electrochemical studies. Structures of H2L(2) and 1 have been unambiguously determined by X-ray single crystal analyses. The crystal structure of H2L(2) revealed the presence of two distinct N,O-chelating sites on dissimilar cores (naphthalene and β-ketoaminato groups) offering a diverse coordination environment. Metallacycles 1 and 2 having a cavity created by four Cu(ii) centres coordinated in a homo- and heteroleptic fashion with respective ligands act as efficient hosts for adenosine-5'-diphosphate (ADP) and adenosine-5'-triphosphate (ATP) respectively, over other nucleoside polyphosphates (NPPs). The disparate sensitivity of these metallacycles toward ADP and ATP has been attributed to the size of the ligands assuming diverse dimensions and spatial orientations. These are attuned for π-π stacking and electrostatic interactions suitable for different guest molecules under analogous conditions, metallacycle 1 offers better orientation for ADP, while 2 for ATP. The mechanism of the host-guest interaction has been investigated by spectral and electrochemical studies and supported by molecular docking studies.

  8. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Pingping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Li, Jie [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Bu, Huaiyu, E-mail: 7213792@qq.com [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Wei, Qing [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China); Zhang, Ruolin [Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, Xi' an 710069 (China); Chen, Sanping, E-mail: sanpingchen@126.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710069 (China)

    2014-07-01

    Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu{sub 0.5}L]{sub n} (1), [Cu(HL){sub 2}Cl{sub 2}]{sub n} (2), [Cu(HL){sub 2}Cl{sub 2}(H{sub 2}O)] (3), [Cu(L){sub 2}(H{sub 2}O)]{sub n} (4) and [Cu(L)(phen)(HCO{sub 2})]{sub n} (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl{sup -}, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity.

  9. Crystal structure of di-μ-chlorido-bis[chloridobis(1,2-dimethyl-5-nitro-1H-imidazole-κN3copper(II] acetonitrile disolvate

    Directory of Open Access Journals (Sweden)

    Patrick J. Quinlivan

    2016-11-01

    Full Text Available 1,2-Dimethyl-5-nitroimidazole (dimetridazole, dimet is a compound that belongs to a class of nitroimidazole drugs that are effective at inhibiting the activity of certain parasites and bacteria. However, there are few reports that describe structures of compounds that feature metals complexed by dimet. Therefore, we report here that dimet reacts with CuCl2·H2O to yield a chloride-bridged copper(II dimer, [Cu2Cl4(C5H7N3O24] or [Cu(μ-ClCl(dimet2]2. In this molecule, the CuII ions are coordinated in an approximately trigonal–bipyramidal manner, and the molecule lies across an inversion center. The dihedral angle between the imidazole rings in the asymmetric unit is 4.28 (7°. Compared to metronidazole, dimetridazole lacks the hydroxyethyl group, and thus cannot form intermolecular O...H hydrogen-bonding interactions. Instead, [Cu(μ-ClCl(dimet2]2 exhibits weak intermolecular interactions between the hydrogen atoms of C—H groups and (i oxygen in the nitro groups, and (ii the terminal and bridging chloride ligands. The unit cell contains four disordered acetonitrile molecules. These were modeled as providing a diffuse contribution to the overall scattering by SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18], which identified two voids, each with a volume of 163 Å3 and a count of 46 electrons, indicative of a total of four acetonitrile molecules. These acetonitrile molecules are included in the chemical formula to give the expected calculated density and F(000.

  10. Synthesis, structures, spectroscopy and antimicrobial properties of complexes of copper(II) with salicylaldehyde N-substituted thiosemicarbazones and 2,2'-bipyridine or 1,10-phenanthroline.

    Science.gov (United States)

    Lobana, Tarlok S; Indoria, Shikha; Jassal, Amanpreet Kaur; Kaur, Harpreet; Arora, Daljit S; Jasinski, Jerry P

    2014-04-09

    Among the biometals (Cu, Co, Ni-cofactors in many enzymes), copper derivatives of O, N, S-donor salicylaldehyde thiosemicarbazones have received considerable attention owing to their potential biological applications. Eight new complexes of salicylaldehyde-N-substituted thiosemicarbazones [5-MeO-2-HO-C₆H₄-C(2)(H)N(3)-N(2)H-C(1)(S)-N(1)HR; R = Me, H2L(1); Et, H₂L(1), Ph, H₂L(3), H, H₂L(4)] with copper(II), namely, [Cu(κ(3)-O,N,S-L)( κ(2)-N,N-L')] {(L)(2-) = (L(1))(2-), L' = bipy, 1, phen, 2; (L)(2-) = (L(2))(2-), L' = bipy, 3, phen, 4; (L)(2-) = (L(3))(2-), L' = bipy, 5, phen, 6; (L)(2-) = (L(4))(2-), L' = bipy, 7, phen, 8} have been isolated. Complexes have slightly distorted square pyramidal geometry around the metal center (τ parameter = 0.243-0.357) and display weak to intense fluorescence in the region, 375-475 nm. These copper complexes have shown significant growth inhibitory activity (antimicrobial activity) against Staphylococcus aureus (MTCC740), methicillin resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae 1 (MTCC109), Shigella flexneri (MTCC1457), Pseudomonas aeruginosa (MTCC741) and Candida albicans (MTCC227). The activity against MRSA is an interesting observation as the commercially available gentamycin is found to be inactive against this bacterial strain. Specifically complex 5 formed by 5-methoxysalicylaldehyde-N-phenylthiosemicatbazone has shown novel antimicrobial activity against various bacteria and yeast investigated. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Synthesis, thermogravimetric study and crystal structure of an N-rich copper(II) compound with tren ligands and nitrate counter-anions

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Toro, Inmaculada; Domínguez-Martín, Alicia [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada (Spain); Choquesillo-Lazarte, Duane [Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Av. de las Palmeras 4, E-18100 Armilla, Granada (Spain); Vílchez-Rodríguez, Esther [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada (Spain); Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Castiñeiras, Alfonso [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Niclós-Gutiérrez, Juan, E-mail: jniclos@ugr.es [Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, 18071 Granada (Spain)

    2014-10-10

    The N-rich salt [{Cu(tren)}{sub 3}(μ{sub 3}-tren)]{sub 2}(NO{sub 3}){sub 12}·3H{sub 2}O has been studied by XRD and by coupled TG and FT-IR spectroscopy of the evolved gases. After water loss, thermal decomposition of the nitrate ions and some tren ligands in the salt are overlapped. - Highlights: • A novel N-rich copper(II)-tren complex has been crystallized as a 3-hydrated nitrate salt. • Tren acts both as tripodal tetradentate and as μ{sub 3}-tren bridging ligand. • Copper(II) centers exhibit distorted trigonal bipyramidal coordination. • Coupled thermogravimetry and FT-IR spectra of evolved gases have been used. • Decomposition of nitrate anions and tren ligands occurs in an overlapped step. - Abstract: The compound [{Cu(tren)}{sub 3}(μ3-tren)]{sub 2}(NO{sub 3}){sub 12}·3H{sub 2}O has been synthesized, crystallized and characterized by single crystal X-ray diffraction, thermogravimetry (TG) coupled to FT-IR spectroscopy of the evolved gases, TG–differential scanning calorimetry (DSC) and electronic (diffuse reflectance) and FT-IR spectroscopies. The sample loses the crystallization water between room temperature and 200 °C. The decomposition of the salt begins with an overlapped decomposition of nitrate anions and some tren ligands where CO{sub 2}, H{sub 2}O, CO, NH{sub 3}, N{sub 2}O, NO and NO{sub 2} are evolved (205–235 °C). Then decomposition of additional tren ligands takes place (235–725 °C). Finally a non-pure CuO residue is obtained at 725 °C.

  12. The DFT Calculations of Structures and EPR Parameters for the Dinuclear Paddle-Wheel Copper(II) Complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3) as Powder or Single Crystal

    Science.gov (United States)

    Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Zhang, Li-Juan; Zhang, Zhi-Hong; Zhu, Qin-Sheng; Wu, Ming-He; Teng, Bao-Hua

    2017-10-01

    Density functional theory (DFT) calculations of the structures and the Cu2+ g factors (gx, gy and gz ) and hyperfine coupling tensor A (Ax , Ay and Az ) were performed for the paddle-wheel (PW)-type binuclear copper(II) complex {Cu2(μ2-O2CCH3)4}(OCNH2CH3) powder and single crystal. Calculations were carried out with the ORCA software using the functionals BHandHlyp, B3P86 and B3LYP with five different basis sets: 6-311g, 6-311g(d,p), VTZ, def-2 and def2-TZVP. Results were tested by the MPAD analysis to find the most suitable functional and basis sets. The electronic structure and covalency between copper and oxygen were investigated by the electron localisation function and the localised orbital locator as well as the Mayer bond order for the [CuO5] group. The optical spectra were theoretically calculated by the time-dependent DFT module and plotted by the Multiwfn program for the [CuO5] group and reasonably associated with the local structure in the vicinity of the central ion copper. In addition, the interactions between the OCNH2CH3, NH3 and H2O molecules and the uncoordinated PW copper(II) complex were studied, and the corresponding adsorption energies, the frequency shifts with respect to the free molecules and the changes of the Cu-Cu distances were calculated and compared with the relevant systems.

  13. Th(IV Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene

    Directory of Open Access Journals (Sweden)

    Wangsuo Wu

    2013-09-01

    Full Text Available The adsorption of Th(IV onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs in the absence and presence of hydroxylated fullerene (C60(OHn and carboxylated fullerene (C60(C(COOH2n has been investigated. C60(OHn, C60(C(COOH2n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV on the same oMWCNTs free of C60(OHn or C60(C(COOH2n, the study of a ternary system showed the inhibition effect of C60(OHn at high concentration on the adsorption of Th(IV in a pH range from neutral to slightly alkaline; whereas the promotion effect of C60(C(COOH2n, even at its low concentration, on Th(IV adsorption was observed in acid medium.

  14. Th(IV) Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene.

    Science.gov (United States)

    Wang, Jing; Liu, Peng; Li, Zhan; Qi, Wei; Lu, Yan; Wu, Wangsuo

    2013-09-17

    The adsorption of Th(IV) onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs) in the absence and presence of hydroxylated fullerene (C 60 (OH) n ) and carboxylated fullerene (C 60 (C(COOH)₂) n ) has been investigated. C 60 (OH) n , C 60 (C(COOH)₂) n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV) was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV) adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV) adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV) on the same oMWCNTs free of C 60 (OH) n or C 60 (C(COOH)₂) n , the study of a ternary system showed the inhibition effect of C 60 (OH) n at high concentration on the adsorption of Th(IV) in a pH range from neutral to slightly alkaline; whereas the promotion effect of C 60 (C(COOH)₂) n , even at its low concentration, on Th(IV) adsorption was observed in acid medium.

  15. Kinetic analysis of the reactivity of aliphatic cyclic alcohols and carboxylic acids in the T-for-H exchange reaction

    International Nuclear Information System (INIS)

    Tamura, Kiyoshi; Imaizumi, Hiroshi; Kano, Naoki

    2007-01-01

    In order to quantitatively evaluate the influence of tritium ( 3 He or T) on various functional groups in environment, the hydrogen isotope exchange reaction (T-for-H exchange reaction) between tritium-labeled poly-(vinyl alcohol) and each aliphatic cyclic alcohol (or carboxylic acid) has been dynamically observed in the range of 50 to 90degC. Consequently, the activities of the aliphatic cyclic alcohol and carboxylic acid increased with increasing reaction time. Applying in A''-McKay plot method to the observed data, the rate constants (k) for these materials were obtained. Using the k, the relation between the number of carbon atoms in the ring in each alcohol and the reactivity of the alcohol was quantitatively compared. Then, to clarify the effect of relative atomic charge of O atom (connected with the H atom in the hydroxy (or carboxy) group in the material) on the reactivity of the material, the MOPAC method was used. From both the above-mentioned and the obtained previously, the following nine items were found as to aliphatic cyclic alcohols (and carboxylic acids) in the T-for-H exchange reaction. (1) The reactivity of aliphatic cyclic alcohols (and carboxylic acids) depends on the temperature. (2) The reactivity of the cyclic materials decreases with increasing number of carbon atoms in the ring. (3) The reactivity of the aliphatic cyclic carboxylic acid seems to be smaller than that of aliphatic cyclic alcohol, and be larger than that of aliphatic cyclic amine. (4) For aliphatic cyclic alcohols, correlation exists between k and relative atomic charges of O atom obtained by the MOPAC method, but the tendency for aliphatic cyclic carboxylic acid is not clear. (5) As to having the same number of carbon atoms in each ring, the reactivity of the aliphatic cyclic carboxylic acid including the side chain is smaller than of the aliphatic cyclic carboxylic acid including no side chain. (6) The reactivity of aliphatic cyclic carboxylic acid is larger than that of

  16. Separation of Trace Amount Zn (II Using Additional Carbonyl and Carboxyl Groups Functionalized-Nano Graphene

    Directory of Open Access Journals (Sweden)

    A. Moghimi

    2013-01-01

    Full Text Available A novel and selective method for the fast determination of trace amounts of Zn(IIions in water samples has been developed.  The first additional carbonyl and carboxyl functionalized-nano graphene (SPFNano graphene. The presence of additional carbonyl and carboxyl groups located at the edge of the sheets makes GO sheets strongly hydrophilic, allowing them to readily swell and disperse in water. Based on these oxygen functionalities, different model structures of GO were used as absorbent for extraction of Zn (II   ions by solid phase extraction method. The complexes were eluted with HNO3 (2M10% V.V-1 methanol in acetone and determined the analyte by flame atomic absorption spectrometry.  The procedure is based on the selective formation of Zn (II at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISKTM disks modified carbonyl and carboxyl functionalized-nano graphene oxide molecules covalently bonded together followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution is efficient and quantitative. The effect of potential interfering ions, pH, SPFNano graphene, amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to about 1000mL providing a preconcentration factor of 500. The maximum capacity of the disks was found to be 456± 3 µg for Zn2+.The limit of detection of the proposed method is 5ng per 1000mL.The method was applied to the extraction and recovery of Zn in different water samples.

  17. Studies on carboxylated graphene oxide incorporated polyetherimide mixed matrix ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kaleekkal, Noel Jacob, E-mail: noeljacob89@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Thanigaivelan, A., E-mail: thanichemstar@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India); Rana, Dipak, E-mail: rana@uottawa.ca [Department of Chemical and Biological Engineering, University of Ottawa, 161 Louis Pasteur Private, Ottawa, Ontario, K1N 6N5 (Canada); Mohan, D., E-mail: mohantarun@gmail.com [Membrane Laboratory, Department of Chemical Engineering, ACT, Anna University, Chennai, 600025 (India)

    2017-01-15

    In this work the graphene oxide prepared by the modified Hummers’ method was effectively carboxylated. These carboxylated graphene oxide (c-GO) microsheets was characterized by X-ray diffraction analysis, Raman shift, zeta potential, and their morphology was observed using a high resolution scanning/transmission electron microscopy. Polyetherimide mixed matrix membranes (MMMs) were fabricated by the non-solvent induced phase separation technique with varying concentration of this microsheet. The presence of these microsheets on the membrane surface was confirmed by Fourier transform infrared spectroscopy, Raman spectroscopy and could also be confirmed visually by optical images. The membranes were further characterized; they showed a greater water flux, higher porosity, and sufficient thermal stability. Incorporation of these microsheets improved the hydrophilicity of the membrane confirmed by the lower contact angle values, which in turn explained the lower interfacial free energy, the increase in work of adhesion, the higher solid-vapor free energy and the spreading coefficient. Membranes loaded with 0.3 wt% of c-GO showed a flux recovery of 94% and only a small flux decline even after 180 min of filtration of humic acid (HA) solution. The efficiency of these membranes in removal of HA, toxic metal ions was also investigated. The bacterial anti-adhesion property of c-GO in the membranes was also explored using Escherichia coli, as a model bio-foulant. The charge of the microsheets and their unique architecture imparts higher hydrophilicity and greater fouling resistance along with improved permeation flux when incorporated into the polymer matrix. - Highlights: • Novel membranes by incorporating carboxylated GO into polyetherimide matrix. • Modified membranes exhibited greater porosity, flux and high humic acid rejection. • Nanoplatelets improved the flux recovery ratio to >94%. • Liquid phase polymer based retention utilized for toxic heavy metal

  18. Decellularized Bovine Articular Cartilage Matrix Reinforced by Carboxylated-SWCNT for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Zari Majidi Mohammadie

    2018-01-01

    Full Text Available ABSTRACT Nanotubes with their unique properties have diversified mechanical and biological applications. Due to similarity of dimensions with extracellular matrix (ECM elements, these materials are used in designing scaffolds. In this research, Carboxylated Single-Wall Carbon Nanotubes in optimization of decellularized scaffold of bovine articular cartilage was used. At first, the articular cartilage was decellularized. Then the scaffolds were analyzed in: (i decellularized scaffolds, and (ii scaffolds plunged into homogenous suspension of nanotubes in distilled water, were smeared with Carboxylated-SWCNT. The tissue rings derived from the rabbit's ear were assembled with reinforced scaffolds and they were placed in a culture media for 15 days. The scaffolds in two groups and the assembled scaffolds underwent histologic and electron microscopy. Scanning electron microscopy showed that the structure of ECM of articular cartilage has been maintained well after decellularization. Fourier transform infrared analysis showed that the contents of ECM have not been changed under treatment process. Atomic force microscopy analysis showed the difference in surface topography and roughness of group (ii scaffolds in comparison with group (i. Transmission electron microscopy studies showed the Carboxylated-SWCNT bond with the surface of decellularized scaffold and no penetration of these compounds into the scaffold. The porosity percentage with median rate of 91.04 in group (i scaffolds did not have significant difference with group (ii scaffolds. The electron microscopy observations confirmed migration and penetration of the blastema cells into the group (ii assembled scaffolds. This research presents a technique for provision of nanocomposite scaffolds for cartilage engineering applications.

  19. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  20. Tuning metal–carboxylate coordination in crystalline metal–organic frameworks through surfactant media

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Junkuo [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Ye, Kaiqi [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012 (China); He, Mi [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Xiong, Wei-Wei; Cao, Wenfang; Lee, Zhi Yi [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Wang, Yue [State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012 (China); Wu, Tom [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Huo, Fengwei [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Xiaogang [Department of Chemistry, National University of Singapore, Singapore 117543 (Singapore); Institute of Materials Research Engineering, Agency for Science, Technology and Research, Singapore 117602 (Singapore); Zhang, Qichun, E-mail: qczhang@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2013-10-15

    Although it has been widely demonstrated that surfactants can efficiently control the size, shape and surface properties of micro/nanocrystals of metal–organic frameworks (MOFs) due to the strong interactions between surfactants and crystal facets of MOFs, the use of surfactants as reaction media to grow MOF single crystals is unprecedented. In addition, compared with ionic liquids, surfactants are much cheaper and can have multifunctional properties such as acidic, basic, neutral, cationic, anionic, or even block. These factors strongly motivate us to develop a new synthetic strategy: growing crystalline MOFs in surfactants. In this report, eight new two-dimensional (2D) or three-dimensional (3D) MOFs have been successfully synthesized in an industrially-abundant and environmentally-friendly surfactant: polyethylene glycol-200 (PEG-200). Eight different coordination modes of carboxylates, ranging from monodentate η{sup 1} mode to tetra-donor coordination µ{sub 3}-η{sup 1}:η{sup 2}:η{sup 1} mode, have been founded in our research. The magnetic properties of Co-based MOFs were investigated and MOF NTU-Z6b showed a phase transition with a Curie temperature (T{sub c}) at 5 K. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. - Graphical abstract: Surfactants have been used as reaction media to grow MOF single crystals for the first time. Eight new two-dimensional or three-dimensional MOFs were successfully synthesized in surfactant polyethylene glycol-200 (PEG-200). Coordination modes of carboxylates up to eight were founded. Our strategy of growing crystalline MOFs in surfactant could offer exciting opportunities for preparing novel MOFs with diverse structures and interesting properties. Display Omitted - Highlights: • Surfactant-thermal synthesis of crystalline metal–organic frameworks. • Eight new 2-D or 3-D metal–organic frameworks

  1. Organotin(IV) Carboxylates as Promising Potential Drug Candidates in the Field of Cancer Chemotherapy.

    Science.gov (United States)

    Sirajuddin, Muhammad; Ali, Saqib

    2016-01-01

    Medicinal inorganic chemistry plays an important role in exploring the properties of metal ions for the designing of new drugs. The field has been stimulated by the success of cis-platin, the world best selling anticancer drug and platinum complexes with reduced toxicity, oral activity and activity against resistant tumors are currently on clinical trial. The use of cis-platin is, however, severely limited by its toxic side-effects. This has stimulated chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. The discovery of new non-covalent interactions with the classical target, DNA, was the first developing step in the treatment of cancer. The use of organometallic compounds as a medicine is very common now a days because it offers potential advantages over the more common organic-based drugs. In this article we have highlighted the anticancer activity of the organotin(IV) carboxylates published in the last few years (from 2008 to 2016). In most cases they present lower IC50 values than those of cisplatin, which indicates their high activity against the cancer cell lines. The summarized data reveal that every year new organotin(IV) carboxylate complexes are synthesized with the aim of new anticancer agent with much better results than the than the corresponding activity of cis-platin or other clinically approved drugs. In addition to the advantages of high activity, compared to the platinum compound, tin complexes are much cheaper. Thus by using organotin carboxylate for clinical medicine, cost reduction, dosage reduction and effect enhancement will be reached. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Cure and mechanical properties of carboxylated nitrile rubber (XNBR) vulcanized by alkaline earth metal compounds

    Science.gov (United States)

    Tulyapitak, Tulyapong

    Compounds of carboxylated nitrile rubber (XNBR) with alkaline metal oxides and hydroxide were prepared, and their cure and mechanical properties were investigated. Magnesium oxide (MgO) with different specific surface areas (45, 65, and 140 m2/g) was used. Increased specific surface area and concentration of MgO resulted in higher cure rate. Optimum stiffness, tensile strength, and ultimate strain required an equimolar amount of acidity and MgO. The effect of specific surface area on tensile properties was not significant. Crosslink density of XNBR-MgO vulcanizates increased with increased amounts of MgO. ATR-IR spectroscopy showed that neutralization occurs in two steps: (1) During mixing and storage, MgO reacts with carboxyl groups (RCOOH) to give RCOOMgOH. (2) Upon curing, these react bimolecularly to form RCOOMgOOCR and Mg(OH)2. Dynamic mechanical thermal analysis revealed an ionic transition at higher temperature, in addition to the glass transition. The ionic transition shifts to higher temperature with increasing MgO concentration. Like MgO-XNBR systems, cure rates of XNBR-calcium hydroxide (Ca(OH)2) and XNBR-barium oxide (BaO) compounds increased with increased content of curing agents. Curing by these two agents resulted in ionic crosslinks. To ensure optimum tensile properties, equimolar amounts of carboxyl groups and curing agents were required. Dynamic mechanical analysis revealed the ionic transition in these two systems. It shifted to higher temperature with increased amounts of curing agents. In contrast to MgO, Ca(OH)2, and BaO, calcium oxide (CaO) gave results similar to those for thermally cured samples. No ionic transition was observed in XNBR-CaO systems. Tensile strength of XNBR depended on the strength of ionic crosslinks, which was dependent on the size of the alkaline metal ions.

  3. Chemical states of p-boronophenylalanine in aqueous carboxylic acids and polyols

    International Nuclear Information System (INIS)

    Kobayashi, Mitsue; Kitaoka, Yoshinori

    1995-01-01

    Chemical states of p-boronophenylalanine were studied by infrared (IR) spectroscopy in aqueous carboxylic acids and in aqueous fructose. For BPA in water, the absorption band due to the B-O stretching of trigonal boron was observed, while that of tetrahedral boron was observed for BPA in aqueous oxalic acid. This means BPA forms a complex of tetrahedral boron with oxalate. It was proved that BPA also formed complexes of tetrahedral boron with citric acid as well as with fructose. No appreciable interaction was detected between BPA and maleic acid. (author)

  4. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain

    OpenAIRE

    Morken, Tora Sund; Brekke, Eva Mari Førland; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity duri...

  5. Controlled Electrochemical Carboxylation of Graphene To Create a Versatile Chemical Platform for Further Functionalization

    DEFF Research Database (Denmark)

    Bjerglund Pedersen, Emil; Kongsfelt, Mikkel S.; Shimizu, Kyoko

    An electrochemical approach is introduced for the versatile carboxylation of multilayered graphene in 0.1 M Bu4NBF4/MeCN. First, the graphene substrate is negatively charged at −1.9 V vs. Ag/AgI to allow for intercalation of Bu4N+. In the second step, the strongly activated and nucleophilic...... throughout the multilayered graphene structure, independent of the number of graphene sheets. This is assumed to be due to an opening of the entire graphene structure in response to the intercalation of Bu4N+. Hence, this electrochemical method offers a versatile procedure to make all graphene sheets...

  6. Synthesis and characterization of novel organotin carboxylate maleimide monomers and copolymers

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available Two novel tributyltin carboxylate maleimide monomers, tributyltin(maleimidoacetate and tributyltin(4-maleimidobenzoate, were synthesized by condensation reaction of maleimidoacetic acid or 4-maleimidobenzoic acid with bis(tributyltin oxide. Copolymerization of these monomers with styrene was carried in dioxane at 70°C using asobisisobutyronitrile as free radical initiator. The structures of monomers and copolymers were confirmed by FT-IR (Fourier Transform Infrared, 1H and 13C NMR (nuclear magnetic resonance spectroscopy and elemental analysis. The copolymers were characterized by solubility and thermal analysis.

  7. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-01-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH 4 CN, CH 3 CN, and C 2 H 4 CN, that had received multikilogray doses of 60 Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  8. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    International Nuclear Information System (INIS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-01-01

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H"+) and hydroxide (OH"−) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H"+ and OH"− ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the

  9. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polycholorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1993-01-14

    I14JAN93 Annual Technical Report 15DEC91-1ý+JAN9 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Hepatic Metabolism of Perfluorinated Carboxylic Acids and G-FS...13. ABSTRACT (Maximum 200 words) This report describes our studies of the effects of perfluorooctanoic acid (PFOA) and perfluorodecanolc acid (PFDA) on...metabolism. 31 p NMR was used to examine the effects of PFDA. PFOA. and clofibrate (C LOF) in both rats and guinea pigs. A unique effect is revealed in

  10. Boron-Catalyzed N-Alkylation of Amines using Carboxylic Acids.

    Science.gov (United States)

    Fu, Ming-Chen; Shang, Rui; Cheng, Wan-Min; Fu, Yao

    2015-07-27

    A boron-based catalyst was found to catalyze the straightforward alkylation of amines with readily available carboxylic acids in the presence of silane as the reducing agent. Various types of primary and secondary amines can be smoothly alkylated with good selectivity and good functional-group compatibility. This metal-free amine alkylation was successfully applied to the synthesis of three commercial medicinal compounds, Butenafine, Cinacalcet. and Piribedil, in a one-pot manner without using any metal catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Simultaneous determination of dopamine, uric acid and nitrite using carboxylated graphene oxide/lanthanum modified electrode

    International Nuclear Information System (INIS)

    Ye, Fengying; Feng, Chenqi; Jiang, Jibo; Han, Sheng

    2015-01-01

    Highlights: • The carboxylated graphene oxide/lanthanum-modified glassy carbon electrode (GO-COOLa/GCE) was successfully utilized for the simultaneous detection and quantification of DA, UA and NO 2 − . • Combining the benefits of carboxylated graphene oxide and lanthanum, the modified sensor displayed large peak separations, long linear ranges and low detection limits for simultaneously detecting DA, UA and NO 2 − . • The GO-COOLa/GCE electrode showed well stability, good repeatability, rapid response, and high catalytic performance toward the oxidations of DA, UA and NO 2 − . - Abstract: A bare glassy carbon electrode (GCE) was reformed by carboxylated graphene oxide/lanthanum, and the modified electrode, called GO-COOLa/GCE, was fabricated for simultaneously detecting dopamine (DA), uric acid (UA) and nitrite (NO 2 − ) by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. Several factors which affected the electrocatalytic activity of the GO-COOLa/GCE electrode, such as the effect of pH, scan rate and concentration were studied. Due to the combination of carboxylated graphene oxide and lanthanum ions, the GO-COOLa/GCE sensor showed rapid response, excellent selectivity and high catalytic performance toward the electrooxidation of DA, UA and NO 2 − . In optimized conditions, two linear response ranges for determining DA were obtained over ranges of 0.01-1.96×10 2 μM and 1.96×10 2 -1.23×10 3 μM with detection limit of 0.018 μM (S/N = 3). And the responses of the GO-COOLa/GCE electrode for UA and NO 2 − were linear in the region of 1-1.53×10 3 μM and 1-2.75×10 3 μM with detection limits of 0.058 μM and 0.070 μM, respectively. Furthermore, this reformed electrode was successfully used to the detection of DA, UA and NO 2 − in real urine and serum samples, showing its promising application in the electroanalysis of real samples.

  12. Application of thermodynamic models to study micellar properties of sodium perfluoroalkyl carboxylates in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Perez, Alfredo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)], E-mail: alf@usc.es; Ruso, Juan M. [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero, Maria J. [Department of Inorganic Chemistry, Faculty of Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Blanco, Elena [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Prieto, Gerardo [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Sarmiento, Felix [Group of Biophysics and Interfaces, Department of Applied Physics, Faculty of Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)

    2005-06-27

    Sodium perfluoroalkyl carboxylates (CnFONa) with n = 6, 9, 10 have been studied by conductivity measurements at different temperatures. The Krafft point was determined for C9FONa and C10FONa at the highest concentration studied by measuring the temperature dependence of the specific conductivity. The critical micelle concentration (cmc) and the ionization degree of the micelle ({beta}) were estimated from conductivity vs. molality plots at different temperatures. Using these data and previous results on temperature dependence of cmc and {beta} of sodium perfluoroheptanoate and perfluorooctanoate, different models were applied to obtain the thermodynamic properties of micellization. The results are discussed in terms of alkyl chain length.

  13. Application of thermodynamic models to study micellar properties of sodium perfluoroalkyl carboxylates in aqueous solutions

    International Nuclear Information System (INIS)

    Gonzalez-Perez, Alfredo; Ruso, Juan M.; Romero, Maria J.; Blanco, Elena; Prieto, Gerardo; Sarmiento, Felix

    2005-01-01

    Sodium perfluoroalkyl carboxylates (CnFONa) with n = 6, 9, 10 have been studied by conductivity measurements at different temperatures. The Krafft point was determined for C9FONa and C10FONa at the highest concentration studied by measuring the temperature dependence of the specific conductivity. The critical micelle concentration (cmc) and the ionization degree of the micelle (β) were estimated from conductivity vs. molality plots at different temperatures. Using these data and previous results on temperature dependence of cmc and β of sodium perfluoroheptanoate and perfluorooctanoate, different models were applied to obtain the thermodynamic properties of micellization. The results are discussed in terms of alkyl chain length

  14. Synthesis and HPLC evaluation of carboxylic acid phases on a hydride surface.

    Science.gov (United States)

    Pesek, Joseph J; Matyska, Maria T; Gangakhedkar, Surekha; Siddiq, Rukhsana

    2006-04-01

    Three organic moieties containing carboxylic acid functional groups are attached to a particulate silica surface through silanization/hydrosilation. Two compounds (undecylenic acid and 10-undecynoic acid) have 11 carbon chains and the other is a five-carbon acid (pentenoic acid). Bonding is confirmed through carbon elemental analysis, diffuse reflectance infrared fourier transform spectroscopy, and carbon-13 and silicon-29 CP-MAS NMR spectroscopy. The bonded phases are tested by HPLC using PTH amino acids, nucleic acids, theophylline-related compounds, anilines, benzoic acid compounds, choline, and tobramycin. The latter two compounds are used to investigate the aqueous normal phase properties of the three bonded materials.

  15. Electrochemical synthesis of transition element complexes with carboxyl- and carbonyl-containing ligands

    International Nuclear Information System (INIS)

    Frolov, V.Yu.; Bolotin, S.N.; Panyushkin, V.T.

    2005-01-01

    Complexes of d- and f-elements (E = Cu, Ni, Zn, Nd, Tb, Pr, Gd, Er) with carboxyl- and carbonyl-containing ligands were synthesized by the electrochemical method. The products were characterized by elemental analysis, thermal gravimetric analysis and IR spectra. The influence exerted by a number of factors on the process course was studied. The dependence of the electro synthesis parameters on the composition of the forming compounds was established. A new method for anodic synthesis of these compounds was developed [ru

  16. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Shao, Jinyou, E-mail: jyshao@mail.xjtu.edu.cn; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-15

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H{sup +}) and hydroxide (OH{sup −}) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H{sup +} and OH{sup −} ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results

  17. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  18. A temperature induced ferrocene–ferrocenium interconversion in a ferrocene functionalized μ3-O chromium carboxylate

    International Nuclear Information System (INIS)

    Mereacre, Valeriu; Schlageter, Martin; Powell, Annie K.

    2015-01-01

    The infrared spectra and 57 Fe Mössbauer measurements of a ferrocenecarboxylate functionalized {Cr 3 O} complex in solid state are reported. It was established that conjugation of ferrocene Cp orbitals with the π orbitals of the adjacent carboxylic group stabilizes the trapped mixed-valence state leading to an intriguing coexistence of ferrocene and ferrocenium species giving rise to a new type of compound showing valence tautomerism in the solid state. - Highlights: • A stabilized ferrocene trapped mixed-valence state is reported. • New type of compound showing valence tautomerism in solid state. • A thermally induced electron transfer and a mixed-valence state near room temperature

  19. fac-Tris(pyridine-2-carboxyl­ato-κ2 N,O)cobalt(III)

    Science.gov (United States)

    Golenia, Irina A.; Boyko, Alexander N.; Kotova, Natalia V.; Haukka, Matti; Kalibabchuk, Valentina A.

    2011-01-01

    In the title compound, [Co(C6H4NO2)3], the CoIII ion lies on a threefold rotation axis and is in a distorted octa­hedral environment defined by three N and three O donor atoms from three fac-disposed pyridine-2-carboxyl­ate ligands. The ligands are coordinated in a chelate fashion, forming three five-membered rings. In the crystal, translationally related complex molecules are organized into columns along [001] via C—H⋯O hydrogen bonds. PMID:22219826

  20. Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria

    OpenAIRE

    Torbaghan, Mehrnoush Eskandari; Lakzian, Amir; Astaraei, Ali Reza; Fotovat, Amir; Besharati, Hossein

    2017-01-01

    Haloalkaliphilic bacteria have plant growth promoting characteristics that can be used to deal with different environmental stresses. To study the effect of haloalkaliphilic bacteria to reduce salinity and alkalinity stress in wheat, 48 isolates were isolated and grouped into halophiles, alkaliphiles and haloalkaliphiles based on growth characteristics. The ammonia, 3-indole acetic acid and ACC (1-aminocyclopropane-1-carboxylate) deaminase production were studied. Wheat yield was evaluated in...

  1. Corrosion and Heat Transfer Characteristics of Water Dispersed with Carboxylate Additives and Multi Walled Carbon Nano Tubes

    Science.gov (United States)

    Moorthy, Chellapilla V. K. N. S. N.; Srinivas, Vadapalli

    2016-10-01

    This paper summarizes a recent work on anti-corrosive properties and enhanced heat transfer properties of carboxylated water based nanofluids. Water mixed with sebacic acid as carboxylate additive found to be resistant to corrosion and suitable for automotive environment. The carboxylated water is dispersed with very low mass concentration of carbon nano tubes at 0.025, 0.05 and 0.1 %. The stability of nanofluids in terms of zeta potential is found to be good with carboxylated water compared to normal water. The heat transfer performance of nanofluids is carried out on an air cooled heat exchanger similar to an automotive radiator with incoming air velocities across radiator at 5, 10 and 15 m/s. The flow Reynolds number of water is in the range of 2500-6000 indicating developing flow regime. The corrosion resistance of nanofluids is found to be good indicating its suitability to automotive environment. There is a slight increase in viscosity and marginal decrease in the specific heat of nanofluids with addition of carboxylate as well as CNTs. Significant improvement is observed in the thermal conductivity of nanofluids dispersed with CNTs. During heat transfer experimentation, the inside heat transfer coefficient and overall heat transfer coefficient has also improved markedly. It is also found that the velocity of air and flow rate of coolant plays an important role in enhancement of the heat transfer coefficient and overall heat transfer coefficient.

  2. Coordination chemistry of gadolinium complexes having pyridine carboxylate units in relation with the medical imagery

    International Nuclear Information System (INIS)

    Gateau, C.; Chatterton, N.; Nonat, A.; Mazzanti, M.; Pecaut, J.; Borel, A.; Merbach, A.; Heim, L.

    2005-01-01

    In order to study the influence of the coordination sphere on the properties which govern the relaxivity, ligands containing pyridine carboxylates units have been particularly studied. It has been shown that the tripodal ligand tpaa forms with gadolinium (III) a neutral complex having a relaxivity (r1p=13.3 mM -1 at 298 K and 60 MHz) which is three times superior to the contrast agents currently used in NMR Imaging. To explain this remarkably relaxivity, two new ligands analogous to the tpaa: the tpatcn and the bpeda containing pyridine carboxylate units bound to one or several aliphatic nitrogen have been studied in modulating the number of coordination sites and the symmetry degree. The study of the relaxivity of the corresponding gadolinium (III) complexes gives precious data on the understanding of the results in the case of the complex [Gd(tpaa)]. The synthesis and the properties of these gadolinium (III) complexes will be presented during this conference. (O.M.)

  3. Study of micelle formation in solutions of alkylammonium carboxylates in apolar solvents by positron annihilation techniques

    International Nuclear Information System (INIS)

    Fucugauchi, L.A.; Djermouni, B.; Handel, E.D.; Ache, H.J.

    1979-01-01

    The positron annihilation technique was applied to the study of the self-association process in solutions of alkylammonium carboxylates in apolar solvents, such as cyclohexane and benzene. The results indicate that the positronium formation probability responds very sensitively to changes in the microenvironment in these solutions. A distinct cooperative effect of the solution resulting in abrupt changes in the number of thermal ortho-positronium atoms formed was observed and studied as a function of the length and structure of the hydrocarbon chain in the cationic and anionic parts of the surfactant molecules. While the chain length in the cationic portion of the surfactant seems to have little effect on the positronium formation probability, distinct differences can be observed when the structure of the carboxylate is changed. Furthermore, a profound effect in the physical property of the solutions was recognized when cyclohexane was replaced by benzene as a solvent. The results are discussed in terms of the existing models for self-association. 4 figures

  4. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska

    2014-06-01

    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  5. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, Emily B.; Gentry, Terry J. [Texas A and M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Forrest, Andrea K.; Holtzapple, Mark T. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Wilkinson, Heather H.; Ebbole, Daniel J. [Texas A and M Univ., College Station, TX (United States). Dept. of Plant Pathology and Microbiology; Malfatti, Stephanie A.; Tringe, Susannah G. [DOE Joint Genome Institute, Walnut Creek, CA (United States)

    2010-09-15

    The carboxylate platform utilizes a mixed microbial community to convert lignocellulosic biomass into chemicals and fuels. While much of the platform is well understood, little is known about its microbiology. Mesophilic (40 C) and thermophilic (55 C) fermentations employing a sorghum feedstock and marine sediment inoculum were profiled using 16S rRNA tag-pyrosequencing over the course of a 30-day incubation. The contrasting fermentation temperatures converted similar amounts of biomass, but the mesophilic community was significantly more productive, and the two temperatures differed significantly with respect to propionic and butyric acid production. Pyrotag sequencing revealed the presence of dynamic communities that responded rapidly to temperature and changed substantially over time. Both temperatures were dominated by bacteria resembling Clostridia, but they shared few taxa in common. The species-rich mesophilic community harbored a variety of Bacteroidetes, Actinobacteria, and {gamma}-Proteobacteria, whereas the thermophilic community was composed mainly of Clostridia and Bacilli. Despite differences in composition and productivity, similar patterns of functional class dynamics were observed. Over time, organisms resembling known cellulose degraders decreased in abundance, while organisms resembling known xylose degraders increased. Improved understanding of the carboxylate platform's microbiology will help refine platform performance and contribute to our growing knowledge regarding biomass conversion and biofuel production processes. (orig.)

  6. Carboxylate-intercalated layered double hydroxides aged under microwave-hydrothermal treatment

    International Nuclear Information System (INIS)

    Benito, P.; Labajos, F.M.; Mafra, L.; Rocha, J.; Rives, V.

    2009-01-01

    Carboxylate-intercalated (terephthalate, TA and oxalate, ox) layered double hydroxides (LDHs) are aged under a microwave-hydrothermal treatment. The influence of the nature of the interlayer anion during the ageing process is studied. Characterization results show that the microwave-hydrothermal method can be extended to synthesize LDHs with anions different than carbonate, like TA. LDH-TA compounds are stable under microwave irradiation for increasing periods of time and the solids show an improved order both in the layers and in the interlayer region as evidenced by powder X-ray diffraction (PXRD), 27 Al MAS NMR and FT-IR spectroscopy. Furthermore, cleaning of the surface through removal of some organic species adsorbed on the surface of the particles also occurs during the microwave-hydrothermal treatment. Conversely, although the expected increase in crystallinity is observed in LDH-ox samples, the side-reaction between Al 3+ and ox is also enhanced under microwave irradiation, and a partial destruction of the structure takes place with an increase in the M 2+ /M 3+ ratio and consequent modification of the cell parameters. - Graphical Abstract: The influence of the nature of the interlayer anion during the ageing process of carboxylate-intercalated (TA and ox) hydrotalcite-like compounds (HTlcs) is studied. Well crystallized for TA-containing compounds were obtained. However, the non-desired side-reaction of ox with the aluminum of the layers is enhanced by the microwaves and a partial destruction of the structure takes place

  7. Mono-carboxylate conversion coatings for AZ31 Mg alloy protection

    Energy Technology Data Exchange (ETDEWEB)

    Frignani, A.; Grassi, V.; Zucchi, F.; Zanotto, F. [Corrosion Study Centre A. Dacco, University of Ferrara (Italy)

    2011-11-15

    Conversion coatings on a magnesium alloy were obtained by dipping AZ31 specimens in aqueous solutions of sodium salts of mono-carboxylic acids (stearic, palmitic, myristic, lauric, mono-carboxylate ion concentration from 1 to 5 mM, depending on the salt solubility) for 24 and 72 h at room temperature, or 24 h at 50 C. The influence exerted by the treatment time, bath temperature and alkyl chain length on the efficiency of these coatings was studied. The performances of the coatings were evaluated by potentiodynamic polarization curve recording after 1 h immersion in 0.05 M Na{sub 2}SO{sub 4} solution, while their temporal evolution was monitored by electrochemical impedance spectroscopy (EIS) spectra during 24 h. Further and long lasting tests were carried out also in 0.1 M NaCl solution. The efficiency of the coatings depended on the aliphatic chain length, and increased as the treatment time and the bath temperature were increased. The coating of lower homologue only hindered the cathodic process, while those of the higher homologues markedly inhibited the anodic process too. The best performances were displayed by 24 h-50 C stearic conversion coating, which maintained a very high efficiency for over 800 h immersion in 0.05 M sulphate solution. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Oltenfreiter, Ruth E-mail: ruth.oltenfreiter@rug.ac.be; Staelens, Ludovicus; Lejeune, Annabelle; Dumont, Filip; Frankenne, Francis; Foidart, Jean-Michel; Slegers, Guido

    2004-05-01

    Several studies have demonstrated a positive correlation between tumor progression and expression of extracellular proteinases such as matrix metalloproteinases (MMPs). MMP-2 and MMP-9 have become attractive targets for cancer research because of their increased expression in human malignant tumor tissues of various organs, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionic acid (9) and 2-(4'-[{sup 123}I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionamide (11) were synthesized by electrophilic aromatic substitution of the tributylstannyl derivatives and resulted in radiochemical yields of 60% {+-} 5% (n = 3) and 70% {+-} 5% (n = 6), respectively. In vitro zymography and enzyme assays showed high inhibition capacities of the inhibitors on gelatinases. In vivo biodistribution showed no long-term accumulation in organs and the possibility to accumulate in the tumor. These results warrant further studies of radioiodinated carboxylic and hydroxamic MMP inhibitor tracers as potential SPECT tumor imaging agents.

  9. New radioiodinated carboxylic and hydroxamic matrix metalloproteinase inhibitor tracers as potential tumor imaging agents

    International Nuclear Information System (INIS)

    Oltenfreiter, Ruth; Staelens, Ludovicus; Lejeune, Annabelle; Dumont, Filip; Frankenne, Francis; Foidart, Jean-Michel; Slegers, Guido

    2004-01-01

    Several studies have demonstrated a positive correlation between tumor progression and expression of extracellular proteinases such as matrix metalloproteinases (MMPs). MMP-2 and MMP-9 have become attractive targets for cancer research because of their increased expression in human malignant tumor tissues of various organs, providing a target for medical imaging techniques. Radioiodinated carboxylic and hydroxamic MMP inhibitors 2-(4'-[ 123 I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionic acid (9) and 2-(4'-[ 123 I]iodo-biphenyl-4-sulfonylamino)-3-(1H-indol-3-yl)-propionamide (11) were synthesized by electrophilic aromatic substitution of the tributylstannyl derivatives and resulted in radiochemical yields of 60% ± 5% (n = 3) and 70% ± 5% (n = 6), respectively. In vitro zymography and enzyme assays showed high inhibition capacities of the inhibitors on gelatinases. In vivo biodistribution showed no long-term accumulation in organs and the possibility to accumulate in the tumor. These results warrant further studies of radioiodinated carboxylic and hydroxamic MMP inhibitor tracers as potential SPECT tumor imaging agents

  10. The role of water in cholinium carboxylate ionic liquid’s aqueous solutions

    International Nuclear Information System (INIS)

    Patinha, David J.S.; Tomé, Liliana C.; Garcia, Helga; Ferreira, Rui; Pereira, Cristina Silva; Rebelo, Luís Paulo N.; Marrucho, Isabel M.

    2015-01-01

    Highlights: • Densities and viscosities of aqueous solutions of cholinium carboxylate ionic liquids. • 1 H NMR experiments were used to probe nanoscale organization of ionic liquids in water. • Different nanoscale organization in water for the 3 ionic liquids. - Abstract: Binary systems composed of water and cholinium carboxylate ionic liquids, namely cholinium lactate ([Ch][Lac]), cholinium propanoate ([Ch][Prop]) and cholinium malonate ([Ch][Mal]) were studied from the neat ionic liquid to very diluted aqueous solutions. Densities and viscosities were measured and atypical behaviors were observed, such as the increasing density of the binary [Ch][Prop] + H 2 O mixtures with increasing water content. In order to get molecular level insights on the IL + H 2 O solvation schemes, 1 H NMR studies were performed. Large deviations were obtained in the aniońs resonances when compared to those of the cation suggesting that water interacts preferentially with the anion counter-part of the ionic liquid. The increasing density of [Ch][Prop] + H 2 O system with increasing water content can be related to the orientation of the alkyl chains, as a result of their nanoscale organization. This behavior was confirmed through the study of the thermophysical properties of [Ch][Hex] + H 2 O mixtures, where this phenomenon is known to occur

  11. Variation in chemical, colloidal and electrochemical properties of carbon nanotubes with the degree of carboxylation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheqiong; Wang, Zhiqian; Yu, Fang; Thakkar, Megha; Mitra, Somenath, E-mail: mitra@njit.edu [New Jersey Institute of Technology, Department of Chemistry and Environmental Science (United States)

    2017-01-15

    Multiwalled carbon nanotubes (CNTs) were carboxylated via microwave irradiation where the treatment time was varied to alter the degree of functionalization, and as many as one in 15 carbons in the CNT could be oxidized. Chemical, physical, electrochemical, and colloidal behavior of the carboxylated CNTs was studied. All properties changed with the degree of functionalization to a point beyond which they appeared to remain constant. The surface area increased from 173.9 to 270.9 m{sup 2}/g while the critical coagulation concentration (CCC) values increased from 142.14 to 168.69 mM in the presence of NaCl, and the corresponding increase was from 0.97 to 5.32 mM in the presence of MgCl{sub 2}. As seen from cyclic voltammetry curves, the functionalized CNTs showed mainly non-Faradic interactions with Na{sub 2}SO{sub 4,} but showed Faradic behaviors in alkaline KOH.

  12. Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents.

    Science.gov (United States)

    Waseem, Durdana; Butt, Arshad Farooq; Haq, Ihsan-Ul; Bhatti, Moazzam Hussain; Khan, Gul Majid

    2017-04-04

    Tributyltin (IV) compounds are promising candidates for drug development. In the current study, we evaluated in-vitro and in-silico profile of carboxylate derivatives of tributyltin (IV) complexes. ADMET and drug-likeliness properties were predicted using MetaPrint2D React, preADMET, SwissADME and Molsoft tools. SwissTargetPrediction predicted molecular targets for compounds. In-vitro bioactivity was evaluated by quantifying cytotoxicity against HepG2, THP-1 cell lines, isolated lymphocytes and leishmania promastigotes as well as measuring protein kinase (PK) inhibition activity. Results indicate partial compliance of compounds with drug-likeliness rules. Ch-409 complies with WDI and Lipinski rules. ADMET profile prediction shows strong plasma protein binding except for Ch-409, low to high GI absorption and BBB penetration (C brain /C blood  = 0.942-11; caco-2 cells permeability 20.13-26.75 nm/sec), potential efflux by P-glycoprotein, metabolism by CYP3A4, medium inhibition of hERG, mutagenicity and capacity to be detoxified by glutathionation and glucuronidation. Molecular targets include proteases, enzymes, membrane receptors, transporters and ion channels where Ch-409 targets membrane receptors only. Compounds are significantly (p tributyltin (IV) complexes possess significant antileishmanial and cytotoxic potential. These are promising compounds for the development of antileishmanial and anticancer drugs. Graphical Abstract Carboxylate derivatives of tributyltin (IV) complexes as anticancer and antileishmanial agents.

  13. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.

    Science.gov (United States)

    Bassan, Arianna; Borowski, Tomasz; Schofield, Christopher J; Siegbahn, Per E M

    2006-11-24

    The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.

  14. Carboxylated nanodiamonds can be used as negative reference in in vitro nanogenotoxicity studies.

    Science.gov (United States)

    Moche, H; Paget, V; Chevalier, D; Lorge, E; Claude, N; Girard, H A; Arnault, J C; Chevillard, S; Nesslany, F

    2017-08-01

    Nanodiamonds (NDs) are promising nanomaterials for biomedical applications. However, a few studies highlighted an in vitro genotoxic activity for detonation NDs, which was not evidenced in one of our previous work quantifying γ-H2Ax after 20 and 100 nm high-pressure high-temperature ND exposures of several cell lines. To confirm these results, in the present work, we investigated the genotoxicity of the same 20 and 100 nm NDs and added intermediate-sized NDs of 50 nm. Conventional in vitro genotoxicity tests were used, i.e., the in vitro micronucleus and comet assays that are recommended by the French National Agency for Medicines and Health Products Safety for the toxicological evaluation of nanomedicines. In vitro micronucleus and in vitro comet assays (standard and hOGG1-modified) were therefore performed in two human cell lines, the bronchial epithelial 16HBE14o- cells and the colon carcinoma T84 cells. Our results did not show any genotoxic activity, whatever the test, the cell line or the size of carboxylated NDs. Even though these in vitro results should be confirmed in vivo, they reinforce the potential interest of carboxylated NDs for biomedical applications or even as a negative reference nanoparticle in nanotoxicology. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    Science.gov (United States)

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects. © 2014 Wiley Periodicals, Inc.

  16. Effect of the cement type on compatibility with carboxylate super plasticisers

    International Nuclear Information System (INIS)

    Bundyra-Oracz, G.; Kurdowski, W.

    2011-01-01

    An empirical study was conducted to gain a fuller understanding of the interactions taking place in cement superplasticiser systems. To this end, two clinkers of clinkers of known chemical and phase composition were prepared in this study to gain insight into such interactions. One contained no tricalcium aluminate (C1), while the other had a 9% C 3 A content (C2). These clinkers were ground to approximately 340 m 2 /kg and blended with gypsum only or gypsum and Klein compound (3CaOx3Al 2 O 3 xCaSO 4 ) (1, 2). Sufficient compound was added to C1 to ensure the formation of about the same amount of ettringite after 0.5 and 1 h of hydration as found in cement C2 + gypsum. The admixture used was a carboxylate superplasticiser. Rheology measurements showed that while paste yield stress was correlated to ettringite formation, no such simple relationship was observed for plastic viscosity. Plastic viscosity depended on the total hydrates formed, i.e., not only as ettringite but also as C-S-H gel. The findings revealed that in clinkers with very low sulfate and potassium contents, the rheology of carboxylate-containing cement paste is primarily controlled by ettringite formation. (Author) 15 refs.

  17. Recovery of carboxylic acids at pH greater than pKa

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Lisa A. [Univ. of California, Berkeley, CA (United States)

    1993-08-01

    Economics of producing carboxylic acids by fermentation is often dominated, not by the fermentation cost, but by the cost of recovering and purifying the acids from dilute aqueous solutions. Experiments were performed to measure uptakes of lactic and succinic acids as functions of pH by basic polymeric sorbents; sorbent regeneration was also tested. Performance at pH > pKa and regenerability depend on sorbent basicity; apparent pKa and monomer pK{sub a} can be used to predict sorbent performance. Two basic amine extractants, Alamine 336 and Amberlite LA-2, in were also studied; they are able to sustain capacity to higher pH in diluents that stabilize the acid-amine complex through H bonding. Secondary amines perform better than tert-amines in diluents that solvate the additional proton. Competitive sulfate and phosphate, an interference in fermentation, are taken up by sorbents more strongly than by extractants. The third step in the proposed fermentation process, the cracking of the trimethylammonium (TMA) carboxylate, was also examined. Because lactic acid is more soluble and tends to self-esterify, simple thermal cracking does not remove all TMA; a more promising approach is to esterify the TMA lactate by reaction with an alcohol.

  18. A comprehensive evaluation of the toxicology of cigarette ingredients: aliphatic and aromatic carboxylic acids.

    Science.gov (United States)

    Coggins, Christopher R E; Liu, Jianmin; Merski, Jerome A; Werley, Michael S; Oldham, Michael J

    2011-06-01

    Aromatic and aliphatic carboxylic acids are present in tobacco and tobacco smoke. A battery of tests was used to compare the toxicity of mainstream smoke from experimental cigarettes containing eight aromatic and aliphatic carboxylic acids and the salt of one acid that were added individually at three different levels (lowest and highest target inclusions were 100 and 90,000 ppm, respectively). Mainstream smoke from cigarettes containing each of the test ingredients was evaluated using analytical chemistry and assays to measure in vitro cytotoxicity (neutral red uptake) and Salmonella (five strains) mutagenicity. For four of the compounds (citric, lactic, benzoic acids, and sodium benzoate), 90-day rodent inhalation studies were also performed. Although sporadic statistically significant differences in some experimental cigarette smoke constituents occurred, none resulted in significant changes in mutagenicity or cytotoxicity responses, nor in responses measured in the inhalation studies, except for lactic acid (LA). Inclusion of LA resulted in dose-dependent increase in water and caused a dose-dependent decrease in cytotoxicity. Incorporation of LA into cigarettes resulted in several dose-related reductions in histopathology, which were largely restricted to the nasal passages. Incorporation of LA also ameliorated some of the typical decrease in body weight gain seen in cigarette smoke-exposed rats. Inclusion of these ingredients at exaggerated use levels resulted in sporadic dose-related and treatment effects for some smoke constituents, but no toxicological response was noted in the in vitro and in vivo tests performed.

  19. Intramolecular electron transfer through a bridging carboxylate group coordinated to two cobalt(III)-ions

    International Nuclear Information System (INIS)

    Wieghardt, K.

    1978-01-01

    Reduction of the binuclear μ-p-nitrobenzoato -di-μ-hydroxo -bis[triammine cobalt(III)] cation with (CH 3 ) 2 COH radicals yields a radical cation with the p-nitrobenzoato radical being coordinated to two cobalt(III) ions at the carboxylic group. The unprotonated form of this species undergoes intramolecular electron transfer producing Co(II) (k = (3.3 +- 0.3). x 10 3 s -1 ). The role of the carboxylate group in the intramolecular electron transfer process is tentatively assessed in terms of an intramolecular outer-sphere reaction because of lack of overlap of the donor orbitals (π) and the acceptor orbital (sigma). The protonated form of the radical cation (pKsub(a) = 2.5) disproportionates via a bimolecular process without production of Co(II). The effect of two coordinated Co(III) ions as compared to only one on the properties of the nitrobenzoate radical anion are discussed. (orig.) 891 HK 892 GM [de

  20. Hydrophobic, ductile, and transparent nanocellulose films with quaternary alkylammonium carboxylates on nanofibril surfaces.

    Science.gov (United States)

    Shimizu, Michiko; Saito, Tsuguyuki; Fukuzumi, Hayaka; Isogai, Akira

    2014-11-10

    Hydrophobic, ductile, and transparent nanocellulose films were prepared by casting and drying aqueous dispersions of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibrils (TOCNs) with quaternary alkylammoniums (QAs) as counterions for the surface carboxylate groups. TOCN films with tetramethylammonium and tetraethylammonium carboxylates showed high optical transparencies, strain-to-failure values (14-22%), and work-of-fracture values (20-27 MJ m(-3)). The ductility of these films was likely caused by the alkyl chains of the QA groups densely covering the TOCN surfaces and being present at the interfaces between the TOCN elements in the films. The water contact angle of the TOCN-QA films increased to ∼100° by introducing tetra(n-butyl)ammonium groups as counterions. Thus, TOCN film properties can be controlled by changing the chemical structure of the counterions from Na to QAs. The hydrophilic TOCN surfaces can be changed to hydrophobic simply and efficiently by the conversion from TOCN-Na to TOCN-QA, when TOCNs are used as nanofillers in hydrophobic polymer matrices.

  1. In Vitro Reactivity of Carboxylic Acid-CoA Thioesters with Glutathione

    DEFF Research Database (Denmark)

    Sidenius, Ulrik; Skonberg, Christian; Olsen, Jørgen

    2004-01-01

    was to investigate whether a correlation could be found between the structure of acyl-CoA thioesters and their reactivities toward the tripeptide, glutathione (ç- Glu-Cys-Gly).  The  acyl-CoA  thioesters  of  eight  carboxylic  acids  (ibuprofen,  clofibric  acid, indomethacin,  fenbufen,  tolmetin,  salicylic  acid......The chemical reactivity of acyl-CoA thioesters toward nucleophiles has been demonstrated in several recent studies. Thus, intracellularly formed acyl-CoAs of xenobiotic carboxylic acids may react covalently with endogenous proteins and potentially lead to adverse effects. The purpose of this study......,  2-phenoxypropionic  acid,  and  (4-chloro-2-methyl-phenoxy)acetic  acid  (MCPA))  were  synthesized,  and  each  acyl-CoA  (0.5  mM)  was incubated with glutathione (5.0 mM) in 0.1 M potassium phosphate (pH 7.4, 37 °C). All of the acyl-CoAs reacted with glutathione to form the respective acyl...

  2. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.

    Science.gov (United States)

    Martins, Andréa Bercini; Santana, Ruth Marlene Campomanes

    2016-01-01

    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A structural and functional model for the 1-aminocyclopropane-1-carboxylic acid oxidase.

    Science.gov (United States)

    Sallmann, Madleen; Oldenburg, Fabio; Braun, Beatrice; Réglier, Marius; Simaan, A Jalila; Limberg, Christian

    2015-10-12

    The hitherto most realistic low-molecular-weight analogue for the 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) is reported. The ACCOs 2-His-1-carboxylate iron(II) active site was mimicked by a TpFe moiety, to which the natural substrate ACC could be bound. The resulting complex [Tp(Me,Ph) FeACC] (1), according to X-ray diffraction analysis performed for the nickel analogue, represents an excellent structural model, featuring ACC coordinated in a bidentate fashion-as proposed for the enzymatic substrate complex-as well as a vacant coordination site that forms the basis for the first successful replication also of the ACCO function: 1 is the first known ACC complex that reacts with O2 to produce ethylene. As a FeOOH species had been suggested as intermediate in the catalytic cycle, H2 O2 was tested as the oxidant, too, and indeed evolution of ethylene proceeded even more rapidly to give 65 % yield. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chemo-enzymatic epoxidation of olefins by carboxylic acid esters and hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Ruesch gen. Klaas, M.; Warwel, S. [Inst. for Biochemistry and Technology of Lipids, H.P. Kaufmanm-Inst., Federal Centre for Cereal, Potato and Lipid Research, Muenster (Germany)

    1998-12-31

    Ethylen and, recently, butadiene can be epoxidized directly with oxygen and for the epoxidation of propylene, the use of heterogeneous transition metals and organic peroxides (Halcon-Process) is the major player. But, beside from those notable exceptions, all other epoxidations, including large ones like the epoxidation of plant oils as PVC-stabilizers (about 200.000 t/year), are carried out with peroxy acids. Because mcpba is far to expensive for most applications, short chain peracids like peracetic acid are used. Being much less stable than mcpba and thus risky handled in large amounts and high concentrations, these peroxy acids were preferably prepared in-situ. However, conventional in-situ formation of peracids has the serious drawback, that a strong acid is necessary to catalyze peroxy acid formation from the carboxylic acid and hydrogen peroxide. The presence of a strong acid in the reaction mixture often results in decreased selectivity because of the formation of undesired by-products by opening of the oxirane ring. Therefore, we propose a new method for epoxidation based on the in-situ preparation of percarboxylic acids from carboxylic acid esters and hydrogen peroxide catalyzed by a commercial, immobilized lipase. (orig.)

  5. Omega-3 carboxylic acids monotherapy and combination with statins in the management of dyslipidemia

    Directory of Open Access Journals (Sweden)

    Benes LB

    2016-12-01

    Full Text Available Lane B Benes1, Nikhil S Bassi2, Michael H Davidson1 1Department of Medicine, Section of Cardiology, 2Department of Medicine, University of Chicago, Chicago, IL, USA Abstract: The 2013 American College of Cardiology/American Heart Association guidelines on cholesterol management placed greater emphasis on statin therapy given the well-established benefits in primary and secondary prevention of cardiovascular disease. Residual risk may remain after statin initiation, in part because of triglyceride-rich lipoprotein cholesterol. Several large trials have failed to show benefit with non-statin cholesterol-lowering medications in the reduction of cardiovascular events. Yet, subgroup analyses showed a benefit in those with hypertriglyceridemia and lower high-density lipoprotein cholesterol level, a high-risk pattern of dyslipidemia. This review discusses the benefits of omega-3 carboxylic acids, a recently approved formulation of omega-3 fatty acid with enhanced bioavailability, in the treatment of dyslipidemia both as monotherapy and combination therapy with a statin. Keywords: omega-3 carboxylic acids, non-HDL-C, hypertriglyceridemia, residual risk, statin

  6. Antioxidant activity of hydrated carboxylated nanodiamonds and its influence on water γ-radiolysis

    Science.gov (United States)

    Santacruz-Gomez, Karla; Sarabia-Sainz, A.; Acosta-Elias, M.; Sarabia-Sainz, M.; Janetanakit, Woraphong; Khosla, Nathan; Melendrez, R.; Pedroza Montero, Martin; Lal, Ratnesh

    2018-03-01

    Water radiolysis involves chemical decomposition of the water molecule into free radicals after exposure to ionizing radiation. These free radicals have deleterious effects on normal cell physiology. Carboxylated nanodiamonds (cNDs) appear to modulate the deleterious effects of γ-irradiation on the pathophysiology of red blood cells (RBCs). In the present work, the antioxidant activity of hydrated cNDs (h-cNDs) on limiting oxidative damage (the water radiolysis effect) by γ-irradiation was confirmed. Our results show that h-cNDs have remarkable free radical scavenging ability and preserve the enzymatic activity of catalase after γ-irradiation. The underlying mechanism through which nanodiamonds exhibit antioxidant activity appears to depend on their colloidal stability. This property of detonation synthesized nanodiamonds is improved after carboxylation, which in turn influences changes in the hydrogen bond strength in water. The observed stability of h-cNDs in water and their antioxidant activity correlates with their protective effect on RBCs against γ-irradiation.

  7. Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities.

    Science.gov (United States)

    Nypelö, Tiina; Amer, Hassan; Konnerth, Johannes; Potthast, Antje; Rosenau, Thomas

    2018-03-12

    Nanocellulose-based self-standing films are becoming a substrate for flexible electronics, diagnostics, and sensors. Strength and surface chemistry are vital variables for these film-based endeavors, the former is one of the assets of nanocellulose. To contribute to the latter, nanocellulose films are tuned with a side-specific functionalization, having an aldehyde and a carboxyl side. The functionalities were obtained combining premodification of the film components by periodate oxidation with ozone post-treatment. Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with an elastic modulus of 11 GPa. The ozone treatment of one film side induces conversion of the aldehyde into carboxyl functionalities. The ozone treatment on individual crystals was largely destructive. Remarkably, such degradation is not observed for the self-standing film, and the film strength at break is preserved. Preserving a physically intact film despite ozone treatment is a credit to using the dry film structure held together by interparticle covalent linkages. Additionally, gas-phase post-treatment avoids disintegration that could result from immersion into solvents. The crystalline cellulose "Janus" film is suggested as an interfacial component in biomaterial engineering, separation technology, or in layered composite materials for tunable affinity between the layers.

  8. Experimental and theoretical elucidation of structural and antioxidant properties of vanillylmandelic acid and its carboxylate anion

    Science.gov (United States)

    Dimić, Dušan; Milenković, Dejan; Ilić, Jelica; Šmit, Biljana; Amić, Ana; Marković, Zoran; Dimitrić Marković, Jasmina

    2018-06-01

    Vanillylmandelic acid (VMA), an important metabolite of catecholamines that is routinely screened as tumor marker, was investigated by the various spectroscopic techniques (IR, Raman, UV-Vis, antioxidant decolorization assay and NMR). Structures optimized by the employment of five common functionals (M05-2X, M06-2X, B3LYP, CAM-B3LYP, B3LYP-D3) were compared with the crystallographic data. The M05-2X functional reproduced the most reliable experimental bond lengths and angles (correlation coefficient >0.999). The importance of intramolecular hydrogen bonds for structural stability was discussed and quantified by the NBO analysis. The most prominent bands in vibrational spectrum were analyzed and compared to the experimental data. The positions of the carbon and hydrogen atoms in NMR spectra were well reproduced. The differences in UV-Vis spectrum were investigated by adding the explicit solvent and by performing NBO and QTAIM analyses. The discrepancy in the two spectra of about 50 nm could be explained by the solvent effect on carboxyl group. The most probable antioxidant activity mechanism was discussed for VMA and its carboxylate anion. The Molecular Docking study with the C - reactive protein additionally proved that variety of functional groups present in VMA and its anion allowed strong hydrogen and hydrophobic interactions.

  9. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosine-26 and -64

    International Nuclear Information System (INIS)

    Roepe, P.; Scherrer, P.; Ahl, P.L.; Gupta, S.K.D.; Bogomolni, R.A.; Herzfeld, J.; Rothschild, K.J.

    1987-01-01

    Low-temperature Fourier transform infrared (FTIR) and UV difference spectroscopies combined with selective tyrosine nitration and tyrosine isotopic labeling have been used to investigate the participation of tyrosines-26 and -64 in the bacteriorhodopsin (bR) photocycle. Nitration of Tyr-26 has no detectable effect on the FTIR or UV difference spectra of the BR 570 → K 630 or BR 570 → M 412 transitions. In contrast, nitration of Tyr-64 causes changes in both the FTIR and UV spectra of these transitions. However, this nitration does not alter tyrosine peaks in the FTIR difference spectra which have previously been associated with the protonation of a tyrosinate by K 630 and the deprotonation of a tyrosine by M 412 . Instead, Tyr-64 nitration appears to affect other tyrosine peaks. These results and changes in UV difference spectra upon Tyr-64 nitration are consistent with the deprotonation of Tyr-64 by M 412 as concluded previously. Effects on chromophore vibrations caused by Tyr-64 nitration are unaltered upon reducing the nitrotyrosine to aminotyrosine with sodium dithionite. Finally, nitro-Tyr-64 causes a shift in the frequency of a positive peak at 1739 cm -1 in the BR 570 → M 412 FTIR difference spectrum which reflects the protonation of a carboxyl-containing residue. The shift does not occur for samples containing amino-Tyr-64. These data suggest that Tyr-64 may interact with this carboxyl group

  10. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates

    International Nuclear Information System (INIS)

    Roepe, P.; Ahl, P.L.; Gupta, S.K.D.; Herzfeld, J.; Rothschild, K.J.

    1987-01-01

    The role of tyrosines in the bacteriorhodopsin (bR) photocycle has been investigated by using Fourier transform infrared (FTIR) and UV difference spectroscopies. Tyrosine contributions to the BR 570 → M 412 FTIR difference spectra recorded at several temperatures and pH's were identified by isotopically labeling tyrosine residues in bacteriorhodopsin. The frequencies and deuterium/hydrogen exchange sensitivities of these peaks and of peaks in spectra of model compounds in several environments suggest that at least two different tyrosine groups participate in the bR photocycle during the formation of M 412 . One group undergoes a tyrosinate → tyrosine conversion during the BR 570 → K 630 transition. A second tyrosine group deprotonates between L 550 and M 412 . Low-temperature UV difference spectra in the 220-350-nm region of both purple membrane suspensions and rehydrated films support these conclusions. The UV spectra also indicate perturbations(s) of one or more tryptophan group(s). Several carboxyl groups appear to undergo a series of protonation changes between BR 570 and M 412 , as indicated by infrared absorption changes in the 1770-1720-cm -1 region. These results are consistent with the existence of a proton wire in bacteriorhodopsin that involves both tyrosine and carboxyl groups

  11. Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production

    Energy Technology Data Exchange (ETDEWEB)

    Hollister, Emily B; Gentry, Terry J [Texas A and M Univ., College Station, TX (United States). Dept. of Soil and Crop Sciences; Forrest, Andrea K; Holtzapple, Mark T [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering; Wilkinson, Heather H; Ebbole, Daniel J [Texas A and M Univ., College Station, TX (United States). Dept. of Plant Pathology and Microbiology; Malfatti, Stephanie A; Tringe, Susannah G [DOE Joint Genome Institute, Walnut Creek, CA (United States)

    2010-09-15

    The carboxylate platform utilizes a mixed microbial community to convert lignocellulosic biomass into chemicals and fuels. While much of the platform is well understood, little is known about its microbiology. Mesophilic (40 C) and thermophilic (55 C) fermentations employing a sorghum feedstock and marine sediment inoculum were profiled using 16S rRNA tag-pyrosequencing over the course of a 30-day incubation. The contrasting fermentation temperatures converted similar amounts of biomass, but the mesophilic community was significantly more productive, and the two temperatures differed significantly with respect to propionic and butyric acid production. Pyrotag sequencing revealed the presence of dynamic communities that responded rapidly to temperature and changed substantially over time. Both temperatures were dominated by bacteria resembling Clostridia, but they shared few taxa in common. The species-rich mesophilic community harbored a variety of Bacteroidetes, Actinobacteria, and {gamma}-Proteobacteria, whereas the thermophilic community was composed mainly of Clostridia and Bacilli. Despite differences in composition and productivity, similar patterns of functional class dynamics were observed. Over time, organisms resembling known cellulose degraders decreased in abundance, while organisms resembling known xylose degraders increased. Improved understanding of the carboxylate platform's microbiology will help refine platform performance and contribute to our growing knowledge regarding biomass conversion and biofuel production processes. (orig.)

  12. Stereospecific synthesis of syn-α-oximinoamides by a three-component reaction of isocyanides, syn-chlorooximes, and carboxylic acids.

    Science.gov (United States)

    Pirali, Tracey; Mossetti, Riccardo; Galli, Simona; Tron, Gian Cesare

    2011-07-15

    A stereospecific multicomponent reaction among isocyanides, syn-chlorooximes, and carboxylic acids provides an efficient synthesis of biologically relevant syn-α-oximinoamides. © 2011 American Chemical Society

  13. Crystal structure and Hirshfeld surface analysis of aqua-bis-(nicotinamide-κN)bis-(4-sulfamoylbenzoato-κO1)copper(II).

    Science.gov (United States)

    Hökelek, Tuncer; Yavuz, Vijdan; Dal, Hakan; Necefoğlu, Hacali

    2018-01-01

    In the crystal of the title complex, [Cu(C 7 H 6 NO 4 S) 2 (C 6 H 6 N 2 O) 2 (H 2 O)], the Cu II cation and the O atom of the coordinated water mol-ecule reside on a twofold rotation axis. The Cu II ion is coordinated by two carboxyl-ate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) mol-ecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the mol-ecules are linked via O-H⋯O and N-H⋯O hydrogen bonds with R 2 2 (8) and R 2 2 (18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (42.2%), H⋯H (25.7%) and H⋯C/C⋯H (20.0%) inter-actions.

  14. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products

    Science.gov (United States)

    Chokradjaroen, Chayanaphat; Rujiravanit, Ratana; Theeramunkong, Sewan; Saito, Nagahiro

    2018-01-01

    Chitosan is a polysaccharide that has been extensively studied in the field of biomedicine, especially its water-soluble degraded products called chitooligosaccharides (COS). In this study, COS were produced by the degradation of chitosan hydrogel dispersed in a dilute solution (i.e., 1.55 mM) of various kinds of carboxylic acids using a non-thermal plasma technology called solution plasma (SP). The degradation rates of chitosan were influenced by the type of carboxylic acids, depending on the interaction between chitosan and each carboxylic acid. After SP treatment, the water-soluble degraded products containing COS could be easily separated from the water-insoluble residue of chitosan hydrogel by centrifugation. The production yields of the COS were mostly higher than 55%. Furthermore, the obtained COS products were evaluated for their inhibitory effect as well as their selectivity against human lung cancer cells (H460) and human lung normal cells (MRC-5).

  15. Sensitive method for dosing carboxylic functions of carbons and its application to the study of thermally processed carbon blacks

    International Nuclear Information System (INIS)

    Bernardin, Jacques

    1968-01-01

    This research thesis reports the development of a sensitive method for the dosing of carboxylic functions present at the surface of carbon blacks, and the use of this method to study the evolution of a carbon black during heat treatments. After a brief description of modes of fabrication of carbon blacks and of their structure, the author proposes an overview of knowledge on their oxidation and functional analysis. After having outlined that existing methods do not allow the measurement of function quantities less than ten micro-equivalent per gram of carbon, the author reports the development of a method which allows such measurements. By using this method, the author shows that carboxylic groups of a carbon black, oxidized by air or not, decompose during degassing by forming carbon dioxide, and that, reciprocally, the released carbon dioxide is exclusively produced by the decomposition of carboxylic groups [fr

  16. Water-soluble Manganese and Iron Mesotetrakis(carboxyl)porphyrin: DNA Binding, Oxidative Cleavage, and Cytotoxic Activities.

    Science.gov (United States)

    Shi, Lei; Jiang, Yi-Yu; Jiang, Tao; Yin, Wei; Yang, Jian-Ping; Cao, Man-Li; Fang, Yu-Qi; Liu, Hai-Yang

    2017-06-29

    Two new water-soluble metal carboxyl porphyrins, manganese (III) meso -tetrakis (carboxyl) porphyrin and iron (III) meso -tetrakis (carboxyl) porphyrin, were synthesized and characterized. Their interactions with ct-DNA were investigated by UV-Vis titration, fluorescence spectra, viscosity measurement and CD spectra. The results showed they can strongly bind to ct-DNA via outside binding mode. Electrophoresis experiments revealed that both complexes can cleave pBR322 DNA efficiently in the presence of hydrogen peroxide, albeit 2-Mn exhibited a little higher efficiency. The inhibitor tests suggest the oxidative DNA cleavage by these two complexes may involve hydroxyl radical active intermediates. Notably, 2-Mn exhibited considerable photocytotoxicity against Hep G2 cell via triggering a significant generation of ROS and causing disruption of MMP after irradiation.

  17. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur

    2013-10-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  18. A facile and novel approach towards carboxylic acid functionalization of multiwalled carbon nanotubes and efficient water dispersion

    KAUST Repository

    Rehman, Ata Ur; Abbas, Syed Mustansar; Ammad, Hafiz Muhammad; Badshah, Amin; Ali, Zulfiqar; Anjum, Dalaver H.

    2013-01-01

    A convenient, cheap and mild covalent functionalization route for multiwalled carbon nanotubes (MWCNTs) have been developed for the first time. The MWCNTs were treated with wet chemical oxidants (NaNO2/HCl, HNO3/H2O2) in order to modify MWCNTs with carboxyl groups. Surface functionality groups and morphology of MWCNTs were analyzed by FTIR, TGA, SEM and TEM. The results consistently confirmed the formation of carboxyl functionalities on MWCNTs, while the structure of MWCNTs has remained relatively intact. Functionalized MWCNTs showed good dispersion in aqueous media than untreated MWCNTs. Results show that NaNO2/HCl treatment is best suited for the chemical functionalization, giving optimum surface carboxyl groups and minimum length shortening of MWCNTs. © 2013 Elsevier B.V.

  19. Interaction Between the Biotin Carboxyl Carrier Domain and the Biotin Carboxylase Domain in Pyruvate Carboxylase from Rhizobium etli†

    Science.gov (United States)

    Lietzan, Adam D.; Menefee, Ann L.; Zeczycki, Tonya N.; Kumar, Sudhanshu; Attwood, Paul V.; Wallace, John C.; Cleland, W. Wallace; Maurice, Martin St.

    2011-01-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To effect catalysis, the tethered biotin of PC must gain access to active sites in both the biotin carboxylase domain and the carboxyl transferase domain. Previous studies have demonstrated that a mutation of threonine 882 to alanine in PC from Rhizobium etli renders the carboxyl transferase domain inactive and favors the positioning of biotin in the biotin carboxylase domain. We report the 2.4 Å resolution X-ray crystal structure of the Rhizobium etli PC T882A mutant which reveals the first high-resolution description of the domain interaction between the biotin carboxyl carrier protein domain and the biotin carboxylase domain. The overall quaternary arrangement of Rhizobium etli PC remains highly asymmetrical and is independent of the presence of allosteric activator. While biotin is observed in the biotin carboxylase domain, its access to the active site is precluded by the interaction between Arg353 and Glu248, revealing a mechanism for regulating carboxybiotin access to the BC domain active site. The binding location for the biotin carboxyl carrier protein domain demonstrates that tethered biotin cannot bind in the biotin carboxylase domain active site in the same orientation as free biotin, helping to explain the difference in catalysis observed between tethered biotin and free biotin substrates in biotin carboxylase enzymes. Electron density located in the biotin carboxylase domain active site is assigned to phosphonoacetate, offering a probable location for the putative carboxyphosphate intermediate formed during biotin carboxylation. The insights gained from the T882A Rhizobium etli PC crystal structure provide a new series of catalytic snapshots in PC and offer a revised perspective on catalysis in the biotin-dependent enzyme family. PMID:21958016

  20. Facile syntheses of isotope-labeled chiral octahydroindole-2-carboxylic acid and its N-methyl analog

    International Nuclear Information System (INIS)

    Yinsheng Zhang

    2012-01-01

    We have synthesized deuterium and carbon-14 labeled enantiomerically pure octahydroindole-2-carboxylic acid (PD0140417), N-methyl octahydroindole-2-carboxylic acid (PD0348183) and their racemic analogs (PD0108405 and PD0338055). [ring-U- 14 C]PD0140417 was prepared from [ring-U- 14 C]benzoic acid in a seven-step synthesis in 6.2% overall radiochemical yield. [ 14 C]PD0348183 was prepared from [ 14 C]BaCO 3 in a five-step synthesis in 16% radiochemical yield. Additionally, [D]PD0108405 and [D]PD0338055 were synthesized by direct platinum-catalyzed hydrogenation with deuterium gas. (author)