WorldWideScience

Sample records for copper transport mechanisms

  1. Roles and mechanisms of copper transporting ATPases in cancer pathogenesis.

    Science.gov (United States)

    Zhang, Yuqing; Li, Min; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Copper (Cu) is an essential trace element for cell metabolism as a cofactor to many key metabolic enzymes. Numerous physiological processes rely on the adequate and timely transport of copper ions mediated by copper-transporting ATPases (Cu-ATPases), which are essential for human cell growth and development. Inherited gene mutations of ATP7A and ATP7B result in clinical diseases related to damage in the multiple organ systems. Increased expression of these genes has been recently observed in some human cancer specimens, and may be associated with tumorigenesis and chemotherapy resistance. However, underlying mechanisms of Cu-ATPases in human cancer progression and treatment are largely unknown. In this review, we summarize current progress on the copper transport system, the structural and functional properties of the Cu-ATPases, ATP7A and ATP7B, in copper homeostasis, and their roles in anti-tumor drug resistance and cancer metastasis. This review provides valuable information for clinicians and researchers who want to recognize the newest advances in this new field and identify possible lines of investigation in copper transport as important mediators in human physiology and cancer.

  2. Copper transport.

    Science.gov (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  3. Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment.

    Science.gov (United States)

    Kodama, Hiroko; Fujisawa, Chie; Bhadhprasit, Wattanaporn

    2012-03-01

    Copper is an essential trace element required by all living organisms. Excess amounts of copper, however, results in cellular damage. Disruptions to normal copper homeostasis are hallmarks of three genetic disorders: Menkes disease, occipital horn syndrome, and Wilson's disease. Menkes disease and occipital horn syndrome are characterized by copper deficiency. Typical features of Menkes disease result from low copper-dependent enzyme activity. Standard treatment involves parenteral administration of copper-histidine. If treatment is initiated before 2 months of age, neurodegeneration can be prevented, while delayed treatment is utterly ineffective. Thus, neonatal mass screening should be implemented. Meanwhile, connective tissue disorders cannot be improved by copper-histidine treatment. Combination therapy with copper-histidine injections and oral administration of disulfiram is being investigated. Occipital horn syndrome characterized by connective tissue abnormalities is the mildest form of Menkes disease. Treatment has not been conducted for this syndrome. Wilson's disease is characterized by copper toxicity that typically affects the hepatic and nervous systems severely. Various other symptoms are observed as well, yet its early diagnosis is sometimes difficult. Chelating agents and zinc are effective treatments, but are inefficient in most patients with fulminant hepatic failure. In addition, some patients with neurological Wilson's disease worsen or show poor response to chelating agents. Since early treatment is critical, a screening system for Wilson's disease should be implemented in infants. Patients with Wilson's disease may be at risk of developing hepatocellular carcinoma. Understanding the link between Wilson's disease and hepatocellular carcinoma will be beneficial for disease treatment and prevention.

  4. Oxidation Mechanism of Copper Selenide

    Science.gov (United States)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  5. Studies of copper transport in mammalian cells using copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    The trace element copper poses a major problem for all organisms. It is essential as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Using the copper radioisotopes {sup 64}Cu (t1/2 = 12.8 hr) and {sup 67}Cu (t1/2 = 61 hr) we have developed a number of systems for studying copper transport in mammalian cells. These include investigation of copper uptake, copper efflux and ligand blot assays for Cu-binding proteins. Our studies have focused on Menkes disease which is an inherited and usually lethal copper deficiency disorder in humans. We have demonstrated that the Menkes protein is directly involved as a copper efflux pump in mammalian cells. Using cells overexpressing the Menkes protein we have provided the first biochemical evidence that this functions as a Cu translocating (across the membrane) P-type ATPase (Voskoboinik et al., FEBS Letters, in press). These studies were carried out using purified plasma membrane vesicles. We are now carrying out structure- function studies on this protein using targeted mutations and assaying using the radiocopper vesicle assay. Recently we have commenced studies on the role of amyloid precursor protein (APP) in copper transport and relationship of this to Alzheimers disease

  6. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  7. Majorana Electroformed Copper Mechanical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.

    2012-04-30

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.

  8. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level. Th

  9. Copper transport systems are involved in multidrug resistance and drug transport.

    Science.gov (United States)

    Furukawa, Tatsuhiko; Komatsu, Masaharu; Ikeda, Ryuji; Tsujikawa, Kazutake; Akiyama, Shin-ichi

    2008-01-01

    Copper is an essential trace element and several copper containing proteins are indispensable for such processes as oxidative respiration, neural development and collagen remodeling. Copper metabolism is precisely regulated by several transporters and chaperone proteins. Copper Transport Protein 1 (CTR1) selectively uptakes copper into cells. Subsequently three chaperone proteins, HAH1 (human atx1 homologue 1), Cox17p and CCS (copper chaperone for superoxide dismutase) transport copper to the Golgi apparatus, mitochondria and copper/zinc superoxide dismutase respectively. Defects in the copper transporters ATP7A and ATP7B are responsible for Menkes disease and Wilson's disease respectively. These proteins transport copper via HAH1 to the Golgi apparatus to deliver copper to cuproenzymes. They also prevent cellular damage from an excess accumulation of copper by mediating the efflux of copper from the cell. There is increasing evidence that copper transport mechanisms may play a role in drug resistance. We, and others, found that ATP7A and ATP7B are involved in drug resistance against the anti-tumor drug cis-diamminedichloroplatinum (II) (CDDP). A relationship between the expression of ATP7A or ATP7B in tumors and CDDP resistance is supported by clinical studies. In addition, the copper uptake transporter CTR1 has also been reported to play a role in CDDP sensitivity. Furthermore, we have recently found that the effect of ATP7A on drug resistance is not limited to CDDP. Using an ex vivo drug sensitivity assay, the histoculture drug response assay (HDRA), the expression of ATP7A in human surgically resected colon cancer cells correlated with sensitivity to 7-ethyl-10-hydroxy-camptothecin (SN-38). ATP7A-overexpressing cells are resistant to many anticancer drugs including SN-38, 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin (CPT-11), vincristine, paclitaxel, etoposide, doxorubicin (Dox), and mitoxantron. The mechanism by which ATP7A and copper

  10. Kinetic Study of Copper(II Simultaneous Extraction/Stripping from Aqueous Solutions by Bulk Liquid Membranes Using Coupled Transport Mechanisms

    Directory of Open Access Journals (Sweden)

    Loreto León

    2016-09-01

    Full Text Available Heavy metals removal/recovery from industrial wastewater has become a prime concern for both economic and environmental reasons. This paper describes a comparative kinetic study of the removal/recovery of copper(II from aqueous solutions by bulk liquid membrane using two types of coupled facilitated transport mechanisms and three carriers of different chemical nature: benzoylacetone, 8-hydroxyquinoline, and tri-n-octylamine. The results are analyzed by means of a kinetic model involving two consecutive irreversible first-order reactions (extraction and stripping. Rate constants and efficiencies of the extraction (k1, EE and the stripping (k2, SE reactions, and maximum fluxes through the membrane, were determined for the three carriers to compare their efficiency in the Cu(II removal/recovery process. Counter-facilitated transport mechanism using benzoylacetone as carrier and protons as counterions led to higher maximum flux and higher extraction and stripping efficiencies due to the higher values of both the extraction and the stripping rate constants. Acceptable linear relationships between EE and k1, and between SE and k2, were found.

  11. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    OpenAIRE

    Choveaux David L; Przyborski Jude M; Goldring JP

    2012-01-01

    Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper st...

  12. Placenta Copper Transport Proteins in Preeclampsia

    Science.gov (United States)

    Placental insufficiency underlying preeclampsia (PE) is associated with impaired placental angiogenesis. As copper (Cu) is essential to angiogenesis, we investigated differences in the expression of placental Cu transporters Menkes (ATP7A), Wilsons (ATP7B) and the Cu chaperone (CCS) for superoxide d...

  13. Copper transporter 2 regulates intracellular copper and sensitivity to cisplatin.

    Science.gov (United States)

    Huang, Carlos P; Fofana, Mariama; Chan, Jefferson; Chang, Christopher J; Howell, Stephen B

    2014-03-01

    Mammalian cells express two copper (Cu) influx transporters, CTR1 and CTR2. CTR1 serves as an influx transporter for both Cu and cisplatin (cDDP). In mouse embryo fibroblasts, reduction of CTR1 expression renders cells resistant to cDDP whereas reduction of CTR2 makes them hypersensitive both in vitro and in vivo. To investigate the role of CTR2 on intracellular Cu and cDDP sensitivity its expression was molecularly altered in the human epithelial 2008 cancer cell model. Intracellular exchangeable Cu(+) was measured with the fluorescent probe Coppersensor-3 (CS3). The ability of CS3 to report on changes in intracellular Cu(+) was validated by showing that Cu chelators reduced its signal, and that changes in signal accompanied alterations in expression of the major Cu influx transporter CTR1 and the two Cu efflux transporters, ATP7A and ATP7B. Constitutive knock down of CTR2 mRNA by ∼50% reduced steady-state exchangeable Cu by 22-23% and increased the sensitivity of 2008 cells by a factor of 2.6-2.9 in two separate clones. Over-expression of CTR2 increased exchangeable Cu(+) by 150% and rendered the 2008 cells 2.5-fold resistant to cDDP. The results provide evidence that CS3 can quantitatively assess changes in exchangeable Cu(+), and that CTR2 regulates both the level of exchangeable Cu(+) and sensitivity to cDDP in a model of human epithelial cancer. This study introduces CS3 and related sensors as novel tools for probing and assaying Cu-dependent sensitivity to anticancer therapeutics.

  14. Unresolved questions in human copper pump mechanisms.

    Science.gov (United States)

    Wittung-Stafshede, Pernilla

    2015-11-01

    Copper (Cu) is an essential transition metal providing activity to key enzymes in the human body. To regulate the levels and avoid toxicity, cells have developed elaborate systems for loading these enzymes with Cu. Most Cu-dependent enzymes obtain the metal from the membrane-bound Cu pumps ATP7A/B in the Golgi network. ATP7A/B receives Cu from the cytoplasmic Cu chaperone Atox1 that acts as the cytoplasmic shuttle between the cell membrane Cu importer, Ctr1 and ATP7A/B. Biological, genetic and structural efforts have provided a tremendous amount of information for how the proteins in this pathway work. Nonetheless, basic mechanistic-biophysical questions (such as how and where ATP7A/B receives Cu, how ATP7A/B conformational changes and domain-domain interactions facilitate Cu movement through the membrane, and, finally, how target polypeptides are loaded with Cu in the Golgi) remain elusive. In this perspective, unresolved inquiries regarding ATP7A/B mechanism will be highlighted. The answers are important from a fundamental view, since mechanistic aspects may be common to other metal transport systems, and for medical purposes, since many diseases appear related to Cu transport dysregulation.

  15. Cation Effect on Copper Chemical Mechanical Polishing

    Institute of Scientific and Technical Information of China (English)

    WANG Liang-Yong; LIU Bo; SONG Zhi-Tang; FENG Song-Lin

    2009-01-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demon-strates the worst performance. These results reveal a mechanism that sma//molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  16. Cation Effect on Copper Chemical Mechanical Polishing

    Science.gov (United States)

    Wang, Liang-Yong; Liu, Bo; Song, Zhi-Tang; Feng, Song-Lin

    2009-02-01

    We examine the effect of cations in solutions containing benzotriazole (BTA) and H2O2 on copper chemical mechanical polishing (CMP). On the base of atomic force microscopy (AFM) and material removal rate (MRR) results, it is found that ammonia shows the highest MRR as well as good surface after CMP, while KOH demonstrates the worst performance. These results reveal a mechanism that small molecules with lone-pairs rather than molecules with steric effect and common inorganic cations are better for copper CMP process, which is indirectly confirmed by open circuit potential (OCP).

  17. Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1.

    Science.gov (United States)

    Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni

    2014-07-01

    The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.

  18. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs.

    Science.gov (United States)

    Howell, Stephen B; Safaei, Roohangiz; Larson, Christopher A; Sailor, Michael J

    2010-06-01

    Multiple lines of evidence indicate that the platinum-containing cancer drugs enter cells, are distributed to various subcellular compartments, and are exported from cells via transporters that evolved to manage copper homeostasis. The cytotoxicity of the platinum drugs is directly related to how much drug enters the cell, and almost all cells that have acquired resistance to the platinum drugs exhibit reduced drug accumulation. The major copper influx transporter, copper transporter 1 (CTR1), has now been shown to control the tumor cell accumulation and cytotoxic effect of cisplatin, carboplatin, and oxaliplatin. There is a good correlation between change in CTR1 expression and acquired cisplatin resistance among ovarian cancer cell lines, and genetic knockout of CTR1 renders cells resistant to cisplatin in vivo. The expression of CTR1 is regulated at the transcriptional level by copper via Sp1 and at the post-translational level by the proteosome. Copper and cisplatin both trigger the down-regulation of CTR1 via a process that involves ubiquitination and proteosomal degradation and requires the copper chaperone antioxidant protein 1 (ATOX1). The cisplatin-induced degradation of CTR1 can be blocked with the proteosome inhibitor bortezomib, and this increases the cellular uptake and the cytotoxicity of cisplatin in a synergistic manner. Copper and platinum(II) have similar sulfur binding characteristics, and the presence of stacked rings of methionines and cysteines in the CTR1 trimer suggest a mechanism by which CTR1 selectively transports copper and the platinum-containing drugs via sequential transchelation reactions similar to the manner in which copper is passed from ATOX1 to the copper efflux transporters.

  19. Transport properties of zigzag graphene nanoribbon decorated with copper clusters

    Energy Technology Data Exchange (ETDEWEB)

    Berahman, M.; Sheikhi, M. H., E-mail: msheikhi@shirazu.ac.ir [School of Electrical and Computer Eng, Shiraz University, Shiraz (Iran, Islamic Republic of); Nanotechnology Research Institute, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2014-09-07

    Using non-equilibrium green function with density functional theory, the present study investigates the transport properties of decorated zigzag graphene nanoribbon with a copper cluster. We have represented the decoration of zigzag graphene nanoribbon with single copper atom and cluster containing two and three copper atoms. In all the cases, copper atoms tend to occupy the edge state. In addition, we have shown that copper can alter the current-voltage characteristic of zigzag graphene nanoribbon and create new fluctuations and negative differential resistance. These alternations are made due to discontinuity in the combination of orbitals along the graphene nanoribbon. Decoration alters these discontinuities and creates more visible fluctuations. However, in low bias voltages, the changes are similar in all the cases. The study demonstrates that in the decorated zigzag graphene nanoribbon, the edge states are the main states for transporting electron from one electrode to another.

  20. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  1. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth

    Energy Technology Data Exchange (ETDEWEB)

    Ashino, T.; Varadarajan, S.; Urao, N.; Oshikawa, J.; Chen, G. -F.; Wang, H.; Huo, Y.; Finney, L.; Vogt, S.; McKinney, R. D.; Maryon, E. B.; Kaplan, J. H.; Ushio-Fukai, M.; Fukai, T. (Biosciences Division); ( XSD); ( PSC-USR); (Univ. of Illinois at Chicago); (Univ. of Minnesota)

    2010-09-09

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  2. Adenosine triphosphate-dependent copper transport in human liver

    NARCIS (Netherlands)

    vandenBerg, GJ; Wolters, H; Veld, GI; Slooff, MJH; Heymans, GSA; Kuipers, F; Vonk, RJ

    1996-01-01

    Background/Aim: The recent cloning and sequencing of the Wilson disease gene indicates that hepatic copper (Cu) transport is mediated by a P-type ATPase. The location of this Cu-transporting protein within the hepatocyte is not known; in view of its proposed function and current concepts of hepatic

  3. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  4. Copper does not alter the intracellular distribution of ATP7B, a copper-transporting ATPase.

    Science.gov (United States)

    Harada, M; Sakisaka, S; Kawaguchi, T; Kimura, R; Taniguchi, E; Koga, H; Hanada, S; Baba, S; Furuta, K; Kumashiro, R; Sugiyama, T; Sata, M

    2000-09-01

    Wilson's disease is a genetic disorder characterized by the accumulation of copper in the body due to a defect of biliary copper excretion. However, the mechanism of biliary copper excretion has not been fully clarified. We examined the effect of copper on the intracellular localization of the Wilson disease gene product (ATP7B) and green fluorescent protein (GFP)-tagged ATP7B in a human hepatoma cell line (Huh7). The intracellular organelles were visualized by fluorescence microscopy. GFP-ATP7B colocalized with late endosome markers, but not with endoplasmic reticulum, Golgi, or lysosome markers in both the steady and copper-loaded states. ATP7B mainly localized at the perinuclear regions in both states. These results suggest that the main localization of ATP7B is in the late endosomes in both the steady and copper-loaded states. ATP7B seems to translocate copper from the cytosol to the late endosomal lumen, thus participating in biliary copper excretion via lysosomes.

  5. Conduction Mechanisms in Polypyrrole-Copper Nanocomposites

    Directory of Open Access Journals (Sweden)

    K. Praveenkumar

    2015-06-01

    Full Text Available By mixing independently synthesized polypyrole and copper nanoparticles in different proportions, nanocomposites were prepared. Bulk and surface structures were probed by X-ray diffraction and Scanning electron microscopes. DC resistivity with temperature as a variable of all the composites has been investigated. Conductivity has been calculated using resistivity and found it to be of the order 10 – 4 (Ω – 1m – 1, which is greater by one order of magnitude than that reported for polypyrole nanoparticles. Temperature behaviour of conductivity in all the samples revealed semiconducting nature. By applying Mott’s theory of small polaron hopping, activation energy for conductivity at high temperature has been determined. Activation energy is found to be increasing with increase in copper content in the composites. Using data deviated from small polaron model, the density of states at Fermi level is calculated by employing the theory of variable range hopping of polarons due to Mott. It is for the first time that PPy-Cu nanocomposites have been probed for structural and temperature dependence of conductivity and conduction mechanisms operated in these composites in different temperature regions have been understood.

  6. Regulation of the high-affinity copper transporter (hCtr1) expression by cisplatin and heavy metals.

    Science.gov (United States)

    Liang, Zheng Dong; Long, Yan; Chen, Helen H W; Savaraj, Niramol; Kuo, Macus Tien

    2014-01-01

    Platinum-based antitumor agents have been the mainstay in cancer chemotherapy for many human malignancies. Drug resistance is an important obstacle to achieving the maximal therapeutic efficacy of these drugs. Understanding how platinum drugs enter cells is of great importance in improving therapeutic efficacy. It has been demonstrated that human high-affinity copper transporter 1 (hCtr1) is involved in transporting cisplatin into cells to elicit cytotoxic effects, although other mechanisms may exist. In this communication, we demonstrate that cisplatin transcriptionally induces the expression of hCtr1 in time- and concentration-dependent manners. Cisplatin functions as a competitor for hCtr1-mediated copper transport, resulting in reduced cellular copper levels and leading to upregulated expression of Sp1, which is a positive regulator for hCtr1 expression. Thus, regulation of hCtr1 expression by cisplatin is an integral part of the copper homeostasis regulation system. We also demonstrate that Ag(I) and Zn(II), which are known to suppress hCtr1-mediated copper transport, can also induce hCtr1/Sp1 expression. In contrast, Cd(II), another inhibitor of copper transport, downregulates hCtr1 expression by suppressing Sp1 expression. Collectively, our results demonstrate diverse mechanisms of regulating copper metabolism by these heavy metals.

  7. The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions.

    Science.gov (United States)

    Garcia-Molina, Antoni; Andrés-Colás, Nuria; Perea-García, Ana; Neumann, Ulla; Dodani, Sheel C; Huijser, Peter; Peñarrubia, Lola; Puig, Sergi

    2013-08-01

    Copper (Cu), an essential redox active cofactor, participates in fundamental biological processes, but it becomes highly cytotoxic when present in excess. Therefore, living organisms have established suitable mechanisms to balance cellular and systemic Cu levels. An important strategy to maintain Cu homeostasis consists of regulating uptake and mobilization via the conserved family of CTR/COPT Cu transport proteins. In the model plant Arabidopsis thaliana, COPT1 protein mediates root Cu acquisition, whereas COPT5 protein functions in Cu mobilization from intracellular storage organelles. The function of these transporters becomes critical when environmental Cu bioavailability diminishes. However, little is know about the mechanisms that mediate plant Cu distribution. In this report, we present evidence supporting an important role for COPT6 in Arabidopsis Cu distribution. Similarly to COPT1 and COPT2, COPT6 fully complements yeast mutants defective in high-affinity Cu uptake and localizes to the plasma membrane of Arabidopsis cells. Whereas COPT2 mRNA is only up-regulated upon severe Cu deficiency, COPT6 transcript is expressed under Cu excess conditions and displays a more gradual increase in response to decreases in environmental Cu levels. Consistent with COPT6 expression in aerial vascular tissues and reproductive organs, copt6 mutant plants exhibit altered Cu distribution under Cu-deficient conditions, including increased Cu in rosette leaves but reduced Cu levels in seeds. This altered Cu distribution is fully rescued when the wild-type COPT6 gene is reintroduced into the copt6 mutant line. Taken together, these findings highlight the relevance of COPT6 in shoot Cu redistribution when environmental Cu is limited.

  8. Transport of cisplatin by the copper efflux transporter ATP7B.

    Science.gov (United States)

    Safaei, Roohangiz; Otani, Shinji; Larson, Barrett J; Rasmussen, Michael L; Howell, Stephen B

    2008-02-01

    ATP7B is a P-type ATPase that mediates the efflux of copper. Recent studies have demonstrated that ATP7B regulates the cellular efflux of cisplatin (DDP) and controls sensitivity to the cytotoxic effects of this drug. To determine whether DDP is a substrate for ATP7B, DDP transport was assayed in vesicles isolated from Sf9 cells infected with a baculovirus that expressed either the wild-type ATP7B or a mutant ATP7B that was unable to transport copper as a result of conversion of the transmembrane metal binding CPC motif to CPA. Only the wild-type ATP7B-expressing vesicles exhibited copper-dependent ATPase activity, copper-induced acyl-phosphate formation, and ATP-dependent transport of copper. The amount of DDP that became bound was higher for vesicles expressing either type of ATP7B than for those not expressing either form of ATP7B, but only the vesicles expressing wild-type ATP7B mediated ATP-dependent accumulation of the drug. At pH 4.6, the vesicles expressing the wild-type ATP7B exhibited ATP-dependent accumulation of DDP with an apparent K(m) of 1.2 +/- 0.5 (S.E.M.) muM and V(max) of 0.03 +/- 0.002 (S.E.M.) nmol/mg of protein/min. DDP also induced the acyl-phosphorylation of ATP7B but at a much slower rate than copper. Copper and DDP each inhibited the ATP-dependent transport of the other. These results establish that DDP is a substrate for ATP7B but is transported at a much slower rate than copper.

  9. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc and copper. Progress report, January 1, 1980-December 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1980-01-01

    Investigations were continued to elucidate the mode of transepithelial transport of toxic metal ions across the gastrointestinal tract, as well as their interactions with biological processes and other metal ions. All experimental details that are either published, submitted for publication or in press during this report period are included in the Appendix. Primary attention for this report has been given to the intestinal absorption of lead and its interaction with other biological moieties.

  10. Investigation of the chemical and electrochemical phenomena in the chemical mechanical planarization of copper

    Science.gov (United States)

    Wang, Ling

    quartz crystals coated with a copper film, at open circuit and under polarization, in solutions with a wide range of chemical compositions, to examine the mass changes on the copper surface corresponding to the adsorption of chemical species, the dissolution of copper and the formation of a passivating film, to further investigate the passivation mechanisms of copper in solutions containing hydrogen peroxide and glycine and to clarify the role of hydrogen peroxide and glycine in the passivation of copper. These studies showed that copper passivates in glycine solution, when hydrogen peroxide is present, in acidic and weakly alkaline solutions where no solid oxidized phases would be expected, while there is no passivation of copper when the copper is held electrochemically at potentials equivalent to those generated by H2O2. The results revealed that hydrogen peroxide not only increases the corrosion potential of the system, which would lead to the acceleration of copper corrosion, but also induces passivation of copper through adsorption of chemical species not present in aqueous glycine solutions held at oxidizing potentials. The adsorbed chemical species associated with hydrogen peroxide oxidize copper at the surface. The resulting OH- ions cause the pH of the solution to rise near the copper surface, which leads to the precipitation of passivating copper phases. The effect of hydrogen peroxide on the formation of passivating films is affected by the fluid hydrodynamic condition, because mass transport affects the local pH at the surface. It was also found that glycine attacked the copper surface by solubilizing the oxidized copper species. In the second part of the study, galvanic interactions between copper and tantalum, which is used as a barrier material, were investigated in a peroxide-based commercial CMP slurry and peroxide-based solutions, to understand the contribution of galvanic effects to the removal of either copper or tantalum. Polarization curves of

  11. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  12. Copper chemical mechanical polishing using a slurry-free technique

    NARCIS (Netherlands)

    Nguyen, V.H.; Hof, A.J.; Kranenburg, van H.; Woerlee, P.H.; Weimar, F.

    2001-01-01

    A study of the chemical mechanical polishing (CMP) of thin copper films using fixed-abrasive pads is presented. The composition of the polishing solution is optimized by investigating the impact of both the oxidizer concentration and the pH of the solution on the polishing characteristics of copper.

  13. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides.

    Science.gov (United States)

    Björkbacka, Åsa; Yang, Miao; Gasparrini, Claudia; Leygraf, Christofer; Jonsson, Mats

    2015-09-28

    One of the main challenges for the nuclear power industry today is the disposal of spent nuclear fuel. One of the most developed methods for its long term storage is the Swedish KBS-3 concept where the spent fuel is sealed inside copper canisters and placed 500 meters down in the bedrock. Gamma radiation will penetrate the canisters and be absorbed by groundwater thereby creating oxidative radiolysis products such as hydrogen peroxide (H2O2) and hydroxyl radicals (HO˙). Both H2O2 and HO˙ are able to initiate corrosion of the copper canisters. In this work the kinetics and mechanism of reactions between the stable radiolysis product, H2O2, and copper and copper oxides were studied. Also the dissolution of copper into solution after reaction with H2O2 was monitored by ICP-OES. The experiments show that both H2O2 and HO˙ are present in the systems with copper and copper oxides. Nevertheless, these species do not appear to influence the dissolution of copper to the same extent as observed in recent studies in irradiated systems. This strongly suggests that aqueous radiolysis can only account for a very minor part of the observed radiation induced corrosion of copper.

  14. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead......Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation...... to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1...

  15. Role of copper transporters in the uptake and efflux of platinum containing drugs.

    Science.gov (United States)

    Safaei, Roohangiz

    2006-03-08

    Cellular mechanisms for the uptake, intracellular distribution and efflux of the platinum (Pt) containing compounds cisplatin (DDP), carboplatin (CBDCA) and oxaliplatin (LOHP) are unknown. Current data suggest that specialized transporters/carriers mediate the transport of Pt drugs across the cellular membranes. Specific roles for the copper (Cu) transporters CTR1, ATP7A and ATP7B have been demonstrated during recent years. The finding that in cultured cells and tumor samples a correlation can be found between the expression of Cu transporters and the degree of the acquired resistance to Pt drug suggests that the Cu transporters are important constituents of the program that regulates sensitivity to Pt drugs. A model is presented that describes the function of Cu transporters in the regulation of Pt drug uptake and efflux.

  16. Mechanisms of multidrug transporters

    NARCIS (Netherlands)

    Bolhuis, H; van Veen, H.W.; Poolman, B.; Driessen, A.J.M.; Konings, W.N

    1997-01-01

    Drug resistance, mediated by various mechanisms, plays a crucial role in the failure of the drug-based treatment of various infectious diseases. As a result, these infectious diseases re-emerge rapidly and cause many victims every year. Another serious threat is imposed by the development of multidr

  17. Role of the human high-affinity copper transporter in copper homeostasis regulation and cisplatin sensitivity in cancer chemotherapy.

    Science.gov (United States)

    Kuo, Macus Tien; Fu, Siqing; Savaraj, Niramol; Chen, Helen H W

    2012-09-15

    The high-affinity copper transporter (Ctr1; SCLC31A1) plays an important role in regulating copper homeostasis because copper is an essential micronutrient and copper deficiency is detrimental to many important cellular functions, but excess copper is toxic. Recent research has revealed that human copper homeostasis is tightly controlled by interregulatory circuitry involving copper, Sp1, and human (hCtr1). This circuitry uses Sp1 transcription factor as a copper sensor in modulating hCtr1 expression, which in turn controls cellular copper and Sp1 levels in a 3-way mutual regulatory loop. Posttranslational regulation of hCtr1 expression by copper stresses has also been described in the literature. Because hCtr1 can also transport platinum drugs, this finding underscores the important role of hCtr1 in platinum-drug sensitivity in cancer chemotherapy. Consistent with this notion is the finding that elevated hCtr1 expression was associated with favorable treatment outcomes in cisplatin-based cancer chemotherapy. Moreover, cultured cell studies showed that elevated hCtr1 expression can be induced by depleting cellular copper levels, resulting in enhanced cisplatin uptake and its cell-killing activity. A phase I clinical trial using a combination of trientine (a copper chelator) and carboplatin has been carried out with encouraging results. This review discusses new insights into the role of hCtr1 in regulating copper homeostasis and explains how modulating cellular copper availability could influence treatment efficacy in platinum-based cancer chemotherapy through hCtr1 regulation.

  18. Copper transportion of WD protein in hepatocytes from Wilson disease patients in vitro

    Institute of Scientific and Technical Information of China (English)

    Guo-Qing Hou; Xiu-Ling Liang; Rong Chen; Li-Wen Tang; Ying Wang; Ping-Yi Xu; Ying-Ru Zhang; Cui-Hua Ou

    2001-01-01

    AIM: To study the effect of copper transporting P-type ATPase in copper metabolism of hepatocyte and pathogenesis of Wilson disease (WD). METHODS: WD copper transporting properties in some organelles of the cultured hepatocytes were studied from WD patients and normal controls. These cultured hepatocytes were incubated in the media of copper 15mg.L-1 only, copper 15 mg. L-1 with vincristine (agonist of P-type ArPase) 0.5mg. L-1, or copper 15 mg. L-1 withvanadate (antagonist of P-type ATPase) 18.39 mg. L-1separately. Microsome (endoplasmic reticulum and Golgi apparatus), lysosome, mitochondria, and cytosol were isolated by differential centrifugation. Copper contents in these organelles were measured with atomic absorption spectrophotometer, and the influence in copper transportion of these organelles by vanadate and vincristine were comparatively analyzed between WD patients and controls.WD copper transporting P-type ATPase was detected by SDS-PAGE in conjunction with Western blot in liver samples of WD patients and controls. RESULTS: The specific WD proteins (Mr155 000 lanes) were expressed in human hepatocytes, including the control and WD patients. After incubation with medium containing copper for 2 h or 24 h, the microsome copper concentration in WD patients was obviously lower than that of controls,and the addtion of vanadate or vincristine would change the copper transporting of microsomes obviously. When incubated with vincristine, levels of copper in microsome were significantly increased, while incubated with vanadate,the copper concentrations in microsome were obviously decreased. The results indicated that there were Wdproteins, the copper transportion P-type ATPase in the microsome of hepatocytes. WD patients possessed abnormal copper transporting function of WD protein in the microsome, and the agonist might correct the defect of copper transportion by promoting the activity of copper transportion P-type ATPase. CONCLUSION: Copper transportion P

  19. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion

    NARCIS (Netherlands)

    Roelofsen, H; Wolters, H; Van Luyn, MJA; Miura, N; Kuipers, F; Vonk, RJ

    2000-01-01

    Background & Aims: Mutations in the ATP7B gene, encoding a copper-transporting P-type adenosine triphosphatase, lead to excessive hepatic copper accumulation because of impaired biliary copper excretion in Wilson's disease. In human liver, ATP7B is predominantly localized to the trans-Golgi network,

  20. Mechanical durability of superhydrophobic and oleophobic copper meshes

    Science.gov (United States)

    Yin, Linting; Yang, Jin; Tang, Yongcai; Chen, Lin; Liu, Can; Tang, Hua; Li, Changsheng

    2014-10-01

    We developed a simple and inexpensive method to prepare the superhydrophobic and oleophobic copper meshes with rough structures fabrication and chemical modification. The achieved surfaces displayed liquid-repellent toward water and several organic liquids (such as hexadecane), which possessed much lower surface tension than that of water. Liquid repellency of the fabricated superhydrophobic copper mesh was demonstrated by visible experiment results and contact angle measurements. Even if the superhydrophobic copper mesh was rolled up, it still kept the superhydrophobicity. The mechanical durability was investigated by finger touch and mechanical abrasion tests. The results indicated that the copper mesh can maintain its superhydrophobicity against an abrasion length of 300 cm under a high pressure (77.2 kPa). The superhydrophobicity and oleophobicity, combined with mechanical durability, would promote the superhydrophobic surface to practical application in industry in the future.

  1. Mechanism of Mineral Phase Reconstruction for Improving the Beneficiation of Copper and Iron from Copper Slag

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jan; Zhang, Feng

    2016-09-01

    To maximize the recovery of iron and copper from copper slag, the modification process by adding a compound additive (a mixture of hematite, pyrite and manganous oxide) and optimizing the cooling of the slag was studied. The phase reconstruction mechanism of the slag modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that the synergy between the burnt lime and the compound additive promotes the generation of target minerals, such as magnetite and copper matte. In addition, the multifunctional compound additive is able to improve the fluidity of the molten slag, which facilitates the coalescence and growth of fine particles of the target minerals. As a result, the percentage of iron distributed in the form of magnetite increased from 32.9% to 65.1%, and that of the copper exiting in the form of metallic copper and copper sulfide simultaneously increased from 80.0% to 90.3%. Meanwhile, the grains of the target minerals in the modified slag grew markedly to a mean size of over 50 μm after slow cooling. Ultimately, the beneficiation efficiency of copper and iron was improved because of the ease with which the target minerals could be liberated.

  2. Characterization of copper transport in gill cells of a mangrove crab Ucides cordatus

    Energy Technology Data Exchange (ETDEWEB)

    Sá, M.G. [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Zanotto, F.P., E-mail: fzanotto@usp.br [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Três de Maio 100, Sao Paulo 04044-020 (Brazil)

    2013-11-15

    Highlights: •Copper transport in gill cells of a mangrove crab Ucides cordatus is dependent of calcium. •Copper transport mechanism is ATP-dependent. •Transport was monitored second by second during 300 s. -- Abstract: The branchial epithelium of crustaceans is exposed to the environment and is the first site affected by metal pollution. The aim of this work was to characterize copper (Cu) transport using a fluorescent dye, Phen Green, in gill cells of a hypo-hyper-regulator mangrove crab Ucides cordatus. The results showed that added extracellular CuCl{sub 2} (0, 0.025, 0.150, 0.275, 0.550 and 1.110 μM) showed typical Michaelis–Menten transport for Cu in anterior and posterior gill cells (V{sub max} for anterior and posterior gills: 0.41 ± 0.12 and 1.76 ± 0.27 intracellular Cu in μM × 22.10{sup 4} cells{sup −1} × 300 s{sup −1} respectively and K{sub m} values: 0.44 ± 0.04 and 0.32 ± 0.13 μM, respectively). Intracellular Cu was significantly higher for posterior gill cells compared to anterior gill cells, suggesting differential accumulation for each gill type. Extracellular Ca at 20 mM decreased cellular Cu transport for both anterior and posterior gill cells. Nifedipine and verapamil, calcium channel inhibitors from plasma membrane, decreased Cu transport and affected K{sub m} for both gills. These results could be due to a competition between Cu and Ca. Amiloride, a Na/Ca exchanger inhibitor, as well as bafilomycin, a proton pump inhibitor, caused a decrease of intracellular Cu compared to control. Ouabain and KB-R 7943, acting on Na homeostasis, similarly decreased intracellular Cu in both gill cells. Besides that, gill cells exposed to ATP and Cu simultaneously, showed an increase in intracellular copper, which was inhibited by vanadate, an inhibitor of P-type ATPase. These results suggest either the presence of a Cu-ATPase in crab gill cells, responsible for Cu influx, or the effect of a change in electrochemical membrane potential that

  3. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin

    of copper concentration on the movement of an inert tracer, tritium, and the mobilization and transport of colloid particles in undisturbed soil cores (10 cm diameter and 8 cm height). The cores were sampled along a copper gradient of 21 to 3837 mg Cu kg-1 soil on an abandoned arable soil polluted by copper...

  4. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A.

    Science.gov (United States)

    Phillips-Krawczak, Christine A; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G; Li, Haiying; Dick, Christopher J; Gomez, Timothy S; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F; Geng, Linda N; Kaufmann, Scott H; Hein, Marco Y; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; Sluis, Bart van de; Billadeau, Daniel D; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex interacts with the multisubunit WASH complex, an evolutionarily conserved system, which is required for endosomal deposition of F-actin and cargo trafficking in conjunction with the retromer. Interactions between the WASH complex subunit FAM21, and the carboxyl-terminal ends of CCDC22 and CCDC93 are responsible for CCC complex recruitment to endosomes. We show that depletion of CCC complex components leads to lack of copper-dependent movement of the copper transporter ATP7A from endosomes, resulting in intracellular copper accumulation and modest alterations in copper homeostasis in humans with CCDC22 mutations. This work provides a mechanistic explanation for the role of COMMD1 in copper homeostasis and uncovers additional genes involved in the regulation of copper transporter recycling.

  5. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    Directory of Open Access Journals (Sweden)

    Tina eSkjørringe

    2012-09-01

    Full Text Available Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers i.e. the blood-brain barrier (BBB and the blood-cerebrospinal fluid (CSF barrier (BCB have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain-iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1 is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1 and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters

  6. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    Science.gov (United States)

    Shengli, Wang; Kangda, Yin; Xiang, Li; Hongwei, Yue; Yunling, Liu

    2013-08-01

    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics. Different from the international dominant acidic copper slurry, the copper slurry used in this research adopted the way of alkaline technology based on complexation. According to the passivation property of copper in alkaline conditions, the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA), by which the problems caused by BTA can be avoided. Through the experiments and theories research, the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed. Based on the chemical mechanical kinetics theory, the planarization mechanism of alkaline copper slurry was established. In alkaline CMP conditions, the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier. The kinetic energy at the concave position should be lower than the complexation reaction barrier, which is the key to achieve planarization.

  7. Planarization mechanism of alkaline copper CMP slurry based on chemical mechanical kinetics

    Institute of Scientific and Technical Information of China (English)

    Wang Shengli; Yin Kangda; Li Xiang; Yue Hongwei; Liu Yunling

    2013-01-01

    The planarization mechanism of alkaline copper slurry is studied in the chemical mechanical polishing (CMP) process from the perspective of chemical mechanical kinetics.Different from the international dominant acidic copper slurry,the copper slurry used in this research adopted the way of alkaline technology based on complexation.According to the passivation property of copper in alkaline conditions,the protection of copper film at the concave position on a copper pattern wafer surface can be achieved without the corrosion inhibitors such as benzotriazole (BTA),by which the problems caused by BTA can be avoided.Through the experiments and theories research,the chemical mechanical kinetics theory of copper removal in alkaline CMP conditions was proposed.Based on the chemical mechanical kinetics theory,the planarization mechanism of alkaline copper slurry was established.In alkaline CMP conditions,the complexation reaction between chelating agent and copper ions needs to break through the reaction barrier.The kinetic energy at the concave position should be lower than the complexation reaction barrier,which is the key to achieve planarization.

  8. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Directory of Open Access Journals (Sweden)

    Rodolfo Rodríguez Baracaldo

    2011-03-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  9. Canine models of copper toxicosis for understanding mammalian copper metabolism

    OpenAIRE

    Fieten, Hille; Leegwater, Peter A. J.; Watson, Adrian L.; Rothuizen, Jan

    2011-01-01

    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeo...

  10. Crystal structure of a copper-transporting PIB-type ATPase.

    Science.gov (United States)

    Gourdon, Pontus; Liu, Xiang-Yu; Skjørringe, Tina; Morth, J Preben; Møller, Lisbeth Birk; Pedersen, Bjørn Panyella; Nissen, Poul

    2011-07-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative copper entry point at the intracellular interface. Comparisons to Ca(2+)-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B proteins associated with Menkes' and Wilson's diseases.

  11. Crystal structure of a copper-transporting PIB-type ATPase

    DEFF Research Database (Denmark)

    Gourdon, Pontus; Liu, Xiang-Yu; Skjørringe, Tina

    2011-01-01

    Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, ......Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu......(+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative...... copper entry point at the intracellular interface. Comparisons to Ca(2+)-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B...

  12. The mechanism of copper-catalyzed azide-alkyne cycloaddition reaction: a quantum mechanical investigation.

    Science.gov (United States)

    Ozen, Cihan; Tüzün, Nurcan Ş

    2012-04-01

    In this study, the mechanism of CuAAC reaction and the structure of copper acetylides have been investigated with quantum mechanical methods, namely B3LYP/6-311+G(d,p). A series of possible copper-acetylide species which contain up to four copper atoms and solvent molecules as ligand has been evaluated and a four-copper containing copper-acetylide, M1A, was proposed more likely to form based on its thermodynamic stability. The reaction has been modeled with a representative simple alkyne and a simple azide to concentrate solely on the electronic effects of the mechanism. Later, the devised mechanism has been applied to a real system, namely to the reaction of 2-azido-1,1,1-trifluoroethane and ethynylbenzene in the presence of copper. The copper catalyst transforms the concerted uncatalyzed reaction to a stepwise process and lowers the activation barrier. The pre-reactive complexation of the negatively charged secondary nitrogen of azide and the positively charged copper of copper-acetylide brings the azide and the alkyne to a suitable geometry for cycloaddition to take place. The calculated activation barrier difference between the catalyzed and the uncatalyzed reactions is consistent with faster and the regioselective synthesis of triazole product. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Evolution of Copper Transporting ATPases in Eukaryotic Organisms

    OpenAIRE

    Gupta, Arnab; Lutsenko, Svetlana

    2012-01-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases i...

  14. Material removal mechanism of copper chemical mechanical polishing in a periodate-based slurry

    Science.gov (United States)

    Cheng, Jie; Wang, Tongqing; He, Yongyong; Lu, Xinchun

    2015-05-01

    The material removal mechanism of copper in a periodate-based slurry during barrier layer chemical mechanical polishing (CMP) has not been intensively investigated. This paper presents a study of the copper surface film chemistry and mechanics in a periodate-based slurry. On this basis, the controlling factor of the copper CMP material removal mechanism is proposed. The results show that the chemical and electrochemical reaction products on the copper surface are complex and vary considerably as a function of the solution pH. Under acidic conditions (pH 4) the copper surface underwent strong chemical dissolution while the corrosion was mild and uniform under alkaline conditions (pH 11). The corrosion effect was the lowest in near neutral solutions because the surface was covered with non-uniform Cu(IO3)2·H2O/Cu-periodate/copper oxides films, which had better passivation effect. The surface film thickness and mechanical removal properties were studied by AES and AFM nano-scratch tests. Based on the combined surface film analysis and CMP experiment results, it can be concluded that the controlling factor during copper CMP in a periodate-based slurry is the chemical-enhanced mechanical removal of the surface films. The periodate-based slurry should be modified by the addition of corrosion inhibitors and complexing agents to achieve a good copper surface quality with moderate chemical dissolution.

  15. Adsorption mechanism of copper and cadmium onto defatted waste biomass.

    Science.gov (United States)

    Ogata, Fumihiko; Tominaga, Hisato; Yabutani, Hitoshi; Kawasaki, Naohito

    2011-01-01

    In this study, the amount of copper or cadmium adsorbed using waste biomass (i.e., coffee grounds (CG) and rice bran (RB)) was investigated. The amount of crude protein in defatted CG (D-CG) or RB (D-RB) was greater than that in CG or RB, respectively. The amount of copper or cadmium adsorbed using CG was greater than that using RB. Additionally, the amount of copper or cadmium adsorbed was not affected by the presence of fat in CG. Adsorption data was fitted to the Freundlich equation, and the correlation coefficients were in the range of 0.794-0.991. The main adsorption mechanism was thought to be monolayer adsorption onto the surface of the waste biomass. The adsorption rate data was fitted to the pseudo-second-order model, and the correlation coefficient average was in the range of 0.891-0.945. This result showed that the rate-limiting step may be chemisorption. Moreover, the amount of copper or cadmium desorbed from CG or RB using 0.01 mol/L or 1.00 mol/L HNO(3) was investigated. Desorption with 0.01 mol/L HNO(3) resulted in the recovery of 86-97% of the copper and cadmium, indicating that copper or cadmium that was adsorbed using waste biomass was recoverable.

  16. Coordination of platinum therapeutic agents to met-rich motifs of human copper transport protein1.

    Science.gov (United States)

    Crider, Sarah E; Holbrook, Robert J; Franz, Katherine J

    2010-01-01

    Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into cells. Human hCtr1 contains two methionine-rich Mets motifs on its extracellular N-terminus that are potential platinum-binding sites: the first one encompasses residues 7-14 with amino acid sequence Met-Gly-Met-Ser-Tyr-Met-Asp-Ser and the second one spans residues 39-46 with sequence Met-Met-Met-Met-Pro-Met-Thr-Phe. In these studies, we use liquid chromatography and mass spectrometry to compare the binding interactions between cisplatin, carboplatin and oxaliplatin with synthetic peptides corresponding to hCtr1 Mets motifs. The interactions of cisplatin and carboplatin with Met-rich motifs that contain three or more methionines result in removal of the carrier ligands of both platinum complexes. In contrast, oxaliplatin retains its cyclohexyldiamine ligand upon platinum coordination to the peptide.

  17. Evolution of copper transporting ATPases in eukaryotic organisms.

    Science.gov (United States)

    Gupta, Arnab; Lutsenko, Svetlana

    2012-04-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases in prokaryotic kingdom. In eukaryotes, in addition to removing excess copper from the cell, Copper-ATPases have another equally important function - to supply copper to copper dependent enzymes within the secretory pathway. This review focuses on the origin and diversification of Copper ATPases in eukaryotic organisms. From a single Copper ATPase in protozoans, a divergence into two functionally distinct ATPases is observed with the evolutionary appearance of chordates. Among the key functional domains of Copper-ATPases, the metal-binding N-terminal domain could be responsible for functional diversification of the copper ATPases during the course of evolution.

  18. MECHANISM OF THE OXIDATION OF HEMOGLOBIN BY COPPER (II COMPLXES

    Directory of Open Access Journals (Sweden)

    M. BAYATI

    1994-07-01

    Full Text Available An outer sphere electron transfer mechanism by which human hemoglobin reduces the complexes of copper(II and, in turn, is oxidized to methemoglobin has been characterized. We have found that the rate of oxidation of hemoglobin is a function of pH, temperature, concentration of copper(II, and the environment of the hemoglobin. Prior to oxidation, copper(II complex binds to specific sites on the surface of the protein by losing one or more of its ligands, forming a ternary complex. This process is followed by electron transfer between the Cu(II and Fe(H with the Cu(II-deoxyhemoglobin being the active intermediate. The dominant factors which govern the rate of oxidation of hemoglobin by coppcr(I I complexes seem to be the stability constant of the Cu(II complexes and the overall redox potential of the ternary complex.

  19. Biosorption of copper (II) from chemical mechanical planarization wastewaters.

    Science.gov (United States)

    Stanley, Leah C; Ogden, Kimberly L

    2003-11-01

    Copper Chemical Mechanical Planarization (Cu-CMP) is a critical step in integrated circuit (IC) device manufacturing. CMP and post-CMP cleaning processes are projected to account for 30-40% of the water consumed by IC manufacturers in 2003. CMP wastewater is expected to contain increasing amounts of copper as the industry switches from Al-CMP to Cu-CMP causing some IC manufacturers to run the risk of violating discharge regulations. There are a variety of treatment schemes currently available for the removal of heavy metals from CMP wastewater, however, many introduce additional chemicals to the wastewater, have large space requirements, or are expensive. This work explores the use of microorganisms for waste treatment. A Staphylococcus sp. of bacteria was isolated and studied to determine the feasibility for use in removing copper from Cu-CMP wastewater. A model Cu-CMP wastewater was developed and tested, as well as actual Cu-CMP wastes. Continuous-flow packed column experiments were performed to obtain adsorption data and show copper recovery from the waste. A predictive, empirical model was used to accurately describe Cu removal. Additionally, the immobilized cells were regenerated, allowing for the concentration and potential recovery of copper from the wastewater.

  20. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin;

    between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points......Copper is accumulated in soils due to human activities such as mining industry, agriculture practises, or waste deposals. High concentrations of copper can affect plants and soil organisms, and subsequently the soil structure and its inner space architecture. In this work we investigated the effect...... of copper concentration on the movement of an inert tracer, tritium, and the mobilization and transport of colloid particles in undisturbed soil cores (10 cm diameter and 8 cm height). The cores were sampled along a copper gradient of 21 to 3837 mg Cu kg-1 soil on an abandoned arable soil polluted by copper...

  1. Copper Transporter 2 Content Is Lower in Liver and Heart of Copper-Deficient Rats

    Directory of Open Access Journals (Sweden)

    Jesse Bertinato

    2010-11-01

    Full Text Available Copper (Cu transporter 2 (Ctr2 is a transmembrane protein that transports Cu across cell membranes and increases cytosolic Cu levels. Experiments using cell lines have suggested that Ctr2 expression is regulated by Cu status. The importance of changes in Ctr2 expression is underscored by recent studies demonstrating that lower Ctr2 content in cells increases the cellular uptake of platinum-containing cancer drugs and toxicity to the drugs. In this study, we examined whether Ctr2 expression is altered by a nutritional Cu deficiency in vivo. Ctr2 mRNA and protein in liver and heart from rats fed a normal (Cu-N, moderately deficient (Cu-M or deficient (Cu-D Cu diet was measured. Rats fed the Cu-deficient diets showed a dose-dependent decrease in liver Ctr2 protein compared to Cu-N rats. Ctr2 protein was 42% and 85% lower in Cu-M and Cu-D rats, respectively. Liver Ctr2 mRNA was 50% lower in Cu-D rats and unaffected in Cu-M rats. In heart, Ctr2 protein was only lower in Cu-D rats (46% lower. These data show that Cu deficiency decreases Ctr2 content in vivo.

  2. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Adriana M Zimnicka

    Full Text Available Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX, a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2 also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC. In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  3. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  4. Atomistic deformation mechanisms in twinned copper nanospheres.

    Science.gov (United States)

    Bian, Jianjun; Niu, Xinrui; Zhang, Hao; Wang, Gangfeng

    2014-01-01

    In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of TBs depends strongly on the twin spacing.

  5. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.

  6. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  7. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration

    OpenAIRE

    Mario Manto

    2014-01-01

    As a cofactor of proteins and enzymes involved in critical molecular pathways in mammals and low eukaryotes, copper is a transition metal essential for life. The intra-cellular and extra-cellular metabolism of copper is under tight control, in order to maintain free copper concentrations at very low levels. Copper is a critical element for major neuronal functions, and the central nervous system is a major target of disorders of copper metabolism. Both the accumulation of copper and copper d...

  8. Mechanical behaviour of copper 15% volume niobium microcomposite wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2001-01-01

    Full Text Available Cu-Nb microcomposites are attractive in magnet pulsed field technology applications due to their anomalous mechanism of mechanical strength and high electrical conductivity. In this sense, recently it was conceived the use of Cu 15% vol. Nb wires to operate as a high tensile strength cable for a diamond cutting tool (diamond wires for marble and granite slabbing. The multifilamentary Cu 15% vol. Nb composite was obtained using a new processing route, starting with niobium bars bundled into copper tubes, without arc melting. Cold working techniques, such as swaging and wire drawing, combined with heat treatments such as sintering and annealing, and tube restacking were employed. The tensile property of the composite was measured as a function of the niobium filaments dimensions and morphology into the copper matrix, in the several processing steps. An ultimate tensile strength (UTS of 960 MPa was obtained for an areal reduction (R = Ao/A, with Ao-initial cross section area, and A-final cross section area of 4x10(8 X, in which the niobium filaments reached thickness less than 20 nm. The anomalous mechanical strength increase is attributed to the fact that the niobium filaments acts as a barrier to copper dislocations.

  9. Tribo-chemical mechanisms of copper chemical mechanical planarization (CMP) - Fundamental investigations and integrated modeling

    Science.gov (United States)

    Tripathi, Shantanu

    In this work, copper Chemical Mechanical Planarization is identified primarily as a wear enhanced corrosion process (as opposed to the corrosion enhanced wear process assumed in existing modeling work), where intermittent abrasive action enhances the local oxidation rate, and is followed by time-dependant passivation of copper. Based on this mechanism, an integrated tribo-chemical model of material removal at the abrasive scale was developed based on oxidation of copper. This considers abrasive and pad properties, process parameters, and slurry chemistry. Three important components of this model -- the passivation kinetics of copper in CMP slurry chemicals; the mechanical properties of passive films on copper; and the interaction frequency of copper and abrasives -- are introduced. The first two components, in particular the passivation kinetics of copper, are extensively studied experimentally, while the third component is addressed theoretically. The passivation kinetics of copper (i.e. decrease in oxidation currents as passive films form on bare copper) were investigated by potential step chronoamperometry. Low cost microelectrodes were developed (first of its kind for studying copper CMP) to reduce many of the problems of traditional macroelectrodes, such as interference from capacitive charging, IR drops and low diffusion limited current. Electrochemical impedance spectroscopy (EIS) was used on copper microelectrodes in CMP slurry constituents to obtain equivalent circuit elements associated with different electrochemical phenomena (capacitive, kinetics, diffusion etc.) at different polarization potentials. The circuit elements were used to simulate chronoamperometry in a system where copper actively corrodes at anodic potentials; from the simulation and the experimental results, the current decay in this system was attributed entirely to capacitive charging. The circuit elements were also used to explain the chronoamperometry results in passivating and

  10. Final report on characterization of physical and mechanical properties of copper and copper alloys before and after irradiation

    DEFF Research Database (Denmark)

    Singh, B.N.; Tähtinen, S.

    2002-01-01

    The present report summarizes and highlights the main results of the work carried out during the last 5-6 years on effects of neutron irradiation on physical and mechanical properties of copper and copper alloys. The work was an European contribution toITER Research and Development programme...... amount of further effort is needed to find a realistic and optimum solution....

  11. Copper-transporting ATPase is important for malaria parasite fertility

    NARCIS (Netherlands)

    Kenthirapalan, S.; Waters, A.P.; Matuschewski, K.; Kooij, T.W.A.

    2014-01-01

    Homeostasis of the trace element copper is essential to all eukaryotic life. Copper serves as a cofactor in metalloenzymes and catalyses electron transfer reactions as well as the generation of potentially toxic reactive oxygen species. Here, we describe the functional characterization of an

  12. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    Science.gov (United States)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode

  13. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    Worgan, K.J.; Apted, M.J. [QuantiSci Inc., Denver, CO (United States)

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented. 28 refs, 5 tabs, 6 figs.

  14. Comparing potential copper chelation mechanisms in Parkinson's disease protein

    Science.gov (United States)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    We have implemented the nudged elastic band (NEB) as a guided dynamics framework for our real-space multigrid method of DFT-based quantum simulations. This highly parallel approach resolves a minimum energy pathway (MEP) on the energy hypersurface by relaxing intermediates in a chain-of-states. As an initial application we present an investigation of chelating agents acting on copper ion bound to α -synuclein, whose misfolding is implicated in Parkinson's disease (PD). Copper ions are known to act as highly effective misfolding agents in a-synuclein and are thus an important target in understanding PD. Furthermore, chelation therapy has shown promise in the treatment of Alzheimer's and other neuro-degenerative diseases with similar metal-correlated pathologies. At present, our candidate chelating agents include nicotine, curcumin and clioquinol. We examine their MEP activation barriers in the context of a PD onset mechanism to assess the viability of various chelators for PD remediation.

  15. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis.

    Directory of Open Access Journals (Sweden)

    Najealicka Armstrong

    Full Text Available Silver nanoparticles (AgNPs, like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities past that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, we attempted to monitor the effects of AgNPs at a nonlethal concentration on wild type Drosophila melanogaster by exposing them throughout their development. All adult flies raised in AgNP doped food showed that up to 50 mg/L concentration AgNP has no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised due to AgNP feeding. Determination of the amount of free ionic silver (Ag(+ led us to claim that the observed biological effects have resulted from the AgNPs and not from Ag(+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, are decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Consequently, we propose a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explains the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, we claim that Drosophila, an established genetic model system, can be well utilized for further understanding of the biological effects of nanoparticles.

  16. Mechanism of Silver Nanoparticles Action on Insect Pigmentation Reveals Intervention of Copper Homeostasis

    Science.gov (United States)

    Armstrong, Najealicka; Ramamoorthy, Malaisamy; Lyon, Delina; Jones, Kimberly; Duttaroy, Atanu

    2013-01-01

    Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities past that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, we attempted to monitor the effects of AgNPs at a nonlethal concentration on wild type Drosophila melanogaster by exposing them throughout their development. All adult flies raised in AgNP doped food showed that up to 50 mg/L concentration AgNP has no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised due to AgNP feeding. Determination of the amount of free ionic silver (Ag+) led us to claim that the observed biological effects have resulted from the AgNPs and not from Ag+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, are decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Consequently, we propose a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explains the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, we claim that Drosophila, an established genetic model system, can be well utilized for further understanding of the biological effects of nanoparticles. PMID:23308159

  17. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis.

    Science.gov (United States)

    Armstrong, Najealicka; Ramamoorthy, Malaisamy; Lyon, Delina; Jones, Kimberly; Duttaroy, Atanu

    2013-01-01

    Silver nanoparticles (AgNPs), like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities past that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, we attempted to monitor the effects of AgNPs at a nonlethal concentration on wild type Drosophila melanogaster by exposing them throughout their development. All adult flies raised in AgNP doped food showed that up to 50 mg/L concentration AgNP has no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised due to AgNP feeding. Determination of the amount of free ionic silver (Ag(+)) led us to claim that the observed biological effects have resulted from the AgNPs and not from Ag(+). Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, are decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Consequently, we propose a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explains the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, we claim that Drosophila, an established genetic model system, can be well utilized for further understanding of the biological effects of nanoparticles.

  18. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells.

    Science.gov (United States)

    Nagai, Masazumi; Vo, Nha H; Shin Ogawa, Luisa; Chimmanamada, Dinesh; Inoue, Takayo; Chu, John; Beaudette-Zlatanova, Britte C; Lu, Rongzhen; Blackman, Ronald K; Barsoum, James; Koya, Keizo; Wada, Yumiko

    2012-05-15

    Elesclomol is an investigational drug that exerts potent anticancer activity through the elevation of reactive oxygen species (ROS) levels and is currently under clinical evaluation as a novel anticancer therapeutic. Here we report the first description of selective mitochondrial ROS induction by elesclomol in cancer cells based on the unique physicochemical properties of the compound. Elesclomol preferentially chelates copper (Cu) outside of cells and enters as elesclomol-Cu(II). The elesclomol-Cu(II) complex then rapidly and selectively transports the copper to mitochondria. In this organelle Cu(II) is reduced to Cu(I), followed by subsequent ROS generation. Upon dissociation from the complex, elesclomol is effluxed from cells and repeats shuttling elesclomol-Cu complexes from the extracellular to the intracellular compartments, leading to continued copper accumulation within mitochondria. An optimal range of redox potentials exhibited by copper chelates of elesclomol and its analogs correlated with the elevation of mitochondrial Cu(I) levels and cytotoxic activity, suggesting that redox reduction of the copper triggers mitochondrial ROS induction. Importantly the mitochondrial selectivity exhibited by elesclomol is a distinct characteristic of the compound that is not shared by other chelators, including disulfiram. Together these findings highlight a unique mechanism of action with important implications for cancer therapy.

  19. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979. [Ca; Pb; cockerels

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1979-01-01

    The mechanism of lead transport is presented, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 ..mu..Ci /sup 203/Pb (and/or 0.1 ..mu..Ci /sup 47/Ca), and 0.01 mM lead acetate (and/or mM CaCl/sub 2/) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Increasing luminal stable lead concentration significantly reduced the percentage of radiolead significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma /sup 47/Ca into the lumen but did not affect the transfer of plasma /sup 203/Pb. Intravenous administration of 1,25(OH)/sub 2/CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport.

  20. ADENOSINE TRIPHOSPHATE-DEPENDENT COPPER TRANSPORT IN ISOLATED RAT-LIVER PLASMA-MEMBRANES

    NARCIS (Netherlands)

    INTVELD, G; VANDENBERG, GJ; MULLER, M; KUIPERS, F; VONK, RJ

    1995-01-01

    The process of hepatobiliary copper (Cu) secretion is still poorly understood: Cu secretion as a complex with glutathione and transport via a lysosomal pathway have been proposed. The recent cloning and sequencing of the gene for Wilson disease indicates that Cu transport in liver cells may be media

  1. Insights into the mechanism of copper-tolerance in Fibroporia radiculosa: The biosynthesis of oxalate

    Science.gov (United States)

    Katie Jenkins; Carol A. Clausen; Frederick Green; Susan V. Diehl

    2015-01-01

    Copper is currently used as the key component in wood preservatives despite the known tolerance of many brown-rot Basidiomycetes. Copper-tolerant fungi, like Fibroporia radiculosa, produce and accumulate high levels of oxalate when exposed to copper. To gain insight into the mechanism of oxalate production, four F. radiculosa...

  2. Common folds and transport mechanisms of secondary active transporters.

    Science.gov (United States)

    Shi, Yigong

    2013-01-01

    Secondary active transporters exploit the electrochemical potential of solutes to shuttle specific substrate molecules across biological membranes, usually against their concentration gradient. Transporters of different functional families with little sequence similarity have repeatedly been found to exhibit similar folds, exemplified by the MFS, LeuT, and NhaA folds. Observations of multiple conformational states of the same transporter, represented by the LeuT superfamily members Mhp1, AdiC, vSGLT, and LeuT, led to proposals that structural changes are associated with substrate binding and transport. Despite recent biochemical and structural advances, our understanding of substrate recognition and energy coupling is rather preliminary. This review focuses on the common folds and shared transport mechanisms of secondary active transporters. Available structural information generally supports the alternating access model for substrate transport, with variations and extensions made by emerging structural, biochemical, and computational evidence.

  3. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases.

  4. Manganese transport via the transferrin mechanism.

    Science.gov (United States)

    Gunter, Thomas E; Gerstner, Brent; Gunter, Karlene K; Malecki, Jon; Gelein, Robert; Valentine, William M; Aschner, Michael; Yule, David I

    2013-01-01

    Excessive manganese (Mn) uptake by brain cells, particularly in regions like the basal ganglia, can lead to toxicity. Mn(2+) is transported into cells via a number of mechanisms, while Mn(3+) is believed to be transported similarly to iron (Fe) via the transferrin (Tf) mechanism. Cellular Mn uptake is therefore determined by the activity of the mechanisms transporting Mn into each type of cell and by the amounts of Mn(2+), Mn(3+) and their complexes to which these cells are exposed; this complicates understanding the contributions of each transporter to Mn toxicity. While uptake of Fe(3+) via the Tf mechanism is well understood, uptake of Mn(3+) via this mechanism has not been systematically studied. The stability of the Mn(3+)Tf complex allowed us to form and purify this complex and label it with a fluorescent (Alexa green) tag. Using purified and labeled Mn(3+)Tf and biophysical tools, we have developed a novel approach to study Mn(3+)Tf transport independently of other Mn transport mechanisms. This approach was used to compare the uptake of Mn(3+)Tf into neuronal cell lines with published descriptions of Fe(3+) uptake via the Tf mechanism, and to obtain quantitative information on Mn uptake via the Tf mechanism. Results confirm that in these cell lines significant Mn(3+) is transported by the Tf mechanism similarly to Fe(3+)Tf transport; although Mn(3+)Tf transport is markedly slower than other Mn transport mechanisms. This novel approach may prove useful for studying Mn toxicity in other systems and cell types.

  5. The effect of antimony presence in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper

    Directory of Open Access Journals (Sweden)

    Stanković Z.D.

    2008-01-01

    Full Text Available The influence of the presence of Sb atoms, as foreign metal atoms in anode copper, on kinetics, and, on the mechanism of anodic dissolution and cathodic deposition of copper in acidic sulfate solution has been investigated. The galvanostatic single-pulse method has been used. Results indicate that presence of Sb atoms in anode copper increase the exchange current density as determined from the Tafel analysis of the electrode reaction. It is attributed to the increase of the crystal lattice parameter determined from XRD analysis of the electrode material.

  6. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979. [3-week-old cockerels

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R H

    1979-01-01

    The purpose of the present studies was to elucidate the mechanism of lead transport, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined in 3-week old White Leghorn cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 ..mu..Ci /sup 203/Pb (and/or 0.1 ..mu..Ci /sup 47/Ca), and 0.01 mM lead acetate (and/or 1 mM CaCl/sub 2/) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Certain differences were, however, observed in the absorption process. Increasing luminal stable lead concentration from 0.01 to 1.00 mM Pb, significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma /sup 47/Ca into the lumen but did not affect the transfer of plasma /sup 203/Pb. Intravenous administration of 1,25(OH)/sub 2/CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, and the effect on calcium outlasted that on lead, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport.

  7. Transcriptional Responses and Mechanisms of Copper-Induced Dysfunctional Locomotor Behavior in Zebrafish Embryos.

    Science.gov (United States)

    Zhang, Ting; Xu, Lian; Wu, Jun-Jie; Wang, Wei-Min; Mei, Jie; Ma, Xu-Fa; Liu, Jing-Xia

    2015-11-01

    Copper-induced delayed hatching and dysfunctional movement had been reported previously, and unbalanced free copper was found in the body of humans with Alzheimer's disease and other neural diseases, but details of the underlying mechanisms are still unknown. In this study, zebrafish (Danio rerio) embryos exposed to over 3.9 μM of copper-exhibited delayed hatching and significantly dysfunctional movement. Using high-throughput in situ hybridization screening and by conducting an in-depth analysis of gene characterization in embryos exposed to copper, we found that copper caused neural crest defects from the initiation stage of neurogenesis, and embryos younger than the 70% epiboly stage were sensitive to copper toxicity. The myelination of Schwann cells, other than melanophores, cartilage, and neurons, was inhibited by copper during neurogenesis. In addition, axon guidance was blocked by copper. Downregulated cdx4-hox might have contributed to the neurogenesis-related defects. Moreover, copper inhibited the differentiation of muscle fibers and myotomes but not the specification of muscle progenitors. In summary, our data reveal a novel molecular mechanism for copper-inhibited locomotor behavior in embryos, in which copper blocks functional muscle fiber specification during myogenesis and inhibits the specification of axons and Schwann cell myelination during neurogenesis. A combination of these processes results in dysfunctional locomotor behavior in zebrafish embryos exposed to copper. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Ab initio investigation of the mechanical properties of copper

    Institute of Scientific and Technical Information of China (English)

    Liu Yue-Lin; Gui Li-Jiang; Jin Shuo

    2012-01-01

    Employing the ab initio total energy method based on the density functional theory with the generalized gradient approximation,we have systematically investigated the theoretical mechanical properties of copper (Cu).The theoretical tensile strengths are calculated to be 25.3 GPa,5.9 GPa,and 37.6 GPa for the fcc Cu single crystal in the [001],[110],and [111] directions,respectively.Among the three directions,the [110] direction is the weakest one due to the occurrence of structure transition at the lower strain and the weakest interaction of atoms between the (110) planes,while the [111] direction is the strongest direction because of the strongest interaction of atoms between the (111) planes.In terms of the elastic constants of Cu single crystal,we also estimate some mechanical quantities of polycrystalline Cu,including bulk modulus B,shear modulus G,Young's modulus Ep,and Poisson's ratio v.

  9. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Mario Manto

    2014-06-01

    Full Text Available As a cofactor of proteins and enzymes involved in critical molecular pathways in mammals and low eukaryotes, copper is a transition metal essential for life. The intra-cellular and extra-cellular metabolism of copper is under tight control, in order to maintain free copper concentrations at very low levels. Copper is a critical element for major neuronal functions, and the central nervous system is a major target of disorders of copper metabolism. Both the accumulation of copper and copper deficiency are associated with brain dysfunction. The redox capacities of free copper, its ability to trigger the production of reactive oxygen species and the close relationships with the regulation of iron and zinc are remarkable features. Major advances in our understanding of the relationships between copper, neuronal functions and neurodegeneration have occurred these last two decades. The metabolism of copper and the current knowledge on the consequences of copper dysregulation on brain disorders are reviewed, with a focus on neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease and Parkinson’s disease. In vitro studies, in vivo experiments and evidence from clinical observations of the neurotoxic effects of copper provide the basis for future therapies targeting copper homeostasis.

  10. Molecular Characterization of CTR-type Copper Transporters in an Oceanic Diatom, Thalassiosira oceanica 1005

    Science.gov (United States)

    Kong, L.; Price, N. M.

    2016-02-01

    Copper is an essential micronutrient for phytoplankton growth because of its role as a redox cofactor in electron transfer proteins in photosynthesis and respiration, and a potentially limiting resource in parts of the open sea. Thalassiosira oceanica 1005 can grow at inorganic copper concentrations varying from 10 fmol/L to 10 nmol/L by regulating copper uptake across plasma membrane. Four putative CTR-type copper transporter genes (ToCTR1, ToCTR2, ToCTR3.1 and ToCTR3.2) were identified by BLASTP search against the T. oceanica genome. Predicted gene models were revised by assembled mRNA sequencing transcripts and updated gene models contained all conserved features of characterized CTR-type copper transporters. ToCTR3.1 and ToCTR3.2 may arise from one another by gene duplication as they shared a sequence similarity of 97.6% with a peptide insertion of 5 amino acids at N-terminus of ToCTR3.1. The expression of ToCTR1, ToCTR2 and ToCTR3.1/3.2 was upregulated in low copper concentrations, but only ToCTR3.1/3.2 showed a significant increase (2.5 fold) in copper-starved cells. Both ToCTR3.1 and ToCTR3.2 restored growth of a yeast double mutant, Saccharomyces cerevisiae ctr1Δctr3Δ, in copper deficient medium. GFP-fused ToCTR expression showed that some ToCTR3.1 localized to the plasma membrane but a large portion was retained in the endoplasmic reticulum. Inefficient targeting of ToCTR3.1 to the yeast outer membrane may explain poorer growth compared to the Saccharomyces native ScCTR1 transformant. Thus, diatom CTR genes encoding CTR-type copper transporters show high-affinity copper uptake and their regulation may enable diatoms to survive in ocean environments containing a wide range of copper concentrations.

  11. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria

    OpenAIRE

    Bondarczuk, Kinga; Piotrowska-Seget, Zofia

    2013-01-01

    Copper is a metallic element that is crucial for cell metabolism; however, in extended concentrations, it is toxic for all living organisms. The dual nature of copper has forced organisms, including bacteria, to keep a tight hold on cellular copper content. This challenge has led to the evolution of complex mechanisms that on one hand enable them to deliver the essential element and on the other to protect cells against its toxicity. Such mechanisms have been found in both eukaryotic and prok...

  12. Feline hepatic biotransformation and transport mechanisms

    NARCIS (Netherlands)

    van Beusekom, C.D. van

    2015-01-01

    Hepatic biotransformation and drug transport mechanisms vary significantly between species. While these processes that determine largely the kinetic behavior of drugs have been studied abundantly in dogs, corresponding investigations in cats are hardly available, despite the increasing role of cats

  13. Multiple strengthening mechanisms in nanoparticle-reinforced copper matrix composites

    Indian Academy of Sciences (India)

    D Bozic; J Stasic; B Dimcic; M Vilotijevic; V Rajkovic

    2011-04-01

    The multiple hardening mechanisms of a copper matrix have been presented and discussed. The prealloyed ball milled Cu–3 wt.%Al and the atomized Cu–0.6 wt.%Ti–2.5 wt.%TiB2 powders have been used as starting materials. Dispersoid particles Al2O3 and TiB2 were formed in situ. The powders have been hot consolidated. Optical microscopy, SEM, TEM, and X-ray diffraction analysis were performed for microstructural characterization. Increase in microhardness of Cu–3 wt.%Al compacts is a consequence of the crystallite size refinement and the presence of Al2O3 particles. High hardening of Cu–0.6 wt.%Ti–2.5 wt.%TiB2 is a consequence of the presence of modular structure, Cu4Ti$_{(m)}$, and TiB2 particles.

  14. Mechanism of crud formation in copper solvent extraction

    Institute of Scientific and Technical Information of China (English)

    柳建设; 蓝卓越; 邱冠周; 王淀佐

    2002-01-01

    The authors investigated the mechanism of crud formation in copper solvent extraction. It is indicated that pH value of solution and the phase ratio (O/A) are the main factors affecting crud formation in solvent extraction. The amount of crud extraction increases with aqueous pH value increase, and reduces with the increase of the phase ratio. Fe3+, Mg2+, fine air bubble and suspended particulates in leaching solution contribute to crud formation. One case is that a series of reactions of hydrolization and polymerization occurs for Fe3+, while pH>2.5, polyhydric complex or Fe-SO4 complex are formed. Then the complex-ions of FeOH2+, Fe2(OH)4+2 cause poly-reaction, which is likely to lead emulsion. The study on Zeta potential indicates the repulsion between electriferous droplets in solvent extraction prevents phase coalescence, which is one of the major reasons for emulsion.

  15. Brachypodium distachyon as a model system for studies of copper transport in cereal crops

    Directory of Open Access Journals (Sweden)

    Ha-il eJung

    2014-05-01

    Full Text Available Copper (Cu is an essential micronutrient that performs a remarkable array of functions in plants including photosynthesis, cell wall remodeling, flowering, and seed set. Of the world's major cereal crops, wheat, barley, and oat are the most sensitive to Cu deficiency. Cu deficient soils include alkaline soils, which occupy approximately 30% of the world’s arable lands, and organic soils that occupy an estimated 19% of arable land in Europe. We used Brachypodium distachyon (brachypodium as a proxy for wheat and other grain cereals to initiate analyses of the molecular mechanisms underlying their increased susceptibility to Cu deficiency. In this report, we focus on members of the CTR/COPT family of Cu transporters because their homologs in A. thaliana are transcriptionally upregulated in Cu-limited conditions and are involved either in Cu uptake from soils into epidermal cells in the root, or long-distance transport and distribution of Cu in photosynthetic tissues. We found that of five COPT proteins in brachypodium, BdCOPT3 and BdCOPT4 localize to the plasma membrane and are transcriptionally upregulated in roots and leaves by Cu deficiency. We also found that BdCOPT3, BdCOPT4, and BdCOPT5 confer low affinity Cu transport, in contrast to their counterparts in A. thaliana that confer high affinity Cu transport. These data suggest that increased sensitivity to Cu deficiency in some grass species may arise from lower efficiency and, possibly, other properties of components of Cu uptake and tissue partitioning systems and reinforce the importance of using brachypodium as a model for the comprehensive analyses of Cu homeostasis in cereal crops.

  16. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant G

  17. Copper-transporting P-type ATPases use a unique ion-release pathway

    DEFF Research Database (Denmark)

    Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg

    2014-01-01

    Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations...

  18. Towards elucidation of the toxic mechanism of copper on the model green alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Jiang, Yongguang; Zhu, Yanli; Hu, Zhangli; Lei, Anping; Wang, Jiangxin

    2016-09-01

    Toxic effects of copper on aquatic organisms in polluted water bodies have garnered particular attention in recent years. Microalgae play an important role in aquatic ecosystems, and they are sensitive to heavy metal pollution. Thus, it is important to clarify the mechanism of copper toxicity first for ecotoxicology studies. In this study, the physiological, biochemical and gene expression characteristics of a model green microalga, Chlamydomonas reinhardtii, with 0, 50, 150 and 250 μM copper treatments were investigated. The response of C. reinhardtii to copper stress was significantly shown at a dose dependent manner. Inhibition of cell growth and variation of total chlorophyll content were observed with copper treatments. The maximum photochemical efficiency of PSII, actual photochemical efficiency of PSII and photochemical quenching value decreased in the 250 μM copper treatment with minimum values equal to 28, 24 and 60 % of the control values respectively. The content of lipid peroxidation biomarker malondialdehyde with copper treatments increased with a maximum value sevenfold higher than the control value. Inhibition of cell growth and photosynthesis was ascribed to peroxidation of membrane lipids. The glutathione content and activities of antioxidant enzymes, glutathione S-transferase, glutathione peroxidase, superoxide dismutase and peroxidase were induced by copper. Interestingly, the expression of antioxidant genes and the photosynthetic gene decreased in most copper treatments. In conclusion, oxidative stress caused by production of excess reactive oxidative species might be the major mechanism of copper toxicity on C. reinhardtii.

  19. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    Science.gov (United States)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  20. Investigation of peptide based surface functionalization for copper ions detection using an ultrasensitive mechanical microresonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Fischer, Lee MacKenzie; Rasmussen, Jakob Lyager

    2011-01-01

    In the framework of developing a portable label-free sensor for multi arrayed detection of heavy metals in drinking water, we present a mechanical resonator-based copper ions sensor, which uses a recently synthesized peptide Cysteine–Glycine–Glycine–Histidine (CGGH) and the l-Cysteine (Cys) peptide...... devices to detect a concentration of 10μM of copper in water, we regenerate the surface by removing the copper ions from the functionalization layer using EDTA....

  1. Fabrication of Nanostructured Electroforming Copper Layer by Means of an Ultrasonic-assisted Mechanical Treatment

    Institute of Scientific and Technical Information of China (English)

    Liao Qiang; Li Weiping; Liu Huicong; Zhu Liqun

    2010-01-01

    Electroformed copper layer with nanostructure is obtained using a subsequent mechanical treatment under the conditions of ultrasonic vibration according to the demand of high performance material in aeronautics.The microstructure of the electro-formed copper layer is observed by optical microscope (OM),scanning electron microscope (SEM) and transmission electron microscope (TEM).The tensile strength is evaluated with a tensile tester.It is found that bulk crystal of electroformed copper's surface layer is changed to nanocrystals (about 10 nm in size) after the ultrasonic-assisted mechanical treatment (UMT) but the whole monocrystalline structure still remains.The tensile strength exhibited by the new copper layer is two times better than the regular electroformed copper layer,while the fracture strain remains constant.In addition,the strengthening mechanism of UMT process is proved to be dislocation strengthening mechanism.

  2. Respiratory fluid mechanics and transport processes.

    Science.gov (United States)

    Grotberg, J B

    2001-01-01

    The field of respiratory flow and transport has experienced significant research activity over the past several years. Important contributions to the knowledge base come from pulmonary and critical care medicine, surgery, physiology, environmental health sciences, biophysics, and engineering. Several disciplines within engineering have strong and historical ties to respiration including mechanical, chemical, civil/environmental, aerospace and, of course, biomedical engineering. This review draws from a wide variety of scientific literature that reflects the diverse constituency and audience that respiratory science has developed. The subject areas covered include nasal flow and transport, airway gas flow, alternative modes of ventilation, nonrespiratory gas transport, aerosol transport, airway stability, mucus transport, pulmonary acoustics, surfactant dynamics and delivery, and pleural liquid flow. Within each area are a number of subtopics whose exploration can provide the opportunity of both depth and breadth for the interested reader.

  3. Mechanism of copper selenide growth on copper-oxide selenium system

    Science.gov (United States)

    Ishikawa, Y.; Kido, O.; Kimura, Y.; Kurumada, M.; Suzuki, H.; Saito, Y.; Kaito, C.

    2004-01-01

    Transmission electron microscopy was used to study spontaneous copper selenide formation on Cu particles covered with an oxide layer. Even if the copper particle surface was covered with a Cu 2O layer, selenides were formed by diffusion through the metal oxide layer. For a particle size less than 50 nm, selenide was formed in Cu particles by the diffusion of Se atoms passing through the Cu 2O layer. For particles larger than 100 nm in size, selenide was formed in Se film. It was also found that the thickness of the Cu 2O layer on the surface of Cu particle accelerated diffusion of Se atoms to the copper particle.

  4. Band structure and transport studies of copper selenide: An efficient thermoelectric material

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Auluck, S.; Dhar, Ajay

    2014-10-01

    We report the band structure calculations for high temperature cubic phase of copper selenide (Cu2Se) employing Hartree-Fock approximation using density functional theory within the generalized gradient approximation. These calculations were further extended to theoretically estimate the electrical transport coefficients of Cu2Se employing Boltzmann transport theory, which show a reasonable agreement with the corresponding experimentally measured values. The calculated transport coefficients are discussed in terms of the thermoelectric (TE) performance of this material, which suggests that Cu2Se can be a potential p-type TE material with an optimum TE performance at a carrier concentration of ˜ 4 - 6 × 10 21 cm - 3 .

  5. Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure

    OpenAIRE

    Fu, Xue; Zhang, Yanshu; Jiang, Wendy; Monnot, Andrew Donald; Bates, Christopher Alexander; Zheng, Wei

    2014-01-01

    Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered ...

  6. [Electrochemical reduction characteristics and mechanism of chlorinated hydrocarbon at the copper electrode].

    Science.gov (United States)

    Xu, Wen-Ying; Gao, Ting-Yao; Zhou, Rong-Feng; Ma, Lu-Ming

    2005-07-01

    The electrochemical reduction characteristics of chlorinated hydrocarbons were investigated by applying cyclic voltammetry technique. The reduction mechanism and reactivity of the chlorinated hydrocarbons at the copper electrodes were explored. The relation between the reductive reactivity at the copper electrode and the structures of this kind of compounds was discussed. The experimental results show that chlorinated paraffin hydrocarbons and a portion of chlorinated aromatic hydrocarbons could be reduced directly at the copper electrode; however, chlorinated aromatic hydrocarbons aren't easy to reduced directly at the copper electrode. The results provide a theoretical basis for the catalyzed iron inner electrolysis method.

  7. An analysis of copper transport in the insulation of high voltage transformers

    CERN Document Server

    Whitfield, T B

    2001-01-01

    Measurements of surface concentrations by XPS correlate well with measurements made with atomic absorption spectroscopy on solutions of extracts of the contaminated paper. The laboratory measurements have allowed determination of the diffusion coefficients and activation energy for the transport process and thus give a basis for interpretation of the diffusion profiles found in the transformer in terms of time and temperature of operation. The diffusion process is temperature dependant. The results have been used to produce long term prediction curves. Examination of the paper insulation and copper stress braiding during stripdown of a number of Current Transformers (FMK type 400kV) has revealed the presence of dark deposits. Copper foils are often interspersed within layers of paper insulation and mineral oil found in transformer windings. The dark deposits were often found in association with these foils, affecting several layers of paper in addition to the layer in contact with the copper foil. This thesis...

  8. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion

    OpenAIRE

    Civardi, Chiara; Schlagenhauf, Lukas; Kaiser, Jean-Pierre; Hirsch, Cordula; Mucchino, Claudio; Wichser, Adrian; Wick, Peter; Schwarze, Francis W. M. R.

    2016-01-01

    Background We investigated the particles released due to abrasion of wood surfaces pressure-treated with micronized copper azole (MCA) wood preservative and we gathered preliminary data on its in vitro cytotoxicity for lung cells. The data were compared with particles released after abrasion of untreated, water (0% MCA)-pressure-treated, chromated copper (CC)-pressure-treated wood, and varnished wood. Size, morphology, and composition of the released particles were analyzed. Results Our resul...

  9. Conditional knockout of the Menkes disease copper transporter demonstrates its critical role in embryogenesis.

    Directory of Open Access Journals (Sweden)

    Yanfang Wang

    Full Text Available The transition metal, copper (Cu, is an enzymatic cofactor required for a wide range of biochemical processes. Its essentiality is demonstrated by Menkes disease, an X-linked copper deficiency disorder characterized by defects in nervous-, cardiovascular- and skeletal systems, and is caused by mutations in the ATP7A copper transporter. Certain ATP7A mutations also cause X-linked Spinal Muscular Atrophy type 3 (SMAX3, which is characterized by neuromuscular defects absent an underlying systemic copper deficiency. While an understanding of these ATP7A-related disorders would clearly benefit from an animal model that permits tissue-specific deletion of the ATP7A gene, no such model currently exists. In this study, we generated a floxed mouse model allowing the conditional deletion of the Atp7a gene using Cre recombinase. Global deletion of Atp7a resulted in morphological and vascular defects in hemizygous male embryos and death in utero. Heterozygous deletion in females resulted in a 50% reduction in live births and a high postnatal lethality. These studies demonstrate the essential role of the Atp7a gene in mouse embryonic development and establish a powerful model for understanding the tissue-specific roles of ATP7A in copper metabolism and disease.

  10. Oxalic acid based chemical systems for electrochemical mechanical planarization of copper

    Science.gov (United States)

    Lowalekar, Viral Pradeep

    In an ECMP process, a wafer is anodically baised during polishing. The electrical potential is the driving force to oxidize copper metal to ions. Copper ions then react with chemistry in the electrolyte to go in solution or form a passivation layer on the surface. The passivation layer is removed by a very low downforce (0.5--1 psi), causing copper to electrochemically dissolve in solution. Passive film formation during copper ECMP is key to the success of this process, since passivation reduces dissolution in the recessed areas, while elevations on the copper surface in direct contact with the ECMP pad are electrochemically planarized. If no passive film forms, then copper removal will be conformal from the elevated and recessed areas, and planarity will be lost. Chemical formulations for the electrochemical mechanical planarization (ECMP) of copper must contain constituents that are stable at anodic potentials. A key component of the formulation is a corrosion inhibitor, which is required to protect low lying areas while higher areas are selectively removed. Organic compounds, which adsorb on copper at low overpotentials and form a film by oxidation at higher overpotentials, may be particularly useful for ECMP. The main goal of the research reported in this dissertation is to understand and develop oxalic acid-based chemical systems suitable for ECMP of copper through electrochemical and surface investigations. Special attention was paid to the development of an inhibitor, which can function under applied potential conditions. Physical methods such as profilometry and four point probe were used to obtain copper removal rates. An organic compound, thiosalicylic acid (TSA), was identified and tested as a potential corrosion inhibitor for copper. TSA offers better protection than the conventionally used benzotriazole (BTA) by oxidizing at high anodic potentials to form a passive film on the copper surface. The passive film formed on the copper surface by addition of

  11. Dissolution, corrosion and environmental issues in chemical mechanical planarization of copper

    Science.gov (United States)

    Tamilmani, Subramanian

    Chemical mechanical polishing (CMP) of dielectric and metal films has become a key process in manufacturing devices with ultra large scale integration (ULSI). In a CMP process, planarization is achieved by polishing a wafer with uneven topography using colloidal slurry consisting of sub-micron sized abrasive particles, oxidant and various additives. Hydrogen peroxide and hydroxylamine are commonly used oxidants in copper CMP process. To achieve planarization, the low lying areas have to be protected while the higher areas are polished away. This requires low static dissolution rate of copper in low areas. Another major issue in copper CMP is galvanic corrosion during barrier polishing step where both copper and the barrier metal are exposed to the slurry. The main goal of the research reported in this dissertation is to understand the dissolution and corrosion issues during the removal of copper in hydroxylamine based chemistries. Electrochemical and physical methods such as profilometry were used to obtain copper removal rates. Among the variety of organic compound tested, benzotriazole and salicylhydroxamic acid were identified as potential corrosion inhibitors for copper. The passive film formed on the copper surface by the addition of benzotriazole and salicylhydroxamic acid was characterized by X-ray photoelectron spectroscopy and atomic force microscopy. The passivation and repassivation kinetics were investigated in detail and a passivation mechanism for copper in hydroxylamine in the presence of benzotriazole and salicylhydroxamic acid chemistries is proposed. Copper removal experiments were performed on a specially designed electrochemical abrasion cell (EC-AC) in the presence and absence of inhibitors. The effect of anodic potentials on the dissolution of copper in various chemistries was studied to identify suitable conditions for electro-chemical mechanical planarization process. The extent of galvanic corrosion between copper and tantalum was estimated

  12. [Copper pathology (author's transl)].

    Science.gov (United States)

    Mallet, B; Romette, J; Di Costanzo, J D

    1982-01-30

    Copper is an essential dietary component, being the coenzyme of many enzymes with oxidase activity, e.g. ceruloplasmin, superoxide dismutase, monoamine oxidase, etc. The metabolism of copper is complex and imperfectly known. Active transport of copper through the intestinal epithelial cells involves metallothionein, a protein rich in sulfhydryl groups which also binds the copper in excess and probably prevents absorption in toxic amounts. In hepatocytes a metallothionein facilitates absorption by a similar mechanism and regulates copper distribution in the liver: incorporation in an apoceruloplasmin, storage and synthesis of copper-dependent enzymes. Metallothioneins and ceruloplasmin are essential to adequate copper homeostasis. Apart from genetic disorders, diseases involving copper usually result from hypercupraemia of varied origin. Wilson's disease and Menkes' disease, although clinically and pathogenetically different, are both marked by low ceruloplasmin and copper serum levels. The excessive liver retention of copper in Wilson's disease might be due to increased avidity of hepatic metallothioneins for copper and decreased biliary excretion through lysosomal dysfunction. Menkes' disease might be due to low avidity of intestinal and hepatic metallothioneins for copper. The basic biochemical defect responsible for these two hereditary conditions has not yet been fully elucidated.

  13. Mechanism of Bainite Nucleation in Steel, Iron and Copper Alloys

    Institute of Scientific and Technical Information of China (English)

    Mokuang KANG; Ming ZHU; Mingxing ZHANG

    2005-01-01

    During the incubation period of isothermal treatment(or aging) within the bainitic transformation temperature range in a salt bath (or quenching in water) immediately after solution treatment, not only are the defects formed at high temperatures maintained, but new defects can also be generated in alloys, iron alloys and steels. Due to the segregation of the solute atoms near defects through diffusion, this leads to non-uniform distributions of solute atoms in the parent phase with distinct regions of both solute enrichment and solute depletion. It is proposed that when the Ms temperature at the solute depleted regions is equal to or higher than the isothermal (or aged) temperature,nucleation of bainite occurs within these solute depleted regions in the manner of martensitic shear. Therefore it is considered that, at least in steel, iron and copper alloy systems, bainite is formed through a shear mechanism within solute depleted regions, which is controlled and formed by the solute atoms diffusion in the parent phase.

  14. Synthesis and mechanical behavior of nanoporous nanotwinned copper

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ran; Antoniou, Antonia [The Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332 (United States); Zheng, Shijian; Kevin Baldwin, Jon; Mara, Nathan [Materials Physics and Applications Division, Center for Integrated Nanotechnologies, MPA-CINT, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kuthuru, Mary [Cross Keys High School, 1626 N Druid Hills Rd NE, Atlanta, Georgia 30319 (United States)

    2013-12-09

    We synthesize nanoporous copper (NP Cu) through electrochemical dealloying of amorphous Cu{sub 0.41}Si{sub 0.59} under compressive residual stress. Transmission Electron Microscopy reveals that struts are nanocrystalline with grain size equal to the strut thickness. Moreover, a significant population of twins with spacing ∼7 nm is present within each imaged grain. The hardness of this nanocrystalline, nanotwinned NP Cu is approximately one order of magnitude greater than reports on NP Cu in the literature. The yield strength of individual struts inferred through dimensional analysis is approximately an order of magnitude greater than bulk copper and compares well with other nanostructured copper systems.

  15. Shearing Mechanism of Straight Thin Copper Wires at Connecting Terminal due to Lightning Current

    Institute of Scientific and Technical Information of China (English)

    HU Xiao-bo; Takahiro OTSUKA; Toru IWAO; Tsuginori INABA1

    2007-01-01

    When a lightning current is impressed through a copper wire,the copper wire would be melted.A straight thin copper wire with a diameter of 0.1 mm,is melted due to the specific melting Joule heating (j2t)m in an adiabatic condition.However,it has been recognized in the at the connecting terminal by a relatively low impulse current.Electro-magnetic mechanical shearing stress,etc.are discussed in addition to the conventional Joule heating. New broken mechanisms were presumed and proved in the additional experiments.

  16. The Copper Transporter 1 (CTR1) is Required to Maintain the Stability of Copper Transporter 2 (CTR2)

    Science.gov (United States)

    Tsai, Cheng-Yu; Liebig, Janika K.; Tsigelny, Igor F.; Howell, Stephen B.

    2015-01-01

    Mammalian cells have two influx Cu transporters that form trimers in membranes. CTR1 is the high affinity transporter that resides largely in the plasma membrane, and CTR2 is the low affinity transporter that is primarily associated with vesicular structures inside the cell. The major differences between CTR1 and CTR2 are that CTR1 contains a HIS/MET-rich domain N-terminal of the METS that participate in the first two stacked rings that form the pore, and a longer C-terminal tail that includes a Cu binding HIS-CYS-HIS (HCH) motif right at the end. It has been reported that CTR1 and CTR2 are physically associated with each other in the cell. We used the CRISPR-Cas9 technology to knock out either CTR1 or CTR2 in fully malignant HEK293T and OVCAR8 human ovarian cancer cells to investigate the interaction of CTR1 and CTR2. We report here that the level of CTR2 protein is markedly decreased in CTR1 knockout clones while the CTR2 transcript level remains unchanged. CTR2 was found to be highly ubiquitinated in the CTR1 knock out cells, and inhibition of the proteosome prevented the degradation of CTR2 when CTR1 was not present while inhibition of autophagy had no effect. Re-expression of CTR1 rescued CTR2 from degradation in the CTR1 knockout cells. We conclude that CTR1 is essential to maintain the stability of CTR2 and that in the absence of CTR1 CTR2 is degraded by the proteosome. This reinforces the concept that the functions of CTR1 and CTR2 are inter-dependent within the Cu homeostasis system. PMID:26205368

  17. The copper transporter 1 (CTR1) is required to maintain the stability of copper transporter 2 (CTR2).

    Science.gov (United States)

    Tsai, Cheng-Yu; Liebig, Janika K; Tsigelny, Igor F; Howell, Stephen B

    2015-11-01

    Mammalian cells have two influx Cu transporters that form trimers in membranes. CTR1 is the high affinity transporter that resides largely in the plasma membrane, and CTR2 is the low affinity transporter that is primarily associated with vesicular structures inside the cell. The major differences between CTR1 and CTR2 are that CTR1 contains a HIS/MET-rich domain N-terminal of the METS that participate in the first two stacked rings that form the pore, and a longer C-terminal tail that includes a Cu binding HIS-CYS-HIS (HCH) motif right at the end. It has been reported that CTR1 and CTR2 are physically associated with each other in the cell. We used the CRISPR-Cas9 technology to knock out either CTR1 or CTR2 in fully malignant HEK293T and OVCAR8 human ovarian cancer cells to investigate the interaction of CTR1 and CTR2. We report here that the level of CTR2 protein is markedly decreased in CTR1 knockout clones while the CTR2 transcript level remains unchanged. CTR2 was found to be highly ubiquitinated in the CTR1 knock out cells, and inhibition of the proteasome prevented the degradation of CTR2 when CTR1 was not present while inhibition of autophagy had no effect. Re-expression of CTR1 rescued CTR2 from degradation in the CTR1 knockout cells. We conclude that CTR1 is essential to maintain the stability of CTR2 and that in the absence of CTR1 CTR2 is degraded by the proteasome. This reinforces the concept that the functions of CTR1 and CTR2 are inter-dependent within the Cu homeostasis system.

  18. [Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver and cisplatin].

    Science.gov (United States)

    Skvortsov, A N; Zatulovskiĭ, E A; Puchkova, L V

    2012-01-01

    It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present there is no rational explanation how CTR1 can transfer platinum group, which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand this phenomenon we analyzed 25 sequences of chordate CTR1 proteins, and found out conserved patterns of organization of N-terminal extracellular part of CTR1 which correspond to initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that relative position of Met- and His-rich copper-binding motifs in CTR1 predisposes the extracellular CTR1 part to binding of copper, silver and cisplatin. Relation between tissue-specific expression of CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo was analyzed. Significant positive but incomplete correlation exists between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested, which avoids the disagreement between CTR1-mediated cisplatin transport in vitro, and irreversible binding of platinum to Met-rich peptides.

  19. Role of the copper transporter, CTR1, in platinum-induced ototoxicity

    Science.gov (United States)

    More, Swati S.; Akil, Omar; Ianculescu, Alexandra G.; Geier, Ethan G.; Lustig, Lawrence R.; Giacomini, Kathleen M.

    2010-01-01

    The goal of this study was to determine the role of an influx copper transporter, CTR1, in the ototoxicity induced by cisplatin, a potent anticancer platinum analog used in the treatment of a variety of solid tumors. As determined through RT-PCR, quantitative RT-PCR (qPCR), Western blot and immunohistochemistry, mouse CTR1 (Ctr1) was found to be abundantly expressed and highly localized at the primary sites of cisplatin toxicity in the inner ear; mainly outer hair cells (OHC), inner hair cells (IHC), stria vascularis (SV), spiral ganglia (SG) and surrounding nerves in the mouse cochlea. A CTR1 substrate, copper sulfate, decreased the uptake and cytotoxicity of cisplatin in HEI-OC1, a cell line that expresses many molecular markers reminiscent of OHCs. siRNA-mediated knockdown of Ctr1 in this cell line caused a corresponding decrease in cisplatin uptake. In mice, intratympanic administration of copper sulfate 30 min before intraperitoneal administration of cisplatin was found to prevent hearing loss at click stimulus and 8, 16 and 32 kHz frequencies. To date, the utility of cisplatin remains severely limited due to its ototoxic effects. The studies described in this report suggest that cisplatin induced ototoxicity and cochlear uptake can be modulated by administration of a CTR1 inhibitor, copper sulfate. The possibility of local administration of CTR1 inhibitors during cisplatin therapy as a means of otoprotection is thereby raised. PMID:20631178

  20. Nitrogen Dioxide Sensing Properties and Mechanism of Copper Phthalocyanine Film

    Institute of Scientific and Technical Information of China (English)

    QIU Cheng-Jun; DOU Yan-Wei; ZHAO Quan-Liang; QU Wei; YUAN Jie; SUN Yan-Mei; CAO Mao-Sheng

    2008-01-01

    Copper phthalocyanine film, a p-type organic semiconductor, is synthesized by vacuum sublimation and its surface morphology is characterized by SEM. A silicon-based copper phthalocyanine film gas sensor for NO2 detection is fabricated by MEMS technology. The results show that the resistance and sensitivity of copper phthalocyanine film decrease obviously as the NO2 concentration increases from Oppm to 100ppm. However, the sensitivity nearly keeps a constant of 0.158 between 30ppm and 70ppm. The best working temperature of the gas sensor is 90℃ for NO2 gas concentrations of 10ppm, 20ppm and 30ppm, which is much lower than that of general metal oxide gas sensor.

  1. The effect of bi presence as impurities in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper

    Directory of Open Access Journals (Sweden)

    Stanković Zvonimir D.

    2010-01-01

    Full Text Available The influence of Bi, as foreign metal atoms in anode copper, on kinetics and mechanism of anodic dissolution and cathodic deposition of copper in acidic sulfate solution was investigated using the galvanostatic single-pulse method. Results indicate that presence of Bi atoms in anode copper increases the exchange current density, as determined from the Tafel analysis of the electrode reaction, which is attributed to the increase of the crystal lattice parameter determined from XRD analysis of the electrode material.

  2. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    Science.gov (United States)

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  3. Effects of zinc on static and dynamic mechanical properties of copper-zinc alloy

    Institute of Scientific and Technical Information of China (English)

    马志超; 赵宏伟; 鲁帅; 程虹丙

    2015-01-01

    The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37% (mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.

  4. Silencing of the Menkes copper-transporting ATPase (Atp7a) gene increases cyclin D1 protein expression and impairs proliferation of rat intestinal epithelial (IEC-6) cells.

    Science.gov (United States)

    Gulec, Sukru; Collins, James F

    2014-10-01

    The Menkes copper-transporting ATPase (Atp7a) has dual roles in mammalian enterocytes: pumping copper into the trans-Golgi network (to support cuproenzyme synthesis) and across the basolateral membrane (to deliver dietary copper to the blood). Atp7a is strongly induced in the rodent duodenum during iron deprivation, suggesting that copper influences iron homeostasis. To investigate this possibility, Atp7a was silenced in rat intestinal epithelial (IEC-6) cells. Irrespective of its influence on iron homeostasis, an unexpected observation was made in the Atp7a knockdown (KD) cells: the cells grew slower (∼40% fewer cells at 96h) and were larger than negative-control shRNA-transfected cells. Lack of Atp7a activity thus perturbed cell cycle control. To elucidate a possible molecular mechanism, expression of two important cell cycle control proteins was assessed. Cyclin D1 (CD1) protein expression increased in Atp7a KD cells whereas proliferating-cell nuclear antigen (PCNA) expression was unaltered. Increased CD1 expression is consistent with impaired cell cycle progression. Expression of additional cell proliferation marker genes (p21 and Ki67) was also investigated; p21 expression increased, whereas Ki67 decreased, both consistent with diminished cell growth. Further experiments were designed to determine whether increased cellular copper content was the trigger for the altered growth phenotype of the Atp7a KD cells. Copper loading, however, did not influence the expression patterns of CD1, p21 or Ki67. Overall, these findings demonstrate that Atp7a is required for normal proliferation of IEC-6 cells. How Atp7a influences cell growth is unclear, but the underlying mechanism could relate to its roles in intracellular copper distribution or cuproenzyme synthesis. Copyright © 2014. Published by Elsevier GmbH.

  5. Cellular copper distribution: a mechanistic systems biology approach.

    Science.gov (United States)

    Banci, Lucia; Bertini, Ivano; Cantini, Francesca; Ciofi-Baffoni, Simone

    2010-08-01

    Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.

  6. Fabrication and thermo-mechanical behavior of ultra-fine porous copper.

    Science.gov (United States)

    Kreuzeder, Marius; Abad, Manuel-David; Primorac, Mladen-Mateo; Hosemann, Peter; Maier, Verena; Kiener, Daniel

    2015-01-01

    Porous materials with ligament sizes in the submicrometer to nanometer regime have a high potential for future applications such as catalysts, actuators, or radiation tolerant materials, which require properties like high strength-to-weight ratio, high surface-to-volume ratio, or large interface density as for radiation tolerance. The objective of this work was to manufacture ultra-fine porous copper, to determine the thermo-mechanical properties, and to elucidate the deformation behavior at room as well as elevated temperatures via nanoindentation. The experimental approach for manufacturing the foam structures used high pressure torsion, subsequent heat treatments, and selective dissolution. Nanoindentation at different temperatures was successfully conducted on the ultra-fine porous copper, showing a room temperature hardness of 220 MPa. During high temperature experiments, oxidation of the copper occurred due to the high surface area. A model, taking into account the mechanical properties of the copper oxides formed during the test, to describe the measured mechanical properties in dependence on the proceeding oxidation was developed. The strain rate sensitivity of the copper foam at room temperature was ∼0.03 and strongly correlated with the strain rate sensitivity of ultra-fine grained bulk copper. Although oxidation occurred near the surface, the rate-controlling process was still the deformation of the underlying copper. An increase in the strain rate sensitivity was observed, comparably to that of ultra-fine-grained copper, which can be linked to thermally activated processes at grain boundaries. Important insights into the effects of oxidation on the deformation behavior were obtained by assessing the activation volume. Oxidation of the ultra-fine porous copper foam, thereby hindering dislocations to exit to the surface, resulted in a pronounced reduction of the apparent activation volume from ~800 to ~50 b(3), as also typical for ultra-fine grained

  7. Electrochemical reduction characteristics and the mechanism of chlorinated hydrocarbons at the copper electrode

    Institute of Scientific and Technical Information of China (English)

    XU Wenying; GAO Tingyao; ZHOU Rongfeng; MA Lumin

    2007-01-01

    The electrochemical reduction characteristies of chlorinated hyrdrocarbons were investigated by cyclic voltammetry technique.The reduction mechanism and activity of the chlorinated hydrocarbons at the copper electrode were explored.The relationship between the structure of chlorinated hydrocarbons and their reductive activity were discussed.The experimental results showed that chlorinated alkanes and a portion of chlorinated aromatic hydrocarbons could be reduced directly at the copper electrode.However,chlorinated aromatic hydrocarbons were not easy to reduce at the copper electrode.The results provided a theoretical basis for the catalyzed iron inner electrolysis method.

  8. Urinary Copper Elevation in a Mouse Model of Wilson's Disease Is a Regulated Process to Specifically Decrease the Hepatic Copper Load

    OpenAIRE

    Gray, Lawrence W.; Fangyu Peng; Molloy, Shannon A.; Pendyala, Venkata S.; Abigael Muchenditsi; Otto Muzik; Jaekwon Lee; Kaplan, Jack H.; Svetlana Lutsenko

    2012-01-01

    Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b(-/-) mice at different stages...

  9. Voltage-induced material removal mechanism of copper for electrochemical-mechanical polishing applications

    Institute of Scientific and Technical Information of China (English)

    Sang-Jun HAN; Yong-Jin SEO

    2009-01-01

    The current-voltage (Ⅰ-Ⅴ) curves, such as linear sweep voltammetry (LSV) and cyclic voltammetry (CV), were employed to evaluate the effect of electrolyte concentration on the electrochemical reaction trend. From the Ⅰ-Ⅴ curve, the electrochemical states of active, passive, transient and trans-passive region could be characterized. And then, the mechanism of the process of voltage-induced material removal in electrochemical mechanical polishing (ECMP) of copper was investigated. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses were used to observe the surface profile. Finally, the oxidation and reduction processes of the Cu surface were monitored by the repetition of anodic and cathodic potential from cyclic voltammetry (CV) method in acid- and alkali-based electrolyte.

  10. Influence of Copper on Transport and Dissipation of Lambda-Cyhalothrin and Cypermethrin in Soils

    Institute of Scientific and Technical Information of China (English)

    LIU Jun; L(U) Xiao-Meng; XIE Ji-Min; LI Ping-Ping; HAN Jian-Gang; SUN Cheng

    2013-01-01

    Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid insecticides (Pys)have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils.To understand the potential influence of Cu on the fate of Pys in the soil environment,we selected two Pys,cypermethrin (CPM) and lambda-cyhalothrin (λ-CHT),and two typical Chinese vineyard soils,Haplic Acrisol and Luvic Phaeozem,as experimental samples.The dissipation experiment was conducted at room temperature in the dark,and the transport of both Pys through the soils was investigated using soil thin-layer chromatography.The results showed that the transport of Pys in both soils increased as the Cu2+ concentration increased from 0 to 100 mg L-1,and Pys were more transportable in Haplic Acrisol (HA) than in Luvic Phaeozem (LP) under the same experimental conditions.For CPM,only 100 mg L-1 of Cu2+ significantly (P < 0.05) increased Pys transport through both soils relative to water.Lambda-CHT was significantly (P < 0.05) transported through HA by all the Cu2+ concentrations compared to water,and all but the 1 mg L-1 of Cu2+ significantly (P < 0.05) increased the transport of λ-CHT through LP relative to water.However,the dissipation rates of CPM and λ-CHT decreased with the addition of Cu to soils.Our findings suggest that the risk of groundwater contamination by Pys increases in the soils with elevated Cu concentrations.

  11. Molecular basis of active copper resistance mechanisms in Gram-negative bacteria.

    Science.gov (United States)

    Bondarczuk, Kinga; Piotrowska-Seget, Zofia

    2013-12-01

    Copper is a metallic element that is crucial for cell metabolism; however, in extended concentrations, it is toxic for all living organisms. The dual nature of copper has forced organisms, including bacteria, to keep a tight hold on cellular copper content. This challenge has led to the evolution of complex mechanisms that on one hand enable them to deliver the essential element and on the other to protect cells against its toxicity. Such mechanisms have been found in both eukaryotic and prokaryotic cells. In bacteria a number of different systems such as extra- and intracellular sequestration, enzymatic detoxification, and metal removal from the cell enabling them to survive in the presence of high concentration of copper have been identified. Gram-negative bacteria, due to their additional compartment, need to deal with both cytoplasmic and periplasmic copper. Therefore, these bacteria have evolved intricate and precisely regulated systems which interact with each other. In this review the active mechanisms of copper resistance at their molecular level are discussed.

  12. Transport of humic and fulvic acids in relation to metal mobility in a copper-contaminated acid sandy soil

    NARCIS (Netherlands)

    Weng, L.; Fest, E.P.M.J.; Filius, J.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2002-01-01

    The transport of inorganic and organic pollutants in water and soil can be strongly influenced by the mobility of natural dissolved organic matter (DOM). In this paper, the transport of a humic acid (HA) and a fulvic acid (FA) in a copper-contaminated acid sandy soil was studied. The data showed

  13. Antitumor activity of a 2-pyridinecarboxaldehyde 2-pyridinecarboxylic acid hydrazone copper complex and the related mechanism.

    Science.gov (United States)

    Yang, Yingli; Huang, Tengfei; Zhou, Sufeng; Fu, Yun; Liu, Youxun; Yuan, Yanbin; Zhang, Qiongqing; Li, Shaoshan; Li, Changzheng

    2015-09-01

    In the present study, 2-pyridinecarboxaldehyde 2-pyridinecarboxylic acid hydrazone (PPAH) was prepared and its antitumor activity was evaluated. The inhibition of proliferation of PPAH against the HepG2 and HCT-116 cell lines was less effective, yet in the presence of copper ions, the mixture demonstrated excellent antitumor activity (IC50 at 2.75±0.30 µM for the HepG2 cell line, and 1.90±0.20 µM for the HCT-116 cell line, respectively) and the new active species was confirmed to be a PPAH copper complex with a 1:1 ratio by spectral analysis. The excellent antitumor activity of the copper complex prompted us to investigate the underlying mechanism. RT-PCR was performed to detect the changes in the expression of apoptotic genes induced by PPAH and its copper complex. However, no changes were observed when the cells were treated by the agents for 24 or 48 h, indicating that ROS were unlikely involved. Cell cycle analysis showed that both PPAH and its copper complex led to S phase arrest of the cells. The sDNA relaxation assay revealed that the PPAH-copper complex displayed dual topoisomerase inhibition for type I and II. The data suggest that the inhibition of proliferation exhibited by the PPAH copper complex may stem from its dual topoisomerase inhibition, which is rarely observed for a metal complex.

  14. Two Serine Residues Control Sequential Steps during Catalysis of the Yeast Copper ATPase through Different Mechanisms That Involve Kinase-mediated Phosphorylations*

    Science.gov (United States)

    Valverde, Rafael H. F.; Britto-Borges, Thiago; Lowe, Jennifer; Einicker-Lamas, Marcelo; Mintz, Elisabeth; Cuillel, Martine; Vieyra, Adalberto

    2011-01-01

    Ccc2, the yeast copper-transporting ATPase, pumps copper from the cytosol to the Golgi lumen. During its catalytic cycle, Ccc2 undergoes auto-phosphorylation on Asp627 and uses the energy gained to transport copper across the cell membrane. We previously demonstrated that cAMP-dependent protein kinase (PKA) controls the energy interconversion CuE∼P → E-P + Cu when Ser258 is phosphorylated. We now demonstrate that Ser258 is essential in vivo for copper homeostasis in extremely low copper and iron concentrations. The S258A mutation abrogates all PKA-mediated phosphorylations of Ccc2, whereas the S971A mutation leads to a 100% increase in its global regulatory phosphorylation. With S258A, the first-order rate constant of catalytic phosphorylation by ATP decreases from 0.057 to 0.030 s−1, with an 8-fold decrease in the burst of initial phosphorylation. With the S971A mutant, the rate constant decreases to 0.007 s−1. PKAi5–24 decreases the amount of the aspartylphosphate intermediate (EP) in Ccc2 wt by 50% within 1 min, but not in S258A, S971A, or S258A/S971A. The increase of the initial burst and the extremely slow phosphorylation when the “phosphomimetic” mutant S258D was assayed (k = 0.0036 s−1), indicate that electrostatic and conformational (non-electrostatic) mechanisms are involved in the regulatory role of Ser258. Accumulation of an ADP-insensitive form in S971A demonstrates that Ser971 is required to accelerate the hydrolysis of the E-P form during turnover. We propose that Ser258 and Ser971 are under long-range intramolecular, reciprocal and concerted control, in a sequential process that is crucial for catalysis and copper transport in the yeast copper ATPase. PMID:21163943

  15. Copper Transporter 2 Regulates Endocytosis and Controls Tumor Growth and Sensitivity to Cisplatin In Vivo

    Science.gov (United States)

    Blair, Brian G.; Larson, Christopher A.; Adams, Preston L.; Abada, Paolo B.; Pesce, Catherine E.; Safaei, Roohangiz

    2011-01-01

    Copper transporter 2 (CTR2) is one of the four copper transporters in mammalian cells that influence the cellular pharmacology of cisplatin and carboplatin. CTR2 was knocked down using a short hairpin RNA interference. Robust expression of CTR2 was observed in parental tumors grown in vivo, whereas no staining was found in the tumors formed from cells in which CTR2 had been knocked down. Knockdown of CTR2 reduced growth rate by 5.8-fold, increased the frequency of apoptotic cells, and decreased the vascular density, but it did not change copper content. Knockdown of CTR2 increased the tumor accumulation of cis-diamminedichloroplatinum(II) [cisplatin (cDDP)] by 9.1-fold and greatly increased its therapeutic efficacy. Because altered endocytosis has been implicated in cDDP resistance, uptake of dextran was used to quantify the rate of macropinocytosis. Knockdown of CTR2 increased dextran uptake 2.5-fold without reducing exocytosis. Inhibition of macropinocytosis with either amiloride or wortmannin blocked the increase in macropinocytosis mediated by CTR2 knockdown. Stimulation of macropinocytosis by platelet-derived growth factor coordinately increased dextran and cDDP uptake. Knockdown of CTR2 was associated with activation of the Rac1 and cdc42 GTPases that control macropinocytosis but not activation of the phosphoinositide-3 kinase pathway. We conclude that CTR2 is required for optimal tumor growth and that it is an unusually strong regulator of cisplatin accumulation and cytotoxicity. CTR2 regulates the transport of cDDP in part through control of the rate of macropinocytosis via activation of Rac1 and cdc42. Selective knockdown of CTR2 in tumors offers a strategy for enhancing the efficacy of cDDP. PMID:20930109

  16. Orientation-dependent mechanical behaviour of electrodeposited copper with nanoscale twins.

    Science.gov (United States)

    Mieszala, Maxime; Guillonneau, Gaylord; Hasegawa, Madoka; Raghavan, Rejin; Wheeler, Jeffrey M; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2016-09-21

    The mechanical properties of electrodeposited copper with highly-oriented nanoscale twins were investigated by micropillar compression. Uniform nanotwinned copper films with preferred twin orientations, either vertical or horizontal, were obtained by controlling the plating conditions. In addition, an ultrafine grained copper film was synthesized to be used as a reference sample. The mechanical properties were assessed by in situ SEM microcompression of micropillars fabricated with a focused ion beam. Results show that the mechanical properties are highly sensitive to the twin orientation. When compared to the ultrafine grained sample, an increase of 44% and 130% in stress at 5% offset strain was observed in quasi-static tests for vertically and horizontally aligned twins, respectively. Inversely strain rate jump microcompression testing reveals higher strain sensitivity for vertical twins. These observations are attributed to a change in deformation mechanism from dislocation pile-ups at the twin boundary for horizontal twins to dislocations threading inside the twin lamella for vertical twins.

  17. Chemical vapor transport and solid-state exchange synthesis of new copper selenite bromides

    Science.gov (United States)

    Charkin, Dmitri O.; Kayukov, Roman A.; Zagidullin, Karim A.; Siidra, Oleg I.

    2017-02-01

    A new dimorphic copper selenite bromide, Cu5(SeO3)4Br2 was obtained via chemical transport reactions. α-Cu5(SeO3)4Br2, monoclinic (1m) and β-Cu5(SeO3)4Br2, triclinic (1a) polymorphs were produced simultaneously upon reaction of amorphous, partially dehydrated copper selenite and copper bromide. 1m is similar to Cu5(SeO3)4Cl2, whereas 1a is distantly related to Ni5(SeO3)4Br2 and Co5(SeO3)4Br2. Attempts to reproduce synthesis of 1a via exchange reaction between Na2SeO3 and CuBr2 resulted in a new Na2[Cu7O2](SeO3)4Br4 (2). Current study demonstrates for the first time, that both chemical vapor and exchange reactions can be employed in preparation of new selenite halides.

  18. Mechanism for alternating access in neurotransmitter transporters.

    Science.gov (United States)

    Forrest, Lucy R; Zhang, Yuan-Wei; Jacobs, Miriam T; Gesmonde, Joan; Xie, Li; Honig, Barry H; Rudnick, Gary

    2008-07-29

    Crystal structures of LeuT, a bacterial homologue of mammalian neurotransmitter transporters, show a molecule of bound substrate that is essentially exposed to the extracellular space but occluded from the cytoplasm. Thus, there must exist an alternate conformation for LeuT in which the substrate is accessible to the cytoplasm and a corresponding mechanism that switches accessibility from one side of the membrane to the other. Here, we identify the cytoplasmic accessibility pathway of the alternate conformation in a mammalian serotonin transporter (SERT) (a member of the same transporter family as LeuT). We also propose a model for the cytoplasmic-facing state that exploits the internal pseudosymmetry observed in the crystal structure. LeuT contains two structurally similar repeats (TMs1-5 and TMs 6-10) that are inverted with respect to the plane of the membrane. The conformational differences between them result in the formation of the extracellular pathway. Our model for the cytoplasm-facing state exchanges the conformations of the two repeats and thus exposes the substrate and ion-binding sites to the cytoplasm. The conformational change that connects the two states primarily involves the tilting of a 4-helix bundle composed of transmembrane helices 1, 2, 6, and 7. Switching the tilt angle of this bundle is essentially equivalent to switching the conformation of the two repeats. Extensive mutagenesis of SERT and accessibility measurements, using cysteine reagents, are accommodated by our model. These observations may be of relevance to other transporter families, many of which contain internal inverted repeats.

  19. Characterization of single phase copper selenide nanoparticles and their growth mechanism

    Science.gov (United States)

    Patidar, D.; Saxena, N. S.

    2012-03-01

    The high quality Cu3Se2 phase of copper selenide nanoparticles was synthesized through the solution-phase chemical reaction between copper and selenium. In this synthesis process, hydrazine hydrate acts as reducing agent whereas ethylene glycol controls the nucleation and growth of particles. An effort has been made to explain the growth mechanism to form copper selenide nanoparticles through the coordination of selenium to the Cu2+ complexes with OH groups of ethylene glycol. Result indicates the formation of Cu3Se2 single phase nanoparticles. The particles with the average particle size 25 nm are spherical in shape having tetragonal structure. The particles are well crystallized having 94% degree of crystallinity. An effort has also been made to determine the energy band gap of copper selenide nanoparticles through the absorption spectra.

  20. Bonding mechanism of ultrasonic wedge bonding of copper wire on Au/Ni/Cu substrate

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-hong; WANG Chun-qing; Y. Norman ZHOU

    2008-01-01

    The ultrasonic wedge bonding with d25 μm copper wire was achieved on Au/Ni plated Cu substrate at ambient temperature. Ultrasonic wedge bonding mechanism was investigated by using SEM/EDX, pull test, shear test and microhardness test. The results show that the thinning of the Au layer occurs directly below the center of the bonding tool with the bonding power increasing. The interdiffusion between copper wire and Au metallization during the wedge bonding is assumed negligible, and the wedge bonding is achieved by wear action induced by ultrasonic vibration. The ultrasonic power contributes to enhance the deformation of copper wire due to ultrasonic softening effect which is then followed by the strain hardening of the copper wedge bonding.

  1. A revised estimate of copper emissions from road transport in UNECE-Europe and its impact on predicted copper concentrations

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.; Hulskotte, J.H.J.; Visschedijk, A.J.H.; Schaap, M.

    2007-01-01

    Comparisons of measured and model-predicted atmospheric copper concentrations show a severe underestimation of the observed concentrations by the models. This underestimation may be (partly) due to underestimated emissions of copper to air. Since the phase out of asbestos brake lining material, the

  2. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  3. Knockdown of copper-transporting ATPase 1 (Atp7a) impairs iron flux in fully-differentiated rat (IEC-6) and human (Caco-2) intestinal epithelial cells.

    Science.gov (United States)

    Ha, Jung-Heun; Doguer, Caglar; Collins, James F

    2016-09-01

    Intestinal iron absorption is highly regulated since no mechanism for iron excretion exists. We previously demonstrated that expression of an intestinal copper transporter (Atp7a) increases in parallel with genes encoding iron transporters in the rat duodenal epithelium during iron deprivation (Am. J. Physiol.: Gastrointest. Liver Physiol., 2005, 288, G964-G971). This led us to postulate that Atp7a may influence intestinal iron flux. Therefore, to test the hypothesis that Atp7a is required for optimal iron transport, we silenced Atp7a in rat IEC-6 and human Caco-2 cells. Iron transport was subsequently quantified in fully-differentiated cells plated on collagen-coated, transwell inserts. Interestingly, (59)Fe uptake and efflux were impaired in both cell lines by Atp7a silencing. Concurrent changes in the expression of key iron transport-related genes were also noted in IEC-6 cells. Expression of Dmt1 (the iron importer), Dcytb (an apical membrane ferrireductase) and Fpn1 (the iron exporter) was decreased in Atp7a knockdown (KD) cells. Paradoxically, cell-surface ferrireductase activity increased (>5-fold) in Atp7a KD cells despite decreased Dcytb mRNA expression. Moreover, increased expression (>10-fold) of hephaestin (an iron oxidase involved in iron efflux) was associated with increased ferroxidase activity in KD cells. Increases in ferrireductase and ferroxidase activity may be compensatory responses to increase iron flux. In summary, in these reductionist models of the mammalian intestinal epithelium, Atp7a KD altered expression of iron transporters and impaired iron flux. Since Atp7a is a copper transporter, it is a logical supposition that perturbations in intracellular copper homeostasis underlie the noted biologic changes in these cell lines.

  4. Chemical roles on Cu-slurry interface during copper chemical mechanical planarization

    Science.gov (United States)

    Li, Jing; Liu, Yuhong; Pan, Yan; Lu, Xinchun

    2014-02-01

    In order to optimize the existing slurry for low down-pressure chemical mechanical polishing/planarization (CMP), copper CMP was conducted in H2O2 based slurries with benzotriazole (BTA) and glycine at different pH values. The film composition was investigated by the Nano Hardness Tester and XPS tests. Furthermore, the film structure forming on the copper surface at different pH values was investigated by adopting electrochemical impedance spectroscopy (EIS) technology. In the acidic slurry, discontinuous and porous BTA film covering the Cu/Cu2O surface enhanced the mechanical effect during Cu CMP process, resulted in highest CMP removal rate. In neutral slurry, the lowest CMP removal rate and static corrosion rate were resulted from compacted passivation film on the copper surface. In the alkaline slurry, the mechanical effect was limited by the rapid chemical dissolution. The results will benefit optimization of the slurry and operate conditions during low down-pressure CMP process.

  5. Mammary gland copper transport is stimulated by prolactin through alterations in Ctr1 and Atp7A localization.

    Science.gov (United States)

    Kelleher, Shannon L; Lönnerdal, Bo

    2006-10-01

    Milk copper (Cu) concentration declines and directly reflects the stage of lactation. Three Cu-specific transporters (Ctr1, Atp7A, Atp7B) have been identified in the mammary gland; however, the integrated role they play in milk Cu secretion is not understood. Whereas the regulation of milk composition by the lactogenic hormone prolactin (PRL) has been documented, the specific contribution of PRL to this process is largely unknown. Using the lactating rat as a model, we determined that the normal decline in milk Cu concentration parallels declining Cu availability to the mammary gland and is associated with decreased Atp7B protein levels. Mammary gland Cu transport was highest during early lactation and was stimulated by suckling and hyperprolactinemia, which was associated with Ctr1 and Atp7A localization at the plasma membrane. Using cultured mammary epithelial cells (HC11), we demonstrated that Ctr1 stains in association with intracellular vesicles that partially colocalize with transferrin receptor (recycling endosome marker). Atp7A was primarily colocalized with mannose 6-phosphate receptor (M6PR; late endosome marker), whereas Atp7B was partially colocalized with protein disulfide isomerase (endoplasmic reticulum marker), TGN38 (trans-Golgi network marker) and M6PR. Prolactin stimulated Cu transport as a result of increased Ctr1 and Atp7A abundance at the plasma membrane. Although the molecular mechanisms responsible for these posttranslational changes are not understood, transient changes in prolactin signaling play a role in the regulation of mammary gland Cu secretion during lactation.

  6. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ying [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Bradley, Donal D. C.; Anthopoulos, Thomas D., E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Vourlias, George; Patsalas, Panos A. [Department of Physics, Laboratory of Applied Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2015-06-15

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  7. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    Science.gov (United States)

    Peng, Ying; Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Vourlias, George; Patsalas, Panos A.; Bradley, Donal D. C.; He, Zhiqun; Anthopoulos, Thomas D.

    2015-06-01

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ˜5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  8. Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins

    Directory of Open Access Journals (Sweden)

    Sergi Puig

    2014-01-01

    Full Text Available Copper (Cu is an essential micronutrient for all eukaryotes because it participates as a redox active cofactor in multiple biological processes, including mitochondrial respiration, photosynthesis, oxidative stress protection, and iron (Fe transport. In eukaryotic cells, Cu transport toward the cytoplasm is mediated by the conserved CTR/COPT family of high-affinity Cu transport proteins. This outlook paper reviews the contribution of our research group to the characterization of the function played by the Arabidopsis thaliana COPT1–6 family of proteins in plant Cu homeostasis. Our studies indicate that the different tissue specificity, Cu-regulated expression, and subcellular localization dictate COPT-specialized contribution to plant Cu transport and distribution. By characterizing lack-of-function Arabidopsis mutant lines, we conclude that COPT1 mediates root Cu acquisition, COPT6 facilitates shoot Cu distribution, and COPT5 mobilizes Cu from storage organelles. Furthermore, our work with copt2 mutant and COPT-overexpressing plants has also uncovered Cu connections with Fe homeostasis and the circadian clock, respectively. Future studies on the interaction between COPT transporters and other components of the Cu homeostasis network will improve our knowledge of plant Cu acquisition, distribution, regulation, and utilization by Cu-proteins.

  9. A comparative study of interatomic potentials for copper and aluminum gas phase sputter atom transport simulations

    CERN Document Server

    Kuwata, K T; Doyle, J R

    2003-01-01

    A comparative study of interatomic potential models for use in gas phase sputter atom transport simulations is presented. Quantum chemical interatomic potentials for argon-copper and argon-aluminum are calculated using Kohn-Sham density functional theory utilizing the PW91 functional. These potentials (PW91) are compared to the commonly used Born-Mayer potentials calculated by Abrahamson [Phys. Rev. 178 (1969) 76] using the Thomas-Fermi-Dirac model (TFD) and the screened Coulomb potentials derived from the 'universal' form calculated by Ziegler, Biersack and Littmark (ZBL). Monte Carlo simulations of gas phase sputter atom transport were performed to determine the average energy of atoms arriving at the substrate versus pressure for the three potential models. Overall, the ZBL potential gave results in much better agreement with the PW91 potential than the TFD potential. A characteristic thermalization pressure-distance product of approx 0.11 mTorr cm was found for both copper and aluminum using the PW91 pote...

  10. The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis

    Directory of Open Access Journals (Sweden)

    Christopher J. Hlynialuk

    2015-02-01

    Full Text Available Human SCO1 fulfills essential roles in cytochrome c oxidase (COX assembly and the regulation of copper (Cu homeostasis, yet it remains unclear why pathogenic mutations in this gene cause such clinically heterogeneous forms of disease. Here, we establish a Sco1 mouse model of human disease and show that ablation of Sco1 expression in the liver is lethal owing to severe COX and Cu deficiencies. We further demonstrate that the Cu deficiency is explained by a functional connection between SCO1 and CTR1, the high-affinity transporter that imports Cu into the cell. CTR1 is rapidly degraded in the absence of SCO1 protein, and we show that its levels are restored in Sco1−/− mouse embryonic fibroblasts upon inhibition of the proteasome. These data suggest that mitochondrial signaling through SCO1 provides a post-translational mechanism to regulate CTR1-dependent Cu import into the cell, and they further underpin the importance of mitochondria in cellular Cu homeostasis.

  11. Spectroelectrochemical and computational studies on the mechanism of hypoxia selectivity of copper radiopharmaceuticals.

    Science.gov (United States)

    Holland, Jason P; Barnard, Peter J; Collison, David; Dilworth, Jonathan R; Edge, Ruth; Green, Jennifer C; McInnes, Eric J L

    2008-01-01

    Detailed chemical, spectroelectrochemical and computational studies have been used to investigate the mechanism of hypoxia selectivity of a range of copper radiopharmaceuticals. A revised mechanism involving a delicate balance between cellular uptake, intracellular reduction, reoxidation, protonation and ligand dissociation is proposed. This mechanism accounts for observed differences in the reported cellular uptake and washout of related copper bis(thiosemicarbazonato) complexes. Three copper and zinc complexes have been characterised by X-ray crystallography and the redox chemistry of a series of copper complexes has been investigated by using electronic absorption and EPR spectroelectrochemistry. Time-dependent density functional theory (TD-DFT) calculations have also been used to probe the electronic structures of intermediate species and assign the electronic absorption spectra. DFT calculations also show that one-electron oxidation is ligand-based, leading to the formation of cationic triplet species. In the absence of protons, metal-centred one-electron reduction gives the reduced anionic copper(I) species, [CuIATSM](-), and for the first time it is shown that molecular oxygen can reoxidise this anion to give the neutral, lipophilic parent complexes, which can wash out of cells. The electrochemistry is pH dependent and in the presence of stronger acids both chemical and electrochemical reduction leads to quantitative and rapid dissociation of copper(I) ions from the mono- or diprotonated complexes, [CuIATSMH] and [Cu(I)ATSMH2]+. In addition, a range of protonated intermediate species have been identified at lower acid concentrations. The one-electron reduction potential, rate of reoxidation of the copper(I) anionic species and ease of protonation are dependent on the structure of the ligand, which also governs their observed behaviour in vivo.

  12. The influence of mechanical activation of chalcopyrite on the selective leaching of copper by sulphuric acid

    Directory of Open Access Journals (Sweden)

    Achimovičová, M.

    2006-01-01

    Full Text Available In this paper chalcopyrite, CuFeS2, has been selective leached by H2SO4 as leaching agent (170 g/dm3 in procedure of hydrometallurgical production of copper. Mechanical activation of the chalcopyrite resulted in mechanochemical surface oxidation as well as in the mineral surface and bulk disordering. Furthermore, the formation of agglomerates during grinding was also occured. Surface changes of the samples using infrared spectroscopy and scanning electron microscopy methods were investigated before and after leaching. The leaching rate, specific surface area, structural disorder as well as copper extraction increased with the mechanical activation of mineral.

  13. Copper content in lake sediments as a tracer of urban emissions: evaluation through a source-transport-storage model.

    Science.gov (United States)

    Cui, Qing; Brandt, Nils; Sinha, Rajib; Malmström, Maria E

    2010-06-01

    A coupled source-transport-storage model was developed to determine the origin and path of copper from materials/goods in use in the urban drainage area and the fate of copper in local recipient lakes. The model was applied and tested using five small lakes in Stockholm, Sweden. In the case of the polluted lakes Råcksta Träsk, Trekanten and Långsjön, the source strengths of copper identified by the model were found to be well linked with independently observed copper contents in the lake sediments through the model. The model results also showed that traffic emissions, especially from brake linings, dominated the total load in all five cases. Sequential sedimentation and burial proved to be the most important fate processes of copper in all lakes, except Råcksta Träsk, where outflow dominated. The model indicated that the sediment copper content can be used as a tracer of the urban diffuse copper source strength, but that the response to changes in source strength is fairly slow (decades). Major uncertainties in the source model were related to management of stormwater in the urban area, the rate of wear of brake linings and weathering of copper roofs. The uncertainty of the coupled model is in addition affected mainly by parameters quantifying the sedimentation and bury processes, such as particulate fraction, settling velocity of particles, and sedimentation rate. As a demonstration example, we used the model to predict the response of the sediment copper level to a decrease in the copper load from the urban catchment in one of the case study lakes.

  14. Elevated glutathione levels confer cellular sensitization to cisplatin toxicity by up-regulation of copper transporter hCtr1.

    Science.gov (United States)

    Chen, Helen H W; Song, Im-Sook; Hossain, Anwar; Choi, Min-Koo; Yamane, Yoshiaki; Liang, Zheng D; Lu, Jia; Wu, Lily Y-H; Siddik, Zahid H; Klomp, Leo W J; Savaraj, Niramol; Kuo, Macus Tien

    2008-09-01

    Previous studies have demonstrated that treating cultured cells with cisplatin (CDDP) up-regulated the expression of glutathione (GSH) and its de novo rate-limiting enzyme glutamate-cysteine ligase (GCL), which consists of a catalytic (GCLC) and a modifier (GCLM) subunit. It has also been shown that many CDDP-resistant cell lines exhibit high levels of GCLC/GCLM and GSH. Because the GSH system is the major intracellular regulator of redox conditions that serve as an important detoxification cytoprotector, these results have been taken into consideration that elevated levels of GCL/GSH are responsible for the CDDP resistance. In contrast to this context, we demonstrated here that overexpression of GSH by transfection with an expression plasmid containing the GCLC cDNA conferred sensitization to CDDP through up-regulation of human copper transporter (hCtr) 1, which is also a transporter for CDDP. Depleting GSH levels in these transfected cells reversed CDDP sensitivity with concomitant reduction of hCtr1 expression. Although rates of copper transport were also up-regulated in the transfected cells, these cells exhibited biochemical signature of copper deficiency, suggesting that GSH functions as an intracellular copper-chelator and that overexpression of GSH can alter copper metabolism. More importantly, our results reveal a new role of GSH in the regulation of CDDP sensitivity. Overproduction of GSH depletes the bioavailable copper pool, leading to up-regulation of hCtr1 and sensitization of CDDP transport and cell killing. These findings also have important implications in that modulation of the intracellular copper pool may be a novel strategy for improving chemotherapeutic efficacy of platinum-based antitumor agents.

  15. High Strain-Rate Mechanical Behaviour of a Copper Matrix Composite for Nuclear Applications

    CERN Document Server

    Peroni, L

    2012-01-01

    Aim of this work is the investigation of mechanical behaviour of an alumina dispersion strengthened copper, known by the trade name GLIDCOP®, subjected to dynamic loads: it is a composite material with a copper matrix strengthened with aluminium oxide ceramic particles. Since the particle content is quite small the material keeps the OFE copper physical properties, such as thermal and electrical conductivity, but with a higher yield strength, like a mild-carbon steel. Besides, with the addition of aluminium oxide, the good mechanical properties are retained also at high temperatures and the resistance to thermal softening is increased: the second phase blocks the dislocation movement preventing the grain growth. Thanks to these properties GLIDCOP® finds several applications in particle accelerator technologies, where problems of thermal management, combined with structural requirements, play a key role. Currently, it is used for the construction of structural and functional parts of the particle beam collim...

  16. Deformation mechanism of kink-step distorted coherent twin boundaries in copper nanowire

    Directory of Open Access Journals (Sweden)

    Bobin Xing

    2017-01-01

    Full Text Available In the construction of nanotwinned (NT copper, inherent kink-like steps are formed on growth twin boundaries (TBs. Such imperfections in TBs play a crucial role in the yielding mechanism and plastic deformation of NT copper. Here, we used the molecular dynamic (MD method to examine the influence of kink-step characteristics in depth, including kink density and kink-step height, on mechanical behavior of copper nanowire (NW in uniaxial tension. The results showed that the kink-step, a stress-concentrated region, is preferential in nucleating and emitting stress-induced partial dislocations. Mixed dislocation of hard mode I and II and hard mode II dislocation were nucleated from kink-step and surface atoms, respectively. Kink-step height and kink density substantially affected the yielding mechanism and plastic behavior, with the yielding stress functional-related to kink-step height. However, intense kink density (1 kink per 4.4 nm encourages dislocation nucleation at kink-steps without any significant decline in tensile stress. Defective nanowires with low kink-step height or high kink density offered minimal resistance to kink migration, which has been identified as one of the primary mechanisms of plastic deformation. Defective NWs with refined TB spacing were also studied. A strain-hardening effect due to the refined TB spacing and dislocation pinning was observed for defective NWs. This study has implications for designing NT copper to obtain optimum mechanical performance.

  17. IMPROVING THE MECHANICAL PROPERTIES OF COPPER ALLOYS BY THERMO-MECHANICAL PROCESSING

    Institute of Scientific and Technical Information of China (English)

    M.C.Somani; L.P.Karjalainen

    2004-01-01

    Systematic physical simulation of thermo-mechanical processing routes has been applied on a Gleeble 1500 simulator to four copper alloys(mass %)Cu-0.57Co-0.32Si,Cu-0.55Cr-0.065P,Cu-0.22Zr-0.035Si and Cu-1.01Ni-0.43Si aimed at clarifying the influences of processing conditions on their final properties,strength and electrical conductivity.Flow curves were determined over wide temperature and strain rate ranges.Hardness was used as a measure of the strength level achieved.High hardness was obtained as using equal amounts(strains 0.5)of cold deformation before and after the precipitation annealing stage.The maximum values achieved for the Cu-Co-Si,Cu-Cr-P,Cu-Zr-Si and Cu-Ni-Si alloys were 190,165,178 and 193 HV5,respectively.A thermo-mechanical schedule involving the hot deformation-ageing-cold deformation stages showed even better results for the Cu-Zr-Si alloy.Consequently,the processing routes were designed based on simulation test results and wires of 5 and 2mm in diameters have been successfully processed in the industrial scale.

  18. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells.

    Directory of Open Access Journals (Sweden)

    Danny Ramos

    Full Text Available Ceruloplasmin, the main copper binding protein in blood plasma, has been of particular interest for its role in efflux of iron from cells, but has additional functions. Here we tested the hypothesis that it releases its copper for cell uptake by interacting with a cell surface reductase and transporters, producing apoceruloplasmin. Uptake and transepithelial transport of copper from ceruloplasmin was demonstrated with mammary epithelial cell monolayers (PMC42 with tight junctions grown in bicameral chambers, and purified human (64Cu-labeled ceruloplasmin secreted by HepG2 cells. Monolayers took up virtually all the (64Cu over 16h and secreted half into the apical (milk fluid. This was partly inhibited by Ag(I. The (64Cu in ceruloplasmin purified from plasma of (64Cu-injected mice accumulated linearly in mouse embryonic fibroblasts (MEFs over 3-6h. Rates were somewhat higher in Ctr1+/+ versus Ctr1-/- cells, and 3-fold lower at 2 °C. The ceruloplasmin-derived (64Cu could not be removed by extensive washing or trypsin treatment, and most was recovered in the cytosol. Actual cell copper (determined by furnace atomic absorption increased markedly upon 24h exposure to holoceruloplasmin. This was accompanied by a conversion of holo to apoceruloplasmin in the culture medium and did not occur during incubation in the absence of cells. Four different endocytosis inhibitors failed to prevent 64Cu uptake from ceruloplasmin. High concentrations of non-radioactive Cu(II- or Fe(III-NTA (substrates for cell surface reductases, or Cu(I-NTA (to compete for transporter uptake almost eliminated uptake of (64Cu from ceruloplasmin. MEFs had cell surface reductase activity and expressed Steap 2 (but not Steaps 3 and 4 or dCytB. However, six-day siRNA treatment was insufficient to reduce activity or uptake. We conclude that ceruloplasmin is a circulating copper transport protein that may interact with Steap2 on the cell surface, forming apoceruloplasmin, and Cu(I that

  19. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.

    Science.gov (United States)

    Sánchez-Marín, Paula; Fortin, Claude; Campbell, Peter G C

    2014-02-01

    The unicellular alga Chlamydomonas reinhardtii has a very high rate of lead (Pb) internalization and is known to be highly sensitive to dissolved Pb. However, the transport pathway that this metal uses to cross cellular membranes in microalgae is still unknown. To identify the Pb(2+) transport pathway in C. reinhartdii, we performed several competition experiments with environmentally relevant concentrations of Pb(2+) (~10 nM) and a variety of divalent cations. Among the essential trace metals tested, cobalt, manganese, nickel and zinc had no effect on Pb internalization. A greater than tenfold increase in the concentrations of the major ions calcium and magnesium led to a slight decrease (~34 %) in short-term Pb internalization by the algae. Copper (Cu) was even more effective: at a Cu concentration 50 times higher than that of Pb, Pb internalization by the algae decreased by 87 %. Pre-exposure of the algae to Cu showed that the effect was not due to a physiological effect of Cu on the algae, but rather to competition for the same transporter. A reciprocal effect of Pb on Cu internalization was also observed. These results suggest that Cu and Pb share a common transport pathway in C. reinhardtii at environmentally relevant metal concentrations.

  20. Regulation of Copper Transport Crossing Brain Barrier Systems by Cu-ATPases: Effect of Manganese Exposure

    Science.gov (United States)

    Fu, Xue; Zhang, Yanshu; Jiang, Wendy; Monnot, Andrew Donald; Bates, Christopher Alexander; Zheng, Wei

    2014-01-01

    Regulation of cellular copper (Cu) homeostasis involves Cu-transporting ATPases (Cu-ATPases), i.e., ATP7A and ATP7B. The question as to how these Cu-ATPases in brain barrier systems transport Cu, i.e., toward brain parenchyma, cerebrospinal fluid (CSF), or blood, remained unanswered. This study was designed to characterize roles of Cu-ATPases in regulating Cu transport at the blood-brain barrier (BBB) and blood-CSF barrier (BCB) and to investigate how exposure to toxic manganese (Mn) altered the function of Cu-ATPases, thereby contributing to the etiology of Mn-induced parkinsonian disorder. Studies by quantitative real-time RT-PCR (qPCR), Western blot, and immunocytochemistry revealed that both Cu-ATPases expressed abundantly in BBB and BCB. Transport kinetic studies by in situ brain infusion and ventriculo-cisternal (VC) perfusion in Sprague Dawley rat suggested that the BBB was a major site for Cu entry into brain, whereas the BCB was a predominant route for Cu efflux from the CSF to blood. Confocal evidence showed that the presence of excess Cu or Mn in the choroid plexus cells led to ATP7A relocating toward the apical microvilli facing the CSF, but ATP7B toward the basolateral membrane facing blood. Mn exposure inhibited the production of both Cu-ATPases. Collectively, these data suggest that Cu is transported by the BBB from the blood to brain, which is mediated by ATP7A in brain capillary. By diffusion, Cu ions move from the interstitial fluid into the CSF, where they are taken up by the BCB. Within the choroidal epithelial cells, Cu ions are transported by ATP7B back to the blood. Mn exposure alters these processes, leading to Cu dyshomeostasis-associated neuronal injury. PMID:24614235

  1. Marked changes in electron transport through the blue copper protein azurin in the solid state upon deuteration

    CERN Document Server

    Amdursky, Nadav; Sheves, Mordechai; Cahen, David

    2012-01-01

    Measuring electron transport (ETp) across proteins in the solid-state offers a way to study electron transfer (ET) mechanism(s) that minimizes solvation effects on the process. Solid state ETp is sensitive to any static (conformational) or dynamic (vibrational) changes in the protein. Our macroscopic measurement technique extends the use of ETp meas-urements down to low temperatures and the concomitant lower current densities, because the larger area still yields measurable currents. Thus, we reported previously a surprising lack of temperature-dependence for ETp via the blue copper protein azurin (Az), from 80K till denaturation, while ETp via apo-(Cu-free) Az was found to be temperature de-pendent \\geq 200K. H/D substitution (deuteration) can provide a potentially powerful means to unravel factors that affect the ETp mechanism at a molecular level. Therefore, we measured and report here the kinetic deuterium isotope effect (KIE) on ETp through holo-Az as a function of temperature (30-340K). We find that deu...

  2. The shielding against radiation produced by powder metallurgy with tungsten copper alloy applied on transport equipment for radio-pharmaceutical products

    Energy Technology Data Exchange (ETDEWEB)

    Cione, Francisco C.; Sene, Frank F.; Souza, Armando C. de; Betini, Evandro G.; Rossi, Jesualdo L., E-mail: fceoni@hotmail.com, E-mail: ffsene@hotmail.com, E-mail: armandocirilo@yahoo.com, E-mail: evandrobetini@gmail.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rizzuto, Marcia A., E-mail: marizzutto@if.usp.br [Universidade de Sao Paulo (IF/USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    Safety is mandatory on medicine radiopharmaceutical transportation and dependent on radiation shielding material. The focus of the present work is to minimize the use of harmful materials as lead and depleted uranium usually used in packages transportation. The tungsten-copper composite obtained by powder metallurgy (PM) is non-toxic. In powder metallurgy the density and the porosity of the compacted parts depends basically upon particle size distribution of each component, mixture, compacting pressure and sintering temperature cycle. The tungsten-copper composite, when used for shielding charged particles, X-rays, gamma photons or other photons of lower energy require proper interpretation of the radiation transport phenomena. The radioactive energy reduction varies according to the porosity and density of the materials used as shielding. The main factor for radiation attenuation is the cross section value for tungsten. The motivation research factor is an optimization of the tungsten and cooper composition in order to achieve the best linear absorption coefficient given by equation I{sub (x)} = I{sub 0}e{sup (-ux)}. Experiments were conducted to quantify the effective radiation shielding properties of tungsten-copper composite produced by PM, varying the cooper amount in the composite. The studied compositions were 15%, 20% and 25% copper in mass. The Compaction pressure was 270 MPa and the sintering atmosphere was in 1.1 atm in N{sub 2}+H{sub 2}. The sintering temperature was 980 deg C for 2 h. The linear absorption coefficient factor was similar either for the green and the sintered compacts, due the amount of porosity did not affect the radiation attenuation. Thus the sintered was meant for size reduction and mechanical properties enhancement. (author)

  3. SIMULATIONS OF MECHANICAL BEHAVIOR OF POLYCRYSTALLINE COPPER WITH NANO-TWINS

    Institute of Scientific and Technical Information of China (English)

    Bo Wu; Yueguang Wei

    2008-01-01

    Mechanical behavior and microstructure evolution of polycrystalline copper with nano-twins were investigated in the present work by finite element simulations.The fracture of grain boundaries axe described by a cohesive interface constitutive model based on the strain gradient plasticity theory.A systematic study of the strength and ductility for different grain sizes and twin lamellae distributions is performed.The results show that the material strength and ductility strongly depend on the grain size and the distribution of twin lamellae microstructures in the polycrystalline copper.

  4. Tensile mechanical properties of nano-layered copper/graphene composite

    Science.gov (United States)

    He, Yezeng; Huang, Feng; Li, Hui; Sui, Yanwei; Wei, Fuxiang; Meng, Qingkun; Yang, Weiming; Qi, Jiqiu

    2017-03-01

    The solidification of two-dimensional liquid copper confined to graphene layers has been studied using molecular dynamics simulations. The results clearly show that the liquid copper undergoes an obvious transition to a crystal film with the decrease of temperature, accompanied by dramatic change in potential energy and radial distribution function. Moreover, five different simulation models are used to investigate the effects of the number of graphene layers on the mechanical properties of the composites. It is found that the strength and plasticity of the composites have been improved significantly.

  5. Molecular modulation of the copper and cisplatin transport function of CTR1 and its interaction with IRS-4

    Science.gov (United States)

    Tsai, Cheng-Yu; Larson, Christopher A.; Safaei, Roohangiz

    2015-01-01

    The copper influx transporter CTR1 is also a major influx transporter for cisplatin (cDDP) in tumor cells. It influences the cytotoxicity of cDDP both in vivo and in vitro. Whereas Cu triggers internalization of CTR1 from the plasma membrane, cDDP does not. To investigate the mechanisms of these effects, myc-tagged forms of wild type hCTR1 and variants in which Y103 was converted to alanine, C189 was converted to serine, or the K178/K179 dilysine motif was converted to alanines were re-expressed in mouse embryo cells in which both alleles of CTR1 had been knocked out and also in HEK293T cells. The Y103A mutation and to a lesser extent the C189S mutation reduced internalization of CTR1 induced by Cu while the K178A/K179A had little effect. Both Y103 and C189 were required for Cu and cDDP transport whereas the K178/K179 motif was not. While Y103 lies in an YXXM motif that, when phosphorylated, is a potential docking site for phosphatidylinositol 3-kinase and other proteins involved in endocytosis, Western blot analysis of immunoprecipitated myc-CTR1, and proteomic analysis of peptides derived from CTR1, failed to identify any basal or Cu-induced phosphorylation. However, proteomic analysis did identify an interaction of CTR1 with IRS-4 and this was confirmed by co-immunoprecipitation from HEK cells expressing either FLAG-CTR1 or myc-CTR1. The interaction was greater in the Y103A-expressing cells. We conclude that Y103 is required for the internalization of hCTR1 in response to Cu, that this occurs by a mechanism other than phosphorylation and that mutation of Y103 modulates the interaction with IRS-4. PMID:24967972

  6. EGCG Enhances Cisplatin Sensitivity by Regulating Expression of the Copper and Cisplatin Influx Transporter CTR1 in Ovary Cancer.

    Directory of Open Access Journals (Sweden)

    Xuemin Wang

    Full Text Available Cisplatin is one of the first-line platinum-based chemotherapeutic agents for treatment of many types of cancer, including ovary cancer. CTR1 (copper transporter 1, a transmembrane solute carrier transporter, has previously been shown to increase the cellular uptake and sensitivity of cisplatin. It is hypothesized that increased CTR1 expression would enhance the sensitivity of cancer cells to cisplatin (cDDP. The present study demonstrates for the first time that (--epigallocatechin-3-gallate (EGCG, a major polyphenol from green tea, can enhance CTR1 mRNA and protein expression in ovarian cancer cells and xenograft mice. EGCG inhibits the rapid degradation of CTR1 induced by cDDP. The combination of EGCG and cDDP increases the accumulation of cDDP and DNA-Pt adducts, and subsequently enhances the sensitivity of ovarian cancer SKOV3 and OVCAR3 cells to the chemotherapeutic agent. In the OVCAR3 ovarian cancer xenograft nude mice model, the combination of the lower concentration of cDDP and EGCG strongly repressed the tumor growth and exhibited protective effect on the nephrotoxicity induced by cisplatin. Overall, these findings uncover a novel chemotherapy mechanism of EGCG as an adjuvant for the treatment of ovarian cancer.

  7. Thermal transport properties of multiphase sintered metals microstructures. The copper-tungsten system: Experiments and modeling

    Science.gov (United States)

    Gheribi, Aïmen E.; Autissier, Emmanuel; Gardarein, Jean-Laurent; Richou, Marianne

    2016-04-01

    The thermal diffusivity of Cu-W sintered alloys microstructures is measured at room temperature at different compositions, using rear face flash experiments. The samples are synthesized with the Spark Plasma Sintering technique. The resulting microstructures are slightly porous and consist of angular nanoscale grains of tungsten with medium sphericity in a copper matrix. The tungsten particles are at the nanoscale with an average grain size of 250 nm in contrast to the copper matrix for which the average grain size lies in the range 20 μm-30 μm; this is large enough to avoid the grains boundary effect upon the thermal transport. The overall porosity of the microstructures lies within the range: 6 %≤P ≤12 % . Along with the experimental work, a predictive model describing the effective thermal conductivity of multiphasic macrostructures is proposed in order to explain the obtained experimental results. The model was developed based only on physical considerations and contains no empirical parameters; it takes into account the type of microstructure and the microstructure parameters: porosity, grain shape, grain size, and grain size distribution. The agreement between the experiments and the model is found to be excellent.

  8. LEACHING MECHANISM OF CHROMATED COPPER ARSENATE (CCA WOOD PRESERVATIVE

    Directory of Open Access Journals (Sweden)

    Engin Derya Gezer

    2004-04-01

    Full Text Available In recent years, the increase demand on wooden raw materials and destroyed forest area (i.e clear cutting led to pressure on forest resources. Thus, Wood used in outdoor applications should be treated with preservatives to extent service life. in our country, although there is no regulations or any standards to be obeyed to preserve wood materials, averagely, 400.000 m3 /per year utility poles manufactured from softwood species and 30.000 m3/per year rail road slippers produced from either hardwood species or softwood species have been impregnated with wood preservatives. Chromated copper arsenic (CCA is commonly used wood preservatives to preserve utility poles in our country. According to data taken from Turkish Electricity Transmission Company (TEDAS 208.000 utility poles are used in Trabzon city area, 180.000 utility poles are in Rize city area, 121.000 utility poles are used in Artvin. Roughly 17.000 utility poles are replaced every year in three cities. Determining leaching factors of treated wood is important for explaining the short service life of utility poles treated with CCA used in Black Sea area. Factors such as preservative formulation, fixation temperature, post-treatment handling, wood dimensions, leaching media, pH, salinity and temperature have been shown to effect leaching of CCA treated wood.

  9. Insight in the transport behavior of copper glycinate complexes through the porcine gastrointestinal membrane using an Ussing chamber assisted by mass spectrometry analysis.

    Science.gov (United States)

    Tastet, Laure; Schaumlöffel, Dirk; Yiannikouris, Alexandros; Power, Ronan; Lobinski, Ryszard

    2010-04-01

    An Ussing chamber study was conducted in order to investigate the transport behavior of copper glycinate complexes through a porcine gastrointestinal membrane. Organic copper complexes such as copper tri- and tetraglycinates (GGG-Cu(II) and GGGG-Cu(II)) were used as model system. In a novel analytical approach the Ussing chamber was combined with mass spectrometry. Therefore, relevant analytical methods based on MALDI-MS and a coupling of capillary electrophoresis to ICP-MS and ESI-MS were developed for the determination of copper complexes in the mucosal and serosal half-chambers. It was found that 86.1+/-8.5% of copper triglycinate but only 20.8+/-9.9% of copper tetraglycinate penetrated the digestive membrane without modification. Furthermore, inorganic copper species were not detected but a new copper complex (m/z 442) was found to be formed in both compartments of the Ussing chamber. 2009 Elsevier GmbH. All rights reserved.

  10. Mechanism of ochratoxin A transport in kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sokol, P.P.; Ripich, G.; Holohan, P.D.; Ross, C.R.

    1988-08-01

    The effect of the fungal metabolite (mycotoxin) Ochratoxin A (OTA) on the transport of p-amino(/sup 3/H)hippurate (PAH), a prototypic organic anion, was examined in renal brush border (BBMV) and basolateral membrane vesicles (BLMV). OTA was as effective an inhibitor of PAH uptake in both membranes as probenecid. The dose response curves for OTA in BBMV and BLMV gave IC50 values of 20 +/- 6 and 32 +/- 7 microM, respectively. The effect was specific since the transport of the organic cation N1-methylnicotinamide was not affected. The phenomenon of counterflow was studied to establish that OTA is translocated. OTA produced trans stimulation of PAH transport in both BBMV and BLMV, demonstrating that OTA is transported across both these membranes. The data suggest that OTA interacts with the PAH transport system in both BBMV and BLMV. We conclude that OTA transport in the kidney is mediated via the renal organic anion transport system.

  11. Tribological, Thermal, and Kinetic Characterization of 300-mm Copper Chemical Mechanical Planarization Process

    Science.gov (United States)

    Jiao, Yubo; Adi Sampurno, Yasa; Zhuang, Yun; Wei, Xiaomin; Meled, Anand; Philipossian, Ara

    2011-05-01

    In this study, the tribological, thermal, and kinetic attributes of 300-mm copper chemical mechanical planarization were characterized for two different pads. The coefficient of friction (COF) ranged from 0.39 to 0.59 for the D100 pad, indicating that boundary lubrication was the dominant tribological mechanism. In comparison, COF decreased sharply from 0.55 to 0.03 for the IC1000 pad, indicating that the tribological mechanism transitioned rapidly from boundary lubrication to partial lubrication. Consequently, the D100 pad exhibited higher pad temperatures and removal rates than the IC1000 pad. A two-step modified Langmuir-Hinshelwood model was used to simulate copper removal rates as well as chemical and mechanical rate constants. The simulated copper removal rates agreed very well with experimental data and the model successfully captured the non-Prestonian behavior. The simulated chemical rate to mechanical rate constant ratios indicated that the IC1000 pad generally produced a more mechanically controlled removal mechanism than the D100 pad.

  12. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1.

    Science.gov (United States)

    Pushie, M Jake; Shaw, Katharine; Franz, Katherine J; Shearer, Jason; Haas, Kathryn L

    2015-09-08

    Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.

  13. Copper corrosion mechanism in the presence of formic acid vapor for short exposure times

    Energy Technology Data Exchange (ETDEWEB)

    Bastidas, J.M.; Lopez-Delgado, A.; Cano, E.; Polo, J.L.; Lopez, F.A.

    2000-03-01

    The rate of copper corrosion originated by the action of formic acid vapors at 100% relative humidity was studied. Five formic vapor concentration levels (10, 50, 100, 200, and 300 ppm) were used. A copper corrosion rate of up to 1,300 mg/m{sup 2} d was measured for a period of 21 days using a gravimetric method. The patina layers were characterized using cathodic reduction, X-ray powder diffraction. Fourier transform infrared spectrometry, and scanning electron microscopy techniques. Some of the components identified in the corrosion-product layers were cuprite (Cu{sub 2}O), cupric hydroxide hydrate [Cu(OH){sub 2}{sm_bullet}H{sub 2}O], and copper formate hydrate [Cu(HCOO){sub 2}{sm_bullet}4H{sub 2}O]. The latter was formed by both cupric hydroxide and formic acid-cuprous ion complex mechanisms.

  14. Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review.

    Science.gov (United States)

    Ingle, Avinash P; Duran, Nelson; Rai, Mahendra

    2014-02-01

    Nanotechnology is an emerging branch of science, which has potential to solve many problems in different fields. The union of nanotechnology with other fields of sciences including physics, chemistry, and biology has brought the concept of synthesis of nanoparticles from their respective metals. Till date, many types of nanoparticles have been synthesized and being used in different fields for various applications. Moreover, copper nanoparticles attract biologists because of their significant and broad-spectrum bioactivity. Due to the large surface area to volume ratio, copper nanoparticles have been used as potential antimicrobial agent in many biomedical applications. But the excess use of any metal nanoparticles increase the chance of toxicity to humans, other living beings, and environment. In this article, we have critically reviewed the bioactivities and cytotoxicity of copper nanoparticles. We have also focused on possible mechanism involved in its interaction with microbes.

  15. Diethyldithiocarbamate complex with copper: the mechanism of action in cancer cells.

    Science.gov (United States)

    Skrott, Zdenek; Cvek, Boris

    2012-10-01

    The idea of "repurposing" of existing drugs provides an effective way to develop and identify new therapies. Disulfiram (Antabuse), a drug commonly used for the treatment of alcoholism, shows promising anticancer activity in both preclinical and clinical studies. In the human body, disulfiram is rapidly converted to its reduced metabolite, diethyldithiocarbamate. If copper ions are available, a bis(diethyldithiocarbamate)-copper(II) complex is formed. Disulfiram's selective anticancer activity is attributed to the copper(II) complex's ability to inhibit the cellular proteasome. It is assumed that the complex inhibits the proteasome by a mechanism that is distinct to the clinically used drug bortezomib, targeting the 19S rather than the 20S proteasome. This difference could be explained by inhibition of the JAMM domain of the POH1 subunit within the lid of the 19S proteasome.

  16. Fate and Transport of Elemental Copper (Cu0) Nanoparticles through Saturated Porous Media in the Presence of Organic Materials

    Science.gov (United States)

    Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu0) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic...

  17. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular......-dynamics simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  18. Tuning carrier mobility without spin transport degrading in copper-phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, S. W.; Wang, P.; Chen, B. B.; Zhou, Y. [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Ding, H. F., E-mail: hfding@nju.edu.cn, E-mail: dwu@nju.edu.cn; Wu, D., E-mail: hfding@nju.edu.cn, E-mail: dwu@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 22 Hankou Road, Nanjing 210093 (China)

    2015-07-27

    We demonstrate more than one order of magnitude of carrier mobility tuning for the copper-phthalocyanine (CuPc) without spin transport degrading in organic spin valve devices. Depending on the preparation conditions, organic spin valves with the CuPc film mobility of 5.78 × 10{sup −3} and 1.11 × 10{sup −4} cm{sup 2}/V s are obtained for polycrystalline and amorphous CuPc, respectively. Strikingly, the spin diffusion lengths are almost the same regardless of their mobilities that are ∼50 times different, which is in sharp contrast with previous prediction. These findings directly support that the spin relaxation in CuPc is dominated by the spin-orbit coupling.

  19. Experimental and Numerical Analysis of An Inhibitor-Containing Slurry for Copper Chemical Mechanical Planarization

    Science.gov (United States)

    Zhuang, Yun; Li, Zhonglin; Shimazu, Yoshitomo; Uotani, Nobuo; Borucki, Leonard; Philipossian, Ara

    2005-01-01

    A slurry containing Benzotriazole (BTA) as the inhibitor was analyzed in terms of its frictional, thermal and kinetic attributes for copper CMP applications. The frictional analysis indicated that ‘boundary lubrication’ was the dominant tribological mechanism. Due to the presence of the inhibitor in the slurry, copper removal rate exhibited a highly non-Prestonian behavior. Based on the measured coefficient of friction (\\mathit{COF}) and pad temperature data, a proven thermal model was used to predict wafer temperature. The Preston Equation was used to describe the polishing rate when p× V was lower than 11,000 Pa\\cdotm/s; while a modified Langmuir-Hinshelwood kinetic model was used to simulate the copper removal when p× V was higher than 11,555 Pa\\cdotm/s. Assuming that the adsorbed inhibitor layer was abraded off instantly from the copper surface when p× V was higher than 11,555 Pa\\cdotm/s, the modified Langmuir--Hinshelwood kinetic model indicated that copper polishing was chemically limited in this polishing region.

  20. Membrane Structure of CtrA3, a Copper-transporting P-type-ATPase from Aquifex aeolicus

    NARCIS (Netherlands)

    Chintalapati, Sivaram; Kurdi, Rana Al; Terwisscha van Scheltinga, Anke C.; Kühlbrandt, Werner

    2008-01-01

    We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting PIB-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH m

  1. Membrane Structure of CtrA3, a Copper-transporting P-type-ATPase from Aquifex aeolicus

    NARCIS (Netherlands)

    Chintalapati, Sivaram; Kurdi, Rana Al; Terwisscha van Scheltinga, Anke C.; Kühlbrandt, Werner

    2008-01-01

    We have produced and characterized two new copper-transporting ATPases, CtrA2 and CtrA3 from Aquifex aeolicus, that belong to the family of heavy metal ion-transporting PIB-type ATPases. CtrA2 has a CPC metal-binding sequence in TM6 and a CxxC metal-binding N-terminal domain, while CtrA3 has a CPH m

  2. Electrical, Corrosion, and Mechanical Properties of Aluminum-Copper Joints Produced by Explosive Welding

    Science.gov (United States)

    Acarer, Mustafa

    2012-11-01

    This study investigates the microstructure, electrical, corrosion, and mechanical properties of plate-shaped aluminum-copper couple produced using the explosive welding method. Mechanical tests, including hardness, tensile, tensile-shear, and impact test, concluded that the Al-Cu bimetal had an acceptable joint resistance. In this study, local intermetallic regions formed on the interface of the joint of the aluminum-copper bimetal, produced using the explosive welding technique. However, the formed intermetallic regions had no significant effect on the mechanical properties of the joint, except for increasing its hardness. According to electrical conductivity tests, the Al-Cu bimetal had an average electrical conductivity in comparison to the electrical conductivity of aluminum and copper, which were the original materials forming the joint. According to the results of electro-chemical corrosion test, during which galvanic corrosion formed, the Al side of the Al-Cu bimetal was more anodic due to its high electronegativity; as a result, it was exposed to more corrosion in comparison to the copper side.

  3. 铜离子转运蛋白家族与肺癌顺铂耐药的研究进展%Research progress on copper ion transport protein family and cisplatin drug resistance in lung cancer

    Institute of Scientific and Technical Information of China (English)

    阳甜; 陈天君; 陈明伟

    2012-01-01

    铂类药作为化疗一种关键药之一,被广泛用于治疗各种恶性肿瘤,如卵巢、膀胱、头颈部肿瘤及肺癌.但铂类耐药的发生限制了化疗反应,影响了患者的预后.目前在铂类耐药的机制方面已经有一些重要的发展,其中之一是肿瘤铂类耐药与细胞内浓度的蓄积之间的相关性,摄入的减少和泵出过多均可减少药物在细胞内的聚积,导致耐药.但是具体耐药机制尚不清楚.铜离子动态平衡是由铜离子转运蛋白及其分子伴侣来维持.铜离子转运蛋白家族包括铜离子转运蛋白和铜离子转运磷酸化ATP酶.本文将就铜离子转运蛋白家族与肺癌顺铂耐药作一综述.%Cisplatin is one of the most important chemotherapeutic agents,commonly used for treatment of various cancers including ovary,endometrial,lung and gastric cancer.The secondary drugresistance,however,limits the efficacy of chemotherapy and consequently compromises the prognosis of patients.Recently,there have been some important developments in the understanding of mechanisms of tumor resistance to cisplatin.One of them is concerning the association between the tumor resistance to platinum drugs and the reduced intracellular accumulation owing to impaired drug intake and enhanced outward transport.However,mechanisms for transporting platinum drugs were not known until recently studies have shown that copper transporters may be involved in the transport of platinum-based anticancer drugs.Body copper homeostasis is maintained by a group of proteins including copper transporters and chaperones.Copper transporters include copper transporter 1 and copper-transporting P-type adenosine triphosphatase.This paper will state copper ion transport protein family and cisplatin drug resistance in lung cancer.

  4. Polar auxin transport: models and mechanisms

    NARCIS (Netherlands)

    Berkel, van K.; Boer, de R.J.; Scheres, B.; Tusscher, ten K.

    2013-01-01

    Spatial patterns of the hormone auxin are important drivers of plant development. The observed feedback between the active, directed transport that generates auxin patterns and the auxin distribution that influences transport orientation has rendered this a popular subject for modelling studies. Her

  5. Enlightening the Mechanism of Copper Mediated PhotoRDRP via High-Resolution Mass Spectrometry.

    Science.gov (United States)

    Frick, Elena; Anastasaki, Athina; Haddleton, David M; Barner-Kowollik, Christopher

    2015-06-03

    The initiation mechanism of photochemically mediated Cu-based reversible-deactivation radical polymerization (photoRDRP) was investigated using pulsed-laser polymerization (PLP) and high-resolution mass spectrometry. The variation of the catalyst composition and ESI-MS analysis of the resulting products provided information on how initiator, ligand, copper species, and monomer are interacting upon irradiation with UV light. A discussion of the results allows for a new postulation of the mechanism of photoRDRP and-for the first time-the unambiguous identification of the initiating species and their interactions within the reaction mixture. One pathway for radical generation proceeds via UV light-induced C-Br bond scission of the initiator, giving rise to propagating radicals. The generation of copper(I) species from copper(II) can occur via several pathways, including, among others, via reduction by free amine ligand in its excited as well as from its ground state via the irradiation with UV light. The amine ligand serves as a strong reducing agent and is likely the main participant in the generation of copper(I) species.

  6. Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Y.X., E-mail: yeyunxia@mail.ujs.edu.cn [School of Mechanical Engineering, Jiangsu University, Zhenjiang 21203 (China); Jiangsu Provincial Key Laboratory for Science and Technology of Photon Manufacturing, Jiangsu University, Zhenjiang 212013 (China); Feng, Y.Y.; Lian, Z.C.; Hua, Y.Q. [School of Mechanical Engineering, Jiangsu University, Zhenjiang 21203 (China)

    2014-08-01

    Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond (fs) laser has been characterized through optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experiments of ns laser shocking copper (Cu) and fs laser shocking aluminum (Al) were also conducted for comparison. Dislocations arranged in multiple forms, profuse twins and stacking faults (SFs) coexist in the fs laser shocked copper. At small strain condition, dislocation slip is the dominant deformation mode and small amount of SFs act as complementary mechanism. With strain increasing, profuse twins and SFs form to accommodate the plastic deformation. Furthermore, new formed SFs incline to locate around the old ones because the dislocation densities there are more higher. So there is a high probability for new SFs overlapping on old ones to form twins, or connecting old ones to lengthen them, which eventually produce the phenomena that twins connect with each other or twins connect with SFs. Strain greatly influences the dislocation density. Twins and SFs are more dependent on strain rate and shock pressure. Medium stacking fault energy (SFE) of copper helps to extend partial dislocations and provides sources for forming SFs and twins.

  7. Tribological behavior and wear mechanism of resin-matrix contact strip against copper with electrical current

    Institute of Scientific and Technical Information of China (English)

    TU Chuan-jun; CHEN Zhen-hua; CHEN Ding; YAN Hong-ge; HE Feng-yi

    2008-01-01

    The resin-matrix pantograph contact strip (RMPCS), which has excellent abrasion resistance with electrical current and friction-reducing function, was developed in view of the traditional contact strips with high maintenance cost, high wear rate with electrical current and severe damage to the copper conducting wire. The characteristics of worn surfaces, cross-section and typical elemental distributions of RMPCS were studied by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS).The wear behavior and arc discharge of RMPCS against copper were investigated with self-made electrical wear tester. The results show that the electrical current plays a critical role in determining the wear behavior, and the wear rate of the RMPCS against copper with electrical current is 2.7-5.8 times higher than the value without electrical current. The wear rate of the contact strip increases with the increase of the sliding speed and electrical current density. The main wear mechanism of RMPCS against copper without electrical current is low stress grain abrasive and slightly adhesive wear, while arc erosion wear and oxidation wear are the dominate mechanism with electrical current, which is accompanied by adhesive wear during the process of wear.

  8. Copper Transporter 2 Regulates the Cellular Accumulation and Cytotoxicity of Cisplatin and Carboplatin

    Science.gov (United States)

    Blair, Brian G.; Larson, Christopher A.; Safaei, Roohangiz; Howell, Stephen B.

    2010-01-01

    Purpose Copper transporter 2 (CTR2) is known to mediate the uptake of Cu+1 by mammalian cells. Several other Cu transporters, including the influx transporter CTR1 and the two efflux transporters ATP7A and ATP7B, also regulate sensitivity to the platinum-containing drugs. We sought to determine the effect of CTR2 on influx, intracellular trafficking, and efflux of cisplatin and carboplatin. Experimental Design The role of CTR2 was examined by knocking down CTR2 expression in an isogenic pair of mouse embryo fibroblasts consisting of a CTR1+/+ line and a CTR1−/− line in which both CTR1 alleles had been deleted. CTR2 levels were determined by quantitative reverse transcription-PCR and Western blot analysis. Cisplatin (DDP) was quantified by inductively coupled plasma mass spectrometry and 64Cu and [14C]carboplatin (CBDCA) accumulation by γ and scintillation counting. Results Deletion of CTR1 reduced the uptake of Cu, DDP, and CBDCA and increased resistance to their cytotoxic effects by 2- to 3-fold. Knockdown of CTR2 increased uptake of Cu only in the CTR1+/+ cells. In contrast, knockdown of CTR2 increased whole-cell DDP uptake and DNA platination in both CTR1+/+ and CTR1−/− cells and proportionately enhanced cytotoxicity while producing no effect on vesicular accumulation or efflux. A significant correlation was found between CTR2 mRNA and protein levels and sensitivity to DDP in a panel of six ovarian carcinoma cell lines. Conclusions CTR2 is a major determinant of sensitivity to the cytotoxic effects of DDP and CBDCA. CTR2 functions by limiting drug accumulation, and its expression correlates with the sensitivity of human ovarian carcinoma cell lines to DDP. PMID:19509135

  9. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hwan [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of); Choi, Yu-ri; Kim, Kwang-Mahn [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, University of Yonsei, Seoul (Korea, Republic of); Choi, Se-Young, E-mail: sychoi@yonsei.ac.kr [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of)

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 Degree-Sign C and 250 Degree-Sign C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm{sup 2} which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  10. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Science.gov (United States)

    Kim, Young-Hwan; Choi, Yu-ri; Kim, Kwang-Mahn; Choi, Se-Young

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 °C and 250 °C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm2 which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  11. The mitochondrial permeability transition, and oxidative and nitrosative stress in the mechanism of copper toxicity in cultured neurons and astrocytes.

    Science.gov (United States)

    Reddy, Pichili V B; Rao, Kakulavarapu V Rama; Norenberg, Michael D

    2008-08-01

    Copper is an essential element and an integral component of various enzymes. However, excess copper is neurotoxic and has been implicated in the pathogenesis of Wilson's disease, Alzheimer's disease, prion conditions, and other disorders. Although mechanisms of copper neurotoxicity are not fully understood, copper is known to cause oxidative stress and mitochondrial dysfunction. As oxidative stress is an important factor in the induction of the mitochondrial permeability transition (mPT), we determined whether mPT plays a role in copper-induced neural cell injury. Cultured astrocytes and neurons were treated with 20 microM copper and mPT was measured by changes in the cyclosporin A (CsA)-sensitive inner mitochondrial membrane potential (Delta Psi m), employing the potentiometric dye TMRE. In astrocytes, copper caused a 36% decrease in the Delta Psi m at 12 h, which decreased further to 48% by 24 h and remained at that level for at least 72 h. Cobalt quenching of calcein fluorescence as a measure of mPT similarly displayed a 45% decrease at 24 h. Pretreatment with antioxidants significantly blocked the copper-induced mPT by 48-75%. Copper (24 h) also caused a 30% reduction in ATP in astrocytes, which was completely blocked by CsA. Copper caused death (42%) in astrocytes by 48 h, which was reduced by antioxidants (35-60%) and CsA (41%). In contrast to astrocytes, copper did not induce mPT in neurons. Instead, it caused early and extensive death with a concomitant reduction (63%) in ATP by 14 h. Neuronal death was prevented by antioxidants and nitric oxide synthase inhibitors but not by CsA. Copper increased protein tyrosine nitration in both astrocytes and neurons. These studies indicate that mPT, and oxidative and nitrosative stress represent major factors in copper-induced toxicity in astrocytes, whereas oxidative and nitrosative stress appears to play a major role in neuronal injury.

  12. Mechanical performance of integrally bonded copper coatings for the long term disposal of used nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Christopher H., E-mail: cboyle@nwmo.ca [Nuclear Waste Management Organization, 22 St. Clair Ave East, Toronto (Canada); Meguid, Shaker A. [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto (Canada)

    2015-11-15

    Highlights: • A novel Used Fuel Container with an integrally bonded copper coating is proposed. • Two developed coating processes successfully produced prototype container components. • We created a validated finite element model to predict coating structural performance. • Mechanical testing confirms coating suitably for repository use. - Abstract: The preferred method for disposal of used nuclear fuel is underground emplacement in a Deep Geological Repository (DGR). Many countries have light water reactor fuels which require large Used Fuel Container or Canister (UFC) designs weighing up to 25 ton for containment. In contrast, Canada exclusively uses heavy water reactor fuel, which is substantially smaller. This has led the Nuclear Waste Management Organization (NWMO) to create a novel UFC, which uses standard pressure vessel grade steel for structural containment and a thick, integrally bonded copper coating applied to the exterior surface for corrosion protection. Currently, the coating is applied using two different methods: electrodeposition and gas dynamic cold spray. This novel copper coating needs to be fully validated to ensure adequate mechanical strength and chemical resistance for use under repository conditions. Detailed mechanical and corrosion testing programs were undertaken. Mechanical tests indicated that adhesion strengths exceeded 45 MPa and tensile properties were comparable to wrought copper. A Finite Element Model (FEM) of the copper–steel composite was created and validated using three point bend tests. This model accurately predicts the response of the composite, including large deformation and debonding failure mechanisms. Now validated, this model will be used to assess the performance of the coating on the full-scale UFC under simulated DGR loading conditions.

  13. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mateus, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Alves, L.C. [ITN, Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Vilarigues, M. [Departamento de Conservacao e Restauro e R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-11-15

    Highlights: {yields} The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. {yields} Preservation of nD crystalline structure during high-energy milling was demonstrated. {yields} Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. {yields} Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. {yields} Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  14. Search for Mechanically-Induced Grain Morphology Changes in Oxygen Free Electrolytic (OFE) Copper

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, Jennifer; /SLAC

    2006-08-18

    The deformation of the microscopic, pure metal grains (0.1 to > 1 millimeter) in the copper cells of accelerator structures decreases the power handling capabilities of the structures. The extent of deformation caused by mechanical fabrication damage is the focus of this study. Scanning electron microscope (SEM) imaging of a bonded test stack of six accelerating cells at magnifications of 30, 100, 1000 were taken before simulated mechanical damage was done. After a 2{sup o}-3{sup o} twist was manually applied to the test stack, the cells were cut apart and SEM imaged separately at the same set magnifications (30, 100, and 1000), to examine any effects of the mechanical stress. Images of the cells after the twist were compared to the images of the stack end (cell 60) before the twist. Despite immense radial damage to the end cell from the process of twisting, SEM imaging showed no change in grain morphology from images taken before the damage: copper grains retained shape and the voids at the grain boundaries stay put. Likewise, the inner cells of the test stack showed similar grain consistency to that of the end cell before the twist was applied. Hence, there is no mechanical deformation observed on grains in the aperture disk, either for radial stress or for rotational stress. Furthermore, the high malleability of copper apparently absorbed stress and strain very well without deforming the grain structure in the surface.

  15. Low-cost copper complexes as p-dopants in solution processable hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellermann, Renate [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany); Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Taroata, Dan; Maltenberger, Anna; Hartmann, David; Schmid, Guenter [Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Brabec, Christoph J. [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany)

    2015-09-07

    We demonstrate the usage of the Lewis-acidic copper(II)hexafluoroacetylacetonate (Cu(hfac){sub 2}) and copper(II)trifluoroacetylacetonate (Cu(tfac){sub 2}) as low-cost p-dopants for conductivity enhancement of solution processable hole transport layers based on small molecules in organic light emitting diodes (OLEDs). The materials were clearly soluble in mixtures of environmentally friendly anisole and xylene and spin-coated under ambient atmosphere. Enhancements of two and four orders of magnitude, reaching 4.0 × 10{sup −11} S/cm with a dopant concentration of only 2 mol% Cu(hfac){sub 2} and 1.5 × 10{sup −9} S/cm with 5 mol% Cu(tfac){sub 2} in 2,2′,7,7′-tetra(N,N-ditolyl)amino-9,9-spiro-bifluorene (spiro-TTB), respectively, were achieved. Red light emitting diodes were fabricated with reduced driving voltages and enhanced current and power efficiencies (8.6 lm/W with Cu(hfac){sub 2} and 5.6 lm/W with Cu(tfac){sub 2}) compared to the OLED with undoped spiro-TTB (3.9 lm/W). The OLED with Cu(hfac){sub 2} doped spiro-TTB showed an over 8 times improved LT{sub 50} lifetime of 70 h at a starting luminance of 5000 cd/m{sup 2}. The LT{sub 50} lifetime of the reference OLED with PEDOT:PSS was only 8 h. Both non-optimized OLEDs were operated at similar driving voltage and power efficiency.

  16. Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongchao; Wang, Yang; Jiang, Haobo; Deng, Junpeng; (OKLU)

    2010-02-22

    Arthropod phenoloxidase (PO) generates quinones and other toxic compounds to sequester and kill pathogens during innate immune responses. It is also involved in wound healing and other physiological processes. Insect PO is activated from its inactive precursor, prophenoloxidase (PPO), by specific proteolysis via a serine protease cascade. Here, we report the crystal structure of PPO from a lepidopteran insect at a resolution of 1.97 {angstrom}, which is the initial structure for a PPO from the type 3 copper protein family. Manduca sexta PPO is a heterodimer consisting of 2 homologous polypeptide chains, PPO1 and PPO2. The active site of each subunit contains a canonical type 3 di-nuclear copper center, with each copper ion coordinated with 3 structurally conserved histidines. The acidic residue Glu-395 located at the active site of PPO2 may serve as a general base for deprotonation of monophenolic substrates, which is key to the ortho-hydroxylase activity of PO. The structure provides unique insights into the mechanism by which type 3 copper proteins differ in their enzymatic activities, albeit sharing a common active center. A drastic change in electrostatic surface induced on cleavage at Arg-51 allows us to propose a model for localized PPO activation in insects.

  17. Occurrence mechanism of silicate and aluminosilicate minerals in Sarcheshmeh copper flotation concentrate

    Institute of Scientific and Technical Information of China (English)

    H.R. Barkhordari; E. Jorjani; A. Eslami; M. Noaparast

    2009-01-01

    The Sarcheshmeh copper flotation circuit is producing 5×10~4 t copper concentrate per month with an averaging grade of 28% Cu in rougher, cleaner and reeleaner stages. In recent years, with the increase in the open pit depth, the content of aluminosili- cate minerals increased in plant feed and subsequently in flotation concentrate. It can motivate some problems, such as unwanted consumption of reagents, decreasing of the copper concentrate grade, increasing of Al_2O_3 and SiO_2 in the copper concentrate, and needing a higher temperature in the smelting process. The evaluation of the composite samples related to the most critical working period of the plant shows that quartz, illite, biotite, chlorite, orthoclase, albeit, muscovite, and kaolinite are the major Al_2O_3 and SiO_2 beating minerals that accompany chalcopyrite, chalcoeite, and covellite minerals in the plant feed. The severe alteration to clay min-erals was a general rule in all thin sections that were prepared from the plant feed. Sieve analysis of the flotation concentrate shows that Al_2O_3 and SiO_2 bearing minerals in the flotation concentrate can be decreased by promoting the size reduction from 53 to 38 μm. Interlocking of the Al_2O_3 and SiO_2 beating minerals with ehalcopyrite and ehalcocite is the occurrence mechanism of silicate and aluminosilicate minerals in the flotation concentrate. The dispersed form of interlocking is predominant.

  18. Mechanism of oxygen releasing of copper ferrite in the formation of the corresponding oxygen-deficient compound

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; YU Bo; ZHANG Lei

    2009-01-01

    Copper ferrite is a promising material for hydrogen production through thermochemical water splitting. In this work, the cation distribution of copper ferrite and the corresponding oxygen-deficient compound of spinel structure was analyzed based on the crystal structural chemistry theory. The mechanism of oxygen releasing of CuO, Fe2O3, CuFe2O4 and metal (M=Ni, Mn or Zn) doped copper ferrite in the proc-ess of temperature rising was investigated by differential thermal analysis-thermogravimetry (DTA-TG). By combining the theoretical analysis with experimental results, the mechanism of oxygen releasing of copper ferrite is proposed, which is different from that of other ferrites. For copper ferrite, the oxygen releasing caused by Cu(Ⅱ)→Cu(I) plays a predominant role, while for other ferrites, the oxygen releas-ing resulting from Fe(ⅡI)→Fe(Ⅱ) is dominant.

  19. Mechanism of oxygen releasing of copper ferrite in the formation of the corresponding oxygen-deficient compound

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Copper ferrite is a promising material for hydrogen production through thermochemical water splitting.In this work,the cation distribution of copper ferrite and the corresponding oxygen-deficient compound of spinel structure was analyzed based on the crystal structural chemistry theory.The mechanism of oxygen releasing of CuO,Fe2O3,CuFe2O4 and metal(M=Ni,Mn or Zn) doped copper ferrite in the proc-ess of temperature rising was investigated by differential thermal analysis-thermogravimetry(DTA-TG).By combining the theoretical analysis with experimental results,the mechanism of oxygen releasing of copper ferrite is proposed,which is different from that of other ferrites.For copper ferrite,the oxygen releasing caused by Cu(Ⅱ)→Cu(Ⅰ) plays a predominant role,while for other ferrites,the oxygen releas-ing resulting from Fe(Ⅲ)→Fe(Ⅱ) is dominant.

  20. The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys

    DEFF Research Database (Denmark)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Zinkle, S.J.

    1996-01-01

    was independent of displacement dose. The saturation value for Delta rho(rd) was similar to 1.2 n Omega m for pure copper and similar to 1.6 n Omega m for the DS copper alloys irradiated at 100 degrees C in positions with a fast-to-thermal neutron flux ratio of 5, Considerable radiation hardening was observed...

  1. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  2. Toxic mechanisms of copper oxide nanoparticles in epithelial kidney cells

    DEFF Research Database (Denmark)

    Thit, Amalie; Selck, Henriette; Bjerregaard, Henning F.

    2015-01-01

    CuO NPs have previously been reported as toxic to a range of cell cultures including kidney epithelial cells from the frog, Xenopus laevis (A6). Here we examine the molecular mechanisms affecting toxicity of Cu in different forms and particle sizes. A6 cells were exposed to ionic Cu (Cu2+) or Cu......O particles of three different sizes: CuO NPs of 6 nm (NP6), larger Poly-dispersed CuO NPs of toxic than NP6, Micro and Cu2+ to A6 cells, causing DNA damage, decreased cell viability...... and levels of reduced glutathione (GSH) and eventually cell death. We show that ROS (Reactive Oxygen Species) generation plays a key role and occurs early in Poly toxicity as Poly-induced DNA damage and cell death could be mitigated by the antioxidant NAC (N-acetyl-cysteine). Here we propose a model...

  3. Grain transport mechanics in shallow overland flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  4. Grain transport mechanics in shallow flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  5. Silencing the Menkes Copper-Transporting ATPase (Atp7a) Gene in Rat Intestinal Epithelial (IEC-6) Cells Increases Iron Flux via Transcriptional Induction of Ferroportin 1 (Fpn1)123

    Science.gov (United States)

    Gulec, Sukru; Collins, James F.

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron (59Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished. PMID:24174620

  6. Silencing the Menkes copper-transporting ATPase (Atp7a) gene in rat intestinal epithelial (IEC-6) cells increases iron flux via transcriptional induction of ferroportin 1 (Fpn1).

    Science.gov (United States)

    Gulec, Sukru; Collins, James F

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron ((59)Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished.

  7. Theoretical study on reaction mechanisms of nitrite reduction by copper nitrite complexes: toward understanding and controlling possible mechanisms of copper nitrite reductase.

    Science.gov (United States)

    Maekawa, Shintaro; Matsui, Toru; Hirao, Kimihiko; Shigeta, Yasuteru

    2015-04-30

    Using density functional theory, we studied denitrification reaction mechanisms of copper adducts of tris(pyrazolyl)methane and hydrotris(pyrazolyl)borate models of a copper nitrite reductase (Cu-NiR), and herein propose several possible reaction pathways, including some parts that have never been examined previously. Because electron and proton transfer reactions participate in the enzymatic cycles of Cu-NiR, the Gibbs energy of a proton in solution, G(H(+)), and the redox potential, Eredox, of the model Cu-NiR are also evaluated. Although the pathway where a nitrite is provided as HNO2 is energetically preferable, a well-known reaction pathway passing through the resting state with an active site occupied by a water molecule where nitrite is provided as NO2(-) is the main recognized pathway under normal conditions. These features do not change whether the electron transfer occurs before production of NO or not. However, our results suggest that the pathway involving HNO2 might become dominant under low pH conditions in conjunction with experimental results.

  8. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta.

    Science.gov (United States)

    Moenne, Alejandra; González, Alberto; Sáez, Claudio A

    2016-07-01

    Green and red macroalgae are closely related organisms, and with terrestrial plants, and constitute the base of marine food webs in coastal ecosystems. Green and red seaweeds, as all living organisms, require essential metals, such as copper, iron, zinc, which can act as co-factors for several proteins and enzymes; however, these metals in excess can induce stress and impair cell viability. Most important negative effects of metal excess are related to the induction of an oxidative stress condition, characterized by the over-accumulation of Reactive Oxygen Species (ROS). In this respect, copper, abundant in wastewaters disposed to coastal environments from domestic and industrial activities, has been one of the most studied metals. Different investigations have provided evidence that green and red macroalgae display several defenses against copper excess to prevent, or at least reduce, stress and damage, among which are cellular exclusion mechanisms, synthesis of metal-chelating compounds, and the activation of the antioxidant system. Most important defense mechanisms identified in green and red seaweed involve: metal-binding to cell wall and epibionts; syntheses of metallothioneins and phytochelatins that accumulate in the cytoplasm; and the increase in the activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and catalase, and greater production of antioxidant metabolites as glutathione and ascorbate in organelles and the cytoplasm. In this review, we go through historical records, latest advances, and pending tasks aiming to expand our current knowledge on defense mechanisms to copper excess in green and red macroalgae, with emphasis on biochemical and molecular aspects.

  9. IMPROVEMENT OF FREIGHT TRANSPORTATION PROCESS AND THEIR MANAGEMENT MECHANISM

    Directory of Open Access Journals (Sweden)

    L. V. Martsenyuk

    2014-03-01

    Full Text Available Purpose. For Ukraine as for a post-socialist state there is an objective need of reforming on railway transport. In order to meet the requirements of consumers both within the country and outside of it, it is necessary to solve transport problems in time and to introduce new technologies, without lagging behind the developed European states. The purpose of this article is identification of problems in the process of freight transportations and development of ways of their overcoming, formation of the principles of economic efficiency increase for the use of freight cars using the improvement of management mechanism of freight transportations in the conditions of reforming. Methodology. Methods of strategic planning, system approach for research on improvement of the management mechanism of freight transportations, as well as the organizational-administrative method for structure of management construction were used in this research. Findings. Authors have explored the problems arising in the process of transportation of goods and measures, which will increase the efficiency of goods transportation. Advanced mechanism of freight transportation management for its application in the conditions of the railway transport reforming was developed. It is based on management centralization. Originality. The major factors, which slow down process of cargo transportations, are investigated in the article. The principles of management mechanism improvement of freight transportations are stated. They are based on association of commercial and car-repair activity of depots. All this will allow reducing considerably a car turn by decrease in duration of idle times on railway transport, increasing the speed of freight delivery and cutting down a transport component in the price of delivered production. Practical value. The offered measures will improve the efficiency of rolling stock use and increase cargo volumes turnover, promote links of Ukraine with

  10. Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials.

    Science.gov (United States)

    Jones, Edward H; Su, Chunming

    2012-05-01

    Column experiments were performed to assess the fate and transport of nanoscale elemental copper (Cu(0)) particles in saturated quartz sands. Both effluent concentrations and retention profiles were measured over a broad range of physicochemical conditions, which included pH, ionic strength, the presence of natural organic matter (humic and fulvic acids) and an organic buffer (Trizma). At neutral pHs, Cu(0) nanoparticles were positively charged and essentially immobile in porous media. The presence of natural organic matter, trizma buffer, and high pH decreased the attachment efficiency facilitating elemental copper transport through sand columns. Experimental results suggested the presence of both favourable and unfavourable nanoparticle interactions causes significant deviation from classical colloid filtration theory.

  11. Copper transporters and chaperones: Their function on angiogenesis and cellular signalling

    Indian Academy of Sciences (India)

    SR BHARATHI DEVI; DHIVYA M ALOYSIUS; KN SULOCHANA

    2016-09-01

    Copper, although known as a micronutrient, has a pivotal role in modulating the cellular metabolism. Many studieshave reported the role of copper in angiogenesis. Copper chaperones are intracellular proteins that mediate coppertrafficking to various cell organelles. However, the role and function of copper chaperones in relation to angiogenesishas to be further explored. The intracellular copper levels when in excess are deleterious and certain mutations ofcopper chaperones have been shown to induce cell death and influence various cellular metabolisms. The study ofthese chaperones will be helpful in understanding the players in the cascade of events in angiogenesis and their role incellular metabolic pathways. In this review we have briefly listed the copper chaperones associated with angiogenicand metabolic signalling and their function.

  12. Experimental investigation on the mechanism of chelation-assisted, copper(II) acetate-accelerated azide-alkyne cycloaddition.

    Science.gov (United States)

    Kuang, Gui-Chao; Guha, Pampa M; Brotherton, Wendy S; Simmons, J Tyler; Stankee, Lisa A; Nguyen, Brian T; Clark, Ronald J; Zhu, Lei

    2011-09-07

    mediating a 2-picolylazide-involved AAC reaction than the fully reduced Cu(OAc)(2). Finally, the discontinuous kinetic behavior that has been observed by us and others in copper(I/II)-mediated AAC reactions is explained by the likely catalyst disintegration during the course of a relatively slow reaction. Complementing the prior mechanistic conclusions drawn by other investigators, which primarily focus on the copper(I)/alkyne interactions, we emphasize the kinetic significance of copper(I/II)/azide interaction. This work not only provides a mechanism accounting for the fast Cu(OAc)(2)-mediated AAC reactions involving chelating azides, which has apparent practical implications, but suggests the significance of mixed-valency dinuclear copper species in catalytic reactions where two copper centers carry different functions.

  13. Palmitoylation mechanisms in dopamine transporter regulation.

    Science.gov (United States)

    Rastedt, Danielle E; Vaughan, Roxanne A; Foster, James D

    2017-10-01

    The neurotransmitter dopamine (DA) plays a key role in several biological processes including reward, mood, motor activity and attention. Synaptic DA homeostasis is controlled by the dopamine transporter (DAT) which transports extracellular DA into the presynaptic neuron after release and regulates its availability to receptors. Many neurological disorders such as schizophrenia, bipolar disorder, Parkinson disease and attention-deficit hyperactivity disorder are associated with imbalances in DA homeostasis that may be related to DAT dysfunction. DAT is also a target of psychostimulant and therapeutic drugs that inhibit DA reuptake and lead to elevated dopaminergic neurotransmission. We have recently demonstrated the acute and chronic modulation of DA reuptake activity and DAT stability through S-palmitoylation, the linkage of a 16-carbon palmitate group to cysteine via a thioester bond. This review summarizes the properties and regulation of DAT palmitoylation and describes how it serves to affect various transporter functions. Better understanding of the role of palmitoylation in regulation of DAT function may lead to identification of therapeutic targets for modulation of DA homeostasis in the treatment of dopaminergic disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer

    Science.gov (United States)

    Chaudhary, Neeraj; Kesari, J. P.; Chaudhary, Rajiv; Patra, Asit

    2016-08-01

    In the present work, we have shown the performance of solution-processable copper iodide (CuI) as an alternative hole transporting layer (HTL) for polymeric solar cells. Optical spectra of the CuI thin film reveal highly transparent and practically no absorption in the range vis-NIR region (450-1110 nm). X-ray diffraction (XRD) patterns of CuI exhibits as a p-type semiconductor as well as crystalline nature. The photovoltaic devices were fabricated using PCDTBT and PTB7 as donor materials blended with PC71BM as an acceptor material. The power conversion efficiencies (PCEs) based on CuI as an HTL have been achieved to up to 3.04% and 4.48% for PCDTBT and PTB7 based donor materials respectively with a configuration based on ITO/CuI(40 nm)/active layer (60 nm)/Al (120 nm). This study clearly indicated that the devices made with CuI as an HTL showed superior performance than the device fabricated from PEDOT:PSS layer as an HTL. Morphological characterization of the HTL using scanning electron microscopy (SEM) and atomic force microscope (AFM) were carried for better understanding.

  15. Secondary metabolites in plants: transport and self-tolerance mechanisms.

    Science.gov (United States)

    Shitan, Nobukazu

    2016-07-01

    Plants produce a host of secondary metabolites with a wide range of biological activities, including potential toxicity to eukaryotic cells. Plants generally manage these compounds by transport to the apoplast or specific organelles such as the vacuole, or other self-tolerance mechanisms. For efficient production of such bioactive compounds in plants or microbes, transport and self-tolerance mechanisms should function cooperatively with the corresponding biosynthetic enzymes. Intensive studies have identified and characterized the proteins responsible for transport and self-tolerance. In particular, many transporters have been isolated and their physiological functions have been proposed. This review describes recent progress in studies of transport and self-tolerance and provides an updated inventory of transporters according to their substrates. Application of such knowledge to synthetic biology might enable efficient production of valuable secondary metabolites in the future.

  16. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    NARCIS (Netherlands)

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; De Sluis, Bart van; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex

  17. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to...... description of the complex fractal sets underlying the fracton spectrum. A generalized kinetic equation containing integer time and fractional real-space derivatives is found for the fracton excitations in the harmonic approximation. The fracton superconductivity mechanism is further discussed in connection...

  18. Perfect cubic texture, structure, and mechanical properties of nonmagnetic copper-based alloy ribbon substrates

    Science.gov (United States)

    Khlebnikova, Yu. V.; Rodionov, D. P.; Gervas'eva, I. V.; Egorova, L. Yu.; Suaridze, T. R.

    2015-03-01

    A sharp cubic texture is formed in a number of copper alloys subjected to cold deformation by rolling by 98.6-99% followed by recrystallization annealing, which opens up fresh opportunities for long thin ribbons made of these alloys to be used as substrates in the production of second-generation high- T c superconductor (2G HTSC) cables. The possibility of creating ternary alloys based on a binary Cu-30 at % Ni alloy with additional elements that harden its fcc matrix (iron, chromium) is shown. The measurements of the mechanical properties of textured ribbons made of these alloys demonstrate that their yield strength is higher than that of a textured ribbon made of pure copper by a factor of 2.5-4.5.

  19. Study on the kinetic mechanisms of copper vapor lasers with hydrogen-neon admixtures

    Science.gov (United States)

    Cheng, Cheng; Sun, Wei

    1997-02-01

    The kinetic mechanisms of copper vapor lasers with hydrogen-neon admixtures are studied in detail with a computational model. (i) The copper particle density increases as the wall temperature rises after adding hydrogen into neon buffer gas, and de-population of the laser lower levels is enhanced during the interpulse period owing to a larger thermal diffusion loss from the tube center to the wall. (ii) The power dissipated by the thyratron or current through it decreases with increasing frequency of the momentum-transfer collision of electrons, i.e. the input power into the laser tube increases. On the other hand, the plasma electron temperature and electron density decrease as the electron energy is depleted through the impact excitation of the vibration levels of hydrogen, which makes the population of the laser upper levels restrained.

  20. Nickel and Copper Toxicity and Plant Response Mechanisms in White Birch (Betula papyrifera).

    Science.gov (United States)

    Theriault, Gabriel; Nkongolo, Kabwe

    2016-08-01

    Nickel (Ni) and copper (Cu) are the most prevalent metals found in the soils in the Greater Sudbury Region (Canada) because of smelting emissions. The main objectives of the present study were to (1) determine the toxicity of nickel (Ni) and copper (Cu) at different doses in Betula papyrifera (white birch), (2) Characterize nickel resistance mechanism, and (3) assess segregating patterns for Ni and Cu resistance in B. papyrifera populations. This study revealed that B. papyrifera is resistant to Ni and Cu concentrations equivalent to the levels reported in metal-contaminated stands in the GSR. Resistant genotypes (RG) accumulate Ni in roots but not in leaves. Moderately susceptible (MSG) and susceptible genotypes (SG) show a high level of Ni translocation to leaves. Gene expression analysis showed differential regulation of genes in RG compared to MSG and SG. Analysis of segregation patterns suggests that resistance to Ni and Cu is controlled by single recessive genes.

  1. Chemical systems for electrochemical mechanical planarization of copper and tantalum films

    Science.gov (United States)

    Muthukumaran, Ashok Kumar

    Electro-Chemical Mechanical Planarization (ECMP) is a new and highly promising technology just reaching industrial application; investigation of chemistries, consumables, and tool/control approaches are needed to overcome technological limitations. Development of chemical formulations for ECMP presents several challenges. Unlike conventional CMP, formulations for ECMP may not need an oxidant. Organic additives, especially inhibitors used to control planarity (i.e. to protect recessed regions), need to be stable under applied anodic potential. To have a high current efficiency, the applied current should not induce decomposition of the formulations. In addition, to enable clearing of the copper film, the interactions between multiple exposed materials (barrier material as well as copper) must be considered. Development of a full sequence ECMP process would require the removal of the barrier layer as well. Chemical systems that exhibit a 1:1 selectivity between the barrier layer and copper would be ideal for the barrier removal step of ECMP. The main goal of this research is to investigate the chemistries suitable for ECMP of copper and tantalum films. Copper was electroplated onto the gold electrode of quartz crystals, and its dissolution/passivation behavior in hydroxylamine solutions was studied at different applied potential values. The dissolution rate of copper is pH dependent and exhibits a maximum in the vicinity of pH 6. Copper dissolution increases with respect to overpotential (eta) and dissolution rates as high as 6000 A/min have been obtained at overpotential of 750mV. While both benzotriazole (BTA) and salicylhydroxamic acid (SHA) serve as good inhibitors at lower overpotentials, their effectiveness decreases at higher overpotentials. A fundamental study was undertaken to evaluate the usefulness of a sulfonic acid based chemical system for the removal of tantalum under ECMP conditions. Tantalum as well as copper samples were polished at low pressures (

  2. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system.

    Science.gov (United States)

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun

    2013-12-01

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules' GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  3. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2013-12-15

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules’ GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  4. Ciprofloxacin containing Mannich base and its copper complex induce antitumor activity via different mechanism of action.

    Science.gov (United States)

    Fu, Yun; Yang, Yingli; Zhou, Sufeng; Liu, Youxun; Yuan, Yanbin; Li, Shaoshan; Li, Changzheng

    2014-11-01

    The Mannich base containing ciprofloxacin and kojic acid structural units was prepared and evaluated in antitumor activity. The enhancement in antitumor activity was observed both from the Mannich base (IC(50): 103.3±5.0 µM for HepG2, 87.9±8.0 µM for HCT-116 cell) and its copper complex (IC(50): 11.5±1.8 µM for HepG2, 44.4±2.5 µM for HCT-116 cell) compared to the ciprofloxacin and kojic acid. The mechanistic studies via RT-PCR, cell cycle analysis, mitochondrial membrane potential measurement, inhibition of topoisomerase and molecular docking indicated that there is a different molecular mechanism between the Mannich base and its copper complex. The cytotoxicity of the Mannich base was involved in apoptosis, cell cycle arrest, depolarization of mitochondrial membrane and weaker topoisomerase II inhibition, but the copper complex exerted its cytotoxicity mainly through dual topoisomerase inhibition, especially stabilizing the intermediate of cleavage DNA-topoisomerase complex.

  5. Copper induced hollow carbon nanospheres by arc discharge method: controlled synthesis and formation mechanism

    Science.gov (United States)

    Hu, Rui; Alexandru Ciolan, Mihai; Wang, Xiangke; Nagatsu, Masaaki

    2016-08-01

    Hollow carbon nanospheres with controlled morphologies were synthesized via the copper-carbon direct current arc discharge method by alternating the concentrations of methane in the reactant gas mixture. A self-healing process to keep the structural integrity of encapsulated graphitic shells was evolved gradually by adding methane gas from 0% to 20%. The outer part of the coated layers expanded and hollow nanospheres grew to be large fluffy ones with high methane concentrations from 30% to 50%. A self-repairing function by the reattachment of broken graphitic layers initiated from near-electrode space to distance was also distinctly exhibited. By comparing several comparable metals (e.g. copper, silver, gold, zinc, iron and nickel)-carbon arc discharge products, a catalytic carbon-encapsulation mechanism combined with a core-escaping process has been proposed. Specifically, on the basis of the experimental results, copper could be applied as a unique model for both the catalysis of graphitic encapsulation and as an adequate template for the formation of hollow nanostructures.

  6. Facilitated Transport of Ethylene in Poly (Amide 12-Block Tetramethylenoxide) Copolymer/AgBF4 Membranes Containing Silver (I) and Copper (I) Ions as Carriers

    Science.gov (United States)

    Ben Hamouda, Sofiane; Trong Nguyen, Quang; Langevin, Dominique; Roudesli, Sadok

    Metal-incorporated poly(amide 12-block-tetramethylenoxide) (PA12-co-PTMO) copolymer was used for studying facilitated transport of olefines through new composite membranes. The metals incorporated were silver {Ag(I)} and copper {Cu(I)}. Tests were carried out at room temperature (25±2°C) to determine the selectivity and permeability of these membranes to ethylene and ethane gas. The membranes prepared by mixing in solution the copolymer with silver (AgBF4) or copper (CuBF4) salt show a ethylene/ethane selectivity much higher than that of pure PA12-co-PTMO. The membranes were also characterized by Fourier Transform Infra Red (FTIR) spectroscopy and Scanning Electron Microscopy (SEM) in order to understand the structural feature responsible for the observed behaviour. The IRFT spectrum indicate that Ag+ and Cu+ ions are developing interactions with the copolymer. The permeation results obtained with copper containing membranes show that CuBF4 salt introduction in the copolymer tends to reduce ethane permeability. This phenomenon is explained by a diminution of the free volume caused by a decrease of the interchain distance due to the formation of metal ions-polymer matrix complexes. At the same time, for ethylene, the decrease in permeability observed at low salt content is recouped rapidly, when the salt content increases, by a dramatic increase of the permeability which attains 10 times that of the pure PA12-co-PTMO. This behaviour is attributed to the facilitated transport mechanism of the ethylene molecules able to develop specific interactions with the incorporated metal ions. It results from these two antagonistic phenomena a multiplication by 18 of the ethylene/ethane selectivity of the pure copolymer when the CuBF4 content of the composite attains 60%.

  7. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Science.gov (United States)

    Zhu, Aibin; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-01

    The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[-211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[-211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  8. Induction of oxidative DNA damage by mesalamine in the presence of copper: a potential mechanism for mesalamine anticancer activity.

    Science.gov (United States)

    Zimmerman, Ryan P; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P; Wang, Jianmin; Li, Yunbo

    2011-02-27

    Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis.

  9. Thermo-mechanical effects of thermal cycled copper through-silicon vias

    Science.gov (United States)

    Marro, James

    The semiconductor industry is currently facing transistor scaling issues due to fabrication thresholds and quantum effects. In this "More-Than-Moore" era, the industry is developing new ways to increase device performance, such as stacking chips for three-dimensional integrated circuits (3D-IC). The 3D-IC's superior performance over their 2D counterparts can be attributed to the use of vertical interconnects, or through silicon vias (TSV). These interconnects are much shorter, reducing signal delay. However TSVs are susceptible to various thermo-mechanical reliability concerns. Heating during fabrication and use, in conjunction with coefficient of thermal expansion mismatch between the copper TSVs and silicon substrate, create harmful stresses in the system. The purpose of this work is to evaluate the signal integrity of Cu-TSVs and determine the major contributing factors of the signal degradation upon in-use conditions. Two series of samples containing blind Cu-TSVs embedded in a Si substrate were studied, each having different types and amounts of voids from manufacturing. The samples were thermally cycled up to 2000 times using three maximum temperatures to simulate three unique in-use conditions. S11 parameter measurements were then conducted to determine the signal integrity of the TSVs. To investigate the internal response from cycling, a protocol was developed for cross-sectioning the copper TSVs. Voids were measured using scanning electron microscope and focused ion beam imaging of the cross-sections, while the microstructural evolution of the copper was monitored with electron backscattering diffraction. An increase in void area was found to occur after cycling. This is thought to be the major contributing factor in the signal degradation of the TSVs, since no microstructural changes were observed in the copper.

  10. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen; Hamann, Steffen Ellitsgaard

    2002-01-01

    sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins......The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium...... and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...

  11. Nonlinear Mechanism of Bed Load Transport

    Institute of Scientific and Technical Information of China (English)

    XU Haijue; BAI Yuchuan; NG Chiu-On

    2009-01-01

    From the group movement of the bed load within the bottom layer, details of the nonlinear dynamic characteristics of bed load movement are discussed in this paper. Whether the sediment is initiated into motion cor-responds to whether the constant term in the equation is equal to zero. If constant term is zero and no dispersive force is considered, the equation represents the traditional Shields initiation curve, and if constant term is zero with-out the dispersive force being considered, then a new Shields curve which is much lower than the traditional one is got, The fixed point of the equation corresponds to the equilibrium sediment transport of bed load. In the mutation analysis, we have found that the inflection point is the demarcation point of breaking. In theory, the breaking point corresponds to the dividing boundary line, across which the bed form changes from flat bed to sand ripple or sand dune. Compared with the experimental data of Chatou Hydraulic Lab in France, the conclusions are verified.

  12. Plumbagin induces cell death through a copper-redox cycle mechanism in human cancer cells.

    Science.gov (United States)

    Nazeem, S; Azmi, Asfar S; Hanif, Sarmad; Ahmad, Aamir; Mohammad, Ramzi M; Hadi, S M; Kumar, K Sateesh

    2009-09-01

    Plumbagin, a naphthoquinone derived from the medicinal plant Plumbago zeylanica has been shown to exert anticancer and anti-proliferative activities in cells in culture as well as animal tumor models. In our previous paper, we have reported the cytotoxic action of plumbagin in plasmid pBR322 DNA as well as human peripheral blood lymphocytes through a redox mechanism involving copper. Copper has been shown to be capable of mediating the action of several plant-derived compounds through production of reactive oxygen species (ROS). The objective of the present study was to determine whether plumbagin induces apoptosis in human cancer cells through the same mechanism which we proposed earlier. Using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay, 3-(4,5-B-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell growth inhibition, histone/DNA ELISA, homogeneous caspase-3/7 assay for apoptosis as well as alkaline comet assay for DNA single-strand breaks detection in this report, we confirm that plumbagin causes effective cell growth inhibition, induces apoptosis and generates single-strand breaks in cancer cells. Incubation of cancer cells with scavengers of ROS and neocuproine inhibited the cytotoxic action of plumbagin proving that generation of ROS and Cu(I) are the critical mediators in plumbagin-induced cell growth inhibition. This study is the first to investigate the copper-mediated anticancer mechanism of plumbagin in human cancer cells and these properties of plumbagin could be further explored for the development of anticancer agents with higher therapeutic indices, especially for skin cancer.

  13. Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells.

    Science.gov (United States)

    Yoon, Seok Min; Lou, Sylvia J; Loser, Stephen; Smith, Jeremy; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin

    2012-12-12

    Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.

  14. Mechanism study of copper-mediated one-pot reductive amination of aryl halides using trimethylsilyl azide.

    Science.gov (United States)

    Maejima, Toshihide; Ueda, Moriatsu; Nakano, Jun; Sawama, Yoshinari; Monguchi, Yasunari; Sajiki, Hironao

    2013-09-20

    Reaction mechanisms of the copper-mediated amination of aryl halides with trimethylsilyl azide (TMSN3) were analyzed on the basis of the time-course study using reaction monitoring FT-IR, trapping an intermediary aryl azide by the Huisgen reaction, and the analysis of the generated N2 gas during the reaction. This amination would proceed through multiple pathways via aryl radicals and copper(I) azide.

  15. Thermodynamic evidence for a dual transport mechanism in a POT peptide transporter.

    Science.gov (United States)

    Parker, Joanne L; Mindell, Joseph A; Newstead, Simon

    2014-12-02

    Peptide transport plays an important role in cellular homeostasis as a key route for nitrogen acquisition in mammalian cells. PepT1 and PepT2, the mammalian proton coupled peptide transporters (POTs), function to assimilate and retain diet-derived peptides and play important roles in drug pharmacokinetics. A key characteristic of the POT family is the mechanism of peptide selectivity, with members able to recognise and transport >8000 different peptides. In this study, we present thermodynamic evidence that in the bacterial POT family transporter PepTSt, from Streptococcus thermophilus, at least two alternative transport mechanisms operate to move peptides into the cell. Whilst tri-peptides are transported with a proton:peptide stoichiometry of 3:1, di-peptides are co-transported with either 4 or 5 protons. This is the first thermodynamic study of proton:peptide stoichiometry in the POT family and reveals that secondary active transporters can evolve different coupling mechanisms to accommodate and transport chemically and physically diverse ligands across the membrane.

  16. Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis

    NARCIS (Netherlands)

    Polishchuk, Elena V.; Concilli, Mafalda; Iacobacci, Simona; Chesi, Giancarlo; Pastore, Nunzia; Piccolo, Pasquale; Paladino, Simona; Baldantoni, Daniela; van IJzendoorn, Sven C. D.; Chan, Jefferson; Chang, Christopher J.; Amoresano, Angela; Pane, Francesca; Pucci, Piero; Tarallo, Antonietta; Parenti, Giancarlo; Brunetti-Pierri, Nicola; Settembre, Carmine; Ballabio, Andrea; Polishchuk, Roman S.

    2014-01-01

    Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we

  17. Interactions of peptide amidation and copper: novel biomarkers and mechanisms of neural dysfunction.

    Science.gov (United States)

    Bousquet-Moore, Danielle; Prohaska, Joseph R; Nillni, Eduardo A; Czyzyk, Traci; Wetsel, William C; Mains, Richard E; Eipper, Betty A

    2010-01-01

    Mammalian genomes encode only a small number of cuproenzymes. The many genes involved in coordinating copper uptake, distribution, storage and efflux make gene/nutrient interactions especially important for these cuproenzymes. Copper deficiency and copper excess both disrupt neural function. Using mice heterozygous for peptidylglycine alpha-amidating monooxygenase (PAM), a cuproenzyme essential for the synthesis of many neuropeptides, we identified alterations in anxiety-like behavior, thermoregulation and seizure sensitivity. Dietary copper supplementation reversed a subset of these deficits. Wildtype mice maintained on a marginally copper-deficient diet exhibited some of the same deficits observed in PAM(+/-) mice and displayed alterations in PAM metabolism. Altered copper homeostasis in PAM(+/-) mice suggested a role for PAM in the cell type specific regulation of copper metabolism. Physiological functions sensitive to genetic limitations of PAM that are reversed by supplemental copper and mimicked by copper deficiency may serve as indicators of marginal copper deficiency.

  18. Mechanical Properties and Friction/Wear Behavior of Copper Alloyed Powder Composites

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    Copper alloyed powder composites containing nanoparticles were developed by hot pressing. Effects of nanoscale activated sintering aid and fine ceramic particles Al2O3 on hardness, working quality, and behaviors of friction and wear of the composites have been studied, compared with the composites including microscale activated sintering aid and microscale ceramic particles. The microstructures of the samples were analyzed by SEM. The results show that the materials with nanoscale sintering aid and fine ceramic particles have better mechanical properties and abrasive resistance than the materials with microscale activated sintering aid and microceramic particles. Moreover, element mutual transfer occurs between samples (strip) and abrasive wheel (ring).

  19. Mechanical Smoke Exhaust in Underground Transport Passage of Hydropower Station

    Directory of Open Access Journals (Sweden)

    Jiang Hu

    2012-09-01

    Full Text Available In this paper, the fire scenario occuring in the main transformer hall of an underground hydropower station is taken as an example of the mechanical smoke exhaust effect in the transport passage when the smoke spilled from the fired main transformer hall is analyzed by means of theoretical analysis, experiment and FDS simulation. Firstly, the mathematic correlations regarding the mechanical exhaust rate are derived through theoretical analysis. Secondly, a series of experiments are conducted to investigate the smoke spreading in the transport passage under different mechanical exhaust rates, and the same smoke spreading processes are simulated using FDS. By comparing the results of theoretical analysis, experiments and FDS simulations, it is showed that the mechanical exhaust rate prescribed in the regulation of China is adequate for the transport passage of main transformer under a main transformer hall fire.

  20. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  1. Investigation of Structure and Physico-Mechanical Properties of Composite Materials Based on Copper - Carbon Nanoparticles Powder Systems

    Directory of Open Access Journals (Sweden)

    Kovtun V.

    2015-04-01

    Full Text Available Physico-mechanical and structural properties of electrocontact sintered copper matrix- carbon nanoparticles composite powder materials are presented. Scanning electron microscopy revealed the influence of preliminary mechanical activation of the powder system on distribution of carbon nanoparticles in the metal matrix. Mechanical activation ensures mechanical bonding of nanoparticles to the surface of metal particles, thus giving a possibility for manufacture of a composite with high physico-mechanical properties.

  2. Effects of nanomolar copper on water plants—Comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George, E-mail: george.thomas@uni.kn [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: ha-jo.staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Wellenreuther, Gerd, E-mail: Gerd.wellenreuther@desy.de [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Dickinson, Bryan C., E-mail: bryan.dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: hendrik.kuepper@uni-konstanz.de [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-09-15

    Highlights: •We found different optimal Cu requirement for different physiological mechanisms. •Kinetics and concentration thresholds of damage mechanisms were established. •Cu toxicity caused internal Cu re-distribution and inhibition of Zn uptake. •Cu deficient plants released Cu, indicating lack of high-affinity Cu transporters. •Cu deficiency caused re-distribution of zinc in the plant. -- Abstract: Toxicity and deficiency of essential trace elements like Cu are major global problems. Here, environmentally relevant sub-micromolar concentrations of Cu (supplied as CuSO{sub 4}) and simulations of natural light- and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum. Growth was optimal at 10 nM Cu, while PSII activity (F{sub v}/F{sub m}) was maximal around 2 nM Cu. Damage to the PSII reaction centre was the first target of Cu toxicity, followed by disturbed regulation of heat dissipation (NPQ). Only after that, electron transport through PSII (Φ{sub PSII}) was inhibited, and finally chlorophylls decreased. Copper accumulation in the plants was stable until 10 nM Cu in solution, but strongly increased at higher concentrations. The vein was the main storage site for Cu up to physiological concentrations (10 nM). At toxic levels it was also sequestered to the epidermis and mesophyll until export from the vein became inhibited, accompanied by inhibition of Zn uptake. Copper deficiency led to a complete stop of growth at “0” nM Cu after 6 weeks. This was accompanied by high starch accumulation although electron flow through PSII (Φ{sub PSII}) decreased from 2 weeks, followed by decrease in pigments and increase of non photochemical quenching (NPQ). Release of Cu from the plants below 10 nM Cu supply in the nutrient solution indicated lack of high-affinity Cu transporters, and on the tissue level copper deficiency led to a re-distribution of zinc.

  3. Fluorescent copper(II complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2017-01-01

    Full Text Available Dinuclear copper(II complexes with formula [Cu2(L2(N32] (1 and [Cu2(L2(NCS2] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized by controlling the molar ratio of Cu(OAC2·6H2O, HL, sodium azide (1 and ammonium thiocyanate (2. The end on bridges appear exclusively in azide and thiocyanate to copper complexes. The electron transfer mechanism of copper(II complexes is examined by cyclic voltammetry indicating copper(II complexes are Cu(II/Cu(I couple. The interactions of copper(II complexes towards bovine serum albumin (BSA were examined with the help of absorption and fluorescence spectroscopic tools. We report a superficial solution-based route for the synthesis of micro crystals of copper complexes with BSA. The antibacterial activity of the Schiff base and its copper complexes were investigated by the agar disc diffusion method against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia and Bacillus cereus. It has been observed that the antibacterial activity of all complexes is higher than the ligand.

  4. Mercury bioaccumulation in the aquatic plant Elodea nuttallii in the field and in microcosm: accumulation in shoots from the water might involve copper transporters.

    Science.gov (United States)

    Regier, Nicole; Larras, Floriane; Bravo, Andrea Garcia; Ungureanu, Viorel-Gheorghe; Amouroux, David; Cosio, Claudia

    2013-01-01

    Previous studies suggest that macrophytes might participate in bioaccumulation and biomagnification of toxic mercury (Hg) in aquatic environment. Hg bioaccumulation and uptake mechanisms in macrophytes need therefore to be studied. Amongst several macrophytes collected in an Hg contaminated reservoir in Romania, Elodea nuttallii showed a high organic and inorganic Hg accumulation and was then further studied in the laboratory. Tolerance and accumulation of Hg of this plant was also high in the microcosm. Basipetal transport of inorganic Hg was predominant, whereas acropetal transport of methyl-Hg was observed with apparently negligible methylation or demethylation in planta. Hg concentrations were higher in roots>leaves>stems and in top>middle>bottom of shoots. In shoots, more than 60% Hg was found intracellularly where it is believed to be highly available to predators. Accumulation in shoots was highly reduced by cold, death and by competition with Cu(+). Hg in E. nuttallii shoots seems to mainly originate from the water column, but methyl-Hg could also be remobilized from the sediments and might drive in part its entry in the food web. At the cellular level, uptake of Hg into the cell sap of shoots seems linked to the metabolism and to copper transporters. The present work highlights an important breakthrough in our understanding of Hg accumulation and biomagnifications: the remobilization of methyl-Hg from sediments to aquatic plants and differences in uptake mechanisms of inorganic and methyl-Hg in a macrophyte.

  5. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further......, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic...

  6. Comparative study on the impact of copper sulphate and copper nitrate on the detoxification mechanisms in Typha latifolia.

    Science.gov (United States)

    Lyubenova, Lyudmila; Bipuah, Hanif; Belford, Ebenezer; Michalke, Bernhard; Winkler, Barbro; Schröder, Peter

    2015-01-01

    The present study focused on cupric sulphate and cupric nitrate uptake in Typha latifolia and the impact of these copper species on the plant's detoxification capacity. When the plants were exposed to 10, 50 and 100 μM cupric sulphate or cupric nitrate, copper accumulation in T. latifolia roots and shoots increased with rising concentration of the salts. Shoot to root ratios differed significantly depending on the form of copper supplementation, e.g. if it was added as cupric (II) sulphate or cupric (II) nitrate. After incubation with 100 μM of cupric sulphate, up to 450 mg Cu/kg fresh weight (FW) was accumulated, whereas the same concentration of cupric nitrate resulted in accumulation of 580 mg/kg FW. Furthermore, significant differences in the activity of some antioxidative enzymes in Typha roots compared to the shoots, which are essential in the plant's reaction to cope with metal stress, were observed. The activity of peroxidase (POX) in roots was increased at intermediate concentrations (10 and 50 μM) of CuSO4, whereas it was inhibited at the same Cu(NO3)2 concentrations. Ascorbate peroxidase (APOX) and dehydroascorbate reductase (DHAR) increased their enzyme activity intensely, which may be an indication for copper toxicity in T. latifolia plants. Besides, fluorodifen conjugation by glutathione S-transferases (GSTs) was increased up to sixfold, especially in roots.

  7. Final report on characterization of physical and mechanical properties of copper and copper alloys before and after irradiation. (ITER R and D Task no. T213)

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Taehtinen, S. [VTT Manufacturing Technology (Finland)

    2001-12-01

    The present report summarizes and highlights the main results of the work carried out during the last 5 - 6 years on effects of neutron irradiation on physical and mechanical properties of copper and copper alloys. The work was an European contribution to ITER Research and Development programme and was carried out by the Associations Euratom - Risoe and Euratom - Tekes. Details of the investigations carried out within the framework of the present task and the main results have been reported in various reports and journal publication. On the basis of these results some conclusions are drawn regarding the suitability of a copper alloy for its use in the first wall and divertor components of ITER. It is pointed out that the present work has managed only to identify some of the critical problems and limitations of the copper alloys for their employment in the hostile environment of 14 MeV neutrons. A considerable amount of further effort is needed to find a realistic and optimum solution. (au)

  8. The molecular mechanism for nuclear transport and its application.

    Science.gov (United States)

    Kim, Yun Hak; Han, Myoung-Eun; Oh, Sae-Ock

    2017-06-01

    Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.

  9. Effects of different friction stir welding conditions on the microstructure and mechanical properties of copper plates

    Science.gov (United States)

    Nia, Ali Alavi; Shirazi, Ali

    2016-07-01

    Friction stir welding is a new and innovative welding method used to fuse materials. In this welding method, the heat generated by friction and plastic flow causes significant changes in the microstructure of the material, which leads to local changes in the mechanical properties of the weld. In this study, the effects of various welding parameters such as the rotational and traverse speeds of the tool on the microstructural and mechanical properties of copper plates were investigated; additionally, Charpy tests were performed on copper plates for the first time. Also, the effect of the number of welding passes on the aforementioned properties has not been investigated in previous studies. The results indicated that better welds with superior properties are produced when less heat is transferred to the workpiece during the welding process. It was also found that although the properties of the stir zone improved with an increasing number of weld passes, the properties of its weakest zone, the heat-affected zone, deteriorated.

  10. MECHANICAL PROPERTIES OF PVA NANOFIBER TEXTILES WITH INCORPORATED NANODIAMONDS, COPPER AND SILVER IONS

    Directory of Open Access Journals (Sweden)

    Kateřina Indrová

    2015-02-01

    Full Text Available The unique properties of nanotextiles based on poly(vinyl-alcohol (PVA manufactured using electrospinning method have been known and exploited for many years. Recently, the enrichment of nanofiber textiles with nanoparticles, such as ions or nanodiamond particles (NDP, has become a popular way to modify the textile mechanical, chemical and physical properties. The aim of our study is to investigate the macromechanical properties of PVA nanotextiles enriched with NDP, silver (Ag and copper (Cu ions. The nanofiber textiles of a various surface weight were prepared from 16% PVA solution, while glyoxal and phosphoric acid were used as cross-linking agents. The copper and silver ions were diluted in aqueous solution and NDP were dispersed into the fibers by ultrasound homogenization. All but one set of samples were exposed to the temperature of 140 °C for 10 minutes. The samples without thermal stabilization exhibited significantly lower elastic stiffness and tensile strength. Moreover, the results of tensile testing indicate that the addition of dispersed nanoparticles has a minor effect on the mechanical properties of textiles and contributes rather to their reinforcement. On the other hand, the lack of thermal stabilization results in a poor interconnection of individual nanofiber layers and the non-stabilized textiles exhibit a lower elastic stiffness and reduced tensile strength.

  11. Mechanism of copper(II)-induced misfolding of Parkinson's disease protein.

    Science.gov (United States)

    Rose, Frisco; Hodak, Miroslav; Bernholc, Jerzy

    2011-01-01

    α-synuclein (aS) is a natively unfolded pre-synaptic protein found in all Parkinson's disease patients as the major component of fibrillar plaques. Metal ions, and especially Cu(II), have been demonstrated to accelerate aggregation of aS into fibrillar plaques, the precursors to Lewy bodies. In this work, copper binding to aS is investigated by a combination of quantum and molecular mechanics simulations. Starting from the experimentally observed attachment site, several optimized structures of Cu-binding geometries are examined. The most energetically favorable attachment results in significant allosteric changes, making aS more susceptible to misfolding. Indeed, an inverse kinematics investigation of the configuration space uncovers a dynamically stable β-sheet conformation of Cu-aS that serves as a nucleation point for a second β-strand. Based on these findings, we propose an atomistic mechanism of copper-induced misfolding of aS as an initial event in the formation of Lewy bodies and thus in PD pathogenesis.

  12. Time Dependent Dielectric Breakdown in Copper Low-k Interconnects: Mechanisms and Reliability Models

    Directory of Open Access Journals (Sweden)

    Terence K.S. Wong

    2012-09-01

    Full Text Available The time dependent dielectric breakdown phenomenon in copper low-k damascene interconnects for ultra large-scale integration is reviewed. The loss of insulation between neighboring interconnects represents an emerging back end-of-the-line reliability issue that is not fully understood. After describing the main dielectric leakage mechanisms in low-k materials (Poole-Frenkel and Schottky emission, the major dielectric reliability models that had appeared in the literature are discussed, namely: the Lloyd model, 1/E model, thermochemical E model, E1/2 models, E2 model and the Haase model. These models can be broadly categorized into those that consider only intrinsic breakdown (Lloyd, 1/E, E and Haase and those that take into account copper migration in low-k materials (E1/2, E2. For each model, the physical assumptions and the proposed breakdown mechanism will be discussed, together with the quantitative relationship predicting the time to breakdown and supporting experimental data. Experimental attempts on validation of dielectric reliability models using data obtained from low field stressing are briefly discussed. The phenomenon of soft breakdown, which often precedes hard breakdown in porous ultra low-k materials, is highlighted for future research.

  13. Flexible oligocholate foldamers as membrane transporters and their guest-dependent transport mechanism.

    Science.gov (United States)

    Zhang, Shiyong; Zhao, Yan

    2012-01-14

    Dimeric, trimeric, and tetrameric oligocholates with flexible 4-aminobutyroyl spacers caused the efflux of hydrophilic molecules such as carboxyfluorescein (CF) and glucose from POPC/POPG liposomes. Transport was greatly suppressed across higher-melting DPPC membranes. Lipid-mixing assays and dynamic light scattering (DLS) indicated that the liposomes were intact during the transport. Kinetic analysis supported the involvement of monomeric species in the rate-limiting step of CF transport, consistent with a carrier-based mechanism. Glucose transport, on the other hand, displayed a highly unusual zero-order dependence on the oligocholate concentration at low loading of the transporter. Different selectivity was observed in the oligocholate transporters depending on the guest involved.

  14. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  15. Resveratrol mobilizes endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: a putative mechanism for chemoprevention of cancer.

    Science.gov (United States)

    Hadi, S M; Ullah, M F; Azmi, A S; Ahmad, A; Shamim, U; Zubair, H; Khan, H Y

    2010-06-01

    Plant polyphenols are important components of human diet, and a number of them are considered to possess chemopreventive and therapeutic properties against cancer. They are recognized as naturally occurring anti-oxidants but also act as pro-oxidants catalyzing DNA degradation in the presence of metal ions such as copper. The plant polyphenol resveratrol confers resistance to plants against fungal agents and has been implicated as a cancer chemopreventive agent. Of particular interest is the observation that resveratrol has been found to induce apoptosis in cancer cell lines but not in normal cells. Over the last few years, we have shown that resveratrol is capable of causing DNA breakage in cells such as human lymphocytes. Such cellular DNA breakage is inhibited by copper specific chelators but not by iron and zinc chelating agents. Similar results are obtained by using permeabilized cells or with isolated nuclei, indicating that chromatin-bound copper is mobilized in this reaction. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and resveratrol to generate reactive oxygen species responsible for DNA cleavage. The results are in support of our hypothesis that anti-cancer mechanism of plant polyphenols involves mobilization of endogenous copper and the consequent pro-oxidant action. Such a mechanism better explains the anti-cancer effects of resveratrol, as it accounts for the preferential cytotoxicity towards cancer cells.

  16. Mechanisms and energetics of surface reactions at the copper-water interface. A critical literature review with implications for the debate on corrosion of copper in anoxic water

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Adam Johannes; Brinck, Tore [Applied Physical Chemistry, KTH Royal Inst. of Technology, Stockholm (Sweden)

    2012-06-15

    hydroxide ML on top of an oxide ML would give 7.2 ng cm{sup -2} copper surface. Another factor that determines the amount of H{sub 2} that could be formed is the roughness of the copper surface. Mechanically polished copper surfaces has roughly twice the surface area of an ideally planar surface (on which the estimates above are based) and could thus form up to about 14 ng H{sub 2} per cm{sup 2} macroscopic copper surface. This amount is less than six times lower than the largest amount of hydrogen gas detected per surface area in any published experimental study. Possibly, the water cleavage/ hydrogen-formation reaction could proceed even further via diffusion of the adsorbed species into the bulk metal, or through extensive surface reconstruction.

  17. Study of the interaction mechanism in the biosorption of copper(II) ions onto posidonia oceanica and peat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Marta; Marzal, Paula; Gabaldon, Carmen [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, Valencia (Spain); Silvetti, Margherita; Castaldi, Paola [Dipartimento di Scienze Ambientali e Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Sassari (Italy)

    2012-04-15

    A systematic approach was used to characterize the biosorption of copper(II) onto two biosorbents, Posidonia oceanica and peat, focusing on the interaction mechanisms, the copper(II) sorption-desorption process and the thermal behavior of the biosorbents. Sorption isotherms at pH 4-6 were obtained and the experimental data were fitted to the Langmuir model with a maximum uptake (q{sub max}) at pH 6 of 85.78 and 49.69 mg g{sup -1}, for P. oceanica and peat, respectively. A sequential desorption (SD) with water, Ca(NO{sub 3}){sub 2}, and EDTA was applied to copper-saturated biosorbents. Around 65-70% copper(II) were desorbed with EDTA, indicating that this heavy metal was strongly bound. The reversibility of copper(II) sorption was obtained by desorption with HCl and SD. Fourier transform IR spectroscopy (FTIR) analysis detected the presence of peaks associated with OH groups in aromatic and aliphatic structures, CH, CH{sub 2}, and CH{sub 3} in aliphatic structures, COO{sup -} and COOH groups and unsaturated aromatic structures on the surface of both biosorbents, as well as peaks corresponding to Si-O groups on the surface of peat. The results of SEM-EDX and FTIR analysis of copper-saturated samples demonstrated that ion exchange was one of the mechanisms involved in copper(II) retention. Thermal analysis of biosorbent samples showed that copper(II) sorption-desorption processes affected the thermal stability of the biosorbents. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Transport of contaminants in geologic media: Radioactive waste in salt, corrosion of copper, and colloid migration

    Science.gov (United States)

    Hwang, Yong Soo

    Analytical and numerical models on mass transfer of radionuclides from a waste package to surrounding rock are analyzed. Based on developed models corresponding computer programs are developed. These models would be used to evaluate possible hazardous radionuclide release rates into the surrounding rock/biosphere. Specifically the following fields are studied. (1) Analysis on the possible copper canister pitting corrosion by sulfide intrusion is performed to predict the canister lifetime. The study includes both steady-state and time-dependent cases. (2) Analysis on the brine migration in a salt repository is studied. Brine was traditionally thought to be the major factor on radionuclide migration in salt. But results given in this dissertation provide that the brine migration velocity is small enough to be neglected. Two analyses are developed for open bore hole as well as consolidated salt cases. (3) Analysis on the radionuclide migration in a salt repository is carried out. After proving that the diffusion is a dominant migration mechanism, the time-dependent diffusive mass transfer theory is used to predict fractional release rates of low-soluble as well as highly-soluble nuclides. Also the steady-state radionuclide migration through interbeds is analyzed based on the potential flow theory. Finally assuming no advective flow inside interbeds the transient radionuclide migration into interbeds is studied. Results show that salt is a good host rock for a future high-level waste repository. (4) Analysis on the radiocolloid migration through the porous media with filtration effect is performed. Results show that due to the strong filtration radiocolloid would not migrate significant distance in geologic media. Cylindrical geometry is used. For this analysis due to the complexity of the prescribed problem the numerical analysis based on upwind scheme is developed. (5) Analysis on the radiocolloid migration through fractures with solute matrix diffusion into

  19. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-09-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  20. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation.

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-12-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  1. Potassium sorbate as an inhibitor in copper chemical mechanical planarization slurry. Part I. Elucidating slurry chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagar, Magi; Starosvetsky, David [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel); Vaes, Jan [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Ein-Eli, Yair, E-mail: eineli@tx.technion.ac.i [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel)

    2010-04-01

    The integration of an advanced inhibitor, potassium sorbate (K[CH{sub 3}(CH){sub 4}CO{sub 2}]), in a copper CMP slurry based on hydrogen peroxide and glycine is reported. The first part of the study discusses the slurry chemistry by qualitatively describing the processes involved and proposes a mechanism for a hydrogen peroxide-glycine based slurry having sorbate anion as an inhibitor. For this purpose, the specific role of each chemical constituent in the slurry was elucidated at a fundamental level by electrochemical studies, X-ray photon spectroscopy (XPS) and contact angle measurements, all linked to the CMP performance on blanket wafers. Once the polishing mechanism was resolved the influence of the inhibitor was evaluated by CMP processing of patterned wafers.

  2. Integration of XAS and NMR techniques for the structure determination of metalloproteins. Examples from the study of copper transport proteins.

    Science.gov (United States)

    Banci, Lucia; Bertini, Ivano; Mangani, Stefano

    2005-01-01

    Nuclear magnetic resonance (NMR) is a powerful technique for protein structure determination in solution. However, when dealing with metalloproteins, NMR methods are unable to directly determine the structure of the metal site and its coordination geometry. The capability of X-ray absorption spectroscopy (XAS) to provide the structure of a metal ion bound to a protein is then perfectly suited to complement the process of the structure determination. This aspect is particularly relevant in structural genomic projects where high throughput of structural results is the main goal. The synergism of the two techniques has been exploited in the structure determination of bacterial copper transport proteins.

  3. Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism

    Science.gov (United States)

    Attieh, Z. K.; Mukhopadhyay, C. K.; Seshadri, V.; Tripoulas, N. A.; Fox, P. L.

    1999-01-01

    The balance required to maintain appropriate cellular and tissue iron levels has led to the evolution of multiple mechanisms to precisely regulate iron uptake from transferrin and low molecular weight iron chelates. A role for ceruloplasmin (Cp) in vertebrate iron metabolism is suggested by its potent ferroxidase activity catalyzing conversion of Fe2+ to Fe3+, by identification of yeast copper oxidases homologous to Cp that facilitate high affinity iron uptake, and by studies of "aceruloplasminemic" patients who have extensive iron deposits in multiple tissues. We have recently shown that Cp increases iron uptake by cultured HepG2 cells. In this report, we investigated the mechanism by which Cp stimulates cellular iron uptake. Cp stimulated the rate of non-transferrin 55Fe uptake by iron-deficient K562 cells by 2-3-fold, using a transferrin receptor-independent pathway. Induction of Cp-stimulated iron uptake by iron deficiency was blocked by actinomycin D and cycloheximide, consistent with a transcriptionally induced or regulated transporter. Cp-stimulated iron uptake was completely blocked by unlabeled Fe3+ and by other trivalent cations including Al3+, Ga3+, and Cr3+, but not by divalent cations. These results indicate that Cp utilizes a trivalent cation-specific transporter. Cp ferroxidase activity was required for iron uptake as shown by the ineffectiveness of two ferroxidase-deficient Cp preparations, copper-deficient Cp and thiomolybdate-treated Cp. We propose a model in which iron reduction and subsequent re-oxidation by Cp are essential for an iron uptake pathway with high ion specificity.

  4. Evaluating the Mechanism of Oxalate Synthesis of Fibroporia Radiculosa Isolates Adapting to Copper-Tolerance

    Science.gov (United States)

    Katie Marie Jenkins

    2012-01-01

    Despite the drawbacks associated with tolerant organisms, copper is still used as the key component in current wood preservatives. Copper-tolerant fungi, like Fibroporia radiculosa, produce and accumulate high levels of oxalate in response to copper. The biosynthesis of oxalate has been connected to specific enzymes in the glyoxylate and...

  5. The Mechanism of the Copper Ion Catalyzed Autoxidation of Cysteine in Alkaline Medium

    NARCIS (Netherlands)

    Koningsberger, D.C.; Zwart, J.; Wolput, J.H.M.C. van

    1981-01-01

    Quantitative e.s.r. measurements carried out during the copper catalysed alkaline autoxidation of cysteine show that the Cu(II)-dicysteine complex represents almost the total amount of copper. Only a small fraction (<2%) of the copper ions might be present in a state which is not detectable by e.s.r

  6. Analysis of Yttrium-Barium-Copper-Oxide by x ray diffraction and mechanical characterization

    Science.gov (United States)

    Arsenovic, Petar

    1992-01-01

    The efforts in developing high-temperature superconductor (HTSC) YBa2Cu3O7 electrical leads are to benefit future NASA missions that will carry payloads with sensitive instruments operating at cryogenic temperatures. Present-day leads made of copper or magnesium are responsible for as much as 50 percent of the parasitic heat load on cryogenic systems. A reduction of this load could be achieved by replacing the conventional materials with HTSC ceramic electrical leads. Superconductor quality has become a concern in the industry, as has the development of effective evaluation methods. The factors that need to be examined for these materials include material purity, mechanical properties, and superconducting ability below the critical temperature. We applied several methods to study these factors: thermogravimetric analysis, x-ray diffraction, tensile testing, and laser-generated ultrasound. Our objectives were to determine the average tensile strength and Young's modulus of the HTSC material and to compare them to those values for copper and manganin.

  7. Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process

    Directory of Open Access Journals (Sweden)

    Qinmeng Wang

    2017-08-01

    Full Text Available The control of arsenic, a toxic and carcinogenic element, is an important issue for all copper smelters. In this work, the reaction mechanism and distribution behavior of arsenic in the bottom blown copper smelting process (SKS process were investigated and compared to the flash smelting process. There are obvious differences of arsenic distribution in the SKS process and flash process, resulting from the differences of oxygen potentials, volatilizations, smelting temperatures, reaction intensities, and mass transfer processes. Under stable production conditions, the distributions of arsenic among matte, slag, and gas phases are 6%, 12%, and 82%, respectively. Less arsenic is reported in the gas phase with the flash process than with the SKS process. The main arsenic species in gas phase are AsS (g, AsO (g, and As2 (g. Arsenic exists in the slag predominantly as As2O3 (l, and in matte as As (l. High matte grade is harmful to the elimination of arsenic to gas. The changing of Fe/SiO2 has slight effects on the distributions of arsenic. In order to enhance the removal of arsenic from the SKS smelting system to the gas phase, low oxygen concentration, low ratios of oxygen/ore, and low matte grade should be chosen. In the SKS smelting process, no dust is recycled, and almost all dust is collected and further treated to eliminate arsenic and recover valuable metals by other process streams.

  8. Microstructure and mechanical behavior of copper coated multiwall carbon nanotubes reinforced aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagannatham, M.; Sankaran, S.; Haridoss, Prathap, E-mail: prathap@iitm.ac.in

    2015-06-25

    Electroless copper coatings were performed on purified carbon nanotubes (CNT), with varying deposition time and the optimum deposition time in terms of uniform deposition was determined to be 45 min. Different amounts of optimized Cu coated CNT (CNT (Cu)) and Al powders were ball milled. CNT (Cu) reinforced Al (Al-CNT (Cu)) composites were prepared by spark plasma sintering (SPS). Pure CNT reinforced Al (Al-CNT) composites were also prepared by SPS. The ball milled powders and composites were characterized using X-Ray diffraction, scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy (TEM). Microhardness and compression properties of the composites were measured. TEM images of ball milled powders and composites revealed uniform distribution of CNT in matrix. Mechanical properties of Al-CNT (Cu) composites are superior to Al-CNT composites. The maximum enhancement in compressive strength of Al-CNT (Cu) composites is 154% for 2 wt% reinforcement; this enhancement is attributed to the copper coating on CNT surface.

  9. Investigation of pad staining and its effect on removal rate in copper chemical mechanical planarization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H., E-mail: Hyo.sang.Lee@Novellus.co [Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Novellus Systems, Inc., San Jose, CA 95134 (United States); Zhuang, Y. [Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Araca, Inc., Tucson, AZ 85718 (United States); Borucki, L. [Araca, Inc., Tucson, AZ 85718 (United States); Joh, S.; O' Moore, F. [Novellus Systems, Inc., San Jose, CA 95134 (United States); Philipossian, A. [Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Araca, Inc., Tucson, AZ 85718 (United States)

    2010-10-29

    In copper chemical mechanical planarization process, stains are often generated on the pad surface due to the build-up of polishing by-products. Pad staining is a major concern because it might affect defect, non-uniformity across the wafer, and removal rate variation during polishing. In this study, the characteristics of stains formed on an IC1000 XY grooved pad obtained under various polishing conditions were investigated. In addition, wafers were polished on an IC1000 plain pad to determine the effect of hydrodynamic pressure on staining pattern. Experiments were performed on a table-top axisymmetric polishing system consisting of a 300-mm non-rotating platen and 100-mm rotating wafers. Stains were successfully generated on the pad surface and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the stains contained copper polishing by-products. As the stains deposited on the pad land areas were darker in the direction of wafer rotation as well as in the pad radial direction, it was believed that staining agents were produced during polishing and subsequently advected downstream by the slurry flow. Although staining increased with polishing pressure, wafer rotation rate, polishing time and slurry flow rate, it did not seem to affect removal rate. The white light interferometric analysis indicated that the stains did not physically change the pad surface topography. It was observed that the hydrodynamic pressure significantly impacted the staining pattern on an IC1000 plain pad.

  10. Electrochemical characterization of copper chemical mechanical planarization in KIO{sub 3} slurry

    Energy Technology Data Exchange (ETDEWEB)

    Du Tianbao; Tamboli, Dnyanesh; Luo Ying; Desai, Vimal

    2004-05-15

    Chemical mechanical polishing (CMP) of copper was performed using KIO{sub 3} as oxidizer and alumina particles as abrasives. For planarization of the surface morphology, the control of the surface passivation of Cu is critical during polishing. The copper removal rate decreased dramatically with increasing slurry pH without and with 0.1 M KIO{sub 3}. However, the removal rate is lower at pH 2 in slurry with 0.1 M KIO{sub 3}. The interaction between the Cu and the slurry was investigated by potentiodynamic and electrochemical impedance spectroscopy measurements under static condition. The electrochemical measurements revealed higher corrosion susceptibility at pH 2. XPS analysis indicates the severe precipitation of CuI on Cu at pH 2 in solution with 0.1 M KIO{sub 3}. The lower removal rate at pH 2 could be due to the reduced friction force of the pad with the precipitation of CuI on it. Atomic force microscopic (AFM) measurements were performed on both the etched surface and polished surface. It was shown that the surface roughness of the polished surfaces is better at pH 4 than that of pH 2.

  11. Increased coordination in public transport – which mechanisms are available?

    DEFF Research Database (Denmark)

    Sørensen, Claus Hedegaard; Longva, Frode

    2011-01-01

    After several years of New Public Management reforms within public transport, coordination seems to receive increased attention. With examples of actual as well as suggested changes taken from Denmark, Sweden and the UK the aim of the article is to analyse and classify the mechanisms utilized...... and suggested to increase coordination between core stakeholders within passenger railway services and bus services. Four distinctive mechanisms of coordination are suggested, namely organisational coordination, contractual coordination, partnership coordination and discursive coordination. Each coordination...

  12. Urinary copper elevation in a mouse model of Wilson's disease is a regulated process to specifically decrease the hepatic copper load.

    Directory of Open Access Journals (Sweden)

    Lawrence W Gray

    Full Text Available Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD, this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT imaging of live Atp7b(-/- mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b(-/- livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1(-/- knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD.

  13. Urinary copper elevation in a mouse model of Wilson's disease is a regulated process to specifically decrease the hepatic copper load.

    Science.gov (United States)

    Gray, Lawrence W; Peng, Fangyu; Molloy, Shannon A; Pendyala, Venkata S; Muchenditsi, Abigael; Muzik, Otto; Lee, Jaekwon; Kaplan, Jack H; Lutsenko, Svetlana

    2012-01-01

    Body copper homeostasis is regulated by the liver, which removes excess copper via bile. In Wilson's disease (WD), this function is disrupted due to inactivation of the copper transporter ATP7B resulting in hepatic copper overload. High urinary copper is a diagnostic feature of WD linked to liver malfunction; the mechanism behind urinary copper elevation is not fully understood. Using Positron Emission Tomography-Computed Tomography (PET-CT) imaging of live Atp7b(-/-) mice at different stages of disease, a longitudinal metal analysis, and characterization of copper-binding molecules, we show that urinary copper elevation is a specific regulatory process mediated by distinct molecules. PET-CT and atomic absorption spectroscopy directly demonstrate an age-dependent decrease in the capacity of Atp7b(-/-) livers to accumulate copper, concomitant with an increase in urinary copper. This reciprocal relationship is specific for copper, indicating that cell necrosis is not the primary cause for the initial phase of metal elevation in the urine. Instead, the urinary copper increase is associated with the down-regulation of the copper-transporter Ctr1 in the liver and appearance of a 2 kDa Small Copper Carrier, SCC, in the urine. SCC is also elevated in the urine of the liver-specific Ctr1(-/-) knockouts, which have normal ATP7B function, suggesting that SCC is a normal metabolite carrying copper in the serum. In agreement with this hypothesis, partially purified SCC-Cu competes with free copper for uptake by Ctr1. Thus, hepatic down-regulation of Ctr1 allows switching to an SCC-mediated removal of copper via kidney when liver function is impaired. These results demonstrate that the body regulates copper export through more than one mechanism; better understanding of urinary copper excretion may contribute to an improved diagnosis and monitoring of WD.

  14. Generic Transport Mechanisms for Molecular Traffic in Cellular Protrusions

    Science.gov (United States)

    Graf, Isabella R.; Frey, Erwin

    2017-03-01

    Transport of molecular motors along protein filaments in a half-closed geometry is a common feature of biologically relevant processes in cellular protrusions. Using a lattice-gas model we study how the interplay between active and diffusive transport and mass conservation leads to localized domain walls and tip localization of the motors. We identify a mechanism for task sharing between the active motors (maintaining a gradient) and the diffusive motion (transport to the tip), which ensures that energy consumption is low and motor exchange mostly happens at the tip. These features are attributed to strong nearest-neighbor correlations that lead to a strong reduction of active currents, which we calculate analytically using an exact moment identity, and might prove useful for the understanding of correlations and active transport also in more elaborate systems.

  15. Richardson-Schottky transport mechanism in ZnS nanoparticles

    Science.gov (United States)

    Ali, Hassan; Khan, Usman; Rafiq, M. A.; Falak, Attia; Narain, Adeela; Jing, Tang; Xu, Xiulai

    2016-05-01

    We report the synthesis and electrical transport mechanism in ZnS semiconductor nanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltage characteristics. The experimental value of barrier lowering coefficient βexp lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient βth,RS showing Richardson-Schottky emission has been responsible for conduction in ZnS nanoparticles for the temperature range studied.

  16. Richardson-Schottky transport mechanism in ZnS nanoparticles

    Directory of Open Access Journals (Sweden)

    Hassan Ali

    2016-05-01

    Full Text Available We report the synthesis and electrical transport mechanism in ZnS semiconductor nanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltage characteristics. The experimental value of barrier lowering coefficient βexp lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient βth,RS showing Richardson-Schottky emission has been responsible for conduction in ZnS nanoparticles for the temperature range studied.

  17. Metamaterials in microwaves, optics, mechanics, thermodynamics, and transport

    Science.gov (United States)

    Koschny, Thomas; Soukoulis, Costas M.; Wegener, Martin

    2017-08-01

    We review the status of metamaterials on the occasion of the 15th birthday of the field with particular emphasis on our own contributions. Metamaterials in electromagnetism, mechanics, thermodynamics, and transport are covered. We emphasize that 3D printing, also known as additive manufacturing, inspires metamaterials—and vice versa.

  18. [Hopping and superexchange mechanisms of charge transport to DNA].

    Science.gov (United States)

    Lakhno, V D; Sultanov, V B

    2003-01-01

    A theory for charge transport in nucleobase sequences was constructed in which the hole migration proceeds via hopping between guanines. Each hop over the adenine-thymine (A-T) bridge connecting neighboring guanines occurs by means of the superexchange mechanism. The experimental data and theoretical results for various types of nucleobase sequences are compared.

  19. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, F.W.

    1990-08-01

    At present, the mechanism for anomalous energy transport in low-{beta} toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E {times} B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs.

  20. Predicting Soil Physical Parameters and Copper Transport in a Polluted Field From X Ray CT-Images

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Naveed, Muhammad; Møldrup, Per

    2013-01-01

    The development of 3D imaging techniques provides non-destructive tools to reveal the soil structure. X-ray computed tomography (CT) analysis has succeeded in predicting pore network properties such as macropore size distribution, tortuosity, and hydraulic properties. Since contaminant transport...... in soils is strongly controlled by the soil structure, the capabilities of these visualization techniques could be used to predict the risk of pollutants leaching. This work was carried out using soils from a field site (Hygum) in Jutland, Denmark, a historical copper (Cu) polluted field cultivated for 80...... to the volume of each soil column. Leaching experiments were performed to analyze tritium transport, colloid leaching and dissolved organic carbon and Cu losses associated with particles or dissolved organic matter (DOM). Air permeability and saturated hydraulic conductivity were measured before and after...

  1. Effects of lead exposure on copper and copper transporters in choroid plexus of rats%染铅大鼠脉络丛中铜及铜转运蛋白的变化

    Institute of Scientific and Technical Information of China (English)

    赵会新; 杨辉; 闫立成; 蒋守芳; 薛玲; 赵海鹰; 关维俊; 庞淑兰; 张艳淑

    2014-01-01

    Objective To investigate the effects of lead exposure on the copper concentration in the brain and serum and the expression of copper transporters in the choroid plexus among rats.Methods Sixty specific pathogen-free Sprague-Dawley rats were randomly divided into a control group and three lead-exposed groups,with 8 mice in each group.The lead-exposed groups were orally administrated with 500 (low-dose group),1 000 (middle-dose group),and 2 000 mg/L (high-dose group) lead acetate in drinking water for eight weeks.And the rats in control group were given 2 000 mg/L sodium acetate in drinking water.The content of lead and copper in the serum,hippocampus,cortex,choroid plexus,bones,and cerebrospinal fluid (CSF) was determined by inductively coupled plasma-mass spectrometry (ICP-MS).Confocal and real-time PCR methods were applied to measure the expression of copper transporters including copper transporter 1 (Ctr1),antioxidant protein 1 (ATX1),and Cu ATPase (ATP7A).Results Compared with the control group,the lead-exposed groups showed significantly higher lead concentrations in the serum,cortex,hippocampus,choroid plexus,CSF,and bones (P<0.05) and significantly higher copper concentrations in the CSF,choroid plexus,serum,and hippocampus (P<0.05).Confocal images showed that Ctr1 protein was expressed in the cytoplasm and cell membrane of choroid plexus in control group.However,Ctr1 migrated to CSF surface microvilli after lead exposure.Ctr1 fluorescence intensity gradually increased with increasing dose of lead,except that the middledose group had a higher Ctr1 fluorescence intensity than the high-dose group.In addition,the middle-and highdose groups showed a lower ATX1 fluorescence intensity compared with the control group.Real-time PCR data indicated that the three lead-exposed groups showed significantly higher mRNA levels of Ctr1 and ATP7A compared with the control group (P<0.05).Conclusion Copper homeostasis in the choroid plexus is affected by lead exposure

  2. Breakdown conditioning of copper, CuZr and GlidCop® : effect of mechanical surface treatments

    CERN Document Server

    Ramsvik, T; Calatroni, S; Taborelli, M; CERN. Geneva. TS Department

    2007-01-01

    Motivated by the need of novel materials for the CLIC accelerating structures to resist mechanical fatigue, the copper based metals Copper Zirconium C15000 (CuZr) and GlidCop® Al-15 C15715 have been investigated by DC breakdown measurements, and compared with commercially pure Oxygen-free Copper C10100 (Cu-OFE). In all three cases the saturated breakdown fields (Esat) are similar, despite significant differences in their tensile strengths. In addition, the choice of mechanical surface preparation techniques influences the final breakdown characteristics. For both CuZr and GlidCop® immediate conditioning takes place when the surfaces are prepared by milling. For electro discharge machined (EDM) surfaces, however, several breakdown events are needed to obtain saturation. Specifically, for EDM treated CuZr and GlidCop®, ~50 and ~200 breakdown events are required to reach Esat.

  3. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    Science.gov (United States)

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  4. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    Science.gov (United States)

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  5. Investigation of iron metabolism in mice expressing a mutant Menke's copper transporting ATPase (Atp7a protein with diminished activity (Brindled; Mo (Br (/y .

    Directory of Open Access Journals (Sweden)

    Sukru Gulec

    Full Text Available During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1. Moreover, two ferroxidase proteins involved in iron homeostasis, hephaestin expressed in enterocytes and ceruloplasmin, produced and secreted into blood by the liver, are copper-dependent enzymes. We thus aimed to test the hypothesis that Atp7a function is important for the copper-related compensatory response of the intestinal epithelium to iron deficiency. Accordingly, iron homeostasis was studied for the first time in mice expressing a mutant Atp7a protein with minimal activity (Brindled [Mo (Br (/y ]. Mutant mice were rescued by perinatal copper injections, and, after a 7-8 week recovery period, were deprived of dietary iron for 3 weeks (along with WT littermates. Adult Mo (Br (/y mice displayed copper-deficiency anemia but had normal iron status; in contrast, iron-deprived Mo (Br (/y mice were iron deficient and more severely anemic with partial amelioration of the copper-deficient phenotype. Intestinal iron absorption in both genotypes (WT and Mo (Br (/y increased ∼3-fold when mice consumed a low-iron diet and ∼6-fold when mice were concurrently bled. WT mice exhibited no alterations in copper homeostasis in response to iron deprivation or phlebotomy. Conversely, upregulation of iron absorption was associated with increased enterocyte and liver copper levels and serum ferroxidase (ceruloplasmin activity in Mo (Br (/y mice, typifying the response to iron deprivation in many mammalian species. We thus speculate that a copper threshold exists that is necessary to allow appropriate regulate of iron absorption. In summary, Mo (Br (/y mice were able to adequately regulate iron absorption

  6. Slurry Chemical Corrosion and Galvanic Corrosion during Copper Chemical Mechanical Polishing

    Science.gov (United States)

    Kondo, Seiichi; Sakuma, Noriyuki; Homma, Yoshio; Ohashi, Naofumi

    2000-11-01

    Copper (Cu) corrosion during chemical mechanical polishing (CMP) was controlled in order to improve the Cu damascene interconnect process. Slurry chemical corrosion was found to be enhanced when the slurry was diluted by deionized (DI) water during rinsing just after CMP@. Since the corrosion inhibitor, benzotriazole (BTA), reduces the Cu removal rate, adding it to the rinse solution prevents chemical corrosion more effectively than adding it to the slurry. On the other hand, galvanic corrosion occurs at the interface between Cu and the barrier metal, and it can be prevented by selecting appropriate barrier metals. Because the difference between the electrochemical potentials of Cu and the barrier metal is small in the slurry, refractory metals such as Ta, TaN, and TiN were found to be appropriate barrier metals. On the other hand, W, WN, and Ti have large potential differences, so galvanic corrosion was clearly observed when Cu/W damascene interconnects were fabricated.

  7. Copper-catalyzed activation of molecular oxygen for oxidative destruction of acetaminophen: The mechanism and superoxide-mediated cycling of copper species.

    Science.gov (United States)

    Zhang, Yunfei; Fan, Jinhong; Yang, Bo; Huang, Wutao; Ma, Luming

    2017-01-01

    In this study, the commercial zero-valent copper (ZVC) was investigated to activate the molecular oxygen (O2) for the degradation of acetaminophen (ACT). 50 mg/L ACT could be completely decomposed within 4 h in the ZVC/air system at initial pH 3.0. The H2O2, hydroxyl radical (OH) and superoxide anion radical (O2(-)) were identified as the main reactive oxygen species (ROSs) generated in the above reaction; however, only OH caused the decomposition and mineralization of ACT in the copper-catalyzed O2 activation process. In addition, the in-situ generated Cu(+) from ZVC dissolution not only activated O2 to produce H2O2, but also initiated the decomposition of H2O2 to generate OH. Meanwhile, the H2O2 could also be partly decomposed into O2(-), which served as a mediator for copper cycling by reduction of Cu(2+) to Cu(+) in the ZVC/air system. Therefore, OH could be continuously generated; and then ACT was effectively degraded. Additionally, the effect of solution pH and the dosage of ZVC were also investigated. As a result, this study indicated the key behavior of the O2(-) during Cu-catalyzed activation of O2, which further improved the understanding of O2 activation mechanism by zero-valent metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

    Directory of Open Access Journals (Sweden)

    Jonathon eTelianidis

    2013-08-01

    Full Text Available Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer’s, Parkinson’s and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-Type ATPases (copper-ATPases, ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  9. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis.

    Science.gov (United States)

    Telianidis, Jonathon; Hung, Ya Hui; Materia, Stephanie; Fontaine, Sharon La

    2013-01-01

    Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders such as Alzheimer's, Parkinson's, and prion diseases has led to increased research focus on the mechanisms controlling copper homeostasis in the brain. The copper-transporting P-type ATPases (copper-ATPases), ATP7A and ATP7B, are critical components of the copper regulatory network. Our understanding of the biochemistry and cell biology of these complex proteins has grown significantly since their discovery in 1993. They are large polytopic transmembrane proteins with six copper-binding motifs within the cytoplasmic N-terminal domain, eight transmembrane domains, and highly conserved catalytic domains. These proteins catalyze ATP-dependent copper transport across cell membranes for the metallation of many essential cuproenzymes, as well as for the removal of excess cellular copper to prevent copper toxicity. A key functional aspect of these copper transporters is their copper-responsive trafficking between the trans-Golgi network and the cell periphery. ATP7A- and ATP7B-deficiency, due to genetic mutation, underlie the inherited copper transport disorders, Menkes and Wilson diseases, respectively. Their importance in maintaining brain copper homeostasis is underscored by the severe neuropathological deficits in these disorders. Herein we will review and update our current knowledge of these copper transporters in the brain and the central nervous system, their distribution and regulation, their role in normal brain copper homeostasis, and how their absence or dysfunction contributes to disturbances in copper homeostasis and neurodegeneration.

  10. A Coupled Model of Multiphase Flow, Reactive Biogeochemical Transport, Thermal Transport and Geo-Mechanics.

    Science.gov (United States)

    Tsai, C. H.; Yeh, G. T.

    2015-12-01

    In this investigation, a coupled model of multiphase flow, reactive biogeochemical transport, thermal transport and geo-mechanics in subsurface media is presented. It iteratively solves the mass conservation equation for fluid flow, thermal transport equation for temperature, reactive biogeochemical transport equations for concentration distributions, and solid momentum equation for displacement with successive linearization algorithm. With species-based equations of state, density of a phase in the system is obtained by summing up concentrations of all species. This circumvents the problem of having to use empirical functions. Moreover, reaction rates of all species are incorporated in mass conservation equation for fluid flow. Formation enthalpy of all species is included in the law of energy conservation as a source-sink term. Finite element methods are used to discretize the governing equations. Numerical experiments are presented to examine the accuracy and robustness of the proposed model. The results demonstrate the feasibility and capability of present model in subsurface media.

  11. Small substrate transport and mechanism of a molybdate ATP binding cassette transporter in a lipid environment.

    Science.gov (United States)

    Rice, Austin J; Harrison, Alistair; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W

    2014-05-23

    Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria.

  12. Insights into transport mechanism from LeuT engineered to transport tryptophan

    OpenAIRE

    Piscitelli, Chayne L; Gouaux, Eric

    2011-01-01

    LeuT is a model protein for studying the structure and mechanism of the neurotransmitter/sodium symporter family. This study reveals how the ability of a ligand to promote the structural transition to the occluded state modulates transport specificity.

  13. Insights into transport mechanism from LeuT engineered to transport tryptophan

    OpenAIRE

    Piscitelli, Chayne L; Gouaux, Eric

    2011-01-01

    LeuT is a model protein for studying the structure and mechanism of the neurotransmitter/sodium symporter family. This study reveals how the ability of a ligand to promote the structural transition to the occluded state modulates transport specificity.

  14. Droplet Transport Mechanism on Horizontal Hydrophilic/Hydrophobic Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook [Kookmin University, Seoul (Korea, Republic of)

    2014-06-15

    A fluid transport technique is a key issue for the development of microfluidic systems. In this study, the movement of a droplet on horizontal hydrophilic/hydrophobic surfaces, which is a new concept to transport droplets without external power sources that was recently proposed by the author, was simulated using an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with interface capturing method(CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The droplet transport mechanism is examined through numerical results that include velocity vectors, pressure contours, and total kinetic energy inside and around the droplet.

  15. Molecular dynamics studies of the inhibitory mechanism of copper(Ⅱ) on aggregation of amyloid β-peptide

    Institute of Scientific and Technical Information of China (English)

    Yong Jiao; Pin Yang

    2007-01-01

    The inhibitory mechanism of copper(Ⅱ) on the aggregation of amyloid β-peptide (Aβ) was investigated by molecular dynamics simulations. The binding mode of copper(Ⅱ) with Aβ is characterized by the imidazole nitrogen atom, Nπ, of the histidine residue H13,acting as the anchoring site, and the backbone's deprotoned amide nitrogen atoms as the main binding sites. Drove by the coordination bonds and their induced hydrogen bond net, the conformations of Aβ converted from β-sheet non-β-sheet conformations, which destabilized the aggregation of Aβ into fibrils.

  16. The Role of the N-terminus of Mammalian Copper Transporter 1 in the Cellular Accumulation of Cisplatin

    Science.gov (United States)

    Larson, Christopher A.; Adams, Preston L.; Jandial, Danielle D.; Blair, Brian G.; Safaei, Roohangiz; Howell, Stephen B.

    2010-01-01

    The mammalian Copper Transporter 1 (CTR1) is responsible for the uptake of copper (Cu) from the extracellular space, and has been shown to play a major role in the initial accumulation of platinum-based drugs. In this study we re-expressed wild type and structural variants of hCTR1 in mouse embryo fibroblasts in which both alleles of mCTR1 had been knocked out (CTR1−/−) to examine the role of the N-terminal extracellular domain of hCTR1 in the accumulation of cisplatin (cDDP). Deletion of either the first 45 amino acids or just the 40MXXM45 motif in the N-terminal domain did not alter subcellular distribution or the amount of protein in the plasma membrane but it eliminated the ability of hCTR1 to mediate the uptake of Cu. In contrast it only partially reduced cDDP transport capacity. Neither of these structural changes prevented cDDP from triggering the rapid degradation of hCTR1. However, they did alter the potency of the cDDP that achieved cell entry, possibly reflecting the fact that hCTR1 may mediate the transport of cDDP both through the pore it forms in the plasma membrane and via endocytosis. We conclude that cDDP interacts with hCTR1 both at 40MXXM45 and at sites outside the N-terminal domain that produce the conformational changes that trigger degradation. PMID:20451502

  17. Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms.

    Science.gov (United States)

    Ryan, Brooke M; Kirby, Jason K; Degryse, Fien; Harris, Hugh; McLaughlin, Mike J; Scheiderich, Kathleen

    2013-07-01

    The fractionation of stable copper (Cu) isotopes during uptake into plant roots and translocation to shoots can provide information on Cu acquisition mechanisms. Isotope fractionation ((65) Cu/(63) Cu) and intact tissue speciation techniques (X-ray absorption spectroscopy, XAS) were used to examine the uptake, translocation and speciation of Cu in strategy I (tomato-Solanum lycopersicum) and strategy II (oat-Avena sativa) plant species. Plants were grown in controlled solution cultures, under varied iron (Fe) conditions, to test whether the stimulation of Fe-acquiring mechanisms can affect Cu uptake in plants. Isotopically light Cu was preferentially incorporated into tomatoes (Δ(65) Cu(whole plant-solution ) = c. -1‰), whereas oats showed minimal isotopic fractionation, with no effect of Fe supply in either species. The heavier isotope was preferentially translocated to shoots in tomato, whereas oat plants showed no significant fractionation during translocation. The majority of Cu in the roots and leaves of both species existed as sulfur-coordinated Cu(I) species resembling glutathione/cysteine-rich proteins. The presence of isotopically light Cu in tomatoes is attributed to a reductive uptake mechanism, and the isotopic shifts within various tissues are attributed to redox cycling during translocation. The lack of isotopic discrimination in oat plants suggests that Cu uptake and translocation are not redox selective.

  18. Network Analysis Shows Novel Molecular Mechanisms of Action for Copper-Based Chemotherapy

    Science.gov (United States)

    Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique; Mejía, Carmen; Ruiz-Azuara, Lena

    2016-01-01

    The understanding of the mechanisms associated with the action of chemotherapeutic agents is fundamental to assess and account for possible side-effects of such treatments. Casiopeínas have demonstrated a cytotoxic effect by activation of pro-apoptotic processes in malignant cells. Such processes have been proved to activate the apoptotic intrinsic route, as well as cell cycle arrest. Despite this knowledge, the whole mechanism of action of Casiopeínas is yet to be completely understood. In this work we implement a systems biology approach based on two pathway analysis tools (Over-Representation Analysis and Causal Network Analysis) to observe changes in some hallmarks of cancer, induced by this copper-based chemotherapeutic agent in HeLa cell lines. We find that the metabolism of metal ions is exacerbated, as well as cell division processes being globally diminished. We also show that cellular migration and proliferation events are decreased. Moreover, the molecular mechanisms of liver protection are increased in the cell cultures under the actions of Casiopeínas, unlike the case in many other cytotoxic drugs. We argue that this chemotherapeutic agent may be promising, given its protective hepatic function, concomitant with its cytotoxic participation in the onset of apoptotic processes in malignant cells. PMID:26793116

  19. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC Sheet Mill, 4301, Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-11-15

    Highlights: {yields} Copper does not significantly influence toughness. {yields} Copper precipitation during aging occurs at dislocations. {yields} Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of {epsilon}-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of {epsilon}-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  20. Oral administration of copper to rats leads to increased lymphocyte cellular DNA degradation by dietary polyphenols: implications for a cancer preventive mechanism.

    Science.gov (United States)

    Khan, Husain Y; Zubair, Haseeb; Ullah, Mohd F; Ahmad, Aamir; Hadi, Sheikh M

    2011-12-01

    To account for the observed anticancer properties of plant polyphenols, we have earlier proposed a mechanism which involves the mobilization of endogenous copper ions by polyphenols leading to the generation of reactive oxygen species (ROS) that serve as proximal DNA cleaving agents and lead to cell death. Over the last decade we have proceeded to validate our hypothesis with considerable success. As a further confirmation of our hypothesis, in this paper we first show that oral administration of copper to rats leads to elevated copper levels in lymphocytes. When such lymphocytes with a copper overload were isolated and treated with polyphenols EGCG, genistein and resveratrol, an increased level of DNA breakage was observed. Further, preincubation of lymphocytes having elevated copper levels with the membrane permeable copper chelator neocuproine, resulted in inhibition of polyphenol induced DNA degradation. However, membrane impermeable chelator of copper bathocuproine, as well as iron and zinc chelators were ineffective in causing such inhibition in DNA breakage, confirming the involvement of endogenous copper in polyphenol induced cellular DNA degradation. It is well established that serum and tissue concentrations of copper are greatly increased in various malignancies. In view of this fact, the present results further confirm our earlier findings and strengthen our hypothesis that an important anticancer mechanism of plant polyphenols could be the mobilization of intracellular copper leading to ROS-mediated cellular DNA breakage. In this context, it may be noted that cancer cells are under considerable oxidative stress and increasing such stress to cytotoxic levels could be a successful anticancer approach.

  1. A predictive model for the transport of copper by HCl-bearing water vapour in ore-forming magmatic-hydrothermal systems: Implications for copper porphyry ore formation

    Science.gov (United States)

    Migdisov, Art. A.; Bychkov, A. Yu.; Williams-Jones, A. E.; van Hinsberg, V. J.

    2014-03-01

    The solubility of copper chloride and metallic copper in low-density homogenous HCl-bearing aqueous fluids was investigated experimentally at temperatures between 350 and 550 °C. Analysis of the resulting data and those on the solubility of copper chloride reported in Archibald et al. (2002) for temperatures between 280 and 320 °C suggests that at temperatures <450 °C, the solubility of copper chloride is controlled by a species having a Cu:Cl ratio of 1:1. The data also suggest that the solubility of copper chloride is controlled by the formation of hydrated copper clusters, i.e., CuCl:(H2O)n, and increases exponentially with H2O fugacity rather than linearly, as previously assumed. The hydration number (n) of the predominant cluster increases systematically with increasing pressure, and each of the gaseous solutions investigated at temperatures <450 °C contains a mixture of clusters with different hydration numbers that predominate at different pressures. A model is proposed for the quantitative evaluation of the stability of these clusters based on the observation that the Gibbs free energy of formation of the clusters determined from the experimental data shows a strong linear correlation with reciprocal temperature. This model reliably predicts the fugacity of copper in chlorine-bearing water vapour determined from solubility and liquid-vapour partitioning reported in the literature. At temperatures above 450 °C, the stoichiometry of the dominant form of the dissolved copper chloride changes from copper monochloride (Cu:Cl = 1:1) to copper dichloride (Cu:Cl = 1:2) and the hydration numbers of the corresponding clusters are constant for the range of temperatures and pressures investigated. We did not manage to determine the valence state of copper in these species, and therefore interpreted our stability data separately for two alternative sets of hydration clusters, namely; one containing monovalent copper (CuCl:HCl or CuCl2H), and the other containing

  2. TRANSMISSION OF IMPACTS DURING MECHANICAL GRAPE HARVESTING AND TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    Fabio Pezzi

    2008-09-01

    Full Text Available The aim of the research was to study vibrational stress on grapes during mechanical harvesting, transfer and delivery to the winery, in order to identify the most critical stages and the consequent effects on the winemaking. An instrumented sphere was used to evaluate and memorise the impacts in the grape harvester and means of transport. Three treatments, obtained by differing harvesting method (manual and mechanical and transport type (short and long distance, were compared. A correlation was sought between the transmitted stresses and characteristics of the harvested product. The effects on product quality were evaluated by chemical analyses of the musts and sensorial analysis of the end-product, vinified using the same procedure.

  3. Transport Processes from Mechanics: Minimal and Simplest Models

    Science.gov (United States)

    Bunimovich, Leonid A.; Grigo, Alexander

    2017-02-01

    We review the current state of a fundamental problem of rigorous derivation of transport processes in classical statistical mechanics from classical mechanics. Such derivations for diffusion and momentum transport (viscosities) were obtained for minimal models of these processes involving one and two particles respectively. However, a minimal model which demonstrates heat conductivity contains three particles. Its rigorous analysis is currently out of reach for existing mathematical techniques. The gas of localized balls is widely accepted as a basis for a simplest model for derivation of Fourier's law. We suggest a modification of the localized balls gas and argue that this gas of localized activated balls is a good candidate to rigorously prove Fourier's law. In particular, hyperbolicity is derived for a reduced version of this model.

  4. Transport Processes from Mechanics: Minimal and Simplest Models

    Science.gov (United States)

    Bunimovich, Leonid A.; Grigo, Alexander

    2016-12-01

    We review the current state of a fundamental problem of rigorous derivation of transport processes in classical statistical mechanics from classical mechanics. Such derivations for diffusion and momentum transport (viscosities) were obtained for minimal models of these processes involving one and two particles respectively. However, a minimal model which demonstrates heat conductivity contains three particles. Its rigorous analysis is currently out of reach for existing mathematical techniques. The gas of localized balls is widely accepted as a basis for a simplest model for derivation of Fourier's law. We suggest a modification of the localized balls gas and argue that this gas of localized activated balls is a good candidate to rigorously prove Fourier's law. In particular, hyperbolicity is derived for a reduced version of this model.

  5. General mechanism for helium blistering involving displaced atom transport

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.

    1979-01-01

    A mechanism developed to account for formation of vertically elongated blisters in high displacement environments produced by /sup 252/Cf alpha particles and fission fragments has been extended to formation of done-shaped blisters in the low displacement environments produced by simple helium ion beams. In this mechanism, transport of displaced atoms to relieve compressive stresses in the helium-implanted layer allows interconnections of small, subsurface bubbles to form the blister cavity. The same transport may cause thickening of the blister caps at low implantation energies. The transition from dome-shaped to vertically elongated blistering occurs between the 300 and 3000 displacements per helium atom produced by simple helium ions and /sup 252/Cf radiations respectively.

  6. Mechanisms of Carrier Transport Induced by a Microswimmer Bath

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Andreas; Sokolov, Andrey; Aranson, Igor S.; Lowen, Hartmut

    2015-04-01

    Recently, it was found that a wedgelike microparticle (referred to as ”carrier”) which is only allowed to translate but not to rotate exhibits a directed translational motion along the wedge cusp if it is exposed to a bath of microswimmers. Here we model this effect in detail by resolving the microswimmers explicitly using interaction models with different degrees of mutual alignment. Using computer simulations we study the impact of these interactions on the transport efficiency of V-shaped carrier. We show that the transport mechanisms itself strongly depends on the degree of alignment embodied in the modelling of the individual swimmer dynamics. For weak alignment, optimal carrier transport occurs in the turbulent microswimmer state and is induced by swirl depletion inside the carrier. For strong aligning interactions, optimal transport occurs already in the dilute regime and is mediated by a polar cloud of swimmers in the carrier wake pushing the wedge-particle forward. We also demonstrate that the optimal shape of the carrier leading to maximal transport speed depends on the kind of interaction model used.

  7. The mechanism of excretion of trientine from the rat kidney: trientine is not recognized by the H+/organic cation transporter.

    Science.gov (United States)

    Kobayashi, M; Tanabe, R; Sugawara, M; Iseki, K; Miyazaki, K

    1997-04-01

    Trientine dihydrochloride is used to treat Wilson's disease by chelating copper and increasing its urinary excretion. The mechanism of renal excretion of trientine has been investigated in-vivo and in-vitro. Trientine clearance in the rat-was significantly faster than creatinine clearance. When trientine and the same number of moles of copper ions were administered simultaneously to the rat, however, trientine clearance decreased to almost the same level as the creatinine clearance. To clarify this active excretion system for trientine, the uptake of trientine and a physiological polyamine compound, spermine, was investigated using rat renal brush-border membrane vesicles. Although, because trientine and spermine are organic cations, the H+/organic cation transporter is expected to recognize these compounds, neither an outwardly directed H+ gradient nor an inward Na+ gradient stimulated trientine uptake. [14C]Spermine uptake was, nevertheless, trans-stimulated by both unlabelled spermine and trientine and the trans-stimulating effect of spermine on trientine uptake was, furthermore, completely abolished by addition of copper ions to the incubation medium. These results suggest that there is a specific transport system for spermine and trientine on the renal brushborder membrane. This transport system contributes to the secretion of trientine in the kidney proximal tubule but does not recognize the trientine-copper complex.

  8. IDDTL: A Novel Identified Internet Data Transport Layer Mechanism

    Directory of Open Access Journals (Sweden)

    Yangyang Gao

    2014-01-01

    Full Text Available This paper proposes an identified data transport layer (IDDTL mechanism, which is implemented based on our present concepts of connection identifier (CID and CID additional information (CID-info. Since the fast evolved Internet scale and largely emerging various applications, especially with the new Internet architectures developed such as information centric network (ICN, the traditional end-to-end transport model has been exposed many defects in sorts of aspects, such as network management, flexibility and security. The novelty of the mechanism consists of two points: 1 it always conceals part of the communication information during the specific data transport process; 2 it splits the whole end-to-end communication process into two segments and forms a three-party and two-segment communication process model. Performance analysis shows that the mechanism could easily mitigate the problems such as distributed denial of service (D/DOS attacks and greatly improve the network management, flexibility and mobility. Furthermore, our simulation and test results demonstrate that IDDTL can be implemented with unique identifiers within an acceptable extra time cost of about 3.6 useconds compared with the traditional end-to-end model.

  9. Microstructural Evolution and Mechanical Property Development of Selective Laser Melted Copper Alloys

    Science.gov (United States)

    Ventura, Anthony Patrick

    Selective Laser Melting (SLM) is an additive manufacturing technology that utilizes a high-power laser to melt metal powder and form a part layer-by-layer. Over the last 25 years, the technology has progressed from prototyping polymer parts to full scale production of metal component. SLM offers several advantages over traditional manufacturing techniques; however, the current alloy systems that are researched and utilized for SLM do not address applications requiring high electrical and thermal conductivity. This work presents a characterization of the microstructural evolution and mechanical property development of two copper alloys fabricated via SLM and post-process heat treated to address this gap in knowledge. Tensile testing, conductivity measurement, and detailed microstructural characterization was carried out on samples in the as-printed and heat treated conditions. A single phase solid solution strengthened binary alloy, Cu-4.3Sn, was the first alloy studied. Components were selectively laser melted from pre-alloyed Cu-4.3Sn powder and heat treated at 873 K (600 °C) and 1173 K (900 °C) for 1 hour. As-printed samples were around 97 percent dense with a yield strength of 274 MPa, an electrical conductivity of 24.1 %IACS, and an elongation of 5.6%. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a sub-micron cellular solidification sub-structure. Nanometer scale tin dioxide particles identified via XRD were found throughout the structure in the tin-rich intercellular regions. The second alloy studied was a high-performance precipitation hardening Cu-Ni-Si alloy, C70250. Pre-alloyed powder was selectively laser melted to

  10. Insights into transport mechanism from LeuT engineered to transport tryptophan

    Energy Technology Data Exchange (ETDEWEB)

    Piscitelli, Chayne L.; Gouaux, Eric (Oregon HSU)

    2012-01-10

    LeuT is a bacterial homologue of the neurotransmitter:sodium symporter (NSS) family and, being the only NSS member to have been structurally characterized by X-ray crystallography, is a model protein for studying transporter structure and mechanism. Transport activity in LeuT was hypothesized to require structural transitions between open-to-out and occluded conformations dependent upon protein:ligand binding complementarity. Here, using crystallographic and functional analysis, we show that binding site modification produces changes in both structure and activity that are consistent with complementarity-dependent structural transitions to the occluded state. The mutation I359Q converts the activity of tryptophan from inhibitor to transportable substrate. This mutation changes the local environment of the binding site, inducing the bound tryptophan to adopt a different conformer than in the wild-type complex. Instead of trapping the transporter open, tryptophan binding now allows the formation of an occluded state. Thus, transport activity is correlated to the ability of the ligand to promote the structural transition to the occluded state, a step in the transport cycle that is dependent on protein:ligand complementarity in the central binding site.

  11. Insights into transport mechanism from LeuT engineered to transport tryptophan.

    Science.gov (United States)

    Piscitelli, Chayne L; Gouaux, Eric

    2012-01-04

    LeuT is a bacterial homologue of the neurotransmitter:sodium symporter (NSS) family and, being the only NSS member to have been structurally characterized by X-ray crystallography, is a model protein for studying transporter structure and mechanism. Transport activity in LeuT was hypothesized to require structural transitions between open-to-out and occluded conformations dependent upon protein:ligand binding complementarity. Here, using crystallographic and functional analysis, we show that binding site modification produces changes in both structure and activity that are consistent with complementarity-dependent structural transitions to the occluded state. The mutation I359Q converts the activity of tryptophan from inhibitor to transportable substrate. This mutation changes the local environment of the binding site, inducing the bound tryptophan to adopt a different conformer than in the wild-type complex. Instead of trapping the transporter open, tryptophan binding now allows the formation of an occluded state. Thus, transport activity is correlated to the ability of the ligand to promote the structural transition to the occluded state, a step in the transport cycle that is dependent on protein:ligand complementarity in the central binding site.

  12. 细胞内铜稳态的分子调控机制研究进展%Molecular mechanisms of copper homeostasis in the cells

    Institute of Scientific and Technical Information of China (English)

    艾文龙; 程楠; 韩咏竹

    2013-01-01

    铜是人体必不可少微量元素之一,铜缺乏和过量均会导致机体的异常,如Menkes和Wilson病.机体及细胞铜代谢的调控和铜稳态维护至关重要,涉及到铜的吸收、分储、排泄等过程.目前的研究对铜的代谢和稳态维护主要机制已经有比较全面的新的认识,对铜稳态研究正在逐渐完善和深入.%Copper plays an essential role in normal human physiology . Copper misbalance affects body dysfunction ,such as Menkes ' and Wilson' s disease. It is a key factor about the maintenance of the body and cell regulation of copper metabolism and copper homeostasis , related to the absorption , transport and removal of copper. Recent studies yielded new information on the function and regulation of human copper transporters , copper homeostasis and other metabolic pathways . The copper homeostasis regulation is emerging and perfecting .

  13. Towards understanding the carbon trapping mechanism in copper by investigating the carbon-vacancy interaction

    Institute of Scientific and Technical Information of China (English)

    Zhou Hong-Bo; Jin Shuo

    2013-01-01

    We propose a vacancy trapping mechanism for carbon-vacancy (C-V) complex formation in copper (Cu) according to the first-principles calculations of the energetics and kinetics of C-V interaction.Vacancy reduces charge density in its vicinity to induce C nucleation.A monovacancy is capable of trapping as many as four C atoms to form CnV (n =1,2,3,4)complexes.A single C atom prefers to interact with neighboring Cu at a vacancy with a trapping energy of-0.21 eV.With multiple C atoms added,they are preferred to bind with each other to form covalent-like bonds despite of the metallic Cu environment.For the CnV complexes,C2V is the major one due to its lowest average trapping energy (1.31 eV).Kinetically,the formation of the CnV complexes can be ascribed to the vacancy mechanism due to the lower activation energy barrier and the larger diffusion coefficient of vacancy than those of the interstitial C.

  14. Mechanisms and rate of dislocation nucleation in aluminum-copper alloys near Guinier-Preston zones

    Science.gov (United States)

    Bryukhanov, I. A.; Larin, A. V.

    2016-12-01

    This article is devoted to a molecular dynamics simulation study of partial dislocation loop nucleation with respect to its mechanism and rate, and its propagation process under high shear stress in aluminum-copper alloys. The mechanisms of dislocation nucleation near Guinier-Preston (GP) zones of various diameters and concentrations have been analyzed. Dislocation nucleation rates near plain GP Cu-zones with diameters of 3.5, 7.5, and 13.5 nm and at various concentrations have been calculated using the mean lifetime method with temperatures in range of 100 and 700 K. It has been found that depending on the temperature and applied stress, the dislocation can nucleate either from the edge, or from the plain area of a GP zone. The dislocation nucleation is preceded by a generation of defect clusters that are formed due to local opposite atomic shifts in two adjacent (111) planes by the half-length of a Burgers vector of a partial dislocation. The expansion of a partial dislocation loop can be accompanied by the formation of twins via a shift of the atoms in the internal region of the loop. The twin velocity along the direction of the partial dislocation Burgers vector inside the loop can achieve longitudinal sound speed. The speeds of the edge and screw segments of a partial dislocation loop as a function of a shear stress component along the Burgers vector have been estimated. The latter seems to be limited by the shear sound speed.

  15. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  16. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  17. Comparative Proteomic Analysis of the Molecular Responses of Mouse Macrophages to Titanium Dioxide and Copper Oxide Nanoparticles Unravels Some Toxic Mechanisms for Copper Oxide Nanoparticles in Macrophages

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions. PMID:25902355

  18. Effects of spin–orbit coupling and many-body correlations in STM transport through copper phthalocyanine

    Directory of Open Access Journals (Sweden)

    Benjamin Siegert

    2015-12-01

    Full Text Available The interplay of exchange correlations and spin–orbit interaction (SOI on the many-body spectrum of a copper phtalocyanine (CuPc molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet–triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects.

  19. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.; Blum, R. [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K. [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  20. Transport Measurements in the Mixed Ion-Electron Conductor Copper(x) Carbon-Disulfide

    Science.gov (United States)

    Kuo, Hung-Jen

    (sigma)(,i), (sigma)(,e), and the chemical diffusion coefficient, (')D, of highly-disordered Cu(,x)CS(,2) were investigated using a dc 4-lead technique employing Pt electrodes. The experiments were performed at various copper concentrations from x = 2.87 to 3.60 and various temperatures from 260 K to 350 K. The results were interpreted by Yokota's and ionic hopping diffusion theories. (sigma)(,i) and (sigma)(,e) are comparable at room temperature, 4.18 x 10('-3) (OMEGA)('-1)cm('-1) and 1.55 x 10('-3) (OMEGA)('-1)cm('-1) respectively at X = 3.60 and 300 K. Both (sigma)(,i) and (sigma)(,e) follow a simple Arrhenius form with activation energies (TURN)0.40 eV and (TURN)0.29 eV respectively. The exponential dependence of (sigma)(,i) on X is explained in terms of the activation entropy associated with the motion of ions. Electronic conduction is by hopping. Results show that it is reasonable to assume that all the copper ions are mobile. The mobility and the diffusivity of copper ions were found to be 0.71 x 10('-6) cm('2)V(' -1)sec('-1) and 1.83 x 10('-8) cm('2)/sec respectively at X = 3.6 and 300 K. The diffusivity is much less than the chemical diffusion coefficient evaluated from the diffusion time constant, (')D = 0.829 x 10('-5) cm('2)/sec at X = 3.60 and 300 K. This is because of a large enhancement factor W (TURN) 453, or a large (PAR-DIFF)m(,e)/(PAR-DIFF)N. The change in galvanic cell potential E with X, -(PAR-DIFF)E/(PAR -DIFF)X, calculated from the measurements of (sigma)(,i), (sigma)(,e), and (')D, is 14 Volt.

  1. Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya

    2013-01-01

    The optical, structural and charge transport properties of solution-processed films of copper(i) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ∼20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics with a maximum field-effect mobility in the range of 0.01-0.1 cm2 V-1 s-1. © 2013 The Royal Society of Chemistry.

  2. Interfacial Effects on the Thermal and Mechanical Properties of Graphite/Copper Composites. Final Contractor Report Ph.D. Thesis

    Science.gov (United States)

    Devincent, Sandra Marie

    1995-01-01

    Graphite surfaces are not wet by pure copper. This lack of wetting has been responsible for a debonding phenomenon that has been found in continuous graphite fiber reinforced copper matrix composites subjected to elevated temperatures. By suitably alloying copper, its ability to wet graphite surfaces can be enhanced. Information obtained during sessile drop testing has led to the development of a copper-chromium alloy that suitably wets graphite. Unidirectionally reinforced graphite/copper composites have been fabricated using a pressure infiltration casting procedure. P100 pitch-based fibers have been used to reinforce copper and copper-chromium alloys. X-ray radiography and optical microscopy have been used to assess the fiber distribution in the cast composites. Scanning electron microscopy and Auger electron spectroscopy analyses were conducted to study the distribution and continuity of the chromium carbide reaction phase that forms at the fiber/matrix interface in the alloyed matrix composites. The effects of the chromium in the copper matrix on the mechanical and thermal properties of P100Gr/Cu composites have been evaluated through tensile testing, three-point bend testing, thermal cycling and thermal conductivity calculations. The addition of chromium has resulted in an increased shear modulus and essentially zero thermal expansion in the P100Gr/Cu-xCr composites through enhanced fiber/matrix bonding. The composites have longitudinal tensile strengths in excess of 700 MPa with elastic moduli of 393 GPa. After 100 hr at 760 deg C 84 percent of the as-cast strength is retained in the alloyed matrix composites. The elastic moduli are unchanged by the thermal exposure. It has been found that problems with spreading of the fiber tows strongly affect the long transverse tensile properties and the short transverse thermal conductivity of the P100Gr/Cu-xCr composites. The long transverse tensile strength is limited by rows of touching fibers which are paths of

  3. Effect of Red Mud and Copper Slag Particles on Physical and Mechanical Properties of Bamboo-Fiber-Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Sandhyarani Biswas

    2012-01-01

    Full Text Available In the present work, a series of bamboo-fiber-reinforced epoxy composites are fabricated by using red mud and copper slag particles as filler materials. A filler plays an important role in determining the properties and behavior of particulate composites. The effects of these two fillers on the mechanical properties of bamboo-epoxy composites are investigated. Comparative analysis shows that with the incorporation of these fillers, the tensile strength of the composites increases significantly, whereas the flexural strength and impact strength decrease with increase in filler content (red mud and copper slag fillers in the epoxy-bamboo fiber composites. The density and hardness are also affected by the type and content of filler particles. It is found that the addition of copper slag filler improves the hardness of the bamboo-epoxy composites, whereas the addition of red mud filler reduces the hardness value of bamboo-epoxy composites. The study reveals that the addition of copper slag filler in bamboo-epoxy composites shows better physical and mechanical properties as compared to the red-mud-filled composites.

  4. EFFECT OF COPPER ADDITION ON MECHANICAL PROPERTIES OF 4Cr16Mo

    Institute of Scientific and Technical Information of China (English)

    H.M. Geng; X.C. Wu; Y.A. Min; H.B. Wang; H.K. Zhang

    2008-01-01

    Experiments conducted to determine the effect of copper addition on the machinability of plastic mold steel, 4Cr16Mo, were presented. The machinability of mold steel 4Cr16Mo was visibly improved by adding Cu. The top wear of 4Cr16Mo with copper was less than that without copper. The Cu-rich phase had the effect of a lubricant and the heat conductivity, which reduced cutting-tool wear, improved machinability, and increased the service life of the cutting-tool. Increasing of copper addition decreased the hot-working character of 4Cr16Mo. The optimal hot-working parameters for 4Cr16Mo with copper were determined by the tensile test and the compression test. The rate of deformation should be adopted as 0.6 s-1. The heating-up temperature, initial forging temperature, and terminal forging temperature were 1200℃, 1150℃, and 950℃, respectively.

  5. Synergetic effect of benzotriazole and non-ionic surfactant on copper chemical mechanical polishing in KIO{sub 4}-based slurries

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liang [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Center for Advanced Materials Processing, Clarkson University, Potsdam, NY 13699 (United States); He, Yongyong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Niu, Xiangyu; Li, Yuzhuo [Center for Advanced Materials Processing, Clarkson University, Potsdam, NY 13699 (United States); Luo, Jianbin, E-mail: luojb@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2014-05-02

    Ruthenium will be integrated into copper interconnects as a barrier layer in the near future. During the chemical mechanical polishing process of the ruthenium barrier layer, copper polishing performance with barrier slurries is crucial to microchips' final performance. This paper mainly studies the synergetic effect of benzotriazole (BTA) and non-ionic surfactant on copper polishing performance using KIO{sub 4}-based barrier slurries. The results show that, the copper removal rate (RR) and static etching rate increase with increasing concentration of KIO{sub 4} due to the increasing proportion of the Cu–periodate and Cu–iodate compounds like Cu(IO{sub 4}){sub 2} and Cu(IO{sub 3}){sub 2} of the passivating film on the copper surface; the added BTA can further enhance the copper RR instead of suppressing it probably due to the formation of incomplete Cu–BTA thin film. It is demonstrated that the combination of BTA and non-ionic surfactant exhibits excellent performance in suppressing the copper RR to about 200 Å/min, realizing satisfactory copper surface quality and achieving desirable material removal rate selectivity among copper, ruthenium and low-κ dielectrics. The synergetic passivation mechanism of BTA and non-ionic surfactant on the copper surface was investigated. It is proposed that in the presence of KIO{sub 4} as an oxidizer, the added BTA and non-ionic surfactant can form a porous passivating film on the copper surface which is mainly composed of the Cu–BTA complex, the adsorbed non-ionic surfactant and the leftover insoluble copper compounds like Cu(IO{sub 4}){sub 2} and Cu(IO{sub 3}){sub 2}, and then the hydrophobic polypropylene oxide segments of non-ionic surfactant can be effectively absorbed on the hydrophobic Cu–BTA complex as a supplement. The above two parts are integrated into a complete passivating film to protect the copper surface from chemical dissolution and excessive mechanical abrasion. - Highlights: • The copper

  6. Mitochondrial Electron Transport Chain in Heavy Metal-Induced Neurotoxicity: Effects of Cadmium, Mercury, and Copper

    Directory of Open Access Journals (Sweden)

    Elena A. Belyaeva

    2012-01-01

    Full Text Available To clarify the role of mitochondrial electron transport chain (mtETC in heavy-metal-induced neurotoxicity, we studied action of Cd2+, Hg2+, and Cu2+ on cell viability, intracellular reactive oxygen species formation, respiratory function, and mitochondrial membrane potential of rat cell line PC12. As found, the metals produced, although in a different way, dose- and time-dependent changes of all these parameters. Importantly, Cd2+ beginning from 10 [mu]M and already at short incubation time (3 h significantly inhibited the FCCP-uncoupled cell respiration; besides, practically the complete inhibition of the respiration was reached after 3 h incubation with 50 [mu]M Hg2+ or 500 [mu]M Cd2+, whereas even after 48 h exposure with 500 [mu]M Cu2+, only a 50% inhibition of the respiration occurred. Against the Cd2+-induced cell injury, not only different antioxidants and mitochondrial permeability transition pore inhibitors were protective but also such mtETC effectors as FCCP and stigmatellin (complex III inhibitor. However, all mtETC effectors used did not protect against the Hg2+- or Cu2+-induced cell damage. Notably, stigmatellin was shown to be one of the strongest protectors against the Cd2+-induced cell damage, producing a 15–20% increase in the cell viability. The mechanisms of the mtETC involvement in the heavy-metal-induced mitochondrial membrane permeabilization and cell death are discussed.

  7. Evaporation as the transport mechanism of metals in arid regions.

    Science.gov (United States)

    Lima, Ana T; Safar, Zeinab; Loch, J P Gustav

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust.

  8. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Kyla A. Stigter

    2015-12-01

    Full Text Available Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P, are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi, the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters.

  9. Evaporation as the transport mechanism of metals in arid regions

    KAUST Repository

    Lima, Ana T.

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. © 2014 Elsevier Ltd.

  10. T versus D in the MTCXXC motif of copper transport proteins plays a role in directional metal transport.

    Science.gov (United States)

    Niemiec, Moritz S; Dingeldein, Artur P G; Wittung-Stafshede, Pernilla

    2014-08-01

    To avoid toxicity and control levels of metal ions, organisms have developed specific metal transport systems. In humans, the cytoplasmic Cu chaperone Atox1 delivers Cu to metal-binding domains of ATP7A/B in the Golgi, for incorporation into Cu-dependent proteins. The Cu-binding motif in Atox1, as well as in target Cu-binding domains of ATP7A/B, consists of a MX1CXXC motif where X1 = T. The same motif, with X1 = D, is found in metal-binding domains of bacterial zinc transporters, such as ZntA. The Asp is proposed to stabilize divalent over monovalent metals in the binding site, although metal selectivity in vivo appears predominantly governed by protein-protein interactions. To probe the role of T versus D at the X1 position for Cu transfer in vitro, we created MDCXXC variants of Atox1 and the fourth metal-binding domain of ATP7B, WD4. We find that the mutants bind Cu like the wild-type proteins, but when mixed, in contrast to the wild-type pair, the mutant pair favors Cu-dependent hetero-dimers over directional Cu transport from Atox1 to WD4. Notably, both wild-type and mutant proteins can bind Zn in the absence of competing reducing agents. In presence of zinc, hetero-complexes are strongly favored for both protein pairs. We propose that T is conserved in this motif of Cu-transport proteins to promote directional metal transfer toward ATP7B, without formation of energetic sinks. The ability of both Atox1 and WD4 to bind zinc ions may not be a problem in vivo due to the presence of specific transport chains for Cu and Zn ions.

  11. Mechanism of melatonin protection against copper-ascorbate-induced oxidative damage in vitro through isothermal titration calorimetry.

    Science.gov (United States)

    Ghosh, Arnab K; Naaz, Shamreen; Bhattacharjee, Bharati; Ghosal, Nirajan; Chattopadhyay, Aindrila; Roy, Souvik; Reiter, Russel J; Bandyopadhyay, Debasish

    2017-07-01

    Involvement of oxidative stress in cardiovascular diseases is well established. Melatonin's role as an antioxidant and free radical scavenger via its receptor dependent and receptor independent pathways is well known. The aim of this study is to identify and elaborate upon a third mechanism by which melatonin is able to abrogate oxidative stress. Oxidative stress was induced in vitro, by copper (0.2mM)-ascorbate (1mM) in isolated goat heart mitochondria, cytosol and peroxisomes and they were co-incubated with graded doses of melatonin. Similar experiments in a cell-free chemical system involving two pure antioxidant enzymes, Cu-Zn superoxide dismutase and catalase was also carried out. Biochemical changes in activity of these antioxidant enzymes were analysed. Isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase were also carried out. Incubation with copper-ascorbate led to alteration in activity of Cu-Zn superoxide dismutase and catalase which were found to be protected upon co-incubation with melatonin (80μM for catalase and 1μM for others). Results of isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase along with different combinations of copper chloride, ascorbic acid and melatonin suggest that when melatonin is present in the reaction medium along with copper-ascorbate, it restrains the copper-ascorbate molecules by binding with them physically along with scavenging the free radicals generated by them. The present study suggests that possibly, binding of melatonin with antioxidant enzymes masks the vulnerable sites of these antioxidant enzymes, thus preventing oxidative damage by copper-ascorbate molecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Effect of slurry chemicals on chemical-mechanical planarization of copper

    Science.gov (United States)

    Hong, Youngki

    An important component of the slurries used in chemical mechanical planarization (CMP) is an appropriately chosen corrosion/dissolution inhibitor, which facilitates selective material removal from protrusions while protecting recessed regions of the surface. The present work demonstrates the utility of two environmentally benign anionic surfactants, sodium dodecyl sulfate (SDS) and ammonium dodecyl sulfate (ADS) as dissolution inhibitors. Using these surfactants in a standard slurry (1 wt% glycine with 5 wt% H2O 2 at pH = 4.0) typically used for Cu CMP, and combining measurements of open circuit potentials and contact angles with those of Cu removal rates, we show that both SDS and ADS suppress chemical dissolution and polish rates of Cu. The dissolution inhibition efficiencies of ADS and SDS measured in these experiments are found to be superior to those of benzotriazole (BTA), a traditional inhibiting agent used for copper CMP. It has been demonstrated that ADS can also be utilized as an inhibiting agent for the application in electrochemical-mechanical planarization (ECMP) of copper. Using an acidic electrolyte of glycine and H2O 2, and small Cu discs, we show that the corrosion inhibition efficiency of ADS is superior to that of benzotriazole even in ECMP application. The relation between PE of Cu patterns and complexing agents has been investigated by measuring removal rates and surface topographies from patterns created on blanket Cu films. It has been observed that PE is dependent on the step height and drops significantly beyond a threshold step height that is in the range of 1000 A. Since the same type of polishing pad (IC 1400) was used in all the experiments, it might be the complexing agent that determines this characteristic PE threshold. Also, the huge increase in Cu dissolution rate for the citric acid system with increasing temperature appears to be responsible for the low PE values measured for this system. The synergetic effect of mixtures of ADS

  13. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  14. Copper transporters regulate the cellular pharmacology and sensitivity to Pt drugs.

    Science.gov (United States)

    Safaei, Roohangiz; Howell, Stephen B

    2005-01-01

    Recent studies have demonstrated that the major Cu influx transporter CTR1 regulates tumor cell uptake of cisplatin (DDP), carboplatin (CBDCA) and oxaliplatin (L-OHP), and that the two Cu efflux transporters ATP7A and ATP7B regulate the efflux of these drugs. Evidence for the concept that these platinum (Pt) drugs enter cells and are distributed to various subcellular compartments via transporters that have evolved to manage Cu homeostasis includes the demonstration of: (1) bidirectional cross-resistance between cells selected for resistance to either the Pt drugs or Cu; (2) parallel changes in the transport of Pt and Cu drugs in resistant cells; (3) altered cytotoxic sensitivity and Pt drug accumulation in cells transfected with Cu transporters; and (4) altered expression of Cu transporters in Pt drug-resistant tumors. Appreciation of the role of the Cu transporters in the development of resistance to DDP, CBDCA, and L-OHP offers novel insights into strategies for preventing or reversing resistance to this very important family of anticancer drugs.

  15. Mechanical transport in two-dimensional networks of fractures

    Energy Technology Data Exchange (ETDEWEB)

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables.

  16. Copper and copper proteins in Parkinson's disease.

    Science.gov (United States)

    Montes, Sergio; Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  17. Mechanical properties and crack growth behavior of polycrystalline copper using molecular dynamics simulation

    Science.gov (United States)

    Qiu, Ren-Zheng; Li, Chi-Chen; Fang, Te-Hua

    2017-08-01

    This study investigated the mechanical properties and crack propagation behavior of polycrystalline copper using a molecular dynamics simulation. The effects of temperature, grain size, and crack length were evaluated in terms of atomic trajectories, slip vectors, common neighbor analysis, the material’s stress-strain diagram and Young’s modulus. The simulation results show that the grain boundary of the material is more easily damaged at high temperatures and that grain boundaries will combine at the crack tip. From the stress-strain diagram, it was observed that the maximum stress increased as the temperature decreased. In contrast, the maximum stress was reduced by increasing the temperature. With regard to the effect of the grain size, when the grain size was too small, the structure of the sample deformed due to the effect of atomic interactions, which caused the grain boundary structure to be disordered in general. However, when the grain size was larger, dislocations appeared and began to move from the tip of the crack, which led to a new dislocation phenomenon. With regards to the effect of the crack length, the tip of the crack did not affect the sample’s material when the crack length was less than 5 nm. However, when the crack length was above 7.5 nm, the grain boundary was damaged, and twinning structures and dislocations appeared on both sides of the crack tip. This is because the tip of the crack was blunt at first before sharpening due to the dislocation effect.

  18. Molecular Dynamics Study on Lubrication Mechanism in Crystalline Structure between Copper and Sulfur

    Directory of Open Access Journals (Sweden)

    Ken-ichi Saitoh

    2015-01-01

    Full Text Available To clarify the nanosized mechanism of good lubrication in copper disulfide (Cu2S crystal which is used as a sliding material, atomistic modeling of Cu2S is conducted and molecular dynamics (MD simulations are performed in this paper. The interatomic interaction between atoms and crystalline structure in the phase of hexagonal crystal of Cu2S are carefully estimated by first-principle calculations. Then, approximating these interactions, we originally construct a conventional interatomic potential function of Cu2S crystal in its hexagonal phase. By using this potential function, we perform MD simulation of Cu2S crystal which is subjected to shear loading parallel to the basal plane. We compare results obtained by different conditions of sliding directions. Unlike ordinary hexagonal metallic crystals, it is found that the easy-glide direction does not always show small shear stress for Cu2S crystal. Besides, it is found that shearing velocity affects largely the magnitude of averaged shear stress. Generally speaking, higher velocity results in higher resistance against shear deformation. As a result, it is understood that Cu2S crystal exhibits somewhat liquid-like (amorphous behavior in sliding condition and shear resistance increases with increase of sliding speed.

  19. Wherefore Art Thou Copper? Structures and Reaction Mechanisms of Organocuprate Clusters in Organic Chemistry.

    Science.gov (United States)

    Nakamura; Mori

    2000-11-03

    Organocopper reagents provide the most general synthetic tools in organic chemistry for nucleophilic delivery of hard carbanions to electrophilic carbon centers. A number of structural and mechanistic studies have been reported and have led to a wide variety of mechanistic proposals, some of which might even be contradictory to others. With the recent advent of physical and theoretical methodologies, the accumulated knowledge on organocopper chemistry is being put together into a few major mechanistic principles. This review will summarize first the general structural features of organocopper compounds and the previous mechanistic arguments, and then describe the most recent mechanistic pictures obtained through high-level quantum mechanical calculations for three typical organocuprate reactions, carbocupration, conjugate addition, and S(N)2 alkylation. The unified view on the nucleophilic reactivities of metal organocuprate clusters thus obtained has indicated that organocuprate chemistry represents an intricate example of molecular recognition and supramolecular chemistry, which chemists have long exploited without knowing it. Reasoning about the uniqueness of the copper atom among neighboring metal elements in the periodic table will be presented.

  20. Synthesis, structure, magnetic properties and molecular mechanics study on the dinuclear copper (II) with biradical

    Institute of Scientific and Technical Information of China (English)

    孙柏旺; 赵琦华; 廖代正; 姜宗慧; 阎世平; 王耕霖; 姚心侃; 王宏根; 王磊光; 陈海建

    2000-01-01

    Dinuclear copper complex with biradicals [Cu(hfac)2]2PhBNM(PhBNM = 2,5-bimethyl-1,4-bis(4,4,5,5-tetramethyllimidazoline-1-oxyl-3-oxide)phenyl,hfac=hexafluoroacetylacetonate) has been synthesized and characterized. It crystallized in the monoclinic system, with space group C2/c, a=1.9012(4), b=1.3718(3), c=2.1620(4) nm, β=97.55(3)°, Z=4. The X-ray structure analysis shows that the molecular structure consists of two kinds of conformations. The ratio of them is 7:3. The energy of two conformations, calculated with molecular mechanics, are different, E1=740 kJ/mol, and E2=771 kJ · mol-1. The CNDO/k results on the complex indicate that the orbital energy of low spin state is lower than that of high spin state, which correspond with the results of magnetic measurement.

  1. Synthesis, structure, magnetic properties and molecular mechanics study on the dinuclear copper (II) with biradical

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Dinuclear copper complex with biradicals [Cu(hfac)2]2PhBNM(PhBNM = 2,5-bimethyl- 1,4-bis(4,4,5,5-tetramethyllimidazoline-1-oxyl-3-oxide)phenyl,hfac=hexafluoroacetylacetonate) has been synthesized and characterized. It crystallized in the monoclinic system, with space group C2/c, a=1.9012(4), b=1.3718(3), c=2.1620(4) nm, β=97.55(3)°,Z=4. The X-ray structure analysis shows that the molecular structure consists of two kinds of conformations. The ratio of them is 7:3. The energy of two conformations, calculated with molecular mechanics, are different, E1=740 kJ/mol, and E2=771 kJ·mol-1. The CNDO/k results on the complex indicate that the orbital energy of low spin state is lower than that of high spin state, which correspond with the results of magnetic measurement.

  2. Spark plasma sintering of mechanically alloyed in situ copper-niobium carbide composite

    Energy Technology Data Exchange (ETDEWEB)

    Long, B.D. [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Othman, R. [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Umemoto, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Zuhailawati, H., E-mail: zuhaila@eng.usm.m [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-09-03

    A Cu-NbC composite with high electrical conductivity and high microhardness was synthesized by mechanical alloying and densified using spark plasma sintering (SPS). Mixtures of Cu-NbC powders corresponding to volume fractions of 1, 5, 15 and 25 vol% NbC were milled in a high energy planetary mill under argon atmosphere for 30 h using ethanol as process control agent. The Cu-NbC as-milled powder was sintered using spark plasma sintering temperatures between 900 and 1000 {sup o}C. X-ray diffraction investigation showed that NbC started to form in the copper matrix during ball milling and the reaction between Nb and C was completed after 10 min of SPS sintering. Electrical conductivity and density of the Cu-15 vol% NbC composite increased with increasing sintering temperature. The results showed the superior properties of SPS-prepared Cu-NbC composite: electrical conductivity is almost 4 times higher and microhardness is 3.5 times higher than with normal sintering. A highest density of 98% and electrical conductivity of 45.6% IACS were obtained in the Cu-1 vol% NbC composite. The highest microhardness of 452.9 Hv was achieved in the Cu-25 vol% NbC composite.

  3. Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Stelmashook, E V; Isaev, N K; Genrikhs, E E; Amelkina, G A; Khaspekov, L G; Skrebitsky, V G; Illarioshkin, S N

    2014-05-01

    Disbalance of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as multisystem atrophy, amyotrophic lateral sclerosis, Creutzfeldt-Jakob disease, Wilson-Konovalov disease, Alzheimer's disease, and Parkinson's disease. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most frequent age-related neurodegenerative pathologies with disorders in Zn2+ and Cu2+ homeostasis playing a pivotal role in the mechanisms of pathogenesis. In this review we generalized and systematized current literature data concerning this problem. The interactions of Zn2+ and Cu2+ with amyloid precursor protein (APP), β-amyloid (Abeta), tau-protein, metallothioneins, and GSK3β are considered, as well as the role of these interactions in the generation of free radicals in AD and PD. Analysis of the literature suggests that the main factors of AD and PD pathogenesis (oxidative stress, structural disorders and aggregation of proteins, mitochondrial dysfunction, energy deficiency) that initiate a cascade of events resulting finally in the dysfunction of neuronal networks are mediated by the disbalance of Zn2+ and Cu2+.

  4. Longitudinal vibrations of mechanical systems with the transportation effect

    Directory of Open Access Journals (Sweden)

    A. Buchacz

    2009-01-01

    Full Text Available Purpose: this thesis purpose is a new way of modelling systems working with high speeds of mechanisms. Systems are analyzed with taking into consideration the rotational movement and with criterions of using materials with high flexibility and high precision of work. The dynamical analysis was done with giving into consideration the interaction between working motion and local vibrations. During the motion a model is loaded by longitudinal forces.Design/methodology/approach: equations of motion were derived by the Lagrange method, with generalized coordinates and generalized velocities assumed as orthogonal projections of individual quantities of the rod and manipulators to axes of the global reference frame.Findings: the model of longitudinally vibrating systems in plane motion was derived, after that the model can be transformed to the dynamical flexibility of these systems. Derived equations are the beginning of analysis of complex systems, especially can be used in deducing of the substitute dynamical flexibility of multilinked systems in motion.Research limitations/implications: mechanical systems vibrating longitudinally in terms of rotation were considered in this thesis. Successive problem of the dynamical analysis is the analysis of systems in spatial transportation and systems loaded by transversal forces.Practical implications: effects of presented calculations can be applied into machines and mechanisms in transportation such as: high speed turbines, wind power plant, water-power plants, manipulators, aerodynamics issues, and in different rotors etc.Originality/value: the contemporary analysis of beams and rods were made in a separate way, first working motion of the main system and next the local vibrations. A new way of modelling took into consideration the interaction between those two displacement. There was defined the transportation effect for models vibrating longitudinally in this paper.

  5. Analysis of mechanical systems with transversal vibrations in transportation

    Directory of Open Access Journals (Sweden)

    A. Buchacz

    2008-12-01

    Full Text Available Purpose: of this article are modelling and dynamic analysis of mechanical systems during the rotationalmovement. Nowadays technical problems are tied with high speeds of mechanisms, high precision of work,using lower density materials, and many other high demands for elements of work. Objective of this paper wasthe analysis with giving into consideration the interaction between working motion and local vibrations. Themodel is loaded by transverse forces and transformed to the global reference frame.Design/methodology/approach: derived equations of motion were made by the Lagrange equations methodwith generalized coordinates and generalized velocities assumed as orthogonal projections of individualcoordinates and velocities of each beam to axes of the global reference frame.Findings: systems of equations of motion of transversally vibrating systems in two-dimensional motion willbe put to use to derivation of the dynamical flexibility of these systems and complex systems. Those equationsare the beginning of the analysis of complex systems. They can also be used to derivation of the substitutedynamical flexibility of n-linked systems.Research limitations/implications: mechanical systems vibrating transversally in terms of two-dimensionalmotion were considered in the thesis. The consecutive problem of dynamical analysis is modelling of systemsin spatial motion and also the analysis of systems loaded by longitudinal forces.Practical implications: mathematical effects of this article can be put to use into many mechanisms andmachines running in rotational transportation. For example applications are: high speed turbines, wind powerplants, rotors, manipulators and in aerodynamics issues, etc. Of course results should be adopted and modifiedto appropriate system.Originality/value: High demands for parameters of work of mechanisms and machines are the postulation fornew research and new ways of modelling and analyzing those type systems. The example way

  6. Production of copper-niobium carbide nanocomposite powders via mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Marques, M.T. [INETI-DMTP, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal)]. E-mail: tmarques@ineti.pt; Livramento, V. [INETI-DMTP, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Correia, J.B. [INETI-DMTP, Estrada do Paco do Lumiar, 22, 1649-038 Lisbon (Portugal); Almeida, A. [IST-Dep. Eng. de Materiais, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Vilar, R. [IST-Dep. Eng. de Materiais, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2005-06-15

    Nanocrystalline niobium carbide was synthesed in situ in a copper matrix during high-energy milling of elemental powders. Three powder batches were produced with nominal compositions of 5, 10 and 20 vol.% NbC. Characterisation by X-ray diffraction and scanning electron microscopy indicates that early during the milling process a carbide dispersion is formed within a nanostructured copper matrix. After annealing at 873 K, the carbide structure and particle size are maintained, reflecting the ability of the microstructure to resist to coarsening. The hardness levels attained are more than twice those of nanostructured copper.

  7. Mechanism of surface texture evolution in pure copper strips subjected to double rolling

    Directory of Open Access Journals (Sweden)

    Xiyong Wang

    2014-02-01

    Full Text Available Developing ultra-thin copper foils with different surface roughness and microstructure has important significance for improving the service performance and reducing the production cost of high-end circuit boards. In this paper, pure copper strips with initial cube texture were subjected to a double rolling process (deformation amount ranges from 50% to 95%, and the surface textures evolution law and mechanism of double-rolled strips were studied by an X-ray diffraction technique. The results show that when a deformation amount increased from 50% to 70%, the grains of two surfaces rotate away from the cube orientation, and the formed textures of two surfaces mainly consisted of C, S and B orientation components. The orientation density values for these three components on bright surface only had slight difference; the orientation density values for C and S components were much larger than that for B components on a matt surface. When the deformation amount increased to 90%, the increase extents of orientation density values for C and S components were obviously larger than that for B components on a bright surface; the increase extents of orientation density values for these three components were almost the same on the matt surface. It has been found that when deformation amount reaches 95%, the grains orientation of bright surface were relatively concentrated, and the orientation density value for C texture obviously increased to 11.68 and that for B texture was only 3.15; the grains orientation of matt surface were relatively dispersed, and the orientation density value for C texture increased to 9.26 and that for B texture obviously increased to 6.35, and the density values of these two textures had less difference. For the condition of strong compressive and shear stress on the bright surface, grains were mainly rotating to C texture orientation; compared with the bright surface, “semi-free” deformation condition on the matt surface is

  8. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.

    Science.gov (United States)

    Li, GuanQiu; Alhosani, Mohamed H; Yuan, ShaoJun; Liu, HaoRan; Ghaferi, Amal Al; Zhang, TieJun

    2014-12-01

    Utilization of nanotechnologies in condensation has been recognized as one opportunity to improve the efficiency of large-scale thermal power and desalination systems. High-performance and stable dropwise condensation in widely-used copper heat exchangers is appealing for energy and water industries. In this work, a scalable and low-cost nanofabrication approach was developed to fabricate superhydrophobic copper oxide (CuO) nanoneedle surfaces to promote dropwise condensation and even jumping-droplet condensation. By conducting systematic surface characterization and in situ environmental scanning electron microscope (ESEM) condensation experiments, we were able to probe the microscopic formation physics of droplets on irregular nanostructured surfaces. At the early stages of condensation process, the interfacial surface tensions at the edge of CuO nanoneedles were found to influence both the local energy barriers for microdroplet growth and the advancing contact angles when droplets undergo depinning. Local surface roughness also has a significant impact on the volume of the condensate within the nanostructures and overall heat transfer from the vapor to substrate. Both our theoretical analysis and in situ ESEM experiments have revealed that the liquid condensate within the nanostructures determines the amount of the work of adhesion and kinetic energy associated with droplet coalescence and jumping. Local and global droplet growth models were also proposed to predict how the microdroplet morphology within nanostructures affects the heat transfer performance of early-stage condensation. Our quantitative analysis of microdroplet formation and growth within irregular nanostructures provides the insight to guide the anodization-based nanofabrication for enhancing dropwise and jumping-droplet condensation performance.

  9. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development.

    Directory of Open Access Journals (Sweden)

    Szymon Stoma

    2008-10-01

    Full Text Available Plants continuously generate new organs through the activity of populations of stem cells called meristems. The shoot apical meristem initiates leaves, flowers, and lateral meristems in highly ordered, spiralled, or whorled patterns via a process called phyllotaxis. It is commonly accepted that the active transport of the plant hormone auxin plays a major role in this process. Current hypotheses propose that cellular hormone transporters of the PIN family would create local auxin maxima at precise positions, which in turn would lead to organ initiation. To explain how auxin transporters could create hormone fluxes to distinct regions within the plant, different concepts have been proposed. A major hypothesis, canalization, proposes that the auxin transporters act by amplifying and stabilizing existing fluxes, which could be initiated, for example, by local diffusion. This convincingly explains the organised auxin fluxes during vein formation, but for the shoot apical meristem a second hypothesis was proposed, where the hormone would be systematically transported towards the areas with the highest concentrations. This implies the coexistence of two radically different mechanisms for PIN allocation in the membrane, one based on flux sensing and the other on local concentration sensing. Because these patterning processes require the interaction of hundreds of cells, it is impossible to estimate on a purely intuitive basis if a particular scenario is plausible or not. Therefore, computational modelling provides a powerful means to test this type of complex hypothesis. Here, using a dedicated computer simulation tool, we show that a flux-based polarization hypothesis is able to explain auxin transport at the shoot meristem as well, thus providing a unifying concept for the control of auxin distribution in the plant. Further experiments are now required to distinguish between flux-based polarization and other hypotheses.

  10. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    Science.gov (United States)

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  11. Extended adsorption transport models for permeation of copper ions through nanocomposite chitosan/polyvinyl alcohol thin affinity membranes

    Institute of Scientific and Technical Information of China (English)

    Ehsan Salehi; Leila Bakhtiari; Mahdi Askari

    2016-01-01

    Transport of copper ions through nanocomposite chitosan/polyvinyl alcohol thin adsorptive membranes has been mathematical y investigated in the current study. Unsteady-state diffusive transport model was coupled with the Freundlich isotherm to predict the concentration of the ions in dialysis permeation operation. Pristine model was not successful in predicting the experimental data based upon its low coefficients of determination (0.1﹤R2﹤0.65). Well-behaved polynomial and exponential functions were used to describe time-dependency of the inlet-concentration in the first extension of the model with a little improvement in the model adjustment (0.4﹤R2﹤0.69). Similar time-dependent functions were employed for tracking the ion diffusivity and then applied in combination with the optimized functions of inlet-concentration in the second extension of the model. A sensible enhancement was obtained in the adjustment of the second extended models as a result of this combination (0.73﹤R2﹤0.93). APRE, AAPRE, RSME, RMSE, STD and R-square statistical analyses were per-formed to verify the agreement of the models with the experimental results. Concentration distribution versus time and location (inside the membrane) was obtained as 3D plots with the help of the optimized models. Modeling results emphasized on the transiency of diffusivity and feed-side concentration in dialysis permeation through chitosan membranes.

  12. Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer

    Science.gov (United States)

    Huangfu, Minzan; Shen, Yue; Zhu, Gongbo; Xu, Kai; Cao, Meng; Gu, Feng; Wang, Linjun

    2015-12-01

    This study is the first to report the preparation of Copper iodide (CuI) thick films by means of convenient airbrush process and their application as inorganic hole transport layers (HTL) in organo-lead halide perovskite-based solar cells. CuI thick films exhibit high conductivity, wide-band-gap and solution-processable. Organo-lead halide perovskite solar cells with different thickness of mesoporous layers and CuI hole transport layers were fabricated. Performance of the cells were mainly controlled by the thickness of TiO2 mesoporous layers. Under optimized conditions, a power conversion efficiency of 5.8% has been achieved with short-circuit current density JSC of 22.3 mA/cm2, open-circuit voltage VOC of 614 mV and fill factor of 42%. However, the VOC remains low in comparison with the state of the art perovskite-based solar cells, which is attributed to the high recombination in CuI devices as determined by impedance spectroscopy.

  13. A DFT study of the mechanism of copper-catalyzed synthesis of 2H-indazoles from aryl azide.

    Science.gov (United States)

    Li, Juan; Zhang, Qi; Wu, Caihong; Gu, Honghong; Yan, Bo

    2014-01-07

    DFT calculations have been performed to study the reaction mechanism of N-N bond formation from aryl azide catalyzed by the copper(I) iodide complex. We studied various activation modes for the azide group, and found that the azide group is activated by the Cu(μ-I)2Cu(TMEDA) dimer coordinating to the N-atom of phenyl imine and the internal N-atom of azide.

  14. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.

    Science.gov (United States)

    Zhu, Lei; Brassard, Christopher J; Zhang, Xiaoguang; Guha, P M; Clark, Ronald J

    2016-06-01

    The copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction regiospecifically produces 1,4-disubstituted-1,2,3-triazole molecules. This heterocycle formation chemistry has high tolerance to reaction conditions and substrate structures. Therefore, it has been practiced not only within, but also far beyond the area of heterocyclic chemistry. Herein, the mechanistic understanding of CuAAC is summarized, with a particular emphasis on the significance of copper/azide interactions. Our analysis concludes that the formation of the azide/copper(I) acetylide complex in the early stage of the reaction dictates the reaction rate. The subsequent triazole ring-formation step is fast and consequently possibly kinetically invisible. Therefore, structures of substrates and copper catalysts, as well as other reaction variables that are conducive to the formation of the copper/alkyne/azide ternary complex predisposed for cycloaddition would result in highly efficient CuAAC reactions. Specifically, terminal alkynes with relatively low pKa values and an inclination to engage in π-backbonding with copper(I), azides with ancillary copper-binding ligands (aka chelating azides), and copper catalysts that resist aggregation, balance redox activity with Lewis acidity, and allow for dinuclear cooperative catalysis are favored in CuAAC reactions. Brief discussions on the mechanistic aspects of internal alkyne-involved CuAAC reactions are also included, based on the relatively limited data that are available at this point. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mechanism of Formation of Copper(II) Chloro Complexes Revealed by Transient Absorption Spectroscopy and DFT/TDDFT Calculations.

    Science.gov (United States)

    Mereshchenko, Andrey S; Olshin, Pavel K; Karabaeva, Kanykey E; Panov, Maxim S; Wilson, R Marshall; Kochemirovsky, Vladimir A; Skripkin, Mikhail Yu; Tveryanovich, Yury S; Tarnovsky, Alexander N

    2015-07-16

    Copper(II) complexes are extremely labile with typical ligand exchange rate constants on the order of 10(6)-10(9) M(-1) s(-1). As a result, it is often difficult to identify the actual formation mechanism of these complexes. In this work, using UV-vis transient absorption when probing in a broad time range (20 ps to 8 μs) in conjunction with DFT/TDDFT calculations, we studied the dynamics and underlying reaction mechanisms of the formation of extremely labile copper(II) CuCl4(2-) chloro complexes from copper(II) CuCl3(-) trichloro complexes and chloride ions. These two species, produced via photochemical dissociation of CuCl4(2-) upon 420 nm excitation into the ligand-to-metal-charge-transfer electronic state, are found to recombine into parent complexes with bimolecular rate constants of (9.0 ± 0.1) × 10(7) and (5.3 ± 0.4) × 10(8) M(-1) s(-1) in acetonitrile and dichloromethane, respectively. In dichloromethane, recombination occurs via a simple one-step addition. In acetonitrile, where [CuCl3](-) reacts with the solvent to form a [CuCl3CH3CN](-) complex in less than 20 ps, recombination takes place via ligand exchange described by the associative interchange mechanism that involves a [CuCl4CH3CN](2-) intermediate. In both solvents, the recombination reaction is potential energy controlled.

  16. Microstructure and Mechanical Properties of Ultrafine-Grained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing

    Science.gov (United States)

    Lu, Jianxun; Wu, Xiaoyu; Liu, Zhiyuan; Chen, Xiaoqiang; Xu, Bin; Wu, Zhaozhi; Ruan, Shuangchen

    2016-09-01

    We proposed intermittent ultrasonic-assisted equal-channel angular pressing (IU-ECAP) and used it to produce ultrafine-grained copper. The main aim of this work was to investigate the microstructure and mechanical properties of copper processed by IU-ECAP. We performed experiments with two groups of specimens: group 1 used conventional ECAP, and group 2 combined ECAP with intermittent ultrasonic vibration. The extrusion forces, microstructure, mechanical properties, and thermal stability of the two groups were compared. It was revealed that more homogeneous microstructure with smaller grains could be obtained by IU-ECAP compared with copper obtained using the traditional ECAP method. Mechanical testing showed that IU-ECAP significantly reduced the extrusion force and increased both the hardness and ultimate tensile stress owing to the higher dislocation density and smaller grains. IU-ECAP promotes conversion from low-angle grain boundaries to high-angle grain boundaries, and it increases the fractions of subgrains and dynamic recrystallized grains. Group 2 statically recrystallized at a higher temperature or longer duration than group 1, showing that group 2 had better thermal stability.

  17. Iron transport & homeostasis mechanisms: their role in health & disease.

    Science.gov (United States)

    Nadadur, S S; Srirama, K; Mudipalli, Anuradha

    2008-10-01

    Iron is an essential trace metal required by all living organisms and is toxic in excess. Nature has evolved a delicately balanced network to monitor iron entry, transport it to sites of need, and serve as a unique storage and recycling system, in the absence of an excretory system, to remove excess iron. Due to the unique nature of iron metabolism, iron homeostasis is achieved by integrated specialized mechanisms that operate at the cellular and organism level. The use of positional cloning approaches by multiple researchers has led to the identification and characterization of various proteins and peptides that play a critical role in iron metabolism. These efforts have led to elucidation of the molecular mechanisms involved in the uptake of iron by the enterocytes, transportation across the membrane to circulation, and delivery to diverse tissues for use and storage and sensor system to co-ordinate and achieve homeostasis. Molecular understanding of these processes and the key regulatory molecules involved in maintaining homeostasis will provide novel insights into understanding human disorders associated with either iron deficiency or overload.

  18. Mechanisms of contaminant transport in a multi-basin lake.

    Science.gov (United States)

    Rueda, Francisco J; Schladow, S Geoffrey; Clark, Jordan F

    2008-12-01

    Tracer studies are combined with a three-dimensional (3-D) numerical modeling study to provide a robust description of hydrodynamic and particle transport in Clear Lake, a multi-basin, polymictic lake in northern California, USA. The focus is on the mechanisms of transport of contaminants away from the vicinity of the Sulphur Bank Mercury Mine and out of the Oaks Arm to the rest of the lake and the hydraulic connection existing among the sub-basins of the lake. Under stratified conditions, the rate of spreading of the tracer was found to be large. In less than a week the tracer spread from the eastern end of the Oaks Arm to the other basins. Under non-stratified conditions, the tracer spread more slowly and had a concentration that gradually diminished with distance from the injection location. The numerical results showed that the mechanisms accounting for these observed patterns occur in pulses, with maximum rates coinciding with the stratified periods. Stratification acts first to enhance the currents by inhibiting vertical momentum mixing and decoupling the surface currents from bottom friction. The diversity of the flow structures that results from the interaction of the wind and the density fields in the lake is responsible for the high dispersion rates. Contaminants originating in the Oaks Arm are shown to be transported into the Lower Arm following the surface currents and into the Upper Arm mainly through the bottom currents. It was also shown that, under stratified conditions, both the baroclinic (density driven) gradients and the wind forcing act jointly to exacerbate the interbasin exchange.

  19. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5).

    Science.gov (United States)

    Scalise, Mariafrancesca; Pochini, Lorena; Panni, Simona; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare

    2014-11-01

    The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na(+)-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K(+) gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na(+). Internal Na(+) exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.

  20. Failure mechanisms in cobalt welded with a silver–copper filler

    Energy Technology Data Exchange (ETDEWEB)

    Criss, Everett M., E-mail: ecriss@ucsd.edu [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla (United States); Smith, Richard J. [Electrical Systems and Optics Research Division, Faculty of Engineering, University of Nottingham, Nottingham, Nottinghamshire (United Kingdom); Meyers, Marc A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla (United States); Materials Science and Engineering Program, University of California, San Diego, La Jolla (United States); Department of Nanoengineering, University of California, San Diego, La Jolla (United States)

    2015-10-01

    Cobalt silver–copper (Co–AgCu) weldments approximate the stresses and failure mechanisms of beryllium aluminum–silicon (Be–AlSi) welds, which have strategic importance but are hazardous to study. Failure tests of these surrogate Co–AgCu welds, examined in tension and four-point bending, show that residual stresses and post-welding heat treatment have little or no effect on strength, whereas weld quality and geometry are extremely important. Scanning electron microscopy images reveal abundant defects in poor welds, which usually fail through propagation of preexisting cracks. Fracture surfaces show a variety of morphologies, ranging from dimples in the AgCu filler, to cleavage steps in the CoCu peritectic, and suspected intergranular fracture in the cobalt base. Spatially resolved acoustic spectroscopy reveals significant changes in microstructure near the base–filler interface, whereas wavelength dispersive analysis shows high Cu concentrations in this area.. Contrary to finite element predictions, these welds were found to be stronger during face bending than root bending, likely resulting from the increased number of cracks and imperfections in the Co base. These computations correctly predict that weld strength depends on geometry and that welds fail either in the cobalt base, or along the base–filler interface. Crack compliance measurements show that the largest residual stresses are located along this interface. However, these stresses are unlikely to influence failure due to their direction, whereas stresses in the weld root are too small to have observable effects on failure. The strength of Co–AgCu welds depends strongly on geometry, penetration, and weld quality, but little on residual stresses, and this conclusion is tentatively extended to Be–AlSi welds.

  1. Cellular Transport Mechanisms of Cytotoxic Metallodrugs: An Overview beyond Cisplatin

    Directory of Open Access Journals (Sweden)

    Sarah Spreckelmeyer

    2014-09-01

    Full Text Available The field of medicinal inorganic chemistry has grown consistently during the past 50 years; however, metal-containing coordination compounds represent only a minor proportion of drugs currently on the market, indicating that research in this area has not yet been thoroughly realized. Although platinum-based drugs as cancer chemotherapeutic agents have been widely studied, exact knowledge of the mechanisms governing their accumulation in cells is still lacking. However, evidence suggests active uptake and efflux mechanisms are involved; this may be involved also in other experimental metal coordination and organometallic compounds with promising antitumor activities in vitro and in vivo, such as ruthenium and gold compounds. Such knowledge would be necessary to elucidate the balance between activity and toxicity profiles of metal compounds. In this review, we present an overview of the information available on the cellular accumulation of Pt compounds from in vitro, in vivo and clinical studies, as well as a summary of reports on the possible accumulation mechanisms for different families of experimental anticancer metal complexes (e.g., Ru Au and Ir. Finally, we discuss the need for rationalization of the investigational approaches available to study metallodrug cellular transport.

  2. Mechanism of transport and distribution of organic solvents in blood

    Science.gov (United States)

    Lam, C. W.; Galen, T. J.; Boyd, J. F.; Pierson, D. L.

    1990-01-01

    Little is known about the mechanism of transport and distribution of volatile organic compounds in blood. Studies were conducted on five typical organic solvents to investigate how these compounds are transported and distributed in blood. Groups of four to five rats were exposed for 2 hr to 500 ppm of n-hexane, toluene, chloroform, methyl isobutyl ketone (MIBK), or diethyl ether vapor; 94, 66, 90, 51, or 49%, respectively, of these solvents in the blood were found in the red blood cells (RBCs). Very similar results were obtained in vitro when aqueous solutions of these solvents were added to rat blood. In vitro studies were also conducted on human blood with these solvents; 66, 43, 65, 49, or 46%, respectively, of the added solvent was taken up by the RBCs. These results indicate that RBCs from humans and rats exhibited substantial differences in affinity for the three more hydrophobic solvents studied. When solutions of these solvents were added to human plasma and RBC samples, large fractions (51-96%) of the solvents were recovered from ammonium sulfate-precipitated plasma proteins and hemoglobin. Smaller fractions were recovered from plasma water and red cell water. Less than 10% of each of the added solvents in RBC samples was found in the red cell membrane ghosts. These results indicate that RBCs play an important role in the uptake and transport of these solvents. Proteins, chiefly hemoglobin, are the major carriers of these compounds in blood. It can be inferred from the results of the present study that volatile lipophilic organic solvents are probably taken up by the hydrophobic sites of blood proteins.

  3. Flexible Mechanical Conveyors for Regolith Extraction and Transport

    Science.gov (United States)

    Walton, Otis R.; Vollmer, Hubert J.

    2013-01-01

    A report describes flexible mechanical conveying systems for transporting fine cohesive regolith under microgravity and vacuum conditions. They are totally enclosed, virtually dust-free, and can include enough flexibility in the conveying path to enable an expanded range of extraction and transport scenarios, including nonlinear drill-holes and excavation of enlarged subsurface openings without large entry holes. The design of the conveyors is a modification of conventional screw conveyors such that the central screw-shaft and the outer housing or conveyingtube have a degree of bending flexibility, allowing the conveyors to become nonlinear conveying systems that can convey around gentle bends. The central flexible shaft is similar to those used in common tools like a weed whacker, consisting of multiple layers of tightly wound wires around a central wire core. Utilization of compliant components (screw blade or outer wall) increases the robustness of the conveying, allowing an occasional oversized particle to pass hough the conveyor without causing a jam or stoppage

  4. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  5. The transport mechanism of the integer quantum Hall effect

    CERN Document Server

    LiMing, W

    2016-01-01

    The integer quantum Hall effect is analysed using a transport mechanism with a semi-classic wave packages of electrons in this paper. A strong magnetic field perpendicular to a slab separates the electron current into two branches with opposite wave vectors $({\\it k})$ and locating at the two edges of the slab, respectively, along the current. In this case back scattering of electrons ($k\\rightarrow -k$) is prohibited by the separation of electron currents. Thus the slab exhibits zero longitudinal resistance and plateaus of Hall resistance. When the Fermi level is scanning over a Landau level when the magnetic field increases, however, the electron waves locate around the central axis of the slab and overlap each other thus back scattering of electrons takes place frequently. Then longitudinal resistance appears and the Hall resistance goes up from one plateau to a new plateau.

  6. Mechanical properties of wood from Pinus sylvestris L. treated with Light Organic Solvent Preservative and with waterborne Copper Azole

    Directory of Open Access Journals (Sweden)

    A.M. Villasante

    2013-12-01

    Full Text Available Aim of study: To determine the effect on wood from Pinus sylvestris of treatment with preservatives on mechanical properties and to establish the relation between the penetration and compression strength.Area of study: SpainMaterial and Methods: 40 samples of defect-free wood from Pinus sylvestris L. were treated with Light Organic Solvent Preservative (Vacsol Azure WR 2601 and 50 with waterborne Copper Azole (Tanalith E 3492. 40 control samples were not treated (water or preservative. Mechanical resistance to static bending, modulus of elasticity and compression strength parallel to the grain were compared with untreated wood. Regression analysis between the penetration and compression strength parallel was done with the samples treated with waterborne preservative.Main results: The results indicate that the treated wood (with either product presents a statistically significant increase in mechanical resistance in all three mechanical characteristics. The results obtained differ from earlier studies carried out by other authors.There was no correlation between parallel compression strength and the degree of impregnation of the wood with waterborne Copper Azole . The most probable explanation for these results concerns changes in pressure during treatment.The use of untreated control samples instead of samples treated only with water is more likely to produce significant results in the mechanical resistance studies.Research highlights: Treated wood presents a statistically significant increase in MOE, modulus of rupture to static bending  and parallel compression strength.There was no correlation between parallel compression strength and the degree of impregnation with waterborne preservative.Keywords: Light Organic Solvent Preservative; MOE; parallel compression; static bending; waterborne Copper Azole; wood technology.

  7. Whole shaft visibility and mechanical performance for active MR catheters using copper-nitinol braided polymer tubes

    Directory of Open Access Journals (Sweden)

    McVeigh Elliot R

    2009-08-01

    Full Text Available Abstract Background Catheter visualization and tracking remains a challenge in interventional MR. Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. Results The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability and antenna (signal attenuation properties. With this configuration, the temperature increase remained less than 2°C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. Conclusion We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.

  8. Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Naser A., E-mail: anjum@ua.pt [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Duarte, Armando C.; Pereira, Eduarda [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Iqbal, Muhammad [Department of Botany, Faculty of Science, Hamdard University, New Delhi 110062 (India); Lukatkin, Alexander S. [Department of Botany, Plant Physiology and Ecology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68. Saransk 430005 (Russian Federation); Ahmad, Iqbal, E-mail: ahmadr@ua.pt [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-04-15

    Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major ‘eco-receptors’ of nanoscale particles in the terrestrial ecosystem, soil–microbiota and plants (the soil–plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil–plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil–plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil–plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil–microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil–microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the

  9. Berberine stimulates glucose transport through a mechanism distinct from insulin.

    Science.gov (United States)

    Zhou, Libin; Yang, Ying; Wang, Xiao; Liu, Shangquan; Shang, Wenbin; Yuan, Guoyue; Li, Fengying; Tang, Jinfeng; Chen, Mingdao; Chen, Jialun

    2007-03-01

    Berberine exerts a hypoglycemic effect, but the mechanism remains unknown. In the present study, the effect of berberine on glucose uptake was characterized in 3T3-L1 adipocytes. It was revealed that berberine stimulated glucose uptake in 3T3-L1 adipocytes in a dose- and time-dependent manner with the maximal effect at 12 hours. Glucose uptake was increased by berberine in 3T3-L1 preadipocytes as well. Berberine-stimulated glucose uptake was additive to that of insulin in 3T3-L1 adipocytes, even at the maximal effective concentrations of both components. Unlike insulin, the effect of berberine on glucose uptake was insensitive to wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and SB203580, an inhibitor of p38 mitogen-activated protein kinase. Berberine activated extracellular signal-regulated kinase (ERK) 1/2, but PD98059, an ERK kinase inhibitor, only decreased berberine-stimulated glucose uptake by 32%. Berberine did not induce Ser473 phosphorylation of Akt nor enhance insulin-induced phosphorylation of Akt. Meanwhile, the expression and cellular localization of glucose transporter 4 (GLUT4) were not altered by berberine. Berberine did not increase GLUT1 gene expression. However, genistein, a tyrosine kinase inhibitor, completely blocked berberine-stimulated glucose uptake in 3T3-L1 adipocytes and preadipocytes, suggesting that berberine may induce glucose transport via increasing GLUT1 activity. In addition, berberine increased adenosine monophosphate-activated protein kinase and acetyl-coenzyme A carboxylase phosphorylation. These findings suggest that berberine increases glucose uptake through a mechanism distinct from insulin, and activated adenosine monophosphate-activated protein kinase seems to be involved in the metabolic effect of berberine.

  10. Mechanical properties of wood from Pinus sylvestris L. treated with Light Organic Solvent Preservative and with waterborne Copper Azole

    Energy Technology Data Exchange (ETDEWEB)

    Villasante, A.; Laina, R.; Rojas, J. A. M.; Rojas, I. M.; Vignote, S.

    2013-07-01

    Aim of study: To determine the effect on wood from Pinus sylvestris of treatment with preservatives on mechanical properties and to establish the relation between the penetration and compression strenght. Area of study: Spain. Material and methods: 40 samples of defect-free wood from Pinus sylvestris L. were treated with Light Organic Solvent Preservative (Vacsol Azure WR 2601) and 50 with waterborne Copper Azole (Tanalith E 3492). 40 control samples were not treated (water or preservative). Mechanical resistance to static bending, modulus of elasticity and compression strength parallel to the grain were compared with untreated wood. Regression analysis between the penetration and compression strength parallel was done with the samples treated with waterborne preservative. Main results: The results indicate that the treated wood (with either product) presents a statistically significant increase in mechanical resistance in all three mechanical characteristics. The results obtained differ from earlier studies carried out by other authors. There was no correlation between parallel compression strength and the degree of impregnation of the wood with waterborne Copper Azole. The most probable explanation for these results concerns changes in pressure during treatment. The use of untreated control samples instead of samples treated only with water is more likely to produce significant results in the mechanical resistance studies. Research highlights: Treated wood presents a statistically significant increase in MOE, modulus of rupture to static bending and parallel compression strength. There was no correlation between parallel compression strength and the degree of impregnation with waterborne preservative. (Author)

  11. CLUB FORMATION MECHANISM FOR TRANSPORT-COMMUNITY CREDIT CARDS

    Science.gov (United States)

    Ding, Yue; Kobayashi, Kiyoshi; Nishida, Junji; Yoshida, Mamoru

    In this paper, the roles of transport-community cards jointly issued by a public transport firm and retails are investigated as a means to vitalize an obsolescence shopping center located in a middle of a city. When both the price of goods supplied by the retails and the transport fares affect the consumers' behavior, there exist pecuniary externality between the behaviors of the retails and transport firms. The introduction of a transport-community cards system enables to integrate a basket of goods and transport service into a single commodity; thus, the pecuniary externality can be internalized by price coordination. In addition, the paper clarifies theoretically that the transport firm initiatively decides the price of the transportation service and the retails transfer their incomes to the transport firm so that they are induced to jointly issue the transport-community cards.

  12. Evaluation of the Mechanical Properties of Multi-nano Layered Copper-Nickel Thin Film by the Dynamic-Nano Indentation Method

    Science.gov (United States)

    Choi, Yong

    2016-11-01

    The dynamic nano-indentation method was applied to study the effect of interface moving behavior with heat treatment on the nano-mechanical properties of multi-nano-layered copper-nickel thin film. Layer-by-layer depositions of copper and nickel of nano-sized thickness were prepared by two-step pulse electro-deposition in a modified copper-nickel sulfate bath at 25°C. The multi-layered copper-nickel thin sheet was composed of a 20-nm-thick copper-rich nickel phase, and a 25-nm-thick nickel-rich copper phase. Thermal vacuum annealing influenced the interface morphology between copper and nickel nano-layers. Inter-diffusion mainly occurred after annealing at 500°C for 6 h. The interface disappeared after annealing at 600°C to form a completely solid solution. Thermal annealing reduced the nano-hardness and elastic recovery. The average nano-hardness of the multi-layered nano-copper-nickel thin film for the specimens of as-received, 300°C, 500°C and 600°C were 7.9 Gpa, 6.1 Gpa, 4.7 Gpa and 3.0 GPa, respectively. The elastic stiffness was 15.77 × 104 Nm-1 for the as-received specimen, which finally became 2.98 × 104 Nm-1 for the specimen after annealing at 600°C for 6 h.

  13. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism.

    Science.gov (United States)

    Sarwar, Tarique; Zafaryab, Md; Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Rehman, Sayeed Ur; Rizvi, M Moshahid Alam; Tabish, Mohammad

    2015-12-01

    Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we have shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS.

  14. ,* Copper transport and accumulation in spruce stems (picea abies(L.) Karsten) revelaed by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krajcarova, Dr. Lucie [Czech Technical University; Novotny, Dr. Karel [Mendel University of Brno; Babula, Dr. Petr [Czech Technical University; Pravaznik, Dr Ivo [Czech Technical University; Kucerova, Dr. Petra [Czech Technical University; Vojtech, Dr. Adam [Czech Technical University; Martin, Madhavi Z [ORNL; Kizek, Dr. Rene [Czech Technical University; Kaiser, Jozef [ORNL

    2013-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) in double pulse configuration (DP LIBS) was used for scanning elemental spatial distribution in annual terminal stems of spruce (Picea abies (L.) Karsten). Cross sections of stems cultivated in Cu2+ solution of different concentrations were prepared and analyzed by DP LIBS. Raster scanning with 150 m spatial resolution was set and 2D (2-dimentional) maps of Cu and Ca distribution were created on the basis of the data obtained. Stem parts originating in the vicinity of the implementation of the cross sections were mineralized and subsequently Cu and Ca contents were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results provide quantitative information about overall concentration of the elements in places, where LIBS measurements were performed. The fluorescence pictures were created to compare LIBS distribution maps and the fluorescence intensity (or the increase in autofluorescence) was used for the comparison of ICP-MS quantitative results. Results from these three methods can be utilized for quantitative measurements of copper ions transport in different plant compartments in dependence on the concentration of cultivation medium and/or the time of cultivation.

  15. Highly efficient organic solar Cells based on a robust room-temperature solution-processed copper iodide hole transporter

    KAUST Repository

    Zhao, Kui

    2015-07-30

    Achieving high performance and reliable organic solar cells hinges on the development of stable and energetically suitable hole transporting buffer layers in tune with the electrode and photoactive materials of the solar cell stack. Here we have identified solution-processed copper(I) iodide (CuI) thin films with low-temperature processing conditions as an effective hole–transporting layer (HTL) for a wide range of polymer:fullerene bulk heterojunction (BHJ) systems. The solar cells using CuI HTL show higher power conversion efficiency (PCE) in standard device structure for polymer blends, up to PCE of 8.8%, as compared with poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, for a broad range of polymer:fullerene systems. The CuI layer properties and solar cell device behavior are shown to be remarkably robust and insensitive to a wide range of processing conditions of the HTL, including processing solvent, annealing temperature (room temperature up to 200 °C), and film thickness. CuI is also shown to improve the overall lifetime of solar cells in the standard architecture as compared to PEDOT:PSS. We further demonstrate promising solar cell performance when using CuI as top HTL in an inverted device architecture. The observation of uncommon properties, such as photoconductivity of CuI and templating effects on the BHJ layer formation, are also discussed. This study points to CuI as being a good candidate to replace PEDOT:PSS in solution-processed solar cells thanks to the facile implementation and demonstrated robustness of CuI thin films.

  16. Charge Transport Mechanism in Thin Cuticles Holding Nandi Flame Seeds

    Directory of Open Access Journals (Sweden)

    Wycliffe K. Kipnusu

    2009-01-01

    Full Text Available Metal-sample-metal sandwich configuration has been used to investigate DC conductivity in 4 m thick Nandi flame [Spathodea campanulata P. Beauv.] seed cuticles. - characteristics showed ohmic conduction at low fields and space charge limited current at high fields. Charge mobility in ohmic region was 4.06×10−5(m2V−1s−1. Temperature-dependent conductivity measurements have been carried out in the temperature range 320 K 450 K. Activation energy within a temperature of 320 K–440 K was about 0.86 eV. Variable range hopping (VRH is the main current transport mechanism at the range of 330–440 K. The VRH mechanism was analyzed based on Mott theory and the Mott parameters: density of localized states near the Fermi-level N(≈9.04×1019(eV−1cm−3 and hopping distance ≈1.44×10−7 cm, while the hopping energy ( was in the range of 0.72 eV–0.98 eV.

  17. Isolation of copper oxide (CuO) nanoparticles resistant Pseudomonas strains from soil and investigation on possible mechanism for resistance.

    Science.gov (United States)

    Soltani Nezhad, Shahla; Rabbani Khorasgani, Mohammad; Emtiazi, Giti; Yaghoobi, Mohammad Mehdi; Shakeri, Shahryar

    2014-03-01

    The present study deals with isolation and characterization of copper oxide nanoparticles resistant Pseudomonas strains that were isolated from the soil collected from mining and refining sites of Sarcheshmeh copper mine in the Kerman Province of Iran. The three isolates were selected based on high level of copper oxide nanoparticles (CuO NPs) resistance. The isolates were authentically identified as Pseudomonas fluorescens CuO-1, Pseudomonas fluorescens CuO-2 and Pseudomonas sp. CuO-3 by morphological, biochemical and 16S rDNA gene sequencing analysis. The growth pattern of these isolates with all the studied CuO NPs concentrations was similar to that of control (without CuO NPs) indicating that CuO NPs would not affect the growth of isolated strains. A reduction in the amount of exopolysaccharides was observed after CuO NPs-P. fluorescens CuO-1 culture supernatant interaction. The Fourier transform infrared spectroscopy (FT-IR) peaks for the exopolysaccharides extracted from the bacterial culture supernatant and the interacted CuO NPs were almost similar. The exopolysaccharide capping of the CuO NPs was confirmed by FT-IR and X-ray diffraction analysis. The study of bacterial exopolysaccharides capped CuO NPs with E. coli PTCC 1338 and S. aureus PTCC 1113 showed less toxicity compared to uncoated CuO NPs. Our study suggests that the capping of nanoparticles by bacterially produced exopolysaccharides serve as the probable mechanism of tolerance.

  18. Human and soil exposure during mechanical chlorpyrifos, myclobutanil and copper oxychloride application in a peach orchard in Argentina.

    Science.gov (United States)

    Berenstein, Giselle; Nasello, Soledad; Beiguel, Érica; Flores, Pedro; Di Schiena, Johanna; Basack, Silvana; Hughes, Enrique A; Zalts, Anita; Montserrat, Javier M

    2017-05-15

    The objective of this study was to measure the impact of the mechanized chlorpyrifos, copper oxychloride and myclobutanil application in a small peach orchard, on humans (operators, bystanders and residents) and on the productive soil. The mean Potential Dermal Exposure (PDE) of the workers (tractor drivers) was 30.8mL·h(-1)±16.4mL·h(-1), with no specific pesticide distribution on the laborers body. Although the Margin of Safety (MOS) factor for the application stage were above 1 (safe condition) for myclobutanil and cooper oxycloride it was below 1 for chlorpyrifos. The mix and load stage remained as the riskier operation. Pesticide found on the orchard soil ranged from 5.5% to 14.8% of the total chlorpyrifos, copper oxychloride and myclobutanil applied. Pesticide drift was experimentally measured, finding values in the range of 2.4% to 11.2% of the total pesticide applied. Using experimental drift values, bystander (for one application), resident (for 20 applications) and earthworm (for one application) risk indicators (RIs) were calculated for the chlorpyrifos plus copper oxychloride and for myclobutanil treatments for different distances to the orchard border. Earthworm RI was correlated with experimental Eisenia andrei ecotoxicological assays (enzymatic activities: cholinesterases, carboxylesterases and glutathione S-transferases; behavioral: avoidance and bait-lamina tests) with good correlation. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine

    NARCIS (Netherlands)

    Evangelista, F.; Gotter, R.; Mahne, N.; Nannarone, S.; Ruocco, A.; Rudolf, P.

    2008-01-01

    The evolution of the electronic properties of a thin film of copper phthalocyanine deposited on Al(100) and progressively intercalated with rubidium atoms was followed by photoemission and X-ray absorption spectroscopies. Electron donation from the Rb atoms to the C32H16N8Cu molecules results in the

  20. Hindered rotation of a copper phthalocyanine molecule on C60 : Experiments and molecular mechanics calculations

    NARCIS (Netherlands)

    Fendrich, M.; Wagner, Th.; Stöhr, M.; Möller, R.

    2006-01-01

    If copper phthalocyanine (CuPc) molecules are deposited on a Au(111) surface covered with a monolayer of C60, the molecules are found to adsorb individually onto the close-packed layer of C60. As the adsorption site of the CuPc is not symmetric with respect to the underlying C60 layer, the CuPc mole

  1. Chloride-Ion Penetrability and Mechanical Analysis of High Strength Concrete with Copper Slag

    Directory of Open Access Journals (Sweden)

    Savaş Erdem

    2014-05-01

    Full Text Available The use of waste materials and industrial by-products in high-strength concrete could increase the sustainability of the construction industry. In this study, the potential of using copper slag as coarse aggregate in high-strength concrete was experimentally investigated. The effects of replacing gravel coarse aggregate by copper slag particles on the compressive strength, chloride ion- migration, water permeability and impact resistance of high-strength concretes were evaluated. Incorporating copper slag coarse particles resulted in a compressive strength increase of about 14 % on average partly due to the low Ca/Si ratio through the interface area of this concrete (more homogenous internal structure as confirmed by the energy dispersive X-ray micro chemical analysis. It was also found that the copper slag high-strength concrete provided better ductility and had much greater load carrying capacity compared to gravel high-strength concrete under dynamic conditions. Finally, it was observed that in comparison to the high strength concrete with slag, the chloride migration coefficient from non-steady state migration was approximately 30 % greater in the gravel high-strength concrete.

  2. Hindered rotation of a copper phthalocyanine molecule on C60 : Experiments and molecular mechanics calculations

    NARCIS (Netherlands)

    Fendrich, M.; Wagner, Th.; Stöhr, M.; Möller, R.

    2006-01-01

    If copper phthalocyanine (CuPc) molecules are deposited on a Au(111) surface covered with a monolayer of C60, the molecules are found to adsorb individually onto the close-packed layer of C60. As the adsorption site of the CuPc is not symmetric with respect to the underlying C60 layer, the CuPc

  3. Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine

    NARCIS (Netherlands)

    Evangelista, F.; Gotter, R.; Mahne, N.; Nannarone, S.; Ruocco, A.; Rudolf, P.

    2008-01-01

    The evolution of the electronic properties of a thin film of copper phthalocyanine deposited on Al(100) and progressively intercalated with rubidium atoms was followed by photoemission and X-ray absorption spectroscopies. Electron donation from the Rb atoms to the C32H16N8Cu molecules results in the

  4. 铜粉处理酸性镀铜溶液中氯离子的机理%Mechanism of Treating Chloride Ion in Acidic Copper Plating Bath with Copper Powder

    Institute of Scientific and Technical Information of China (English)

    郭崇武

    2011-01-01

    阐明了用铜粉处理酸性镀铜溶液中氯离子的机理,理论分析和实验表明,在酸性镀铜溶液中,Cu2+离子与铜粉反应生成Cu+离子,同时氯离子与Cu+离子反应生成氯化亚铜沉淀.向镀液中加铜粉1g/L,氯离子的起始质量浓度为174mg/L时,氯离子的去除率为58.9%,而向镀液中加锌粉1g/L,氯离子的去除率为47.0%,用铜粉处理氯离子的效率较高.%The mechanism of treating chloride ion in acidic copper plating bath by using copper powder was illustrated. Theoretical analyses and experimental tests indicated that in acidic copper plating solution Cu2+ ion could react with copper powder to form Cu + ion and the Cu + ion could react with chloride ion in the solution to produce cuprous chloride precipitation. When the initial mass concentration of the chloride ions in the acidic copper plating solution was 174 mg/L, the elimination rate of chloride ions after adding 1 g/L copper powders to the solution was 58.9% while that after adding 1 g/L zinc powders was 47.0%. This indicates that the treatment efficiency of chloride ion in the acidic copper plating solution with copper powders is higher than that with zinc powders.

  5. A comprehensive phylogenetic analysis of copper transporting P1B ATPases from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic subtypes

    OpenAIRE

    Cubillas, Ciro; Miranda?S?nchez, Fabiola; González Sánchez, Antonio; Elizalde, Jos? Pedro; Vinuesa, Pablo; Brom, Susana; Garc?a?de los Santos, Alejandro

    2017-01-01

    Abstract The ubiquitous cytoplasmic membrane copper transporting P1B?1 and P1B?3?type ATPases pump out Cu+ and Cu2+, respectively, to prevent cytoplasmic accumulation and avoid toxicity. The presence of five copies of Cu?ATPases in the symbiotic nitrogen?fixing bacteria Sinorhizobium meliloti is remarkable; it is the largest number of Cu+?transporters in a bacterial genome reported to date. Since the prevalence of multiple Cu?ATPases in members of the Rhizobiales order is unknown, we performe...

  6. Identification of threats to the position of a transport worker in Legnica Copper Smelter and Refinery

    Directory of Open Access Journals (Sweden)

    J. Pietruszka

    2010-04-01

    Full Text Available The paper presents the major issues concerning the assessment of working conditions - harmful and disruptive factors occurring in theselected position of the transport worker at HM Legnica. To assess the risk of occupational hazard two methods have been applied: themethod according to PN-N-18002: 2000 (a 3-step method and Risk Score method. The applied methods were compared and assessedpaying special attention to usefulness and accuracy in carrying out further assessments of test positions in HM Legnica. Additionally, thework carried out in this paper includes detailed analysis of: the organization of the work process, the type of instruments and carrying out operations as well as the conditions of the working environment. The most important threats were identified. An important element of this work was to make a risk assessment of occupational hazard and give the necessary actions which should be taken to minimize all risks.

  7. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models.

    Science.gov (United States)

    Baum, Larry; Ng, Alex

    2004-08-01

    Curcumin is a polyphenolic diketone from turmeric. Because of its anti-oxidant and anti-inflammatory effects, it was tested in animal models of Alzheimer's disease, reducing levels of amyloid and oxidized proteins and preventing cognitive deficits. An alternative mechanism of these effects is metal chelation, which may reduce amyloid aggregation or oxidative neurotoxicity. Metals can induce Abeta aggregation and toxicity, and are concentrated in AD brain. Chelators desferrioxamine and clioquinol have exhibited anti-AD effects. Using spectrophotometry, we quantified curcumin affinity for copper, zinc, and iron ions. Zn2+ showed little binding, but each Cu2+ or Fe2+ ion appeared to bind at least two curcumin molecules. The interaction of curcumin with copper reached half-maximum at approximately 3-12 microM copper and exhibited positive cooperativity, with Kd1 approximately 10-60 microM and Kd2 approximately 1.3 microM (for binding of the first and second curcumin molecules, respectively). Curcumin-iron interaction reached half-maximum at approximately 2.5-5 microM iron and exhibited negative cooperativity, with Kd1 approximately 0.5-1.6 microM and Kd2 approximately 50-100 microM. Curcumin and its metabolites can attain these levels in vivo, suggesting physiological relevance. Since curcumin more readily binds the redox-active metals iron and copper than redox-inactive zinc, curcumin might exert a net protective effect against Abeta toxicity or might suppress inflammatory damage by preventing metal induction of NF-kappaB.

  8. Effect of continuous induction annealing on the microstructure and mechanical properties of copper-clad aluminum flat bars

    Science.gov (United States)

    Liu, Xin-hua; Jiang, Yan-bin; Zhang, Hong-jie; Xie, Jian-xin

    2016-12-01

    Copper-clad aluminum (CCA) flat bars produced by the continuous casting-rolling process were subjected to continuous induction heating annealing (CIHA), and the effects of induction heating temperature and holding time on the microstructure, interface, and mechanical properties of the flat bars were investigated. The results showed that complete recrystallization of the copper sheath occurred under CIHA at 460°C for 5 s, 480°C for 3 s, or 500°C for 1 s and that the average grain size in the copper sheath was approximately 10.0 μm. In the case of specimens subjected to CIHA at 460-500°C for longer than 1 s, complete recrystallization occurred in the aluminum core. In the case of CIHA at 460-500°C for 1-5 s, a continuous interfacial layer with a thickness of 2.5-5.5 μm formed and the thickness mainly increased with increasing annealing temperature. After CIHA, the interfacial layer consisted primarily of a Cu9Al4 layer and a CuAl2 layer; the average interface shear strength of the CCA flat bars treated by CIHA at 460-500°C for 1-5 s was 45-52 MPa. After full softening annealing, the hardness values of the copper sheath and the aluminum core were HV 65 and HV 24, respectively, and the hardness along the cross section of the CCA flat bar was uniform.

  9. Copper oxide and zinc oxide nanomaterials act as inhibitors of multidrug resistance transport in sea urchin embryos: their role as chemosensitizers.

    Science.gov (United States)

    Wu, Bing; Torres-Duarte, Cristina; Cole, Bryan J; Cherr, Gary N

    2015-05-05

    The ability of engineered nanomaterials (NMs) to act as inhibitors of ATP-binding cassette (ABC) efflux transporters in embryos of white sea urchin (Lytechinus pictus) was studied. Nanocopper oxide (nano-CuO), nanozinc oxide (nano-ZnO), and their corresponding metal ions (CuSO4 and ZnSO4) were used as target chemicals. The results showed that nano-CuO, nano-ZnO, CuSO4, and ZnSO4, even at relatively low concentrations (0.5 ppm), significantly increased calcein-AM (CAM, an indicator of ABC transporter activity) accumulation in sea urchin embryos at different stages of development. Exposure to nano-CuO, a very low solubility NM, at increasing times after fertilization (>30 min) decreased CAM accumulation, but nano-ZnO (much more soluble NM) did not, indicating that metal ions could cross the hardened fertilization envelope, but not undissolved metal oxide NMs. Moreover, nontoxic levels (0.5 ppm) of nano-CuO and nano-ZnO significantly increased developmental toxicity of vinblastine (an established ABC transporter substrate) and functioned as chemosensitizers. The multidrug resistance associated protein (MRP, one of ABC transporters) inhibitor MK571 significantly increased copper concentrations in embryos, indicating ABC transporters are important in maintaining low intracellular copper levels. We show that low concentrations of nano-CuO and nano-ZnO can make embryos more susceptible to other contaminants, representing a potent amplification of nanomaterial-related developmental toxicity.

  10. Altered microglial copper homeostasis in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Zheng, Zhiqiang; White, Carine; Lee, Jaekwon; Peterson, Troy S; Bush, Ashley I; Sun, Grace Y; Weisman, Gary A; Petris, Michael J

    2010-09-01

    Alzheimer's disease (AD) is characterized by progressive neurodegeneration associated with the aggregation and deposition of β-amyloid (Aβ(40) and Aβ(42) ) peptide in senile plaques. Recent studies suggest that copper may play an important role in AD pathology. Copper concentrations are elevated in amyloid plaques and copper binds with high affinity to the Aβ peptide and promotes Aβ oligomerization and neurotoxicity. Despite this connection between copper and AD, it is unknown whether the expression of proteins involved in regulating copper homeostasis is altered in this disorder. In this study, we demonstrate that the copper transporting P-type ATPase, ATP7A, is highly expressed in activated microglial cells that are specifically clustered around amyloid plaques in the TgCRND8 mouse model of AD. Using a cultured microglial cell line, ATP7A expression was found to be increased by the pro-inflammatory cytokine interferon-gamma, but not by TNF-α or IL-1β. Interferon-gamma also elicited marked changes in copper homeostasis, including copper-dependent trafficking of ATP7A from the Golgi to cytoplasmic vesicles, increased copper uptake and elevated expression of the CTR1 copper importer. These findings suggest that pro-inflammatory conditions associated with AD cause marked changes in microglial copper trafficking, which may underlie the changes in copper homeostasis in AD. It is concluded that copper sequestration by microglia may provide a neuroprotective mechanism in AD.

  11. THE EFFICIENCY FORMATION MECHANISM OF THE FREIGHT TRANSPORT SYSTEM IN TERMS OF THE VARIABLE NATURE OF DEMANDS FOR TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    O. Yu. Smyrnova

    2009-06-01

    Full Text Available The mechanism of formation of efficiency of freight motor transport system in conditions of variable character of demand for freightage is developed on the basis of space-time approach development to efficiency formation for difficult systems. In the article the definitions of the notions of freight motor transport system adaptability, standard operation conditions are given.

  12. Corrosion electrochemical mechanism of chemical mechanical polishing of copper in K3Fe(CN)6 solution

    Institute of Scientific and Technical Information of China (English)

    何捍卫; 胡岳华; 黄可龙

    2002-01-01

    Polarization curves of copper were measured in NH3*H2O media containing K3Fe(CN)6. Components of passive film were analyzed by XPS. Relation of polishing rate with corrosion current density was investigated during CMP. Copper can be passivated in the slurry and main component of passive film is Cu4Fe(CN)6. Relation of polishing rate with corrosion current density is linear direct ratio and expressed as R=KJcorr during CMP. Coefficient K varies with different slurry systems but is constant under experimental conditions, which does not vary with NH3*H2O, K3Fe(CN)6, γ-Al2O3 concentrations, polishing pressures and rotative rate in a slurry system during CMP.

  13. Analysis of Electrical Transport and Noise Mechanisms in Amorphous Silicon

    Science.gov (United States)

    2015-11-23

    made for electrical measurements. Samples from the wafer were die-attached onto ceramic carriers and wire-bonded for temperature dependent electrical...and results A schematic of the noise measurements is shown in Figure 27. The sample is mounted on a copper block...states commonly associated with dangling bonds as well as tail states in the valence and conduction bands could contribute to the non-active B doping

  14. The isotherm slope. A criterion for studying the adsorption mechanism of benzotriazole on copper in sulphuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Bastidas, D. M.; Gomez, P. P.; Cano, E.

    2005-07-01

    The adsorption of benzotriazole (BTA) on copper surfaces in 0.001, 0.005 and 0.01 M concentrations of sulphuric acid was investigated using gravimetric measurements. BTA was tested in concentrations from 1x10''-5 to 1x10''-1 M at temperatures from 298 to 328 K. The adsorption mechanism is discussed in terms of applicability of the conventional Frumkin, Bockris-Swinkels and Kastening-Holleck isotherms, among others. The best fit was obtained using the Frumkin isotherm model. the projected molecular area of BTA was calculated to elucidate inhibitor orientation in the adsorption process. (Author) 38 refs.

  15. The isotherm slope. A criterion for studying the adsorption mechanism of benzotriazole on copper in sulphuric acid

    OpenAIRE

    Bastidas, D. M.; Gómez, R. R.; Cano, E.

    2005-01-01

    The adsorption of benzotriazole (BTA) on copper surfaces in 0.001, 0.005 and 0.01 M concentrations of sulphuric acid was investigated using gravimetric measurements. BTA was tested in concentrations from 1x10-5 to 1x10-1 M at temperatures from 298 to 328 K. The adsorption mechanism is discussed in terms of applicability of the conventional Frumkin, Bockris-Swinkels and Kastening-Holleck isotherms, among others. The best fit was obtained using the ...

  16. Synthesis, crystal structure and photoluminescence of phosphorescent copper (I) complexes containing hole-transporting carbazoly moiety.

    Science.gov (United States)

    Yu, Tianzhi; Chai, Haifang; Zhao, Yuling; Zhang, Chengcheng; Liu, Peng; Fan, Duowang

    2013-05-15

    Two new mononuclear Cu(I) complexes based on 2-(2'-pyridyl)benzimidazolyl derivative ligand containing hole-transporting carbazole (L), [Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4), where L=(4-(9H-carbazol-9-yl)phenyl)methyl-2-(2'-pyridyl)benzimidazole; DPEphos=bis[2-(diphenylphosphino)phenyl]ether and PPh3=triphenylphosphine, have been synthesized and characterized on the basis of elemental analysis, (1)H NMR and FT-IR spectra. The structures of the ligand L and the Cu(I) complexes were characterized by single crystal X-ray diffraction. The results reveal that in the Cu(I) complexes the central Cu(I) ions assume the irregular distorted tetrahedral geometry and are tetra-coordinated by the two nitrogen atoms from L ligand and two phosphorus atoms from ancillary ligands. The photophysical properties of the complexes were examined by using UV-vis, photoluminescence spectroscopic analysis. The complexes exhibit weak MLCT absorption bands ranging from 360 to 480 nm, and display strong orange phosphorescence in the solid states at room temperature, which is completely quenched in solutions.

  17. Synthesis, crystal structure and photoluminescence of phosphorescent copper (I) complexes containing hole-transporting carbazoly moiety

    Science.gov (United States)

    Yu, Tianzhi; Chai, Haifang; Zhao, Yuling; Zhang, Chengcheng; Liu, Peng; Fan, Duowang

    2013-05-01

    Two new mononuclear Cu(I) complexes based on 2-(2'-pyridyl)benzimidazolyl derivative ligand containing hole-transporting carbazole (L), [Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4), where L = (4-(9H-carbazol-9-yl)phenyl)methyl-2-(2'-pyridyl)benzimidazole; DPEphos = bis[2-(diphenylphosphino)phenyl]ether and PPh3 = triphenylphosphine, have been synthesized and characterized on the basis of elemental analysis, 1H NMR and FT-IR spectra. The structures of the ligand L and the Cu(I) complexes were characterized by single crystal X-ray diffraction. The results reveal that in the Cu(I) complexes the central Cu(I) ions assume the irregular distorted tetrahedral geometry and are tetra-coordinated by the two nitrogen atoms from L ligand and two phosphorus atoms from ancillary ligands. The photophysical properties of the complexes were examined by using UV-vis, photoluminescence spectroscopic analysis. The complexes exhibit weak MLCT absorption bands ranging from 360 to 480 nm, and display strong orange phosphorescence in the solid states at room temperature, which is completely quenched in solutions.

  18. Use of copper radioisotopes in investigating disorders of copper metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Rusden Campus, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes {sup 64}Cu (t 1/2 = 12.8 hr) and {sup 67}Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  19. Mechanical Yielding and Strength Behaviour of OFHC Copper in Planar Shock Waves

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-Nian; FAN Chun-Lei; HU Jin-Wei; WU Shan-Xing; WANG Huan-Ran; TAN Hua; YU Yu-Ying

    2007-01-01

    It is necessary to study the validation of strength models under planar shock loading in view of the fact that strength models for metals obtained at moderate strain rates are often used in the numerical simulations of shock wave phenomena. The variations of longitudinal stress, transverse stress and yield strength of oxygen-free high conductance (OFHC) copper with time under planar shock loading are obtained by using the manganin stress gauges and compared with the predicted results by the constructed seven constitutive models based on Y/G=constant and on G/B=constant (Y the yield strength, G the shear modulus, B the bulk modulus), respectively. It seems that the pressure, density, temperature and plastic strain dependence of the yield strength for OFHC copper under planar shock loading is essential to the constitutive description.

  20. The neurotoxicity of iron, copper and cobalt in Parkinson's disease through ROS-mediated mechanisms.

    Science.gov (United States)

    Lan, A P; Chen, J; Chai, Z F; Hu, Y

    2016-08-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease with gradual loss of dopaminergic neurons. Despite extensive research in the past decades, the etiology of PD remains elusive. Nevertheless, multiple lines of evidence suggest that oxidative stress is one of the common causes in the pathogenesis of PD. It has also been suggested that heavy metal-associated oxidative stress may be implicated in the etiology and pathogenesis of PD. Here we review the roles of redox metals, including iron, copper and cobalt, in PD. Iron is a highly reactive element and deregulation of iron homeostasis is accompanied by concomitant oxidation processes in PD. Copper is a key metal in cell division process, and it has been shown to have an important role in neurodegenerative diseases such as PD. Cobalt induces the generation of reactive oxygen species (ROS) and DNA damage in brain tissues.

  1. An auxin transport mechanism restricts positive orthogravitropism in lateral roots.

    Science.gov (United States)

    Rosquete, Michel Ruiz; von Wangenheim, Daniel; Marhavý, Peter; Barbez, Elke; Stelzer, Ernst H K; Benková, Eva; Maizel, Alexis; Kleine-Vehn, Jürgen

    2013-05-01

    As soon as a seed germinates, plant growth relates to gravity to ensure that the root penetrates the soil and the shoot expands aerially. Whereas mechanisms of positive and negative orthogravitropism of primary roots and shoots are relatively well understood, lateral organs often show more complex growth behavior. Lateral roots (LRs) seemingly suppress positive gravitropic growth and show a defined gravitropic set-point angle (GSA) that allows radial expansion of the root system (plagiotropism). Despite its eminent importance for root architecture, it so far remains completely unknown how lateral organs partially suppress positive orthogravitropism. Here we show that the phytohormone auxin steers GSA formation and limits positive orthogravitropism in LR. Low and high auxin levels/signaling lead to radial or axial root systems, respectively. At a cellular level, it is the auxin transport-dependent regulation of asymmetric growth in the elongation zone that determines GSA. Our data suggest that strong repression of PIN4/PIN7 and transient PIN3 expression limit auxin redistribution in young LR columella cells. We conclude that PIN activity, by temporally limiting the asymmetric auxin fluxes in the tip of LRs, induces transient, differential growth responses in the elongation zone and, consequently, controls root architecture.

  2. Mechanisms of lithium transport in amorphous polyethylene oxide

    Science.gov (United States)

    Duan, Yuhua; Halley, J. W.; Curtiss, Larry; Redfern, Paul

    2005-02-01

    We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large lithium motions occur during short times, we find that no single type of rearrangement of the lithium environment characterizes these events. We estimate the free energies of the lithium ion as a function of position during these events by calculation of potentials of mean force and thus derive an approximate map of the free energy as a function of lithium position during these events. The results are consistent with a Marcus-like picture in which the system slowly climbs a free energy barrier dominated by rearrangement of the polymer around the lithium ions, after which the lithium moves very quickly to a new position. Reducing the torsion forces in the model causes the diffusion rates to increase.

  3. Molecular mechanics investigation of the transport mechanisms in the CIC-ec1 H+/CI⁻ exchanger and P-glycoprotein/Sav1866 ABC transporter

    OpenAIRE

    Xu, Yanyan

    2014-01-01

    Although channels and transporters were thought to display completely different transport mechanisms, new findings have revealed that the boundaries between them might be more blurred. ABC family, which includes thousands of transporters, holds a channel member, CFTR (cystic fibrosis transmembrane conductance regulator). ClC-ec1, which was considered as a chloride ion channel as other members of the ClC family, was found to function as a Cl-/H+ exchanger. Since the proteins within the family ...

  4. Memristive Responses of Jammed Granular Copper Array Sensors to Mechanical Stress

    Science.gov (United States)

    2014-03-27

    pure copper, brass, bronze and stainless steel particles in 1 and 2 Dimensions. Hysteretic responses in current-voltage plots were to be seen at...fixed stage; following this step the tungsten cantilever-electrode connected to the motor driven stage is inserted into the tube. The stage is then...constrained internally by a tungsten rod. Figure 26 below shows a more detailed view of the testing device. The leads from the testing device (Keithley

  5. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  6. Effects of copper amine treatments on mechanical, biological and surface/interphase properties of poly (vinyl chloride)/wood composites

    Science.gov (United States)

    Jiang, Haihong

    2005-11-01

    The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.

  7. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to understand the capacity of water vapor to transport copper and its mechanism,using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42 × 105 to 100 × 105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gus. At a constant temperature, the solubility of copper increases with increasing water vapor pressure.Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be denumber decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

  8. Analysis Of Transport Properties of Mechanically Alloyed Lead Tin Telluride

    Science.gov (United States)

    Krishna, Rajalakshmi

    these inclusions would not be less than that expected in alloys without these inclusions while the portion of the thermal conductivity that is not due to charge carriers (the lattice thermal conductivity) would be less than what would be expected from alloys that do not have these inclusions. Furthermore, it would be possible to approximate the observed changes in the electrical and thermal transport properties using existing physical models for the scattering of electrons and phonons by small inclusions. The approach taken to investigate this hypothesis was to first experimentally characterize the mobile carrier concentration at room temperature along with the extent and type of secondary phase inclusions present in a series of three mechanically alloyed Pb1-xSnxTe alloys with different Sn content. Second, the physically based computational model was developed. This model was used to determine what the electronic conductivity, Seebeck coefficient, total thermal conductivity, and the portion of the thermal conductivity not due to mobile charge carriers would be in these particular Pb1-x SnxTe alloys if there were to be no secondary phase inclusions. Third, the electronic conductivity, Seebeck coecient and total thermal conductivity was experimentally measured for these three alloys with inclusions present at elevated temperatures. The model predictions for electrical conductivity and Seebeck coefficient were directly compared to the experimental elevated temperature electrical transport measurements. The computational model was then used to extract the lattice thermal conductivity from the experimentally measured total thermal conductivity. This lattice thermal conductivity was then compared to what would be expected from the alloys in the absence of secondary phase inclusions. Secondary phase inclusions were determined by X-ray diraction analysis to be present in all three alloys to a varying extent. The inclusions were found not to significantly degrade electrical

  9. Center for low-gravity fluid mechanics and transport phenomena

    Science.gov (United States)

    Kassoy, D. R.; Sani, R. L.

    1991-01-01

    Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.

  10. Small pH and salt variations radically alter the thermal stability of metal-binding domains in the copper transporter, Wilson disease protein.

    Science.gov (United States)

    Nilsson, Lina; Ådén, Jörgen; Niemiec, Moritz S; Nam, Kwangho; Wittung-Stafshede, Pernilla

    2013-10-24

    Although strictly regulated, pH and solute concentrations in cells may exhibit temporal and spatial fluctuations. Here we study the effect of such changes on the stability, structure, and dynamics in vitro and in silico of a two-domain construct (WD56) of the fifth and sixth metal-binding domains of the copper transport protein, ATP7B (Wilson disease protein). We find that the thermal stability of WD56 is increased by 40 °C when increasing the pH from 5.0 to 7.5. In contrast, addition of salt at pH 7.2 decreases WD56 stability by up to 30 °C. In agreement with domain-domain coupling, fractional copper loading increases the stability of both domains. HSQC chemical shift changes demonstrate that, upon lowering the pH from 7.2 to 6, both His in WD6 as well as the second Cys of the copper site in each domain become protonated. MD simulations reveal increased domain-domain fluctuations at pH 6 and in the presence of high salt concentration, as compared to at pH 7 and low salt concentration. Thus, the surface charge distribution at high pH contributes favorably to overall WD56 stability. By introducing more positive charges by lowering the pH, or by diminishing charge-charge interactions by salt, fluctuations among the domains are increased and thereby overall stability is reduced. Copper transfer activity also depends on pH: delivery of copper from chaperone Atox1 to WD56 is more efficient at pH 7.2 than at pH 6 by a factor of 30. It appears that WD56 is an example where the free energy landscapes for folding and function are linked via structural stability.

  11. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

    Science.gov (United States)

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine.

  12. Effects of bonding bakeout thermal cycles on pre- and post irradiation microstructures, physical, and mechanical properties of copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Eldrup, M.; Toft, P.; Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-10-01

    At present, dispersion strengthened (DS) copper is being considered as the primary candidate material for the ITER first wall and divertor components. Recently, it was agreed among the ITER parties that a backup alloy should be selected from the two well known precipitation hardened copper alloys, CuCrZr and CuNiBe. It was therefore decided to carry out screening experiments to simulate the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties, and electrical resistivity of CuCrZr and CuNiBe alloys. On the basis of the results of these experiments, one of the two alloys will be selected as a backup material. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime ageing, and bonding thermal cycle followed by reageing and the reactor bakeout treatment at 623K for 100 hours. Tensile specimens of the DS copper were also given the heat treatment corresponding to the bonding thermal cycle. A number of these heat treated specimens of CuCrZr, CuNiBe, and DS copper were neutron irradiated at 523K to a dose level of {approx}0.3 dpa (NRT) in the DR-3 reactor at Riso. Both unirradiated and irradiated specimens with the various heat treatments were tensile tested at 532K. The dislocation, precipitate and void microstructures and electrical resistivity of these specimens were also determined. Results of these investigations will be reported and discussed in terms of thermal and irradiation stability of precipitates and irradiation-induced precipitation and recovery of dislocation microstructure. Results show that the bonding and bakeout thermal cycles are not likely to have any serious deleterious effects on the performance of these alloys. The CuNiBe alloys were found to be susceptible to radiation-induced embrittlement, however, the exact mechanism is not yet known. It is thought that radiation-induced precipitation and segregation of the beryllium may be responsible.

  13. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas

    DEFF Research Database (Denmark)

    Pedersen, L. B.; Geimer, S.; Rosenbaum, J. L.

    2006-01-01

    Background The assembly and maintenance of eukaryotic cilia and flagella are mediated by intraflagellar transport (IFT), a bidirectional microtubule (MT)-based transport system. The IFT system consists of anterograde (kinesin-2) and retrograde (cDynein1b) motor complexes and IFT particles compris...

  14. High Energy Density Nastic Structures Using Biological Transport Mechanisms

    Science.gov (United States)

    2007-02-28

    occur at the cell wall and membranes of inter-cellular organelles to transport nutrients in the plant. The concentration of ions from the active and...pp. 459–467. [6] dos Santos, A. C., da Silva, W. S., de Meis, L., and Galina, A., “Proton Transport in Maize Tonoplasts Supported by Fructose-1,6

  15. Phosphate transport in prokaryotes : molecules, mediators and mechanisms

    NARCIS (Netherlands)

    van Veen, HW

    1997-01-01

    Bacteria have evolved sophisticated P(i) transport systems which combine high affinity with coupling to metabolic energy. This review discusses the current evidence concerning the physiological, biochemical, and molecular properties of these P(i) transport systems in prokaryotes. Major developments

  16. The mechanisms of Mg2+ and Co2+ transport by the CorA family of divalent cation transporters.

    Science.gov (United States)

    Guskov, Albert; Eshaghi, Said

    2012-01-01

    The metal ions Mg(2+) and Co(2+) are essential for life, although to different degree. They have similar chemical and physical properties, but their slight differences result in Mg(2+) to be the most abundant metal ion in living cells and the trace element Co(2+) being toxic at relatively low concentrations. Specialized transporters have evolved in living cells to supply and balance the Mg(2+) and Co(2+) need of the cells. The current knowledge of the molecular mechanisms of Mg(2+) and Co(2+) -specific transporters is very limited at this point. Recently, there has been remarkable advances to understand the CorA family, a family of transporters that are able to transport both ions. These new data have increased our insights in how Mg(2+) and Co(2+) are translocated across membranes. Presently, CorA is probably the best system to study the mechanisms of Mg(2+) and Co(2+) transport. This chapter discusses the mechanisms through which CorA selects, transports, and regulates the translocation of its substrate. In addition, we highlight the physical and chemical properties of the substrates, which are important parameters required for better understanding of the transporter action. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Mechanochemical reactions on copper-based compounds

    NARCIS (Netherlands)

    Castricum, H.L.; Bakker, H.; Poels, E.K.

    1999-01-01

    Mechanochemical reactions of copper and copper oxides with oxygen and carbon dioxide are discussed, as well as decomposition and reduction of copper compounds by mechanical milling under high-vacuum conditions.

  18. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis

    Directory of Open Access Journals (Sweden)

    Elisabeth eTamayo

    2014-10-01

    Full Text Available Arbuscular mycorrhizal fungi (AMF, belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization.

  19. Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis

    Science.gov (United States)

    Tamayo, Elisabeth; Gómez-Gallego, Tamara; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2014-01-01

    Arbuscular mycorrhizal fungi (AMF), belonging to the Glomeromycota, are soil microorganisms that establish mutualistic symbioses with the majority of higher plants. The efficient uptake of low mobility mineral nutrients by the fungal symbiont and their further transfer to the plant is a major feature of this symbiosis. Besides improving plant mineral nutrition, AMF can alleviate heavy metal toxicity to their host plants and are able to tolerate high metal concentrations in the soil. Nevertheless, we are far from understanding the key molecular determinants of metal homeostasis in these organisms. To get some insights into these mechanisms, a genome-wide analysis of Cu, Fe and Zn transporters was undertaken, making use of the recently published whole genome of the AMF Rhizophagus irregularis. This in silico analysis allowed identification of 30 open reading frames in the R. irregularis genome, which potentially encode metal transporters. Phylogenetic comparisons with the genomes of a set of reference fungi showed an expansion of some metal transporter families. Analysis of the published transcriptomic profiles of R. irregularis revealed that a set of genes were up-regulated in mycorrhizal roots compared to germinated spores and extraradical mycelium, which suggests that metals are important for plant colonization. PMID:25352857

  20. Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals

    DEFF Research Database (Denmark)

    Grosell, Martin Hautopp; Nielsen, Claus; Bianchini, A.

    2002-01-01

    Copper, Silver, Freshwater, Fish, Crustaceans, Sodium transport, Ammonia excretion, Predicting mortality......Copper, Silver, Freshwater, Fish, Crustaceans, Sodium transport, Ammonia excretion, Predicting mortality...

  1. Mechanism and kinetics of aluminum dissolution during copper sorption by acidity paddy soil in South China.

    Science.gov (United States)

    Liu, Peiya; Li, Yujiao; Wen, Qinliang; Dong, Changxun; Pan, Genxing

    2015-08-01

    Soil aggregates were prepared from a bulk soil collected from paddy soil in the Taihu Lake region and aluminum (Al) dissolution, solution pH changes during copper (Cu(2+)) sorption were investigated with static sorption and magnetic stirring. Kinetics of Cu(2+) sorption and Al dissolution were also studied by magnetic stirring method. No Al dissolution was observed until Cu(2+) sorption was greater than a certain value, which was 632, 450, 601 and 674 mg/kg for sand, clay, silt, and coarse silt fractions, respectively. Aluminum dissolution increased with increasing Cu(2+) sorption and decreasing solution pH. An amount of dissolved Al showed a significant positive correlation with non-specific sorption of Cu(2+) (R(2)>0.97), and it was still good under different pH values (R(2)>0.95). Copper sorption significantly decreased solution pH. The magnitude of solution pH decline increased as Cu(2+) sorption and Al dissolution increased. The sand and clay fraction had a less Al dissolution and pH drop due to the higher ferric oxide, Al oxide and organic matter contents. After sorption reaction for half an hour, the Cu(2+) sorption progress reached more than 90% while the Al dissolution progress was only 40%, and lagged behind the Cu(2+) sorption. It indicated that aluminum dissolution is associated with non-specific sorption.

  2. Molecular interaction mechanism between 2-mercaptobenzimidazole and copper-zinc superoxide dismutase.

    Directory of Open Access Journals (Sweden)

    Yue Teng

    Full Text Available 2-Mercaptobenzimidazole (MBI is widely utilized as a corrosion inhibitor, copper-plating brightener and rubber accelerator. The residue of MBI in the environment is potentially harmful. In the present work, the toxic interaction of MBI with the important antioxidant enzyme copper-zinc superoxide dismutase (Cu/ZnSOD was investigated using spectroscopic and molecular docking methods. MBI can interact with Cu/ZnSOD to form an MBI-Cu/ZnSOD complex. The binding constant, number of binding sites and thermodynamic parameters were measured, which indicated that MBI could spontaneously bind with Cu/ZnSOD with one binding site through hydrogen bonds and van der Waals forces. MBI bound into the Cu/ZnSOD interface of two subdomains, which caused some microenvironmental and secondary structure changes of Cu/ZnSOD and further resulted in the inhibition of Cu/ZnSOD activity. This work provides direct evidence at a molecular level to show that exposure to MBI could induce changes in the structure and function of the enzyme Cu/ZnSOD. The estimated methods in this work may be applied to probe molecular interactions of biomacromolecules and other pollutants and drugs.

  3. Catch bond mechanism in Dynein motor driven collective transport

    CERN Document Server

    Nair, Anil; Mitra, Mithun K; Muhuri, Sudipto; Chaudhuri, Abhishek

    2016-01-01

    Recent experiments have demonstrated that dynein motor exhibits catch bonding behaviour, in which the unbinding rate of a single dynein decreases with increasing force, for a certain range of force. Motivated by these experiments, we propose a model for catch bonding in dynein using a threshold force bond deformation (TFBD) model wherein catch bonding sets in beyond a critical applied load force. We study the effect of catch bonding on unidirectional transport properties of cellular cargo carried by multiple dynein motors within the framework of this model. We find catch bonding can result in dramatic changes in the transport properties, which are in sharp contrast to kinesin driven unidirectional transport, where catch bonding is absent. We predict that, under certain conditions, the average velocity of the cellular cargo can actually increase as applied load is increased. We characterize the transport properties in terms of a velocity profile phase plot in the parameter space of the catch bond strength and ...

  4. FEATURES FOR TRANSPORT AND AIR MECHANICAL SYSTEMS OF DANGEROUS GOODS

    Directory of Open Access Journals (Sweden)

    Eugen Dumitru BUSA

    2012-05-01

    Full Text Available Transport of dangerous goods are regulated activities, they take place under the direction and control of the authorities and specialized bodies in an institutional framework determined by national and international law. Of economic, transport infrastructure is the crucial element without which both production and trade would become meaningless, it is an essential element of a civilization, is also a necessary accessory of other economic activities.

  5. Auger electron spectroscopic study of mechanism of sulfide-accelerated corrosion of copper-nickel alloy in seawater

    Science.gov (United States)

    Schrader, Malcolm E.

    The mechanism of sulfide-induced accelerated corrosion of 90-10 copper-nickel(iron) alloy is investigated. Samples of the alloy are exposed to flowing (2.4 m/s) seawater, with and without 0 01 mg/l sulfide, for various periods of time. The resulting surfaces are examined by means of Auger electron spectroscopy coupled with inert-ion-homoardment. A detailed depth profile is thereby obtained of concentrations in the surface region of a total of nine elements. The results are consistent with the hypothesis that iron hydroxide segregates at the surface to form a protective gelatinous layer against the normal chloride-induced corrosion process. Trace sulfide interferes with formation of a good protective layer and leaves the iron hydroxide vulnerable to ultimate partial or complete debonding. When the alloy is first exposed to "pure" seawater for a prolonged period of time, however, subsequent exposure to sulfide is no longer deleterious. This is apparently due to a layer of copper-nickel salt that slowly forms over the iron hydroxide.

  6. Bactericidal activity and mechanism of action of copper-sputtered flexible surfaces against multidrug-resistant pathogens.

    Science.gov (United States)

    Ballo, Myriam K S; Rtimi, Sami; Mancini, Stefano; Kiwi, John; Pulgarin, César; Entenza, José M; Bizzini, Alain

    2016-07-01

    Using direct current magnetron sputtering (DCMS), we generated flexible copper polyester surfaces (Cu-PES) and investigated their antimicrobial activity against a range of multidrug-resistant (MDR) pathogens including eight Gram-positive isolates (three methicillin-resistant Staphylococcus aureus [MRSA], four vancomycin-resistant enterococci, one methicillin-resistant Staphylococcus epidermidis) and four Gram-negative strains (one extended-spectrum β-lactamase-producing [ESBL] Escherichia coli, one ESBL Klebsiella pneumoniae, one imipenem-resistant Pseudomonas aeruginosa, and one ciprofloxacin-resistant Acinetobacter baumannii). Bactericidal activity (≥3 log10 CFU reduction of the starting inoculum) was reached within 15-30 min exposure to Cu-PES. Antimicrobial activity of Cu-PES persisted in the absence of oxygen and against both Gram-positive and Gram-negative bacteria containing elevated levels of catalases, indicating that reactive oxygen species (ROS) do not play a primary role in the killing process. The decrease in cell viability of MRSA ATCC 43300 and Enterococcus faecalis V583 correlated with the progressive loss of cytoplasmic membrane integrity both under aerobic and anaerobic conditions, suggesting that Cu-PES mediated killing is primarily induced by disruption of the cytoplasmic membrane function. Overall, we here present novel antimicrobial copper surfaces with improved stability and sustainability and provide further insights into their mechanism of killing.

  7. Analysis of post-blasting source mechanisms of mining-induced seismic events in Rudna copper mine, Poland.

    Science.gov (United States)

    Caputa, Alicja; Rudzinski, Lukasz; Talaga, Adam

    2016-04-01

    Copper ore exploitation in the Lower Silesian Copper District, Poland (LSCD), is connected with many specific hazards. The most hazardous one is induced seismicity and rockbursts which follow strong mining seismic events. One of the most effective method to reduce seismic activity is blasting in potentially hazardous mining panels. This way, small to moderate tremors are provoked and stress accumulation is substantially reduced. This work presents an analysis of post-blasting events using Full Moment Tensor (MT) inversion at the Rudna mine, Poland using signals dataset recorded on underground seismic network. We show that focal mechanisms for events that occurred after blasts exhibit common features in the MT solution. The strong isotropic and small Double Couple (DC) component of the MT, indicate that these events were provoked by detonations. On the other hand, post-blasting MT is considerably different than the MT obtained for common strong mining events. We believe that seismological analysis of provoked and unprovoked events can be a very useful tool in confirming the effectiveness of blasting in seismic hazard reduction in mining areas.

  8. Exciton transport, charge extraction, and loss mechanisms in organic photovoltaics

    Science.gov (United States)

    Scully, Shawn Ryan

    Organic photovoltaics have attracted significant interest over the last decade due to their promise as clean low-cost alternatives to large-scale electric power generation such as coal-fired power, natural gas, and nuclear power. Many believe power conversion efficiency targets of 10-15% must be reached before commercialization is possible. Consequently, understanding the loss mechanisms which currently limit efficiencies to 4-5% is crucial to identify paths to reach higher efficiencies. In this work, we investigate the dominant loss mechanisms in some of the leading organic photovoltaic architectures. In the first class of architectures, which include planar heterojunctions and bulk heterojunctions with large domains, efficiencies are primarily limited by the distance photogenerated excitations (excitons) can be transported (termed the exciton diffusion length) to a heterojunction where the excitons may dissociate. We will discuss how to properly measure the exciton diffusion length focusing on the effects of optical interference and of energy transfer when using fullerenes as quenching layers and show how this explains the variety of diffusion lengths reported for the same material. After understanding that disorder and defects limit exciton diffusion lengths, we suggest some approaches to overcome this. We then extensively investigate the use of long-range resonant energy transfer to increase exciton harvesting. Using simulations and experiments as support, we discuss how energy transfer can be engineered into architectures to increase the distance excitons can be harvested. In an experimental model system, DOW Red/PTPTB, we will show how the distance excitons are harvested can be increased by almost an order of magnitude up to 27 nm from a heterojunction and give design rules and extensions of this concept for future architectures. After understanding exciton harvesting limitations we will look at other losses that are present in planar heterojunctions. One of

  9. Multidrug transport by ATP binding cassette transporters : a proposed two-cylinder engine mechanism

    NARCIS (Netherlands)

    van Veen, HW; Higgins, CF; Konings, WN

    2001-01-01

    The elevated expression of ATP binding cassette (ABC) multidrug transporters in multidrug-resistant cells interferes with the drug-based control of cancers and infectious pathogenic microorganisms. Multidrug transporters interact directly with the drug substrates. This review summarizes current insi

  10. INVESTIGATION OF GLASS PLATE FAILURE MECHANISM SUBJECTED TO COPPER AND STEEL PROJECTILE IMPACTS

    Directory of Open Access Journals (Sweden)

    Qasim H. Shah

    2014-05-01

    Full Text Available Normal 0 false false false EN-US JA X-NONE ABSTRACT: A glass plate was subjected to impact by spherical copper and steel projectiles at low velocities. The glass failure features consisted of a central Hertzian cone made up of comminuted glass and a spider web like cracking pattern around the cone with circumferential and radial cracks. The objective of the investigation was to determine if the damage caused by copper projectile impact compared to steel projectile impact was higher for the same kinetic energy (K.E. projectiles and the reason for this phenomenon. For the constant K.E. impact, copper projectile apparently caused higher damage in glass plate. Higher damage was attributed to projectile contact duration and the contact area between the projectile and the glass plate. Finite element analysis using LS-DYNA based upon maximum principal strain failure criterion for laminated glass model was able to predict the failed material under the impact location and the cracking pattern in the glass plate for a biased meshing scheme. Radial cracks in glass target were reported to be 15% higher for copper projectile impact than the steel projectile impact. ABSTRAK: Kepingan kaca dikenakan impak oleh projektil kuprum dan keluli berbentuk sfera pada halaju rendah. Ciri-ciri kegagalan kaca terdiri daripada kon berpusat Hertzian yang melibatkan kaca yang hancur dan corak pecahan berbentuk sesawang lelabah pada keliling kon dengan retakan lilitan dan jejarian. Tujuan penyelidikan adalah untuk menentukan sebab bagaimana  dengan projektil tenaga kinetik yang sama, kerosakan yang diakibatkan oleh impak projektil kuprum berbanding dengan impak projektil keluli adalah lebih tinggi. Untuk impak tenaga kinetik yang malar, projektil kuprum didapati menyebabkan kerosakan yang lebih ke atas kepingan kaca. Kerosakan lebih disebabkan oleh tempoh sentuhan projektil dan kawasan sentuhan di antara projektil dan kepingan kaca. Analisis unsur terhingga menggunakan LS

  11. Interface structure and mechanical property of the brazed joint of graphite and copper

    Institute of Scientific and Technical Information of China (English)

    XIE Fengchun; ZHANG Lixia; FENG Jicai; HE Peng

    2009-01-01

    A kind of self-made AgCuTiSn braze alloy powder was used to join graphite and copper. The whole brazing process was performed under vacuum circumstances at different temperatures (1033-1193 K) for several holding time (300-1800 s). According to scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and electron probe X-ray microanalysis (EPMA) results, the reaction products of the interface are TiC, Ti3Sn, Cu(s. s), Ag(s. s) and Cu-Sn compound. As the brazing parameters increase, the quantity of Ag(s. s) in the braze alloy and C fibers on graphite/AgCuTiSn interface reduce, while that of Cu (s. s) in the braze alloy improves. When the brazing temperature is 1093 K and holding time is 900 s, the joint can obtain the maximum room temperature shear strength 24 MPa.

  12. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  13. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    CERN Document Server

    Appert-Rolland, Cecile; Santen, Ludger

    2015-01-01

    Cells are strongly out-of-equilibrium systems driven by continuous energy supply. They carry out many vital functions requiring active transport of various ingredients and organelles, some being small, others being large. The cytoskeleton, composed of three types of filaments, determines the shape of the cell and plays a role in cell motion. It also serves as a road network for the so-called cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated, in particular because its breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. We first review some biological facts obtained from experiments, and present some modeling attempts based on cellular automata. We start with background knowledge on the origi...

  14. Metallo-pathways to Alzheimer's disease: lessons from genetic disorders of copper trafficking.

    Science.gov (United States)

    Greenough, M A; Ramírez Munoz, A; Bush, A I; Opazo, C M

    2016-09-01

    Copper is an essential metal ion that provides catalytic function to numerous enzymes and also regulates neurotransmission and intracellular signaling. Conversely, a deficiency or excess of copper can cause chronic disease in humans. Menkes and Wilson disease are two rare heritable disorders of copper transport that are characterized by copper deficiency and copper overload, respectively. Changes to copper status are also a common feature of several neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). In the case of AD, which is characterized by brain copper depletion, changes in the distribution of copper has been linked with various aspects of the disease process; protein aggregation, defective protein degradation, oxidative stress, inflammation and mitochondrial dysfunction. Although AD is a multifactorial disease that is likely caused by a breakdown in multiple cellular pathways, copper and other metal ions such as iron and zinc play a central role in many of these cellular processes. Pioneering work by researchers who have studied relatively rare copper transport diseases has shed light on potential metal ion related disease mechanisms in other forms of neurodegeneration such as AD.

  15. Effect of treatment time on characterization and properties of nanocrystalline surface layer in copper induced by surface mechanical attrition treatment

    Indian Academy of Sciences (India)

    Farzad Kargar; M Laleh; T Shahrabi; A Sabour Rouhaghdam

    2014-08-01

    Nanocrystalline surface layers were synthesized on pure copper by means of surface mechanical attrition treatment (SMAT) at various treatment times. The microstructural features of the surface layers produced by SMAT were systematically characterized by optical microscopy (OM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. Hardness and surface roughness measurements were also carried out. It is found that the thickness of the deformed layer increased from 50 to 500 m with increasing treatment time from 10 to 300 min, while the average grain size of the top surface layer decreased from 20 to 7 nm. Hardness of the all SMATed samples decreased with depth. Furthermore, the hardness of the top surface layer of the SMATed samples was at least two times higher than that of the un-treated counterpart. Surface roughness results showed different trend with treatment time. Amounts of PV and a values first sharply increased and then decreased.

  16. Gallic Acid as a Complexing Agent for Copper Chemical Mechanical Polishing Slurries at Neutral pH

    Science.gov (United States)

    Kim, Yung Jun; Kang, Min Cheol; Kwon, Oh Joong; Kim, Jae Jeong

    2011-05-01

    Gallic acid was investigated as a new complexing agent for copper (Cu) chemical mechanical polishing slurries at neutral pH. Addition of 0.03 M gallic acid and 1.12 M H2O2 at pH 7 resulted in a Cu removal rate of 560.73±17.49 nm/min, and the ratio of the Cu removal rate to the Cu dissolution rate was 14.8. Addition of gallic acid improved the slurry performance compared to glycine addition. X-ray photoelectron spectroscopy analysis and contact angle measurements showed that addition of gallic acid enhanced the Cu polishing behavior by suppressing the formation of surface Cu oxide.

  17. Effect of pH and chemical mechanical planarization process conditions on the copper-benzotriazole complex formation

    Science.gov (United States)

    Cho, Byoung-Jun; Kim, Jin-Yong; Hamada, Satomi; Shima, Shohei; Park, Jin-Goo

    2016-06-01

    Benzotriazole (BTA) has been used to protect copper (Cu) from corrosion during Cu chemical mechanical planarization (CMP) processes. However, an undesirable Cu-BTA complex is deposited after Cu CMP processes and it should be completely removed at post-Cu CMP cleaning for next fabrication process. Therefore, it is very important to understand of Cu-BTA complex formation behavior for its applications such as Cu CMP and post-Cu CMP cleaning. The present study investigated the effect of pH and polisher conditions on the formation of Cu-BTA complex layers using electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy) and the surface contact angle. The wettability was not a significant factor for the polishing interface, as no difference in the contact angles was observed for these processes. Both electrochemical techniques revealed that BTA had a unique advantage of long-term protection for Cu corrosion in an acidic condition (pH 3).

  18. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints

    Directory of Open Access Journals (Sweden)

    Jingwei Yang

    2017-02-01

    Full Text Available The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed.

  19. Origin of traps and charge transport mechanism in hafnia

    Energy Technology Data Exchange (ETDEWEB)

    Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Cheng, C. H. [Department of Mechatronic Technology, National Taiwan Normal University, Taipei 106, Taiwan (China); Chin, A., E-mail: albert-achin@hotmail.com [National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2014-12-01

    In this study, we demonstrated experimentally and theoretically that oxygen vacancies are responsible for the charge transport in HfO{sub 2}. Basing on the model of phonon-assisted tunneling between traps, and assuming that the electron traps are oxygen vacancies, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. The thermal trap energy of 1.25 eV in HfO{sub 2} was determined based on the charge transport experiments.

  20. Mechanism for the atomic layer deposition of copper using diethylzinc as the reducing agent: a density functional theory study using gas-phase molecules as a model.

    Science.gov (United States)

    Dey, Gangotri; Elliott, Simon D

    2012-09-06

    We present theoretical studies based on first-principles density functional theory calculations for the possible gas-phase mechanism of the atomic layer deposition (ALD) of copper by transmetalation from common precursors such as Cu(acac)(2), Cu(hfac)(2), Cu(PyrIm(R))(2) with R = (i)Pr and Et, Cu(dmap)(2), and CuCl(2) where diethylzinc acts as the reducing agent. An effect on the geometry and reactivity of the precursors due to differences in electronegativity, steric hindrance, and conjugation present in the ligands was observed. Three reaction types, namely, disproportionation, ligand exchange, and reductive elimination, were considered that together comprise the mechanism for the formation of copper in its metallic state starting from the precursors. A parallel pathway for the formation of zinc in its metallic form was also considered. The model Cu(I) molecule Cu(2)L(2) was studied, as Cu(I) intermediates at the surface play an important role in copper deposition. Through our study, we found that accumulation of an LZnEt intermediate results in zinc contamination by the formation of either Zn(2)L(2) or metallic zinc. Ligand exchange between Cu(II) and Zn(II) should proceed through a Cu(I) intermediate, as otherwise, it would lead to a stable copper molecule rather than copper metal. Volatile ZnL(2) favors the ALD reaction, as it carries the reaction forward.

  1. Investigating the electronic structure of the Atox1 copper(I) transfer mechanism with density functional theory.

    Science.gov (United States)

    Pitts, Amanda L; Hall, Michael B

    2013-09-16

    To maintain correct copper homeostasis, the body relies on ion binding metallochaperones, cuprophilic ligands, and proteins to move copper around as a complexed metal. The most common binding site for Cu(I) proteins is the CX1X2C motif, where X1 and X2 are nonconserved residues. Although this binding site motif is well established, the mechanistic and electronic details for the transfer of Cu(I) between two binding sites have not been fully established, in particular, whether the transfer is dissociative or associative or if the electron-rich Cu(I)-Cys interactions influence the transfer. In this work, we investigated the electronic structure of the Cu(I)-S interactions during the copper transfer between Atox1 and a metal binding domain on the ATP7A or ATP7B protein. Initially, three Cu(I) methylthiolate complexes, [Cu(SCH3)2](-1), [Cu(SCH3)3](-2), [Cu(SCH3)4](-3), were investigated with density functional theory (DFT) to fully elucidate the electronic structure and bonding between Cu(I) and thiolate species. The two-coordinate, linear species with a C-S-S-C dihedral angle of ∼90° is the lowest energy conformation because the filled π antibonding orbitals are stabilized in this geometry. The importance of π-overlap is also seen with the trigonal planar, three-coordinate Cu(I) complex, which is similarly stabilized. A corresponding four-coordinate species could not be consistently optimized, so it was concluded that tetrahedral coordination was not likely to be stable. The transfer of Cu(I) from the Atox1 metallochaperone to a metal binding domain of the ATP7A or ATP7B protein was then modeled by using the CGGC Atox1 binding site for the donor model and the dithiotreitol ligand (DTT) for the acceptor model. The two- and three-coordinate intermediates calculated along the five-step transfer mechanism converged to near optimal Cu-S π-overlap for the respective geometries, which demonstrates that the electronic structure in this electron-rich environment

  2. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  3. Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes.

    Science.gov (United States)

    Kazmier, Kelli; Claxton, Derek P; Mchaourab, Hassane S

    2016-12-29

    Secondary active transporters couple the uphill translocation of substrates to electrochemical ion gradients. Transporter conformational motion, generically referred to as alternating access, enables a central ligand binding site to change its orientation relative to the membrane. Here we review themes of alternating access and the transduction of ion gradient energy to power this process in the LeuT-fold class of transporters where crystallographic, computational and spectroscopic approaches have converged to yield detailed models of transport cycles. Specifically, we compare findings for the Na(+)-coupled amino acid transporter LeuT and the Na(+)-coupled hydantoin transporter Mhp1. Although these studies have illuminated multiple aspects of transporter structures and dynamics, a number of questions remain unresolved that so far hinder understanding transport mechanisms in an energy landscape perspective.

  4. Basic mechanisms for recognition and transport of synaptic cargos

    Directory of Open Access Journals (Sweden)

    Schlager Max A

    2009-08-01

    Full Text Available Abstract Synaptic cargo trafficking is essential for synapse formation, function and plasticity. In order to transport synaptic cargo, such as synaptic vesicle precursors, mitochondria, neurotransmitter receptors and signaling proteins to their site of action, neurons make use of molecular motor proteins. These motors operate on the microtubule and actin cytoskeleton and are highly regulated so that different cargos can be transported to distinct synaptic specializations at both pre- and post-synaptic sites. How synaptic cargos achieve specificity, directionality and timing of transport is a developing area of investigation. Recent studies demonstrate that the docking of motors to their cargos is a key control point. Moreover, precise spatial and temporal regulation of motor-cargo interactions is important for transport specificity and cargo recruitment. Local signaling pathways – Ca2+ influx, CaMKII signaling and Rab GTPase activity – regulate motor activity and cargo release at synaptic locations. We discuss here how different motors recognize their synaptic cargo and how motor-cargo interactions are regulated by neuronal activity.

  5. Price Analysis of Railway Freight Transport under Marketing Mechanism

    Science.gov (United States)

    Shi, Ying; Fang, Xiaoping; Chen, Zhiya

    Regarding the problems in the reform of the railway tariff system and the pricing of the transport, by means of assaying the influence of the price elasticity on the artifice used for price, this article proposed multiple regressive model which analyzed price elasticity quantitatively. This model conclude multi-factors which influences on the price elasticity, such as the averagely railway freight charge, the averagely freight haulage of proximate supersede transportation mode, the GDP per capita in the point of origin, and a series of dummy variable which can reflect the features of some productive and consume demesne. It can calculate the price elasticity of different classes in different domains, and predict the freight traffic volume on different rate levels. It can calculate confidence-level, and evaluate the relevance of each parameter to get rid of irrelevant or little relevant variables. It supplied a good theoretical basis for directing the pricing of transport enterprises in market economic conditions, which is suitable for railway freight, passenger traffic and other transportation manner as well. SPSS (Statistical Package for the Social Science) software was used to calculate and analysis the example. This article realized the calculation by HYFX system(Ministry of Railways fund).

  6. Predicting Soil Physical Parameters and Copper Transport in a Polluted Field From X Ray CT-Images

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Naveed, Muhammad; Møldrup, Per

    2013-01-01

    in soils is strongly controlled by the soil structure, the capabilities of these visualization techniques could be used to predict the risk of pollutants leaching. This work was carried out using soils from a field site (Hygum) in Jutland, Denmark, a historical copper (Cu) polluted field cultivated for 80...

  7. Copper stress induces a global stress response in Staphylococcus aureus and represses sae and agr expression and biofilm formation.

    Science.gov (United States)

    Baker, Jonathan; Sitthisak, Sutthirat; Sengupta, Mrittika; Johnson, Miranda; Jayaswal, R K; Morrissey, Julie A

    2010-01-01

    Copper is an important cofactor for many enzymes; however, high levels of copper are toxic. Therefore, bacteria must ensure there is sufficient copper for use as a cofactor but, more importantly, must limit free intracellular levels to prevent toxicity. In this study, we have used DNA microarray to identify Staphylococcus aureus copper-responsive genes. Transcriptional profiling of S. aureus SH1000 grown in excess copper identified a number of genes which fall into four groups, suggesting that S. aureus has four main mechanisms for adapting to high levels of environmental copper, as follows: (i) induction of direct copper homeostasis mechanisms; (ii) increased oxidative stress resistance; (iii) expression of the misfolded protein response; and (iv) repression of a number of transporters and global regulators such as Agr and Sae. Our experimental data confirm that resistance to oxidative stress and particularly to H2O2 scavenging is an important S. aureus copper resistance mechanism. Our previous studies have demonstrated that Eap and Emp proteins, which are positively regulated by Agr and Sae, are required for biofilm formation under low-iron growth conditions. Our transcriptional analysis has confirmed that sae, agr, and eap are repressed under high-copper conditions and that biofilm formation is indeed repressed under high-copper conditions. Therefore, our results may provide an explanation for how copper films can prevent biofilm formation on catheters.

  8. Increased coordination in public transport – which mechanisms are available?

    DEFF Research Database (Denmark)

    Sørensen, Claus Hedegaard; Longva, Frode

    2011-01-01

    mechanism has its strengths and failures. The article also debates to what extent the mechanisms conflict with three core characteristics of New Public Management: Unbundling of the public sector into corporatized units; more contract-based competitive provision; and greater emphasis on output controls....... and suggested to increase coordination between core stakeholders within passenger railway services and bus services. Four distinctive mechanisms of coordination are suggested, namely organisational coordination, contractual coordination, partnership coordination and discursive coordination. Each coordination...

  9. Intracellular loop 5 is important for the transport mechanism and molecular pharmacology of the human serotonin transporter

    DEFF Research Database (Denmark)

    Said, Saida; Neubauer, Henrik Amtoft; Müller, Heidi Kaastrup

    2015-01-01

    are important drug targets in treating i.e. affective disorders such as depression and anxiety, and for drugs of abuse such as ecstasy and cocaine. The normal function of the SERT relies on large conformational changes and its inhibition by antidepressants represents a conformational lock. Understanding...... the molecular mechanism of inhibition and which structural elements are involved in inhibitor binding and conformational changes of the transporter will provide clues for the development of improved drugs for the treatment of depression. Guided by our previous studies, we combined different biochemical methods......-HT transport. We also find that the potency of antidepressants is improved by in SERT with a lengthened IL5. These findings support the notion that intracellular loops are important substructures with a role in both the transport mechanism and molecular pharmacology of SERT....

  10. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    Science.gov (United States)

    Li, Guochang; Chen, George; Li, Shengtao

    2016-08-01

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.

  11. Simultaneous Platinum and Copper Ion Attachment to a Human Copper Chaperone Protein

    Science.gov (United States)

    Hodak, Miroslav; Cvitkovic, John; Yu, Corey; Dmitriev, Oleg; Kaminski, George; Bernholc, Jerry

    2015-03-01

    Cisplatin is a potent anti-cancer drug based on a platinum ion. However, its effectiveness is decreased by cellular resistance, which involves cisplatin attaching to copper transport proteins. One of such proteins is Atox1, where cisplatin attaches to the copper binding site. Surprisingly, it was shown that both cisplatin and copper can attach to Atox1 at the same time. To study this double metal ion attachment, we use the KS/FD DFT method, which combines Kohn-Sham DFT with frozen-density DFT to achieve efficient quantum-mechanical description of explicit solvent. Calculations have so far investigated copper ion attachment to CXXC motifs present in Atox1. The addition of the platinum ion and the competition between the two metals is currently being studied. These calculations start from a molecular mechanics (MM) structural model, in which glutathione groups provide additional ligands to the Pt ion. Our goals are to identify possible Cu-Pt structures and to determine whether copper/platinum attachment is competitive, independent, or cooperative. Results will be compared to the 1H, N1 5 -HSQC NMR experiments, in which binding of copper and cisplatin to Atox1 produces distinct secondary chemical shift signatures, allowing for kinetic studies of simultaneous metal binding.

  12. Amyloid-β precursor protein: Multiple fragments, numerous transport routes and mechanisms.

    Science.gov (United States)

    Muresan, Virgil; Ladescu Muresan, Zoia

    2015-05-15

    This review provides insight into the intraneuronal transport of the Amyloid-β Precursor Protein (APP), the prototype of an extensively posttranslationally modified and proteolytically cleaved transmembrane protein. Uncovering the intricacies of APP transport proves to be a challenging endeavor of cell biology research, deserving increased priority, since APP is at the core of the pathogenic process in Alzheimer's disease. After being synthesized in the endoplasmic reticulum in the neuronal soma, APP enters the intracellular transport along the secretory, endocytic, and recycling routes. Along these routes, APP undergoes cleavage into defined sets of fragments, which themselves are transported - mostly independently - to distinct sites in neurons, where they exert their functions. We review the currently known routes and mechanisms of transport of full-length APP, and of APP fragments, commenting largely on the experimental challenges posed by studying transport of extensively cleaved proteins. The review emphasizes the interrelationships between the proteolytic and posttranslational modifications, the intracellular transport, and the functions of the APP species. A goal remaining to be addressed in the future is the incorporation of the various views on APP transport into a coherent picture. In this review, the disease context is only marginally addressed; the focus is on the basic biology of APP transport under normal conditions. As shown, the studies of APP transport uncovered numerous mechanisms of transport, some of them conventional, and others, novel, awaiting exploration.

  13. Surface films and corrosion of copper

    Energy Technology Data Exchange (ETDEWEB)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    properties. The thin outer layer controls the corrosion properties of copper, corrosion rate being limited by ionic transport through the layer and the charge transfer step of the film dissolution. Chlorides cause a breakdown of the oxide film in the stability region of divalent copper, but they seem to have no effect on the properties of the film in the stability region of monovalent copper; oxidising conditions with simultaneous exposure to chlorides are thus expected to subject copper to localised corrosion. Sulphides at the concentration of 10 ppm dissolved H{sub 2}S were found not to promote the formation of a three-dimensional film of Cu{sub 2}S (or other copper sulphides), thus the mechanisms of localised corrosion which operate under reducing conditions and are based on the formation of copper sulphides seem not to be valid. In the presence of 10 ppm H{sub 2}S the corrosion rate of copper is controlled by the charge transfer step of the dissolution of the outer layer 57 refs, 35 figs, 7 tabs

  14. Disturbance of copper homeostasis is a mechanism for homocysteine-induced vascular endothelial cell injury.

    Directory of Open Access Journals (Sweden)

    Daoyin Dong

    Full Text Available Elevation of serum homocysteine (Hcy levels is a risk factor for cardiovascular diseases. Previous studies suggested that Hcy interferes with copper (Cu metabolism in vascular endothelial cells. The present study was undertaken to test the hypothesis that Hcy-induced disturbance of Cu homeostasis leads to endothelial cell injury. Exposure of human umbilical vein endothelial cells (HUVECs to concentrations of Hcy at 0.01, 0.1 or 1 mM resulted in a concentration-dependent decrease in cell viability and an increase in necrotic cell death. Pretreatment of the cells with a final concentration of 5 µM Cu in cultures prevented the effects of Hcy. Hcy decreased intracellular Cu concentrations. HPLC-ICP-MS analysis revealed that Hcy caused alterations in the distribution of intracellular Cu; more Cu was redistributed to low molecular weight fractions. ESI-Q-TOF detected the formation of Cu-Hcy complexes. Hcy also decreased the protein levels of Cu chaperone COX17, which was accompanied by a decrease in the activity of cytochrome c oxidase (CCO and a collapse of mitochondrial membrane potential. These effects of Hcy were all preventable by Cu pretreatment. The study thus demonstrated that Hcy disturbs Cu homeostasis and limits the availability of Cu to critical molecules such as COX17 and CCO, leading to mitochondrial dysfunction and endothelial cell injury.

  15. The Physiological Mechanism of Postphloem Sugar Transport in Citrus Fruit

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun-wei; ZHANG Shang-long; ZHANG Liang-cheng; Ruan Yong-ling; XIE Ming; TAO Jun

    2003-01-01

    The dynamics of translocation and partitioning of 14C-phothsynthates, the concentration of sucrose in fruit tissues and the effects of the membrane carrier- and ATPase-specific inhibitors on 14C-sucrose uptake by juice sacs of the satsuma mandarin (Citrus unshiu Marc. cv. Miyagawa wase) fruit were examined at the stage of fruit enlargement and fruit full ripe. Kinetic data of 14C-photosynthate translocation indicated that the rate of photosynthate transport into juice sacs decreased with fruit maturation and sugar accumulation. Along the photosynthate translocation path, i.e. from vascular bundles to segment epidermis then to juice sacs, a descending sugar gradient was observed. With fruit maturation and sugar accumulation in juice sacs, the 14C photosynthate gradient increased, whereas the static sucrose concentration gradient decreased with fruit maturation and sugar accumulation. The higher gradient of specific 14C radioactivity was considered to favor diffusion and sugar transport into juice sacs at the later stage of fruit development. The rate of uptake 14C-sucrose by juice sacs of satsuma mandarin fruit was markedly reduced by PCMBS, EB, DNP and NO-3 treatment. The above results suggested the participation of a carrier-mediated, energy-dependent sugar active transport process in juice sacs of satsuma mandarin fruit.

  16. Mechanisms of pH-gradient driven transport mediated by organic anion polypeptide transporters.

    Science.gov (United States)

    Leuthold, Simone; Hagenbuch, Bruno; Mohebbi, Nilufar; Wagner, Carsten A; Meier, Peter J; Stieger, Bruno

    2009-03-01

    Organic anion transporting polypeptides (humans OATPs, rodents Oatps) are expressed in most mammalian tissues and mediate cellular uptake of a wide variety of amphipathic organic compounds such as bile salts, steroid conjugates, oligopeptides, and a large list of drugs, probably by acting as anion exchangers. In the present study we aimed to investigate the role of the extracellular pH on the transport activity of nine human and four rat OATPs/Oatps. Furthermore, we aimed to test the concept that OATP/Oatp transport activity is accompanied by extrusion of bicarbonate. By using amphibian Xenopus laevis oocytes expressing OATPs/Oatps and mammalian cell lines stably transfected with OATPs/Oatps, we could demonstrate that in all OATPs/Oatps investigated, with the exception of OATP1C1, a low extracellular pH stimulated transport activity. This stimulation was accompanied by an increased substrate affinity as evidenced by lower apparent Michaelis-Menten constant values. OATP1C1 is lacking a highly conserved histidine in the third transmembrane domain, which was shown by site-directed mutagenesis to be critically involved in the pH dependency of OATPs/Oatps. Using online intracellular pH measurements in OATP/Oatp-transfected Chinese Hamster Ovary (CHO)-K1 cells, we could demonstrate the presence of a 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid-sensitive chloride/bicarbonate exchanger in CHO-K1 cells and that OATP/Oatp-mediated substrate transport is paralleled by bicarbonate efflux. We conclude that the pH dependency of OATPs/Oatps may lead to a stimulation of substrate transport in an acidic microenvironment and that the OATP/Oatp-mediated substrate transport into cells is generally compensated or accompanied by bicarbonate efflux.

  17. Proteomic Analysis of Drug-Resistant Mycobacteria: Co-Evolution of Copper and INH Resistance.

    Directory of Open Access Journals (Sweden)

    Yuling Chen

    Full Text Available Tuberculosis, caused by the pathogen Mycobacterium tuberculosis, is a worldwide public health threat. Mycobacterium tuberculosis is capable of resisting various stresses in host cells, including high levels of ROS and copper ions. To better understand the resistance mechanisms of mycobacteria to copper, we generated a copper-resistant strain of Mycobacterium smegmatis, mc2155-Cu from the selection of copper sulfate treated-bacteria. The mc2155-Cu strain has a 5-fold higher resistance to copper sulfate and a 2-fold higher resistance to isoniazid (INH than its parental strain mc2155, respectively. Quantitative proteomics was carried out to find differentially expressed proteins between mc2155 and mc2155-Cu. Among 345 differentially expressed proteins, copper-translocating P-type ATPase was up-regulated, while all other ABC transporters were down-regulated in mc2155-Cu, suggesting copper-translocating P-type ATPase plays a crucial role in copper resistance. Results also indicated that the down-regulation of metabolic enzymes and decreases in cellular NAD, FAD, mycothiol, and glutamine levels in mc2155-Cu were responsible for its slowing growth rate as compared to mc2155. Down-regulation of KatG2 expression in both protein and mRNA levels indicates the co-evolution of copper and INH resistance in copper resistance bacteria, and provides new evidence to understanding of the molecular mechanisms of survival of mycobacteria under stress conditions.

  18. Proteomic Analysis of Drug-Resistant Mycobacteria: Co-Evolution of Copper and INH Resistance.

    Science.gov (United States)

    Chen, Yuling; Yang, Fan; Sun, Zhongyuan; Wang, Qingtao; Mi, Kaixia; Deng, Haiteng

    2015-01-01

    Tuberculosis, caused by the pathogen Mycobacterium tuberculosis, is a worldwide public health threat. Mycobacterium tuberculosis is capable of resisting various stresses in host cells, including high levels of ROS and copper ions. To better understand the resistance mechanisms of mycobacteria to copper, we generated a copper-resistant strain of Mycobacterium smegmatis, mc2155-Cu from the selection of copper sulfate treated-bacteria. The mc2155-Cu strain has a 5-fold higher resistance to copper sulfate and a 2-fold higher resistance to isoniazid (INH) than its parental strain mc2155, respectively. Quantitative proteomics was carried out to find differentially expressed proteins between mc2155 and mc2155-Cu. Among 345 differentially expressed proteins, copper-translocating P-type ATPase was up-regulated, while all other ABC transporters were down-regulated in mc2155-Cu, suggesting copper-translocating P-type ATPase plays a crucial role in copper resistance. Results also indicated that the down-regulation of metabolic enzymes and decreases in cellular NAD, FAD, mycothiol, and glutamine levels in mc2155-Cu were responsible for its slowing growth rate as compared to mc2155. Down-regulation of KatG2 expression in both protein and mRNA levels indicates the co-evolution of copper and INH resistance in copper resistance bacteria, and provides new evidence to understanding of the molecular mechanisms of survival of mycobacteria under stress conditions.

  19. Sediment transport mechanisms through the sustainable vegetated flow networks

    Science.gov (United States)

    Allen, Deonie; Haynes, Heather; Arthur, Scott

    2016-04-01

    Understanding the pollution treatment efficiency of a sustainable urban drainage (SuDS) asset or network requires the influx, transport, detention and discharge of the pollutant within the system. To date event specific monitoring of sediment (primarily total suspended solids) concentrations in the inflow and discharge from SuDS have been monitored. Long term analysis of where the sediment is transported to and the residency time of this pollutant within the SuDS asset or network have not been unraveled due to the difficulty in monitoring specific sediment particulate movement. Using REO tracing methodology, sediment particulate movement has become possible. In tracing sediment movement from an urban surface the internal residency and transportation of this sediment has illustrated SuDS asset differences in multi-event detention. Of key importance is the finding that sediment remains within the SuDS asset for extended periods of time, but that the location sediment detention changes. Thus, over multiple rainfall-runoff events sediment is seen to move through the SuDS assets and network proving the assumption that detained sediment is permanent and stationary to be inaccurate. Furthermore, mass balance analysis of SuDS sediment indicates that there is notable re-suspension and ongoing release of sediment from the SuDS over time and cumulative rainfall-runoff events. Continued monitoring of sediment deposition and concentration in suspension illustrates that sediment detention within SuDS decreases over time/multiple events, without stabilizing within a 12 month period. Repeated experiments show a consistent pattern of detention and release for the three SuDS networks monitored in Scotland. Through consideration of both rainfall and flow factors the drivers of sediment transport within the monitored SuDS have been identified. Within the limitation of this field study the key drivers to SuDS sediment detention efficiency (or transport of sediment through the system

  20. [Copper metabolism and genetic disorders].

    Science.gov (United States)

    Shimizu, Norikazu

    2016-07-01

    Copper is one of essential trace elements. Copper deficiency lead to growth and developmental failure and/or neurological dysfunction. However, excess copper is also problems for human life. There are two disorders of inborn error of copper metabolism, Menkes disease and Wilson disease. Menkes disease is an X linked recessive disorder with copper deficiency and Wilson disease is an autosomal recessive disorder with copper accumulation. These both disorders result from the defective functioning of copper transport P-type ATPase, ATP7A of Menkes disease and ATP7B of Wilson disease. In this paper, the author describes about copper metabolism of human, and clinical feature, diagnosis and treatment of Menkes disease and Wilson disease.

  1. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces

    Science.gov (United States)

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-10-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field.

  2. Transport mechanisms in ZnO/CdS/CuInSe sub 2 solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Fahrenbruch, A.L.; Bube, R.H. (Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (USA))

    1990-11-01

    The transport mechanisms in ZnO/CdS/CuInSe{sub 2} solar cells prepared by ARCO (now Siemens) Solar Inc. have been analyzed by measurements of current versus voltage at different temperatures in the dark, short-circuit current versus open-circuit voltage at different temperatures in the light, spectral response of quantum efficiency, and junction capacitance. In the dark, recombination in the depletion region and/or thermally assisted tunneling are the dominant transport mechanisms. The observation of a smaller open-circuit voltage than would be predicted from the dark transport parameters is the result of a small change in the transport parameters under illumination, probably without a change in transport mechanism.

  3. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives

    Energy Technology Data Exchange (ETDEWEB)

    Pasquale, M.A. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Sucursal 4, Casilla de Correo 16, (1900), La Plata (Argentina)], E-mail: miguelp@inifta.unlp.edu.ar; Gassa, L.M.; Arvia, A.J. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Sucursal 4, Casilla de Correo 16, (1900), La Plata (Argentina)

    2008-08-20

    Copper electrodeposition on copper from still plating solutions of different compositions was investigated utilising electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and scanning electron microscopy (SEM). An acid copper sulphate plating base solution was employed either with or without sodium chloride in the presence of a single additive, either polyethylene glycol (PEG) or 3-mercapto-2-propanesulphonic acid (MPSA), and their mixture. Thallium underpotential deposition/anodic stripping was employed to determine the adsorption capability of additives on copper. In the absence of chloride ions, MPSA shows a moderate adsorption on copper, whereas PEG is slightly adsorbed. At low cathodic overpotentials, the simultaneous presence of MPSA and chloride ions accelerates copper electrodeposition through the formation of an MPSA-chloride ion complex in the solution, particularly for about 220 {mu}M sodium chloride. The reverse effect occurs in PEG-sodium chloride plating solutions. In this case, from EIS data the formation of a film that interferes with copper electrodeposition can be inferred. At higher cathodic overpotentials, when copper electrodeposition is under mass transport control, the cathode coverage by a PEG-copper chloride-mediated film becomes either partially or completely detached as the concentration of chloride ions at the negatively charged copper surface diminishes. The copper cathode grain topography at the {mu}m scale depends on the cathodic overpotential, plating solution composition and average current density. Available data about the solution constituents and their adsorption on copper make it possible to propose a likely complex mechanism to understand copper electrodeposition from these media, including the accelerating effect of MPSA and the dynamics of PEG-copper chloride complex adsorbate interfering with the surface mobility of depositing copper ad-ions/ad-atoms.

  4. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); MacDougald, Michelle [Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, Prince Philip Drive, St. John’s, NL, A1B 3V6 (Canada); Fast, Mark [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Siah, Ahmed [British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC, V9W 2C2 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada)

    2015-08-15

    Highlights: • Sequential inhibition and activation allows assessment of multiple segments of the electron transport system. • Warm acclimation and hypoxia-reoxygenation have global effects on the electron transport system. • Warm acclimation and hypoxia-reoxygenation sensitize the electron transport system to copper. • Thermal stress, hypoxia-reoxygenation and copper act additively to impair mitochondrial function. - Abstract: Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20 °C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0–20 μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I–IV (CI–IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11 → 20 °C) in temperature increased mitochondrial oxidation rates supported by CI–IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI–IV, reduced RCR for all except

  5. Multiple di-leucines in the ATP7A copper transporter are required for retrograde trafficking to the trans-Golgi network.

    Science.gov (United States)

    Zhu, Sha; Shanbhag, Vinit; Hodgkinson, Victoria L; Petris, Michael J

    2016-09-01

    The ATP7A protein is a ubiquitous copper-transporting P-type ATPase that is mutated in the lethal pediatric disorder of copper metabolism, Menkes disease. The steady-state location of ATP7A is within the trans-Golgi network (TGN), where it delivers copper to copper-dependent enzymes within the secretory pathway. However, ATP7A constantly cycles between the TGN and the plasma membrane, and in the presence of high copper concentrations, the exocytic arm of this cycling pathway is enhanced to promote a steady-state distribution of ATP7A to post-Golgi vesicles and the plasma membrane. A single di-leucine endocytic motif within the cytosolic carboxy tail of ATP7A (1487LL) was previously shown to be essential for TGN localization by functioning in retrieval from the plasma membrane, however, the requirement of other di-leucine signals in this region has not been fully investigated. While there has been some success in identifying sequence elements within ATP7A required for trafficking and catalysis, progress has been hampered by the instability of the ATP7A cDNA in high-copy plasmids during replication in Escherichia coli. In this study, we find that the use of DNA synthesis to generate silent mutations across the majority of both mouse and human ATP7A open reading frames was sufficient to stabilize these genes in high-copy plasmids, thus permitting the generation of full-length expression constructs. Using the stabilized mouse Atp7a construct, we identify a second di-leucine motif in the carboxy tail of ATP7A (1459LL) as essential for steady-state localization in the TGN by functioning in endosome-to-TGN trafficking. Taken together, these findings demonstrate that multiple di-leucine signals are required for recycling ATP7A from the plasma membrane to the TGN and illustrate the utility of large-scale codon reassignment as a simple and effective approach to circumvent cDNA instability in high-copy plasmids.

  6. A continuum mechanics-based musculo-mechanical model for esophageal transport

    CERN Document Server

    Kou, Wenjun; Pandolfino, John E; Kahrilas, Peter J; Patankar, Neelesh A

    2016-01-01

    In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structures, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points for Lagrangian-Eulerian interaction equations based on a previous work. In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. For the material model, we extend our previous fiber-based model to a continuum-based model. We first study a case in which a three-dimensional short tube is dilated. Results match very well with those from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation a...

  7. Biosorption of copper ions from dilute aqueous solutions on base treated rubber (Hevea brasiliensis) leaves powder: kinetics, isotherm, and biosorption mechanisms

    Institute of Scientific and Technical Information of China (English)

    W. S. Wan Ngah; M. A. K. M. Hanafiah

    2008-01-01

    The efficiency of sodium hydroxide treated rubber (Hevea brasiliensis) leaves powder (NHBL) for removing copper ions fromaqueous solutions has been investigated. The effects of physicochemical parameters on biosorption capacities such as stirring speed,pH, biosorbent dose, initial concentrations of copper, and ionic strength were studied. The biosorption capacities of NHBL increasedwith increase in pH, stirring speed and copper concentration hut decreased with increase in biosorbent dose and ionic strength. Theisotherm study indicated that NHBL fitted well with Langmuir model compared to Freundlich and Dubinin-Radushkevich models. Themaximum biosorption capacity determined from Langmuir isotherm was 14.97 mg/g at 27~C. The kinetic study revealed that pseudo-second order model fitted well the kinetic data, while Boyd kinetic model indicated that film diffusion was the main rate determiningstep in biosorption process. Based on surface area analysis, NHBL has low surface area and categorized as macroporous. Fouriertransform infrared (FT-IR) analyses revealed that hydroxyl, carboxyl, and amino are the main functional groups involved in the bindingof copper ions. Complexation was one of the main mechanisms for the removal of copper ions as indicated by FT-IR spectra. Ionexchange was another possible mechanism since the ratio of adsorbed cations (Cu2+ and H+) to the released cations (Na, Ca, andMg) from NHBL was almost unity. Copper ions bound on NHBL were able to be desorbed at>99% using 0.05 mol/L HCI, 0.01mol/L HNO, and 0.01 mol/L EDTA solutions.

  8. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    Science.gov (United States)

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  9. Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport

    NARCIS (Netherlands)

    Rappoldt, C.; Pieters, G.J.J.M.; Adema, E.B.; Baaijens, G.J.; Grootjans, A.P.; Duijn, van C.J.

    2003-01-01

    Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surfa

  10. Targeting copper in cancer therapy: 'Copper That Cancer'.

    Science.gov (United States)

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.

  11. A comprehensive phylogenetic analysis of copper transporting P1B ATPases from bacteria of the Rhizobiales order uncovers multiplicity, diversity and novel taxonomic subtypes.

    Science.gov (United States)

    Cubillas, Ciro; Miranda-Sánchez, Fabiola; González-Sánchez, Antonio; Elizalde, José Pedro; Vinuesa, Pablo; Brom, Susana; García-de Los Santos, Alejandro

    2017-08-01

    The ubiquitous cytoplasmic membrane copper transporting P1B-1 and P1B-3 -type ATPases pump out Cu(+) and Cu(2+) , respectively, to prevent cytoplasmic accumulation and avoid toxicity. The presence of five copies of Cu-ATPases in the symbiotic nitrogen-fixing bacteria Sinorhizobium meliloti is remarkable; it is the largest number of Cu(+) -transporters in a bacterial genome reported to date. Since the prevalence of multiple Cu-ATPases in members of the Rhizobiales order is unknown, we performed an in silico analysis to understand the occurrence, diversity and evolution of Cu(+) -ATPases in members of the Rhizobiales order. Multiple copies of Cu-ATPase coding genes (2-8) were detected in 45 of the 53 analyzed genomes. The diversity inferred from a maximum-likelihood (ML) phylogenetic analysis classified Cu-ATPases into four monophyletic groups. Each group contained additional subtypes, based on the presence of conserved motifs. This novel phylogeny redefines the current classification, where they are divided into two subtypes (P1B-1 and P1B-3 ). Horizontal gene transfer (HGT) as well as the evolutionary dynamic of plasmid-borne genes may have played an important role in the functional diversification of Cu-ATPases. Homologous cytoplasmic and periplasmic Cu(+) -chaperones, CopZ, and CusF, that integrate a CopZ-CopA-CusF tripartite efflux system in gamma-proteobacteria and archeae, were found in 19 of the 53 surveyed genomes of the Rhizobiales. This result strongly suggests a high divergence of CopZ and CusF homologs, or the existence of unexplored proteins involved in cellular copper transport. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Turbulence elasticity—A new mechanism for transport barrier dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. B., E-mail: guozhipku@gmail.com [WCI Center for Fusion Theory, NFRI, Daejeon 305-333 (Korea, Republic of); Diamond, P. H. [WCI Center for Fusion Theory, NFRI, Daejeon 305-333 (Korea, Republic of); CMTFO and CASS, University of California, San Diego, California 92093 (United States); Kosuga, Y. [IAS and RIAM, Kyushu University, Kasuga 816-8580 (Japan); Gürcan, Ö. D. [LPP, Ecole Polytechnique, CNRS, Palaiseau Cedex 91128 (France)

    2014-09-15

    We present a new, unified model of transport barrier formation in “elastic” drift wave-zonal flow (DW-ZF) turbulence. A new physical quantity—the delay time (i.e., the mixing time for the DW turbulence)—is demonstrated to parameterize each stage of the transport barrier formation. Quantitative predictions for the onset of limit-cycle-oscillation (LCO) among DW and ZF intensities (also denoted as I-mode) and I-mode to high-confinement mode (H-mode) transition are also given. The LCO occurs when the ZF shearing rate (|〈v〉{sub ZF}{sup ′}|) enters the regime Δω{sub k}<|〈V〉{sub ZF}{sup ′}|<τ{sub cr}{sup −1}, where Δω{sub k} is the local turbulence decorrelation rate and τ{sub cr} is the threshold delay time. In the basic predator-prey feedback system, τ{sub cr} is also derived. The I-H transition occurs when |〈V〉{sub E×B}{sup ′}|>τ{sub cr}{sup −1}, where the mean E × B shear flow driven by ion pressure “locks” the DW-ZF system to the H-mode by reducing the delay time below the threshold value.

  13. ALMA Binary Data Transport Mechanism using VOTable Headers

    Science.gov (United States)

    Wicenec, A.; Meuss, H.; Pisano, J.

    2006-07-01

    ALMA will produce very large data rates and volumes. In full operation the correlator will generate up to 60 MB/s of visibility data. These data have to be transported from the correlator on the high site (5000 m) to the ALMA archive, the telescope calibration and the quick-look subsystems, which are all located at the low site (2500 m) some 40 km away. A dedicated fiber connection between the sites is under construction and the interfaces between the subsystems are under development. The actual transport format produced by the correlator has been defined and implemented and is described in this paper in more detail. The format is derived from the SOAP with attachments [1], but instead of the SOAP XML envelope it is using a slightly modified VOTable [2] to keep the description of the binary data. The VOTable uses content ID pointers (CID, RFC2111 [3]) to refer to the binary parts contained in the same Multipart/Related (RFC2387 [4]) container. Such Multipart/Related containers are constructed for each ALMA integration and sent through a multimedia streaming connection implemented in CORBA (TAO[5, 6]).

  14. Alteration of the Copper-Binding Capacity of Iron-Rich Humic Colloids during Transport from Peatland to Marine Waters.

    Science.gov (United States)

    Muller, François L L; Cuscov, Marco

    2017-02-28

    Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L2]/[Corg], where L2 was the second strongest copper-binding ligand, was 0.75 × 10(-4) when the reservoir residence time was 5 h but 0.34 × 10(-4) when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[Corg] = (0.80 ± 0.20) × 10(-2). Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.

  15. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    Science.gov (United States)

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials.

  17. Atomistic study on mixed-mode fracture mechanisms of ferrite iron interacting with coherent copper and nickel nanoclusters

    Science.gov (United States)

    Al-Motasem, Ahmed Tamer; Mai, Nghia Trong; Choi, Seung Tae; Posselt, Matthias

    2016-04-01

    The effect of copper and/or nickel nanoclusters, generally formed by neutron irradiation, on fracture mechanisms of ferrite iron was investigated by using molecular statics simulation. The equilibrium configuration of nanoclusters was obtained by using a combination of an on-lattice annealing based on Metropolis Monte Carlo method and an off-lattice relaxation by molecular dynamics simulation. Residual stress distributions near the nanoclusters were also calculated, since compressive or tensile residual stresses may retard or accelerate, respectively, the propagation of a crack running into a nanocluster. One of the nanoclusters was located in front of a straight crack in ferrite iron with a body-centered cubic crystal structure. Two crystallographic directions, of which the crack plane and crack front direction are (010)[001] and (111) [ 1 bar 10 ] , were considered, representing cleavage and non-cleavage orientations in ferrite iron, respectively. Displacements corresponding to pure opening-mode and mixed-mode loadings were imposed on the boundary region and the energy minimization was performed. It was observed that the fracture mechanisms of ferrite iron under the pure opening-mode loading are strongly influenced by the presence of nanoclusters, while under the mixed-mode loading the nanoclusters have no significant effect on the crack propagation behavior of ferrite iron.

  18. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text A