WorldWideScience

Sample records for copper transport mechanisms

  1. Charge transport mechanism in p-type copper ion containing triazine thiolate metallopolymer thin film devices

    Science.gov (United States)

    K, Deepak; Roy, Amit; Anjaneyulu, P.; Kandaiah, Sakthivel; Pinjare, Sampatrao L.

    2017-10-01

    The charge transport mechanism in copper ions containing 1,3,5-Triazine-2,4,6-trithiolate (CuTCA) based polymer device in sandwich (Ag/CuTCA/Cu) geometry is studied. The current-voltage (I-V) characteristics of the metallopolymer CuTCA device have shown a transition in the charge transport mechanism from Ohmic to Space-charge limited conduction when temperature and voltage are varied. The carriers in CuTCA devices exhibit hopping transport, in which carriers hop from one site to the other. The hole mobility in this polymer device is found to be dependent on electric field E ( μpα√{E } ) and temperature, which suggests that the polymer has inherent disorder. The electric-field coefficient γ and zero-field mobility μ0 are temperature dependent. The values of mobility and activation energies are estimated from temperature (90-140 K) dependent charge transport studies and found to be in the range of 1 × 10-11-8 × 10-12 m2/(V s) and 16.5 meV, respectively. Temperature dependent electric-field coefficient γ is in the order of 17.8 × 10-4 (m/V)1/2, and the value of zero-field mobility μ0 is in the order of 1.2 × 10-11 m2/(V s) at 140 K. A constant phase element (Q) is used to model the device parameters, which are extracted using the Impedance spectroscopy technique. The bandgap of the polymer is estimated to be 2.6 eV from UV-Vis reflectance spectra.

  2. Two Silene vulgaris copper transporters residing in different cellular compartments confer copper hypertolerance by distinct mechanisms when expressed in Arabidopsis thaliana.

    Science.gov (United States)

    Li, Yanbang; Iqbal, Mazhar; Zhang, Qianqian; Spelt, Cornelis; Bliek, Mattijs; Hakvoort, Henk W J; Quattrocchio, Francesca M; Koes, Ronald; Schat, Henk

    2017-08-01

    Silene vulgaris is a metallophyte of calamine, cupriferous and serpentine soils all over Europe. Its metallicolous populations are hypertolerant to zinc (Zn), cadmium (Cd), copper (Cu) or nickel (Ni), compared with conspecific nonmetallicolous populations. These hypertolerances are metal-specific, but the underlying mechanisms are poorly understood. We investigated the role of HMA5 copper transporters in Cu-hypertolerance of a S. vulgaris copper mine population. Cu-hypertolerance in Silene is correlated and genetically linked with enhanced expression of two HMA5 paralogs, SvHMA5I and SvHMA5II, each of which increases Cu tolerance when expressed in Arabidopsis thaliana. Most Spermatophytes, except Brassicaceae, possess homologs of SvHMA5I and SvHMA5II, which originate from an ancient duplication predating the appearance of spermatophytes. SvHMA5II and the A. thaliana homolog AtHMA5 localize in the endoplasmic reticulum and upon Cu exposure move to the plasma membrane, from where they are internalized and degraded in the vacuole. This resembles trafficking of mammalian homologs and is apparently an extremely ancient mechanism. SvHMA5I, instead, neofunctionalized and always resides on the tonoplast, likely sequestering Cu in the vacuole. Adaption of Silene to a Cu-polluted soil is at least in part due to upregulation of two distinct HMA5 transporters, which contribute to Cu hypertolerance by distinct mechanisms. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  3. Rate and Regulation of Copper Transport by Human Copper Transporter 1 (hCTR1)*

    Science.gov (United States)

    Maryon, Edward B.; Molloy, Shannon A.; Ivy, Kristin; Yu, Huijun; Kaplan, Jack H.

    2013-01-01

    Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using 64Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu+ first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry. PMID:23658018

  4. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  5. Placenta Copper Transport Proteins in Preeclampsia

    Science.gov (United States)

    Placental insufficiency underlying preeclampsia (PE) is associated with impaired placental angiogenesis. As copper (Cu) is essential to angiogenesis, we investigated differences in the expression of placental Cu transporters Menkes (ATP7A), Wilsons (ATP7B) and the Cu chaperone (CCS) for superoxide d...

  6. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  7. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  8. The copper-transporting ATPase pump and its potential role in copper-tolerance

    Science.gov (United States)

    Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz

    2016-01-01

    Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...

  9. Fatigue mechanisms in ultrafine-grained copper

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2009-01-01

    Roč. 47, č. 1 (2009), s. 1-9 ISSN 0023-432X R&D Projects: GA AV ČR(CZ) 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained copper * effect of purity * effect of temperature Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.345, year: 2007

  10. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  11. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  12. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  13. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth

    Energy Technology Data Exchange (ETDEWEB)

    Ashino, T.; Varadarajan, S.; Urao, N.; Oshikawa, J.; Chen, G. -F.; Wang, H.; Huo, Y.; Finney, L.; Vogt, S.; McKinney, R. D.; Maryon, E. B.; Kaplan, J. H.; Ushio-Fukai, M.; Fukai, T. (Biosciences Division); ( XSD); ( PSC-USR); (Univ. of Illinois at Chicago); (Univ. of Minnesota)

    2010-09-09

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  14. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Progress report, January 1, 1979-December 31, 1979

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1979-01-01

    The mechanism of lead transport is presented, and especially the particular similarities or dissimilarities between lead and calcium in this process. The absorption of these metals was determined cockerels, raised on a commercial diet or on a specified diet, using in vivo ligated loop procedure. The dose administered into the loop contained 0.5 μCi 203 Pb (and/or 0.1 μCi 47 Ca), and 0.01 mM lead acetate (and/or mM CaCl 2 ) in 0.5 ml 0.15 M NaCl,pH 6.5. It was shown that lead is rapidly taken up by the mucosal tissue, and slowly transferred into the body, whereas less calcium is retained by the tissue and the transfer of calcium is many times as effective as that for lead. They appear to respond in a similar manner to a low calcium intake and vitamin D treatment. Increasing luminal stable lead concentration significantly reduced the percentage of radiolead significantly reduced the percentage of radiolead absorbed, but did not affect the absorption of calcium. Also, vitamin D enhanced the transfer of plasma 47 Ca into the lumen but did not affect the transfer of plasma 203 Pb. Intravenous administration of 1,25(OH) 2 CC to rachitic chicks enhanced calcium and lead absorption, but the maximal absorption of these metals occurred at slightly different times after administering this metabolite, indicating that two different transport systems may be involved. It was concluded that lead is transported across the epithelial wall by a passive diffusion and this process is affected by vitamin D in a similar manner as this vitamin affects the diffusional component of calcium transport

  15. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    Science.gov (United States)

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.

  16. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  17. Mechanical characterization of copper-diamond composites

    International Nuclear Information System (INIS)

    Kerns, J.A.; Makowiecki, D.M.

    1994-01-01

    The main goals of this project were to measure the tensile properties of a copper-diamond composite (CDC) material and to demonstrate that a grinding wheel could be manufactured using the CDC material as the abrasive. Tensile properties have been measured with limited success because of the high failure rate in manufacturing the dog bone test specimens. The basic conclusion of the tensile test is that this material has low ductility and, therefore, the failure mechanism, is not brittle. The second conclusion is that a grinding wheel made using the CDC material is possible. Finally, this project has led to the development of a new concept in making grinding wheels that is the subject of current research and possible technology transfer initiatives

  18. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  19. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc and copper. Progress report, January 1, 1980-December 31, 1980

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1980-01-01

    Investigations were continued to elucidate the mode of transepithelial transport of toxic metal ions across the gastrointestinal tract, as well as their interactions with biological processes and other metal ions. All experimental details that are either published, submitted for publication or in press during this report period are included in the Appendix. Primary attention for this report has been given to the intestinal absorption of lead and its interaction with other biological moieties

  20. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    International Nuclear Information System (INIS)

    Wasserman, R.H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report

  1. Molecular mechanisms of the epithelial transport of toxic metal ions, particularly mercury, cadmium, lead, arsenic, zinc, and copper. Comprehensive progress report, October 1, 1975--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, R. H.

    1978-10-01

    Investigations were undertaken to elucidate the mode of transepithelial transport of potentially toxic metal ions across the gastrointestinal tract, with primary attention given to cadmium, zinc, and arsenic. In addition, the toxic effects of cadmium on the metabolism of vitamin D and calcium have been investigated in some detail. Several approaches have been taken, including studies on the localization of heavy metals in the intestinal mucosa, the effects of cadmium on various parameters of calcium metabolism, the modes of intestinal absorption of cadmium, arsenate, and zinc, and the interactions of heavy metals with each other and with calcium, phosphorus, and vitamin D. Details of these experiments are attached in the Comprehensive Progress Report.

  2. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion

    NARCIS (Netherlands)

    Roelofsen, H; Wolters, H; Van Luyn, MJA; Miura, N; Kuipers, F; Vonk, RJ

    Background & Aims: Mutations in the ATP7B gene, encoding a copper-transporting P-type adenosine triphosphatase, lead to excessive hepatic copper accumulation because of impaired biliary copper excretion in Wilson's disease. In human liver, ATP7B is predominantly localized to the trans-Golgi network,

  3. Tape transport mechanism

    International Nuclear Information System (INIS)

    Groh, E.F.; McDowell, W.; Modjeski, N.S.; Keefe, D.J.; Groer, P.

    1979-01-01

    A device is provided for transporting, in a stepwise manner, tape between a feed reel and takeup reel. An indexer moves across the normal path of the tape displacing it while the tape on the takeup reel side of the indexer is braked. After displacement, the takeup reel takes up the displaced tape while the tape on the feed reel side of the indexer is braked, providing stepwise tape transport in precise intervals determined by the amount of displacement caused by the indexer

  4. Physical mechanisms of copper-copper wafer bonding

    International Nuclear Information System (INIS)

    Rebhan, B.; Hingerl, K.

    2015-01-01

    The study of the physical mechanisms driving Cu-Cu wafer bonding allowed for reducing the bonding temperatures below 200 °C. Metal thermo-compression Cu-Cu wafer bonding results obtained at such low temperatures are very encouraging and suggest that the process is possible even at room temperature if some boundary conditions are fulfilled. Sputtered (PVD) and electroplated Cu thin layers were investigated, and the analysis of both metallization techniques demonstrated the importance of decreasing Cu surface roughness. For an equal surface roughness, the bonding temperature of PVD Cu wafers could be even further reduced due to the favorable microstructure. Their smaller grain size enhances the length of the grain boundaries (observed on the surface prior bonding), acting as efficient mass transfer channels across the interface, and hence the grains are able to grow over the initial bonding interface. Due to the higher concentration of random high-angle grain boundaries, this effect is intensified. The model presented is explaining the microstructural changes based on atomic migration, taking into account that the reduction of the grain boundary area is the major driving force to reduce the Gibbs free energy, and predicts the subsequent microstructure evolution (grain growth) during thermal annealing

  5. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Directory of Open Access Journals (Sweden)

    Rodolfo Rodríguez Baracaldo

    2010-01-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  6. Impairment of Interrelated Iron- and Copper Homeostatic Mechanisms in Brain Contributes to the Pathogenesis of Neurodegenerative Disorders

    Science.gov (United States)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    Iron and copper are important co-factors for a number of enzymes in the brain, including enzymes involved in neurotransmitter synthesis and myelin formation. Both shortage and an excess of iron or copper will affect the brain. The transport of iron and copper into the brain from the circulation is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead to altered copper homeostasis in the brain. Similarly, changes in dietary copper affect the brain iron homeostasis. Moreover, the uptake routes of iron and copper overlap each other which affect the interplay between the concentrations of the two metals in the brain. The divalent metal transporter-1 (DMT1) is involved in the uptake of both iron and copper. Furthermore, copper is an essential co-factor in numerous proteins that are vital for iron homeostasis and affects the binding of iron-response proteins to iron-response elements in the mRNA of the transferrin receptor, DMT1, and ferroportin, all highly involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells that express various transporters. PMID:23055972

  7. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation.

    Science.gov (United States)

    Senovilla, Marta; Castro-Rodríguez, Rosario; Abreu, Isidro; Escudero, Viviana; Kryvoruchko, Igor; Udvardi, Michael K; Imperial, Juan; González-Guerrero, Manuel

    2018-04-01

    Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  8. Mechanisms of multidrug transporters

    NARCIS (Netherlands)

    Bolhuis, H; van Veen, H.W.; Poolman, B.; Driessen, A.J.M.; Konings, W.N

    Drug resistance, mediated by various mechanisms, plays a crucial role in the failure of the drug-based treatment of various infectious diseases. As a result, these infectious diseases re-emerge rapidly and cause many victims every year. Another serious threat is imposed by the development of

  9. Characterization of copper transport in gill cells of a mangrove crab Ucides cordatus

    Energy Technology Data Exchange (ETDEWEB)

    Sá, M.G. [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Zanotto, F.P., E-mail: fzanotto@usp.br [Biosciences Institute, Department of Physiology, University of São Paulo, Rua do Matão, Travessa 14, 101, São Paulo 05508-900, SP (Brazil); Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Três de Maio 100, Sao Paulo 04044-020 (Brazil)

    2013-11-15

    Highlights: •Copper transport in gill cells of a mangrove crab Ucides cordatus is dependent of calcium. •Copper transport mechanism is ATP-dependent. •Transport was monitored second by second during 300 s. -- Abstract: The branchial epithelium of crustaceans is exposed to the environment and is the first site affected by metal pollution. The aim of this work was to characterize copper (Cu) transport using a fluorescent dye, Phen Green, in gill cells of a hypo-hyper-regulator mangrove crab Ucides cordatus. The results showed that added extracellular CuCl{sub 2} (0, 0.025, 0.150, 0.275, 0.550 and 1.110 μM) showed typical Michaelis–Menten transport for Cu in anterior and posterior gill cells (V{sub max} for anterior and posterior gills: 0.41 ± 0.12 and 1.76 ± 0.27 intracellular Cu in μM × 22.10{sup 4} cells{sup −1} × 300 s{sup −1} respectively and K{sub m} values: 0.44 ± 0.04 and 0.32 ± 0.13 μM, respectively). Intracellular Cu was significantly higher for posterior gill cells compared to anterior gill cells, suggesting differential accumulation for each gill type. Extracellular Ca at 20 mM decreased cellular Cu transport for both anterior and posterior gill cells. Nifedipine and verapamil, calcium channel inhibitors from plasma membrane, decreased Cu transport and affected K{sub m} for both gills. These results could be due to a competition between Cu and Ca. Amiloride, a Na/Ca exchanger inhibitor, as well as bafilomycin, a proton pump inhibitor, caused a decrease of intracellular Cu compared to control. Ouabain and KB-R 7943, acting on Na homeostasis, similarly decreased intracellular Cu in both gill cells. Besides that, gill cells exposed to ATP and Cu simultaneously, showed an increase in intracellular copper, which was inhibited by vanadate, an inhibitor of P-type ATPase. These results suggest either the presence of a Cu-ATPase in crab gill cells, responsible for Cu influx, or the effect of a change in electrochemical membrane potential that

  10. Characterization of copper transport in gill cells of a mangrove crab Ucides cordatus

    International Nuclear Information System (INIS)

    Sá, M.G.; Zanotto, F.P.

    2013-01-01

    Highlights: •Copper transport in gill cells of a mangrove crab Ucides cordatus is dependent of calcium. •Copper transport mechanism is ATP-dependent. •Transport was monitored second by second during 300 s. -- Abstract: The branchial epithelium of crustaceans is exposed to the environment and is the first site affected by metal pollution. The aim of this work was to characterize copper (Cu) transport using a fluorescent dye, Phen Green, in gill cells of a hypo-hyper-regulator mangrove crab Ucides cordatus. The results showed that added extracellular CuCl 2 (0, 0.025, 0.150, 0.275, 0.550 and 1.110 μM) showed typical Michaelis–Menten transport for Cu in anterior and posterior gill cells (V max for anterior and posterior gills: 0.41 ± 0.12 and 1.76 ± 0.27 intracellular Cu in μM × 22.10 4 cells −1 × 300 s −1 respectively and K m values: 0.44 ± 0.04 and 0.32 ± 0.13 μM, respectively). Intracellular Cu was significantly higher for posterior gill cells compared to anterior gill cells, suggesting differential accumulation for each gill type. Extracellular Ca at 20 mM decreased cellular Cu transport for both anterior and posterior gill cells. Nifedipine and verapamil, calcium channel inhibitors from plasma membrane, decreased Cu transport and affected K m for both gills. These results could be due to a competition between Cu and Ca. Amiloride, a Na/Ca exchanger inhibitor, as well as bafilomycin, a proton pump inhibitor, caused a decrease of intracellular Cu compared to control. Ouabain and KB-R 7943, acting on Na homeostasis, similarly decreased intracellular Cu in both gill cells. Besides that, gill cells exposed to ATP and Cu simultaneously, showed an increase in intracellular copper, which was inhibited by vanadate, an inhibitor of P-type ATPase. These results suggest either the presence of a Cu-ATPase in crab gill cells, responsible for Cu influx, or the effect of a change in electrochemical membrane potential that could also drive Cu to the gill cell

  11. COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter binding protein-like 7

    Science.gov (United States)

    Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma me...

  12. Impairment of interrelated iron- and copper homeostatic mechanisms in brain contributes to the pathogenesis of neurodegenerative disorders

    DEFF Research Database (Denmark)

    Skjørringe, Tina; Møller, Lisbeth Birk; Moos, Torben

    2012-01-01

    is strictly regulated, and concordantly protective barriers, i.e., the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCB) have evolved to separate the brain environment from the circulation. The uptake mechanisms of the two metals interact. Both iron deficiency and overload lead...... involved in iron transport. Iron and copper are mainly taken up at the BBB, but the BCB also plays a vital role in the homeostasis of the two metals, in terms of sequestering, uptake, and efflux of iron and copper from the brain. Inside the brain, iron and copper are taken up by neurons and glia cells...

  13. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  14. Mechanical behaviour of copper 15% volume niobium microcomposite wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2001-01-01

    Full Text Available Cu-Nb microcomposites are attractive in magnet pulsed field technology applications due to their anomalous mechanism of mechanical strength and high electrical conductivity. In this sense, recently it was conceived the use of Cu 15% vol. Nb wires to operate as a high tensile strength cable for a diamond cutting tool (diamond wires for marble and granite slabbing. The multifilamentary Cu 15% vol. Nb composite was obtained using a new processing route, starting with niobium bars bundled into copper tubes, without arc melting. Cold working techniques, such as swaging and wire drawing, combined with heat treatments such as sintering and annealing, and tube restacking were employed. The tensile property of the composite was measured as a function of the niobium filaments dimensions and morphology into the copper matrix, in the several processing steps. An ultimate tensile strength (UTS of 960 MPa was obtained for an areal reduction (R = Ao/A, with Ao-initial cross section area, and A-final cross section area of 4x10(8 X, in which the niobium filaments reached thickness less than 20 nm. The anomalous mechanical strength increase is attributed to the fact that the niobium filaments acts as a barrier to copper dislocations.

  15. Electrochemical characterization of anode passivation mechanisms in copper electrorefining

    Science.gov (United States)

    Moats, Michael Scott

    Anode passivation can decrease productivity and quality while increasing costs in modern copper electrorefineries. This investigation utilized electrochemical techniques to characterize the passivation behavior of anode samples from ten different operating companies. It is believed that this collection of anodes is the most diverse set ever to be assembled to study the effect of anode composition on passivation. Chronopotentiometry was the main electrochemical technique, employing a current density of 3820 A m-2. From statistical analysis of the passivation characteristics, increasing selenium, tellurium, silver, lead and nickel were shown to accelerate passivation. Arsenic was the only anode impurity that inhibited passivation. Oxygen was shown to accelerate passivation when increased from 500 to 1500 ppm, but further increases did not adversely affect passivation. Nine electrolyte variables were also examined. Increasing the copper, sulfuric acid or sulfate concentration of the electrolyte accelerated passivation. Arsenic in the electrolyte had no effect on passivation. Chloride and optimal concentrations of thiourea and glue delayed passivation. Linear sweep voltammetry, cyclic voltammetry, and impedance spectroscopy provided complementary information. Analysis of the electrochemical results led to the development of a unified passivation mechanism. Anode passivation results from the formation of inhibiting films. Careful examination of the potential details, especially those found in the oscillations just prior to passivation, demonstrated the importance of slimes, copper sulfate and copper oxide. Slimes confine dissolution to their pores and inhibit diffusion. This can lead to copper sulfate precipitation, which blocks more of the surface area. Copper oxide forms because of the resulting increase in potential at the interface between the copper sulfate and anode. Ultimate passivation occurs when the anode potential is high enough to stabilize the oxide film in

  16. The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics.

    Science.gov (United States)

    Yu, Corey H; Yang, Nan; Bothe, Jameson; Tonelli, Marco; Nokhrin, Sergiy; Dolgova, Natalia V; Braiterman, Lelita; Lutsenko, Svetlana; Dmitriev, Oleg Y

    2017-11-03

    The human transporter ATP7B delivers copper to the biosynthetic pathways and maintains copper homeostasis in the liver. Mutations in ATP7B cause the potentially fatal hepatoneurological disorder Wilson disease. The activity and intracellular localization of ATP7B are regulated by copper, but the molecular mechanism of this regulation is largely unknown. We show that the copper chaperone Atox1, which delivers copper to ATP7B, and the group of the first three metal-binding domains (MBD1-3) are central to the activity regulation of ATP7B. Atox1-Cu binding to ATP7B changes domain dynamics and interactions within the MBD1-3 group and activates ATP hydrolysis. To understand the mechanism linking Atox1-MBD interactions and enzyme activity, we have determined the MBD1-3 conformational space using small angle X-ray scattering and identified changes in MBD dynamics caused by apo -Atox1 and Atox1-Cu by solution NMR. The results show that copper transfer from Atox1 decreases domain interactions within the MBD1-3 group and increases the mobility of the individual domains. The N-terminal segment of MBD1-3 was found to interact with the nucleotide-binding domain of ATP7B, thus physically coupling the domains involved in copper binding and those involved in ATP hydrolysis. Taken together, the data suggest a regulatory mechanism in which Atox1-mediated copper transfer activates ATP7B by releasing inhibitory constraints through increased freedom of MBD1-3 motions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Host and Pathogen Copper-Transporting P-Type ATPases Function Antagonistically during Salmonella Infection.

    Science.gov (United States)

    Ladomersky, Erik; Khan, Aslam; Shanbhag, Vinit; Cavet, Jennifer S; Chan, Jefferson; Weisman, Gary A; Petris, Michael J

    2017-09-01

    Copper is an essential yet potentially toxic trace element that is required by all aerobic organisms. A key regulator of copper homeostasis in mammalian cells is the copper-transporting P-type ATPase ATP7A, which mediates copper transport from the cytoplasm into the secretory pathway, as well as copper export across the plasma membrane. Previous studies have shown that ATP7A-dependent copper transport is required for killing phagocytosed Escherichia coli in a cultured macrophage cell line. In this investigation, we expanded on these studies by generating Atp7a LysMcre mice, in which the Atp7a gene was specifically deleted in cells of the myeloid lineage, including macrophages. Primary macrophages isolated from Atp7a LysMcre mice exhibit decreased copper transport into phagosomal compartments and a reduced ability to kill Salmonella enterica serovar Typhimurium compared to that of macrophages isolated from wild-type mice. The Atp7a LysMcre mice were also more susceptible to systemic infection by S Typhimurium than wild-type mice. Deletion of the S Typhimurium copper exporters, CopA and GolT, was found to decrease infection in wild-type mice but not in the Atp7a LysMcre mice. These studies suggest that ATP7A-dependent copper transport into the phagosome mediates host defense against S Typhimurium, which is counteracted by copper export from the bacteria via CopA and GolT. These findings reveal unique and opposing functions for copper transporters of the host and pathogen during infection. Copyright © 2017 American Society for Microbiology.

  18. Microstructure and Mechanical Properties of High Copper HSLA-100 Steel in 2-inch Plate Form

    Science.gov (United States)

    1992-06-01

    CCT diagram . Increasing copper in HSLA-100 steel also increases the toughness as well as the strength, though the dynamics of this process are not clear. Steel, High Copper HSLA-100 Steel, mechanical property, microstructure.

  19. Mechanical Integrity of Copper Canister Lid and Cylinder. Sensitivity study

    International Nuclear Information System (INIS)

    Karlsson, Marianne

    2002-08-01

    This report is part of a study of the mechanical integrity of canisters used for disposal of nuclear fuel waste. The overall objective is to determine and ensure the static and long-term strength of the copper canister lid and cylinder casing. The canisters used for disposal nuclear fuel waste of type BWR consists of an inner part (insert) of ductile cast iron and an outer part of copper. The copper canister is to provide a sealed barrier between the contents of the canister and the surroundings. The study in this report complements the finite element analyses performed in an earlier study. The analyses aim to evaluate the sensitivity of the canister to tolerances regarding the gap between the copper cylinder and the cast iron insert. Since great uncertainties regarding the material's long term creep properties prevail, analyses are also performed to evaluate the effect of different creep data on the resulting strain and stress state. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from groundwater at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; and Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are performed for two of the load cases. For all considered designs high principal stresses appear on the outside of the copper cylinder in the region from the weld down to the level of the lid lower edge. Altering the gap between lid and cylinder and/or between cylinder and insert only marginally affects the resulting stress state. Fitting the lid in the cylinder

  20. Monitoring Interactions Inside Cells by Advanced Spectroscopies: Overview of Copper Transporters and Cisplatin.

    Science.gov (United States)

    Lasorsa, Alessia; Natile, Giovanni; Rosato, Antonio; Tadini-Buoninsegni, Francesco; Arnesano, Fabio

    2018-02-12

    Resistance, either at the onset of the treatment or developed after an initial positive response, is a major limitation of antitumor therapy. In the case of platinum- based drugs, copper transporters have been found to interfere with drug trafficking by facilitating the import or favoring the platinum export and inactivation. The use of powerful spectroscopic, spectrometric and computational methods has allowed a deep structural insight into the mode of interaction of platinum drugs with the metal-binding domains of the transporter proteins. This review article focuses on the mode in which platinum drugs can compete with copper ion for binding to transport proteins and consequent structural and biological effects. Three types of transporters are discussed in detail: copper transporter 1 (Ctr1), the major responsible for Cu+ uptake; antioxidant-1 copper chaperone (Atox1), responsible for copper transfer within the cytoplasm; and copper ATPases (ATP7A/B), responsible for copper export into specific subcellular compartments and outside the cell. The body of knowledge summarized in this review can help in shaping current chemotherapy to optimize the efficacy of platinum drugs (particularly in relation to resistance) and to mitigate adverse effects on copper metabolism. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    Science.gov (United States)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode

  2. Upregulated copper transporters in hypoxia-induced pulmonary hypertension.

    Directory of Open Access Journals (Sweden)

    Adriana M Zimnicka

    Full Text Available Pulmonary vascular remodeling and increased arterial wall stiffness are two major causes for the elevated pulmonary vascular resistance and pulmonary arterial pressure in patients and animals with pulmonary hypertension. Cellular copper (Cu plays an important role in angiogenesis and extracellular matrix remodeling; increased Cu in vascular smooth muscle cells has been demonstrated to be associated with atherosclerosis and hypertension in animal experiments. In this study, we show that the Cu-uptake transporter 1, CTR1, and the Cu-efflux pump, ATP7A, were both upregulated in the lung tissues and pulmonary arteries of mice with hypoxia-induced pulmonary hypertension. Hypoxia also significantly increased expression and activity of lysyl oxidase (LOX, a Cu-dependent enzyme that causes crosslinks of collagen and elastin in the extracellular matrix. In vitro experiments show that exposure to hypoxia or treatment with cobalt (CoCl2 also increased protein expression of CTR1, ATP7A, and LOX in pulmonary arterial smooth muscle cells (PASMC. In PASMC exposed to hypoxia or treated with CoCl2, we also confirmed that the Cu transport is increased using 64Cu uptake assays. Furthermore, hypoxia increased both cell migration and proliferation in a Cu-dependent manner. Downregulation of hypoxia-inducible factor 1α (HIF-1α with siRNA significantly attenuated hypoxia-mediated upregulation of CTR1 mRNA. In summary, the data from this study indicate that increased Cu transportation due to upregulated CTR1 and ATP7A in pulmonary arteries and PASMC contributes to the development of hypoxia-induced pulmonary hypertension. The increased Cu uptake and elevated ATP7A also facilitate the increase in LOX activity and thus the increase in crosslink of extracellular matrix, and eventually leading to the increase in pulmonary arterial stiffness.

  3. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Jinsong Liu [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  4. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinsong [Royal Institute of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2006-04-15

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10{sup 5} years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10{sup 5} years.

  5. Coupled Transport/Reaction Modelling of Copper Canister Corrosion Aided by Microbial Processes

    International Nuclear Information System (INIS)

    Jinsong Liu

    2006-04-01

    Copper canister corrosion is an important issue in the concept of a nuclear fuel repository. Previous studies indicate that the oxygen-free copper canister could hold its integrity for more than 100,000 years in the repository environment. Microbial processes may reduce sulphate to sulphide and considerably increase the amount of sulphides available for corrosion. In this paper, a coupled transport/reaction model is developed to account for the transport of chemical species produced by microbial processes. The corroding agents like sulphide would come not only from the groundwater flowing in a fracture that intersects the canister, but also from the reduction of sulphate near the canister. The reaction of sulphate-reducing bacteria and the transport of sulphide in the bentonite buffer are included in the model. The depth of copper canister corrosion is calculated by the model. With representative 'central values' of the concentrations of sulphate and methane at repository depth at different sites in Fennoscandian Shield the corrosion depth predicted by the model is a few millimetres during 10 5 years. As the concentrations of sulphate and methane are extremely site-specific and future climate changes may significantly influence the groundwater compositions at potential repository sites, sensitivity analyses have been conducted. With a broad perspective of the measured concentrations at different sites in Sweden and in Finland, and some possible mechanisms (like the glacial meltwater intrusion and interglacial seawater intrusion) that may introduce more sulphate into the groundwater at intermediate depths during future climate changes, higher concentrations of either/both sulphate and methane than what is used as the representative 'central' values would be possible. In worst cases. locally, half of the canister thickness could possibly be corroded within 10 5 years

  6. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis.

    Directory of Open Access Journals (Sweden)

    Najealicka Armstrong

    Full Text Available Silver nanoparticles (AgNPs, like almost all nanoparticles, are potentially toxic beyond a certain concentration because the survival of the organism is compromised due to scores of pathophysiological abnormalities past that concentration. However, the mechanism of AgNP toxicity remains undetermined. Instead of applying a toxic dose, we attempted to monitor the effects of AgNPs at a nonlethal concentration on wild type Drosophila melanogaster by exposing them throughout their development. All adult flies raised in AgNP doped food showed that up to 50 mg/L concentration AgNP has no negative influence on median survival; however, these flies appeared uniformly lighter in body color due to the loss of melanin pigments in their cuticle. Additionally, fertility and vertical movement ability were compromised due to AgNP feeding. Determination of the amount of free ionic silver (Ag(+ led us to claim that the observed biological effects have resulted from the AgNPs and not from Ag(+. Biochemical analysis suggests that the activity of copper dependent enzymes, namely tyrosinase and Cu-Zn superoxide dismutase, are decreased significantly following the consumption of AgNPs, despite the constant level of copper present in the tissue. Consequently, we propose a mechanism whereby consumption of excess AgNPs in association with membrane bound copper transporter proteins cause sequestration of copper, thus creating a condition that resembles copper starvation. This model also explains the cuticular demelanization effect resulting from AgNP since tyrosinase activity is essential for melanin biosynthesis. Finally, we claim that Drosophila, an established genetic model system, can be well utilized for further understanding of the biological effects of nanoparticles.

  7. Liver mitochondrial dysfunction and electron transport chain defect induced by high dietary copper in broilers.

    Science.gov (United States)

    Yang, Fan; Cao, Huabin; Su, Rongsheng; Guo, Jianying; Li, Chengmei; Pan, Jiaqiang; Tang, Zhaoxin

    2017-09-01

    Copper is an important trace mineral in the diet of poultry due to its biological activity. However, limited information is available concerning the effects of high copper on mitochondrial dysfunction. In this study, 72 broilers were used to investigate the effects of high dietary copper on liver mitochondrial dysfunction and electron transport chain defect. Birds were fed with different concentrations [11, 110, 220, and 330 mg of copper/kg dry matter (DM)] of copper from tribasic copper chloride (TBCC). The experiment lasted for 60 d. Liver tissues on d 60 were subjected to histopathological observation. Additionally, liver mitochondrial function was recorded on d 12, 36, and 60. Moreover, a site-specific defect in the electron transport chain in liver mitochondria was also identified by using various chemical inhibitors of mitochondrial respiration. The results showed different degrees of degeneration, mitochondrial swelling, and high-density electrons in hepatocytes. In addition, the respiratory control ratio (RCR) and oxidative phosphorylation rate (OPR) in liver mitochondria increased at first and then decreased in high-dose groups. Moreover, hydrogen peroxide (H2O2) generation velocity in treated groups was higher than that in control group, which were magnified by inhibiting electron transport at Complex IV. The results indicated that high dietary copper could decline liver mitochondrial function in broilers. The presence of a site-specific defect at Complex IV in liver mitochondria may be responsible for liver mitochondrial dysfunction caused by high dietary copper. © 2017 Poultry Science Association Inc.

  8. Molecular Diagnostics of Copper-Transporting Protein Mutations Allows Early Onset Individual Therapy of Menkes Disease.

    Science.gov (United States)

    Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P

    2017-01-01

    Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.

  9. The effect of antimony presence in anodic copper on kinetics and mechanism of anodic dissolution and cathodic deposition of copper

    Directory of Open Access Journals (Sweden)

    Stanković Z.D.

    2008-01-01

    Full Text Available The influence of the presence of Sb atoms, as foreign metal atoms in anode copper, on kinetics, and, on the mechanism of anodic dissolution and cathodic deposition of copper in acidic sulfate solution has been investigated. The galvanostatic single-pulse method has been used. Results indicate that presence of Sb atoms in anode copper increase the exchange current density as determined from the Tafel analysis of the electrode reaction. It is attributed to the increase of the crystal lattice parameter determined from XRD analysis of the electrode material.

  10. Mechanical properties of copper-lithium alloys produced by mechanic alloyed and hot extrusion

    International Nuclear Information System (INIS)

    Castillo B, Ricardo; Gorziglia S, Ezio; Penaloza V, Augusto

    2004-01-01

    In this work are presented the progress carried out on the characterization of some physical and mechanical properties, together with the determination of the micro mechanism of fracture of the Cu-2% wt Li, that was obtained by mechanical alloying followed hot extrusion at 500 o C and 700 o C. Hardness and tensile mechanical tests were performed together with metallographic and fractographic analysis. The experimental results obtained with powders of the Cu-Li alloy studied are compared with powder of pure copper, under similar test conditions. The results show that by hot extrusion was allowed to obtain very high densification levels for the materials under study. Moreover, it was found that lithium reduce both the tensile strength and elongation, of copper by a mechanism of embrittlement. The results are compares with the literature (au)

  11. SITE-94. CAMEO: A model of mass-transport limited general corrosion of copper canisters

    International Nuclear Information System (INIS)

    Worgan, K.J.; Apted, M.J.

    1996-12-01

    This report describes the technical basis for the CAMEO code, which models the general, uniform corrosion of a copper canister either by transport of corrodants to the canister, or by transport of corrosion products away from the canister. According to the current Swedish concept for final disposal of spent nuclear fuels, extremely long containment times are achieved by thick (60-100 mm) copper canisters. Each canister is surrounded by a compacted bentonite buffer, located in a saturated, crystalline rock at a depth of around 500 m below ground level. Three diffusive transport-limited cases are identified for general, uniform corrosion of copper: General corrosion rate-limited by diffusive mass-transport of sulphide to the canister surface under reducing conditions; General corrosion rate-limited by diffusive mass-transport of oxygen to the canister surface under mildly oxidizing conditions; General corrosion rate-limited by diffusive mass-transport of copper chloride away from the canister surface under highly oxidizing conditions. The CAMEO code includes general corrosion models for each of the above three processes. CAMEO is based on the well-tested CALIBRE code previously developed as a finite-difference, mass-transfer analysis code for the SKI to evaluate long-term radionuclide release and transport in the near-field. A series of scoping calculations for the general, uniform corrosion of a reference copper canister are presented

  12. Pitting corrosion of copper. An equilibrium - mass transport study

    International Nuclear Information System (INIS)

    Taxen, C.

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases

  13. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2002-08-01

    A mathematical model for the propagation of corrosion pits is described and used to calculate the potentials below which copper is immune to pitting. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles of 26 aqueous species from the bulk water outside a corrosion pit to the site of the metal dissolution. Precipitation of oxides and salts of copper is considered. Studied conditions include water compositions from tap waters to seawater at the temperatures 25 deg C and 75 deg C. Carbonate and sulphate are aggressive towards copper because of complex formation with divalent copper. Carbonate is less aggressive in a corrosion pit than outside at the pH of the bulk. Carbonate carries acidity out from the pit, favours oxide formation and may prevent the initiation of acidic corrosion pits. The concentration profiles are used to estimate the maximum propagation rates for a corrosion pit. A high potential is found to be the most important factor for the rate of propagation. The levels of potential copper can sustain, as corrosion potentials are discussed in terms of the stability of cuprous oxide as a cathode material for oxygen reduction relative to non-conducting cupric phases.

  14. Pitting corrosion of copper. An equilibrium - mass transport study

    Energy Technology Data Exchange (ETDEWEB)

    Taxen, C

    1996-11-01

    A mathematical model for the propagation of corrosion pits on copper is described. The model is used to predict the potentials below which copper is immune to pitting. The criteria used for immunity against pitting is that the volume of the cuprous oxide formed at the site of the metal oxidation at the bottom of a corrosion pit must be smaller than the volume of the oxidised metal. Equal volumes would give a complete coverage of the metal in a pit by adherent cuprous oxide and propagation would not be possible. For potentials where copper is not immune to pitting an estimate of the maximum growth rate is given. The model uses equilibrium data and diffusion coefficients and calculates the stationary concentration profiles from the bulk water outside a corrosion pit to the site of the metal dissolution at the bottom a corrosion pit. Precipitation of oxides as well as of basic salts of copper is considered. A total of 26 aqueous species are considered in waters with compositions ranging from those of tap waters to that of sea water. Calculations are made for the temperatures 25 deg C and 75 deg C. 38 refs, 60 figs, 17 tabs

  15. Copper transporters and chaperones CTR1, CTR2, ATOX1, and CCS as determinants of cisplatin sensitivity.

    Science.gov (United States)

    Bompiani, Kristin M; Tsai, Cheng-Yu; Achatz, Felix P; Liebig, Janika K; Howell, Stephen B

    2016-09-01

    The development of resistance to cisplatin (cDDP) is commonly accompanied by reduced drug uptake or increased efflux. Previous studies in yeast and murine embryonic fibroblasts have reported that the copper (Cu) transporters and chaperones participate in the uptake, efflux, and intracellular distribution of cDDP. However, there is conflicting data from studies in human cells. We used CRISPR-Cas9 genome editing to individually knock out the human copper transporters CTR1 and CTR2 and the copper chaperones ATOX1 and CCS. Isogenic knockout cell lines were generated in both human HEK-293T and ovarian carcinoma OVCAR8 cells. All knockout cell lines had slowed growth compared to parental cells, small changes in basal Cu levels, and varying sensitivities to Cu depending on the gene targeted. However, all of the knockouts demonstrated only modest 2 to 5-fold changes in cDDP sensitivity that did not differ from the range of sensitivities of 10 wild type clones grown from the same parental cell population. We conclude that, under basal conditions, loss of CTR1, CTR2, ATOX1, or CCS does not produce a change in cisplatin sensitivity that exceeds the variance found within the parental population, suggesting that they are not essential to the mechanism by which cDDP enters these cell lines and is transported to the nucleus.

  16. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    Science.gov (United States)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  17. Investigation of impingement attack mechanism of copper alloy condenser tubes

    Energy Technology Data Exchange (ETDEWEB)

    Fukumura, Takuya; Nakajima, Nobuo; Arioka, Koji; Totsuka, Nobuo; Nakagawa, Tomokazu [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    In order to investigate generation and growth mechanisms of impingement attacks of sea water against copper alloy condenser tubes used in condensers of nuclear power plants, we took out condenser tubes from actual condensers, cut them into several pieces and carried out several material tests mainly for impinged spots. In addition water flow inside of a pit was analyzed. From the results of the investigation, it was found that all of impingement attacks were found in the marks left by sessile organisms and none were found in downstream of the marks as frequently proposed so far. At the pits generated inside the marks, iron coating was striped and zinc content was deficient in some cases. Combining these data and the result of flow analysis, we considered the following mechanism of the impingement attacks: sessile organisms clinging to the surface of the condenser tube and growth, occlusion of the tube, extinction and decomposition of sessile organisms, pollution corrosion under the organisms and cavity formation, occlusion removal by the cleaning, generation of impingement attacks by flow collision inside the cavity, growth of the impingement attacks. (author)

  18. Dose dependence of microstructural evolution and mechanical properties of neutron irradiated copper and copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B N; Edwards, D J; Horsewell, A; Toft, P

    1995-09-01

    The present investigation of the effects of neutron irradiation on microstructures and mechanical properties of copper alloys is a part of the ITER (International Thermonuclear Experimental Reactor) programme. Tensile specimens of the candidate alloys Cu-Al{sub 2}O{sub 3}, CuCrZr and CuNiBe were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of 2.5 x 10{sup 17} n/m{sup 2}s (E > 1 MeV, i.e. a dose rate of {approx}5 x 10{sup -8} dpa/s) to fluences of 5 x 10{sup 22}, 5 x 10{sup 23} and 1 x 10{sup 24} n/m{sup 2} (E > 1 MeV, i.e. displacement doses of 0.01, 0.1 and 0.2 dpa) at 47 deg. C. The Cu-Al{sub 2}O{sub 3} (CuA125) specimens, were irradiated in the as-cold worked state. Tensile properties and Vickers hardness of both irradiated and unirradiated specimens were determined at 22 deg. C. Pre- and post-deformation microstructures of irradiated as well as unirradiated specimens were examined using a transmission electron microscope. The fractured surfaces of tensile tested specimens were investigated in a scanning electron microscope. The results show the following general trend: (a) that the CuNiBe alloy is stronger than CuCrZr as well as Cu Al{sub 2}O{sub 3}, (b) that even relatively low dose irradiations cause significant increase in the yield strength, but rather drastic decreases in the uniform elongation of CuCrZr and CuNiBe alloys and that the low dose irradiation of the cold-worked Cu-Al{sub 2}O{sub 3} alloy causes a decrease in the yield strength and an increase in the uniform elongation, at higher doses irradiation hardening occurs. The SEM examinations of the fractured surfaces demonstrate that both unirradiated and irradiated specimens fracture in a ductile manner. The lack of uniform elongation in the irradiated copper alloys may be understood in terms of difficulty in dislocation generation due to pinning of grown-in dislocation by defect clusters (loops) at or around them. (EG) 5 tabs., 18 ills., 13 refs.

  19. Dose dependence of microstructural evolution and mechanical properties of neutron irradiated copper and copper alloys

    International Nuclear Information System (INIS)

    Singh, B.N.; Edwards, D.J.; Horsewell, A.; Toft, P.

    1995-09-01

    The present investigation of the effects of neutron irradiation on microstructures and mechanical properties of copper alloys is a part of the ITER (International Thermonuclear Experimental Reactor) programme. Tensile specimens of the candidate alloys Cu-Al 2 O 3 , CuCrZr and CuNiBe were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of 2.5 x 10 17 n/m 2 s (E > 1 MeV, i.e. a dose rate of ∼5 x 10 -8 dpa/s) to fluences of 5 x 10 22 , 5 x 10 23 and 1 x 10 24 n/m 2 (E > 1 MeV, i.e. displacement doses of 0.01, 0.1 and 0.2 dpa) at 47 deg. C. The Cu-Al 2 O 3 (CuA125) specimens, were irradiated in the as-cold worked state. Tensile properties and Vickers hardness of both irradiated and unirradiated specimens were determined at 22 deg. C. Pre- and post-deformation microstructures of irradiated as well as unirradiated specimens were examined using a transmission electron microscope. The fractured surfaces of tensile tested specimens were investigated in a scanning electron microscope. The results show the following general trend: (a) that the CuNiBe alloy is stronger than CuCrZr as well as Cu Al 2 O 3 , (b) that even relatively low dose irradiations cause significant increase in the yield strength, but rather drastic decreases in the uniform elongation of CuCrZr and CuNiBe alloys and that the low dose irradiation of the cold-worked Cu-Al 2 O 3 alloy causes a decrease in the yield strength and an increase in the uniform elongation, at higher doses irradiation hardening occurs. The SEM examinations of the fractured surfaces demonstrate that both unirradiated and irradiated specimens fracture in a ductile manner. The lack of uniform elongation in the irradiated copper alloys may be understood in terms of difficulty in dislocation generation due to pinning of grown-in dislocation by defect clusters (loops) at or around them. (EG) 5 tabs., 18 ills., 13 refs

  20. Binding abilities of copper to phospholipids and transport of oxalate

    Czech Academy of Sciences Publication Activity Database

    Jaklová Dytrtová, Jana; Jakl, M.; Nováková, Kateřina; Navrátil, Tomáš; Šádek, Vojtěch

    2015-01-01

    Roč. 146, č. 5 (2015), s. 831-837 ISSN 0026-9247 R&D Projects: GA ČR GP13-21409P; GA ČR(CZ) GAP208/12/1645 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : copper cations * dipalmitoylphosphatidylcholine (lecithin) * ESI-MS * impedance spectroscopy * oxalic acid * voltammetry * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.131, year: 2015

  1. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis.

    Science.gov (United States)

    Boulet, Aren; Vest, Katherine E; Maynard, Margaret K; Gammon, Micah G; Russell, Antoinette C; Mathews, Alexander T; Cole, Shelbie E; Zhu, Xinyu; Phillips, Casey B; Kwong, Jennifer Q; Dodani, Sheel C; Leary, Scot C; Cobine, Paul A

    2018-02-09

    Copper is required for the activity of cytochrome c oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. SLC25A3 knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of PIC2 Additionally, assays in Lactococcus lactis and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both in vitro and in vivo . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Molecular Characterization of CTR-type Copper Transporters in an Oceanic Diatom, Thalassiosira oceanica 1005

    Science.gov (United States)

    Kong, L.; Price, N. M.

    2016-02-01

    Copper is an essential micronutrient for phytoplankton growth because of its role as a redox cofactor in electron transfer proteins in photosynthesis and respiration, and a potentially limiting resource in parts of the open sea. Thalassiosira oceanica 1005 can grow at inorganic copper concentrations varying from 10 fmol/L to 10 nmol/L by regulating copper uptake across plasma membrane. Four putative CTR-type copper transporter genes (ToCTR1, ToCTR2, ToCTR3.1 and ToCTR3.2) were identified by BLASTP search against the T. oceanica genome. Predicted gene models were revised by assembled mRNA sequencing transcripts and updated gene models contained all conserved features of characterized CTR-type copper transporters. ToCTR3.1 and ToCTR3.2 may arise from one another by gene duplication as they shared a sequence similarity of 97.6% with a peptide insertion of 5 amino acids at N-terminus of ToCTR3.1. The expression of ToCTR1, ToCTR2 and ToCTR3.1/3.2 was upregulated in low copper concentrations, but only ToCTR3.1/3.2 showed a significant increase (2.5 fold) in copper-starved cells. Both ToCTR3.1 and ToCTR3.2 restored growth of a yeast double mutant, Saccharomyces cerevisiae ctr1Δctr3Δ, in copper deficient medium. GFP-fused ToCTR expression showed that some ToCTR3.1 localized to the plasma membrane but a large portion was retained in the endoplasmic reticulum. Inefficient targeting of ToCTR3.1 to the yeast outer membrane may explain poorer growth compared to the Saccharomyces native ScCTR1 transformant. Thus, diatom CTR genes encoding CTR-type copper transporters show high-affinity copper uptake and their regulation may enable diatoms to survive in ocean environments containing a wide range of copper concentrations.

  3. High temperature mechanical properties of unirradiated dispersion strengthened copper

    International Nuclear Information System (INIS)

    Gentzbittel, J.M.; Rigollet, C.; Robert, G.

    1994-01-01

    Oxide Dispersion Strengthened (ODS) copper material, due to its excellent thermal conductivity associated with a high temperature strength is a candidate material for structural applications as divertor plasma facing components of thermonuclear fusion reactor. Tensile and creep results of oxide dispersion strengthened copper are presented. The most important features of ODS copper high temperature behaviour are the high strength corresponding to low creep rates, high stress creep rate dependence, a poor ductility and a brittleness which result in a premature creep fracture at high applied stress. (R.P.) 2 refs.; 6 figs

  4. Mechanical Integrity of Copper Canister Lid and Cylinder

    International Nuclear Information System (INIS)

    Karlsson, Marianne

    2002-01-01

    This report compiles finite element analyses performed to ensure the structural integrity of canisters used for storing of nuclear fuel waste of type BWR. The report comprises analyses performed on the canister lid and cylinder casing in order to determine static and long-term strength of the structure. The report analyses the mechanical response of the lid and flange of the copper canister when subjected to loads caused by pressure from swelling bentonite and from ground water at a depth of 500 meter. The loads acting on the canister are somewhat uncertain and the cases investigated in this report are possible cases. Load cases analysed are: Pressure 15 MPa uniformly distributed on lid and 5 MPa uniformly distributed on cylinder; Pressure 5 MPa uniformly distributed on lid and 15 MPa uniformly distributed on cylinder; Pressure 20 MPa uniformly distributed on lid and cylinder; Side pressures 10 MPa and 20 MPa uniformly distributed on part of the cylinder. Creep analyses are also performed in order to estimate the stresses that will arise when the canister is placed in the repository. The analyses in this report are recreated from the original analyses but the models differ in geometry. Also, there is no information in the original reports on material data, time-independent as well as creep data, and analysis procedure. The data used in the recreated analyses are based on information from References 2, 3, 6 and 7. The results presented in this report are based on the supplementary analyses. These results differ from the original results. Most likely this is due to differences in model geometry. The original results are appended to the report and are summarised for comparison with results from the supplementary analyses. Otherwise, these results are not further discussed. For all load cases, high tensile stresses are found in the lid fillet between the planar part and the flange. High tensile stresses are also found in the weld surface and on the outer side of the

  5. Redox mechanisms and superconductivity in layered copper oxides

    International Nuclear Information System (INIS)

    Raveau, B.; Michel, C.; Hervieu, M.; Provost, J.

    1992-01-01

    Redox reactions in high T c superconductors cuprates are complex and play an important role in superconductivity: oxygen non-stoichiometry is influencing the critical temperature, and rock salt layers interact with copper layers. 25 refs., 7 figs

  6. How historical copper contamination affects soil structure and mobilization and transport of colloids

    DEFF Research Database (Denmark)

    Paradelo, Marcos; Møldrup, Per; Holmstrup, Martin

    between 0.01 to 0.43 pore volumes, with longer times for the most contaminated point, likely related with its higher soil density and lower air permeability. The copper pollution affected colloid and tracer transport in the soil columns. The release of colloids especially in the most contaminated points...

  7. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant

  8. Application of Reactive Transport Modeling to Heap Bioleaching of Copper

    Science.gov (United States)

    Liu, W.

    2017-12-01

    Copper heap bioleaching is a complex industrial process that utilizes oxidative chemical leaching and microbial activities to extract copper from packed ore beds. Mathematical modelling is an effective tool for identifying key factors that determine the leaching performance. HeapSim is a modelling tool that incorporates all fundamental processes that occur in a heap under leach, such as the movement of leaching solution, chemical reaction kinetics, heat transfer, and microbial activities, to predict the leaching behavior of a heap. In this study, the HeapSim model was applied to simulate chalcocite heap bioleaching at Quebrada Blanca mine located in the Northern Chile. The main findings were that the model could be satisfactorily calibrated and validated to simulate chalcocite leaching. Heap temperature was sensitive to the changes in the raffinate temperature, raffinate flow rate, and the extent of pyrite oxidation. At high flow rates, heap temperature was controlled by the raffinate temperature. In contrast, heat removal by the raffinate solution flow was insignificant at low flow rates, leading to the accumulation of heat generated by pyrite reaction and therefore an increase in heap temperature.

  9. Mechanical and corrosion behaviors of developed copper-based metal matrix composites

    Science.gov (United States)

    Singh, Manvandra Kumar; Gautam, Rakesh Kumar; Prakash, Rajiv; Ji, Gopal

    2018-03-01

    This work investigates mechanical properties and corrosion resistances of cast copper-tungsten carbide (WC) metal matrix composites (MMCs). Copper matrix composites have been developed by stir casting technique. Different sizes of micro and nano particles of WC particles are utilized as reinforcement to prepare two copper-based composites, however, nano size of WC particles are prepared by high-energy ball milling. XRD (X-rays diffraction) characterize the materials for involvement of different phases. The mechanical behavior of composites has been studied by Vickers hardness test and compression test; while the corrosion behavior of developed composites is investigated by electrochemical impedance spectroscopy in 0.5 M H2SO4 solutions. The results show that hardness, compressive strength and corrosion resistance of copper matrix composites are very high in comparison to that of copper matrix, which attributed to the microstructural changes occurred during composite formation. SEM (Scanning electron microscopy) reveals the morphology of the corroded surfaces.

  10. New mechanical chemical equilibrium in the copper-zinc alloys obtained by mechanical alloying

    International Nuclear Information System (INIS)

    Dianez, M.J; Criado, J.M; Donoso, E; Diaz, G

    2006-01-01

    A series of copper zinc alloys have been synthesized in the entire composition range Cu10Zn to Cu70Zn respectively, by mechanical alloying at room temperature in a planetary high-energy mill. A mechanism is proposed for the mechanical alloying reaction of the copper and zinc. It is made clear that the mechanical treatment considerably extends the range of composition of the α phase up to a content of 41% zinc, instead of the 36% accepted by the conventional phase diagrams. Exact determinations of the phase α reticular parameter were carried out as a function of its composition which can be used to determine the zinc content of the brass α. The results show that a brass phase α may be obtained containing 49% zinc in samples that include a mixture of phases α and β' after reaching stationary state as a function of the milling time. The stability field of phases β' and γ also displace noticeably higher values than those expected from the conventional binary Cu-Zn diagram. This behavior has been explained as a function of the nanometric texture generated by the milling (CW)

  11. Effect of cold work and aging on mechanical properties of a copper ...

    Indian Academy of Sciences (India)

    Unknown

    Influence of cold working and aging on the mechanical properties of a ... toughness and ductility in various stages of cold work and aging may include high stress concentration at high ... copper is added to HSLA steels to cause precipitation.

  12. Feline hepatic biotransformation and transport mechanisms

    NARCIS (Netherlands)

    van Beusekom, C.D. van

    2015-01-01

    Hepatic biotransformation and drug transport mechanisms vary significantly between species. While these processes that determine largely the kinetic behavior of drugs have been studied abundantly in dogs, corresponding investigations in cats are hardly available, despite the increasing role of cats

  13. Mechanism for transporting used resin

    International Nuclear Information System (INIS)

    Sugimoto, Yoshikazu; Yusa, Hideo; Kamiya, Kunio.

    1975-01-01

    Object: In the operation of a light water reactor type atomic power plant, to permit transport and reuse of used ion exchange resin used for the filtering or cleaning of cooling water or the desalting of radioactive exhaust liquid through an ejector. Structure: Used ion exchange resin within a desalter having high radioactivity is withdrawn through the action of an ejector and led to a solid-liquid separator for separation into used resin and water. The separated resin is directly collected in a storage tank while the separated water is forced through a circulating pump to a gas-liquid separator for separation into gas having radioactivity and water. The separated gas is led to a radioactive gas treatment station while the water deprived of the gas is recirculated by a drive water pump for repeated use. (Kamimura, M.)

  14. Mechanism for transporting used resin

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Yusa, H; Kamiya, K

    1975-01-16

    In the operation of a light water reactor type atomic power plant the objectives is to permit transport and reuse of used ion exchange resin used for the filtering or cleaning of cooling water or the desalting of radioactive exhaust liquid through an ejector. Used ion exchange resin within a desalter having high radioactivity is withdrawn through the action of an ejector and led to a solid-liquid separator for separation into used resin and water. The separated resin is directly collected in a storage tank while the separated water is forced through a circulating pump to a gas-liquid separator for separation into gas having radioactivity and water. The separated gas is led to a radioactive gas treatment station while the water deprived of the gas is recirculated by a drive water pump for repeated use.

  15. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  16. New trends in mechanics and transport

    CERN Document Server

    Uhl, Tadeusz

    2007-01-01

    Nowadays, one of the most rapidly growing sectors of industry is that of the infrastructure and vehicles of transportation systems. This discipline needs new, innovative and economically proven initiatives.The domain of transport is an interdisciplinary one which brings together many different scientific and engineering strands. The synergy between mechanics and transportation science offers the possibility of finding new and effective solutions to design, manufacturing and servicing problems. Due to globalization of the market-place, international cooperation in applied research is very fruitful and expedient.This collection of 13 refereed papers is the result of a unique opportunity offered to the scientific and technical communities for them to interact and to consolidate the application of current achievements in mechanical science as applied to transport. It covers topics which include theoretical, numerical and experimental studies of transport-related areas. All-in-all, it represents a succinct state-o...

  17. Investigation of mechanical behavior of copper in Nb3Sn superconducting composite wire

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Nakamura, M.; Tanaka, M.; Adachi, T.; Ochiai, S.; Miyashita, K.

    2004-01-01

    The mechanical properties and the thermal residual stress distribution of copper in Nb 3 Sn/Cu composite superconductor were investigated in detail. The stabilizer copper was removed from the composite wire, and the stress-strain behavior of this wire was compared with that of the original composite wire. The subtraction yielded the stress-strain curves of the copper when the Bauschinger effect was taken into account. The tensile test of the composites from which about 30% and 60% of copper was removed suggested the existence of the distribution of the thermal residual stress in the stabilizer copper. When this factor was taken into account, the analytical stress-strain curve agreed well with the experimental stress-strain curve. Thus, the stress-stain behavior of each component was fully understood

  18. Leaching behaviour and mechanical properties of copper flotation waste in stabilized/solidified products.

    Science.gov (United States)

    Mesci, Başak; Coruh, Semra; Ergun, Osman Nuri

    2009-02-01

    This research describes the investigation of a cement-based solidification/stabilization process for the safe disposal of copper flotation waste and the effect on cement properties of the addition of copper flotation waste (CW) and clinoptilolite (C). In addition to the reference mixture, 17 different mixtures were prepared using different proportions of CW and C. Physical properties such as setting time, specific surface area and compressive strength were determined and compared to a reference mixture and Turkish standards (TS). Different mixtures with the copper flotation waste portion ranging from 2.5 to 12.5% by weight of the mixture were tested for copper leachability. The results show that as cement replacement materials especially clinoptilolite had clear effects on the mechanical properties. Substitution of 5% copper flotation waste for Portland cement gave a similar strength performance to the reference mixture. Higher copper flotation waste addition such as 12.5% replacement yielded lower strength values. As a result, copper flotation waste and clinoptilolite can be used as cementitious materials, and copper flotation waste also can be safely stabilized/solidified in a cement-based solidification/stabilization system.

  19. Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand

    Science.gov (United States)

    Saturated packed column experiments were conducted to investigate the facilitated transport of Cu with hydroxyapatite nanoparticles (nHAP) at different pore water velocities (0.22-2.2 cm min–1), solution pH (6.2-9.0), and fraction of Fe oxide coating on grain surfaces (', 0-0.36). The facilitated tr...

  20. Spontaneous and Directional Bubble Transport on Porous Copper Wires with Complex Shapes in Aqueous Media.

    Science.gov (United States)

    Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei

    2018-01-24

    Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.

  1. A preliminary study on coloring mechanism of Jun copper red glaze

    International Nuclear Information System (INIS)

    Tian Shibing; Liu Yuzhen; Zhang Maolin; Wang Lihua; Wang Cangsui; Xie Yaning

    2009-01-01

    The origin of a red color glazes decorated on the ancient Jun porcelain has been attributed to the presence of combined copper clusters and cuprous oxide, or cuprous oxide alone. For better understanding of the color-forming mechanism, X-ray absorption at the Cu-edge by the red area of a Jun porcelain shard was carried out. By comparing the XANFS spectra of the sample with metal copper and cubic Cu 2 O, we found that the spectra of the red layer of sample were similar to the spectrum combination of 37% Cu 2 O and 63% metal copper,while the spectra from surface of the red spot mainly resembled that of cubic Cu 2 O. The EXAFS results showed that monovalence copper cations were isolated in the glaze matrix, and copper atoms were formed to metallic copper clusters or mutimers dominantly distributed in the inner layer. These can be responsible to the optical properties of the red decoration with the presence of colloidal composition containing copper particles and the Cu + ions. In conclusion, a preliminary non-destructive elemental analysis using synchrotron radiation-induce X-ray fluorescence (SR-XRF) is demonstrated, and mechanism about the formation of the complicated structures is discussed. (authors)

  2. Mechanism of cutting edge chipping and its suppression in diamond turning of copper

    International Nuclear Information System (INIS)

    Shimada, Shoichi; Higuchi, Masahiro; Kaneeda, Toshiaki; Higashi, Yasuo; Yokomizo, Seiichi

    2005-01-01

    This paper investigates the mechanism of cutting edge chipping in diamond turning of copper in terms of the change in Hertzian strength of diamond specimens subjected to thermal histories. The study suggests that the strength of diamond decreases as the result of the propagation of existing surface micro cracks caused by the thermo-chemical erosion of oxygen at the crack tips. The catalytic reaction involving copper is also shown to accelerate the crack propagation. Then, a cutting technique of reduced oxygen atmosphere is proposed to suppress the cutting edge chipping in diamond turning of copper over an extended cutting time. (author)

  3. Mechanical Behavior and Fracture Properties of NiAl Intermetallic Alloy with Different Copper Contents

    Directory of Open Access Journals (Sweden)

    Tao-Hsing Chen

    2016-03-01

    Full Text Available The deformation behavior and fracture characteristics of NiAl intermetallic alloy containing 5~7 at% Cu are investigated at room temperature under strain rates ranging from 1 × 10−3 to 5 × 103 s−1. It is shown that the copper contents and strain rate both have a significant effect on the mechanical behavior of the NiAl alloy. Specifically, the flow stress increases with an increasing copper content and strain rate. Moreover, the ductility also improves as the copper content increases. The change in the mechanical response and fracture behavior of the NiAl alloy given a higher copper content is thought to be the result of the precipitation of β-phase (Ni,CuAl and γ'-phase (Ni,Cu3Al in the NiAl matrix.

  4. Copper tolerance mediated by polyphosphate degradation and low-affinity inorganic phosphate transport system in Escherichia coli.

    Science.gov (United States)

    Grillo-Puertas, Mariana; Schurig-Briccio, Lici Ariane; Rodríguez-Montelongo, Luisa; Rintoul, María Regina; Rapisarda, Viviana Andrea

    2014-03-19

    Metal tolerance in bacteria has been related to polyP in a model in which heavy metals stimulate the polymer hydrolysis, forming metal-phosphate complexes that are exported. As previously described in our laboratory, Escherichia coli cells grown in media containing a phosphate concentration >37 mM maintained an unusually high polyphosphate (polyP) level in stationary phase. The aim of the present work was to evaluate the influence of polyP levels as the involvement of low-affinity inorganic phosphate transport (Pit) system in E. coli copper tolerance. PolyP levels were modulated by the media phosphate concentration and/or using mutants in polyP metabolism. Stationary phase wild-type cells grown in high phosphate medium were significantly more tolerant to copper than those grown in sufficient phosphate medium. Copper addition to tolerant cells induced polyP degradation by PPX (an exopolyphosphatase), phosphate efflux and membrane polarization. ppk-ppx- (unable to synthesize/degrade polyP), ppx- (unable to degrade polyP) and Pit system mutants were highly sensitive to metal even in high phosphate media. In exponential phase, CopA and polyP-Pit system would act simultaneously to detoxify the metal or one could be sufficient to safeguard the absence of the other. Our results support a mechanism for copper detoxification in exponential and stationary phases of E. coli, involving Pit system and degradation of polyP. Data reflect the importance of the environmental phosphate concentration in the regulation of the microbial physiological state.

  5. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    Science.gov (United States)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  6. [Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver and cisplatin].

    Science.gov (United States)

    Skvortsov, A N; Zatulovskiĭ, E A; Puchkova, L V

    2012-01-01

    It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present there is no rational explanation how CTR1 can transfer platinum group, which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand this phenomenon we analyzed 25 sequences of chordate CTR1 proteins, and found out conserved patterns of organization of N-terminal extracellular part of CTR1 which correspond to initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that relative position of Met- and His-rich copper-binding motifs in CTR1 predisposes the extracellular CTR1 part to binding of copper, silver and cisplatin. Relation between tissue-specific expression of CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo was analyzed. Significant positive but incomplete correlation exists between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested, which avoids the disagreement between CTR1-mediated cisplatin transport in vitro, and irreversible binding of platinum to Met-rich peptides.

  7. Mechanical Properties of Copper Processed by Equal Channel Angular Pressing

    Science.gov (United States)

    Sülleiová, K.; Ballóková, B.; Besterci, M.; Kvačkaj, T.

    2017-12-01

    The development of the nanostructure in commercial pure copper and the strength and ductility after severe plastic deformation (SPD) with the technology of equal channel angular pressing (ECAP) are analysed. Experimental results and analyses showed that both strength and ductility can be increased simultaneously by SPD. The final grain size decreased from the initial 50μm by SPD to 100-300 nm after 10 passes. An increase of the ductility together with an increase of strength caused by SPD are explained by a strong grain refinement and by a dynamic equilibrium of weakening and strengthening, and it is visible on the final static tensile test stress-strain charts.

  8. [Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].

    Science.gov (United States)

    Gao, Yanhui; Zhao, Tiantao; Xing, Zhilin; He, Zhi; Zhang, Lijie; Peng, Xuya

    2016-05-25

    We isolated and enriched mixed microorganisms SWA1 from landfill cover soils supplemented with trichloroethylene (TCE). The microbial mixture could degrade TCE effectively under aerobic conditions. Then, we investigated the effect of copper ion (0 to 15 μmol/L) on TCE biodegradation. Results show that the maximum TCE degradation speed was 29.60 nmol/min with 95.75% degradation when copper ion was at 0.03 μmol/L. In addition, genes encoding key enzymes during biodegradation were analyzed by Real-time quantitative reverse transcription PCR (RT-qPCR). The relative expression abundance of pmoA gene (4.22E-03) and mmoX gene (9.30E-06) was the highest when copper ion was at 0.03 μmol/L. Finally, we also used MiSeq pyrosequencing to investigate the diversity of microbial community. Methylocystaceae that can co-metabolic degrade TCE were the dominant microorganisms; other microorganisms with the function of direct oxidation of TCE were also included in SWA1 and the microbial diversity decreased significantly along with increasing of copper ion concentration. Based on the above results, variation of copper ion concentration affected the composition of SWA1 and degradation mechanism of TCE. The degradation mechanism of TCE included co-metabolism degradation of methanotrophs and oxidation metabolism directly at copper ion of 0.03 μmol/L. When copper ion at 5 μmol/L (biodegradation was 84.75%), the degradation mechanism of TCE included direct-degradation and co-metabolism degradation of methanotrophs and microorganisms containing phenol hydroxylase. Therefore, biodegradation of TCE by microorganisms was a complicated process, the degradation mechanism included co-metabolism degradation of methanotrophs and bio-oxidation of non-methanotrophs.

  9. The influence of mechanical activation of chalcopyrite on the selective leaching of copper by sulphuric acid

    Directory of Open Access Journals (Sweden)

    Achimovičová, M.

    2006-01-01

    Full Text Available In this paper chalcopyrite, CuFeS2, has been selective leached by H2SO4 as leaching agent (170 g/dm3 in procedure of hydrometallurgical production of copper. Mechanical activation of the chalcopyrite resulted in mechanochemical surface oxidation as well as in the mineral surface and bulk disordering. Furthermore, the formation of agglomerates during grinding was also occured. Surface changes of the samples using infrared spectroscopy and scanning electron microscopy methods were investigated before and after leaching. The leaching rate, specific surface area, structural disorder as well as copper extraction increased with the mechanical activation of mineral.

  10. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys.

    Science.gov (United States)

    Liu, R; Zhang, Z J; Li, L L; An, X H; Zhang, Z F

    2015-04-01

    In this study, the concept of "twinning induced plasticity (TWIP) alloys" is broadened, and the underlying intrinsic microscopic mechanisms of the general TWIP effect are intensively explored. For the first aspect, "TWIP copper alloys" was proposed following the concept of "TWIP steels", as they share essentially the same strengthening and toughening mechanisms. For the second aspect, three intrinsic features of twinning: i.e. "dynamic development", "planarity", as well as "orientation selectivity" were derived from the detailed exploration of the deformation behavior in TWIP copper alloys. These features can be considered the microscopic essences of the general "TWIP effect". Moreover, the effective cooperation between deformation twinning and dislocation slipping in TWIP copper alloys leads to a desirable tendency: the synchronous improvement of strength and plasticity (SISP). This breakthrough against the traditional trade-off relationship, achieved by the general "TWIP effect", may provide useful strategies for designing high-performance engineering materials.

  11. Heat treatment effect on the mechanical properties of industrial drawn copper wires

    International Nuclear Information System (INIS)

    Beribeche, Abdellatif; Boumerzoug, Zakaria; Ji, Vincent

    2013-01-01

    In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by tensile tests. The effect of prior heat treatments at 500°C on the drawn wires behavior was the main goal of this investigation. We have found that the mechanical behavior of drawn wires depends strongly on those treatments. SEM observations of the wire cross section after tensile tests have shown that the mechanism of rupture was mainly controlled by the void formation

  12. Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode

    Energy Technology Data Exchange (ETDEWEB)

    Majidi, M.R. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 29th Bahman Bolvard, Tabriz 51664 (Iran, Islamic Republic of)], E-mail: sr.majidi@gmail.com; Asadpour-Zeynali, K.; Hafezi, B. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, 29th Bahman Bolvard, Tabriz 51664 (Iran, Islamic Republic of)

    2009-01-01

    The reaction and nucleation mechanism of copper electrodeposition on disposable pencil graphite electrode (PGE) in acidic sulphate solution were investigated using cyclic voltammetry (CV) and chronoamperometry (CA) techniques, respectively. Electrochemical experiments were followed by morphological studies with scanning electron microscopy (SEM). The effect of some experimental parameters, namely copper concentration, pH, scan rate, background electrolyte, deposition potential, and conditioning surface of the electrode were described. At the surface of PGE, Cu{sup 2+} ions were reduced at -250 mV vs. SCE. It was found that electrodeposition of copper is affected by rough surface of PGE. The nucleation mechanisms were examined by fitting the experimental CA data into Scharifker-Hills nucleation models. The nuclei population densities were also determined by means of two common fitting models developed for three-dimensional nucleation and growth (Scharifker-Mostany and Mirkin-Nilov-Herrman-Tarallo). It was found that deposition potential and background electrolyte affect the distribution of the deposited copper. The morphology of the deposited copper is affected by background electrolyte.

  13. Copper Complexes with Tetradentate Ligands for Enhanced Charge Transport in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Hannes Michaels

    2018-05-01

    Full Text Available In dye-sensitized solar cells (DSCs, the redox mediator is responsible for the regeneration of the oxidized dye and for the hole transport towards the cathode. Here, we introduce new copper complexes with tetradentate 6,6′-bis(4-(S-isopropyl-2-oxazolinyl-2,2′-bipyridine ligands, Cu(oxabpy, as redox mediators. Copper coordination complexes with a square-planar geometry show low reorganization energies and thus introduce smaller losses in photovoltage. Slow recombination kinetics of excited electrons between the TiO2 and CuII(oxabpy species lead to an exceptionally long electron lifetime, a high Fermi level in the TiO2, and a high photovoltage of 920 mV with photocurrents of 10 mA∙cm−2 and 6.2% power conversion efficiency. Meanwhile, a large driving force remains for the dye regeneration of the Y123 dye with high efficiencies. The square-planar Cu(oxabpy complexes yield viscous gel-like solutions. The unique charge transport characteristics are attributed to a superposition of diffusion and electronic conduction. An enhancement in charge transport performance of 70% despite the higher viscosity is observed upon comparison of Cu(oxabpy to the previously reported Cu(tmby2 redox electrolyte.

  14. Studies on transport properties of copper doped tungsten diselenide single crystals

    Science.gov (United States)

    Deshpande, M. P.; Parmar, M. N.; Pandya, Nilesh N.; Chaki, Sunil; Bhatt, Sandip V.

    2012-02-01

    During recent years, transition metal dichalcogenides of groups IVB, VB and VIB have received considerable attention because of the great diversity in their transport properties. 2H-WSe 2 (Tungsten diselenide) is an interesting member of the transition metal dichalcogenide (TMDC's) family and known to be a semiconductor useful for photovoltaic and optoelectronic applications. The anisotropy usually observed in this diamagnetic semiconductor material is a result of the sandwich structure of Se-W-Se layers interacting with each other, loosely bonded by the weak Van der Waals forces. Recent efforts in studying the influence of the anisotropic electrical and optical properties of this layered-type transition metal dichalcogenides have been implemented by doping the samples with different alkali group elements. Unfortunately, little work is reported on doping of metals in WSe 2. Therefore, it is proposed in this work to carry out a systematic growth of single crystals of WSe 2 by doping it with copper in different proportions i.e. Cu xWSe 2 ( x=0, 0.5, 1.0) by direct vapour transport technique. Transport properties like low and high temperature resistivity measurements, high pressure resistivity, Seebeck coefficient measurements at low temperature and Hall Effect at room temperature were studied in detail on all these samples. These measurements show that tungsten diselenide single crystals are p-type whereas doped with copper makes it n-type in nature. The results obtained and their implications are discussed in this paper.

  15. Investigation of peptide based surface functionalization for copper ions detection using an ultrasensitive mechanical microresonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Fischer, Lee MacKenzie; Rasmussen, Jakob Lyager

    2011-01-01

    In the framework of developing a portable label-free sensor for multi arrayed detection of heavy metals in drinking water, we present a mechanical resonator-based copper ions sensor, which uses a recently synthesized peptide Cysteine–Glycine–Glycine–Histidine (CGGH) and the l-Cysteine (Cys) peptide...

  16. Mechanical properties of copper processed by Equal Channel Angular Pressing - a review

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Collini, L.

    -, č. 19 (2012), s. 61-75 ISSN 1971-8993 R&D Projects: GA ČR GAP108/10/2001 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained structure * equal channel angular pressing * copper * fatigue Subject RIV: JL - Materials Fatigue , Friction Mechanics

  17. Investigation of the Hydroxylation Mechanism of Noncoupled Copper Oxygenases by Ab Initio Molecular Dynamics Simulations

    Czech Academy of Sciences Publication Activity Database

    Meliá, C.; Ferrer, S.; Řezáč, Jan; Parisel, O.; Reinaud, O.; Moliner, V.; de la Lande, A.

    2013-01-01

    Roč. 19, č. 51 (2013), s. 17328-17337 ISSN 0947-6539 Institutional support: RVO:61388963 Keywords : ab initio calculations * copper * electron transfer * enzymes * molecular dynamics * reaction mechanisms Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  18. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  19. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo.

    Science.gov (United States)

    Sankova, Tatiana P; Orlov, Iurii A; Saveliev, Andrey N; Kirilenko, Demid A; Babich, Polina S; Brunkov, Pavel N; Puchkova, Ludmila V

    2017-11-03

    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell's copper metabolism and its chelating properties are discussed.

  20. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1, Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana P. Sankova

    2017-11-01

    Full Text Available There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST and the N-terminal domain (ectodomain of human high affinity copper transporter CTR1 (hNdCTR1, which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed.

  1. Mechanical properties of low temperature proton irradiated single crystal copper

    International Nuclear Information System (INIS)

    Schildcrout, M.

    1975-01-01

    Single crystal copper samples, of varying degrees of cold work, were irradiated near either liquid helium or liquid nitrogen temperature by 10.1-MeV protons. The internal friction and dynamic Young's modulus were observed as a function of either temperature or integrated proton flux. The primary effect of irradiation was to produce dislocation pinning. The initial pinning rate was found to be very sensitive to cold work. During irradiation it was found that heavily cold worked samples (25 percent compression) exhibited, almost exclusively, exponential pinning given by Y = e/sup --lambda phi/. This is attributed to the immobilization, rather than shortening, of loop lengths and is characterized by the pinning constant lambda. Exponential pinning was also found, to a smaller degree, in less heavily cold worked samples. Cold work appears to reduce the ''effective volume'' within which the defect clusters produced by irradiation, can immobilize dislocation segments. The bulk effect was observed after dislocation pinning was completed. Expressed in terms of the fractional change in Young's modulus per unit concentration of irradiation induced defects, it was measured at liquid helium temperature to be --18.5 +- 3. An anelastic process occurring near 10 0 K for low kHz frequencies and due to stress-induced ordering of point defects produced by irradiation has also been studied. The peak height per unit fluence was found to decrease with increasing cold work. The peak was not observed in samples compressed 25 percent. For the most carefully handled sample the activation energy was (1.28 +- 0.05) x 10 -2 eV, the attempt frequency was 10/sup 11.6 +- .8/ s -1 , the shape factor was 0.20, and the half width of the peak was 11 percent larger than the theoretical value calculated from the Debye equation for a single relaxation process

  2. The Mitochondrial Metallochaperone SCO1 Is Required to Sustain Expression of the High-Affinity Copper Transporter CTR1 and Preserve Copper Homeostasis

    Directory of Open Access Journals (Sweden)

    Christopher J. Hlynialuk

    2015-02-01

    Full Text Available Human SCO1 fulfills essential roles in cytochrome c oxidase (COX assembly and the regulation of copper (Cu homeostasis, yet it remains unclear why pathogenic mutations in this gene cause such clinically heterogeneous forms of disease. Here, we establish a Sco1 mouse model of human disease and show that ablation of Sco1 expression in the liver is lethal owing to severe COX and Cu deficiencies. We further demonstrate that the Cu deficiency is explained by a functional connection between SCO1 and CTR1, the high-affinity transporter that imports Cu into the cell. CTR1 is rapidly degraded in the absence of SCO1 protein, and we show that its levels are restored in Sco1−/− mouse embryonic fibroblasts upon inhibition of the proteasome. These data suggest that mitochondrial signaling through SCO1 provides a post-translational mechanism to regulate CTR1-dependent Cu import into the cell, and they further underpin the importance of mitochondria in cellular Cu homeostasis.

  3. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  4. Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond

    Science.gov (United States)

    Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.

    2006-05-01

    Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.

  5. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ying [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Bradley, Donal D. C.; Anthopoulos, Thomas D., E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Vourlias, George; Patsalas, Panos A. [Department of Physics, Laboratory of Applied Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2015-06-15

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  6. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    International Nuclear Information System (INIS)

    Peng, Ying; Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Bradley, Donal D. C.; Anthopoulos, Thomas D.; Vourlias, George; Patsalas, Panos A.; He, Zhiqun

    2015-01-01

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices

  7. Deformation mechanisms in nanotwinned copper by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Su, Lihong [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Zhan, Lihua [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2017-02-27

    Nanotwinned materials exhibit simultaneous ultrahigh strength and high ductility which is attributed to the interactions between dislocations and twin boundaries but the specific deformation mechanisms are rarely seen in experiments at the atomic level. Here we use large scale molecular dynamics simulations to explore this intricate interplay during the plastic deformation of nanotwinned Cu. We demonstrate that the dominant deformation mechanism transits dynamically from slip transfer to twin boundary migration to slip-twin interactions as the twin boundary orientation changes from horizontal to slant, and then to a vertical direction. Building on the fundamental physics of dislocation processes from computer simulations and combining the available experimental investigations, we unravel the underlying deformation mechanisms for nanotwinned Cu, incorporating all three distinct dislocation processes. Our results give insights into systematically engineering the nanoscale twins to fabricate nanotwinned metals or alloys that have high strength and considerable ductility.

  8. Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser

    International Nuclear Information System (INIS)

    Ye, Y.X.; Feng, Y.Y.; Lian, Z.C.; Hua, Y.Q.

    2014-01-01

    Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond (fs) laser has been characterized through optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experiments of ns laser shocking copper (Cu) and fs laser shocking aluminum (Al) were also conducted for comparison. Dislocations arranged in multiple forms, profuse twins and stacking faults (SFs) coexist in the fs laser shocked copper. At small strain condition, dislocation slip is the dominant deformation mode and small amount of SFs act as complementary mechanism. With strain increasing, profuse twins and SFs form to accommodate the plastic deformation. Furthermore, new formed SFs incline to locate around the old ones because the dislocation densities there are more higher. So there is a high probability for new SFs overlapping on old ones to form twins, or connecting old ones to lengthen them, which eventually produce the phenomena that twins connect with each other or twins connect with SFs. Strain greatly influences the dislocation density. Twins and SFs are more dependent on strain rate and shock pressure. Medium stacking fault energy (SFE) of copper helps to extend partial dislocations and provides sources for forming SFs and twins.

  9. Strengthening mechanisms and dislocation processes in <111> textured nanotwinned copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xing [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China); Lu, Cheng, E-mail: chenglu@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Tieu, Anh Kiet; Pei, Linqing; Zhang, Liang; Cheng, Kuiyu [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Huang, Minghui [State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083 (China)

    2016-10-31

    We use molecular dynamics simulations to elucidate the deformation mechanisms of <111> textured nanotwinned materials under tensile loading parallel to the twin boundary (TB). Our simulations reveal that the tensile strength of nanotwinned Cu increases monotonically as the twin spacing decreases. The strengthening effect mainly results from TB restricting the transmission of dislocations across the TB. Throughout the simulations the transmissions of dislocations across the TBs dominate the plastic deformation. Both direct and indirect transmissions are identified at atomic level. Direct transmission involves either successive transmission of the leading and trailing partials as in the Fleischer cross-slip model or absorption and desorption of the extended dislocation as in the Friedel-Escaig cross-slip mechanism. In contrast, indirect transmission involves the formation of special superjogs. The persistent slip transfer leaves zigzag slip traces on the cross-sectional view and the inhomogeneous deformation leads to the formation of intersecting slip bands on the plane view.

  10. A random-sequential mechanism for nitrite binding and active site reduction in copper-containing nitrite reductase

    NARCIS (Netherlands)

    Wijma, HJ; Jeuken, LJC; Verbeet, MP; Armstrong, FA; Canters, GW

    2006-01-01

    The homotrimeric copper-containing nitrite reductase ( NiR) contains one type-1 and one type-2 copper center per monomer. Electrons enter through the type-1 site and are shuttled to the type-2 site where nitrite is reduced to nitric oxide. To investigate the catalytic mechanism of NiR the effects of

  11. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hwan [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of); Choi, Yu-ri; Kim, Kwang-Mahn [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, University of Yonsei, Seoul (Korea, Republic of); Choi, Se-Young, E-mail: sychoi@yonsei.ac.kr [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of)

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 Degree-Sign C and 250 Degree-Sign C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm{sup 2} which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  12. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.nunes@ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Livramento, V. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Mateus, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Correia, J.B. [LNEG, Estrada do Paco do Lumiar, 1649-038 Lisboa (Portugal); Alves, L.C. [ITN, Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal); Vilarigues, M. [Departamento de Conservacao e Restauro e R and D Unit Vidro e da Ceramica Para as Artes, FCT-UNL, Quinta da Torre, 2829-516 Caparica (Portugal); Carvalho, P.A. [ICEMS, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Bioengenharia, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2011-11-15

    Highlights: {yields} The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. {yields} Preservation of nD crystalline structure during high-energy milling was demonstrated. {yields} Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. {yields} Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. {yields} Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  13. Mechanical synthesis of copper-carbon nanocomposites: Structural changes, strengthening and thermal stabilization

    International Nuclear Information System (INIS)

    Nunes, D.; Livramento, V.; Mateus, R.; Correia, J.B.; Alves, L.C.; Vilarigues, M.; Carvalho, P.A.

    2011-01-01

    Highlights: → The study characterized Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites. → Preservation of nD crystalline structure during high-energy milling was demonstrated. → Higher refinement of matrix in Cu-nD comparing to Cu-G is due to a milling mechanism. → Remarkable thermal stability and microhardness have been achieved in Cu-nD and Cu-G. → Strengthening resulted mainly from grain refinement and second-phase reinforcement. - Abstract: Processing of copper-carbon nanocomposites by mechanical synthesis poses specific challenges as carbon phases are prone to amorphization and exhibit an intrinsically difficult bonding with copper. The present work investigates Cu-nanodiamond (Cu-nD) and Cu-graphite (Cu-G) composites produced by mechanical synthesis and subsequent heat treatments. Transmission electron microscopy observations showed homogeneous particle distributions and intimate bonding between the metallic matrix and the carbon phases. Ring diffraction patterns of chemically extracted carbon phases demonstrated that milled nanodiamond preserved crystallinity, while an essentially amorphous nature could be inferred for milled graphite. Raman spectra confirmed that nanodiamond particles remained essentially unaffected by the mechanical synthesis, whereas the bands of milled graphite were significantly changed into the typical amorphous carbon fingerprint. Particle-induced X-ray emission spectroscopy showed that the total contamination originating from the milling media remained below 0.7 wt.%. The Cu-nanodiamond composite exhibited remarkable microhardness and microstructural thermal stability when compared with pure nanostructured copper.

  14. Comparison of interaction mechanisms of copper phthalocyanine and nickel phthalocyanine thin films with chemical vapours

    Science.gov (United States)

    Ridhi, R.; Singh, Sukhdeep; Saini, G. S. S.; Tripathi, S. K.

    2018-04-01

    The present study deals with comparing interaction mechanisms of copper phthalocyanine and nickel phthalocyanine with versatile chemical vapours: reducing, stable aromatic and oxidizing vapours namely; diethylamine, benzene and bromine. The variation in electrical current of phthalocyanines with exposure of chemical vapours is used as the detection parameter for studying interaction behaviour. Nickel phthalocyanine is found to exhibit anomalous behaviour after exposure of reducing vapour diethylamine due to alteration in its spectroscopic transitions and magnetic states. The observed sensitivities of copper phthalocyanine and nickel phthalcyanine films are different in spite of their similar bond numbers, indicating significant role of central metal atom in interaction mechanism. The variations in electronic transition levels after vapours exposure, studied using UV-Visible spectroscopy confirmed our electrical sensing results. Bromine exposure leads to significant changes in vibrational bands of metal phthalocyanines as compared to other vapours.

  15. A complete absorption mechanism of stacking fault tetrahedron by screw dislocation in copper

    International Nuclear Information System (INIS)

    Fan, Haidong; Wang, Qingyuan

    2013-01-01

    It was frequently observed in experiments that stacking fault tetrahedron (SFT) can be completely absorbed by dislocation and generate defect-free channels in irradiated materials, but the mechanism is still open. In this paper, molecular dynamics (MD) was used to explore the dislocation mechanism of reaction between SFT and screw dislocation in copper. Our computational results reveal that, at high temperature, the SFT is completely absorbed by screw dislocation with the help of Lomer–Cottrell (LC) lock transforming into Lomer dislocation. This complete absorption mechanism is very helpful to understand the defect-free channels in irradiated materials

  16. Microstructure formations in copper-silicon carbide composites during mechanical alloying in a planetary activator

    Energy Technology Data Exchange (ETDEWEB)

    Kudashov, D.V.; Aksenov, A.A.; Portnoy, V.K.; Zolotorevskii, V.S. [Moscow State Inst. of Steel and Alloys, Moscow (Russian Federation). Dept. of Physical Metallurgy of Non-ferrous Metals; Klemm, V.; Martin, U.; Oettel, H. [Technical Univ., Freiberg (Germany). Inst. of Physical Metallurgy

    2000-12-01

    In the present paper the structure formation process of the powder metallurgical produced copper composite materials was studied. The volume part of the reinforcing SiC particles was varied from 5 to 25 wt.-%. It was discovered that while milling in a planetary activator first of all a ''puff- pastry'' structure appeared. There are important differences between this structure formation process and other known processes of milling. The homogeneous distribution of SiC particles was obtained after 60-100 minutes of treatment in ''Gefest11-3'' planetary activator. Phase composition of the powder and composite samples at the interface SiC/Cu (particles/matrix) was analysed after consolidation of the powder mixture and after the high temperature annealing. It was still determined that not only pure copper powder can be as a starting material for Cu-composites production used, but also the wastes of copper mechanical treatment, for instance, copper shaving. (orig.)

  17. Microstructures and formation mechanism of W–Cu composite coatings on copper substrate prepared by mechanical alloying method

    International Nuclear Information System (INIS)

    Meng, Yunfei; Shen, Yifu; Chen, Cheng; Li, Yongcan; Feng, Xiaomei

    2013-01-01

    In the present work, high-energy mechanical alloying (MA) method was applied to prepare tungsten–copper composite coatings on pure copper surface using a planetary ball mill. During mechanical alloying process, grains on the surface layer of substrate were refined and the substrate surface was activated as a result of repeated collisions by a large number of flying balls along with powder particles. The repeated ball-to-substrate collisions resulted in the deposition of coatings. The microstructures and elemental and phase composition of mechanically alloyed coatings at different milling durations during mechanical alloying process were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS). Microhardness tests were carried out to examine the mechanical properties of the coatings. The results showed that the coatings and the substrates were well bonded, and with the increase of the milling duration, multi-layered coatings with different structures were generated and the coatings became denser. The microhardness tests showed that the maximum microhardness of the coatings reached HV 0.1 228, showing a threefold improvement upon the substrate. And the cross-sectional microhardness values of the processed sample changed gradually, which gave a proof for the cushioning and sustaining functions of the multi-layered coatings. A reasonable formation mechanism of coatings on bulk materials with metallic immiscible system by mechanical alloying method was presented.

  18. The shielding against radiation produced by powder metallurgy with tungsten copper alloy applied on transport equipment for radio-pharmaceutical products

    International Nuclear Information System (INIS)

    Cione, Francisco C.; Sene, Frank F.; Souza, Armando C. de; Betini, Evandro G.; Rossi, Jesualdo L.; Rizzuto, Marcia A.

    2015-01-01

    Safety is mandatory on medicine radiopharmaceutical transportation and dependent on radiation shielding material. The focus of the present work is to minimize the use of harmful materials as lead and depleted uranium usually used in packages transportation. The tungsten-copper composite obtained by powder metallurgy (PM) is non-toxic. In powder metallurgy the density and the porosity of the compacted parts depends basically upon particle size distribution of each component, mixture, compacting pressure and sintering temperature cycle. The tungsten-copper composite, when used for shielding charged particles, X-rays, gamma photons or other photons of lower energy require proper interpretation of the radiation transport phenomena. The radioactive energy reduction varies according to the porosity and density of the materials used as shielding. The main factor for radiation attenuation is the cross section value for tungsten. The motivation research factor is an optimization of the tungsten and cooper composition in order to achieve the best linear absorption coefficient given by equation I (x) = I 0 e (-ux) . Experiments were conducted to quantify the effective radiation shielding properties of tungsten-copper composite produced by PM, varying the cooper amount in the composite. The studied compositions were 15%, 20% and 25% copper in mass. The Compaction pressure was 270 MPa and the sintering atmosphere was in 1.1 atm in N 2 +H 2 . The sintering temperature was 980 deg C for 2 h. The linear absorption coefficient factor was similar either for the green and the sintered compacts, due the amount of porosity did not affect the radiation attenuation. Thus the sintered was meant for size reduction and mechanical properties enhancement. (author)

  19. The shielding against radiation produced by powder metallurgy with tungsten copper alloy applied on transport equipment for radio-pharmaceutical products

    Energy Technology Data Exchange (ETDEWEB)

    Cione, Francisco C.; Sene, Frank F.; Souza, Armando C. de; Betini, Evandro G.; Rossi, Jesualdo L., E-mail: fceoni@hotmail.com, E-mail: ffsene@hotmail.com, E-mail: armandocirilo@yahoo.com, E-mail: evandrobetini@gmail.com, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rizzuto, Marcia A., E-mail: marizzutto@if.usp.br [Universidade de Sao Paulo (IF/USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    Safety is mandatory on medicine radiopharmaceutical transportation and dependent on radiation shielding material. The focus of the present work is to minimize the use of harmful materials as lead and depleted uranium usually used in packages transportation. The tungsten-copper composite obtained by powder metallurgy (PM) is non-toxic. In powder metallurgy the density and the porosity of the compacted parts depends basically upon particle size distribution of each component, mixture, compacting pressure and sintering temperature cycle. The tungsten-copper composite, when used for shielding charged particles, X-rays, gamma photons or other photons of lower energy require proper interpretation of the radiation transport phenomena. The radioactive energy reduction varies according to the porosity and density of the materials used as shielding. The main factor for radiation attenuation is the cross section value for tungsten. The motivation research factor is an optimization of the tungsten and cooper composition in order to achieve the best linear absorption coefficient given by equation I{sub (x)} = I{sub 0}e{sup (-ux)}. Experiments were conducted to quantify the effective radiation shielding properties of tungsten-copper composite produced by PM, varying the cooper amount in the composite. The studied compositions were 15%, 20% and 25% copper in mass. The Compaction pressure was 270 MPa and the sintering atmosphere was in 1.1 atm in N{sub 2}+H{sub 2}. The sintering temperature was 980 deg C for 2 h. The linear absorption coefficient factor was similar either for the green and the sintered compacts, due the amount of porosity did not affect the radiation attenuation. Thus the sintered was meant for size reduction and mechanical properties enhancement. (author)

  20. Polar transport in plants mediated by membrane transporters: focus on mechanisms of polar auxin transport.

    Science.gov (United States)

    Naramoto, Satoshi

    2017-12-01

    Directional cell-to-cell transport of functional molecules, called polar transport, enables plants to sense and respond to developmental and environmental signals. Transporters that localize to plasma membranes (PMs) in a polar manner are key components of these systems. PIN-FORMED (PIN) auxin efflux carriers, which are the most studied polar-localized PM proteins, are implicated in the polar transport of auxin that in turn regulates plant development and tropic growth. In this review, the regulatory mechanisms underlying polar localization of PINs, control of auxin efflux activity, and PIN abundance at PMs are considered. Up to date information on polar-localized nutrient transporters that regulate directional nutrient movement from soil into the root vasculature is also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mechanical properties and microstructure of copper alloys and copper alloy-stainless steel laminates for fusion reactor high heat flux applications

    Science.gov (United States)

    Leedy, Kevin Daniel

    A select group of copper alloys and bonded copper alloy-stainless steel panels are under consideration for heat sink applications in first wall and divertor structures of a planned thermonuclear fusion reactor. Because these materials must retain high strengths and withstand high heat fluxes, their material properties and microstructures must be well understood. Candidate copper alloys include precipitate strengthened CuNiBe and CuCrZr and dispersion strengthened Cu-Alsb2Osb3 (CuAl25). In this study, uniaxial mechanical fatigue tests were conducted on bulk copper alloy materials at temperatures up to 500sp°C in air and vacuum environments. Based on standardized mechanical properties measurement techniques, a series of tests were also implemented to characterize copper alloy-316L stainless steel joints produced by hot isostatic pressing or by explosive bonding. The correlation between mechanical properties and the microstructure of fatigued copper alloys and the interface of copper alloy-stainless steel laminates was examined. Commercial grades of these alloys were used to maintain a degree of standardization in the materials testing. The commercial alloys used were OMG Americas Glidcop CuAl25 and CuAl15; Brush Wellman Hycon 3HP and Trefimetaux CuNiBe; and Kabelmetal Elbrodur and Trefimetaux CuCrZr. CuAl25 and CuNiBe alloys possessed the best combination of fatigue resistance and microstructural stability. The CuAl25 alloy showed only minimal microstructural changes following fatigue while the CuNiBe alloy consistently exhibited the highest fatigue strength. Transmission electron microscopy observations revealed that small matrix grain sizes and high densities of submicron strengthening phases promoted homogeneous slip deformation in the copper alloys. Thus, highly organized fatigue dislocation structure formation, as commonly found in oxygen-free high conductivity Cu, was inhibited. A solid plate of CuAl25 alloy hot isostatically pressed to a 316L stainless steel

  2. EGCG Enhances Cisplatin Sensitivity by Regulating Expression of the Copper and Cisplatin Influx Transporter CTR1 in Ovary Cancer.

    Directory of Open Access Journals (Sweden)

    Xuemin Wang

    Full Text Available Cisplatin is one of the first-line platinum-based chemotherapeutic agents for treatment of many types of cancer, including ovary cancer. CTR1 (copper transporter 1, a transmembrane solute carrier transporter, has previously been shown to increase the cellular uptake and sensitivity of cisplatin. It is hypothesized that increased CTR1 expression would enhance the sensitivity of cancer cells to cisplatin (cDDP. The present study demonstrates for the first time that (--epigallocatechin-3-gallate (EGCG, a major polyphenol from green tea, can enhance CTR1 mRNA and protein expression in ovarian cancer cells and xenograft mice. EGCG inhibits the rapid degradation of CTR1 induced by cDDP. The combination of EGCG and cDDP increases the accumulation of cDDP and DNA-Pt adducts, and subsequently enhances the sensitivity of ovarian cancer SKOV3 and OVCAR3 cells to the chemotherapeutic agent. In the OVCAR3 ovarian cancer xenograft nude mice model, the combination of the lower concentration of cDDP and EGCG strongly repressed the tumor growth and exhibited protective effect on the nephrotoxicity induced by cisplatin. Overall, these findings uncover a novel chemotherapy mechanism of EGCG as an adjuvant for the treatment of ovarian cancer.

  3. Administrative mechanics of research fuel transportation

    International Nuclear Information System (INIS)

    Harmon, Diane W.

    1983-01-01

    This presentation contains the discussion on the multitude of administrative mechanics that have to be meshed for the successful completion of a shipment of spent fuel, HEU or LEU in the research reactors fuel cycle. The costs associated with transportation may be the equivalent of 'a black hole', so an overview of cost factors is given. At the end one could find that this black hole factor in the budget is actually a bargain. The first step is the quotation phase. The cost variables in the quotation contain the cost of packaging i.e. containers; the complete routing of the packages and the materials. Factors that are of outmost importance are the routing restrictions and regulations, physical security regulations. All of this effort is just to provide a valid quotation not to accomplish the goal of completing a shipment. Public relations cannot be omitted either

  4. Administrative mechanics of research fuel transportation

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Diane W [Edlow International Company, Washington, DC (United States)

    1983-09-01

    This presentation contains the discussion on the multitude of administrative mechanics that have to be meshed for the successful completion of a shipment of spent fuel, HEU or LEU in the research reactors fuel cycle. The costs associated with transportation may be the equivalent of 'a black hole', so an overview of cost factors is given. At the end one could find that this black hole factor in the budget is actually a bargain. The first step is the quotation phase. The cost variables in the quotation contain the cost of packaging i.e. containers; the complete routing of the packages and the materials. Factors that are of outmost importance are the routing restrictions and regulations, physical security regulations. All of this effort is just to provide a valid quotation not to accomplish the goal of completing a shipment. Public relations cannot be omitted either.

  5. Copper-transporting P-type ATPases use a unique ion-release pathway

    DEFF Research Database (Denmark)

    Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg

    2014-01-01

    Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations...... that extracellular water solvated the transmembrane (TM) domain, results indicative of a Cu(+)-release pathway. Furthermore, a new LpCopA crystal structure determined at 2.8-Å resolution, trapped in the preceding E2P state, delineated the same passage, and site-directed-mutagenesis activity assays support...... a functional role for the conduit. The structural similarities between the TM domains of the two conformations suggest that Cu(+)-ATPases couple dephosphorylation and ion extrusion differently than do the well-characterized PII-type ATPases. The ion pathway explains why certain Menkes' and Wilson's disease...

  6. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular-dynamics...... simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  7. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta.

    Science.gov (United States)

    Moenne, Alejandra; González, Alberto; Sáez, Claudio A

    2016-07-01

    Green and red macroalgae are closely related organisms, and with terrestrial plants, and constitute the base of marine food webs in coastal ecosystems. Green and red seaweeds, as all living organisms, require essential metals, such as copper, iron, zinc, which can act as co-factors for several proteins and enzymes; however, these metals in excess can induce stress and impair cell viability. Most important negative effects of metal excess are related to the induction of an oxidative stress condition, characterized by the over-accumulation of Reactive Oxygen Species (ROS). In this respect, copper, abundant in wastewaters disposed to coastal environments from domestic and industrial activities, has been one of the most studied metals. Different investigations have provided evidence that green and red macroalgae display several defenses against copper excess to prevent, or at least reduce, stress and damage, among which are cellular exclusion mechanisms, synthesis of metal-chelating compounds, and the activation of the antioxidant system. Most important defense mechanisms identified in green and red seaweed involve: metal-binding to cell wall and epibionts; syntheses of metallothioneins and phytochelatins that accumulate in the cytoplasm; and the increase in the activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and catalase, and greater production of antioxidant metabolites as glutathione and ascorbate in organelles and the cytoplasm. In this review, we go through historical records, latest advances, and pending tasks aiming to expand our current knowledge on defense mechanisms to copper excess in green and red macroalgae, with emphasis on biochemical and molecular aspects. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Characterization of dispersion strengthened copper with 3wt%Al2O3 by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Rajković Višeslava

    2004-01-01

    Full Text Available The copper matrix has been dispersion strengthened with 3wt.%Al2O3 by mechanical alloying. Commercial alumina powder with an average particle size of 0.75mm was used for alloying. The mechanical alloying process was performed in a planetary ball mill up to 20h in air. After milling all powders were treated in H2 at 4000C for 1h, and finally hot pressing was used for compaction (800oC, 3h, Ar. Structure observations revealed a lamellar structure (Al2O3 particles largely restricted to interlamellar planes between adjacent copper lamellae accompanied also by structure refinement. These structural changes were mostly completed in the early stage of milling, and retained after compaction. Micro hardness was found to progressively increase with milling time. So, after 5h of milling the micro hardness of the Cu+3twt%Al2O3 compact was 1540MPa, i.e. 2.5 times greater than for the as-received electrolytic copper powder (638MPa compacted under identical conditions, while after 20h of milling it was 2370 MPa. However after exposing the tested compact at 800oC up to 5h, the achieved hardening effect vanished.

  9. Appearance property and mechanism of plume produced by pulsed ultraviolet laser ablating copper

    International Nuclear Information System (INIS)

    Huang Qingju; Li Fuquan; Wang Honghua

    2008-01-01

    Time-resolved measurements of plume emission spectra by pulsed ultraviolet laser ablating copper in neon were analyzed, and the photographs of plume from laser ablating copper were taken. The experimental results show that plume has different colours in different ranges. At low pressure the centre layer and middle layer colours of plume are mixed colour, and the outer layer colours of plume are yellow and green. At middle pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is pea green. At high pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is faintness green. The plume range is pressed with the rising of ambient gas pressure, and the range colour gets thin with the rising of ambient gas pressure. The plume excitation radiation mechanism in pulsed ultraviolet laser ablating copper was discussed. The primary excitation radiation mechanism in plume is electron collision energy transfer and atom collision energy transfer at low pressure and middle pressure, and it is electrons Bremsstrahlung and recombination excitation radiation of electron and ion at high pressure. The model can be used to explain the experimental result qualitatively. (authors)

  10. Shock wave effects in copper: Design of an experimental device for post recovery mechanical testing

    International Nuclear Information System (INIS)

    Buy, Francois; Llorca, Fabrice

    2002-01-01

    The mechanical behavior of metals may prove high changes with strain rate and pressure loading history. In order to investigate the effect of a shock on the ulterior mechanical behavior of high purity copper, we set up an experimental device inspired from G. T. Gray III's works. This device, based on the trapping of shock waves after a plane plate impact is validated by numerical simulations. The aim of these simulations is the evaluation of the heterogeneity of plastic deformation. Shock pressures up to 10 GPa have been investigated. The plastic strain levels subsequent to the shock are between 0.08 and 0.15 in the sample

  11. Microstructures and mechanical properties of friction stir welded dissimilar steel-copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M.; Abbasi, M.; Poursina, D.; Gheysarian, A. [University of Kashan, Kashan (Iran, Islamic Republic of); Bagheri, B. [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2017-03-15

    Welding dissimilar metals by fusion welding is challenging. It results in welding defects. Friction stir welding (FSW) as a solid-state joining method can overcome these problems. In this study, 304L stainless steel was joined to copper by FSW. The optimal values of the welding parameters traverse speed, rotational speed, and tilt angle were obtained through Response surface methodology (RSM). Under optimal welding conditions, the effects of welding pass number on the microstructures and mechanical properties of the welded joints were investigated. Results indicated that appropriate values of FSW parameters could be obtained by RSM and grain size refinement during FSW mainly affected the hardness in the weld regions. Furthermore, the heat from the FSW tool increased the grain size in the Heat-affected zones (HAZs), especially on the copper side. Therefore, the strength and ductility decreased as the welding pass number increased because of grain size enhancement in the HAZs as the welding pass number increased.

  12. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    Science.gov (United States)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  13. Effects of aluminum and copper chill on mechanical properties and microstructures of Cu-Zn-Al alloys with sand casting

    Science.gov (United States)

    Ardhyananta, Hosta; Wibisono, Alvian Toto; Ramadhani, Mavindra; Widyastuti, Farid, Muhammad; Gumilang, Muhammad Shena

    2018-04-01

    Cu-Zn-Al alloy is one type of brass, which has high strength and high corrosion resistant. It has been applied on ship propellers and marine equipment. In this research, the addition of aluminum (Al) with variation of 1, 2, 3, 4% aluminum to know the effect on mechanical properties and micro structure at casting process using a copper chill and without copper chill. This alloy is melted using furnace in 1100°C without holding. Then, the molten metal is poured into the mold with copper chill and without copper chill. The speciment of Cu-Zn-Al alloy were chracterized by using Optical Emission Spectroscopy (OES), Metallography Test, X-Ray Diffraction (XRD), Hardness Test of Rockwell B and Charpy Impact Test. The result is the addition of aluminum and the use of copper chill on the molds can reduce the grain size, increases the value of hardness and impact.

  14. Dynamic response analysis as a tool for investigating transport mechanisms

    International Nuclear Information System (INIS)

    Dudok de Wit, Th.; Joye, B.; Lister, J.B.; Moret, J.M.

    1990-01-01

    Dynamic response analysis provides an attractive method for studying transport mechanisms in tokamak plasmas. The analysis of the radial response has already been widely used for heat and particle transport studies. The frequency dependence of the dynamic response, which is often omitted, reveals further properties of the dominant transport mechanisms. Extended measurements of the soft X-ray emission were carried out on the TCA tokamak in order to determine the underlying transport processes. (author) 5 refs., 2 figs

  15. Mechanism of ochratoxin A transport in kidney

    International Nuclear Information System (INIS)

    Sokol, P.P.; Ripich, G.; Holohan, P.D.; Ross, C.R.

    1988-01-01

    The effect of the fungal metabolite (mycotoxin) Ochratoxin A (OTA) on the transport of p-amino[ 3 H]hippurate (PAH), a prototypic organic anion, was examined in renal brush border (BBMV) and basolateral membrane vesicles (BLMV). OTA was as effective an inhibitor of PAH uptake in both membranes as probenecid. The dose response curves for OTA in BBMV and BLMV gave IC50 values of 20 +/- 6 and 32 +/- 7 microM, respectively. The effect was specific since the transport of the organic cation N1-methylnicotinamide was not affected. The phenomenon of counterflow was studied to establish that OTA is translocated. OTA produced trans stimulation of PAH transport in both BBMV and BLMV, demonstrating that OTA is transported across both these membranes. The data suggest that OTA interacts with the PAH transport system in both BBMV and BLMV. We conclude that OTA transport in the kidney is mediated via the renal organic anion transport system

  16. Low-cost copper complexes as p-dopants in solution processable hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellermann, Renate [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany); Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Taroata, Dan; Maltenberger, Anna; Hartmann, David; Schmid, Guenter [Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Brabec, Christoph J. [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany)

    2015-09-07

    We demonstrate the usage of the Lewis-acidic copper(II)hexafluoroacetylacetonate (Cu(hfac){sub 2}) and copper(II)trifluoroacetylacetonate (Cu(tfac){sub 2}) as low-cost p-dopants for conductivity enhancement of solution processable hole transport layers based on small molecules in organic light emitting diodes (OLEDs). The materials were clearly soluble in mixtures of environmentally friendly anisole and xylene and spin-coated under ambient atmosphere. Enhancements of two and four orders of magnitude, reaching 4.0 × 10{sup −11} S/cm with a dopant concentration of only 2 mol% Cu(hfac){sub 2} and 1.5 × 10{sup −9} S/cm with 5 mol% Cu(tfac){sub 2} in 2,2′,7,7′-tetra(N,N-ditolyl)amino-9,9-spiro-bifluorene (spiro-TTB), respectively, were achieved. Red light emitting diodes were fabricated with reduced driving voltages and enhanced current and power efficiencies (8.6 lm/W with Cu(hfac){sub 2} and 5.6 lm/W with Cu(tfac){sub 2}) compared to the OLED with undoped spiro-TTB (3.9 lm/W). The OLED with Cu(hfac){sub 2} doped spiro-TTB showed an over 8 times improved LT{sub 50} lifetime of 70 h at a starting luminance of 5000 cd/m{sup 2}. The LT{sub 50} lifetime of the reference OLED with PEDOT:PSS was only 8 h. Both non-optimized OLEDs were operated at similar driving voltage and power efficiency.

  17. Copper-containing plastocyanin used for electron transport by an oceanic diatom.

    Science.gov (United States)

    Peers, Graham; Price, Neil M

    2006-05-18

    The supply of some essential metals to pelagic ecosystems is less than the demand, so many phytoplankton have slow rates of photosynthetic production and restricted growth. The types and amounts of metals required by phytoplankton depends on their evolutionary history and on their adaptations to metal availability, which varies widely among ocean habitats. Diatoms, for example, need considerably less iron (Fe) to grow than chlorophyll-b-containing taxa, and the oceanic species demand roughly one-tenth the amount of coastal strains. Like Fe, copper (Cu) is scarce in the open sea, but notably higher concentrations of it are required for the growth of oceanic than of coastal isolates. Here we report that the greater Cu requirement in an oceanic diatom, Thalassiosira oceanica, is entirely due to a single Cu-containing protein, plastocyanin, which--until now--was only known to exist in organisms with chlorophyll b and cyanobacteria. Algae containing chlorophyll c, including the closely related coastal species T. weissflogii, are thought to lack plastocyanin and contain a functionally equivalent Fe-containing homologue, cytochrome c6 (ref. 9). Copper deficiency in T. oceanica inhibits electron transport regardless of Fe status, implying a constitutive role for plastocyanin in the light reactions of photosynthesis in this species. The results suggest that selection pressure imposed by Fe limitation has resulted in the use of a Cu protein for photosynthesis in an oceanic diatom. This biochemical switch reduces the need for Fe and increases the requirement for Cu, which is relatively more abundant in the open sea.

  18. Facilitated transport of diuron and glyphosate in high copper vineyard soils.

    Science.gov (United States)

    Dousset, Sylvie; Jacobson, Astrid R; Dessogne, Jean-Baptiste; Guichard, Nathalie; Baveye, Philippe C; Andreux, Francis

    2007-12-01

    The fate of organic herbicides applied to agricultural fields may be affected by other soil amendments, such as copper applied as a fungicide. The effect of copper on the leaching of diuron and glyphosate through a granitic and a calcareous soil was studied in the laboratory using sieved-soil columns. Each soil was enriched with copper sulfate to obtain soil copper concentrations of 125, 250, 500, and 1000 mg kg(-1). Glyphosate leaching was influenced by soil pH and copper concentration, whereas diuron leaching was not. In the calcareous soil, glyphosate leaching decreased as copper levels increased from 17 mg kg(-1) (background) to 500 mg kg(-1). In the granitic soil, glyphosate leaching increased as copper levels increased from 34 mg kg(-1) (background) to 500 mg kg(-1). The shapes of the copper elution curves in presence of glyphosate were similar to shapes of the glyphosate curves, suggesting the formation of Cu-glyphosate complexes that leach through the soil. Soil copper concentration does not influence diuron leaching. In contrast, increasing copper concentrations reduces glyphosate leaching through calcareous soils, and conversely, increases glyphosate leaching through granitic soils. Our findings suggest that the risk of groundwater contamination by glyphosate increases in granitic soils with elevated copper concentrations.

  19. A reliable control system for measurement on film thickness in copper chemical mechanical planarization system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Qu, Zilian; Zhao, Qian; Tian, Fangxin; Zhao, Dewen; Meng, Yonggang; Lu, Xinchun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2013-12-15

    In recent years, a variety of film thickness measurement techniques for copper chemical mechanical planarization (CMP) are subsequently proposed. In this paper, the eddy-current technique is used. In the control system of the CMP tool developed in the State Key Laboratory of Tribology, there are in situ module and off-line module for measurement subsystem. The in situ module can get the thickness of copper film on wafer surface in real time, and accurately judge when the CMP process should stop. This is called end-point detection. The off-line module is used for multi-points measurement after CMP process, in order to know the thickness of remained copper film. The whole control system is structured with two levels, and the physical connection between the upper and the lower is achieved by the industrial Ethernet. The process flow includes calibration and measurement, and there are different algorithms for two modules. In the process of software development, C++ is chosen as the programming language, in combination with Qt OpenSource to design two modules’ GUI and OPC technology to implement the communication between the two levels. In addition, the drawing function is developed relying on Matlab, enriching the software functions of the off-line module. The result shows that the control system is running stably after repeated tests and practical operations for a long time.

  20. Mechanisms of redox interactions of bilirubin with copper and the effects of penicillamine.

    Science.gov (United States)

    Božić, Bojana; Korać, Jelena; Stanković, Dalibor M; Stanić, Marina; Popović-Bijelić, Ana; Bogdanović Pristov, Jelena; Spasojević, Ivan; Bajčetić, Milica

    2017-12-25

    Toxic effects of unconjugated bilirubin (BR) in neonatal hyperbilirubinemia have been related to redox and/or coordinate interactions with Cu 2+ . However, the development and mechanisms of such interactions at physiological pH have not been resolved. This study shows that BR reduces Cu 2+ to Cu 1+ in 1:1 stoichiometry. Apparently, BR undergoes degradation, i.e. BR and Cu 2+ do not form stable complexes. The binding of Cu 2+ to inorganic phosphates, liposomal phosphate groups, or to chelating drug penicillamine, impedes redox interactions with BR. Cu 1+ undergoes spontaneous oxidation by O 2 resulting in hydrogen peroxide accumulation and hydroxyl radical production. In relation to this, copper and BR induced synergistic oxidative/damaging effects on erythrocytes membrane, which were alleviated by penicillamine. The production of reactive oxygen species by BR and copper represents a plausible cause of BR toxic effects and cell damage in hyperbilirubinemia. Further examination of therapeutic potentials of copper chelators in the treatment of severe neonatal hyperbilirubinemia is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mechanism and kinetics of thermal decomposition of ammoniacal complex of copper oxalate

    International Nuclear Information System (INIS)

    Prasad, R.

    2003-01-01

    A complex precursor has been synthesized by dissolving copper oxalate in liquor ammonia followed by drying. The thermal decomposition of the precursor has been studied in different atmospheres, air/nitrogen. The mechanism of decomposition of the precursor in air is not as simple one as in nitrogen. In nitrogen, it involves endothermic deammoniation followed by decomposition to finely divided elemental particles of copper. Whereas in air, decomposition and simultaneous oxidation of the residual products (oxidative decomposition), make the process complex and relatively bigger particle of cupric oxide are obtained as final product. The products of decomposition in different atmospheres have been characterized by X-ray diffraction and particle size analysis. The stoichiometric formula, Cu(NH 3 ) 2 C 2 O 4 of the precursor is established from elemental analysis and TG measurements, and it is designated as copper amino oxalate (CAO). In nitrogen atmosphere, the deammoniation and decomposition have been found to be zero and first order, respectively. The values of activation energy have been found to be 102.52 and 95.38 kJ/mol for deammoniation and decomposition, respectively

  2. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba

    International Nuclear Information System (INIS)

    Perreault, François; Popovic, Radovan; Dewez, David

    2014-01-01

    In this report, we investigated how the presence of a polymer shell (poly(styrene-co-butyl acrylate) alters the toxicity of CuO NPs in Lemna gibba. Based on total Cu concentration, core–shell CuO NPs were 10 times more toxic than CuO NPs, inducing a 50% decrease of growth rate at 0.4 g l −1 after 48-h of exposure while a concentration of 4.5 g l −1 was required for CuO NPs for a similar effect. Toxicity of CuO NPs was mainly due to NPs solubilization in the media. Based on the accumulated copper content in the plants, core–shell CuO NPs induced 4 times more reactive oxygen species compared to CuO NPs and copper sulfate, indicating that the presence of the polymer shell changed the toxic effect induced in L. gibba. This effect could not be attributed to the polymer alone and reveals that surface modification may change the nature of NPs toxicity. -- Highlights: • Bare and polymer-coated CuO nanoparticles were toxic to Lemna gibba. • Toxicity of bare CuO was mainly due to solubilized soluble copper. • Coated CuO accumulated inside the plants four times more. • Formation of reactive oxygen species was increased by polymer coating. • Coating of nanomaterials modifies mechanisms of action at cellular level. -- Polymer coating increases oxidative stress effect by core–shell CuO nanoparticles

  3. Evaluation of Synthesizing Al2O3 Nano Particles in Copper Matrix by Mechanical Alloying of Cu-1% Al and Copper Oxide

    Directory of Open Access Journals (Sweden)

    S. Safi

    2017-06-01

    Full Text Available Strengthening of copper matrix by dispersion of metallic oxides particles as an efficient way to increase strength without losing thermal and electrical conductivities has been recognized for many years. Such a composite can withstand high temperatures and keep its properties. Such copper alloys have many applications especially in high temperature including resistance welding electrodes, electrical motors and switches. In the present work, at first, the Cu-1%Al solid solution was prepared by the mechanical alloying process via 48 hours of milling. Subsequently, 0.66 gr of copper oxide was added to Cu-1%Al solid solution and mechanically milled for different milling times of 0,16, 32, 48 hours. The milled powder mixtures were investigated by X-Ray Diffraction and scanning electron microscopy techniques. The lattice parameter of Cu increased at first, but then decreased at longer milling times. The internal strain increased and the average Cu crystal size decreased during milling process.The particle size decreased during the whole process. With increasing annealing temprature from 450°C to 750°C, the microhardness values of samples decreased at the beginning but then increased. From these results, it can be concluded that nanosize aluminaparticles are formed in the copper matrix.

  4. Induction of oxidative DNA damage by mesalamine in the presence of copper: A potential mechanism for mesalamine anticancer activity

    International Nuclear Information System (INIS)

    Zimmerman, Ryan P.; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P.; Wang, Jianmin; Li, Yunbo

    2011-01-01

    Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis.

  5. Identification and characterization of a novel Cut family cDNA that encodes human copper transporter protein CutC

    International Nuclear Information System (INIS)

    Li Jixi; Ji Chaoneng; Chen Jinzhong; Yang Zhenxing; Wang Yijing; Fei, Xiangwei; Zheng Mei; Gu Xing; Wen Ge; Xie Yi; Mao Yumin

    2005-01-01

    Copper is an essential heavy metal trace element that plays important roles in cell physiology. The Cut family was associated with the copper homeostasis and involved in several important metabolisms, such as uptake, storage, delivery, and efflux of copper. In this study, a novel Cut family cDNA was isolated from the human fetal brain library, which encodes a 273 amino acid protein with a molecular mass of about 29.3 kDa and a calculated pI of 8.17. It was named hCutC (human copper transporter protein CutC). The ORF of hCutC gene was cloned into pQE30 vector and expressed in Escherichia coli M15. The secreted hCutC protein was purified to a homogenicity of 95% by using the Ni-NTA affinity chromatography. RT-PCR analysis showed that the hCutC gene expressed extensively in human tissues. Subcellular location analysis of hCutC-EGFP fusion protein revealed that hCutC was distributed to cytoplasm of COS-7 cells, and both cytoplasm and nucleus of AD293 cells. The results suggest that hCutC may be one shuttle protein and play important roles in intracellular copper trafficking

  6. Prediction of mechanical properties in friction stir welds of pure copper

    International Nuclear Information System (INIS)

    Heidarzadeh, A.; Saeid, T.

    2013-01-01

    Highlights: • Range of parameters for defect-free friction stir welded pure copper was reached. • Models were developed for predicting UTS, TE and hardness of pure copper joints. • Analysis of variance was used to validate the developed models. • Effect of welding parameters on mechanical behavior of welded joints was explored. • The microstructure and fracture surface of welded joints were investigated. - Abstract: This research was carried out to predict the mechanical properties of friction stir welded pure copper joints. Response surface methodology based on a central composite rotatable design with three parameters, five levels, and 20 runs, was used to conduct the experiments and to develop the mathematical regression model by using of Design-Expert software. The three welding parameters considered were rotational speed, welding speed, and axial force. Analysis of variance was applied to validate the predicted models. Microstructural characterization and fractography of joints were examined using optical and scanning electron microscopes. Also, the effects of the welding parameters on mechanical properties of friction stir welded joints were analyzed in detail. The results showed that the developed models were reasonably accurate. The increase in welding parameters resulted in increasing of tensile strength of the joints up to a maximum value. Elongation percent of the joints increased with increase of rotational speed and axial force, but decreased by increasing of welding speed, continuously. In addition, hardness of the joints decreased with increase of rotational speed and axial force, but increased by increasing of welding speed. The joints welded at higher heat input conditions revealed more ductility fracture mode

  7. Investigation of Structure and Physico-Mechanical Properties of Composite Materials Based on Copper - Carbon Nanoparticles Powder Systems

    Directory of Open Access Journals (Sweden)

    Kovtun V.

    2015-04-01

    Full Text Available Physico-mechanical and structural properties of electrocontact sintered copper matrix- carbon nanoparticles composite powder materials are presented. Scanning electron microscopy revealed the influence of preliminary mechanical activation of the powder system on distribution of carbon nanoparticles in the metal matrix. Mechanical activation ensures mechanical bonding of nanoparticles to the surface of metal particles, thus giving a possibility for manufacture of a composite with high physico-mechanical properties.

  8. The effect of neutron spectrum on the mechanical and physical properties of pure copper and copper alloys

    International Nuclear Information System (INIS)

    Fabritsiev, S.A.; Pokrovsky, A.S.; Sandakov, V.A.; Zinkle, S.J.; Rowcliffe, A.F.; Edwards, D.J.; Garner, F.A.; Singh, B.N.; Barabash, V.R.

    1996-01-01

    The electrical resistivity and tensile properties of copper and oxide dispersion strengthened (DS) copper alloys have been measured before and after fission neutron irradiation to damage levels of 0.5 to 5 displacements per atom (dps) at ∼100 to 400 degrees C. Some of the specimens were irradiated inside a 1.5 mm Cd shroud in order to reduce the thermal neutron flux. The electrical resistivity data could be separated into two components, a solid transmutation component Δρ tr which was proportional to thermal neutron fluence and a radiation defect component Δρ rd which was independent of the displacement dose. The saturation value for Δρ rd was ∼1.2 nanohm-meters for pure copper and ∼1.6 nanohm-meters for the DS copper alloys irradiated at 100 degrees C in positions with a fast-to-thermal neutron flux ratio of 5. Considerable radiation hardening was observed in all specimens at irradiation temperatures below 200 degrees C. The yield strength was relatively insensitive to neutron spectrum in specimens strengthened by dispersoids or cold- working. 17 refs., 7 figs., 1 tab

  9. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    NARCIS (Netherlands)

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; De Sluis, Bart van; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex

  10. Fluorescent copper(II complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2017-01-01

    Full Text Available Dinuclear copper(II complexes with formula [Cu2(L2(N32] (1 and [Cu2(L2(NCS2] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized by controlling the molar ratio of Cu(OAC2·6H2O, HL, sodium azide (1 and ammonium thiocyanate (2. The end on bridges appear exclusively in azide and thiocyanate to copper complexes. The electron transfer mechanism of copper(II complexes is examined by cyclic voltammetry indicating copper(II complexes are Cu(II/Cu(I couple. The interactions of copper(II complexes towards bovine serum albumin (BSA were examined with the help of absorption and fluorescence spectroscopic tools. We report a superficial solution-based route for the synthesis of micro crystals of copper complexes with BSA. The antibacterial activity of the Schiff base and its copper complexes were investigated by the agar disc diffusion method against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia and Bacillus cereus. It has been observed that the antibacterial activity of all complexes is higher than the ligand.

  11. Final report on characterization of physical and mechanical properties of copper and copper alloys before and after irradiation. (ITER R and D Task no. T213)

    International Nuclear Information System (INIS)

    Singh, B.N.; Taehtinen, S.

    2001-12-01

    The present report summarizes and highlights the main results of the work carried out during the last 5 - 6 years on effects of neutron irradiation on physical and mechanical properties of copper and copper alloys. The work was an European contribution to ITER Research and Development programme and was carried out by the Associations Euratom - Risoe and Euratom - Tekes. Details of the investigations carried out within the framework of the present task and the main results have been reported in various reports and journal publication. On the basis of these results some conclusions are drawn regarding the suitability of a copper alloy for its use in the first wall and divertor components of ITER. It is pointed out that the present work has managed only to identify some of the critical problems and limitations of the copper alloys for their employment in the hostile environment of 14 MeV neutrons. A considerable amount of further effort is needed to find a realistic and optimum solution. (au)

  12. MECHANICAL PROPERTIES OF PVA NANOFIBER TEXTILES WITH INCORPORATED NANODIAMONDS, COPPER AND SILVER IONS

    Directory of Open Access Journals (Sweden)

    Kateřina Indrová

    2015-02-01

    Full Text Available The unique properties of nanotextiles based on poly(vinyl-alcohol (PVA manufactured using electrospinning method have been known and exploited for many years. Recently, the enrichment of nanofiber textiles with nanoparticles, such as ions or nanodiamond particles (NDP, has become a popular way to modify the textile mechanical, chemical and physical properties. The aim of our study is to investigate the macromechanical properties of PVA nanotextiles enriched with NDP, silver (Ag and copper (Cu ions. The nanofiber textiles of a various surface weight were prepared from 16% PVA solution, while glyoxal and phosphoric acid were used as cross-linking agents. The copper and silver ions were diluted in aqueous solution and NDP were dispersed into the fibers by ultrasound homogenization. All but one set of samples were exposed to the temperature of 140 °C for 10 minutes. The samples without thermal stabilization exhibited significantly lower elastic stiffness and tensile strength. Moreover, the results of tensile testing indicate that the addition of dispersed nanoparticles has a minor effect on the mechanical properties of textiles and contributes rather to their reinforcement. On the other hand, the lack of thermal stabilization results in a poor interconnection of individual nanofiber layers and the non-stabilized textiles exhibit a lower elastic stiffness and reduced tensile strength.

  13. Role of crystal orientation on chemical mechanical polishing of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Aibin, E-mail: abzhu@mail.xjtu.edu.cn; He, Dayong; Luo, Wencheng; Liu, Yangyang

    2016-11-15

    Highlights: • The role of crystal orientation in cooper CMP by quasi-continuum was studied. • The atom displacement diagrams were obtained and analyzed. • The stress distribution diagrams and load-displacement curves were analyzed. • This research is helpful to revealing the material removal mechanism of CMP. - Abstract: The material removal mechanism of single crystal copper in chemical mechanical polishing (CMP) has not been intensively investigated. And the role of crystal orientation in CMP of single crystal cooper is not quite clear yet. Quasi-continuum method was adopted in this paper to simulate the process of nano-particles grinding on single crystal copper in CMP process. Three different crystal orientations, i.e. x[100]y[001], x[001]y[110] and x[–211]y[111], were chosen for analysis. The atom displacement diagrams, stress distribution diagrams and load-displacement curves were obtained. After analyzing the deformation mechanism, residual stress of the work piece material and cutting force, results showed that, the crystal orientation of work piece has great influence on the deformation characteristics and surface quality of work piece during polishing. In the A(001)[100] orientation, the residual stress distribution after polishing is deeper, and the stress is larger than that in the B(110)[001] and C(111)[–211] orientations. And the average tangential cutting force in the A(001)[100] orientation is much larger than those in the other two crystal orientation. This research is helpful to revealing the material removal mechanism of CMP process.

  14. Sorption mechanisms of selenium species (selenite and selenate) on copper-based minerals

    International Nuclear Information System (INIS)

    Devoy, J.

    2001-09-01

    The sorption of radionuclides on the surface of minerals represents a process capable to delay the migration of the elements from a spent fuel deep repository towards the biosphere. In the framework of a deep underground repository, an engineered clay barrier has a high trapping capacity for cationic radio-elements, in particular because of the negative charge of clay surfaces. However, anionic radioelements like selenium species, would be only weakly retained by chemical processes. In order to optimize the trapping capacity of a clay barrier with respect to anionic species, prospective studies are carried out in order to find and evaluate some minerals with specific chemical trapping functions. Among radionuclides, the case of selenium has to be considered because its isotope 79 Se is present in radioactive wastes and has a half life time of 6.5 10 4 years. It is also judicious to find a mineral capable of trapping simultaneously several anionic radio-elements. Copper oxides and sulfides (Cu 2 O, CuO, Cu 2 S, CuS, CuFeS 2 and Cu 5 FeS 4 ) are good adsorbents with respect to selenium species (selenite and selenate). These minerals, with their selenium retention properties, could be used also for the decontamination of soils and waters or to process industrial effluents. The sorption mechanisms have been studied in details for copper oxides (Cu 2 O and CuO) with respect to selenite and selenate. Chalcomenite precipitates in acid pH conditions when selenite is added to a Cu 2 O and CuO suspension. Selenate, in contact with cuprite (Cu 2 O) leads also to a selenium-based precipitate in acid pH environment. For higher pH values, selenite and selenate are adsorbed on copper oxides (Cu 2 O and CuO) and lead to internal and external sphere complexes, respectively. In the case of a selenite/cuprite mixture in basic pH environment and at the equilibrium, a chemical reaction occurs between the oxidation product of cuprite, Cu(OH) 2 and HSeO 3 . A preliminary study of

  15. Mechanisms and energetics of surface reactions at the copper-water interface. A critical literature review with implications for the debate on corrosion of copper in anoxic water

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Adam Johannes; Brinck, Tore [Applied Physical Chemistry, KTH Royal Inst. of Technology, Stockholm (Sweden)

    2012-06-15

    hydroxide ML on top of an oxide ML would give 7.2 ng cm{sup -2} copper surface. Another factor that determines the amount of H{sub 2} that could be formed is the roughness of the copper surface. Mechanically polished copper surfaces has roughly twice the surface area of an ideally planar surface (on which the estimates above are based) and could thus form up to about 14 ng H{sub 2} per cm{sup 2} macroscopic copper surface. This amount is less than six times lower than the largest amount of hydrogen gas detected per surface area in any published experimental study. Possibly, the water cleavage/ hydrogen-formation reaction could proceed even further via diffusion of the adsorbed species into the bulk metal, or through extensive surface reconstruction.

  16. Effects of nanomolar copper on water plants—Comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George, E-mail: george.thomas@uni.kn [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: ha-jo.staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Wellenreuther, Gerd, E-mail: Gerd.wellenreuther@desy.de [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Dickinson, Bryan C., E-mail: bryan.dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: hendrik.kuepper@uni-konstanz.de [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-09-15

    Highlights: •We found different optimal Cu requirement for different physiological mechanisms. •Kinetics and concentration thresholds of damage mechanisms were established. •Cu toxicity caused internal Cu re-distribution and inhibition of Zn uptake. •Cu deficient plants released Cu, indicating lack of high-affinity Cu transporters. •Cu deficiency caused re-distribution of zinc in the plant. -- Abstract: Toxicity and deficiency of essential trace elements like Cu are major global problems. Here, environmentally relevant sub-micromolar concentrations of Cu (supplied as CuSO{sub 4}) and simulations of natural light- and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum. Growth was optimal at 10 nM Cu, while PSII activity (F{sub v}/F{sub m}) was maximal around 2 nM Cu. Damage to the PSII reaction centre was the first target of Cu toxicity, followed by disturbed regulation of heat dissipation (NPQ). Only after that, electron transport through PSII (Φ{sub PSII}) was inhibited, and finally chlorophylls decreased. Copper accumulation in the plants was stable until 10 nM Cu in solution, but strongly increased at higher concentrations. The vein was the main storage site for Cu up to physiological concentrations (10 nM). At toxic levels it was also sequestered to the epidermis and mesophyll until export from the vein became inhibited, accompanied by inhibition of Zn uptake. Copper deficiency led to a complete stop of growth at “0” nM Cu after 6 weeks. This was accompanied by high starch accumulation although electron flow through PSII (Φ{sub PSII}) decreased from 2 weeks, followed by decrease in pigments and increase of non photochemical quenching (NPQ). Release of Cu from the plants below 10 nM Cu supply in the nutrient solution indicated lack of high-affinity Cu transporters, and on the tissue level copper deficiency led to a re-distribution of zinc.

  17. Flaking behavior and microstructure evolution of nickel and copper powder during mechanical milling in liquid environment

    International Nuclear Information System (INIS)

    Xiao Xiao; Zeng Zigao; Zhao Zhongwei; Xiao Songwen

    2008-01-01

    To prepare metal flakes with a high flaking level and investigate the microstructure of metal flakes, nickel and copper powder were mechanically milled in liquid environment and the microstructure of powders was investigated by X-ray diffraction. The milling process can be divided into flaking and broken stages. At the flaking stage, milled metal powders exhibited high flaking level and flaky microshape, and became preferred orientation. While at the broken stage, the milled powders presented a low flaking level and irregular microshape, and was not preferred orientation any longer. The grain size, microstrain and dislocation density along direction varied with milling time differently from that along direction. The flaking level of the milled powders was related to the preferred orientation, and more closely to the deformation mechanism. We can strengthen the formation of preferred orientation to obtain metal powders with a high flaking level

  18. Flaking behavior and microstructure evolution of nickel and copper powder during mechanical milling in liquid environment

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiao [College of Metallurgical Science and Engineering, Central South University, Changsha 410083, Hunan (China); Changsha Research Institute of Mining and Metallurgy, Changsha 410012, Hunan (China); Zeng Zigao [Changsha Research Institute of Mining and Metallurgy, Changsha 410012, Hunan (China); Zhao Zhongwei [College of Metallurgical Science and Engineering, Central South University, Changsha 410083, Hunan (China); Xiao Songwen [Changsha Research Institute of Mining and Metallurgy, Changsha 410012, Hunan (China)], E-mail: swinxiao@yahoo.com.cn

    2008-02-25

    To prepare metal flakes with a high flaking level and investigate the microstructure of metal flakes, nickel and copper powder were mechanically milled in liquid environment and the microstructure of powders was investigated by X-ray diffraction. The milling process can be divided into flaking and broken stages. At the flaking stage, milled metal powders exhibited high flaking level and flaky microshape, and <2 0 0> became preferred orientation. While at the broken stage, the milled powders presented a low flaking level and irregular microshape, and <2 0 0> was not preferred orientation any longer. The grain size, microstrain and dislocation density along <2 0 0> direction varied with milling time differently from that along <1 1 1> direction. The flaking level of the milled powders was related to the <2 0 0> preferred orientation, and more closely to the deformation mechanism. We can strengthen the formation of <2 0 0> preferred orientation to obtain metal powders with a high flaking level.

  19. Influence of ion irradiation induced defects on mechanical properties of copper nanowires

    International Nuclear Information System (INIS)

    Li, Weina; Sun, Lixin; Xue, Jianming; Wang, Jianxiang; Duan, Huiling

    2013-01-01

    The mechanical properties of copper nanowires irradiated with energetic ions have been investigated by using molecular dynamics simulations. The Cu ions with energies ranging from 0.2 to 8.0 keV are used in our simulation, and both the elastic properties and yields under tension and compression are analyzed. The results show that two kinds of defects, namely point defects and stacking faults, appear in the irradiated nanowires depending on the incident ion energy. The Young modulus is significantly reduced by the ion irradiation, and the reduction magnitude depends on the vacancy number, which is determined by the ion energy. Moreover, the irradiated nanowires yield at a smaller strain, compared with the unirradiated nanowire. The mechanism for these changes are also discussed

  20. Membrane transport mechanism 3D structure and beyond

    CERN Document Server

    Ziegler, Christine

    2014-01-01

    This book provides a molecular view of membrane transport by means of numerous biochemical and biophysical techniques. The rapidly growing number of atomic structures of transporters in different conformations and the constant progress in bioinformatics have recently added deeper insights.   The unifying mechanism of energized solute transport across membranes is assumed to consist of the conformational cycling of a carrier protein to provide access to substrate binding sites from either side of a cellular membrane. Due to the central role of active membrane transport there is considerable interest in deciphering the principles of one of the most fundamental processes in nature: the alternating access mechanism.   This book brings together particularly significant structure-function studies on a variety of carrier systems from different transporter families: Glutamate symporters, LeuT-like fold transporters, MFS transporters and SMR (RND) exporters, as well as ABC-type importers.   The selected examples im...

  1. Study of the interaction mechanism in the biosorption of copper(II) ions onto posidonia oceanica and peat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Marta; Marzal, Paula; Gabaldon, Carmen [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, Valencia (Spain); Silvetti, Margherita; Castaldi, Paola [Dipartimento di Scienze Ambientali e Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Sassari (Italy)

    2012-04-15

    A systematic approach was used to characterize the biosorption of copper(II) onto two biosorbents, Posidonia oceanica and peat, focusing on the interaction mechanisms, the copper(II) sorption-desorption process and the thermal behavior of the biosorbents. Sorption isotherms at pH 4-6 were obtained and the experimental data were fitted to the Langmuir model with a maximum uptake (q{sub max}) at pH 6 of 85.78 and 49.69 mg g{sup -1}, for P. oceanica and peat, respectively. A sequential desorption (SD) with water, Ca(NO{sub 3}){sub 2}, and EDTA was applied to copper-saturated biosorbents. Around 65-70% copper(II) were desorbed with EDTA, indicating that this heavy metal was strongly bound. The reversibility of copper(II) sorption was obtained by desorption with HCl and SD. Fourier transform IR spectroscopy (FTIR) analysis detected the presence of peaks associated with OH groups in aromatic and aliphatic structures, CH, CH{sub 2}, and CH{sub 3} in aliphatic structures, COO{sup -} and COOH groups and unsaturated aromatic structures on the surface of both biosorbents, as well as peaks corresponding to Si-O groups on the surface of peat. The results of SEM-EDX and FTIR analysis of copper-saturated samples demonstrated that ion exchange was one of the mechanisms involved in copper(II) retention. Thermal analysis of biosorbent samples showed that copper(II) sorption-desorption processes affected the thermal stability of the biosorbents. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. In vitro kinetic studies on the mechanism of oxygen-dependent cellular uptake of copper radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Jason P; Bell, Stephen G; Wong, Luet-Lok; Dilworth, Jonathan R [Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United Kingdom); Giansiracusa, Jeffrey H [Department of Mathematics, Mathematical Institute, University of Oxford, 24-29 St Giles' , Oxford, OX1 3LB (United Kingdom)], E-mail: hollanj3@mskcc.org, E-mail: jasonpholland@gmail.com

    2009-04-07

    The development of hypoxia-selective radiopharmaceuticals for use as therapeutic and/or imaging agents is of vital importance for both early identification and treatment of cancer and in the design of new drugs. Radiotracers based on copper for use in positron emission tomography have received great attention due to the successful application of copper(II) bis(thiosemicarbazonato) complexes, such as [{sup 60/62/64}Cu(II)ATSM] and [{sup 60/62/64}Cu(II)PTSM], as markers for tumour hypoxia and blood perfusion, respectively. Recent work has led to the proposal of a revised mechanism of hypoxia-selective cellular uptake and retention of [Cu(II)ATSM]. The work presented here describes non-steady-state kinetic simulations in which the reported pO{sub 2}-dependent in vitro cellular uptake and retention of [{sup 64}Cu(II)ATSM] in EMT6 murine carcinoma cells has been modelled by using the revised mechanistic scheme. Non-steady-state (NSS) kinetic analysis reveals that the model is in very good agreement with the reported experimental data with a root-mean-squared error of less than 6% between the simulated and experimental cellular uptake profiles. Estimated rate constants are derived for the cellular uptake and washout (k{sub 1} = 9.8 {+-} 0.59 x 10{sup -4} s{sup -1} and k{sub 2} = 2.9 {+-} 0.17 x 10{sup -3} s{sup -1}), intracellular reduction (k{sub 3} = 5.2 {+-} 0.31 x 10{sup -2} s{sup -1}), reoxidation (k{sub 4} = 2.2 {+-} 0.13 mol{sup -1} dm{sup 3} s{sup -1}) and proton-mediated ligand dissociation (k{sub 5} = 9.0 {+-} 0.54 x 10{sup -5} s{sup -1}). Previous mechanisms focused on the reduction and reoxidation steps. However, the data suggest that the origins of hypoxia-selective retention may reside with the stability of the copper(I) anion with respect to protonation and ligand dissociation. In vitro kinetic studies using the nicotimamide adenine dinucleotide (NADH)-dependent ferredoxin reductase enzyme PuR isolated from the bacterium Rhodopseudomonas palustris have

  3. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  4. Grain transport mechanics in shallow flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flows. The two-phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a dispe...

  5. Grain transport mechanics in shallow overland flow

    Science.gov (United States)

    A physical model based on continuum multiphase flow is described to represent saltating transport of grains in shallow overland flow. The two phase continuum flow of water and sediment considers coupled St.Venant type equations. The interactive cumulative effect of grains is incorporated by a disper...

  6. Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis

    NARCIS (Netherlands)

    Polishchuk, Elena V.; Concilli, Mafalda; Iacobacci, Simona; Chesi, Giancarlo; Pastore, Nunzia; Piccolo, Pasquale; Paladino, Simona; Baldantoni, Daniela; van IJzendoorn, Sven C. D.; Chan, Jefferson; Chang, Christopher J.; Amoresano, Angela; Pane, Francesca; Pucci, Piero; Tarallo, Antonietta; Parenti, Giancarlo; Brunetti-Pierri, Nicola; Settembre, Carmine; Ballabio, Andrea; Polishchuk, Roman S.

    2014-01-01

    Copper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we

  7. Reaction Mechanism and Distribution Behavior of Arsenic in the Bottom Blown Copper Smelting Process

    Directory of Open Access Journals (Sweden)

    Qinmeng Wang

    2017-08-01

    Full Text Available The control of arsenic, a toxic and carcinogenic element, is an important issue for all copper smelters. In this work, the reaction mechanism and distribution behavior of arsenic in the bottom blown copper smelting process (SKS process were investigated and compared to the flash smelting process. There are obvious differences of arsenic distribution in the SKS process and flash process, resulting from the differences of oxygen potentials, volatilizations, smelting temperatures, reaction intensities, and mass transfer processes. Under stable production conditions, the distributions of arsenic among matte, slag, and gas phases are 6%, 12%, and 82%, respectively. Less arsenic is reported in the gas phase with the flash process than with the SKS process. The main arsenic species in gas phase are AsS (g, AsO (g, and As2 (g. Arsenic exists in the slag predominantly as As2O3 (l, and in matte as As (l. High matte grade is harmful to the elimination of arsenic to gas. The changing of Fe/SiO2 has slight effects on the distributions of arsenic. In order to enhance the removal of arsenic from the SKS smelting system to the gas phase, low oxygen concentration, low ratios of oxygen/ore, and low matte grade should be chosen. In the SKS smelting process, no dust is recycled, and almost all dust is collected and further treated to eliminate arsenic and recover valuable metals by other process streams.

  8. Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its characterization

    International Nuclear Information System (INIS)

    Yusoff, Mahani; Othman, Radzali; Hussain, Zuhailawati

    2011-01-01

    Research highlights: → W 2 C phase was formed at short milling time while WC only appears after longer milling time. → Cu crystallite size decreased but internal strain increased with increasing milling time. → Increasing milling time induced more WC formation, thus improving the hardness of the composite. → Electrical conductivity is reduced due to powder refinement and the presence of carbide phases. -- Abstract: Elemental powders of copper (Cu), tungsten (W) and graphite (C) were mechanically alloyed in a planetary ball mill with different milling durations (0-60 h), compacted and sintered in order to precipitate hard tungsten carbide particles into a copper matrix. Both powder and sintered composite were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) and assessed for hardness and electrical conductivity to investigate the effects of milling time on formation of nanostructured Cu-WC composite and its properties. No carbide peak was detected in the powder mixtures after milling. Carbide WC and W 2 C phases were precipitated only in the sintered composite. The formation of WC began with longer milling times, after W 2 C formation. Prolonged milling time decreased the crystallite size as well as the internal strain of Cu. Hardness of the composite was enhanced but electrical conductivity reduced with increasing milling time.

  9. Mechanism of realization economic strategy of transport organization

    Science.gov (United States)

    Palkina, E. S.

    2017-10-01

    In modern conditions of economic globalization, high dynamism of external environment, economic strategy of transport organization plays an important role in maintaining its competitive advantages, long-term development. For effective achievement of set strategic goals it is necessary to use an adequate mechanism based on completeness and interrelation of its constituent instruments. The main objective of the study presented in this paper is to develop methodological provisions on formation the mechanism of realization economic strategy for transport organizations. The principles of its construction have been proposed, the key components have been defined. Finally, an attempt to implementation this mechanism into the transport organization management system has been realized.

  10. IMPROVEMENT OF FREIGHT TRANSPORTATION PROCESS AND THEIR MANAGEMENT MECHANISM

    Directory of Open Access Journals (Sweden)

    L. V. Martsenyuk

    2014-03-01

    Full Text Available Purpose. For Ukraine as for a post-socialist state there is an objective need of reforming on railway transport. In order to meet the requirements of consumers both within the country and outside of it, it is necessary to solve transport problems in time and to introduce new technologies, without lagging behind the developed European states. The purpose of this article is identification of problems in the process of freight transportations and development of ways of their overcoming, formation of the principles of economic efficiency increase for the use of freight cars using the improvement of management mechanism of freight transportations in the conditions of reforming. Methodology. Methods of strategic planning, system approach for research on improvement of the management mechanism of freight transportations, as well as the organizational-administrative method for structure of management construction were used in this research. Findings. Authors have explored the problems arising in the process of transportation of goods and measures, which will increase the efficiency of goods transportation. Advanced mechanism of freight transportation management for its application in the conditions of the railway transport reforming was developed. It is based on management centralization. Originality. The major factors, which slow down process of cargo transportations, are investigated in the article. The principles of management mechanism improvement of freight transportations are stated. They are based on association of commercial and car-repair activity of depots. All this will allow reducing considerably a car turn by decrease in duration of idle times on railway transport, increasing the speed of freight delivery and cutting down a transport component in the price of delivered production. Practical value. The offered measures will improve the efficiency of rolling stock use and increase cargo volumes turnover, promote links of Ukraine with

  11. The effect of silver (Ag) addition to mechanical and electrical properties of copper alloy (Cu) casting product

    Science.gov (United States)

    Felicia, Dian M.; Rochiem, R.; Laia, Standley M.

    2018-04-01

    Copper have good mechanical properties and good electrical conductivities. Therefore, copper usually used as electrical components. Silver have better electrical conductivities than copper. Female contact resistor is one of the electrical component used in circuit breaker. This study aims to analyze the effect of silver addition to hardness, strength, and electric conductivity properties of copper alloy. This study uses variation of 0; 0.035; 0.07; 0.1 wt. % Ag (silver) addition to determine the effect on mechanical properties and electrical properties of copper alloy through sand casting process. Modelling of thermal analysis and structural analysis was calculated to find the best design for the sand casting experiments. The result of Cu-Ag alloy as cast will be characterized by OES test, metallography test, Brinell hardness test, tensile test, and LCR meter test. The result of this study showed that the addition of silver increase mechanical properties of Cu-Ag. The maximum hardness value of this alloy is 83.1 HRB which is Cu-0.01 Ag and the lowest is 52.26 HRB which is pure Cu. The maximum strength value is 153.2 MPa which is Cu-0.07 Ag and the lowest is 94.6 MPa which is pure Cu. Silver addition decrease electrical properties of this alloy. The highest electric conductivity is 438.98 S/m which is pure Cu and the lowest is 52.61 S.m which is Cu-0.1 Ag.

  12. The copper transporter (SLC31A1/CTR1) is expressed in bovine spermatozoa and oocytes: Copper in IVF medium improves sperm quality.

    Science.gov (United States)

    Anchordoquy, J P; Anchordoquy, J M; Pascua, A M; Nikoloff, N; Peral-García, P; Furnus, C C

    2017-07-15

    Adequate dietary intake of copper (Cu) is required for normal reproductive performance in cattle. The objective of this study was to investigate the pregnancy rates from cattle with deficient, marginal and adequate Cu plasma concentration at the beginning of artificial insemination protocol. Moreover, we determined Cu concentrations present in bovine oviductal fluid (OF), and the effects of Cu on fertilizing ability of bovine spermatozoa. Also, the presence of Cu transporter, SLC31A1 (also known as CTR1), in spermatozoa and in vitro matured oocyte were investigated. We found no differences in pregnancy rates among animals with adequate, marginal, and deficient Cu concentrations measured in plasma at the beginning of fixed-time artificial insemination (FTAI) protocol. Copper concentrations in OF were 38.3 ± 2.17 μg/dL (mean ± SEM) regardless of cupremia levels. The addition of 40 μg/dL Cu to IVF medium enhanced total and progressive motility, sperm viability, functional sperm membrane integrity (HOST), sperm-zona binding, and pronuclear formation. On the other hand, the presence of Cu in IVF medium did not modify acrosome integrity and cleavage rates after IVF, but impaired blastocyst rates. Cu transporter SLC31A1 was detected in bovine spermatozoa in the apical segment of acrosome, and in the oocyte matured in vitro. In conclusion, the results obtained in the present study determined that cupremia levels at the beginning of FTAI protocol did not influence the pregnancy rates at 60 d after insemination. The presence of CTR1 in bovine mature oocyte and spermatozoa, as well as the beneficial effect of Cu on sperm quality would suggest an important role of this mineral during the fertilization process. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  14. Breakdown conditioning of copper, CuZr and GlidCop® : effect of mechanical surface treatments

    CERN Document Server

    Ramsvik, T; Calatroni, S; Taborelli, M; CERN. Geneva. TS Department

    2007-01-01

    Motivated by the need of novel materials for the CLIC accelerating structures to resist mechanical fatigue, the copper based metals Copper Zirconium C15000 (CuZr) and GlidCop® Al-15 C15715 have been investigated by DC breakdown measurements, and compared with commercially pure Oxygen-free Copper C10100 (Cu-OFE). In all three cases the saturated breakdown fields (Esat) are similar, despite significant differences in their tensile strengths. In addition, the choice of mechanical surface preparation techniques influences the final breakdown characteristics. For both CuZr and GlidCop® immediate conditioning takes place when the surfaces are prepared by milling. For electro discharge machined (EDM) surfaces, however, several breakdown events are needed to obtain saturation. Specifically, for EDM treated CuZr and GlidCop®, ~50 and ~200 breakdown events are required to reach Esat.

  15. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  16. Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique

    International Nuclear Information System (INIS)

    Motz, C.; Schoeberl, T.; Pippan, R.

    2005-01-01

    Micro-sized bending beams with thicknesses, t, from 7.5 down to 1.0 μm were fabricated with the focused ion beam technique from a copper single crystal with an {1 1 1} orientation. The beams were loaded with a nano-indenter and the force vs. displacement curves were recorded. A strong size effect was found where the flow stress reaches almost 1 GPa for the thinnest beams. A common strain gradient plasticity approach was used to explain the size effect. However, the strong t -1.14 dependence of the flow stress could not be explained by this model. Additionally, the combination of two other dislocation mechanisms is discussed: the limitation of available dislocation sources and a dislocation pile-up at the beam centre. The contribution of the pile-up stress to the flow stress gives a t -1 dependence, which is in good agreement with the experimental results

  17. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    International Nuclear Information System (INIS)

    Coddet, Pierre; Verdy, Christophe; Coddet, Christian; Debray, François

    2016-01-01

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  18. On the mechanical and electrical properties of copper-silver and copper-silver-zirconium alloys deposits manufactured by cold spray

    Energy Technology Data Exchange (ETDEWEB)

    Coddet, Pierre, E-mail: pierre-laurent.coddet@univ-orleans.fr [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France); Verdy, Christophe; Coddet, Christian [UTBM, Site de Sévenans, 90010 Belfort Cedex (France); Debray, François [Laboratoire National des Champs Magnétiques Intenses (LNCMI – CNRS-UPS-INSA-UJF), 25 Rue des Martyrs, 38042 Grenoble (France)

    2016-04-26

    In this work, several copper alloy deposits were manufactured by cold spray with helium as accelerating and carrier gas. Electrical conductivity was measured to establish the potential of cold spray as a manufacturing process for high strength (>500 MPa) and high conductivity (>90% IACS) copper alloys. The deposits which are characterized by a low oxygen content (<200 ppm) and a low porosity level (<0.1%) present yield strength values up to about 700 MPa and electrical conductivity values up to 58.2 MS/m (100.3% IACS). Results show that, even if a compromise has to be made between the properties according to the objectives of the application, this additive manufacturing route appears suitable for the production of large copper alloys parts with high mechanical properties and high electrical and thermal conductivity. The role of alloy composition and post heat treatments on the strength and conductivity of the deposits was especially considered in this work. Cold spray deposits properties were finally compared with those obtained with other manufacturing routes.

  19. Transport mechanisms in Schottky diodes realized on GaN

    Science.gov (United States)

    Amor, Sarrah; Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Ougazzaden, Abdellah

    2017-03-01

    This work is focused on the conducted transport mechanisms involved on devices based in gallium nitride GaN and its alloys. With considering all conduction mechanisms of current, its possible to understanded these transport phenomena. Thanks to this methodology the current-voltage characteristics of structures with unusual behaviour are further understood and explain. Actually, the barrier height (SBH) is a complex problem since it depends on several parameters like the quality of the metal-semiconductor interface. This study is particularly interesting as solar cells are made on this material and their qualification is closely linked to their transport properties.

  20. On the mechanism of action of combination of thionocarbamates with xanthate during flotation of copper-molybdenum pyrite contained ores

    International Nuclear Information System (INIS)

    Nedosekina, T.V.; Glembotskij, A.V.; Bekhtle, G.A.; Novgorodova, Eh.Z.

    1985-01-01

    Investigation results of action mechanism of thionocarbamates combination with xanthate are described. It is established that these collectors are capable of co-adsorbing on pyrite surface, that is the reason for sharp increase of the floatability and disturbs the selectivity of copper-molybdenum pyrite-containing ore flotation

  1. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W.J.; Arof, A.K.

    2015-01-01

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH 3 COO) and lithium triflate (LiCF 3 SO 3 ) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF 3 SO 3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH 3 COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF 3 SO 3 dissociated more readily than LiCH 3 COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF 3 SO 3 -30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH 3 COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  2. Numerical Modelling of Mechanical Integrity of the Copper-Cast Iron Canister. A Literature Review

    International Nuclear Information System (INIS)

    Lanru Jing

    2004-04-01

    This review article presents a summary of the research works on the numerical modelling of the mechanical integrity of the composite copper-cast iron canisters for the final disposal of Swedish nuclear wastes, conducted by SKB and SKI since 1992. The objective of the review is to evaluate the outstanding issues existing today about the basic design concepts and premises, fundamental issues on processes, properties and parameters considered for the functions and requirements of canisters under the conditions of a deep geological repository. The focus is placed on the adequacy of numerical modelling approaches adopted in regards to the overall mechanical integrity of the canisters, especially the initial state of canisters regarding defects and the consequences of their evolution under external and internal loading mechanisms adopted in the design premises. The emphasis is the stress-strain behaviour and failure/strength, with creep and plasticity involved. Corrosion, although one of the major concerns in the field of canister safety, was not included

  3. Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots.

    Science.gov (United States)

    Hippler, Franz Walter Rieger; Petená, Guilherme; Boaretto, Rodrigo Marcelli; Quaggio, José Antônio; Azevedo, Ricardo Antunes; Mattos-Jr, Dirceu

    2018-05-01

    Nutritional disorders caused by copper (Cu) have affected citrus orchards. Since Cu is foliar sprayed as a pesticide to control citrus diseases, this metal accumulates in the soil. Thereby, we evaluated the effects of Cu leaf absorption after spray of different metal sources, as well as roots absorption on growth, nutritional status, and oxidative stress of young sweet orange trees. Two experiments were carried out under greenhouse conditions. The first experiment was set up with varying Cu levels to the soil (nil Cu, 0.5, 2.0, 4.0 and 8.0 g of Cu per plant as CuSO 4 .5H 2 O), whereas the second experiment with Cu application via foliar sprays (0.5 and 2.0 g of Cu per plant) and comparing two metal sources (CuSO 4 .5H 2 O or Cu(OH) 2 ). Copper was mainly accumulated in roots with soil supply, but an increase of oxidative stress levels was observed in leaves. On the other hand, Cu concentrations were higher in leaves that received foliar sprays, mainly as Cu(OH) 2 . However, when sulfate was foliar sprayed, plants exhibited more symptoms of injuries in the canopy with decreased chlorophyll contents and increased hydrogen peroxide and lipid peroxidation levels. Copper toxicity was characterized by sap leakage from the trunk and twigs, which is the first report of this specific Cu excess symptom in woody trees. Despite plants with 8.0 g of Cu soil-applied exhibiting the sap leakage, growth of new plant parts was more vigorous with lower oxidative stress levels and injuries compared to those with 4.0 g of Cu soil-applied (without sap leakage). With the highest level of Cu applied via foliar as sulfate, Cu was eliminated by plant roots, increasing the rhizospheric soil metal levels. Despite citrus likely exhibiting different mechanisms to reduce the damages caused by metal toxicity, such as responsive enzymatic antioxidant system, metal accumulation in the roots, and metal exclusion by roots, excess Cu resulted in damages on plant growth and metabolism when the

  4. Mechanical Properties of Oxide Films on Electrolytic In-process Dressing (ELID) Copper-based Grinding Wheel

    Science.gov (United States)

    Kuai, J. C.; Wang, J. W.; Jiang, C. R.; Zhang, H. L.; Yang, Z. B.

    2018-05-01

    The mechanical properties of oxide films on copper based grinding wheel were studied by nanoindentation technique. The analysis of load displacement shows that the creep phenomenon occurs during the loading stage. Results show that the oxide film and the matrix have different characteristics, and the rigidity of the copper based grinding wheel is 0.6-1.3mN/nm, which is weaker than that of the matrix; the hardness of the oxide film is 2000-2300MPa, which is higher than the matrix; and the elastic modulus of the oxide film is 100-120GPa, also higher than the matrix.

  5. Drug Transport Mechanism of Oral Antidiabetic Nanomedicines

    Science.gov (United States)

    Gundogdu, Evren; Yurdasiper, Aysu

    2014-01-01

    Context: Over the last few decades, extensive efforts have been made worldwide to develop nanomedicine delivery systems, especially via oral route for antidiabetic drugs. Absorption of insulin is hindered by epithelial cells of gastrointestinal tract, acidic gastric pH and digestive enzymes. Evidence Acquisition: Recent reports have identified and explained the beneficial role of several structural molecules like mucoadhesive polymers (polyacrylic acid, sodium alginate, chitosan) and other copolymers for the efficient transport and release of insulin to its receptors. Results: Insulin nanomedicines based on alginate-dextran sulfate core with a chitosan-polyethylene glycol-albumin shell reduced glycaemia in a dose dependent manner. Orally available exendin-4 formulations exerted their effects in a time dependent manner. Insulin nanoparticles formed by using alginate and dextran sulfate nucleating around calcium and binding to poloxamer, stabilized by chitosan, and subsequently coated with albumin showed a threefold increase of the hypoglycemic effect in comparison to free insulin in animal models. Solid lipid nanoparticles showed an enhancement of the bioavailability of repaglinide (RG) within optimized solid lipid nanoparticle formulations when compared with RG alone. Conclusions: Nanoparticles represent multiparticulate delivery systems designed to obtain prolonged or controlled drug delivery and to improve bioavailability as well as stability. Nanoparticles can also offer advantages like limiting fluctuations within therapeutic range, reducing side effects, protecting drugs from degradation, decreasing dosing frequency, and improving patient compliance and convenience PMID:24696697

  6. Drug transport mechanism of oral antidiabetic nanomedicines.

    Science.gov (United States)

    Gundogdu, Evren; Yurdasiper, Aysu

    2014-01-01

    Over the last few decades, extensive efforts have been made worldwide to develop nanomedicine delivery systems, especially via oral route for antidiabetic drugs. Absorption of insulin is hindered by epithelial cells of gastrointestinal tract, acidic gastric pH and digestive enzymes. Recent reports have identified and explained the beneficial role of several structural molecules like mucoadhesive polymers (polyacrylic acid, sodium alginate, chitosan) and other copolymers for the efficient transport and release of insulin to its receptors. Insulin nanomedicines based on alginate-dextran sulfate core with a chitosan-polyethylene glycol-albumin shell reduced glycaemia in a dose dependent manner. Orally available exendin-4 formulations exerted their effects in a time dependent manner. Insulin nanoparticles formed by using alginate and dextran sulfate nucleating around calcium and binding to poloxamer, stabilized by chitosan, and subsequently coated with albumin showed a threefold increase of the hypoglycemic effect in comparison to free insulin in animal models. Solid lipid nanoparticles showed an enhancement of the bioavailability of repaglinide (RG) within optimized solid lipid nanoparticle formulations when compared with RG alone. Nanoparticles represent multiparticulate delivery systems designed to obtain prolonged or controlled drug delivery and to improve bioavailability as well as stability. Nanoparticles can also offer advantages like limiting fluctuations within therapeutic range, reducing side effects, protecting drugs from degradation, decreasing dosing frequency, and improving patient compliance and convenience.

  7. Atomic scale numerical simulation study of elementary mechanisms of plasticity in aluminium and copper

    International Nuclear Information System (INIS)

    Aslanides, Antoine

    1998-01-01

    This study deals with elementary mechanisms of plasticity, such as the dissociation of a perfect edge dislocation into Shockley partials, the annihilation of dislocation dipoles and the interaction between a dislocation and an interface (free surface and grain boundary). Dislocation core effects are expected to influence crucially these interactions. A deeper understanding of these situations is thus achieved by resorting to an atomistic numerical approach, the application of the elastic theory of dislocations being no longer justified. Two FCC metals are considered: aluminium and copper, with respectively a small and a large dissociation width. An empirical potential for aluminium was designed to study the perfect as well as the dissociated states of the dislocation. The results are compared to the ones obtained with the interaction model for copper, for both the edge and the screw characters. The obtained core radius value ensures the continuity between the atomic and the elastic treatments. The calculations concerning edge dislocation dipole configurations show that there exists a critical distance between the glide planes of the two constitutive dislocations under which a spontaneous recombination occurs. We then compute the variation of the excess energy associated to the gradual approach of an edge dislocation toward the free surface of a crystal. An estimation of the energy required for the introduction of a dislocation in a thin film is obtained. The study of the interaction between a dislocation and a tilt grain boundary shows that the dislocation is absorbed in the interface, the stress required for its extraction being rather large. Finally, by proceeding to the simulation of a tensile test, we demonstrate that the surface steps constitute favoured sites for the nucleation of the dislocations. (author) [fr

  8. Mechanisms of postradiation transformations in alkaline-phosphate glasses activated by copper

    International Nuclear Information System (INIS)

    Vil'chinskaya, N.N.; Dmitryuk, A.V.; Ignat'ev, E.G.; Karapetyan, G.O.; Petrovskij, G.T.

    1984-01-01

    Lithium aluminophosphate glasses activated by copper served as the object under investigation. Copper content varied from 0 up to 0.13 mass.%. It is shown that pole redistribution among PO 4 2- and Cu(2) centers takes place in alkaline -phosphate glasses activated by Cu(1). This process prevails for copper content of above 0.1%. Therefore the possibility appears to evaluate the quantum yield of colour center formation

  9. Mechanisms of postradiation transformations in alkaline-phosphate glasses activated by copper

    Energy Technology Data Exchange (ETDEWEB)

    Vil' chinskaya, N.N.; Dmitryuk, A.V.; Ignat' ev, E.G.; Karapetyan, G.O.; Petrovskij, G.T. (Gosudarstvennyj Opticheskij Inst., Leningrad (USSR))

    1984-01-01

    Lithium aluminophosphate glasses activated by copper served as the object under investigation. Copper content varied from 0 up to 0.13 mass.%. It is shown that pole redistribution among PO/sub 4//sup 2 -/ and Cu(2) centers takes place in alkaline -phosphate glasses activated by Cu(1). This process prevails for copper content of above 0.1%. Therefore the possibility appears to evaluate the quantum yield of colour center formation.

  10. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen

    2002-01-01

    The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium...... and endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...... sites between ion and water transport remain undefined. In the retinal pigment epithelium, a H+-lactate cotransporter transports water. This protein could be the site of coupling between salt and water in this epithelium. The distribution of aquaporins does not suggest a role for these proteins...

  11. Dark matter "transporting" mechanism explaining positron excesses

    Science.gov (United States)

    Kim, Doojin; Park, Jong-Chul; Shin, Seodong

    2018-04-01

    We propose a novel mechanism to explain the positron excesses, which are observed by satellite-based telescopes including PAMELA and AMS-02, in dark matter (DM) scenarios. The novelty behind the proposal is that it makes direct use of DM around the Galactic Center where DM populates most densely, allowing us to avoid tensions from cosmological and astrophysical measurements. The key ingredients of this mechanism include DM annihilation into unstable states with a very long laboratory-frame life time and their "retarded" decay near the Earth to electron-positron pair(s) possibly with other (in)visible particles. We argue that this sort of explanation is not in conflict with relevant constraints from big bang nucleosynthesis and cosmic microwave background. Regarding the resultant positron spectrum, we provide a generalized source term in the associated diffusion equation, which can be readily applicable to any type of two-"stage" DM scenarios wherein production of Standard Model particles occurs at completely different places from those of DM annihilation. We then conduct a data analysis with the recent AMS-02 data to validate our proposal.

  12. Colloidal copper in aqueous solutions: radiation-chemical reduction, mechanism of formation and properties

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1994-01-01

    Colloidal copper was obtained upon γ-irradiation of aqueous solutions of divalent copper perchlorate in the presence of alcohol and polyethyleneimine (PEI). The sols were in the form of spherical particles 4 nm in diameter, which were promptly oxidized by oxygen or other oxidants. The copper ions were reduced on the surface of silver sols. The optical parameters of the obtained bimetallic particles were studied. The copper ions led to the broadening and shift of the absorption bands of the silver sols to the UV region

  13. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process

    Energy Technology Data Exchange (ETDEWEB)

    Fattah-alhosseini, A. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Imantalab, O., E-mail: o.imantalab@gmail.com [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Mazaheri, Y. [Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695 (Iran, Islamic Republic of); Keshavarz, M.K. [Department of Engineering Physics, Polytechnique Montreal, Montreal (Canada)

    2016-01-05

    In this study, the microstructural evolution, mechanical properties, and strain hardening behavior of commercial pure copper processed by the accumulative roll bonding (ARB) were investigated. Transmission electron microscopy (TEM) micrographs and atomic force microscopy (AFM) images indicated that with increasing the number of ARB cycles, the grain size of samples decreased. An Ultrafine grained (UFG) structure with an average grain size of about 200 nm was achieved after four cycles of ARB. The yield and ultimate tensile strength of pure copper with the UFG microstructure was reached about 360 MPa and 396 MPa (about 400% and 100% higher than that of the annealed state), respectively. All ARB-processed copper samples showed lower strain hardening exponent in comparison with the annealed state. Moreover, the strain hardening rate increased with increasing ARB cycles up to 3 cycles and then decreased.

  14. Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process

    International Nuclear Information System (INIS)

    Fattah-alhosseini, A.; Imantalab, O.; Mazaheri, Y.; Keshavarz, M.K.

    2016-01-01

    In this study, the microstructural evolution, mechanical properties, and strain hardening behavior of commercial pure copper processed by the accumulative roll bonding (ARB) were investigated. Transmission electron microscopy (TEM) micrographs and atomic force microscopy (AFM) images indicated that with increasing the number of ARB cycles, the grain size of samples decreased. An Ultrafine grained (UFG) structure with an average grain size of about 200 nm was achieved after four cycles of ARB. The yield and ultimate tensile strength of pure copper with the UFG microstructure was reached about 360 MPa and 396 MPa (about 400% and 100% higher than that of the annealed state), respectively. All ARB-processed copper samples showed lower strain hardening exponent in comparison with the annealed state. Moreover, the strain hardening rate increased with increasing ARB cycles up to 3 cycles and then decreased.

  15. The Mechanism of Ultrasonic Vibration on Grain Refining and Degassing in GTA Spot Welding of Copper Joints.

    Science.gov (United States)

    Al-Ezzi, Salih; Quan, Gaofeng; Elrayah, Adil

    2018-05-07

    This paper examines the effect of ultrasonic vibration (USV) on grain size and interrupted porosity in Gas Tungsten Arc (GTA) spot-welded copper. Grain size was refined by perpendicularly attaching a transducer to the welded sheet and applying USV to the weld pool for a short time (0, 2, 4, and 6 s) in addition improvements to the degassing process. Results illustrate a significant reduction of grain size (57%). Notably, USV provided interaction between reformations (fragmentation) and provided nucleation points (detaching particles from the fusion line) for grains in the nugget zone and the elimination of porosity in the nugget zone. The GTA spot welding process, in conjunction with USV, demonstrated an improvement in the corrosion potential for a copper spot-welded joint in comparison to the joint welded without assistance of USV. Finally, welding of copper by GTA spot welding in conjunction with ultrasound for 2 s presented significant mechanical properties.

  16. Microstructural Evolution and Mechanical Property Development of Selective Laser Melted Copper Alloys

    Science.gov (United States)

    Ventura, Anthony Patrick

    Selective Laser Melting (SLM) is an additive manufacturing technology that utilizes a high-power laser to melt metal powder and form a part layer-by-layer. Over the last 25 years, the technology has progressed from prototyping polymer parts to full scale production of metal component. SLM offers several advantages over traditional manufacturing techniques; however, the current alloy systems that are researched and utilized for SLM do not address applications requiring high electrical and thermal conductivity. This work presents a characterization of the microstructural evolution and mechanical property development of two copper alloys fabricated via SLM and post-process heat treated to address this gap in knowledge. Tensile testing, conductivity measurement, and detailed microstructural characterization was carried out on samples in the as-printed and heat treated conditions. A single phase solid solution strengthened binary alloy, Cu-4.3Sn, was the first alloy studied. Components were selectively laser melted from pre-alloyed Cu-4.3Sn powder and heat treated at 873 K (600 °C) and 1173 K (900 °C) for 1 hour. As-printed samples were around 97 percent dense with a yield strength of 274 MPa, an electrical conductivity of 24.1 %IACS, and an elongation of 5.6%. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a sub-micron cellular solidification sub-structure. Nanometer scale tin dioxide particles identified via XRD were found throughout the structure in the tin-rich intercellular regions. The second alloy studied was a high-performance precipitation hardening Cu-Ni-Si alloy, C70250. Pre-alloyed powder was selectively laser melted to

  17. The alternating access mechanism of transport as observed in the sodium-hydantoin transporter Mhp1

    International Nuclear Information System (INIS)

    Weyand, Simone; Shimamura, Tatsuro; Beckstein, Oliver; Sansom, Mark S. P.; Iwata, So; Henderson, Peter J. F.; Cameron, Alexander D.

    2011-01-01

    Crystal structures of a membrane protein transporter in three different conformational states provide insights into the transport mechanism. Secondary active transporters move molecules across cell membranes by coupling this process to the energetically favourable downhill movement of ions or protons along an electrochemical gradient. They function by the alternating access model of transport in which, through conformational changes, the substrate binding site alternately faces either side of the membrane. Owing to the difficulties in obtaining the crystal structure of a single transporter in different conformational states, relatively little structural information is known to explain how this process occurs. Here, the structure of the sodium-benzylhydantoin transporter, Mhp1, from Microbacterium liquefaciens, has been determined in three conformational states; from this a mechanism is proposed for switching from the outward-facing open conformation through an occluded structure to the inward-facing open state

  18. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    Science.gov (United States)

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  19. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.K., E-mail: dmisra@louisiana.edu [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); Jia, Z. [Center for Structural and Functional Materials, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70503 (United States); O' Malley, R. [Nucor Steel Decatur, LLC Sheet Mill, 4301, Iverson Blvd., Trinity, AL 35673 (United States); Jansto, S.J. [CBMM-Reference Metals Company, 1000 Old Pond Road, Bridgeville, PA 15017 (United States)

    2011-11-15

    Highlights: {yields} Copper does not significantly influence toughness. {yields} Copper precipitation during aging occurs at dislocations. {yields} Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of {epsilon}-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of {epsilon}-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  20. Precipitation behavior during thin slab thermomechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength structural steels: The effect on mechanical properties

    International Nuclear Information System (INIS)

    Misra, R.D.K.; Jia, Z.; O'Malley, R.; Jansto, S.J.

    2011-01-01

    Highlights: → Copper does not significantly influence toughness. → Copper precipitation during aging occurs at dislocations. → Precipitation of copper and carbides is mutually exclusive. - Abstract: We describe here the precipitation behavior of copper and fine-scale carbides during thermo-mechanical processing and isothermal aging of copper-bearing niobium-microalloyed high strength steels. During thermo-mechanical processing, precipitation of ε-copper occurs in polygonal ferrite and at the austenite-ferrite interface. In contrast, during isothermal aging, nucleation of ε-copper precipitation occurs at dislocations. In the three different chemistries investigated, the increase in strength associated with copper during aging results only in a small decrease in impact toughness, implying that copper precipitates do not seriously impair toughness, and can be considered as a viable strengthening element in microalloyed steels. Precipitation of fine-scale niobium carbides occurs extensively at dislocations and within ferrite matrix together with vanadium carbides. In the presence of titanium, titanium carbides act as a nucleus for niobium carbide formation. Irrespective of the nature of carbides, copper precipitates and carbides are mutually exclusive.

  1. Mechanical properties of copper processed by Equal Channel Angular Pressing – a review

    Directory of Open Access Journals (Sweden)

    Ludvík Kunz

    2012-01-01

    Full Text Available The Equal Channel Angular Pressing is a hardening treatment with which ductile metals can be processed to refine their grain and sub-grain structure. This process enhances the mechanical strength of metals in terms of tensile strength, stress-controlled fatigue strength, and fatigue crack growth resistance. In this paper the authors draw a review of the major results of a wide research activity they carried out on a copper microstructure processed by Equal Channel Angular Pressing. The essential results are that tensile and fatigue strengths of the so obtained refined structure are improved by a factor of two with respect to the original coarse-grained metal. The fatigue crack initiation mechanism and the stability of the refined microstructure under cyclic loading are topics also discussed, evidencing the essential role of the process and of the material parameter, as the content of impurities in the microstructure. In this review, the authors also underline some critical aspects that have to be more investigated.

  2. Dislocation density and mechanical threshold stress in OFHC copper subjected to SHPB loading and plate impact

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiushi [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Zhao, Feng, E-mail: ifpzfeng@163.com [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Fu, Hua; Li, Kewu [National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan, 621900 (China); Liu, Fusheng [Key Laboratory of Advanced Technologies of Materials, Southwest Jiaotong University, Chengdu, Sichuan, 610031 (China)

    2017-05-17

    The dislocation density and mechanical threshold stress (MTS) of oxygen-free high-thermal-conductivity (OFHC) copper loaded at strain rates in the range of 10{sup 2} to 10{sup 6} s{sup −1} were measured. Moderate-strain-rate (10{sup 2} to 10{sup 4} s{sup −1}) experiments were performed using a Split Hopkinson Pressure Bar (SHPB). A steel collar was placed around each specimen to control the maximum loading strain. High-strain-rate (10{sup 5} to 10{sup 6} s{sup −1}) experiments were carried out using a 57-mm-bore single-stage gas gun. The radial release effect was eliminated using the momentum trapping technique. The loaded samples were recovered, and the dislocation characteristics and dislocation density were determined by X-ray diffraction profile analysis. The fraction of the screw dislocation was found to decrease with increasing loading strain and strain rate. The dislocation density was found to lie between 1.8×10{sup 14} and 2.2×10{sup 15} m{sup −2}. Quasi-static reload compression tests were performed on the recovered samples at room temperature. The mechanical threshold stress (or the flow stress at 0 K) was obtained by fitting the reload stress–strain data to the MTS model. The results of analysis of the equivalent strain, mechanical threshold stress, and dislocation density measurements suggest that the relation between the mechanical threshold stress and the dislocation density can be described well by the Taylor relationship.

  3. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  4. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  5. Transport of Nanoparticles of Zerovalent Copper, Zinc Oxide, and Titanium Dioxide in Saturated Porous Media

    Science.gov (United States)

    Column tests show nanoparticles (NPs) of Cu(0) and ZnO were immobile at neutral pH in saturated sand.They became mobile in the presence of trizma, humic/fulvic, and citric/oxalic/formic acids. Copper NPs were mobile at pH 9. The deposition rates of TiO2 NP aggregates in both KCl ...

  6. Structure and mechanism of ATP-dependent phospholipid transporters

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura; Poulsen, Lisbeth Rosager; Bailly, Aurélien

    2015-01-01

    Background ATP-binding cassette (ABC) transporters and P4-ATPases are two large and seemingly unrelated families of primary active pumps involved in moving phospholipids from one leaflet of a biological membrane to the other. Scope of review This review aims to identify common mechanistic features...... in the way phospholipid flipping is carried out by two evolutionarily unrelated families of transporters. Major conclusions Both protein families hydrolyze ATP, although they employ different mechanisms to use it, and have a comparable size with twelve transmembrane segments in the functional unit. Further......, despite differences in overall architecture, both appear to operate by an alternating access mechanism and during transport they might allow access of phospholipids to the internal part of the transmembrane domain. The latter feature is obvious for ABC transporters, but phospholipids and other hydrophobic...

  7. Interfacial Effects on the Thermal and Mechanical Properties of Graphite/Copper Composites. Final Contractor Report Ph.D. Thesis

    Science.gov (United States)

    Devincent, Sandra Marie

    1995-01-01

    Graphite surfaces are not wet by pure copper. This lack of wetting has been responsible for a debonding phenomenon that has been found in continuous graphite fiber reinforced copper matrix composites subjected to elevated temperatures. By suitably alloying copper, its ability to wet graphite surfaces can be enhanced. Information obtained during sessile drop testing has led to the development of a copper-chromium alloy that suitably wets graphite. Unidirectionally reinforced graphite/copper composites have been fabricated using a pressure infiltration casting procedure. P100 pitch-based fibers have been used to reinforce copper and copper-chromium alloys. X-ray radiography and optical microscopy have been used to assess the fiber distribution in the cast composites. Scanning electron microscopy and Auger electron spectroscopy analyses were conducted to study the distribution and continuity of the chromium carbide reaction phase that forms at the fiber/matrix interface in the alloyed matrix composites. The effects of the chromium in the copper matrix on the mechanical and thermal properties of P100Gr/Cu composites have been evaluated through tensile testing, three-point bend testing, thermal cycling and thermal conductivity calculations. The addition of chromium has resulted in an increased shear modulus and essentially zero thermal expansion in the P100Gr/Cu-xCr composites through enhanced fiber/matrix bonding. The composites have longitudinal tensile strengths in excess of 700 MPa with elastic moduli of 393 GPa. After 100 hr at 760 deg C 84 percent of the as-cast strength is retained in the alloyed matrix composites. The elastic moduli are unchanged by the thermal exposure. It has been found that problems with spreading of the fiber tows strongly affect the long transverse tensile properties and the short transverse thermal conductivity of the P100Gr/Cu-xCr composites. The long transverse tensile strength is limited by rows of touching fibers which are paths of

  8. Structure, mechanism and cooperation of bacterial multidrug transporters.

    Science.gov (United States)

    Du, Dijun; van Veen, Hendrik W; Murakami, Satoshi; Pos, Klaas M; Luisi, Ben F

    2015-08-01

    Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Influence of grain size on the mechanical properties of nano-crystalline copper; insights from molecular dynamics simulation

    Science.gov (United States)

    Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.

    2017-10-01

    We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.

  10. Reactive-transport model for the prediction of the uniform corrosion behaviour of copper used fuel containers

    International Nuclear Information System (INIS)

    King, F.; Kolar, M.; Maak, P.

    2008-01-01

    Used fuel containers in a deep geological repository will be subject to various forms of corrosion. For containers made from oxygen-free, phosphorus-doped copper, the most likely corrosion processes are uniform corrosion, underdeposit corrosion, stress corrosion cracking, and microbiologically influenced corrosion. The environmental conditions within the repository are expected to evolve with time, changing from warm and oxidizing initially to cool and anoxic in the long-term. In response, the corrosion behaviour of the containers will also change with time as the repository environment evolve. A reactive-transport model has been developed to predict the time-dependent uniform corrosion behaviour of the container. The model is based on an experimentally-based reaction scheme that accounts for the various chemical, microbiological, electrochemical, precipitation/dissolution, adsorption/desorption, redox, and mass-transport processes at the container surface and in the compacted bentonite-based sealing materials within the repository. Coupling of the electrochemical interfacial reactions with processes in the bentonite buffer material allows the effect of the evolution of the repository environment on the corrosion behaviour of the container to be taken into account. The Copper Corrosion Model for Uniform Corrosion predicts the time-dependent corrosion rate and corrosion potential of the container, as well as the evolution of the near-field environment

  11. Transport mechanisms acting in toroidal devices: a theoretician's view

    International Nuclear Information System (INIS)

    Carreras, B.A.

    1992-01-01

    Understanding the basic mechanisms of transport in toroidal confinement devices remains one of the more challenging scientific issues in magnetic confinement. At the same time, it is a critical issue for the magnetic fusion program. Recent progress in understanding fluctuations and transport has been fostered by the development and use of new diagnostics, bringing new perspectives on these studies. This has stimulated new theoretical developments. A view of the most recent issues and progress in this area is given. The role of long wavelengths in core transport and the relation between shear flows and turbulence at the plasma edge are the primary topics considered. (Author)

  12. Mechanism of melatonin protection against copper-ascorbate-induced oxidative damage in vitro through isothermal titration calorimetry.

    Science.gov (United States)

    Ghosh, Arnab K; Naaz, Shamreen; Bhattacharjee, Bharati; Ghosal, Nirajan; Chattopadhyay, Aindrila; Roy, Souvik; Reiter, Russel J; Bandyopadhyay, Debasish

    2017-07-01

    Involvement of oxidative stress in cardiovascular diseases is well established. Melatonin's role as an antioxidant and free radical scavenger via its receptor dependent and receptor independent pathways is well known. The aim of this study is to identify and elaborate upon a third mechanism by which melatonin is able to abrogate oxidative stress. Oxidative stress was induced in vitro, by copper (0.2mM)-ascorbate (1mM) in isolated goat heart mitochondria, cytosol and peroxisomes and they were co-incubated with graded doses of melatonin. Similar experiments in a cell-free chemical system involving two pure antioxidant enzymes, Cu-Zn superoxide dismutase and catalase was also carried out. Biochemical changes in activity of these antioxidant enzymes were analysed. Isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase were also carried out. Incubation with copper-ascorbate led to alteration in activity of Cu-Zn superoxide dismutase and catalase which were found to be protected upon co-incubation with melatonin (80μM for catalase and 1μM for others). Results of isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase along with different combinations of copper chloride, ascorbic acid and melatonin suggest that when melatonin is present in the reaction medium along with copper-ascorbate, it restrains the copper-ascorbate molecules by binding with them physically along with scavenging the free radicals generated by them. The present study suggests that possibly, binding of melatonin with antioxidant enzymes masks the vulnerable sites of these antioxidant enzymes, thus preventing oxidative damage by copper-ascorbate molecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Membrane-traversing mechanism of thyroid hormone transport by monocarboxylate transporter 8.

    Science.gov (United States)

    Protze, Jonas; Braun, Doreen; Hinz, Katrin Manuela; Bayer-Kusch, Dorothea; Schweizer, Ulrich; Krause, Gerd

    2017-06-01

    Monocarboxylate transporter 8 (MCT8) mediates thyroid hormone (TH) transport across the plasma membrane in many cell types. In order to better understand its mechanism, we have generated three new MCT8 homology models based on sugar transporters XylE in the intracellular opened (PDB ID: 4aj4) and the extracellular partly occluded (PDB ID: 4gby) conformations as well as FucP (PDB ID: 3o7q) and GLUT3 (PDB ID: 4zwc) in the fully extracellular opened conformation. T 3 -docking studies from both sides revealed interactions with His192, His415, Arg445 and Asp498 as previously identified. Selected mutations revealed further transport-sensitive positions mainly at the discontinuous transmembrane helices TMH7 and 10. Lys418 is potentially involved in neutralising the charge of the TH substrate because it can be replaced by charged, but not by uncharged, amino acids. The side chain of Thr503 was hypothesised to stabilise a helix break at TMH10 that undergoes a prominent local shift during the transport cycle. A T503V mutation accordingly affected transport. The aromatic Tyr419, the polar Ser313 and Ser314 as well as the charged Glu422 and Glu423 lining the transport channel have been studied. Based on related sugar transporters, we suggest an alternating access mechanism for MCT8 involving a series of amino acid positions previously and newly identified as critical for transport.

  14. Fresh and mechanical properties of self compacting concrete containing copper slag as fine aggregates

    Directory of Open Access Journals (Sweden)

    Rahul Sharma

    2017-03-01

    Full Text Available An investigation is carried out on the development of Self Compacting Concrete (SCC using copper slag (CS as fine aggregates with partial and full replacement of sand. Six different SCC mixes (60% OPC and 40% Fly Ash with 0% as control mix, 20%, 40%, 60%, 80% and 100% of copper slag substituting sand with constant w/b ratio of 0.45 were cast and tested for fresh properties of SCC. Compressive strength and splitting tensile strength were evaluated at different ages and microstructural analysis was observed at 120 days. It has been observed that the fluidity of SCC mixes was significantly enhanced with the increment of copper slag. The test results showed that the compressive strength increases up to 60% copper slag as replacement of sand, beyond which decrease in strength was observed. The highest compressive strength was obtained at 20% copper slag substitution at different curing ages among all the mixes, except for 7 days curing. The splitting tensile strength of the CS substituted mixes in comparison to control concrete was found to increase at all the curing ages but the remarkable achievement of strength was detected at 60% copper slag replacement. The microscopic view from Scanning electron microscopy (SEM demonstrated more voids, capillary channels, and micro cracks with the increment of copper slag as substitution of sand as compared to the control mix.

  15. Molecular Dynamics Study on Lubrication Mechanism in Crystalline Structure between Copper and Sulfur

    Directory of Open Access Journals (Sweden)

    Ken-ichi Saitoh

    2015-01-01

    Full Text Available To clarify the nanosized mechanism of good lubrication in copper disulfide (Cu2S crystal which is used as a sliding material, atomistic modeling of Cu2S is conducted and molecular dynamics (MD simulations are performed in this paper. The interatomic interaction between atoms and crystalline structure in the phase of hexagonal crystal of Cu2S are carefully estimated by first-principle calculations. Then, approximating these interactions, we originally construct a conventional interatomic potential function of Cu2S crystal in its hexagonal phase. By using this potential function, we perform MD simulation of Cu2S crystal which is subjected to shear loading parallel to the basal plane. We compare results obtained by different conditions of sliding directions. Unlike ordinary hexagonal metallic crystals, it is found that the easy-glide direction does not always show small shear stress for Cu2S crystal. Besides, it is found that shearing velocity affects largely the magnitude of averaged shear stress. Generally speaking, higher velocity results in higher resistance against shear deformation. As a result, it is understood that Cu2S crystal exhibits somewhat liquid-like (amorphous behavior in sliding condition and shear resistance increases with increase of sliding speed.

  16. Salinity-dependent mechanisms of copper toxicity in the galaxiid fish, Galaxias maculatus.

    Science.gov (United States)

    Glover, Chris N; Urbina, Mauricio A; Harley, Rachel A; Lee, Jacqueline A

    2016-05-01

    The euryhaline galaxiid fish, inanga (Galaxias maculatus) is widely spread throughout the Southern hemisphere occupying near-coastal streams that may be elevated in trace elements such as copper (Cu). Despite this, nothing is known regarding their sensitivity to Cu contamination. The mechanisms of Cu toxicity in inanga, and the ameliorating role of salinity, were investigated by acclimating fish to freshwater (FW), 50% seawater (SW), or 100% SW and exposing them to a graded series of Cu concentrations (0-200μgL(-1)) for 48h. Mortality, whole body Cu accumulation, measures of ionoregulatory disturbance (whole body ions, sodium (Na) influx, sodium/potassium ATPase activity) and ammonia excretion were monitored. Toxicity of Cu was greatest in FW, with mortality likely resulting from impaired Na influx. In both FW and 100% SW, ammonia excretion was significantly elevated, an effect opposite to that observed in previous studies, suggesting fundamental differences in the effect of Cu in this species relative to other studied fish. Salinity was protective against Cu toxicity, and physiology seemed to play a more important role than water chemistry in this protection. Inanga are sensitive to waterborne Cu through a conserved impairment of Na ion homeostasis, but some effects of Cu exposure in this species are distinct. Based on effect concentrations, current regulatory tools and limits are likely protective of this species in New Zealand waters. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Parametric Investigation on Microstructure and Mechanical Properties of Ultrasonic spot welded Aluminium to Copper sheets

    Science.gov (United States)

    Prasad Satpathy, Mantra; Das Mohapatra, Kasinath; Sahoo, Ananda Kumar; Sahoo, Susanta Kumar

    2018-03-01

    Ultrasonic welding is one of the promising solid state welding methods which have been widely used to join highly conductive materials like aluminum and copper. Despite these applications in the automotive field, other industries also have a strong interest to adopt this process for joining of various advanced alloys. In some of its applications, poor weld strength and sticking of the workpiece to the tool are issues. Thus, an attempt has been taken in the present study to overcome these issues by performing experiments with a suitable range of weld parameters. The major objectives of this study are to obtain a good joint strength with a reduced sticking phenomenon and microstructure of Al-Cu weld coupons. The results uncovered the mechanical strength of the joint increased up to 0.34 sec of weld time and afterward, it gradually decreased. Meantime, the plastic deformation in the weld zone enhanced the formation of an intermetallic layer of 1.5 μm thick, and it is composed of mainly Al2Cu compound. The temperature evolved during the welding process is also measured by thermocouples to show its relationship with the plastic deformation. The present work exemplifies a finer understanding of the failure behavior of joints and provides an insight of ultrasonic welding towards the improvement in the quality of weld.

  18. Efficient removal of copper from wastewater by using mechanically activated calcium carbonate.

    Science.gov (United States)

    Hu, Huimin; Li, Xuewei; Huang, Pengwu; Zhang, Qiwu; Yuan, Wenyi

    2017-12-01

    Copper removal from aqueous solution is necessary from the stances of both environmental protection and copper resource recycling. It is important to develop a new chemical precipitation method suitable for removing copper particularly at low concentration as the case of waste mine water, with regards to the various problems related to the current precipitation methods by using strong alkalis or soluble sulfides. In this research, we studied a possible chemical precipitation of copper ions at concentration around 60 mg/L or lower by cogrinding copper sulfate in water with calcium carbonate (CaCO 3 ) using wet stirred ball milling. With the aid of ball milling, copper precipitation as a basic sulfate (posnjakite: Cu 4 (SO 4 ) (OH) 6 ·H 2 O) occurred at a very high copper removal rate of 99.76%, to reduce the residual copper concentration in the solution less than 0.5 mg/L, reaching the discharge limit, even with the addition amount of CaCO 3 as a stoichiometric ratio of CaCO 3 /Cu 2+ at 1:1. It is more interesting to notice that, at the same conditions, other heavy metals such as Ni, Mn, Zn and Cd do not precipitate obviously just with CaCO 3 addition at CaCO 3 /M 2+ at 1:1 so that the precipitate without the impurities can be processed as good source to recover copper. This newly proposed concept can be further developed to treat wastewaters with other metals to serve both purposes of environmental purification and resource recovery in a similar way. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of the Copper on Thermo - Mechanical and Optical Properties of S-Se-Cu Chalcogenide Glasses

    Science.gov (United States)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-03-01

    The S15Se85-xCux (x = 0, 2, 4, 6, 8) chalcogenide glasses are synthesized using melt quenching technique and the effect of Copper on thermal, mechanical and optical properties of chalcogenide glasses are investigated. The glassy natures of the prepared samples were verified by X-ray diffraction and DSC studies. The optical band gap of the samples is estimated and it is observed that optical band gap is decreased with increasing of the copper content and is discussed in terms of cohesive energy and coordination number. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network and the modulus of Elasticity (E) are calculated in present glasses. The composition dependence of micro hardness is discussed in terms of heat of atomization energy.

  20. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  1. Effect of curettage and copper wire on rabbit endometrium: a novel rabbit model of endometrial mechanical injury.

    Science.gov (United States)

    Li, Li; Shi, Jing; Zhang, Qiu-Fang; Yan, Jie; Yan, Li-Ying; Shen, Fei; Qiao, Jie; Feng, Huai-Liang

    2011-06-01

    It remains almost a helpless situation for the recurrent implantation failure and pregnancy loss caused by endometrial injury at present. The purpose of this study was to develop a rabbit model of endometrial mechanical injury that could provide a research platform for this difficult clinical predicament. Three experiments were conducted. Experiment 1: Curettages in both uterus horns and copper wire inserting after curettage (double-injury) in one horn. The histological changes were monitored at 0, 24, 48, 72 hours, as well as in 1 and 2 weeks after operation. Experiment 2: Direct copper wire inserting in one horn and double-injury in other horn. The wires in both horns were removed after 2 weeks. The histological changes were recorded at 0, 1 and 2 weeks after wire removal. Experiment 3: Double-injury procedure in one horn was performed and wire was removed after 2 weeks; another horn was remained normal to serve as control. Histological changes were recorded, tissue areas were measured, and proliferation indices (PIs, %) were calculated at 1, 2, 4 and 8 weeks after wire removal, respectively. The experiments revealed that the injured endometrium by simple curettage or copper wire could be fully repaired. While the endometrial regeneration was severely impaired by double-injury, both areas of endometrium and uterine cavity decreased (P copper wire with comparable clinical index.

  2. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry.

    Science.gov (United States)

    Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A

    2005-06-01

    Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.

  3. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas

    DEFF Research Database (Denmark)

    Pedersen, L. B.; Geimer, S.; Rosenbaum, J. L.

    2006-01-01

    Background The assembly and maintenance of eukaryotic cilia and flagella are mediated by intraflagellar transport (IFT), a bidirectional microtubule (MT)-based transport system. The IFT system consists of anterograde (kinesin-2) and retrograde (cDynein1b) motor complexes and IFT particles...... comprising two complexes, A and B. In the current model for IFT, kinesin-2 carries cDynein1b, IFT particles, and axonemal precursors from the flagellar base to the tip, and cDynein1b transports kinesin-2, IFT particles, and axonemal turnover products from the tip back to the base. Most of the components...... of the IFT system have been identified and characterized, but the mechanisms by which these different components are coordinated and regulated at the flagellar base and tip are unclear. Results Using a variety of Chlamydomonas mutants, we confirm that cDynein1b requires kinesin-2 for transport toward the tip...

  4. Issues in tokamak/stellarator transport and confinement enhancement mechanisms

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1990-08-01

    At present, the mechanism for anomalous energy transport in low-β toroidal plasmas -- tokamaks and stellarators -- remains unclear, although transport by turbulent E x B velocities associated with nonlinear, fine-scale microinstabilities is a leading candidate. This article discusses basic theoretical concepts of various transport and confinement enhancement mechanisms as well as experimental ramifications which would enable one to distinguish among them and hence identify a dominant transport mechanism. While many of the predictions of fine-scale turbulence are born out by experiment, notable contradictions exist. Projections of ignition margin rest both on the scaling properties of the confinement mechanism and on the criteria for entering enhanced confinement regimes. At present, the greatest uncertainties lie with the basis for scaling confinement enhancement criteria. A series of questions, to be answered by new experimental/theoretical work, is posed to resolve these outstanding contradictions (or refute the fine-scale turbulence model) and to establish confinement enhancement criteria. 73 refs., 4 figs., 5 tabs

  5. Evaporation as the transport mechanism of metals in arid regions

    NARCIS (Netherlands)

    Lima, A.T.; Safar, Z.; Loch, J.P.G.

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high

  6. Mechanical transport and dissemination of soil-transmitted helminth ...

    African Journals Online (AJOL)

    In previous studies, helminth eggs were isolated from wild-caught Musca domestica L. (Diptera: Muscidae). This laboratory study investigated the potential of the fly for mechanical transport and transmission of soil-transmitted helminths. Naïve, 2-3 day old, laboratory-reared adult flies were exposed to a mixture of Ascaris ...

  7. Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper

    Science.gov (United States)

    Lee, Seung-Mahn

    2003-10-01

    Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP

  8. Early metabolic effects and mechanism of ammonium transport in yeast

    International Nuclear Information System (INIS)

    Pena, A.; Pardo, J.P.; Ramirez, J.

    1987-01-01

    Studies were performed to define the effects and mechanism of NH+4 transport in yeast. The following results were obtained. Glucose was a better facilitator than ethanol-H 2 O 2 for ammonium transport; low concentrations of uncouplers or respiratory inhibitors could inhibit the transport with ethanol as the substrate. With glucose, respiratory inhibitors showed only small inhibitory effects, and only high concentrations of azide or trifluoromethoxy carbonylcyanide phenylhydrazone could inhibit ammonium transport. Ammonium in the free state could be concentrated approximately 200-fold by the cells. Also, the addition of ammonium produced stimulation of both respiration and fermentation; an increased rate of H+ extrusion and an alkalinization of the interior of the cell; a decrease of the membrane potential, as monitored by fluorescent cyanine; an immediate decrease of the levels of ATP and an increase of ADP, which may account for the stimulation of both fermentation and respiration; and an increase of the levels of inorganic phosphate. Ammonium was found to inhibit 86Rb+ transport much less than K+. Also, while K+ produced a competitive type of inhibition, that produced by NH4+ was of the noncompetitive type. From the distribution ratio of ammonium and the pH gradient, an electrochemical potential gradient of around -180 mV was calculated. The results indicate that ammonium is transported in yeast by a mechanism similar to that of monovalent alkaline cations, driven by a membrane potential. The immediate metabolic effects of this cation seem to be due to an increased [H+]ATPase, to which its transport is coupled. However, the carriers seem to be different. The transport system studied in this work was that of low affinity

  9. Charge carrier transport mechanisms in nanocrystalline indium oxide

    International Nuclear Information System (INIS)

    Forsh, E.A.; Marikutsa, A.V.; Martyshov, M.N.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.

    2014-01-01

    The charge transport properties of nanocrystalline indium oxide (In 2 O 3 ) are studied. A number of nanostructured In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method and characterized using various techniques. The mean nanocrystals size varies from 7–8 nm to 18–20 nm depending on the conditions of their preparation. Structural characterizations of the In 2 O 3 samples are performed by means of transmission electron microscopy and X-ray diffraction. The analysis of dc and ac conductivity in a wide temperature range (T = 50–300 K) shows that at high temperatures charge carrier transport takes place over conduction band and at low temperatures a variable range hopping transport mechanism can be observed. We find out that the temperature of transition from one mechanism to another depends on nanocrystal size: the transition temperature rises when nanocrystals are bigger in size. The average hopping distance between two sites and the activation energy are calculated basing on the analysis of dc conductivity at low temperature. Using random barrier model we show a uniform hopping mechanism taking place in our samples and conclude that nanocrystalline In 2 O 3 can be regarded as a disordered system. - Highlights: • In 2 O 3 samples with various nanocrystal sizes are prepared by sol–gel method. • The mean nanocrystal size varies from 7–8 nm to 18–20 nm. • At high temperatures charge carrier transport takes place over conduction band. • At low temperatures a variable range hopping transport mechanism can be observed. • We show a uniform hopping mechanism taking place in our samples

  10. Mechanism of central ion exchange in the neodymium (3) ethylenediamine-tetraacetate-copper (2) and erbium (3) ethylenediaminetetraacetate-copper (2) systems in ageous solution

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.; Spitsyn, V.I.

    1984-01-01

    The spectrophotometry method in the stationary regime and the ''Stopped Flow'' method in the prestationary regime are used to study kinetics and exchange mechanism in NdA - -Cu 2+ and ErA - -Cu 2+ (A=EDTA) systems at pH 4.0-6.0 and initial Cu 2+ concentrations (0.5-6.0)x10 -2 M, Nd 3+ , Er 3 2H+ (0-1.0)x10 -2 M. On the basis of considering the dependence of kinetic exchange characteristics on the value of initial Ln 3+ and Cu 2+ concentrations it is shown that stability constant of appearing intermediate binuclear complex [NdACu 2+ ] correlates with stability constant of copper acetate, i. e. incoming Cu 2+ cation coordinates by EDTA acetogroup at the first stage of reaction. Stability constant of [ErACu + ) correlates with outer spheric association constant, i. e. at the earlier exchange stage in the associative mechanism in the ErA - -Cu 2+ system, formation of outer spheric associate takes place. Considerable difference in exchange mechanisms for light and heavy rare earths is explained by lesser strength in metal-oxygen bond in initial NdA - as compared with ErA - . Bond strengthening in the initial rare earth complexonate prevents the formation of stable intermediate binuclear complexes which causes decrease in the exchange rate according to the associative mechanism in LuAsup(-)-Mnsup(n+) systems

  11. Increased coordination in public transport – which mechanisms are available?

    DEFF Research Database (Denmark)

    Sørensen, Claus Hedegaard; Longva, Frode

    2011-01-01

    After several years of New Public Management reforms within public transport, coordination seems to receive increased attention. With examples of actual as well as suggested changes taken from Denmark, Sweden and the UK the aim of the article is to analyse and classify the mechanisms utilized...... mechanism has its strengths and failures. The article also debates to what extent the mechanisms conflict with three core characteristics of New Public Management: Unbundling of the public sector into corporatized units; more contract-based competitive provision; and greater emphasis on output controls....

  12. Effects of spin–orbit coupling and many-body correlations in STM transport through copper phthalocyanine

    Directory of Open Access Journals (Sweden)

    Benjamin Siegert

    2015-12-01

    Full Text Available The interplay of exchange correlations and spin–orbit interaction (SOI on the many-body spectrum of a copper phtalocyanine (CuPc molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet–triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects.

  13. Effect of Copper Coated SiC Reinforcements on Microstructure, Mechanical Properties and Wear of Aluminium Composites

    Science.gov (United States)

    Kori, P. S.; Vanarotti, Mohan; Angadi, B. M.; Nagathan, V. V.; Auradi, V.; Sakri, M. I.

    2017-08-01

    Experimental investigations are carried out to study the influence of copper coated Silicon carbide (SiC) reinforcements in Aluminum (Al) based Al-SiC composites. Wear behavior and mechanical Properties like, ultimate tensile strength (UTS) and hardness are studied in the present work. Experimental results clearly revealed that, an addition of SiC particles (5, 10 and 15 Wt %) has lead in the improvement of hardness and ultimate tensile strength. Al-SiC composites containing the Copper coated SiC reinforcements showed better improvement in mechanical properties compared to uncoated ones. Characterization of Al-SiC composites are carried out using optical photomicrography and SEM analysis. Wear tests are carried out to study the effects of composition and normal pressure using Pin-On Disc wear testing machine. Results suggested that, wear rate decreases with increasing SiC composition, further an improvement in wear resistance is observed with copper coated SiC reinforcements in the Al-SiC metal matrix composites (MMC’s).

  14. Electric field-induced hole transport in copper(i) thiocyanate (CuSCN) thin-films processed from solution at room temperature

    KAUST Repository

    Pattanasattayavong, Pichaya; Ndjawa, Guy Olivier Ngongang; Zhao, Kui; Chou, Kang Wei; Yaacobi-Gross, Nir; O'Regan, Brian C.; Amassian, Aram; Anthopoulos, Thomas D.

    2013-01-01

    The optical, structural and charge transport properties of solution-processed films of copper(i) thiocyanate (CuSCN) are investigated in this work. As-processed CuSCN films of ∼20 nm in thickness are found to be nano-crystalline, highly transparent and exhibit intrinsic hole transporting characteristics with a maximum field-effect mobility in the range of 0.01-0.1 cm2 V-1 s-1. © 2013 The Royal Society of Chemistry.

  15. Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Anjum, Naser A., E-mail: anjum@ua.pt [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Adam, Vojtech [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno (Czech Republic); Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Kizek, Rene [Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno (Czech Republic); Duarte, Armando C.; Pereira, Eduarda [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); Iqbal, Muhammad [Department of Botany, Faculty of Science, Hamdard University, New Delhi 110062 (India); Lukatkin, Alexander S. [Department of Botany, Plant Physiology and Ecology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 68. Saransk 430005 (Russian Federation); Ahmad, Iqbal, E-mail: ahmadr@ua.pt [CESAM-Centre for Environmental and Marine Studies & Department of Chemistry, University of Aveiro, 3810-193 Aveiro (Portugal); CESAM-Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, 3810-193 Aveiro (Portugal)

    2015-04-15

    Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major ‘eco-receptors’ of nanoscale particles in the terrestrial ecosystem, soil–microbiota and plants (the soil–plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil–plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil–plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil–plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil–microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil–microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the

  16. Nanoscale copper in the soil–plant system – toxicity and underlying potential mechanisms

    International Nuclear Information System (INIS)

    Anjum, Naser A.; Adam, Vojtech; Kizek, Rene; Duarte, Armando C.; Pereira, Eduarda; Iqbal, Muhammad; Lukatkin, Alexander S.; Ahmad, Iqbal

    2015-01-01

    Nanoscale copper particles (nano-Cu) are used in many antimicrobial formulations and products for their antimicrobial activity. They may enter deliberately and/or accidentally into terrestrial environments including soils. Being the major ‘eco-receptors’ of nanoscale particles in the terrestrial ecosystem, soil–microbiota and plants (the soil–plant system) have been used as a model to dissect the potential impact of these particles on the environmental and human health. In the soil–plant system, the plant can be an indirect non-target organism of the soil-associated nano-Cu that may in turn affect plant-based products and their consumers. By all accounts, information pertaining to nano-Cu toxicity and the underlying potential mechanisms in the soil–plant system remains scanty, deficient and little discussed. Therefore, based on some recent reports from (bio)chemical, molecular and genetic studies of nano-Cu versus soil–plant system, this article: (i) overviews the status, chemistry and toxicity of nano-Cu in soil and plants, (ii) discusses critically the poorly understood potential mechanisms of nano-Cu toxicity and tolerance both in soil–microbiota and plants, and (iii) proposes future research directions. It appears from studies hitherto made that the uncontrolled generation and inefficient metabolism of reactive oxygen species through different reactions are the major factors underpinning the overall nano-Cu consequences in both the systems. However, it is not clear whether the nano-Cu or the ion released from it is the cause of the toxicity. We advocate to intensify the multi-approach studies focused at a complete characterization of the nano-Cu, its toxicity (during life cycles of the least-explored soil–microbiota and plants), and behavior in an environmentally relevant terrestrial exposure setting. Such studies may help to obtain a deeper insight into nano-Cu actions and address adequately the nano-Cu-associated safety concerns in the

  17. Whole shaft visibility and mechanical performance for active MR catheters using copper-nitinol braided polymer tubes

    Directory of Open Access Journals (Sweden)

    McVeigh Elliot R

    2009-08-01

    Full Text Available Abstract Background Catheter visualization and tracking remains a challenge in interventional MR. Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. Results The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability and antenna (signal attenuation properties. With this configuration, the temperature increase remained less than 2°C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. Conclusion We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.

  18. Mechanical properties of wood from Pinus sylvestris L. treated with Light Organic Solvent Preservative and with waterborne Copper Azole

    Directory of Open Access Journals (Sweden)

    A.M. Villasante

    2013-12-01

    Full Text Available Aim of study: To determine the effect on wood from Pinus sylvestris of treatment with preservatives on mechanical properties and to establish the relation between the penetration and compression strength.Area of study: SpainMaterial and Methods: 40 samples of defect-free wood from Pinus sylvestris L. were treated with Light Organic Solvent Preservative (Vacsol Azure WR 2601 and 50 with waterborne Copper Azole (Tanalith E 3492. 40 control samples were not treated (water or preservative. Mechanical resistance to static bending, modulus of elasticity and compression strength parallel to the grain were compared with untreated wood. Regression analysis between the penetration and compression strength parallel was done with the samples treated with waterborne preservative.Main results: The results indicate that the treated wood (with either product presents a statistically significant increase in mechanical resistance in all three mechanical characteristics. The results obtained differ from earlier studies carried out by other authors.There was no correlation between parallel compression strength and the degree of impregnation of the wood with waterborne Copper Azole . The most probable explanation for these results concerns changes in pressure during treatment.The use of untreated control samples instead of samples treated only with water is more likely to produce significant results in the mechanical resistance studies.Research highlights: Treated wood presents a statistically significant increase in MOE, modulus of rupture to static bending  and parallel compression strength.There was no correlation between parallel compression strength and the degree of impregnation with waterborne preservative.Keywords: Light Organic Solvent Preservative; MOE; parallel compression; static bending; waterborne Copper Azole; wood technology.

  19. Ion transport restriction in mechanically strained separator membranes

    Science.gov (United States)

    Cannarella, John; Arnold, Craig B.

    2013-03-01

    We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the α and γ parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression.

  20. On the mechanism of charge transport in low density polyethylene

    Science.gov (United States)

    Upadhyay, Avnish K.; Reddy, C. C.

    2017-08-01

    Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.

  1. TRANSMISSION OF IMPACTS DURING MECHANICAL GRAPE HARVESTING AND TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    Fabio Pezzi

    2008-09-01

    Full Text Available The aim of the research was to study vibrational stress on grapes during mechanical harvesting, transfer and delivery to the winery, in order to identify the most critical stages and the consequent effects on the winemaking. An instrumented sphere was used to evaluate and memorise the impacts in the grape harvester and means of transport. Three treatments, obtained by differing harvesting method (manual and mechanical and transport type (short and long distance, were compared. A correlation was sought between the transmitted stresses and characteristics of the harvested product. The effects on product quality were evaluated by chemical analyses of the musts and sensorial analysis of the end-product, vinified using the same procedure.

  2. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  3. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsiao, Chun-I. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsu, Wen-Dung, E-mail: wendung@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China)

    2014-01-15

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  4. Mechanical properties of wood from Pinus sylvestris L. treated with Light Organic Solvent Preservative and with waterborne Copper Azole

    Energy Technology Data Exchange (ETDEWEB)

    Villasante, A.; Laina, R.; Rojas, J. A. M.; Rojas, I. M.; Vignote, S.

    2013-07-01

    Aim of study: To determine the effect on wood from Pinus sylvestris of treatment with preservatives on mechanical properties and to establish the relation between the penetration and compression strenght. Area of study: Spain. Material and methods: 40 samples of defect-free wood from Pinus sylvestris L. were treated with Light Organic Solvent Preservative (Vacsol Azure WR 2601) and 50 with waterborne Copper Azole (Tanalith E 3492). 40 control samples were not treated (water or preservative). Mechanical resistance to static bending, modulus of elasticity and compression strength parallel to the grain were compared with untreated wood. Regression analysis between the penetration and compression strength parallel was done with the samples treated with waterborne preservative. Main results: The results indicate that the treated wood (with either product) presents a statistically significant increase in mechanical resistance in all three mechanical characteristics. The results obtained differ from earlier studies carried out by other authors. There was no correlation between parallel compression strength and the degree of impregnation of the wood with waterborne Copper Azole. The most probable explanation for these results concerns changes in pressure during treatment. The use of untreated control samples instead of samples treated only with water is more likely to produce significant results in the mechanical resistance studies. Research highlights: Treated wood presents a statistically significant increase in MOE, modulus of rupture to static bending and parallel compression strength. There was no correlation between parallel compression strength and the degree of impregnation with waterborne preservative. (Author)

  5. Transport of copper as affected by titania nanoparticles in soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Fang Jing [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012 (China); Shan Xiaoquan, E-mail: xiaoquan@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wen Bei [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Lin Jinming [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Owens, Gary [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095 (Australia); Zhou Shuairen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2011-05-15

    The effects of TiO{sub 2} nanoparticles on the transport of Cu through four different soil columns were studied. For two soils (HB and DX), TiO{sub 2} nanoparticles acted as a Cu carrier and facilitated the transport of Cu. For a third soil (BJ) TiO{sub 2} nanoparticles also facilitated Cu transport but to a much lesser degree, but for a fourth soil (HLJ) TiO{sub 2} nanoparticles retarded the transport of Cu. Linear correlation analysis indicated that soil properties rather than sorption capacities for Cu primary governed whether TiO{sub 2} nanoparticles-facilitated Cu transport. The TiO{sub 2}-associated Cu of outflow in the Cu-contaminated soil columns was significantly positively correlated with soil pH and negatively correlated with CEC and DOC. During passage through the soil columns 46.6-99.9% of Cu initially adsorbed onto TiO{sub 2} could be 'stripped' from nanoparticles depending on soil, where Cu desorption from TiO{sub 2} nanoparticles increased with decreasing flow velocity and soil pH. - Highlights: > TiO{sub 2} nanoparticles could facilitate or retard the transport of Cu in soils. > Soil properties primarily governed TiO{sub 2}-facilitated Cu transport. > Cu initially adsorbed onto TiO{sub 2} could be 'stripped' duing transport. - TiO{sub 2} nanoparticles play an important role in mediating and transporting Cu in soil columns.

  6. Small substrate transport and mechanism of a molybdate ATP binding cassette transporter in a lipid environment.

    Science.gov (United States)

    Rice, Austin J; Harrison, Alistair; Alvarez, Frances J D; Davidson, Amy L; Pinkett, Heather W

    2014-05-23

    Embedded in the plasma membrane of all bacteria, ATP binding cassette (ABC) importers facilitate the uptake of several vital nutrients and cofactors. The ABC transporter, MolBC-A, imports molybdate by passing substrate from the binding protein MolA to a membrane-spanning translocation pathway of MolB. To understand the mechanism of transport in the biological membrane as a whole, the effects of the lipid bilayer on transport needed to be addressed. Continuous wave-electron paramagnetic resonance and in vivo molybdate uptake studies were used to test the impact of the lipid environment on the mechanism and function of MolBC-A. Working with the bacterium Haemophilus influenzae, we found that MolBC-A functions as a low affinity molybdate transporter in its native environment. In periods of high extracellular molybdate concentration, H. influenzae makes use of parallel molybdate transport systems (MolBC-A and ModBC-A) to take up a greater amount of molybdate than a strain with ModBC-A alone. In addition, the movement of the translocation pathway in response to nucleotide binding and hydrolysis in a lipid environment is conserved when compared with in-detergent analysis. However, electron paramagnetic resonance spectroscopy indicates that a lipid environment restricts the flexibility of the MolBC translocation pathway. By combining continuous wave-electron paramagnetic resonance spectroscopy and substrate uptake studies, we reveal details of molybdate transport and the logistics of uptake systems that employ multiple transporters for the same substrate, offering insight into the mechanisms of nutrient uptake in bacteria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. As if Kyoto mattered: The clean development mechanism and transportation

    International Nuclear Information System (INIS)

    Christopher Zegras, P.

    2007-01-01

    Transportation is a major source of greenhouse gas (GHG) emissions and the most rapidly growing anthropogenic source. In the future, the developing world will account for the largest share of transport GHG increases. Four basic components drive transportation energy consumption and GHG emissions: activities (A), mode share (S), fuel intensity (I) and fuel choice (F) (ASIF). Currently, the Kyoto Protocol's clean development mechanism (CDM) serves as the main international market-based tool designed to reduce GHG emissions from the developing world. Theoretically, the CDM has the dual purpose of helping developing countries achieve 'sustainable development' goals and industrialized countries meet their Kyoto emissions reduction commitments. This paper reviews overall CDM activities and transportation CDM activities to date and then presents findings from three case studies of transportation CDM possibilities examined with the ASIF framework in Santiago de Chile. The analysis suggests that bus technology switch (I) provides a fairly good project fit for the CDM, while options aimed at inducing mode share (S) to bicycle, or modifying travel demand via land use changes (ASI) face considerable challenges. The implications of the findings for the CDM and the 'post-Kyoto' world are discussed

  8. Ambipolar carrier transport properties and molecular packing structure of octahexyl-substituted copper phthalocyanine

    Science.gov (United States)

    Watanabe, Ken; Watanabe, Koichi; Tohnai, Norimitsu; Itani, Hiromichi; Shimizu, Yo; Fujii, Akihiko; Ozaki, Masanori

    2018-04-01

    The charge carrier mobility of a solution-processable low-molecular-weight organic semiconductor material, i.e., 1,4,8,11,15,18,22,25-octahexylphthalocyanine copper complex (C6PcCu), was investigated by the time-of-flight technique. The anomalous ambipolar carrier mobility was discussed from the viewpoint of the molecular packing structure, which was clarified by single-crystal X-ray structure analysis. In the comparison between the molecular packing structures of C6PcCu and its metal-free-type homologue, it was found that the difference in carrier mobility originates from the rotation of the molecule, which is caused by the steric hindrance due to the introduction of a center metal and the interpenetration of the nonperipheral alkyl chains.

  9. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Sarwar, Tarique [Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002 (India); Zafaryab, Md [Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, Central University, New Delhi 110025 (India); Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Rehman, Sayeed Ur [Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002 (India); Moshahid Alam Rizvi, M. [Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, Central University, New Delhi 110025 (India); Tabish, Mohammad, E-mail: tabish.bcmlab@gmail.com [Department of Biochemistry, Faculty of Life Sciences, A.M. University, Aligarh, UP 202002 (India)

    2015-12-01

    Ferulic acid (FA) is a plant polyphenol showing diverse therapeutic effects against cancer, diabetes, cardiovascular and neurodegenerative diseases. FA is a known antioxidant at lower concentrations, however at higher concentrations or in the presence of metal ions such as copper, it may act as a pro-oxidant. It has been reported that copper levels are significantly raised in different malignancies. Cancer cells are under increased oxidative stress as compared to normal cells. Certain therapeutic substances like polyphenols can further increase this oxidative stress and kill cancer cells without affecting the proliferation of normal cells. Through various in vitro experiments we have shown that the pro-oxidant properties of FA are enhanced in the presence of copper. Comet assay demonstrated the ability of FA to cause oxidative DNA breakage in human peripheral lymphocytes which was ameliorated by specific copper-chelating agent such as neocuproine and scavengers of ROS. This suggested the mobilization of endogenous copper in ROS generation and consequent DNA damage. These results were further validated through cytotoxicity experiments involving different cell lines. Thus, we conclude that such a pro-oxidant mechanism involving endogenous copper better explains the anticancer activities of FA. This would be an alternate non-enzymatic, and copper-mediated pathway for the cytotoxic activities of FA where it can selectively target cancer cells with elevated levels of copper and ROS. - Highlights: • Pro-oxidant properties of ferulic acid are enhanced in presence of copper. • Ferulic acid causes oxidative DNA damage in lymphocytes as observed by comet assay. • DNA damage was ameliorated by copper chelating agent neocuproine and ROS scavengers. • Endogenous copper is involved in ROS generation causing DNA damage. • Ferulic acid exerts cancer cell specific cytotoxicity as observed by MTT assay.

  10. Drug transport mechanism of the AcrB efflux pump.

    Science.gov (United States)

    Pos, Klaas M

    2009-05-01

    In Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, tripartite multidrug efflux systems extrude cytotoxic substances from the cell directly into the medium bypassing periplasm and the outer membrane. In E. coli, the tripartite efflux system AcrA/AcrB/TolC is the pump that extrudes multiple antibiotics, dyes, bile salts and detergents. The inner membrane component AcrB, a member of the Resistance Nodulation cell Division (RND) family, is the major site for substrate recognition and energy transduction of the entire tripartite system. The drug/proton antiport processes in this secondary transporter are suggested to be spatially separated, a feature frequently observed for primary transporters like membrane-bound ATPases. The recently elucidated asymmetric structure of the AcrB trimer reveals three different monomer conformations proposed to represent consecutive states in a directional transport cycle. Each monomer shows a distinct tunnel system with entrances located at the boundary of the outer leaflet of the inner membrane and the periplasm through the periplasmic porter (pore) domain towards the funnel of the trimer and TolC. In one monomer a hydrophobic pocket is present which has been shown to bind the AcrB substrates minocyclin and doxorubicin. The energy conversion from the proton motive force into drug efflux includes proton binding in (and release from) the transmembrane part. The conformational changes observed within a triad of essential, titratable residues (D407/D408/K940) residing in the hydrophobic transmembrane domain appear to be transduced by transmembrane helix 8 and associated with the conformational changes seen in the periplasmic domain. From the asymmetric structure a possible peristaltic pump transport mechanism based on a functional rotation of the AcrB trimer has been postulated. The novel drug transport model combines the alternate access pump mechanism with the rotating site catalysis of F(1)F(o) ATPase as

  11. Hindered rotation of a copper phthalocyanine molecule on C60 : Experiments and molecular mechanics calculations

    NARCIS (Netherlands)

    Fendrich, M.; Wagner, Th.; Stöhr, M.; Möller, R.

    2006-01-01

    If copper phthalocyanine (CuPc) molecules are deposited on a Au(111) surface covered with a monolayer of C60, the molecules are found to adsorb individually onto the close-packed layer of C60. As the adsorption site of the CuPc is not symmetric with respect to the underlying C60 layer, the CuPc

  12. Electronic properties and orbital-filling mechanism in Rb-intercalated copper phthalocyanine

    NARCIS (Netherlands)

    Evangelista, F.; Gotter, R.; Mahne, N.; Nannarone, S.; Ruocco, A.; Rudolf, P.

    2008-01-01

    The evolution of the electronic properties of a thin film of copper phthalocyanine deposited on Al(100) and progressively intercalated with rubidium atoms was followed by photoemission and X-ray absorption spectroscopies. Electron donation from the Rb atoms to the C32H16N8Cu molecules results in the

  13. Mechanism of central ion exchange in the neodymium (3) ethylenediamine-tetraacetate-copper (2) and erbium (3) ethylenediaminetetraacetate-copper (2) systems in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.; Spitsyn, V.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1984-01-01

    The spectrophotometry method in the stationary regime and the ''Stopped Flow'' method in the prestationary regime are used to study kinetics and exchange mechanism in NdA/sup -/-Cu/sup 2 +/ and ErA/sup -/-Cu/sup 2 +/ (A=EDTA) systems at pH 4.0-6.0 and initial Cu/sup 2 +/ concentrations (0.5-6.0) x 10/sup -2/ M, Nd/sup 3 +/, Er/sup 3/2H+ (0-1.0) x 10/sup -2/ M. On the basis of considering the dependence of kinetic exchange characteristics on the value of initial Ln/sup 3 +/ and Cu/sup 2 +/ concentrations it is shown that stability constant of appearing intermediate binuclear complex (NdACu/sup 2 +/) correlates with stability constant of copper acetate, i.e. incoming Cu/sup 2 +/ cation coordinates by EDTA acetogroup at the first stage of reaction. Stability constant of (ErACu/sup +/) correlates with outer spheric association constant, i.e. at the earlier exchange stage in the associative mechanism in the ErA/sup -/-Cu/sup 2 +/ system, formation of outer spheric associate takes place. Considerable difference in exchange mechanisms for light and heavy rare earths is explained by lesser strength in metal-oxygen bond in initial NdA/sup -/ as compared with ErA/sup -/. Bond strengthening in the initial rare earth complexonate prevents the formation of stable intermediate binuclear complexes which causes decrease in the exchange rate according to the associative mechanism in LuAsup(-)-Mnsup(n+) systems.

  14. Unraveling fatty acid transport and activation mechanisms in Yarrowia lipolytica.

    Science.gov (United States)

    Dulermo, Rémi; Gamboa-Meléndez, Heber; Ledesma-Amaro, Rodrigo; Thévenieau, France; Nicaud, Jean-Marc

    2015-09-01

    Fatty acid (FA) transport and activation have been extensively studied in the model yeast species Saccharomyces cerevisiae but have rarely been examined in oleaginous yeasts, such as Yarrowia lipolytica. Because the latter begins to be used in biodiesel production, understanding its FA transport and activation mechanisms is essential. We found that Y. lipolytica has FA transport and activation proteins similar to those of S. cerevisiae (Faa1p, Pxa1p, Pxa2p, Ant1p) but mechanism of FA peroxisomal transport and activation differs greatly with that of S. cerevisiae. While the ScPxa1p/ScPxa2p heterodimer is essential for growth on long-chain FAs, ΔYlpxa1 ΔYlpxa2 is not impaired for growth on FAs. Meanwhile, ScAnt1p and YlAnt1p are both essential for yeast growth on medium-chain FAs, suggesting they function similarly. Interestingly, we found that the ΔYlpxa1 ΔYlpxa2 ΔYlant1 mutant was unable to grow on short-, medium-, or long-chain FAs, suggesting that YlPxa1p, YlPxa2p, and YlAnt1p belong to two different FA degradation pathways. We also found that YlFaa1p is involved in FA storage in lipid bodies and that FA remobilization largely depended on YlFat1p, YlPxa1p and YlPxa2p. This study is the first to comprehensively examine FA intracellular transport and activation in oleaginous yeast. Copyright © 2015. Published by Elsevier B.V.

  15. Charge carrier transport and collection enhancement of copper indium diselenide photoactive nanoparticle-ink by laser crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nian, Qiong; Cheng, Gary J., E-mail: gjcheng@purdue.edu [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Zhang, Martin Y. [School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Wang, Yuefeng [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47906 (United States); Das, Suprem R.; Bhat, Venkataprasad S. [Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States); Huang, Fuqiang [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-09-15

    There has been increasing needs for cost-effective and high performance thin film deposition techniques for photovoltaics. Among all deposition techniques, roll-to-roll printing of nanomaterials has been a promising method. However, the printed thin film contains many internal imperfections, which reduce the charge-collection performance. Here, direct pulse laser crystallization (DPLC) of photoactive nanoparticles-inks is studied to meet this challenge. In this study, copper indium selenite (CIS) nanoparticle-inks is applied as an example. Enhanced crystallinity, densified structure in the thin film is resulted after DLPC under optimal conditions. It is found that the decreased film internal imperfections after DPLC results in reducing scattering and multi-trapping effects. Both of them contribute to better charge-collection performance of CIS absorber material by increasing extended state mobility and carrier lifetime, when carrier transport and kinetics are coupled. Charge carrier transport was characterized after DPLC, showing mobility increased by 2 orders of magnitude. Photocurrent under AM1.5 illumination was measured and shown 10 times enhancement of integrated power density after DPLC, which may lead to higher efficiency in photo-electric energy conversion.

  16. Chemical and mechanical control of corrosion product transport

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O; Blum, R [I/S Fynsvaerket, Faelleskemikerne, Odense (Denmark); Daucik, K [I/S Skaerbaekvaerket, Faelleskemikerne, Fredericia (Denmark)

    1996-12-01

    The corrosion products formed in the condensate and feedwater system of once-through boilers are precipitated and deposited inside the evaporator tubes mainly in the burner zone at the highest heat flux. Depositions lead to increased oxidation rate and increased metal temperature of the evaporator tubes, hereby decreasing tube lifetime. This effect is more important in the new high efficiency USC boilers due to increased feedwater temperature and hence higher thermal load on the evaporator tubes. The only way to reduce the load on the evaporator tubes is to minimise corrosion product transport to the boiler. Two general methods for minimising corrosion product transport to the boiler have been evaluated through measurement campaigns for Fe in the water/steam cycle in supercritical boilers within the ELSAM area. One method is to reduce corrosion in the low temperature condensate system by changing conditioning mode from alkaline volatile treatment (AVT) to oxygenated treatment (OT). The other method is to filtrate part of the condensate with a mechanical filter at the deaerator. The results show, that both methods are effective at minimising Fe-transport to the boiler, but changing to OT has the highest effect and should always be used, whenever high purity condensate is maintained. Whether mechanical filtration also is required, depends on the boiler, specifically the load on the evaporator. A simplified calculation model for lifetime evaluation of evaporator tubes has been developed. This model has been used for evaluating the effect of corrosion product transport to the boiler on evaporator tube lifetime. Conventional supercritical boilers generally can achieve sufficient lifetime by AVT and even better by OT, whereas all measures to reduce Fe-content of feedwater, including OT and mechanical filtration, should be taken, to ensure sufficient lifetime for the new boilers with advanced steam data - 290 bar/580 deg. C and above. (au)

  17. Mechanical and microbiological properties and drug release modeling of an etch-and-rinse adhesive containing copper nanoparticles.

    Science.gov (United States)

    Gutiérrez, M F; Malaquias, P; Matos, T P; Szesz, A; Souza, S; Bermudez, J; Reis, A; Loguercio, A D; Farago, P V

    2017-03-01

    To evaluate the effect of addition of copper nanoparticles (CN) at different concentrations into a two-step etch-and-rinse (2-ER) adhesive on antimicrobial activity (AMA), copper release (CR), ultimate tensile strength (UTS), degree of conversion (DC), water sorption (WS), solubility (SO), as well as the immediate (IM) and 1-year resin-dentin bond strength (μTBS) and nanoleakage (NL). Seven adhesives were formulated according to the addition of CN (0, 0.0075, 0.015, 0.06, 0.1, 0.5 and 1wt%) in adhesive. The AMA was evaluated against Streptococcus mutans using agar diffusion assay. For CR, WS and SO, specimens were constructed and tested for 28 days. For UTS, specimens were tested after 24h and 28 days. For DC, specimens were constructed and tested after 24h by FTIR. After enamel removal, the ER was applied to dentin. After composite resin build-ups, specimens were sectioned to obtain resin-dentin sticks. For μTBS and NL, specimens were tested after 24h and 1-year periods. All data were submitted to statistical analysis (α=0.05). The addition of CN provided AMA to the adhesives at all concentrations. Higher CR was observed in adhesives with higher concentration of CN. UTS, DC, WS and SO were not influenced. For μTBS an increase was observed in 0.1 and 0.5% copper group. For NL, a significant decrease was observed in all groups in comparison with control group. After 1-year, no significant reductions of μTBS and no significant increases of NL were observed for copper containing adhesives compared to the control group. The addition of CN in concentrations up to 1wt% in the 2-ER adhesive may be an alternative to provide AMA and preserve the bonding to dentin, without reducing adhesives' mechanical properties evaluated. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Quantum-mechanical transport equation for atomic systems.

    Science.gov (United States)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  19. Heterogeneities in metallic glasses. Atomistic computer simulations on the structure and mechanical properties of copper-zirconium alloys and composites

    International Nuclear Information System (INIS)

    Brink, Tobias

    2017-01-01

    The present thesis deals with molecular dynamics computer simulations of heterogeneities in copper-zirconium metallic glasses, ranging from intrinsic structural fluctuations to crystalline secondary phases. These heterogeneities define, on a microscopic scale, the properties of the glass, and an understanding of their nature and behaviour is required for deriving the proper structure-property relations. In terms of composite systems, we start with the amorphisation of copper nanolayers embedded in a metallic glass matrix. While copper is an fcc metal with a high propensity for crystallisation, amorphisation can in fact occur in such systems for thermodynamic reasons. This is due to interface effects, which are also known from heterogeneous interfaces in crystals or from grain boundary complexions, although in absence of lattice mismatch. In single-phase glasses, intrinsic heterogeneities are often discussed in terms of soft spots or geometrically unfavourable motifs (GUMs), which can be considered to be mechanically weaker, defective regions of the glass. We investigate the relation between these motifs and the boson peak, an anomaly in the vibrational spectrum of all glasses. We demonstrate a relation between the boson peak and soft spots by analysing various amorphous and partially amorphous samples as well as highentropy alloys. Finally, we treat the plastic deformation of glasses, with and without crystalline secondary phases. We propose an explanation for the experimentally observed variations of propagation direction, composition, and density along a shear band. These variations of propagation direction are small in the case of single-phase glasses. A considerably greater influence on shear band propagation can be exerted by precipitates. We systematically investigate composites ranging from low crystalline volume fraction up to systems which resemble a nanocrystalline metal. In this context, we derive a mechanism map for composite systems and observe the

  20. Heterogeneities in metallic glasses. Atomistic computer simulations on the structure and mechanical properties of copper-zirconium alloys and composites

    Energy Technology Data Exchange (ETDEWEB)

    Brink, Tobias

    2017-07-01

    The present thesis deals with molecular dynamics computer simulations of heterogeneities in copper-zirconium metallic glasses, ranging from intrinsic structural fluctuations to crystalline secondary phases. These heterogeneities define, on a microscopic scale, the properties of the glass, and an understanding of their nature and behaviour is required for deriving the proper structure-property relations. In terms of composite systems, we start with the amorphisation of copper nanolayers embedded in a metallic glass matrix. While copper is an fcc metal with a high propensity for crystallisation, amorphisation can in fact occur in such systems for thermodynamic reasons. This is due to interface effects, which are also known from heterogeneous interfaces in crystals or from grain boundary complexions, although in absence of lattice mismatch. In single-phase glasses, intrinsic heterogeneities are often discussed in terms of soft spots or geometrically unfavourable motifs (GUMs), which can be considered to be mechanically weaker, defective regions of the glass. We investigate the relation between these motifs and the boson peak, an anomaly in the vibrational spectrum of all glasses. We demonstrate a relation between the boson peak and soft spots by analysing various amorphous and partially amorphous samples as well as highentropy alloys. Finally, we treat the plastic deformation of glasses, with and without crystalline secondary phases. We propose an explanation for the experimentally observed variations of propagation direction, composition, and density along a shear band. These variations of propagation direction are small in the case of single-phase glasses. A considerably greater influence on shear band propagation can be exerted by precipitates. We systematically investigate composites ranging from low crystalline volume fraction up to systems which resemble a nanocrystalline metal. In this context, we derive a mechanism map for composite systems and observe the

  1. Transport Physics Mechanisms in Thin-Film Oxides.

    Science.gov (United States)

    Tierney, Brian D.; Hjalmarson, Harold P.; Jacobs-Gedrim, Robin B.; James, Conrad D.; Marinella, Matthew M.

    A physics-based model of electron transport mechanisms in metal-insulating oxide-metal (M-I-M) systems is presented focusing on transport through the metal-oxide interfaces and in the bulk of the oxide. Interface tunneling, such as electron tunneling between the metal and the conduction band, or to oxide defect states, is accounted for via a WKB model. The effects of thermionic emission are also included. In the bulk of the oxide, defect-site hopping is dominant. Corresponding continuum calculations are performed for Ta2O5 M-I-M systems utilizing two different metal electrodes, e.g., platinum and tantalum. Such an asymmetrical M-I-M structure, applicable to resistive memory applications or oxide-based capacitors, reveals that the current can be either bulk or interface limited depending on the bias polarity and concentration of oxygen vacancy defects. Also, the dominance of some transport mechanisms over others is shown to be due to a complex interdependence between the vacancy concentration and bias polarity. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Evaporation as the transport mechanism of metals in arid regions

    KAUST Repository

    Lima, Ana T.

    2014-09-01

    Soils of arid regions are exposed to drought and drastic temperature oscillations throughout the year. Transport mechanisms in these soils are therefore very different from the ones in temperate regions, where rain dictates the fate of most elements in soils. Due to the low rainfall and high evaporation rates in arid regions, groundwater quality is not threatened and all soil contamination issues tend to be overlooked. But if soil contamination happens, where do contaminants go? This study tests the hypothesis of upward metal movement in soils when evaporation is the main transport mechanism. Laboratory evaporation tests were carried out with heavy metal spiked Saudi soil, using circulation of air as the driving force (Fig. 1). Main results show that loamy soil retains heavy metals quite well while evaporation drives heavy metals to the surface of a sandy soil. Evaporation transports heavy metals upward in sandy soils of arid regions, making them accumulate at the soil surface. Sand being the dominating type of soil in arid regions, soils can then be a potential source of contaminated aerosols and atmospheric pollution - a transboundary problem. Some other repercussions for this problem are foreseen, such as the public ingestion or inhalation of dust. © 2014 Elsevier Ltd.

  3. Microstructure and mechanical strength of near- and sub-micrometre grain size copper prepared by spark plasma sintering

    DEFF Research Database (Denmark)

    Zhu, K. N.; Godfrey, A.; Hansen, Niels

    2017-01-01

    Spark plasma sintering (SPS) has been used to prepare fully dense samples of copper in a fully recrystallized condition with grain sizes in the near- and sub-micrometre regime. Two synthesis routes have been investigated to achieve grain size control: (i) SPS at different temperatures from 800...... transmission electron microscope, and on electron back-scatter diffraction studies, confirms the samples are in a nearly fully recrystallized condition, with grains that are dislocation-free, and have a random texture, with a high fraction of high angle boundaries. The mechanical strength of the samples has...

  4. From statistic mechanic outside equilibrium to transport equations

    International Nuclear Information System (INIS)

    Balian, R.

    1995-01-01

    This lecture notes give a synthetic view on the foundations of non-equilibrium statistical mechanics. The purpose is to establish the transport equations satisfied by the relevant variables, starting from the microscopic dynamics. The Liouville representation is introduced, and a projection associates with any density operator , for given choice of relevant observables, a reduced density operator. An exact integral-differential equation for the relevant variables is thereby derived. A short-memory approximation then yields the transport equations. A relevant entropy which characterizes the coarseness of the description is associated with each level of description. As an illustration, the classical gas, with its three levels of description and with the Chapman-Enskog method, is discussed. (author). 3 figs., 5 refs

  5. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  6. The mechanism of transport of pollution from industrial accidents

    International Nuclear Information System (INIS)

    Bagelova, A.; Takacova, A.

    2015-01-01

    During industrial accidents pollution may penetrate through the unsaturated zone to groundwater. Penetration depends on the characteristics of the contaminant, leaked pollution amount as well as rock composition. If the pollution reaches the groundwater level it is drifted by flowing water. The flowing water can carry it to greater distances, where may be water sources. During accidents it is necessary to take positions quickly and propose appropriate protective measures. It is necessary to know the management processes of pollution transport. Without knowledge of these processes the measures may not be effective. Aim of this paper is to review the mechanism of transport of pollution and the main processes influencing the change in pollutant concentrations. On concrete and fictitious examples there will be shown properties that influence the spread of contamination especially in his direction because its determination is crucial to the draft measures. Researching of other processes in natural conditions depends on its correct specification.

  7. Mechanical transport in two-dimensional networks of fractures

    International Nuclear Information System (INIS)

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables

  8. Mechanical property and conductivity changes in several copper alloys after 13.5 dpa neutron irradiation

    International Nuclear Information System (INIS)

    Ames, M.; Kohse, G.; Lee, T.S.; Grant, N.J.; Harling, O.K.

    1986-01-01

    A scoping experiment in which 25 different copper materials of 17 alloy compositions were irradiated to approx.13.5 dpa approx.400 0 C in a fast reactor is described. The materials include rapidly solidified (RS) alloys, with and without oxide dispersion strengthening, as well as conventionally processed alloys. Immersion density (swelling), electrical conductivity (which can be related to thermal conductivity), and yield stress and ductility by miniature disk bend testing have been measured before and after irradiation. It was found, in general, that the Rs alloys are stable under irradiation to 13.5 dpa, showing small conductivity changes and little or no swelling. Reduction of strength and ductility, in post-irradiation tests at the irradiation temperature, are not generally observed. Some conventionally processed alloys also performed well, although irradiation softening and swelling of several percent were observed in some cases, and pure copper swelled in excess of 5%. It is concluded that a number of copper alloys should receive further study, and that higher dose irradiations will be required to establish the limits of swelling suppression in these alloys

  9. Structural evolution in nanocrystalline Cu obtained by high-energy mechanical milling: Phases formation of copper oxides

    International Nuclear Information System (INIS)

    Khitouni, Mohamed; Daly, Rakia; Mhadhbi, Mohsen; Kolsi, Abdelwaheb

    2009-01-01

    Nanocrystalline copper with mean crystallite size of 18 nm was synthesized by using high-energy mechanical milling. The structural and morphological changes during mechanical milling especially, the formation of CuO and Cu 2 O phases were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy in transmittance mode (FTIR). Mechanical milling of Cu results in a continuous decrease in the Cu means crystallite size and an increase in microstrain. Moreover, milling of Cu, in air synthetic, results in partial oxidation to Cu 2 O and CuO. Prolonged milling supports the formation of CuO oxide. SEM results show that flattened Cu flakes were laid and welded on each other and tend to form a matrix of randomly welded thin layers of highly deformed particles.

  10. Mechanism of travelling-wave transport of particles

    International Nuclear Information System (INIS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-01-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency

  11. Effect of Molecular Structure on Modulation of Passivation Films on Copper Chemical Mechanical Planarization

    Science.gov (United States)

    Mlynarski, Amy

    In order to optimize the chemical mechanical planarization (CMP) process, there is a need to further understand the synergistic relationship between chemical and mechanical parameters to enhance the polishing process. CMP chemistry is very complex, as it contains complexing agents, oxidizing agents, passivating agents, and abrasive particles. This variety of components ensues chaos within the system, which complicates the understanding of the direct impact each component has on the CMP process. In order for there to be efficiency in the polishing process, specifically for copper (Cu) polishing, the chemistry must create a softened passivation layer on the Cu surface that is able to be readily removed by applied mechanical abrasion. Focusing on Cu CMP, the oxidation of Cu to Cu2+ needs to be thoroughly understood in order to probe the formation of creating this ideal passivated layer, which protects recessed Cu regions. The type of film that is formed, the strength of the film, and even the efficiency of film removal will be altered depending on the chemistry of interaction at the Cu surface. This thesis focuses on understanding the working mechanism of the film formation on Cu, depending on the passivating agent added to the system. The different passivating agents used, more specifically benzotriazole (BTA), triazole (TAZ), salicylhydroxamic acid (SHA), and benzimidazole (BIA), have all been known to create a light coat of protection on the recessed metal, providing corrosion resistance. In order to study the differences in these films, many different techniques can be utilized to characterize the films, such as electrochemical scans, referred to as Tafel plots, which will be performed to compare the differences of the films. By altering the temperature within the system, the activation energy for each system can also be determined as another way to characterize the density of the passive film formed. Furthermore, the generation of *OH will be monitored since the

  12. Mechanical characterization of hybrid and functionally-graded aluminum open-cell foams with nanocrystalline-copper coatings

    Science.gov (United States)

    Sun, Yi

    Cellular/foam materials found in nature such as bone, wood, and bamboo are usually functionally graded by having a non-uniform density distribution and inhomogenous composition that optimizes their global mechanical performance. Inspired by such naturally engineered products, the current study was conducted towards the development of functionally graded hybrid metal foams (FGHMF) with electrodeposited (ED) nanocrystalline coatings. First, the deformation and failure mechanisms of aluminum/copper (Al/Cu) hybrid foams were investigated using finite element analyses at different scales. The micro-scale behavior was studied based on single ligament models discretized using continuum elements and the macro-scale behavior was investigated using beam-element based finite element models of representative unit volumes consisting of multiple foam cells. With a detailed constitutive material behavior and material failure considered for both the aluminum ligament and the nano-copper coating, the numerical models were able to capture the unique behavior of Al/Cu hybrid foams, such as the typically observed sudden load drop after yielding. The numerical models indicate that such load drop is caused by the fracture of foam ligaments initiated from the rupture of the ED nano-copper coating due to its low ductility. This failure mode jeopardizes the global energy absorption capacity of hybrid foams, especially when a thick coating is applied. With the purpose of enhancing the performance of Al/Cu hybrid foams, an annealing process, which increased the ductility of the nanocrystalline copper coating by causing recovery, recrystallination and grain growth, was introduced in the manufacturing of Al/Cu hybrid foams. Quasi-static experimental results indicate that when a proper amount of annealing is applied, the ductility of the ED copper can be effectively improved and the compressive and tensile behavior of Al/Cu hybrid foams can be significantly enhanced, including better energy

  13. Gene duplication and neo-functionalization in the evolutionary and functional divergence of the metazoan copper transporters Ctr1 and Ctr2.

    Science.gov (United States)

    Logeman, Brandon L; Wood, L Kent; Lee, Jaekwon; Thiele, Dennis J

    2017-07-07

    Copper is an essential element for proper organismal development and is involved in a range of processes, including oxidative phosphorylation, neuropeptide biogenesis, and connective tissue maturation. The copper transporter (Ctr) family of integral membrane proteins is ubiquitously found in eukaryotes and mediates the high-affinity transport of Cu + across both the plasma membrane and endomembranes. Although mammalian Ctr1 functions as a Cu + transporter for Cu acquisition and is essential for embryonic development, a homologous protein, Ctr2, has been proposed to function as a low-affinity Cu transporter, a lysosomal Cu exporter, or a regulator of Ctr1 activity, but its functional and evolutionary relationship to Ctr1 is unclear. Here we report a biochemical, genetic, and phylogenetic comparison of metazoan Ctr1 and Ctr2, suggesting that Ctr2 arose over 550 million years ago as a result of a gene duplication event followed by loss of Cu + transport activity. Using a random mutagenesis and growth selection approach, we identified amino acid substitutions in human and mouse Ctr2 proteins that support copper-dependent growth in yeast and enhance copper accumulation in Ctr1 -/- mouse embryonic fibroblasts. These mutations revert Ctr2 to a more ancestral Ctr1-like state while maintaining endogenous functions, such as stimulating Ctr1 cleavage. We suggest key structural aspects of metazoan Ctr1 and Ctr2 that discriminate between their biological roles, providing mechanistic insights into the evolutionary, biochemical, and functional relationships between these two related proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120.

    Science.gov (United States)

    Nicolaisen, Kerstin; Hahn, Alexander; Valdebenito, Marianne; Moslavac, Suncana; Samborski, Anastazia; Maldener, Iris; Wilken, Corinna; Valladares, Ana; Flores, Enrique; Hantke, Klaus; Schleiff, Enrico

    2010-11-01

    Iron uptake is essential for Gram-negative bacteria including cyanobacteria. In cyanobacteria, however, the iron demand is higher than in proteobacteria due to the function of iron as a cofactor in photosynthesis and nitrogen fixation, but our understanding of iron uptake by cyanobacteria stands behind the knowledge in proteobacteria. Here, two genes involved in this process in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 were identified. ORF all4025 encodes SchE, a putative cytoplasmic membrane-localized transporter involved in TolC-dependent siderophore secretion. Inactivation of schE resulted in an enhanced sensitivity to high metal concentrations and decreased secretion of hydroxamate-type siderophores. ORF all4026 encodes a predicted outer membrane-localized TonB-dependent iron transporter, IacT. Inactivation of iacT resulted in decreased sensitivity to elevated iron and copper levels. Expression of iacT from the artificial trc promoter (P(trc)) resulted in sensitization against tested metals. Further analysis showed that iron and copper effects are synergistic because a decreased supply of iron induced a significant decrease of copper levels in the iacT insertion mutant but an increase of those levels in the strain carrying P(trc)-iacT. Our results unravel a link between iron and copper homeostasis in Anabaena sp. PCC 7120. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Effects of copper amine treatments on mechanical, biological and surface/interphase properties of poly (vinyl chloride)/wood composites

    Science.gov (United States)

    Jiang, Haihong

    2005-11-01

    The copper ethanolamine (CuEA) complex was used as a wood surface modifier and a coupling agent for wood-PVC composites. Mechanical properties of composites, such as unnotched impact strength, flexural strength and flexural toughness, were significantly increased, and fungal decay weight loss was dramatically decreased by wood surface copper amine treatments. It is evident that copper amine was a very effective coupling agent and decay inhibitor for PVC/wood flour composites, especially in high wood flour loading level. A DSC study showed that the heat capacity differences (DeltaCp) of composites before and after PVC glass transition were reduced by adding wood particles. A DMA study revealed that the movements of PVC chain segments during glass transition were limited and obstructed by the presence of wood molecule chains. This restriction effect became stronger by increasing wood flour content and by using Cu-treated wood flour. Wood flour particles acted as "physical cross-linking points" inside the PVC matrix, resulting in the absence of the rubbery plateau of PVC and higher E', E'' above Tg, and smaller tan delta peaks. Enhanced mechanical performances were attributed to the improved wetting condition between PVC melts and wood surfaces, and the formation of a stronger interphase strengthened by chemical interactions between Cu-treated wood flour and the PVC matrix. Contact angles of PVC solution drops on Cu-treated wood surfaces were decreased dramatically compared to those on the untreated surfaces. Acid-base (polar), gammaAB, electron-acceptor (acid) (gamma +), electron-donor (base) (gamma-) surface energy components and the total surface energies increased after wood surface Cu-treatments, indicating a strong tendency toward acid-base or polar interactions. Improved interphase and interfacial adhesion were further confirmed by measuring interfacial shear strength between wood and the PVC matrix.

  16. Modeling for copper transport within the boundary layer in an electrodialysis cell

    International Nuclear Information System (INIS)

    Ibanez, J. P.; Aracena, A.; Ipinza, J.; Cifuentes, L.

    2004-01-01

    A semi empirical model was developed to characterize the transport of cupric ions within the Nernst layer generated between electrolyte bulk and the membrane surface in an electrodialysis cell. The model was derived from fundamental equations and was reduced to a linear expression incorporating the cupric ion transport number in the Nernst layer (t+BL) and in the membrane (t+m). The model critical condition is t+BL <0.5 t+m. The model correctly fits the experimental data when t+BL is o.02. the model was validated with experimental results previously published by the authors and it accounts for a linear concentration gradient within the Nernst layer. (Author) 28 refs

  17. Theoretical Proposal for the Whole Phosphate Diester Hydrolysis Mechanism Promoted by a Catalytic Promiscuous Dinuclear Copper(II) Complex.

    Science.gov (United States)

    Esteves, Lucas F; Rey, Nicolás A; Dos Santos, Hélio F; Costa, Luiz Antônio S

    2016-03-21

    The catalytic mechanism that involves the cleavage of the phosphate diester model BDNPP (bis(2,4-dinitrophenyl) phosphate) catalyzed through a dinuclear copper complex is investigated in the current study. The metal complex was originally designed to catalyze catechol oxidation, and it showed an interesting catalytic promiscuity case in biomimetic systems. The current study investigates two different reaction mechanisms through quantum mechanics calculations in the gas phase, and it also includes the solvent effect through PCM (polarizable continuum model) single-point calculations using water as solvent. Two mechanisms are presented in order to fully describe the phosphate diester hydrolysis. Mechanism 1 is of the S(N)2 type, which involves the direct attack of the μ-OH bridge between the two copper(II) ions toward the phosphorus center, whereas mechanism 2 is the process in which hydrolysis takes place through proton transfer between the oxygen atom in the bridging hydroxo ligand and the other oxygen atom in the phosphate model. Actually, the present theoretical study shows two possible reaction paths in mechanism 1. Its first reaction path (p1) involves a proton transfer that occurs immediately after the hydrolytic cleavage, so that the proton transfer is the rate-determining step, which is followed by the entry of two water molecules. Its second reaction path (p2) consists of the entry of two water molecules right after the hydrolytic cleavage, but with no proton transfer; thus, hydrolytic cleavage is the rate-limiting step. The most likely catalytic path occurs in mechanism 1, following the second reaction path (p2), since it involves the lowest free energy activation barrier (ΔG(⧧) = 23.7 kcal mol(-1), in aqueous solution). A kinetic analysis showed that the experimental k(obs) value of 1.7 × 10(-5) s(-1) agrees with the calculated value k1 = 2.6 × 10(-5) s(-1); the concerted mechanism is kinetically favorable. The KIE (kinetic isotope effect) analysis

  18. Amino Acid Metabolism and Transport Mechanisms as Potential Antifungal Targets

    Directory of Open Access Journals (Sweden)

    Matthew W. McCarthy

    2018-03-01

    Full Text Available Discovering new drugs for treatment of invasive fungal infections is an enduring challenge. There are only three major classes of antifungal agents, and no new class has been introduced into clinical practice in more than a decade. However, recent advances in our understanding of the fungal life cycle, functional genomics, proteomics, and gene mapping have enabled the identification of new drug targets to treat these potentially deadly infections. In this paper, we examine amino acid transport mechanisms and metabolism as potential drug targets to treat invasive fungal infections, including pathogenic yeasts, such as species of Candida and Cryptococcus, as well as molds, such as Aspergillus fumigatus. We also explore the mechanisms by which amino acids may be exploited to identify novel drug targets and review potential hurdles to bringing this approach into clinical practice.

  19. Rupture mechanics of metallic alloys for hydrogen transport

    International Nuclear Information System (INIS)

    Moro, I.; Briottet, L.; Lemoine, P.; Andrieu, E.; Blanc, C.

    2007-01-01

    With the aim to establish a cheap hydrogen distribution system, the transport by pipelines is a solution particularly interesting. Among the high limit of elasticity steels, the X80 has been chosen for hydrogen transport. Its chemical composition and microstructure are given. Important microstructural changes have been revealed in the sheet thickness: the microstructure is thinner and richer in perlite in surface than in bulk. In parallel to this microstructural evolution, a microhardness gradient has been observed: the material microhardness is stronger in surface than in bulk of the sheet. The use of this material for hydrogen transport requires to study its resistance to hydrogen embrittlement. The main aim of this work is to develop an easy rupture mechanics test allowing to qualify the studied material in a gaseous hydrogen environment, to determine the sensitivity of the studied material to the hydrogen embrittlement and to better understand the mechanisms of the hydrogen embrittlement for ferritic materials. Two experimental tests have been used for: the first one is a traction machine coupled to an autoclave; the second one allows to carry out disk rupture tests. The toughness of the material in a gaseous hydrogen environment has thus been determined. The resistance of the material to hydrogen embrittlement has been characterized and by simulation, it has been possible to identify the areas with a strong concentration in hydrogen. The second aim of this work is to study the influence of the steel microstructure on the hydrogen position in the material and on the resistance of the material to the hydrogen embrittlement. The preferential trapping sites on the material not mechanically loaded have at first been identified, as well as the hydrogen position on the different phases and at the ferrite/cementite interface. The interaction between the mechanical loads, the position and the trapping of the hydrogen have been studied then. At last, has been

  20. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  1. Double internal transport barrier triggering mechanism in tokamak plasmas

    International Nuclear Information System (INIS)

    Dong, Jiaqi; Mou, Zongze; Long, Yongxing; Mahajan, Swadesh M.

    2004-01-01

    Sheared flow layers created by energy released in magnetic reconnection processes are studied with the magneto hydrodynamics (MHD), aimed at internal transport barrier (ITB) dynamics. The double tearing mode induced by electron viscosity is investigated and proposed as a triggering mechanism for double internal transport barrier (DITB) observed in tokamak plasmas with non-monotonic safety factor profiles. The quasi-linear development of the mode is simulated and the emphasis is placed on the structure of sheared poloidal flow layers formed in the vicinity of the magnetic islands. For viscosity double tearing modes, it is shown that the sheared flows induced by the mode may reach the level required by the condition for ITB formation. Especially, the flow layers are found to form just outside the magnetic islands. The scaling of the generated velocity with plasma parameters is given. Possible explanation for the experimental observations that the preferential formation of transport barriers in the proximity of low order rational surface is discussed. (author)

  2. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al-Zn-Mg-Cu alloys

    Science.gov (United States)

    Wagner, John A.; Shenoy, R. N.

    1991-01-01

    The present study evaluates the effect of the systematic variation of copper, chromium, and zirconium contents on the microstructure and mechanical properties of a 7000-type aluminum alloy. Fracture toughness and tensile properties are evaluated for each alloy in both the peak aging, T8, and the overaging, T73, conditions. Results show that dimpled rupture essentially characterize the fracture process in these alloys. In the T8 condition, a significant loss of toughness is observed for alloys containing 2.5 pct Cu due to the increase in the quantity of Al-Cu-Mg-rich S-phase particles. An examination of T8 alloys at constant Cu levels shows that Zr-bearing alloys exhibit higher strength and toughness than the Cr-bearing alloys. In the T73 condition, Cr-bearing alloys are inherently tougher than Zr-bearing alloys. A void nucleation and growth mechanism accounts for the loss of toughness in these alloys with increasing copper content.

  3. Experimental transport studies of yttrium barium copper oxide and lambda-DNA

    Science.gov (United States)

    Zhang, Yuexing

    This dissertation consists of two parts. In Part I, we focus on the quasi-particle transport properties in the high temperature superconductor YBa2Cu3O7-delta (YBCO), probed by the thermal Hall conductivity (kappa xy). The thermal Hall conductivity selectively reflects the transport behaviors of the charge carriers. By measuring kappaxy in the normal state YBCO, we established a new method to determine the Wiedemann-Franz (WF) ratio in cuprates. We determined the Hall-channel WF ratio kappa xy/sigmaxyT in Cu and YBCO. In the latter, we uncovered a T-linear dependence and suppression of the Hallchannel WF ratio. The suppression of the Hall-channel WF ratio in systems with predominant electron-electron scattering will be discussed. Thermal transport behaviors of the quasi-particles in the mixed state were studied by measuring kappaxx and kappa xy in a high-purity YBCO crystal. From the field-dependence of the thermal conductivity kappaxx, we separated the quasi particle contribution (kappae) from the phonon background. In the Hall channel, we observed that the (weak-field) kappa xy increased 103-fold between T c (90 K) and 30 K, implying a 100-fold enhancement of the quasi-particle lifetime. We found that kappaxy exhibited a specific scaling behavior below ˜30 K. The implication of the scaling behavior will be discussed. In Part II, we describe an experiment on determining the electrical conductivity of the bacteriophage lambda-DNA, an issue currently under intense debate. We covalently bonded the DNA to Au electrodes by incorporating thiol modified dTTP into the 'sticky' ends of the lambda-DNA. Two-probe measurements on such molecules provided a lower bound for the resistivity rho > 10 6 mum at bias potentials up to 20 V, in conflict with recent claims of moderate to high conductivity. We stress the importance of eliminating salt residues in these measurements.

  4. Calcium transport mechanism in molting crayfish revealed by microanalysis

    International Nuclear Information System (INIS)

    Mizuhira, V.; Ueno, M.

    1983-01-01

    Crayfish provide a good model in which to study the transport mechanism of Ca ions. During the molting stage, decalcified Ca ions are transferred into the blood and accumulate in the gastrolith epithelium, after which a gastrolith is formed on the surface of the epithelium. The gastrolith is dissolved in the stomach after molting, and the Ca is reabsorbed and redistributed throughout the newly formed exoskeleton. We studied the mechanism of Ca transport by cytochemical precipitation of Ca ions and by electron microanalysis, including X-ray microanalysis (EDX) and electron energy-loss spectroscopy (EELS), with a computer. In EDX analysis, the fine precipitates of K-antimonate in the gastrolith mitochondria clearly defined Ca with antimony; we also observed a large amount of Ca-oxalate in the mitochondria, and Ca-K X-ray pulses were clearly defined. Ca-K X-rays were also detected from fresh freeze-substituted mitochondria. Finally, we succeeded in taking a Ca-L EELS image from the mitochondria of fresh freeze-substituted thin sections. Only a very small amount of Ca was detected from the cell membrane and other organelles. Ca-adenosine triphosphatase (ATPase) and Mg-ATPase activity was also very clearly demonstrated in the mitochondria. These enzymes may play an important role in Ca metabolism

  5. Effects of bonding bakeout thermal cycles on pre- and post irradiation microstructures, physical, and mechanical properties of copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Eldrup, M.; Toft, P.; Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-10-01

    At present, dispersion strengthened (DS) copper is being considered as the primary candidate material for the ITER first wall and divertor components. Recently, it was agreed among the ITER parties that a backup alloy should be selected from the two well known precipitation hardened copper alloys, CuCrZr and CuNiBe. It was therefore decided to carry out screening experiments to simulate the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties, and electrical resistivity of CuCrZr and CuNiBe alloys. On the basis of the results of these experiments, one of the two alloys will be selected as a backup material. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime ageing, and bonding thermal cycle followed by reageing and the reactor bakeout treatment at 623K for 100 hours. Tensile specimens of the DS copper were also given the heat treatment corresponding to the bonding thermal cycle. A number of these heat treated specimens of CuCrZr, CuNiBe, and DS copper were neutron irradiated at 523K to a dose level of {approx}0.3 dpa (NRT) in the DR-3 reactor at Riso. Both unirradiated and irradiated specimens with the various heat treatments were tensile tested at 532K. The dislocation, precipitate and void microstructures and electrical resistivity of these specimens were also determined. Results of these investigations will be reported and discussed in terms of thermal and irradiation stability of precipitates and irradiation-induced precipitation and recovery of dislocation microstructure. Results show that the bonding and bakeout thermal cycles are not likely to have any serious deleterious effects on the performance of these alloys. The CuNiBe alloys were found to be susceptible to radiation-induced embrittlement, however, the exact mechanism is not yet known. It is thought that radiation-induced precipitation and segregation of the beryllium may be responsible.

  6. Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms.

    Science.gov (United States)

    Koepke, Sara J; Light, Kenneth M; VanNatta, Peter E; Wiley, Keaton M; Kieber-Emmons, Matthew T

    2017-06-28

    Deployment of solar fuels derived from water requires robust oxygen-evolving catalysts made from earth abundant materials. Copper has recently received much attention in this regard. Mechanistic parallels between Cu and single-site Ru/Ir/Mn water oxidation catalysts, including intermediacy of terminal Cu oxo/oxyl species, are prevalent in the literature; however, intermediacy of late transition metal oxo species would be remarkable given the high d-electron count would fill antibonding orbitals, making these species high in energy. This may suggest alternate pathways are at work in copper-based water oxidation. This report characterizes a dinuclear copper water oxidation catalyst, {[(L)Cu(II)] 2 -(μ-OH) 2 }(OTf) 2 (L = Me 2 TMPA = bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine) in which water oxidation proceeds with high Faradaic efficiency (>90%) and moderate rates (33 s -1 at ∼1 V overpotential, pH 12.5). A large kinetic isotope effect (k H /k D = 20) suggests proton coupled electron transfer in the initial oxidation as the rate-determining step. This species partially dissociates in aqueous solution at pH 12.5 to generate a mononuclear {[(L)Cu(II)(OH)]} + adduct (K eq = 0.0041). Calculations that reproduce the experimental findings reveal that oxidation of either the mononuclear or dinuclear species results in a common dinuclear intermediate, {[LCu(III)] 2 -(μ-O) 2 } 2+ , which avoids formation of terminal Cu(IV)═O/Cu(III)-O • intermediates. Calculations further reveal that both intermolecular water nucleophilic attack and redox isomerization of {[LCu(III)] 2 -(μ-O) 2 } 2+ are energetically accessible pathways for O-O bond formation. The consequences of these findings are discussed in relation to differences in water oxidation pathways between Cu catalysts and catalysts based on Ru, Ir, and Mn.

  7. Mechanical characterization of copper coated carbon nanotubes reinforced aluminum matrix composites

    International Nuclear Information System (INIS)

    Maqbool, Adnan; Hussain, M. Asif; Khalid, F. Ahmad; Bakhsh, Nabi; Hussain, Ali; Kim, Myong Ho

    2013-01-01

    In this investigation, carbon nanotube (CNT) reinforced aluminum composites were prepared by the molecular-level mixing process using copper coated CNTs. The mixing of CNTs was accomplished by ultrasonic mixing and ball milling. Electroless Cu-coated CNTs were used to enhance the interfacial bonding between CNTs and aluminum. Scanning electron microscope analysis revealed the homogenous dispersion of Cu-coated CNTs in the composite samples compared with the uncoated CNTs. The samples were pressureless sintered under vacuum followed by hot rolling to promote the uniform microstructure and dispersion of CNTs. In 1.0 wt.% uncoated and Cu-coated CNT/Al composites, compared to pure Al, the microhardness increased by 44% and 103%, respectively. As compared to the pure Al, for 1.0 wt.% uncoated CNT/Al composite, increase in yield strength and ultimate tensile strength was estimated about 58% and 62%, respectively. However, in case of 1.0 wt.% Cu-coated CNT/Al composite, yield strength and ultimate tensile strength were increased significantly about 121% and 107%, respectively. - Graphical Abstract: Copper coated CNTs were synthesized by the electroless plating process. Optimizing the plating bath to (1:1) by wt CNTs with Cu, thickness of Cu-coated CNTs has been reduced to 100 nm. Cu-coated CNTs developed the stronger interfacial bonding with the Al matrix which resulted in the efficient transfer of load. Highlights: • Copper coated CNTs were synthesized by the electroless plating process. • Thickness of Cu-coated CNTs has been reduced to 100 nm by optimized plating bath. • In 1.0 wt.% Cu-coated CNT/Al composite, microhardness increased by 103%. • Cu-coated CNTs transfer load efficiently with stronger interfacial bonding. • In 1.0 wt.% Cu-coated CNT/Al composite, Y.S and UTS increased by 126% and 105%

  8. Highly efficient organic solar Cells based on a robust room-temperature solution-processed copper iodide hole transporter

    KAUST Repository

    Zhao, Kui

    2015-07-30

    Achieving high performance and reliable organic solar cells hinges on the development of stable and energetically suitable hole transporting buffer layers in tune with the electrode and photoactive materials of the solar cell stack. Here we have identified solution-processed copper(I) iodide (CuI) thin films with low-temperature processing conditions as an effective hole–transporting layer (HTL) for a wide range of polymer:fullerene bulk heterojunction (BHJ) systems. The solar cells using CuI HTL show higher power conversion efficiency (PCE) in standard device structure for polymer blends, up to PCE of 8.8%, as compared with poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, for a broad range of polymer:fullerene systems. The CuI layer properties and solar cell device behavior are shown to be remarkably robust and insensitive to a wide range of processing conditions of the HTL, including processing solvent, annealing temperature (room temperature up to 200 °C), and film thickness. CuI is also shown to improve the overall lifetime of solar cells in the standard architecture as compared to PEDOT:PSS. We further demonstrate promising solar cell performance when using CuI as top HTL in an inverted device architecture. The observation of uncommon properties, such as photoconductivity of CuI and templating effects on the BHJ layer formation, are also discussed. This study points to CuI as being a good candidate to replace PEDOT:PSS in solution-processed solar cells thanks to the facile implementation and demonstrated robustness of CuI thin films.

  9. Highly efficient organic solar Cells based on a robust room-temperature solution-processed copper iodide hole transporter

    KAUST Repository

    Zhao, Kui; Ngongang Ndjawa, Guy Olivier; Jagadamma, Lethy Krishnan; El Labban, Abdulrahman; Hu, Hanlin; Wang, Qingxiao; Li, Ruipeng; Abdelsamie, Maged; Beaujuge, Pierre; Amassian, Aram

    2015-01-01

    Achieving high performance and reliable organic solar cells hinges on the development of stable and energetically suitable hole transporting buffer layers in tune with the electrode and photoactive materials of the solar cell stack. Here we have identified solution-processed copper(I) iodide (CuI) thin films with low-temperature processing conditions as an effective hole–transporting layer (HTL) for a wide range of polymer:fullerene bulk heterojunction (BHJ) systems. The solar cells using CuI HTL show higher power conversion efficiency (PCE) in standard device structure for polymer blends, up to PCE of 8.8%, as compared with poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, for a broad range of polymer:fullerene systems. The CuI layer properties and solar cell device behavior are shown to be remarkably robust and insensitive to a wide range of processing conditions of the HTL, including processing solvent, annealing temperature (room temperature up to 200 °C), and film thickness. CuI is also shown to improve the overall lifetime of solar cells in the standard architecture as compared to PEDOT:PSS. We further demonstrate promising solar cell performance when using CuI as top HTL in an inverted device architecture. The observation of uncommon properties, such as photoconductivity of CuI and templating effects on the BHJ layer formation, are also discussed. This study points to CuI as being a good candidate to replace PEDOT:PSS in solution-processed solar cells thanks to the facile implementation and demonstrated robustness of CuI thin films.

  10. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development.

    Directory of Open Access Journals (Sweden)

    Szymon Stoma

    2008-10-01

    Full Text Available Plants continuously generate new organs through the activity of populations of stem cells called meristems. The shoot apical meristem initiates leaves, flowers, and lateral meristems in highly ordered, spiralled, or whorled patterns via a process called phyllotaxis. It is commonly accepted that the active transport of the plant hormone auxin plays a major role in this process. Current hypotheses propose that cellular hormone transporters of the PIN family would create local auxin maxima at precise positions, which in turn would lead to organ initiation. To explain how auxin transporters could create hormone fluxes to distinct regions within the plant, different concepts have been proposed. A major hypothesis, canalization, proposes that the auxin transporters act by amplifying and stabilizing existing fluxes, which could be initiated, for example, by local diffusion. This convincingly explains the organised auxin fluxes during vein formation, but for the shoot apical meristem a second hypothesis was proposed, where the hormone would be systematically transported towards the areas with the highest concentrations. This implies the coexistence of two radically different mechanisms for PIN allocation in the membrane, one based on flux sensing and the other on local concentration sensing. Because these patterning processes require the interaction of hundreds of cells, it is impossible to estimate on a purely intuitive basis if a particular scenario is plausible or not. Therefore, computational modelling provides a powerful means to test this type of complex hypothesis. Here, using a dedicated computer simulation tool, we show that a flux-based polarization hypothesis is able to explain auxin transport at the shoot meristem as well, thus providing a unifying concept for the control of auxin distribution in the plant. Further experiments are now required to distinguish between flux-based polarization and other hypotheses.

  11. Transport Measurements on NEODYMIUM(1.85) CERIUM(.15) Copper OXYGEN(4-DELTA) Thin Films

    Science.gov (United States)

    Kussmaul, Andreas

    1992-01-01

    This work describes the synthesis and the study of the transport properties of thin films of Nd _{1.85}Ce_{.15 }CuO_{4-delta} carried out respectively at the IBM T. J. Watson Research Center in collaboration with Dr. A. Gupta, and at the Francis Bitter National Magnet Laboratory under the direction of Dr. P. M. Tedrow. The thin films were prepared by laser ablation of a stoichiometric target on heated substrates in a reactive ambient. The influence of the deposition parameters was studied, and the use of a nitreous oxide ambient was found to yield a clear improvement of the sample quality. The transport properties of the films were measured at low temperatures and in high magnetic fields. Non superconducting samples showed a strong, highly anisotropic, negative magnetoresistance that is consistent with two dimensional weak-localization. Superconducting samples show two dimensional fluctuation effects above T_{c}. The theory of fluctuations in a magnetic field was used to extract the position of H_{c2} (in the perpendicular direction) in the broad and almost featureless resistive transition, and the extracted values were fit to the theory of dirty superconductors. The angular dependence of the resistive transition was studied close to T _{c} and found to be somewhat better described by a two-dimensional model. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  12. Reversible and nonvolatile ferroelectric control of two-dimensional electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films with a layered structure

    Science.gov (United States)

    Zhao, Xu-Wen; Gao, Guan-Yin; Yan, Jian-Min; Chen, Lei; Xu, Meng; Zhao, Wei-Yao; Xu, Zhi-Xue; Guo, Lei; Liu, Yu-Kuai; Li, Xiao-Guang; Wang, Yu; Zheng, Ren-Kui

    2018-05-01

    Copper-based ZrCuSiAs-type compounds of LnCuChO (Ln =Bi and lanthanides, Ch =S , Se, Te) with a layered crystal structure continuously attract worldwide attention in recent years. Although their high-temperature (T ≥ 300 K) electrical properties have been intensively studied, their low-temperature electronic transport properties are little known. In this paper, we report the integration of ZrCuSiAs-type copper oxyselenide thin films of B i0.94P b0.06CuSeO (BPCSO) with perovskite-type ferroelectric Pb (M g1 /3N b2 /3 ) O3-PbTi O3 (PMN-PT) single crystals in the form of ferroelectric field effect devices that allow us to control the electronic properties (e.g., carrier density, magnetoconductance, dephasing length, etc.) of BPCSO films in a reversible and nonvolatile manner by polarization switching at room temperature. Combining ferroelectric gating and magnetotransport measurements with the Hikami-Larkin-Nagaoka theory, we demonstrate two-dimensional (2D) electronic transport characteristics and weak antilocalization effect as well as strong carrier-density-mediated competition between weak antilocalization and weak localization in BPCSO films. Our results show that ferroelectric gating using PMN-PT provides an effective and convenient approach to probe the carrier-density-related 2D electronic transport properties of ZrCuSiAs-type copper oxyselenide thin films.

  13. New mechanism for the control of sodium transport in wheat

    International Nuclear Information System (INIS)

    James, R.A.; Munns, R.; Huang, C.X.

    2002-01-01

    Full text: Durum and other tetraploid wheats are typically very salt-sensitive compared to hexaploid bread wheats. This is primarily due to high rates of Na + accumulation in the leaves in tetraploid wheat. Recently, we have discovered a durum landrace with low Na + accumulation and enhanced K + /Na + discrimination, much lower than current durum cultivars and similar to bread wheat. We have identified 3 different mechanisms for the control of Na + transport to the leaves in this landrace, 1) control of Na + uptake at the epidermis of the root, 2) control of Na + loading into the xylem and 3) partitioning of Na + into the leaf sheath. The low Na + durum landrace had 3-4 fold lower Na + uptake rates than durum cultivars. Using X ray microanalysis on snap-frozen root sections, we found Na + to be high in the epidermis, a decreasing gradient through the cortex, low in the endodermis and again high in the stele (pencycle and xylem parenchyma), indicative of control points at the epidermis and in the stele. Partitioning of Na + between shoot and root was at least 5 times lower in the durum landrace, suggestive of greater control of Na + transport at the site of xylem loading. A third and novel control mechanism was found in the leaf sheath. Short and long term salinity treatments showed that Na + was partitioned preferentially into the sheaths of the low Na + durum landrace, keeping leaf blade Na + levels very low and similar to that of bread wheat Na + partitioned in the leaf sheath was stored primarily in the parenchyma cells and Cl - in the epidermal cells. Collectively, these data show that we have identified germplasm that has the potential to increase the salt tolerance of durum wheat. Additionally, as bread wheat does not contain the mechanism for partitioning Na + into the sheath, this trait may be useful for further increasing the salt tolerance of this species

  14. Effects of temperature, pressure and pure copper added to source material on the CuGaTe{sub 2} deposition using close spaced vapor transport technique

    Energy Technology Data Exchange (ETDEWEB)

    Abounachit, O. [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Chehouani, H., E-mail: chehouani@hotmail.fr [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Djessas, K. [CNRS-PROMES Tecnosud, Rambla de la Thermodynamique, 66100 Perpignan (France)

    2013-07-01

    The quality of CuGaTe{sub 2} (CGT) thin films elaborated by close spaced vapor transport technique has been studied as a function of the source temperature (T{sub S}), iodine pressure (P{sub I2}) and the amount (X{sub Cu}) of pure copper added to the stoichiometric starting material. A thermodynamic model was developed for the Cu–Ga–Te–I system to describe the CGT deposition. The model predicts the solid phase composition with possible impurities for the operating conditions previously mentioned. The conditions of stoichiometric and near-stoichiometric deposition were determined. The value of T{sub S} must range from 450 to 550 °C for P{sub I2} varying between 0.2 and 7 kPa. Adding an amount up to 10% of pure copper to the starting material improves the quality of the deposit layers and lowers the operating interval temperature to 325–550 °C. These optimal conditions were tested experimentally at 480 °C and 500 °C. The X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy have proved that the addition of pure copper to the stoichiometric source material can be considered as a supplementary operating parameter to improve the quality of CGT thin films. - Highlights: • The stoichiometric CuGaTe{sub 2} (CGT) has been deposited by close spaced vapor transport. • The Cu–Ga–Te–I system has been studied theoretically by minimizing the Gibbs energy. • The quality of thin films has been improved by pure copper added to the source CGT. • The temperature, pressure and the amount of copper added to grow CGT are determined. • The thermodynamic predictions are in good agreement with experimental results.

  15. Identification of threats to the position of a transport worker in Legnica Copper Smelter and Refinery

    Directory of Open Access Journals (Sweden)

    J. Pietruszka

    2010-04-01

    Full Text Available The paper presents the major issues concerning the assessment of working conditions - harmful and disruptive factors occurring in theselected position of the transport worker at HM Legnica. To assess the risk of occupational hazard two methods have been applied: themethod according to PN-N-18002: 2000 (a 3-step method and Risk Score method. The applied methods were compared and assessedpaying special attention to usefulness and accuracy in carrying out further assessments of test positions in HM Legnica. Additionally, thework carried out in this paper includes detailed analysis of: the organization of the work process, the type of instruments and carrying out operations as well as the conditions of the working environment. The most important threats were identified. An important element of this work was to make a risk assessment of occupational hazard and give the necessary actions which should be taken to minimize all risks.

  16. Cellular Transport Mechanisms of Cytotoxic Metallodrugs: An Overview beyond Cisplatin

    Directory of Open Access Journals (Sweden)

    Sarah Spreckelmeyer

    2014-09-01

    Full Text Available The field of medicinal inorganic chemistry has grown consistently during the past 50 years; however, metal-containing coordination compounds represent only a minor proportion of drugs currently on the market, indicating that research in this area has not yet been thoroughly realized. Although platinum-based drugs as cancer chemotherapeutic agents have been widely studied, exact knowledge of the mechanisms governing their accumulation in cells is still lacking. However, evidence suggests active uptake and efflux mechanisms are involved; this may be involved also in other experimental metal coordination and organometallic compounds with promising antitumor activities in vitro and in vivo, such as ruthenium and gold compounds. Such knowledge would be necessary to elucidate the balance between activity and toxicity profiles of metal compounds. In this review, we present an overview of the information available on the cellular accumulation of Pt compounds from in vitro, in vivo and clinical studies, as well as a summary of reports on the possible accumulation mechanisms for different families of experimental anticancer metal complexes (e.g., Ru Au and Ir. Finally, we discuss the need for rationalization of the investigational approaches available to study metallodrug cellular transport.

  17. Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5).

    Science.gov (United States)

    Scalise, Mariafrancesca; Pochini, Lorena; Panni, Simona; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare

    2014-11-01

    The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na(+)-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K(+) gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na(+). Internal Na(+) exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.

  18. High fructose feeding induces copper deficiency in Sprague-Dawley rats: A novel mechanism for obesity related fatty liver

    Science.gov (United States)

    Dietary copper deficiency is associated with a variety of manifestations of the metabolic syndrome, including hyperlipidemia and fatty liver. Fructose feeding has been reported to exacerbate complications of copper deficiency. In this study, we investigated whether copper deficiency plays a role in ...

  19. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    Science.gov (United States)

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  20. Mechanisms of calcium transport in small intestine. Final report

    International Nuclear Information System (INIS)

    DeLuca, H.F.

    1982-01-01

    The vitamin D hormone, 1,25-dihydroxyvitamin D 3 , was demonstrated to be the prime hormonal agent regulating intestinal absorption of divalent cations. Production of the vitamin D hormone is, in turn, regulated by parathyroid hormone, low dietary calcium, low plasma phosphorus, and is suppressed by 1,25-dihydroxyvitamin D 3 , by high plasma phosphorus, high plasma calcium, and the absence of parathyroid hormone. A variety of analogs of the vitamin D hormone were prepared. In addition, the preparation of radiolabeled vitamin D hormone was accomplished using chemical synthesis, and this highly radioactive substance was found to localize in the nuclei of the intestinal villus cells that promote intestinal absorption of calcium. A receptor for the vitamin D hormone was also located, and the general mechanism of response to the vitamin D hormone included the binding to a receptor molecule, transfer to the nucleus, transcription of specific genes followed by translation to transport proteins. Methods were developed for the discovery of the appropriate gene products that play a role in calcium transport

  1. CLUB FORMATION MECHANISM FOR TRANSPORT-COMMUNITY CREDIT CARDS

    Science.gov (United States)

    Ding, Yue; Kobayashi, Kiyoshi; Nishida, Junji; Yoshida, Mamoru

    In this paper, the roles of transport-community cards jointly issued by a public transport firm and retails are investigated as a means to vitalize an obsolescence shopping center located in a middle of a city. When both the price of goods supplied by the retails and the transport fares affect the consumers' behavior, there exist pecuniary externality between the behaviors of the retails and transport firms. The introduction of a transport-community cards system enables to integrate a basket of goods and transport service into a single commodity; thus, the pecuniary externality can be internalized by price coordination. In addition, the paper clarifies theoretically that the transport firm initiatively decides the price of the transportation service and the retails transfer their incomes to the transport firm so that they are induced to jointly issue the transport-community cards.

  2. The Effect of Welding Energy on the Microstructural and Mechanical Properties of Ultrasonic-Welded Copper Joints

    Science.gov (United States)

    Yang, Jingwei; Cao, Biao; Lu, Qinghua

    2017-01-01

    The effects of welding energy on the mechanical and microstructural characteristics of ultrasonic-welded pure copper plates were investigated. Complex dynamic recrystallization and grain growth occurred inside the weld zone during ultrasonic welding. At a low welding energy, a thin band of straight weld interfaces was observed and had an ultra-fine grain structure. With an increase in welding energy, the weld interface progressively changed from flat to sinusoidal, and eventually turned into a convoluted wavy pattern, bearing similarities to shear instabilities, as observed in fluid dynamics. The lap shear load of the joints initially increased and then remained stable as the welding energy increased. The tensile characteristics of the joints significantly depended on the development of plastic deformation at the interface. The influence of the microstructure on the hardness was also discussed. PMID:28772553

  3. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    International Nuclear Information System (INIS)

    2010-01-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  4. Mechanisms of Copper Corrosion in Aqueous Environments. A report from the Swedish National Council for Nuclear Waste's scientific workshop, on November 16, 2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    In 2010 the Swedish Nuclear Fuel and Waste Management Company, SKB, plans to submit its license application for the final repository of spent nuclear fuel. The proposed method is the so-called KBS-3 method and implies placing the spent nuclear fuel in copper canisters, surrounded by a buffer of bentonite clay, at 500 m depth in the bedrock. The site selected by SKB to host the repository is located in the municipality of Oesthammar on the Swedish east coast. The copper canister plays a key role in the design of the repository for spent nuclear fuel in Sweden. The long-term physical and chemical stability of copper in aqueous environments is fundamental for the safety evolution of the proposed disposal concept. However, the corrosion resistance of copper has been questioned by results obtained under anoxic conditions in aqueous solution. These observations caused some head-lines in the Swedish newspapers as well as public and political concerns. Consequently, the Swedish National Council for Nuclear Waste organized a scientific workshop on the issue 'Mechanisms of Copper Corrosion in Aqueous Environments'. The purpose of the workshop was to address the fundamental understanding of the corrosion characteristics of copper regarding oxygen-free environments, and to identify what additional information is needed to assess the validity of the proposed corrosion mechanism and its implication on the containment of spent nuclear fuel in a copper canister. This seminar report is based on the presentations and discussions at the workshop. It also includes written statements by the members of the expert panel

  5. The Cu(II) affinity of the N-terminus of human copper transporter CTR1: Comparison of human and mouse sequences.

    Science.gov (United States)

    Bossak, Karolina; Drew, Simon C; Stefaniak, Ewelina; Płonka, Dawid; Bonna, Arkadiusz; Bal, Wojciech

    2018-05-01

    Copper Transporter 1 (CTR1) is a homotrimeric membrane protein providing the main route of copper transport into eukaryotic cells from the extracellular milieu. Its N-terminal extracellular domain, rich in His and Met residues, is considered responsible for directing copper into the transmembrane channel. Most of vertebrate CTR1 proteins contain the His residue in position three from N-terminus, creating a well-known Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) site. CTR1 from humans, primates and many other species contains the Met-Asp-His (MDH) sequence, while some rodents including mouse have the Met-Asn-His (MNH) N-terminal sequence. CTR1 is thought to collect Cu(II) ions from blood copper transport proteins, including albumin, but previous reports indicated that the affinity of N-terminal peptide/domain of CTR1 is significantly lower than that of albumin, casting serious doubt on this aspect of CTR1 function. Using potentiometry and spectroscopic techniques we demonstrated that MDH-amide, a tripeptide model of human CTR1 N-terminus, binds Cu(II) with K of 1.3 × 10 13  M -1 at pH 7.4, ~13 times stronger than Human Serum Albumin (HSA), and MNH-amide is even stronger, K of 3.2 × 10 14  M -1 at pH 7.4. These results indicate that the N-terminus of CTR1 may serve as intermediate binding site during Cu(II) transfer from blood copper carriers to the transporter. MDH-amide, but not MNH-amide also forms a low abundance complex with non-ATCUN coordination involving the Met amine, His imidazole and Asp carboxylate. This species might assist Cu(II) relay down the peptide chain or its reduction to Cu(I), both steps necessary for the CTR1 function. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Characterization of phase changes during fabrication of copper alloys, crystalline and non-crystalline, prepared by mechanical alloying

    Directory of Open Access Journals (Sweden)

    Paula Rojas

    2016-09-01

    Full Text Available The manufacture of alloys in solid state has many differences with the conventional melting (casting process. In the case of high energy milling or mechanical alloying, phase transformations of the raw materials are promoted by a large amount of energy that is introduced by impact with the grinding medium; there is no melting, but the microstructural changes go from microstructural refinement to amorphization in solid state. This work studies the behavior of pure metals (Cu and Ni, and different binary alloys (Cu-Ni and Cu-Zr, under the same milling/mechanical alloying conditions. After high-energy milling, X ray diffraction (XRD patterns were analyzed to determine changes in the lattice parameter and find both microstrain and crystallite sizes, which were first calculated using the Williamson-Hall (W-H method and then compared with the transmission electron microscope (TEM images. Calculations showed a relatively appropriate approach to observations with TEM; however, in general, TEM observations detect heterogeneities, which are not considered for the W-H method. As for results, in the set of pure metals, we show that pure nickel undergoes more microstrain deformations, and is more abrasive than copper (and copper alloys. In binary systems, there was a complete solid solution in the Cu-Ni system and a glass-forming ability for the Cu-Zr, as a function of the Zr content. Mathematical methods cannot be applied when the systems have amorphization because there are no equations representing this process during milling. A general conclusion suggests that, under the same milling conditions, results are very different due to the significant impact of the composition: nickel easily forms a solid solution, while with a higher zirconium content there is a higher degree of glassforming ability.

  7. An investigation on mechanical property of commercial copper tube to aluminium 2025 tube plate by FWTPET process

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, S., E-mail: kannan.dgl201127@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004 (India); Senthil Kumaran, S., E-mail: sskumaran@ymail.com [Research and Development Center, Department of Mechanical Engineering, RVS Educational Trust' s Group of Institutions, RVS School of Engineering and Technology, Dindigul, Tamilnadu 624005 (India); Kumaraswamidhas, L.A., E-mail: lakdhas1978@gmail.com [Department of Mechanical Engineering and Mining Machinery Engineering, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004 (India)

    2016-07-05

    Frictional welding of tube to tube plate by external tool (FWTPET) posses wide spread industrial in mass production process for joint similar and dissimilar materials. Frictional welding process allows welding of some materials that are exceptionally hard to fusion weld. The good quality joint between the tube and tube plate is achieved by selecting the proper process parameter. In this present research, the frictional welding is done between the Aluminium 2025 tube plate and commercial copper tube possessing a clearance fit of 0.1 mm between tube and hole. In this study, two conditions were considered while handing out this experiment. The condiction1 is tube without holes [WOH] and condition 2 is tube with holes [WH] on the tube circumference. In total, twenty seven work pieces have been considered separately for both conditions and the mechanical property such as compression strength and hardness value has been measured for the both set of work piece in two conditions to analysis the joint strength of the welding process. Taguchi L{sub 27} orthogonal array has been used in this process to identify the process parameter which influences the joint strength of the welded samples. ANOVA method is used to calculate the percentage of contribution by each process parameter which influences the better joint strength. Genetic algorithm is used to authenticate the outcome obtained from the both experimental value and optimization value. Scanning Electron Microscope (SEM) and Energy-dispersive X-ray analysis (EDX) has been performed to probe microstructures and chemical compositions for work piece without holes which has higher mechanical property. - Highlights: • FWTPET for dissimilar metals commercial copper tube and Al 2025 tube plate. • The hardness value for tube without holes are 180.988 Hv. • The compression strength for tube without holes are 376.05 MPa. • SEM confirm heat production is done to melt parent metal by diffusion process. • EDX prove no trace

  8. Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates

    International Nuclear Information System (INIS)

    Zhang Qiaobao; Xu Daguo; Zhang Kaili; Hung, Tak Fu

    2013-01-01

    Reversible superhydrophobic and superhydrophilic surfaces based on porous substrates covered with CuO nanowires are developed in this study. A facile thermal oxidation method is used to synthesize non-flaking bicrystalline CuO nanowires on porous copper substrates in static air. The effects of thermal oxidation temperature and duration are systemically studied. The growth mechanism of the obtained non-flaking CuO nanowires is presented and the compression stress is believed to be the key driving force. The wettability of the CuO nanowires after chemical modification with trichloro(1H,1H,2H,2H-perfluorooctyl)silane is systemically investigated. The porous substrates covered with CuO nanowires exhibit excellent superhydrophobic performance with almost no water adhesion and no apparent drag resistance, and a maximum static water contact angle of 162 ± 2° is observed. Moreover, a rapid reversibly switchable wettability between superhydrophobic and superhydrophilic states is realized by the alternation of air–plasma treatment and surface fluorination. The porous substrates covered with CuO nanowires will find promising applications in surface and corrosion protection, liquid transportation, oil–water separation, and self-cleaning surfaces. (paper)

  9. In Vivo Modeling of the Pathogenic Effect of Copper Transporter Mutations That Cause Menkes and Wilson Diseases, Motor Neuropathy, and Susceptibility to Alzheimer's Disease.

    Science.gov (United States)

    Mercer, Stephen W; Wang, Jianbin; Burke, Richard

    2017-03-10

    Copper is an essential biometal, and several inherited diseases are directly associated with a disruption to normal copper homeostasis. The best characterized are the copper deficiency and toxicity disorders Menkes and Wilson diseases caused by mutations in the p-type Cu-ATPase genes ATP7A and ATP7B , respectively. Missense mutations in the C-terminal portion of ATP7A have also been shown to cause distal motor neuropathy, whereas polymorphisms in ATP7B are associated with increased risk of Alzheimer's disease. We have generated a single, in vivo model for studying multiple pathogenic mutations in ATP7 proteins using Drosophila melanogaster , which has a single orthologue of ATP7A and ATP7B. Four pathogenic ATP7A mutations and two ATP7B mutations were introduced into a genomic ATP7 rescue construct containing an in-frame C-terminal GFP tag. Analysis of the wild type ATP7-GFP transgene confirmed that ATP7 is expressed at the basolateral membrane of larval midgut copper cells and that the transgene can rescue a normally early lethal ATP7 deletion allele to adulthood. Analysis of the gATP7-GFP transgenes containing pathogenic mutations showed that the function of ATP7 was affected, to varying degrees, by all six of the mutations investigated in this study. Of particular interest, the ATP7B K832R Alzheimer's disease susceptibility allele was found, for the first time, to be a loss of function allele. This in vivo system allows us to assess the severity of individual ATP7A / B mutations in an invariant genetic background and has the potential to be used to screen for therapeutic compounds able to restore function to faulty copper transport proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Adsorption of copper (II) by using derived-farmyard and poultry manure biochars: Efficiency and mechanism

    Science.gov (United States)

    Batool, Saima; Idrees, Muhammad; Hussain, Qaiser; Kong, Jie

    2017-12-01

    Biochar (BC) has recently become an attractive adsorbent for the removal of toxic metals from aqueous media. In this study, the adsorption efficiency of BCs derived through farmyard and poultry manure (DBC-FYM, DBC-PM) for the removal of copper (Cu2+) from water was evaluated. The porosity, surface structure, internal morphology, thermal stability and functional groups of the DBCs were analyzed using different analytical techniques such as scanning electron microscopy (SEM), X-ray photon spectroscopy (XPS), thermogravimetric analyses (TGA) and fourier transmission infrared spectroscopy (FTIR). Kinetics and isothermal data were acquired by batch adsorption mode. The isothermal sorption data was well correlated (R2 > 0.98) with the Freundlich model describing multilayer sorption of Cu2+ on heterogeneous DBCs surface. The maximum Cu2+ sorption was estimated as 44.50 mg/g for DBC-FYM and 43.68 mg/g for DBC-PM. The sorption data followed the pseudo-second order kinetics, indicating the chemical interaction between Cu2+ and the negative charged surface of DBCs. The thermodynamic parameters indicated that the reaction was exothermic and spontaneous. Post-sorption analysis of the DBCs by XPS suggested the formation of CuO and carbonate dihydroxide. The outcomes of the present study indicated that DBCs could be valuable green sorbents for removing Cu2+ from contaminated aqueous media.

  11. Copper-tolerant yeasts: Raman spectroscopy in determination of bioaccumulation mechanism.

    Science.gov (United States)

    Radić, Danka S; Pavlović, Vera P; Lazović, Milana M; Jovičić-Petrović, Jelena P; Karličić, Vera M; Lalević, Blažo T; Raičević, Vera B

    2017-09-01

    Modern, efficient, and cost-effective approach to remediation of heavy metal-contaminated soil is based on the application of microorganisms. In this paper, four isolates from agricultural and urban contaminated soil showed abundant growth in the presence of copper(II) sulfate pentahydrate (CuSO 4 ·5H 2 O) up to 2 mM. Selected yeasts were identified by molecular methods as Candida tropicalis (three isolates) and Schwanniomyces occidentalis (one isolate). C. tropicalis (4TD1101S) showed the highest percentage of bioaccumulation capabilities (94.37%), determined by the inductively coupled plasma optical emission spectrometry (ICP-OES). The Raman spectra of C. tropicalis (4TD1101S) analyzed in a medium with the addition of 2 mM CuSO 4 ·5H 2 O showed certain increase in metallothionein production, which represents a specific response of the yeast species to the stress conditions. These results indicate that soil yeasts represent a potential for practical application in the bioremediation of contaminated environments.

  12. Mechanism study of sulfur fertilization mediating copper translocation and biotransformation in rice (Oryza sativa L.) plants.

    Science.gov (United States)

    Sun, Lijuan; Yang, Jianjun; Fang, Huaxiang; Xu, Chen; Peng, Cheng; Huang, Haomin; Lu, Lingli; Duan, Dechao; Zhang, Xiangzhi; Shi, Jiyan

    2017-07-01

    Metabolism of sulfur (S) is suggested to be an important factor for the homeostasis and detoxification of Cu in plants. We investigated the effects of S fertilizers (S 0 , Na 2 SO 4 ) on Cu translocation and biotransformation in rice plants by using multiple synchrotron-based techniques. Fertilization of S increased the biomass and yield of rice plants, as well as the translocation factor of Cu from root to shoot and shoot to grain, resulting in enhanced Cu in grain. Sulfur K-edge X-ray near edge structure (XANES) analysis showed that fertilization of S increased the concentration of glutathione in different rice tissues, especially in rice stem and leaf. Copper K-edge XANES results indicated that a much higher proportion of Cu (I) species existed in rice grain than husk and leaf, which was further confirmed by soft X-ray scanning transmission microscopy results. Sulfur increased the proportion of Cu (I) species in rice grain, husk and leaf, suggesting the inducing of Cu (II) reduction in rice tissues by S fertilization. These results suggested that fertilization of S in paddy soils increased the accumulation of Cu in rice grain, possibly due to the reduction of Cu (II) to Cu (I) by enhancing glutathione synthesis and increasing the translocation of Cu from shoot to grain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Disordered long-range internal stresses in deformed copper and the mechanisms underlying plastic deformation

    International Nuclear Information System (INIS)

    Levine, Lyle E.; Geantil, Peter; Larson, Bennett C.; Tischler, Jonathan Z.; Kassner, Michael E.; Liu, Wenjun; Stoudt, Mark R.; Tavazza, Francesca

    2011-01-01

    Highlights: → Axial elastic strains were measured from numerous individual, contiguous dislocation cell walls and cell interiors. → The mean stresses for the cell walls and cell interiors were of opposite sign, in agreement with theoretical predictions. → The separation between the mean cell wall and cell interior stresses was about 20% of the flow stress. → Broad distributions of dipolar stresses were observed that are consistent with a simple size-scaling model. - Abstract: The strength of wavy glide metals increases dramatically during deformation as dislocations multiply and entangle, forming dense dislocation wall structures. Numerous competing models have been proposed for this process but experimental validation and guidance for further model development require new experimental approaches capable of resolving local stresses within the dislocation microstructure. We use three-dimensional X-ray microscopy combining submicrometer spatial resolution with diffracted-beam masking to make direct measurements of axial elastic strain (and thus stress) in individual dislocation cell walls and their adjacent cell interiors in heavily deformed copper. These spatially resolved measurements show broad, asymmetric distributions of dipolar stresses that directly discriminate between long-standing deformation models and demonstrate that the distribution of local stresses is statistically connected to the global behavior through simple rules.

  14. Mechanism of via failure in copper/organosilicate glass interconnects induced by oxidation

    International Nuclear Information System (INIS)

    Min, Woo Sig; Kim, Dong Joon; Pyo, Sung Gyu; Park, Sang Jong; Choi, Jin Tae; Kim, Sibum

    2007-01-01

    Annealing for copper/organosilicate glass (Cu/OSG) dual damascene (DD) structure resulted in via resistance increase when Ta or TaN x film by ionized physical vapor deposition (iPVD) method was used as a barrier metal. The percentage increase in via resistance was higher in smaller vias. In spite of the huge increase of more than 50% in via resistance during annealing, any Cu voids in a single via or via chains of the DD structure were not observed. Instead, large amount of oxygen was detected at the interface between the barrier metal and Cu in the bottom of the vias. It was found that via resistance increase during annealing was caused by oxidation of the barrier metal at the via bottom. Improvement of the step coverage of the barrier metal inhibited the via resistance increase even after the high temperature annealing at 500 deg. C. It means that the oxygen atoms diffused out from the OSG film were blocked by the barrier metal covering the side wall of the vias

  15. Disturbance of copper homeostasis is a mechanism for homocysteine-induced vascular endothelial cell injury.

    Directory of Open Access Journals (Sweden)

    Daoyin Dong

    Full Text Available Elevation of serum homocysteine (Hcy levels is a risk factor for cardiovascular diseases. Previous studies suggested that Hcy interferes with copper (Cu metabolism in vascular endothelial cells. The present study was undertaken to test the hypothesis that Hcy-induced disturbance of Cu homeostasis leads to endothelial cell injury. Exposure of human umbilical vein endothelial cells (HUVECs to concentrations of Hcy at 0.01, 0.1 or 1 mM resulted in a concentration-dependent decrease in cell viability and an increase in necrotic cell death. Pretreatment of the cells with a final concentration of 5 µM Cu in cultures prevented the effects of Hcy. Hcy decreased intracellular Cu concentrations. HPLC-ICP-MS analysis revealed that Hcy caused alterations in the distribution of intracellular Cu; more Cu was redistributed to low molecular weight fractions. ESI-Q-TOF detected the formation of Cu-Hcy complexes. Hcy also decreased the protein levels of Cu chaperone COX17, which was accompanied by a decrease in the activity of cytochrome c oxidase (CCO and a collapse of mitochondrial membrane potential. These effects of Hcy were all preventable by Cu pretreatment. The study thus demonstrated that Hcy disturbs Cu homeostasis and limits the availability of Cu to critical molecules such as COX17 and CCO, leading to mitochondrial dysfunction and endothelial cell injury.

  16. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials

    International Nuclear Information System (INIS)

    Velu, M.; Bhat, Sunil

    2013-01-01

    Highlights: ► Optical and scanning electron microscopy show defect free weld interfaces. ► Energy dispersive spectroscopy shows low dilution level of the weld by Fe. ► XRD studies show no brittle intermetallic phases in the weld interfaces. ► Weld interfaces did not fail during tensile, transverse bending and impact tests. ► The joint exhibits superior strength properties than that of bronze filler. - Abstract: The paper presents metallurgical and mechanical examinations of joints between dissimilar metals viz. copper (UNSC11000) and alloy steel (En31) obtained by Shielded Metal Arc Welding (SMAW) using two different filler materials, bronze and nickel-base super alloy. The weld bead of the joint with bronze-filler displayed porosity, while that with nickel-filler did not. In tension tests, the weldments with bronze-filler fractured in the centre of the weld, while those with nickel-filler fractured in the heat affected zone (HAZ) of copper. Since the latter exhibited higher strength than the former, all the major tests were undertaken over the joints with nickel-filler alone. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) indicated corrugated weld interfaces and favorable elemental diffusions across them. X-ray diffraction (XRD) studies around the weld interfaces did not reveal any detrimental intermetallic compounds. Transverse bending tests showed that flexural strengths of the weldments were higher than the tensile strengths. Transverse side bend tests confirmed good ductility of the joints. Shear strength of the weld-interface (Cu–Ni or Ni–steel) was higher than the yield strength of weaker metal. Microhardness and Charpy impact values were measured at all the important zones across the weldment

  17. A Hybrid Dynamic Programming for Solving Fixed Cost Transportation with Discounted Mechanism

    OpenAIRE

    Farhad Ghassemi Tari

    2016-01-01

    The problem of allocating different types of vehicles for transporting a set of products from a manufacturer to its depots/cross docks, in an existing transportation network, to minimize the total transportation costs, is considered. The distribution network involves a heterogeneous fleet of vehicles, with a variable transportation cost and a fixed cost in which a discount mechanism is applied on the fixed part of the transportation costs. It is assumed that the number of available vehicles i...

  18. The transport mechanism DC arcs in advanced spectroanalysis

    International Nuclear Information System (INIS)

    Moeller, H.; Mazurkiewicz, M.; Nickel, H.

    1977-08-01

    This report presents some basic investigations concerning the emission spectroanalysis of powder specimens with application of a new type of advanced DC arcs which operate in horizontally arranged graphite cylinders. The extremely low detection limits found by experiment for various elements (Be, Cd, In, Pb, Sn) suggest a beneficial and reflector like effect of the graphite cylinder on the transport process in the arc plasma. Experiments in detail and by using radioactive tracers (Ag-110, Cd-115, Co-56, Fe-59, Zn-65) lead to an element specific modified model of the effective mechanism of the new arc arrangement. Elements of favourable thermochemical properties produce about three times as much of the average particle density in the arc plasma with the effect of the graphite cylinder. Besides these effects the element specific properties of the graphite cylinder are remarkably invariable towards magnetic fields (1,24 . 10 -2 T bzw. 2,6 . 10 -4 T) and various additives (Ga 2 O 3 , Li 2 Co 3 , NaCl) to the test specimens. (orig.) [de

  19. Nodal methods for problems in fluid mechanics and neutron transport

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1985-01-01

    A new high-accuracy, coarse-mesh, nodal integral approach is developed for the efficient numerical solution of linear partial differential equations. It is shown that various special cases of this general nodal integral approach correspond to several high efficiency nodal methods developed recently for the numerical solution of neutron diffusion and neutron transport problems. The new approach is extended to the nonlinear Navier-Stokes equations of fluid mechanics; its extension to these equations leads to a new computational method, the nodal integral method which is implemented for the numerical solution of these equations. Application to several test problems demonstrates the superior computational efficiency of this new method over previously developed methods. The solutions obtained for several driven cavity problems are compared with the available experimental data and are shown to be in very good agreement with experiment. Additional comparisons also show that the coarse-mesh, nodal integral method results agree very well with the results of definitive ultra-fine-mesh, finite-difference calculations for the driven cavity problem up to fairly high Reynolds numbers

  20. Neural effects in copper defiient Menkes disease: ATP7A-a distinctive marker

    Directory of Open Access Journals (Sweden)

    S K Kanthlal

    2016-08-01

    Full Text Available Menkes disease, also termed as “Menkes’s syndrome”, is a disastrous infantile neurodegenerative disorder originated by diverse mutations in cupric cation-transport gene called ATP7A. This gene encodes a protein termed as copper transporting P-type ATPase, essential for copper ion transport from intestine to the other parts of our body along with other transporters like copper transporter receptor 1 and divalent metal transporter 1. The copper transportation is vital in the neuronal development and synthesis of various enzymes. It is found to be an appreciated trace element for normal biological functioning but toxic in excess. It is essential for the metallation of cuproenzymes which is responsible for the biosynthesis of neurotransmitters and other vital physiological mechanisms. Copper is also actively involved in the transmission pathway of N-methyl-D-aspartate receptors and its subsequent molecular changes in neural cells. The expression of ATP7A gene in regions of brain depicts the importance of copper in neural development and stabilization. Studies revealed that the mutation of ATP7A gene leads the pathophysiology of various neurodegenerative disorders. This review focused on the normal physiological function of the gene with respect to their harmful outcome of the mutated gene and its associated deficiency which detriments the neural mechanism in Menkes patients.

  1. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  2. How LeuT shapes our understanding of the mechanisms of sodium-coupled neurotransmitter transporters.

    Science.gov (United States)

    Penmatsa, Aravind; Gouaux, Eric

    2014-03-01

    Neurotransmitter transporters are ion-coupled symporters that drive the uptake of neurotransmitters from neural synapses. In the past decade, the structure of a bacterial amino acid transporter, leucine transporter (LeuT), has given valuable insights into the understanding of architecture and mechanism of mammalian neurotransmitter transporters. Different conformations of LeuT, including a substrate-free state, inward-open state, and competitive and non-competitive inhibitor-bound states, have revealed a mechanistic framework for the transport and transport inhibition of neurotransmitters. The current review integrates our understanding of the mechanistic and pharmacological properties of eukaryotic neurotransmitter transporters obtained through structural snapshots of LeuT.

  3. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    Science.gov (United States)

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials.

  4. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    properties. The thin outer layer controls the corrosion properties of copper, corrosion rate being limited by ionic transport through the layer and the charge transfer step of the film dissolution. Chlorides cause a breakdown of the oxide film in the stability region of divalent copper, but they seem to have no effect on the properties of the film in the stability region of monovalent copper; oxidising conditions with simultaneous exposure to chlorides are thus expected to subject copper to localised corrosion. Sulphides at the concentration of 10 ppm dissolved H 2 S were found not to promote the formation of a three-dimensional film of Cu 2 S (or other copper sulphides), thus the mechanisms of localised corrosion which operate under reducing conditions and are based on the formation of copper sulphides seem not to be valid. In the presence of 10 ppm H 2 S the corrosion rate of copper is controlled by the charge transfer step of the dissolution of the outer layer

  5. Center for low-gravity fluid mechanics and transport phenomena

    Science.gov (United States)

    Kassoy, D. R.; Sani, R. L.

    1991-01-01

    Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.

  6. Influence of copper composition on mechanical properties of biodegradable material Mg-Zn-Cu for orthopedic application

    Science.gov (United States)

    Purniawan, A.; Maulidiah, H. M.; Purwaningsih, H.

    2018-04-01

    Implant is usually used as a treatment of bone fracture. At the moment, non-biodegradable implants is still widely employed in this application. Non-biodegradable implant requires re-surgery to retrieve implants that are installed in the body. It increase the cost and it is painful for the patient itself. In order to solve the problem, Mg-based biodegradable metals is developing so that the material will be compatible with body and gradually degrade in patient's body. However, magnesium has several disadvantages such as high degradation rates and low mechanical properties when compared to the mechanical properties of natural bone. Therefore, it is necessary to add elements into the magnesium alloy. In this research, copper (Cu) was alloyed in Mg alloy based biodegradable material. In addition, Cu is not only strengthening the structure but also for supporting element for the immune system, antibacterial and antifungal. The purpose of this research is to improve mechanical properties of Mg-based biodegradable material using Cu alloying. Powder metallurgy method was used to fabricate the device. The variation used in this research is the composition of Cu (0.5, 1, and 1.5% Cu). The porosity test was performed using apparent porosity test, compressive test and hardness test to know the mechanical properties of the alloy, and the weightless test to find out the material degradation rate. Based on the results can be conclude that Mg-Zn-Cu alloy material with 1% Cu composition is the most suitable specimen to be applied as a candidate for orthopedic devices material with hardness value is 393.6 MPa. Also obtained the value of the compressive test is 153 MPa.

  7. Transport mechanisms in the outer region of RFX-mod

    International Nuclear Information System (INIS)

    Vianello, N.; Martines, E.; Agostini, M.; Alfier, A.; Canton, A.; Cavazzana, R.; De Masi, G.; Fassina, A.; Lorenzini, R.; Scarin, P.; Serianni, G.; Spagnolo, S.; Spizzo, G.; Spolaore, M.; Zuin, M.

    2009-01-01

    Transport properties of the edge region of RFPs are characterized by complicated mechanisms further entangled by the complex magnetic topology. Recently on RFX-mod (Sonato 2003 Fusion Eng. Des. 66-68 161) the use of an efficient feedback system for MHD control allowed the achievement of an unprecedented plasma current for an RFP, of up to 1.6 MA, with an improvement in the confinement properties. This is accompanied by an amelioration of the magnetic boundary and the observation of different MHD regimes, moving from low current multiple helical regime, to high current quasi-single helical ones. At a low plasma current (I p ∼ 300-400 kA) in multiple helicity discharge the plasma parameter profiles at the edge are strongly influenced by the presence of m = 0 islands which flatten the temperature profile and modify substantially both the electric drift flow and the E x B shear. The particle diffusion coefficient and the thermal conductivity χ e in this regime are 10-20 m 2 s -1 and 100-200 m 2 s -1 , respectively. Both temperature and pressure characteristic scale lengths are found to scale favourably with the decrease in the secondary modes achieved through the increase in the plasma current. The same trend is observed for the thermal conductivity, and the recently discovered single helical axis states (Lorenzini et al 2008 Phys. Rev. Lett. 101 025005) exhibit an edge χ e reduced by a factor of up to 40%. Finally the perpendicular flow at the edge is found to scale with the density normalized to the Greenwald density with a saturation at values around n/n G ∼ 0.35.

  8. Molecular Mechanisms of Urea Transport in Health and Disease

    Science.gov (United States)

    Klein, Janet D.; Blount, Mitsi A.; Sands, Jeff M.

    2012-01-01

    In the late 1980s, urea permeability measurements produced values that could not be explained by paracellular transport or lipid phase diffusion. The existence of urea transport proteins were thus proposed and less than a decade later, the first urea transporter was cloned. The SLC14A family of urea transporters has two major subgroups, designated SLC14A1 (or UT-B) and Slc14A2 (or UT-A). UT-B and UT-A gene products are glycoproteins located in various extra-renal tissues however, a majority of the resulting isoforms are found in the kidney. The UT-B (Slc14A1) urea transporter was originally isolated from erythrocytes and two isoforms have been reported. In kidney, UT-B is located primarily in the descending vasa recta. The UT-A (Slc14A2) urea transporter yields 6 distinct isoforms, of which 3 are found chiefly in the kidney medulla. UT-A1 and UT-A3 are found in the inner medullary collecting duct (IMCD), while UT-A2 is located in the thin descending limb. These transporters are crucial to the kidney’s ability to concentrate urine. The regulation of urea transporter activity in the IMCD involves acute modification through phosphorylation and subsequent movement to the plasma membrane. UT-A1 and UT-A3 accumulate in the plasma membrane in response to stimulation by vasopressin or hypertonicity. Long term regulation of the urea transporters in the IMCD involves altering protein abundance in response to changes in hydration status, low protein diets, or adrenal steroids. Urea transporters have been studied using animal models of disease including diabetes mellitus, lithium intoxication, hypertension, and nephrotoxic drug responses. Exciting new genetically engineered mouse models are being developed to study these transporters. PMID:23007461

  9. A mechanistic study of the uniform corrosion of copper in compacted clay-sand soil

    International Nuclear Information System (INIS)

    Litke, C.D.; Ryan, S.R.; King, F.

    1992-08-01

    The results of a study of the mechanism of uniform corrosion of copper under simulated nuclear fuel waste disposal conditions are presented. Evidence is given that suggests that the rate-controlling process is the transport of copper corrosion products away from the corroding surface. In the experiments described here, the copper diffused through a column of compacted clay-sand buffer. The properties of the buffer material, especially its ability to sorb copper species, are significant in determining the rate of uniform corrosion of copper. The evidence that copper diffusion is rate-controlling stems from the effect of γ-radiation on the tests. In the presence of γ-radiation, copper diffused farther along the column of compacted buffer material than in the unirradiated tests, but the corrosion rate was lower. These two effects can be best explained in terms of a slow copper-diffusion process. Irradiation is thought to reduce the extent of sorption of copper by the clay component of the buffer. This results in a more mobile copper species and a smaller interfacial flux of copper (i.e., a lower corrosion rate)

  10. Effect of copper addition and section thickness on the mechanical and physical properties of grey cast iron

    International Nuclear Information System (INIS)

    Malik, F.A.; Zahid, M.; Hassan, M.A.; Sheikh, M.A.; Alam, S.; Qazi, M.A.

    1995-01-01

    Copper is a graphitizer at the stage of solidification and it acts as antiferritizer during transformation cooling range. Due to this, copper additions to grey cast iron prevent at formation of free ferrite in heavy sections. It also reduces the chilling in thin sections, therefore uniform structure is imparted to grey iron by the copper addition. This gives the appropriate strength and hardness properties to grey iron. Thus copper addition gives certain advantages in relation to the machinability and wear resistance which are important for many engineering properties requires by high duty cast iron. The application of copper as allying element is acceptable due to its price and availability as compared to other alloying elements. (author)

  11. Investigation on the oxygen transport mechanisms in the Sarcheshmeh waste rock dumps

    Directory of Open Access Journals (Sweden)

    Saeed Yousefi

    2015-04-01

    Full Text Available Introduction Pyrite oxidation and acid mine drainage (AMD are the serious environmental problems associated with the mining activities in sulphide ores. The rate of pyrite oxidation is governed by the availability of oxygen (Borden, 2003. Therefore, the identifying oxygen supplying mechanism is one of the most important issues related to the environmental assessment of waste rock dumps (Cathles and Apps, 1975; Jaynes et al., 1984; Davis and Ritchie, 1986. Although comprehensive researches were performed on the mathematical description of oxygen transport processes using the numerical modeling (Morin et al., 1988; Blowes et al., 1991; Wunderly et al., 1986; Elberling et al., 1994; Jannesar Malakooti et al., 2014, so far, the interactions between these processes and geochemical and mineralogical characteristics has not been studied especially in waste rock dumps. Therefore the main objective of this study is to identify the evidences for knowing the oxygen transport mechanisms in the waste dumps and also, its role in intensity of pyrite oxidation. It is expected that such these structural studies could be useful for better understanding of dominant processes in numerical modeling and also providing environmental management strategies in the study area and other sites by similar characteristics. Materials and Methods In this study, thirty solid samples were collected from six excavated trenches in the waste rock dumps No. 19 and 31 of the Sarcheshmeh porphyry copper mine. Collected samples were studied using several methods such as XRD, ASTM-D2492, paste pH and grain size distribution. The results obtained from these methods were used with the field observations in order to characterize some detail information about oxygen supplying mechanisms for oxidation reactions in the waste rock dumps. Result The main minerals found by the XRD analysis were quartz and muscovite which were present in all samples. Pyrite, orthose, albite, and chlorite were also

  12. Thermal, dielectric characteristics and conduction mechanism of azodyes derived from quinoline and their copper complexes.

    Science.gov (United States)

    El-Ghamaz, N A; Diab, M A; El-Bindary, A A; El-Sonbati, A Z; Nozha, S G

    2015-05-15

    A novel series of (5-(4'-derivatives phenyl azo)-8-hydroxy-7-quinolinecarboxaldehyde) (AQLn) (n=1, p-OCH3; n=2, R=H; and n=3; p-NO2) and their complexes [Cu(AQLn)2]·5H2O are synthesized and investigated. The optimized bond lengths, bond angles and the calculated quantum chemical parameters for AQLn are investigated. HOMO-LUMO energy gap, absolute electronegativities, chemical potentials, and absolute hardness are also calculated. The thermal properties, dielectric properties, alternating current conductivity (σac) and conduction mechanism are investigated in the frequency range 0.1-100kHz and temperature range 293-568K for AQL1-3 and 318-693K for [Cu(AQL1-3)2]·5H2O complexes. The thermal properties are of ligands (AQLn) and their Cu(II) complexes investigated by thermogravimetric analysis (TGA). The temperature and frequency dependence of the real and the imaginary part of the dielectric constant are studied. The values of the thermal activation energy of conduction mechanism for AQLn and their complexes [Cu(AQLn)2]·5H2O under investigation are calculated at different test frequencies. The values of thermal activation energies ΔE1 and ΔE2 for AQLn and [Cu(AQLn)2]·5H2O decrease with increasing the values of frequency. The ac conductivity is found to be depending on the chemical structure of the compounds. Different conduction mechanisms have been proposed to explain the obtained experimental data. The small polaron tunneling (SPT) is the dominant conduction mechanism for AQL1 and its complex [Cu(AQL1)2]·5H2O. The quantum mechanical tunneling (QMT) is the dominant conduction mechanism for AQL2 and its complex [Cu(AQL2)2]·5H2O. The correlated barrier hopping (CBH) is the dominant conduction mechanism for AQL3 and its complex [Cu(AQL3)2]·5H2O, and the values of the maximum barrier height (Wm) are calculated. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    Science.gov (United States)

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-01-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase. Images Figure 1 PMID:7611281

  14. Mechanism of Transport Modulation by an Extracellular Loop in an Archaeal Excitatory Amino Acid Transporter (EAAT) Homolog*

    Science.gov (United States)

    Mulligan, Christopher; Mindell, Joseph A.

    2013-01-01

    Secondary transporters in the excitatory amino acid transporter family terminate glutamatergic synaptic transmission by catalyzing Na+-dependent removal of glutamate from the synaptic cleft. Recent structural studies of the aspartate-specific archaeal homolog, GltPh, suggest that transport is achieved by a rigid body, piston-like movement of the transport domain, which houses the substrate-binding site, between the extracellular and cytoplasmic sides of the membrane. This transport domain is connected to an immobile scaffold by three loops, one of which, the 3–4 loop (3L4), undergoes substrate-sensitive conformational change. Proteolytic cleavage of the 3L4 was found to abolish transport activity indicating an essential function for this loop in the transport mechanism. Here, we demonstrate that despite the presence of fully cleaved 3L4, GltPh is still able to sample conformations relevant for transport. Optimized reconstitution conditions reveal that fully cleaved GltPh retains some transport activity. Analysis of the kinetics and temperature dependence of transport accompanied by direct measurements of substrate binding reveal that this decreased transport activity is not due to alteration of the substrate binding characteristics but is caused by the significantly reduced turnover rate. By measuring solute counterflow activity and cross-link formation rates, we demonstrate that cleaving 3L4 severely and specifically compromises one or more steps contributing to the movement of the substrate-loaded transport domain between the outward- and inward-facing conformational states, sparing the equivalent step(s) during the movement of the empty transport domain. These results reveal a hitherto unknown role for the 3L4 in modulating an essential step in the transport process. PMID:24155238

  15. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives

    International Nuclear Information System (INIS)

    Pasquale, M.A.; Gassa, L.M.; Arvia, A.J.

    2008-01-01

    Copper electrodeposition on copper from still plating solutions of different compositions was investigated utilising electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and scanning electron microscopy (SEM). An acid copper sulphate plating base solution was employed either with or without sodium chloride in the presence of a single additive, either polyethylene glycol (PEG) or 3-mercapto-2-propanesulphonic acid (MPSA), and their mixture. Thallium underpotential deposition/anodic stripping was employed to determine the adsorption capability of additives on copper. In the absence of chloride ions, MPSA shows a moderate adsorption on copper, whereas PEG is slightly adsorbed. At low cathodic overpotentials, the simultaneous presence of MPSA and chloride ions accelerates copper electrodeposition through the formation of an MPSA-chloride ion complex in the solution, particularly for about 220 μM sodium chloride. The reverse effect occurs in PEG-sodium chloride plating solutions. In this case, from EIS data the formation of a film that interferes with copper electrodeposition can be inferred. At higher cathodic overpotentials, when copper electrodeposition is under mass transport control, the cathode coverage by a PEG-copper chloride-mediated film becomes either partially or completely detached as the concentration of chloride ions at the negatively charged copper surface diminishes. The copper cathode grain topography at the μm scale depends on the cathodic overpotential, plating solution composition and average current density. Available data about the solution constituents and their adsorption on copper make it possible to propose a likely complex mechanism to understand copper electrodeposition from these media, including the accelerating effect of MPSA and the dynamics of PEG-copper chloride complex adsorbate interfering with the surface mobility of depositing copper ad-ions/ad-atoms

  16. Predicting Soil Physical Parameters and Copper Transport in a Polluted Field From X Ray CT-Images

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Naveed, Muhammad; Møldrup, Per

    2013-01-01

    in soils is strongly controlled by the soil structure, the capabilities of these visualization techniques could be used to predict the risk of pollutants leaching. This work was carried out using soils from a field site (Hygum) in Jutland, Denmark, a historical copper (Cu) polluted field cultivated for 80...

  17. Influence of Low Molecular Weight Organic Acids on Transport of Cadmium and Copper Ions across Model Phospholipid Membranes

    Czech Academy of Sciences Publication Activity Database

    Parisová, Martina; Navrátil, Tomáš; Šestáková, Ivana; Jaklová Dytrtová, Jana; Mareček, Vladimír

    2013-01-01

    Roč. 8, č. 1 (2013), s. 27-44 ISSN 1452-3981 R&D Projects: GA AV ČR IAA400400806 Institutional support: RVO:61388963 ; RVO:61388955 Keywords : cadmium * copper * low molecular weight organic acid Subject RIV: CG - Electrochemistry Impact factor: 1.956, year: 2013

  18. Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.

    Science.gov (United States)

    Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre

    2017-01-01

    Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.

  19. Microstructure and mechanical properties of annealed SUS 304H austenitic stainless steel with copper

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Indrani [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Amankwah, E. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Department of Materials Science, African University of Science and Technology, Abuja (Nigeria); Kumar, N.S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Fleury, E. [Center for High Temperature Energy Materials, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Oh-ishi, K.; Hono, K. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Ramamurty, U., E-mail: ramu@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2011-05-25

    Research highlights: {yields} SUS 304H austenitic stainless steel containing 3 wt.% Cu was annealed at 700 deg. C for up to 100 h. {yields} Microstructure and mechanical properties of annealed alloys are examined. {yields} Nano-sized Cu-rich precipitation upon annealing. {yields} Strength of the alloy remains invariant with annealing whereas ductility improves. {yields} Fatigue crack growth threshold of 3 wt.% Cu added alloy increases with annealing. - Abstract: An experimental investigation into the effect of Cu on the mechanical properties of 0 and 3 wt.% Cu added SUS 304H austenitic stainless steel upon annealing at 700 deg. C for up to 100 h was conducted. Optical microscopy reveals grain coarsening in both the alloys upon annealing. Observations by transmission electron microscopy revealed the precipitation of nanometer-sized spherical Cu particles distributed within the austenitic grains and the presence of carbides at the dislocations. Both the yield and ultimate tensile strengths of the alloys were found to remain invariant with annealing. Tensile ductility and the threshold stress intensity factor range for fatigue crack growth for 3 wt.% Cu added alloy increase with annealing. These are attributed to the grain coarsening with annealing. In all, the addition of Cu to SUS 304H does not affect the mechanical performance adversely while improving creep resistance.

  20. Thermal and mechanical improvement of aluminum open-cells foams through electrodeposition of copper and graphene

    Directory of Open Access Journals (Sweden)

    Simoncini Alessandro

    2016-01-01

    Full Text Available Thanks to its planar structure, graphene is characterized by unique properties, such as excellent chemical inactivity, high electrical and thermal conductivity, high optical transparency, extraordinary flexibility and high mechanical resistance, which make it suitable in a very wide range of applications. This paper details the state of the art in graphene coating applied to aluminum open-cells foams for the improvement of their mechanical and thermal behavior. Metallic foams are highly porous materials with extremely high convective heat transfer coefficients, thanks to their complex structure of three-dimensional open-cells. Graphene nanoplatelets have been used to improve thermal conductivity of aluminum foams, to make them better suitable during heat transfer in transient state. Also, an improvement of mechanical resistance has been observed. Before electrodeposition, all the samples have been subjected to sandblasting process, to eliminate the oxide layer on the surface, enabling a better adhesion of the coating. Different nanoparticles of graphene have been used. The experimental findings revealed a higher thermal conductivity for aluminum open cells foams electroplated with graphene. Considered the relatively low process costs and the improvements obtainable, these materials are very promising in many technological fields. The topics covered include surface modification, electrochemical plating, thermo-graphic analysis.

  1. Transport mechanisms at the pulmonary mucosa: implications for drug delivery.

    Science.gov (United States)

    Nickel, Sabrina; Clerkin, Caoimhe G; Selo, Mohammed Ali; Ehrhardt, Carsten

    2016-01-01

    Over the past years, a significant number of papers have substantiated earlier findings proposing a role for drug transporter proteins in pulmonary drug disposition. Whilst the majority of reports present data from in vitro models, a growing number of publications advance the field by introducing sophisticated ex vivo and in vivo techniques. In a few cases, evidence from clinical studies in human volunteers is complementing the picture. In this review, recent advances in pulmonary drug transporter research are critically evaluated. Transporter expression data in tissues and cell-based in vitro models is summarized and information on transport activity assessed. Novel techniques allowing for better quantification of transporter-related effects following pulmonary delivery are also described. Different tissue and cell populations of the lung have distinct transporter expression patterns. Whether these patterns are affected by disease, gender and smoking habits requires further clarification. Transporters have been found to have an impact on drug absorption processes, at least in vitro. Recent ex vivo experiments using isolated, perfused lung models, however, suggest that mainly efflux pumps have significant effects on absorption into the pulmonary circulation. Whether these rodent-based ex vivo models predict the human situation is basis for further research.

  2. The role of copper nanoparticles in an etch-and-rinse adhesive on antimicrobial activity, mechanical properties and the durability of resin-dentine interfaces.

    Science.gov (United States)

    Gutiérrez, Mario F; Malaquias, Pamela; Hass, Viviane; Matos, Thalita P; Lourenço, Lucas; Reis, Alessandra; Loguercio, Alessandro D; Farago, Paulo Vitor

    2017-06-01

    To evaluate the effect of addition of copper nanoparticles at different concentrations into an etch-and-rinse adhesive (ER) on antimicrobial activity, Knoop microhardness (KHN), in vitro and in situ degree of conversion (DC), as well as the immediate (IM) and 2-year (2Y) resin-dentine bond strength (μTBS) and nanoleakage (NL). Seven experimental ER adhesives were formulated according to the amount of copper nanoparticles incorporated into the adhesives (0 [control], 0.0075 to 1wt.%). We tested the antimicrobial activity of adhesives against Streptococcus mutans using agar diffusion assay after IM and 2Y. The Knoop microhardness and in vitro DC were tested after IM and 2Y. The adhesives were applied to flat occlusal dentine surfaces after acid etching. After resin build-ups, specimens were longitudinally sectioned to obtain beam-like resin-dentine specimens (0.8mm 2 ), which were used for evaluation of μTBS and nanoleakage at the IM and 2Y periods. In situ DC was evaluated at the IM period in these beam-like specimens. Data were submitted to appropriate statistical analyses (α=0.05). The addition of copper nanoparticles provided antimicrobial activity to the adhesives only in the IM evaluation and slightly reduced the KHN, the in vitro and in situ DC (copper concentrations of 1wt.%). However, KHN increase for all concentrations after 2Y. After 2Y, no significant reductions of μTBS (0.06 to 1% wt.%) and increases of nanoleakage were observed for copper containing adhesives compared to the control group. Copper nanoparticles addition up to 0.5wt.% may provide antimicrobial properties to ER adhesives and prevent the degradation of the adhesive interface, without reducing the mechanical properties of the formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  4. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    Science.gov (United States)

    Appert-Rolland, C.; Ebbinghaus, M.; Santen, L.

    2015-09-01

    Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized. The cytoskeleton, which is composed of three types of filaments (microtubules, actin and intermediate filaments), determines the shape of the cell, and plays a role in cell motion. It also serves as a road network for a special kind of vehicles, namely the cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated. The interest for this type of question was enhanced when it was discovered that intracellular transport breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. Our review includes on the one hand an overview of biological facts, obtained from experiments, and on the other hand a presentation of some modeling attempts based on cellular automata. We present some background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the

  5. CO2-ECBM related coupled physical and mechanical transport processes

    Science.gov (United States)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  6. Transport mechanisms in the laser alloying of metals

    Science.gov (United States)

    Pawlak, Ryszard; Tomczyk, Mariusz; Walczak, Maria

    2003-10-01

    This article presents some investigations of a laser alloyed surface layer of nickel doped with gold and of copper doped with aluminum. The velocity of the convectino flow in the laser pool predicted by computation implies that there may exist good miscibility for the range of components different from those obtained by the conventional method. This indicates a predominant role of the Marangoni convection for mixing elements. Some metallurgical cross-sections of Ni-Au; Mo-Au; Cu-Al; Cu-Au layers, alloyed by an Nd-YAG laser, for different contents of doping elements are presented. They may be interesting information about miscibility of these metals during laser pulse τ1=4ms.

  7. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    Science.gov (United States)

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  8. Sulfate radical degradation of acetaminophen by novel iron-copper bimetallic oxidation catalyzed by persulfate: Mechanism and degradation pathways

    Science.gov (United States)

    Zhang, Yuanchun; Zhang, Qian; Hong, Junming

    2017-11-01

    A novel iron coupled copper oxidate (Fe2O3@Cu2O) catalyst was synthesized to activate persulfate (PS) for acetaminophen (APAP) degradation. The catalysts were characterized via field-emission scanning electron microscopy and energy-dispersive X-ray spectrometry. The effects of the catalyst, PS concentration, catalyst dosage, initial pH, dissolved oxygen were analyzed for treatment optimization. Results indicated that Fe2O3@Cu2O achieved higher efficiency in APAP degradation than Fe2O3/PS and Cu2O/PS systems. The optimal removal efficiency of APAP (90%) was achieved within 40 min with 0.6 g/L PS and 0.3 g/L catalyst. To clarify the mechanism for APAP degradation, intermediates were analyzed with gas chromatography-mass spectrometry. Three possible degradation pathways were identified. During reaction, Cu(I) was found to react with Fe(III) to generate Fe(II), which is the most active phase for PS activation. Through the use of methanol and tert-butyl alcohol (TBA) as radical trappers, SO4rad - was identified as the main radical species that is generated during oxidation.

  9. As(III) Removal from Drinking Water by Carbon Nanotube Membranes with Magnetron-Sputtered Copper: Performance and Mechanisms.

    Science.gov (United States)

    Luan, Hongyan; Zhang, Quan; Cheng, Guo-An; Huang, Haiou

    2018-06-07

    Current approaches for functionalizing carbon nanotubes (CNTs) often utilize harsh chemical conditions, and the resulting harmful wastes can cause various environmental and health concerns. In this study, magnetron sputtering technique is facilely employed to functionalize CNT membranes by depositing Cu onto premade CNT membranes without using any chemical treatment. A comparative evaluation of the substrate polymeric membrane (mixed cellulose ester (MCE)), MCE sputtered with copper (Cu/MCE), the pristine CNT membrane (CNT), and CNT membrane sputtered with Cu (Cu/CNT) shows that Cu/CNT possesses mechanically stable structures and similar membrane permeability as MCE. More importantly, Cu/CNT outperforms other membranes with high As(III) removal efficiency of above 90%, as compared to less than 10% by MCE and CNT, and 75% by Cu/MCE from water. The performance of Cu/CNT membranes for As(III) removal is also investigated as a function of ionic strength, sputtering time, co-existing ions, solution pH, and the reusability. Further characterizations of As speciation in the filtrate and on Cu/CNT reveal that arsenite removal by Cu/CNT possibly began with Cu-catalyzed oxidation of arsenite to arsenate, followed by adsorptive filtration of arsenate by the membrane. Overall, this study demonstrates that magnetron sputtering is a promising greener technology for the productions of metal-CNT composite membranes for environmental applications.

  10. Microstructure and mechanical properties of similar and dissimilar joints of aluminium alloy and pure copper by friction stir welding

    Directory of Open Access Journals (Sweden)

    V.C. Sinha

    2016-09-01

    Full Text Available In the present study, the microstructure and mechanical properties of similar and dissimilar friction stir welded joints of aluminium alloy (AlA and pure copper (Cu were evaluated at variable tool rotational speeds from 150 to 900 rpm in steps of 150 rpm at 60 mm/min travel speed and constant tilt angle 2°. The interfacial microstructures of the joints were characterised by optical and scanning electron microscopy. The Al4Cu9, AlCu, Al2Cu and Al2Cu3 intermetallic compounds have been observed at the interface and stir zone region of dissimilar Al/Cu FSWed joints. Variation in the grain size was observed in the stir zone depending upon the heat input value. Axial force, traverse force and torque value were analysed with variation in tool rotational speed. Residual stresses were measured at the stir zone by X-ray diffraction technique. Maximum ultimate tensile strength of ∼75% of AlA strength for AlA–AlA joints has been obtained at 750 rpm and for Cu–Cu joint tensile strength of ∼100% of tensile strength of Cu was obtained at 300 rpm. However, for Cu–AlA joint when processed at 600 rpm tool rotational speed achieved maximum ultimate tensile strength of ∼77% of AlA.

  11. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process.

    Science.gov (United States)

    Hwang, Jaewon; Yoon, Taeshik; Jin, Sung Hwan; Lee, Jinsup; Kim, Taek-Soo; Hong, Soon Hyung; Jeon, Seokwoo

    2013-12-10

    RGO flakes are homogeneously dispersed in a Cu matrix through a molecular-level mixing process. This novel fabrication process prevents the agglomeration of the RGO and enhances adhesion between the RGO and the Cu. The yield strength of the 2.5 vol% RGO/Cu nanocomposite is 1.8 times higher than that of pure Cu. The strengthening mechanism of the RGO is investigated by a double cantilever beam test using the graphene/Cu model structure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. FEATURES FOR TRANSPORT AND AIR MECHANICAL SYSTEMS OF DANGEROUS GOODS

    Directory of Open Access Journals (Sweden)

    Eugen Dumitru BUSA

    2012-05-01

    Full Text Available Transport of dangerous goods are regulated activities, they take place under the direction and control of the authorities and specialized bodies in an institutional framework determined by national and international law. Of economic, transport infrastructure is the crucial element without which both production and trade would become meaningless, it is an essential element of a civilization, is also a necessary accessory of other economic activities.

  13. Characterization of Dispersion Strengthened Copper Alloy Prepared by Internal Oxidation Combined with Mechanical Alloying

    Science.gov (United States)

    Zhao, Ziqian; Xiao, Zhu; Li, Zhou; Zhu, Mengnan; Yang, Ziqi

    2017-11-01

    Cu-3.6 vol.% Al2O3 dispersion strengthened alloy was prepared by mechanical alloying (MA) of internal oxidation Cu-Al powders. The lattice parameter of Cu matrix decreased with milling time for powders milled in argon, while the abnormal increase of lattice parameter occurred in the air resulting from mechanochemical reactions. With a quantitative analysis, the combined method makes residual aluminum oxidized completely within 10-20 h while mechanical alloying method alone needs longer than 40 h. Lamellar structure formed and the thickness of lamellar structure decreased with milling time. The size of Al2O3 particles decreased from 46 to 22 nm after 40 h milling. After reduction, core-shell structure was found in MAed powders milled in the air. The compacted alloy produced by MAed powders milled in the argon had an average hardness and electrical conductivity of 172.2 HV and 82.1% IACS while the unmilled alloy's were 119.8 HV and 74.1% IACS due to the Al2O3 particles refinement and residual aluminum in situ oxidization.

  14. On the mechanism of activation of copper-catalyzed atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Isse, Abdirisak Ahmed; Bortolamei, Nicola; De Paoli, Patrizia; Gennaro, Armando

    2013-01-01

    The mechanism of activation of atom transfer radical polymerization (ATRP) has been analyzed by investigating the kinetics of dissociative electron transfer (ET) to alkyl halides (RX) in acetonitrile. Using a series of alkyl halides, including both bromides and chlorides, the rate constants of ET (k ET ) to RX by electrogenerated aromatic radical anions (A· − ) acting as outer-sphere donors have been measured and analyzed according to the current theories of dissociative ET. This has shown that the kinetic data fit very well the “sticky” dissociative ET model with the formation of a weak adduct held together by electrostatic interactions. The rate constants of activation, k act , of some alkyl halides, namely chloroacetonitrile, methyl 2-bromopropionate and ethyl chloroacetate, by [Cu I L] + (L = tris(2-dimethylaminoethyl)amine, tris(2-pyridylmethyl)amine, 1,1,4,7,7-pentamethyldiethylenetriamine) have also been measured in the same experimental conditions. Comparisons of the measured k act values with those predicted assuming an outer-sphere ET for the complexes have shown that activation by Cu(I) is 7–10 orders of magnitude faster than required by outer-sphere ET. Therefore, the mechanism of RX activation by Cu(I) complexes used as catalysts in ATRP occurs by an inner-sphere ET or more appropriately by a halogen atom abstraction

  15. Metallographic autopsies of full-scale ITER prototype cable-in-conduit conductors after full testing in SULTAN: 1. The mechanical role of copper strands in a CICC

    International Nuclear Information System (INIS)

    Sanabria, Carlos; Lee, Peter J; Starch, William; Blum, Timothy; Larbalestier, David C; Devred, Arnaud; Jewell, Matthew C; Pong, Ian; Martovetsky, Nicolai

    2015-01-01

    Cables made with Nb 3 Sn-based superconductor strands will provide the 13 T maximum peak magnetic field of the ITER central solenoid (CS) coils and they must survive up to 60 000 electromagnetic cycles. Accordingly, prototype designs of CS cable-in-conduit-conductors (CICC) were electromagnetically tested over multiple magnetic field cycles and warm-up-cool-down scenarios in the SULTAN facility at CRPP. We report here a post-mortem metallographic analysis of two CS CICC prototypes which exhibited some rate of irreversible performance degradation during cycling. The standard ITER CS CICC cable design uses a combination of superconducting and Cu strands, and because the Lorentz force on the strand is proportional to the transport current in the strand, removing the copper strands (while increasing the Cu:SC ratio of the superconducting strands) was proposed as one way of reducing the strand load. In this study we compare the two alternative CICCs, with and without Cu strands, keeping in mind that the degradation after the SULTAN test was lower for the CICC without Cu strands. The post-mortem metallographic evaluation revealed that the overall strand transverse movement was 20% lower in the CICC without Cu strands and that the tensile filament fractures found were less, both indications of an overall reduction in high tensile strain regions. It was interesting to see that the Cu strands in the mixed cable design (with higher degradation) helped reduce the contact stresses on the high pressure side of the CICC, but in either case, the strain reduction mechanisms were not enough to suppress cyclic degradation. Advantages and disadvantages of each conductor design are discussed here aimed to understand the sources of the degradation. (paper)

  16. Dual and Direction-Selective Mechanisms of Phosphate Transport by the Vesicular Glutamate Transporter

    Directory of Open Access Journals (Sweden)

    Julia Preobraschenski

    2018-04-01

    Full Text Available Summary: Vesicular glutamate transporters (VGLUTs fill synaptic vesicles with glutamate and are thus essential for glutamatergic neurotransmission. However, VGLUTs were originally discovered as members of a transporter subfamily specific for inorganic phosphate (Pi. It is still unclear how VGLUTs accommodate glutamate transport coupled to an electrochemical proton gradient ΔμH+ with inversely directed Pi transport coupled to the Na+ gradient and the membrane potential. Using both functional reconstitution and heterologous expression, we show that VGLUT transports glutamate and Pi using a single substrate binding site but different coupling to cation gradients. When facing the cytoplasm, both ions are transported into synaptic vesicles in a ΔμH+-dependent fashion, with glutamate preferred over Pi. When facing the extracellular space, Pi is transported in a Na+-coupled manner, with glutamate competing for binding but at lower affinity. We conclude that VGLUTs have dual functions in both vesicle transmitter loading and Pi homeostasis within glutamatergic neurons. : Preobraschenski et al. show that the vesicular glutamate transporter functions as a bi-directional phosphate transporter that is coupled with different cations in each direction and hence may play a key role in neuronal phosphate homeostasis. Keywords: VGLUT, SLC17 family, type I Na+-dependent inorganic phosphate transporter, ATPase, proteoliposomes, hybrid vesicles, anti-VGLUT1 nanobody

  17. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites

    Science.gov (United States)

    Harandi, Maryam Hadizadeh; Alimoradi, Fakhrodin; Rowshan, Gholamhussein; Faghihi, Morteza; Keivani, Maryam; Abadyan, Mohamadreza

    In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR)/nanocopper (NC) composites were prepared using two-roll mill method. Transmission electron microscope (TEM) and scanning electron microscope (SEM) images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA). Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites.

  18. Thermo-mechanical model identification of a strengthened copper with an inverse method

    CERN Document Server

    Peroni, M; Dallocchio, A

    2009-01-01

    This paper describes a numerical inverse method to extract material strength parameters from the experimental data obtained via mechanical tests at different strain-rates. It will be shown that this procedure is particularly useful to analyse experimental results when the stress-strain fields in the specimen cannot be correctly described via analytical models. This commonly happens in specimens with no regular shape, in specimens with a regular shape when some instability phenomena occur (for example the necking phenomena in tensile tests that create a strongly heterogeneous stress-strain fields) or in dynamic tests (where the strain-rate field is not constant due to wave propagation phenomena). Furthermore the developed procedure is useful to take into account thermal phenomena generally affecting high strain-rate tests due to the adiabatic overheating related to the conversion of plastic work.

  19. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase.

    Science.gov (United States)

    Kela, U; Vijayvargiya, R

    1981-03-01

    Interaction between 6-mercaptopurine, Cu2+ and the enzyme xanthine oxidase (EC 1.2.3.2.) was examined. Whereas Cu2+ was found to inhibit the enzyme, 6-mercaptopurine could protect as well as reverse the enzyme inhibition produced by the metal ion. The formation of a complex between 6-mercaptopurine and Cu2+ seems to be responsible for the observed effect. Job's [(1928) Ann. Chem. 9, 113] method has shown the composition of the complex to be 1:1. The apparent stability constant (log K value), as determined by Subhrama Rao & Raghav Rao's [(1955) J. Sci. Chem. Ind. Res. 143, 278], method is found to be 6.74. It is suggested that the formation of a stable complex between 6-mercaptopurine molecules and Cu2+ may be an additional mechanism of action of 6-mercaptopurine, particularly with reference to its anti-inflammatory properties.

  20. Studies on the mechanism of action of 6-mercaptopurine. Interaction with copper and xanthine oxidase.

    Science.gov (United States)

    Kela, U; Vijayvargiya, R

    1981-01-01

    Interaction between 6-mercaptopurine, Cu2+ and the enzyme xanthine oxidase (EC 1.2.3.2.) was examined. Whereas Cu2+ was found to inhibit the enzyme, 6-mercaptopurine could protect as well as reverse the enzyme inhibition produced by the metal ion. The formation of a complex between 6-mercaptopurine and Cu2+ seems to be responsible for the observed effect. Job's [(1928) Ann. Chem. 9, 113] method has shown the composition of the complex to be 1:1. The apparent stability constant (log K value), as determined by Subhrama Rao & Raghav Rao's [(1955) J. Sci. Chem. Ind. Res. 143, 278], method is found to be 6.74. It is suggested that the formation of a stable complex between 6-mercaptopurine molecules and Cu2+ may be an additional mechanism of action of 6-mercaptopurine, particularly with reference to its anti-inflammatory properties. PMID:6895465

  1. Morphological and mechanical properties of styrene butadiene rubber/nano copper nanocomposites

    Directory of Open Access Journals (Sweden)

    Maryam Hadizadeh Harandi

    Full Text Available In this research, rubber based nanocomposites with presence of nanoparticle has been studied. Styrene butadiene rubber (SBR/nanocopper (NC composites were prepared using two-roll mill method. Transmission electron microscope (TEM and scanning electron microscope (SEM images showed proper dispersion of NC in the SBR matrix without substantial agglomeration of nanoparticles. To evaluate the curing properties of nanocomposite samples, swelling and cure rheometric tests were conducted. Moreover, the rheological studies were carried out over a range of shear rates. The effect of NC particles was examined on the thermal behavior of the SBR using thermal gravimetric analysis (TGA. Furthermore, tensile tests were employed to investigate the capability of nanoparticles to enhance mechanical behavior of the compounds. The results showed enhancement in tensile properties with incorporation of NC to SBR matrix. Moreover, addition of NC increased shear viscosity and curing time of SBR composites. Keywords: Nanocopper, Rubber, Curing behavior, Rheological properties, Thermal stability, Tensile characteristics

  2. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss

    International Nuclear Information System (INIS)

    Sappal, Ravinder; MacDougald, Michelle; Fast, Mark; Stevens, Don; Kibenge, Fred; Siah, Ahmed; Kamunde, Collins

    2015-01-01

    Highlights: • Sequential inhibition and activation allows assessment of multiple segments of the electron transport system. • Warm acclimation and hypoxia-reoxygenation have global effects on the electron transport system. • Warm acclimation and hypoxia-reoxygenation sensitize the electron transport system to copper. • Thermal stress, hypoxia-reoxygenation and copper act additively to impair mitochondrial function. - Abstract: Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20 °C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0–20 μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I–IV (CI–IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11 → 20 °C) in temperature increased mitochondrial oxidation rates supported by CI–IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI–IV, reduced RCR for all except

  3. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); MacDougald, Michelle [Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, Prince Philip Drive, St. John’s, NL, A1B 3V6 (Canada); Fast, Mark [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada); Siah, Ahmed [British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC, V9W 2C2 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3 (Canada)

    2015-08-15

    Highlights: • Sequential inhibition and activation allows assessment of multiple segments of the electron transport system. • Warm acclimation and hypoxia-reoxygenation have global effects on the electron transport system. • Warm acclimation and hypoxia-reoxygenation sensitize the electron transport system to copper. • Thermal stress, hypoxia-reoxygenation and copper act additively to impair mitochondrial function. - Abstract: Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20 °C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0–20 μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I–IV (CI–IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11 → 20 °C) in temperature increased mitochondrial oxidation rates supported by CI–IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI–IV, reduced RCR for all except

  4. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    International Nuclear Information System (INIS)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density–voltage (J–V) and capacitance–voltage (C–V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (ϕ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance. (paper)

  5. Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth

    Science.gov (United States)

    Vittorio, Orazio; Brandl, Miriam; Cirillo, Giuseppe; Kimpton, Kathleen; Hinde, Elizabeth; Gaus, Katharina; Yee, Eugene; Kumar, Naresh; Duong, Hien; Fleming, Claudia; Haber, Michelle; Norris, Murray; Boyer, Cyrille; Kavallaris, Maria

    2016-01-01

    Neuroblastoma is frequently diagnosed at advanced stage disease and treatment includes high dose chemotherapy and surgery. Despite the use of aggressive therapy survival rates are poor and children that survive their disease experience long term side effects from their treatment, highlighting the need for effective and less toxic therapies. Catechin is a natural polyphenol with anti-cancer properties and limited side effects, however its mechanism of action is unknown. Here we report that Dextran-Catechin, a conjugated form of catechin that increases serum stability, is preferentially and markedly active against neuroblastoma cells having high levels of intracellular copper, without affecting non-malignant cells. Copper transporter 1 (CTR1) is the main transporter of copper in mammalian cells and it is upregulated in neuroblastoma. Functional studies showed that depletion of CTR1 expression reduced intracellular copper levels and led to a decrease in neuroblastoma cell sensitivity to Dextran-Catechin, implicating copper in the activity of this compound. Mechanistically, Dextran-Catechin was found to react with copper, inducing oxidative stress and decreasing glutathione levels, an intracellular antioxidant and regulator of copper homeostasis. In vivo, Dextran-Catechin significantly attenuated tumour growth in human xenograft and syngeneic models of neuroblastoma. Thus, Dextran-Catechin targets copper, inhibits tumour growth, and may be valuable in the treatment of aggressive neuroblastoma and other cancers dependent on copper for their growth. PMID:27374085

  6. Analysis of microstructure and mechanical properties of aluminium-copper joints welded by FSW process

    Science.gov (United States)

    Iordache, M.; Sicoe, G.; Iacomi, D.; Niţu, E.; Ducu, C.

    2017-08-01

    The research conducted in this article aimed to check the quality of joining some dissimilar materials Al-Cu by determining the mechanical properties and microstructure analysis. For the experimental measurements there were used tin alloy Al - EN-AW-1050A with a thickness of 2 mm and Cu99 sheet with a thickness of 2 mm, joined by FSW weld overlay. The main welding parameters were: rotating speed of the rotating element 1400 rev/min, speed of the rotating element 50 mm/min. The experimental results were determined on samples specially prepared for metallographic analysis. In order to prepare samples for their characterization, there was designed and built a device that allowed simultaneous positioning and fixing for grinding. The characteristics analyzed in the joint welded samples were mictrostructure, microhardness and residual stresses. The techniques used to determine these characteristics were optical microscopy, electron microscopy with fluorescence radioactive elemental analysis (EDS), Vickers microhardness line - HV0.3 and X-ray diffractometry.

  7. Microstructure and mechanical properties of TiC0.5 reinforced copper matrix composites

    International Nuclear Information System (INIS)

    Li, Mengqi; Zhai, Hongxiang; Huang, Zhenying; Liu, Xiaohan; Zhou, Yang; Li, Shibo; Li, Cuiwei

    2013-01-01

    Cu–Al alloy matrix composites containing in-situ TiC 0.5 particles were fabricated by sintering of a mixture of Cu and Ti 2 AlC powders at 1150 °C for 60 min in Ar atmosphere. The micron-sized Ti 2 AlC particles were decomposed into submicron TiC 0.5 grains during the sintering process, meanwhile, Al atoms entered into Cu to form Cu–Al alloy matrix. It was shown that the Cu–Al alloy matrix also consisted of ultrafine grains. Compression tests indicate TiC 0.5 particles can improve mechanical properties significantly, and the ductility maintains at a comparatively high level. The fracture strength of 40Ti 2 AlC/Cu sample reaches 1126 MPa with 12.8% fracture strain. The 20Ti 2 AlC/Cu and 30Ti 2 AlC/Cu samples keep undamaged even after the strain of 26.7%

  8. Microstructure and mechanical properties of TiC{sub 0.5} reinforced copper matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mengqi; Zhai, Hongxiang, E-mail: hxzhai@sina.com; Huang, Zhenying; Liu, Xiaohan; Zhou, Yang; Li, Shibo; Li, Cuiwei

    2013-12-20

    Cu–Al alloy matrix composites containing in-situ TiC{sub 0.5} particles were fabricated by sintering of a mixture of Cu and Ti{sub 2}AlC powders at 1150 °C for 60 min in Ar atmosphere. The micron-sized Ti{sub 2}AlC particles were decomposed into submicron TiC{sub 0.5} grains during the sintering process, meanwhile, Al atoms entered into Cu to form Cu–Al alloy matrix. It was shown that the Cu–Al alloy matrix also consisted of ultrafine grains. Compression tests indicate TiC{sub 0.5} particles can improve mechanical properties significantly, and the ductility maintains at a comparatively high level. The fracture strength of 40Ti{sub 2}AlC/Cu sample reaches 1126 MPa with 12.8% fracture strain. The 20Ti{sub 2}AlC/Cu and 30Ti{sub 2}AlC/Cu samples keep undamaged even after the strain of 26.7%.

  9. Liquid water transport mechanism in the gas diffusion layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Wu, C.W. [State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2010-03-01

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water. (author)

  10. Mobilization of Intracellular Copper by Gossypol and Apogossypolone Leads to Reactive Oxygen Species-Mediated Cell Death: Putative Anticancer Mechanism

    Directory of Open Access Journals (Sweden)

    Haseeb Zubair

    2016-06-01

    Full Text Available There is compelling evidence that serum, tissue and intracellular levels of copper are elevated in all types of cancer. Copper has been suggested as an important co-factor for angiogenesis. It is also a major metal ion present inside the nucleus, bound to DNA bases, particularly guanine. We have earlier proposed that the interaction of phenolic-antioxidants with intracellular copper leads to the generation of reactive oxygen species (ROS that ultimately serve as DNA cleaving agents. To further validate our hypothesis we show here that the antioxidant gossypol and its semi-synthetic derivative apogossypolone induce copper-mediated apoptosis in breast MDA-MB-231, prostate PC3 and pancreatic BxPC-3 cancer cells, through the generation of ROS. MCF10A breast epithelial cells refractory to the cytotoxic property of these compounds become sensitized to treatment against gossypol, as well as apogossypolone, when pre-incubated with copper. Our present results confirm our earlier findings and strengthen our hypothesis that plant-derived antioxidants mobilize intracellular copper instigating ROS-mediated cellular DNA breakage. As cancer cells exist under significant oxidative stress, this increase in ROS-stress to cytotoxic levels could be a successful anticancer approach.

  11. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A continuum mechanics-based musculo-mechanical model for esophageal transport

    Science.gov (United States)

    Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.

    2017-11-01

    In this work, we extend our previous esophageal transport model using an immersed boundary (IB) method with discrete fiber-based structural model, to one using a continuum mechanics-based model that is approximated based on finite elements (IB-FE). To deal with the leakage of flow when the Lagrangian mesh becomes coarser than the fluid mesh, we employ adaptive interaction quadrature points to deal with Lagrangian-Eulerian interaction equations based on a previous work (Griffith and Luo [1]). In particular, we introduce a new anisotropic adaptive interaction quadrature rule. The new rule permits us to vary the interaction quadrature points not only at each time-step and element but also at different orientations per element. This helps to avoid the leakage issue without sacrificing the computational efficiency and accuracy in dealing with the interaction equations. For the material model, we extend our previous fiber-based model to a continuum-based model. We present formulations for general fiber-reinforced material models in the IB-FE framework. The new material model can handle non-linear elasticity and fiber-matrix interactions, and thus permits us to consider more realistic material behavior of biological tissues. To validate our method, we first study a case in which a three-dimensional short tube is dilated. Results on the pressure-displacement relationship and the stress distribution matches very well with those obtained from the implicit FE method. We remark that in our IB-FE case, the three-dimensional tube undergoes a very large deformation and the Lagrangian mesh-size becomes about 6 times of Eulerian mesh-size in the circumferential orientation. To validate the performance of the method in handling fiber-matrix material models, we perform a second study on dilating a long fiber-reinforced tube. Errors are small when we compare numerical solutions with analytical solutions. The technique is then applied to the problem of esophageal transport. We use two

  13. Improvement of the photovoltaic parameters of perovskite solar cells using a reduced-graphene-oxide-modified titania layer and soluble copper phthalocyanine as a hole transporter.

    Science.gov (United States)

    Nouri, Esmaiel; Mohammadi, Mohammad Reza; Xu, Zong-Xiang; Dracopoulos, Vassilios; Lianos, Panagiotis

    2018-01-24

    Functional perovskite solar cells can be made by using a simple, inexpensive and stable soluble tetra-n-butyl-substituted copper phthalocyanine (CuBuPc) as a hole transporter. In the present study, TiO 2 /reduced graphene oxide (T/RGO) hybrids were synthesized via an in situ solvothermal process and used as electron acceptor/transport mediators in mesoscopic perovskite solar cells based on soluble CuBuPc as a hole transporter and on graphene oxide (GO) as a buffer layer. The impact of the RGO content on the optoelectronic properties of T/RGO hybrids and on the solar cell performance was studied, suggesting improved electron transport characteristics and photovoltaic parameters. An enhanced electron lifetime and recombination resistance led to an increase in the short circuit current density, open circuit voltage and fill factor. The device based on a T/RGO mesoporous layer with an optimal RGO content of 0.2 wt% showed 22% higher photoconversion efficiency and higher stability compared with pristine TiO 2 -based devices.

  14. Development of laboratory experiments serving as a basis for modeling the transport behaviour of arsenate, lead, cadmium and copper in water-saturated columns

    International Nuclear Information System (INIS)

    Hamer, K.

    1993-01-01

    The aim of the study was to work out laboratory experiments which might serve as a link between the bench and the application of CoTAM (Column Transport and Absorption Model) in real practice, thus thanking the development of this computer model which is to permit the simulation of the transport behaviour of heavy metals in porous aquilers. Efforts were made to find a process-oriented concept so as to provide a wide field of application. In developing the model and the laboratory experiments, this meant studying all the processes in groundwater separately as far as possible and avoiding case-specific sum parameters. The work centered on an examination of sorption processes during transport in groundwater, as this combination of processes is always found in natural porous aquifers. In water-saturated-column experiments on combinations of arenaceous quartz, feldspar, montmorillonite, goethite, peat and manganese oxide as the aquifer material, the transport of cadmium, copper, lead and arsenate was simulated on the bench scale. These case examples served to study sorption processes and their diverse kinetics as well as hydrodynamic processes. (orig./BBR) [de

  15. Price Analysis of Railway Freight Transport under Marketing Mechanism

    Science.gov (United States)

    Shi, Ying; Fang, Xiaoping; Chen, Zhiya

    Regarding the problems in the reform of the railway tariff system and the pricing of the transport, by means of assaying the influence of the price elasticity on the artifice used for price, this article proposed multiple regressive model which analyzed price elasticity quantitatively. This model conclude multi-factors which influences on the price elasticity, such as the averagely railway freight charge, the averagely freight haulage of proximate supersede transportation mode, the GDP per capita in the point of origin, and a series of dummy variable which can reflect the features of some productive and consume demesne. It can calculate the price elasticity of different classes in different domains, and predict the freight traffic volume on different rate levels. It can calculate confidence-level, and evaluate the relevance of each parameter to get rid of irrelevant or little relevant variables. It supplied a good theoretical basis for directing the pricing of transport enterprises in market economic conditions, which is suitable for railway freight, passenger traffic and other transportation manner as well. SPSS (Statistical Package for the Social Science) software was used to calculate and analysis the example. This article realized the calculation by HYFX system(Ministry of Railways fund).

  16. Mechanisms of hydrologic transport of soil contaminants in Mortandad Canyon

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.

    1981-01-01

    The initial focus of this research will be on the selective sorting and transport of soil particles as they relate to altering the distribution of contaminants in soils and sediments. Several field experiments employing radionuclide-labeled soil particle size fractions are planned to accomplish research objectives

  17. Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes.

    Science.gov (United States)

    Kazmier, Kelli; Claxton, Derek P; Mchaourab, Hassane S

    2017-08-01

    Secondary active transporters couple the uphill translocation of substrates to electrochemical ion gradients. Transporter conformational motion, generically referred to as alternating access, enables a central ligand binding site to change its orientation relative to the membrane. Here we review themes of alternating access and the transduction of ion gradient energy to power this process in the LeuT-fold class of transporters where crystallographic, computational and spectroscopic approaches have converged to yield detailed models of transport cycles. Specifically, we compare findings for the Na + -coupled amino acid transporter LeuT and the Na + -coupled hydantoin transporter Mhp1. Although these studies have illuminated multiple aspects of transporter structures and dynamics, a number of questions remain unresolved that so far hinder understanding transport mechanisms in an energy landscape perspective. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Charge transport model in nanodielectric composites based on quantum tunneling mechanism and dual-level traps

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guochang; Chen, George, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); School of Electronic and Computer Science, University of Southampton, Southampton SO17 1BJ (United Kingdom); Li, Shengtao, E-mail: gc@ecs.soton.ac.uk, E-mail: sli@mail.xjtu.edu.cn [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-08-08

    Charge transport properties in nanodielectrics present different tendencies for different loading concentrations. The exact mechanisms that are responsible for charge transport in nanodielectrics are not detailed, especially for high loading concentration. A charge transport model in nanodielectrics has been proposed based on quantum tunneling mechanism and dual-level traps. In the model, the thermally assisted hopping (TAH) process for the shallow traps and the tunnelling process for the deep traps are considered. For different loading concentrations, the dominant charge transport mechanisms are different. The quantum tunneling mechanism plays a major role in determining the charge conduction in nanodielectrics with high loading concentrations. While for low loading concentrations, the thermal hopping mechanism will dominate the charge conduction process. The model can explain the observed conductivity property in nanodielectrics with different loading concentrations.

  19. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    Science.gov (United States)

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-07

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.

  20. Is brain copper deficiency in Alzheimer's, Lewy body, and Creutzfeldt Jakob diseases the common key for a free radical mechanism and oxidative stress-induced damage?

    Science.gov (United States)

    Deloncle, Roger; Guillard, Olivier

    2015-01-01

    In Alzheimer's (AD), Lewy body (LBD), and Creutzfeldt Jakob (CJD) diseases, similar pathological hallmarks have been described, one of which is brain deposition of abnormal protease-resistant proteins. For these pathologies, copper bound to proteins is able to protect against free radicals by reduction from cupric Cu++ to cupreous Cu+. We have previously demonstrated in bovine brain homogenate that free radicals produce proteinase K-resistant prion after manganese is substituted for copper. Since low brain copper levels have been described in transmissible spongiform encephalopathies, in substantia nigra in Parkinson's disease, and in various brain regions in AD, LBD, and CJD, a mechanism has been proposed that may underlie the neurodegenerative processes that occur when copper protection against free radicals is impaired. In peptide sequences, the alpha acid proton near the peptide bond is highly mobile and can be pulled out by free radicals. It will produce a trivalent α-carbon radical and induce a free radical chain process that will generate a D-amino acid configuration in the peptide sequence. Since only L-amino acids are physiologically present in mammalian (human) proteins, it may be supposed that only physiological L-peptides can be recycled by physiological enzymes such as proteases. If a D-amino acid is found in the peptide sequence subsequent to deficient copper protection against free radicals, it will not be recognized and might alter the proteasome L-amino acid recycling from brain peptides. In the brain, there will result an accumulation of abnormal protease-resistant proteins such as those observed in AD, LBD, and CJD.

  1. Disodium N,N-bis-(dithiocarboxy)ethanediamine: synthesis, performance, and mechanism of action toward trace ethylenediaminetetraacetic acid copper (II).

    Science.gov (United States)

    Xiao, Xiao; Ye, Maoyou; Yan, Pingfang; Qiu, Yiqin; Sun, Shuiyu; Ren, Jie; Dai, Yongkang; Han, Dajian

    2016-10-01

    A new effective multi-dithiocarbamate heavy metal precipitant, disodium N,N-bis-(dithiocarboxy) ethanediamine (BDE), was synthesized by mixing ethanediamine with carbon disulfide under alkaline conditions, and it was utilized for removing trace ethylenediaminetetraacetic acid copper (II) (EDTA-Cu) from wastewater. Its structure was confirmed by ultraviolet spectra, Fourier transform infrared spectra, scanning electron microscopy, thermogravimetric analysis, and elemental analysis. The removal performance of EDTA-Cu by BDE was evaluated according to BDE dosage, initial concentration, pH, and reaction time through single-factor experiments. With the optimized conditions of a pH range of 3-9, dosage ratio of BDE/Cu of 1:1, PAM dosage of 1 mg/L, and reaction time of 4 min, the removal efficiency of Cu(2+) was more than 98 % from simulated wastewater containing EDTA-Cu with initial concentrations of 5-100 mg/L. Treatment of actual EDTA-Cu wastewater showed that BDE performed superior effectiveness, and the average residential concentration of Cu(2+) was 0.115 mg/L. Besides, the stability of chelated precipitate and the reaction mechanism of BDE and EDTA-Cu were also introduced. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) indicated that the chelated precipitate was non-hazardous and stable in weak acid and alkaline conditions. The BDE reacts with EDTA-Cu at a stoichiometric ratio, and the removal of Cu(2+) was predominantly achieved through the replacement reaction of BDE and EDTA-Cu.

  2. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters.

    Science.gov (United States)

    Zhang, Xuejun C; Liu, Min; Lu, Guangyuan; Heng, Jie

    2018-03-01

    Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters. © 2017 The Protein Society.

  3. Transport Mechanisms in Organic Thin-Film Transistors

    Science.gov (United States)

    Fung, A. W. P.

    1996-03-01

    Recent success in fabricating field-effect transistors with polycrystalline α-sexithiophene (α-6T) has allowed us to study charge transport in this organic semiconductor. The appealing structural property that the oligomer chains are seated almost perpendicular to the substrate provides a model π-conjugated system which we find exhibits band transport at low temperatures. We observe a behavioral transition around 50K which is consistent with the metal-insulator transition in Holstein's small-polaron theory. The fact that we can observe intrinsic behavior means that the ambient-temperature mobility obtained in these transistors is optimal for α-6T. Agreement with the Holstein theory provides us with a prescription for rational design of materials for organic transistor applications. Work done in collaboration with L. Torsi, A. Dodabalapur, L. J. Rothberg and H. E. Katz.

  4. Formulation of the Chip Cleanability Mechanics from Fluid Transport

    OpenAIRE

    Garg, Saurabh; Dornfeld, David; Klaus Berger

    2009-01-01

    The presence of solid particle contaminant chips in high performance and complex automotive components like cylinder heads of internal combustion engines is a source of major concern for the automotive industry. Current industrial cleaning technologies, simply relying on the fluid transport energy of high pressure or intermittent high impulse jets discharged at the water jacket inlets of the cylinder head, fail to capture the dynamics of interaction between the chip morphology and the complex...

  5. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  6. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  7. A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding

    International Nuclear Information System (INIS)

    Li, Jia; Fang, Qihong; Liu, Youwen; Zhang, Liangchi

    2014-01-01

    This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.

  8. Antimicrobial mechanism of copper (II 1,10-phenanthroline and 2,2′-bipyridyl complex on bacterial and fungal pathogens

    Directory of Open Access Journals (Sweden)

    S. Chandraleka

    2014-12-01

    Full Text Available Copper based metallo drugs were prepared and their antibacterial, antifungal, molecular mechanism of [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O complexes were investigated. The [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O were derived from the Schiff base alanine salicylaldehyde. [Cu(SAlaPhen]·H2O showed noteworthy antibacterial and antifungal activity than the [Cu(SAlabpy]·H2O and ligand alanine, salicylaldehyde. The [Cu(SAlaPhen]·H2O complex showed significant antibacterial activity against Salmonella typhi, Staphylococcus aureus, Salmonella paratyphi and the antifungal activity against Candida albicans and Cryptococcus neoformans in well diffusion assay. The mode of action of copper (II complex was analyzed by DNA cleavage activity and in silico molecular docking. The present findings provide important insight into the molecular mechanism of copper (II complexes in susceptible bacterial and fungal pathogens. These results collectively support the use of [Cu(SAlaPhen]·H2O complex as a suitable drug to treat bacterial and fungal infections.

  9. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xie, Wenkun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  10. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Guo, Yongbo; Xie, Wenkun

    2015-01-01

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  11. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    Science.gov (United States)

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  12. Temperature-dependent charge transport mechanisms in carbon sphere/polyaniline composite

    Science.gov (United States)

    Nieves, Cesar A.; Martinez, Luis M.; Meléndez, Anamaris; Ortiz, Margarita; Ramos, Idalia; Pinto, Nicholas J.; Zimbovskaya, Natalya

    2017-12-01

    Charge transport in the temperature range 80 K electrons between polymeric chains in PANi-filled gaps between CS is the predominant transport mechanism through CS/PANi composites. The high conductivity of the CS/PANi composite makes the material attractive for the fabrication of devices and sensors.

  13. Fate and transport with material response characterization of green sorption media for copper removal via desorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-07-01

    Multiple adsorption and desorption cycles are required to achieve the reliable operation of copper removal and recovery. A green sorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was evaluated in this study for its desorptive characteristics as a companion study of the corresponding adsorption process in an earlier publication. We conducted a screening of potential desorbing agents, batch desorption equilibrium and kinetic studies, and batch tests through 3 adsorption/desorption cycles. The desorbing agent screening revealed that hydrochloric acid has good potential for copper desorption. Equilibrium data fit the Freundlich isotherm, whereas kinetic data had high correlation with the Lagergren pseudo second-order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles showed that the coconut coir and media mixture were the most resilient, demonstrating they could be used through 3 or more adsorption/desorption cycles. FE-SEM imaging, XRD, and EDS analyses supported the batch adsorption and desorption results showing significant surface sorption of CuO species in the media mixture and coconut coir, followed by partial desorption using 0.1 M HCl as a desorbing agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The molecular mechanism for overcoming the rate-limiting step in monoamine neurotransmitter transport

    DEFF Research Database (Denmark)

    Sinning, Steffen; Said, Saida; Malinauskaite, Lina

    The monoamine transporter family consists of dopamine (DAT), norepinephrine (NET) and serotonin transporters (SERT) that mediate the reuptake of the monoamine neurotransmitters after their release during neurotransmission. These transporters play prominent roles in psychiatric disorders and are t......The monoamine transporter family consists of dopamine (DAT), norepinephrine (NET) and serotonin transporters (SERT) that mediate the reuptake of the monoamine neurotransmitters after their release during neurotransmission. These transporters play prominent roles in psychiatric disorders...... membrane. The rate-limiting step in monoamine reuptake is the return of the empty transporter from an inward-facing to an outward-facing conformation without neurotransmitter and sodium bound. The molecular mechanism underlying this important conformational transition has not been described. Crystal...

  15. 49 CFR 192.377 - Service lines: Copper.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Copper. 192.377 Section 192.377 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 192.377 Service lines: Copper. Each copper service line installed within a building must be protected...

  16. Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation

    Science.gov (United States)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nano-wires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nano-wires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nano-wires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress-strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nano-wire. Thus the size-dependent mechanical properties of single crystal copper nano-wire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  17. Mechanical properties used for the qualification of transport casks

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1993-01-01

    The qualification process that should be sufficient for qualification of a specific cask (material/geometry combination) has been examined. The prototype cask should be tested to determine its overall variation in microstructure, chemistry, and mechanical properties. This prototype may also be subjected to 'proof testing' to demonstrate the validity of the design analysis (including the mechanical properties used in the analysis). The complete mechanical property mapping does not necessarily have to precede the proof testing (i.e., portions of the cask which experience only low (elastic) loads during the drop test are suitable for mechanical test specimens). The behavior of the prototype cask and the production casks are linked by assuring that each cask possesses at least the minimum level of one or more critical mechanical properties. This may be done by measuring the properties of interest directly, or by relying on a secondary measurement (such as subsize mechanical test results or microstructure/compositional measurements) which has been statistically correlated to the critical properties. The database required to show the correlation between the secondary measurement and the valid design property may be established by tests on the material from the prototype cask. The production controls must be demonstrated as being adequate to assure that a uniform product is produced. The testing of coring (or test block or prolongation) samples can only be viewed as providing a valid link to the benchmark results provided by the prototype cask if the process used to create follow-on casks remains essentially similar. The MOSAIK Test Program has demonstrated the qualification method through the benchmarking stage. The program did not establish for qualifying serial production casks through, for example, a correlation between small specimen parameters and valid design fracture toughness properties. Such a correlation would require additional experimental work. (J.P.N.)

  18. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  19. Water transport mechanisms across inorganic membranes in rad waste treatment by electro dialysis

    International Nuclear Information System (INIS)

    Andalaft, E.; Labayru, R.

    1992-01-01

    The work described in this paper deals with effects and mechanisms of water transport across an inorganic membrane, as related to some studied on the concentration of caesium, strontium, plutonium and other cations of interest to radioactive waste treatment. Several different water transport mechanisms are analysed and assessed as to their individual contribution towards the total transference of water during electro-dialysis using inorganic membranes. Water transfer assisted by proton jump mechanism, water of hydration transferred along with the ions, water related to thermo-osmotic effect, water transferred by concentration gradient and water transferred electrolytically under zeta potential surface charge drive are some of the different mechanism discussed. (author)

  20. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    Science.gov (United States)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu

  1. Research Advances: Mechanism of Copper Acquisition by Methanotrophs; Honey Bees Use Pheromone To Delay Behavioral Maturation; Liquid Crystal Cylinders

    Science.gov (United States)

    King, Angela G.

    2005-06-01

    This Report from Other Journals surveys articles of interest to chemists that have been recently published in other science journals. Topics surveyed include reports that a molecule used to accumulate copper has been identified; adult foraging bees keep young bees "down" with pheromone; and liquid crystals allow pentagons to tile a plane.

  2. Mechanisms of Sodium Transport in Plants—Progresses and Challenges

    Directory of Open Access Journals (Sweden)

    Monika Keisham

    2018-02-01

    Full Text Available Understanding the mechanisms of sodium (Na+ influx, effective compartmentalization, and efflux in higher plants is crucial to manipulate Na+ accumulation and assure the maintenance of low Na+ concentration in the cytosol and, hence, plant tolerance to salt stress. Na+ influx across the plasma membrane in the roots occur mainly via nonselective cation channels (NSCCs. Na+ is compartmentalized into vacuoles by Na+/H+ exchangers (NHXs. Na+ efflux from the plant roots is mediated by the activity of Na+/H+ antiporters catalyzed by the salt overly sensitive 1 (SOS1 protein. In animals, ouabain (OU-sensitive Na+, K+-ATPase (a P-type ATPase mediates sodium efflux. The evolution of P-type ATPases in higher plants does not exclude the possibility of sodium efflux mechanisms similar to the Na+, K+-ATPase-dependent mechanisms characteristic of animal cells. Using novel fluorescence imaging and spectrofluorometric methodologies, an OU-sensitive sodium efflux system has recently been reported to be physiologically active in roots. This review summarizes and analyzes the current knowledge on Na+ influx, compartmentalization, and efflux in higher plants in response to salt stress.

  3. Transport mechanism of an initially spherical droplet on a combined hydrophilic/hydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    Myong, Hyon Kook; Kwon, Young Hoo [Dept. of Mechanical Engineering, Kookmin University, Seoul (Korea, Republic of)

    2015-11-15

    Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

  4. Relative contribution of CTR1 and DMT1 in copper transport by the blood–CSF barrier: Implication in manganese-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Gang [School of Health Sciences, Purdue University, West Lafayette, Indiana 47907 (United States); Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an, Shanxi 710032 (China); Chen, Jingyuan [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi' an, Shanxi 710032 (China); Zheng, Wei, E-mail: wzheng@purdue.edu [School of Health Sciences, Purdue University, West Lafayette, Indiana 47907 (United States)

    2012-05-01

    The homeostasis of copper (Cu) in the cerebrospinal fluid (CSF) is partially regulated by the Cu transporter-1 (CTR1) and divalent metal transporter-1 (DMT1) at the blood–CSF barrier (BCB) in the choroid plexus. Data from human and animal studies suggest an increased Cu concentration in blood, CSF, and brains following in vivo manganese (Mn) exposure. This study was designed to investigate the relative role of CTR1 and DMT1 in Cu transport under normal or Mn-exposed conditions using an immortalized choroidal Z310 cell line. Mn exposure in vitro resulted in an increased cellular {sup 64}Cu uptake and the up-regulation of both CTR1 and DMT1. Knocking down CTR1 by siRNA counteracted the Mn-induced increase of {sup 64}Cu uptake, while knocking down DMT1 siRNA resulted in an increased cellular {sup 64}Cu uptake in Mn-exposed cells. To distinguish the roles of CTR1 and DMT1 in Cu transport, the Z310 cell-based tetracycline (Tet)-inducible CTR1 and DMT1 expression cell lines were developed, namely iZCTR1 and iZDMT1 cells, respectively. In iZCTR1 cells, Tet induction led to a robust increase (25 fold) of {sup 64}Cu uptake with the time course corresponding to the increased CTR1. Induction of DMT1 by Tet in iZDMT1 cells, however, resulted in only a slight increase of {sup 64}Cu uptake in contrast to a substantial increase in DMT1 mRNA and protein expression. These data indicate that CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB in the choroid plexus. Mn-induced cellular overload of Cu at the BCB is due, primarily, to Mn-induced over-expression of CTR1. -- Highlights: ► This study compares the relative role of CTR1 and DMT1 in Cu transport by the BCB. ► Two novel tetracycline-inducible CTR1 and DMT1 expression cell lines are created. ► CTR1, but not DMT1, plays an essential role in transporting Cu by the BCB. ► Mn-induced cellular Cu overload is due to its induction of CTR1 rather than DMT1. ► Induction of CTR1 by Mn in the BCB

  5. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  6. Mechanisms involved in the transport of mercuric ions in target tissues

    Science.gov (United States)

    Bridges, Christy C.; Zalups, Rudolfs K.

    2016-01-01

    Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells. PMID:27422290

  7. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  8. Copper (I) Selenocyanate (CuSeCN) as a Novel Hole-Transport Layer for Transistors, Organic Solar Cells, and Light-Emitting Diodes

    KAUST Repository

    Wijeyasinghe, Nilushi; Tsetseris, Leonidas; Regoutz, Anna; Sit, Wai-Yu; Fei, Zhuping; Du, Tian; Wang, Xuhua; McLachlan, Martyn A.; Vourlias, George; Patsalas, Panos A.; Payne, David J.; Heeney, Martin; Anthopoulos, Thomas D.

    2018-01-01

    The synthesis and characterization of copper (I) selenocyanate (CuSeCN) and its application as a solution-processable hole-transport layer (HTL) material in transistors, organic light-emitting diodes, and solar cells are reported. Density-functional theory calculations combined with X-ray photoelectron spectroscopy are used to elucidate the electronic band structure, density of states, and microstructure of CuSeCN. Solution-processed layers are found to be nanocrystalline and optically transparent (>94%), due to the large bandgap of ≥3.1 eV, with a valence band maximum located at −5.1 eV. Hole-transport analysis performed using field-effect measurements confirms the p-type character of CuSeCN yielding a hole mobility of 0.002 cm2 V−1 s−1. When CuSeCN is incorporated as the HTL material in organic light-emitting diodes and organic solar cells, the resulting devices exhibit comparable or improved performance to control devices based on commercially available poly(3,4-ethylenedioxythiophene):polystyrene sulfonate as the HTL. This is the first report on the semiconducting character of CuSeCN and it highlights the tremendous potential for further developments in the area of metal pseudohalides.

  9. Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells

    KAUST Repository

    Zhao, Kui

    2015-08-27

    CuSCN is a highly transparent, highly stable, low cost and easy to solution process HTL that is proposed as a low cost replacement to existing organic and inorganic metal oxide hole transporting materials. Here, we demonstrate hybrid organic-inorganic perovskite-based p-i-n planar heterojunction solar cells using a solution-processed copper(I) thiocyanate (CuSCN) bottom hole transporting layer (HTL). CuSCN, with its high workfunction, increases the open circuit voltage (Voc) by 0.23 V to 1.06 V as compared with devices based on the well-known poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (0.83 V), resulting in a superior power conversion efficiency (PCE) of 10.8% without any notable hysteresis. Photoluminescence measurements suggest a similar efficiency of charge transfer at HTL/perovskite interface as PEDOT:PSS. However, we observe more efficient light harvesting in the presence of CuSCN at shorter wavelengths despite PEDOT:PSS being more transparent. Further investigation of the microstructure and morphology reveals differences in the crystallographic texture of the polycrystalline perovskite film, suggesting somewhat modified perovskite growth on the surface of CuSCN. The successful demonstration of the solution-processed inorganic HTL using simple and low temperature processing routes bodes well for the development of reliable and efficient flexible p-i-n perovskite modules or for integration as a front cell in hybrid tandem solar cells.

  10. Copper (I) Selenocyanate (CuSeCN) as a Novel Hole-Transport Layer for Transistors, Organic Solar Cells, and Light-Emitting Diodes

    KAUST Repository

    Wijeyasinghe, Nilushi

    2018-02-01

    The synthesis and characterization of copper (I) selenocyanate (CuSeCN) and its application as a solution-processable hole-transport layer (HTL) material in transistors, organic light-emitting diodes, and solar cells are reported. Density-functional theory calculations combined with X-ray photoelectron spectroscopy are used to elucidate the electronic band structure, density of states, and microstructure of CuSeCN. Solution-processed layers are found to be nanocrystalline and optically transparent (>94%), due to the large bandgap of ≥3.1 eV, with a valence band maximum located at −5.1 eV. Hole-transport analysis performed using field-effect measurements confirms the p-type character of CuSeCN yielding a hole mobility of 0.002 cm2 V−1 s−1. When CuSeCN is incorporated as the HTL material in organic light-emitting diodes and organic solar cells, the resulting devices exhibit comparable or improved performance to control devices based on commercially available poly(3,4-ethylenedioxythiophene):polystyrene sulfonate as the HTL. This is the first report on the semiconducting character of CuSeCN and it highlights the tremendous potential for further developments in the area of metal pseudohalides.

  11. The role of transition metal transporters for iron, zinc, manganese, and copper in the pathogenesis of Yersinia pestis.

    Science.gov (United States)

    Perry, Robert D; Bobrov, Alexander G; Fetherston, Jacqueline D

    2015-06-01

    Yersinia pestis, the causative agent of bubonic, septicemic and pneumonic plague, encodes a multitude of Fe transport systems. Some of these are defective due to frameshift or IS element insertions, while others are functional in vitro but have no established role in causing infections. Indeed only 3 Fe transporters (Ybt, Yfe and Feo) have been shown to be important in at least one form of plague. The yersiniabactin (Ybt) system is essential in the early dermal/lymphatic stages of bubonic plague, irrelevant in the septicemic stage, and critical in pneumonic plague. Two Mn transporters have been characterized (Yfe and MntH). These two systems play a role in bubonic plague but the double yfe mntH mutant is fully virulent in a mouse model of pneumonic plague. The same in vivo phenotype occurs with a mutant lacking two (Yfe and Feo) of four ferrous transporters. A role for the Ybt siderophore in Zn acquisition has been revealed. Ybt-dependent Zn acquisition uses a transport system completely independent of the Fe-Ybt uptake system. Together Ybt components and ZnuABC play a critical role in Zn acquisition in vivo. Single mutants in either system retain high virulence in a mouse model of septicemic plague while the double mutant is completely avirulent.

  12. Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs

    International Nuclear Information System (INIS)

    Liu Hongwei; Wang Runsheng; Huang Ru; Zhang Xing

    2010-01-01

    This paper extends the flux scattering method to study the carrier transport property in nanoscale MOSFETs with special emphasis on the low-field mobility and the transport mechanism transition. A unified analytical expression for the low-field mobility is proposed, which covers the entire regime from drift-diffusion transport to quasi-ballistic transport in 1-D, 2-D and 3-D MOSFETs. Two key parameters, namely the long-channel low-field mobility (μ 0 ) and the low-field mean free path (λ 0 ), are obtained from the experimental data, and the transport mechanism transition in MOSFETs is further discussed both experimentally and theoretically. Our work shows that λ 0 is available to characterize the inherent transition of the carrier transport mechanism rather than the low-field mobility. The mobility reduces in the MOSFET with the shrinking of the channel length; however, λ 0 is nearly a constant, and λ 0 can be used as the 'entry criterion' to determine whether the device begins to operate under quasi-ballistic transport to some extent. (semiconductor devices)

  13. Insights on the Role of Copper Addition in the Corrosion and Mechanical Properties of Binary Zr-Cu Metallic Glass Coatings

    Directory of Open Access Journals (Sweden)

    Junlei Tang

    2017-12-01

    Full Text Available The effect of copper addition on the corrosion resistance and mechanical properties of binary Zr100–xCux (x = 30, 50, 80, 90 at.% glassy coatings was investigated by means of electrochemical measurements, scanning electron microscopy (SEM, energy dispersive analysis spectroscopy (EDS, X-ray photoelectron spectroscopy (XPS and nano-indentation techniques. The corrosion resistance in 0.01 M deaerated H2SO4 solution and the mechanical properties of the Zr-Cu glassy coatings depend considerably upon the copper content in the glassy matrix. The top surfaces of the Zr-Cu coatings with lower Cu content were covered by a compact protective ZrO2 passive film. The competition between the oxidation of Zr atoms (ZrO2 film formation and the oxidation–dissolution of Cu atoms assumed the most important role in the electrochemical behavior of the Zr-Cu glassy coatings. The generation of ZrO2 on the surface benefited the formation of passive film; and the corrosion resistance of the metallic glass coatings depended on the coverage degree of ZrO2 passive film. The evolution of free volume affected both the mechanical and corrosion behaviors of the Zr-Cu glassy coatings.

  14. 49 CFR 192.125 - Design of copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that indicated...

  15. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  16. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  17. Modeling of glycerol-3-phosphate transporter suggests a potential 'tilt' mechanism involved in its function.

    Science.gov (United States)

    Tsigelny, Igor F; Greenberg, Jerry; Kouznetsova, Valentina; Nigam, Sanjay K

    2008-10-01

    Many major facilitator superfamily (MFS) transporters have similar 12-transmembrane alpha-helical topologies with two six-helix halves connected by a long loop. In humans, these transporters participate in key physiological processes and are also, as in the case of members of the organic anion transporter (OAT) family, of pharmaceutical interest. Recently, crystal structures of two bacterial representatives of the MFS family--the glycerol-3-phosphate transporter (GlpT) and lac-permease (LacY)--have been solved and, because of assumptions regarding the high structural conservation of this family, there is hope that the results can be applied to mammalian transporters as well. Based on crystallography, it has been suggested that a major conformational "switching" mechanism accounts for ligand transport by MFS proteins. This conformational switch would then allow periodic changes in the overall transporter configuration, resulting in its cyclic opening to the periplasm or cytoplasm. Following this lead, we have modeled a possible "switch" mechanism in GlpT, using the concept of rotation of protein domains as in the DynDom program17 and membranephilic constraints predicted by the MAPAS program.(23) We found that the minima of energies of intersubunit interactions support two alternate positions consistent with their transport properties. Thus, for GlpT, a "tilt" of 9 degrees -10 degrees rotation had the most favorable energetics of electrostatic interaction between the two halves of the transporter; moreover, this confirmation was sufficient to suggest transport of the ligand across the membrane. We conducted steered molecular dynamics simulations of the GlpT-ligand system to explore how glycerol-3-phosphate would be handled by the "tilted" structure, and obtained results generally consistent with experimental mutagenesis data. While biochemical data remain most consistent with a single-site alternating access model, our results raise the possibility that, while the

  18. Active zone proteins are transported via distinct mechanisms regulated by Par-1 kinase.

    Directory of Open Access Journals (Sweden)

    Kara R Barber

    2017-02-01

    Full Text Available Disruption of synapses underlies a plethora of neurodevelopmental and neurodegenerative disease. Presynaptic specialization called the active zone plays a critical role in the communication with postsynaptic neuron. While the role of many proteins at the active zones in synaptic communication is relatively well studied, very little is known about how these proteins are transported to the synapses. For example, are there distinct mechanisms for the transport of active zone components or are they all transported in the same transport vesicle? Is active zone protein transport regulated? In this report we show that overexpression of Par-1/MARK kinase, a protein whose misregulation has been implicated in Autism spectrum disorders (ASDs and neurodegenerative disorders, lead to a specific block in the transport of an active zone protein component- Bruchpilot at Drosophila neuromuscular junctions. Consistent with a block in axonal transport, we find a decrease in number of active zones and reduced neurotransmission in flies overexpressing Par-1 kinase. Interestingly, we find that Par-1 acts independently of Tau-one of the most well studied substrates of Par-1, revealing a presynaptic function for Par-1 that is independent of Tau. Thus, our study strongly suggests that there are distinct mechanisms that transport components of active zones and that they are tightly regulated.

  19. Direct visualization of glutamate transporter elevator mechanism by high-speed AFM.

    Science.gov (United States)

    Ruan, Yi; Miyagi, Atsushi; Wang, Xiaoyu; Chami, Mohamed; Boudker, Olga; Scheuring, Simon

    2017-02-14

    Glutamate transporters are essential for recovery of the neurotransmitter glutamate from the synaptic cleft. Crystal structures in the outward- and inward-facing conformations of a glutamate transporter homolog from archaebacterium Pyrococcus horikoshii , sodium/aspartate symporter Glt Ph , suggested the molecular basis of the transporter cycle. However, dynamic studies of the transport mechanism have been sparse and indirect. Here we present high-speed atomic force microscopy (HS-AFM) observations of membrane-reconstituted Glt Ph at work. HS-AFM movies provide unprecedented real-space and real-time visualization of the transport dynamics. Our results show transport mediated by large amplitude 1.85-nm "elevator" movements of the transport domains consistent with previous crystallographic and spectroscopic studies. Elevator dynamics occur in the absence and presence of sodium ions and aspartate, but stall in sodium alone, providing a direct visualization of the ion and substrate symport mechanism. We show unambiguously that individual protomers within the trimeric transporter function fully independently.

  20. Structure and Mechanism of the S Component of a Bacterial ECF Transporter

    Energy Technology Data Exchange (ETDEWEB)

    P Zhang; J Wang; Y Shi

    2011-12-31

    The energy-coupling factor (ECF) transporters, responsible for vitamin uptake in prokaryotes, are a unique family of membrane transporters. Each ECF transporter contains a membrane-embedded, substrate-binding protein (known as the S component), an energy-coupling module that comprises two ATP-binding proteins (known as the A and A' components) and a transmembrane protein (known as the T component). The structure and transport mechanism of the ECF family remain unknown. Here we report the crystal structure of RibU, the S component of the ECF-type riboflavin transporter from Staphylococcus aureus at 3.6-{angstrom} resolution. RibU contains six transmembrane segments, adopts a previously unreported transporter fold and contains a riboflavin molecule bound to the L1 loop and the periplasmic portion of transmembrane segments 4-6. Structural analysis reveals the essential ligand-binding residues, identifies the putative transport path and, with sequence alignment, uncovers conserved structural features and suggests potential mechanisms of action among the ECF transporters.

  1. The effect of alumina particles on the microstructural and mechanical properties of copper foams fabricated by space-holder method

    Science.gov (United States)

    Salvo, C.; Aguilar, C.; Lascano, S.; Pérez, L.; López, M.; Mangalaraja, R. V.

    2018-05-01

    The copper foam is an interesting field of research because of its several advantages as an engineering material. Powder metallurgy presents an alternative route to obtain a porous structure with high strength to weight ratio and functional properties. The viability of processing copper foam separately with two different space-holders such as ammonium hydrogen carbonate (NH4HCO3) and sodium chloride (NaCl) of 50 vol% was studied. The green compacts obtained under 200 MPa were sintered at different cycles for the complete removal of space-holder. The sintered foams were characterized by optical microscopy (OM), scanning electron microscopy (SEM) and uniaxial testing machine (UTM) to study their structural features and compressive strength, respectively. The results showed that NaCl particles were the best alternative to obtain a porous structure, hence two different sizes (1 and 0.01 μm) of alumina (Al2O3) particles with 2, 4 and 6 vol% were used to fabricate copper foams. As a result, a bimodal structure consisting of macro and micropores with a highly interconnected porosity was achieved. In addition, the smaller size alumina particles promoted a higher density of pores, however, the compressive strength was reduced for the higher volume fraction of alumina particles.

  2. The role of insufficient copper in lipid synthesis and fatty-liver disease.

    Science.gov (United States)

    Morrell, Austin; Tallino, Savannah; Yu, Lei; Burkhead, Jason L

    2017-04-01

    The essential transition metal copper is important in lipid metabolism, redox balance, iron mobilization, and many other critical processes in eukaryotic organisms. Genetic diseases where copper homeostasis is disrupted, including Menkes disease and Wilson disease, indicate the importance of copper balance to human health. The severe consequences of insufficient copper supply are illustrated by Menkes disease, caused by mutation in the X-linked ATP7A gene encoding a protein that transports copper from intestinal epithelia into the bloodstream and across the blood-brain barrier. Inadequate copper supply to the body due to poor diet quality or malabsorption can disrupt several molecular level pathways and processes. Though much of the copper distribution machinery has been described and consequences of disrupted copper handling have been characterized in human disease as well as animal models, physiological consequences of sub-optimal copper due to poor nutrition or malabsorption have not been extensively studied. Recent work indicates that insufficient copper may be important in a number of common diseases including obesity, ischemic heart disease, and metabolic syndrome. Specifically, marginal copper deficiency (CuD) has been reported as a potential etiologic factor in diseases characterized by disrupted lipid metabolism such as non-alcoholic fatty-liver disease (NAFLD). In this review, we discuss the available data suggesting that a significant portion of the North American population may consume insufficient copper, the potential mechanisms by which CuD may promote lipid biosynthesis, and the interaction between CuD and dietary fructose in the etiology of NAFLD. © 2016 IUBMB Life, 69(4):263-270, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  3. Organizational and financial mechanism of development of services of railway transport through public-private partnership

    OpenAIRE

    Fedorko, I.

    2014-01-01

    The paper developed organizational and financial mechanism development of railway transport services, which, unlike the existing ones, includes participants of investment and transportation process, the state target program, a list of potential private and public sources of financing of investment projects, the system of state financial control, which allows to provide the necessary storage the volume of investment funds, effective funding for the achievement of strategic, technical and techn...

  4. Carbon emission allowance allocation with a mixed mechanism in air passenger transport.

    Science.gov (United States)

    Qiu, Rui; Xu, Jiuping; Zeng, Ziqiang

    2017-09-15

    Air passenger transport carbon emissions have become a great challenge for both governments and airlines because of rapid developments in the aviation industry in recent decades. In this paper, a mixed mechanism composed of a cap-and-trade mechanism and a carbon tax mechanism is developed to assist governments in allocating carbon emission allowances to airlines operating on the routes. Combined this mixed mechanism with an equilibrium strategy, a bi-level multi-objective model is proposed for an air passenger transport carbon emission allowance allocation problem, in which a government is considered as a leader and the airlines as the followers. An interactive solution approach integrating a genetic algorithm and an interactive evolutionary mechanism is designed to search for satisfactory solutions of the proposed model. A case study is then presented to show its practicality and efficiency in mitigating carbon emissions. Sensitivity analyses under different tradable and taxable levels are also conducted, which can give the government insights as to the tradeoffs between lowering carbon intensity and improving airlines' operations. The computational results demonstrate that the mixed mechanism can assist greatly in carbon emission mitigation for air passenger transport and therefore, it should be established as part of air passenger transport carbon emission policies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Experimental Evaluation of the Transport Mechanisms of PoIFN-α in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-11-01

    Full Text Available For the development of an efficient intestinal delivery system for Porcine interferon-α (PoIFN-α, the understanding of transport mechanisms of which in the intestinal cell is essential. In this study, we investigated the absorption mechanisms of PoIFN-α in intestine cells. Caco-2 cells and fluorescein isothiocyanate-labeled (FITC-PoIFN-α were used to explore the whole transport process, including endocytosis, intracellular trafficking, exocytosis, and transcytosis. Via various techniques, the transport pathways of PoIFN-α in Caco-2 cells and the mechanisms were clarified. Firstly, the endocytosis of PoIFN-α by Caco-2 cells was time, concentration and temperature dependence. And the lipid raft/caveolae endocytosis was the most likely endocytic pathway for PoIFN-α. Secondly, both Golgi apparatus and lysosome were involved in the intracellular trafficking of PoIFN-α. Thirdly, the treatment of indomethacin resulted in a significant decrease of exocytosis of PoIFN-α, indicating the participation of cyclooxygenase. Finally, to evaluate the efficiency of PoIFN-α transport, the transepithelial electrical resistance (TEER value was measured to investigate the tight junctional integrity of the cell monolayers. The fluorescence microscope results revealed that the transport of PoIFN-α across the Caco-2 cell monolayers was restricted. In conclusion, this study depicts a probable picture of PoIFN-α transport in Caco-2 cells characterized by non-specificity, partial energy-dependency and low transcytosis.

  6. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  7. Copper accumulation and transport in a marine food chain composed of Platymonas subcordiformis, brachionus plicatilis and Penaeus monodon

    Science.gov (United States)

    Cai, A.-Gen; Chen, Wei-Qi; Li, Wen-Quan

    1997-09-01

    Accumulation, transport and toxicity of Cu in the food chain consisting of Platymonas subcordiformis, Brachionus plicatilis and Penaeus monodon were studied. Effects of Cu on the growth of organisms in the food chain were investigated and the inhibiting effect concentration (EC50) of Cu was then determined according to the dynamics of the relative number of cells or total individuals of organisms, expressed in percentages with reference to the controlled system, under different culture conditions. On the basis of the variations in accumulation and percentages of accumulation of Cu in the biological phase, the relationship between the accumulation of Cu in organisms and its toxicity was analyzed and the main approach for determining the transport of Cu in the food chain was then discussed.

  8. Transport and detoxification of cadmium, copper and zinc in the Cd/Zn hyperaccumulator plant Thlaspi caerulescens

    OpenAIRE

    Leitenmaier, Barbara

    2010-01-01

    SummaryIn this thesis, various aspects on heavy metal accumulation by the hyperaccumulator plant Thlaspi caerulescens have been investigated. T. caerulescens belongs to the family of Brassicaceae and hyperaccumulates zinc. Its ecotype Ganges, originating from Southern France, additionally takes up cadmium actively. It is known from previous studies that hyperaccumulators have highly overexpressed metal transporters and that most of them store the metal in the vacuole of large epidermal cells....

  9. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  10. The direction of water transport on Mars: A possible pumping mechanism

    Science.gov (United States)

    James, P. B.

    1987-01-01

    It is suggested that an atmospheric pumping mechanism might be at work in which water is preferentially transported into the north by a mass outflow wind (due to sublimation from polar cap) that is stronger during southern spring than it is during northern spring. The mechanism is provided by the asymmetric seasonal temperature distribution produced by the eccentric martial orbit and by the associated seasonal asymmetry in the carbon dioxide cycle. The alternating condensation and sublimation of CO2 at the poles produces condensation winds which, in turn, contribute to the meridional transport of water vapor.

  11. Prediction of grain size and mechanical properties in friction stir welded pure copper joints using a thermal model

    DEFF Research Database (Denmark)

    Heidarzadeh, A.; Jabbaribehnam, Mirmasoud; Esmaily, M.

    2015-01-01

    In this study, a thermal model was developed and applied to simulate the friction stir welding of pure copper plates with the thickness of 2 mm. The different traverse speeds of 100, 200, 300, and 400 mm min−1 and rotational speeds of 400, 700, 900 rev min−1 were considered as welding parameters....... Microstructural characterization, hardness measurement, tensile test, and fractography were conducted experimentally. The comparison between the numerical and experimental results showed that the developed model was practically accurate. In addition, the results confirmed that the peak temperature...

  12. Structure of Bor1 supports an elevator transport mechanism for SLC4 anion exchangers.

    Science.gov (United States)

    Thurtle-Schmidt, Bryan H; Stroud, Robert M

    2016-09-20

    Boron is essential for plant growth because of its incorporation into plant cell walls; however, in excess it is toxic to plants. Boron transport and homeostasis in plants is regulated in part by the borate efflux transporter Bor1, a member of the solute carrier (SLC) 4 transporter family with homology to the human bicarbonate transporter Band 3. Here, we present the 4.1-Å resolution crystal structure of Arabidopsis thaliana Bor1. The structure displays a dimeric architecture in which dimerization is mediated by centralized Gate domains. Comparisons with a structure of Band 3 in an outward-open state reveal that the Core domains of Bor1 have rotated inwards to achieve an occluded state. Further structural comparisons with UapA, a xanthine transporter from the nucleobase-ascorbate transporter family, show that the downward pivoting of the Core domains relative to the Gate domains may access an inward-open state. These results suggest that the SLC4, SLC26, and nucleobase-ascorbate transporter families all share an elevator transport mechanism in which alternating access is provided by Core domains that carry substrates across a membrane.

  13. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  14. Local thermal property analysis by scanning thermal microscopy of an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment

    Energy Technology Data Exchange (ETDEWEB)

    Guo, F.A. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China) and Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France)]. E-mail: guofuan@yahoo.com; JI, Y.L. [Suzhou Institute for Nonferrous Metals Processing Technology, No. 200 Shenxu Road, Suzhou Industrial Park, Suzhou 215021 (China); Trannoy, N. [Unite de Thermique et d' Analyse Physique, Laboratoire d' Energetique et d' Optique, Universite de Reims, BP 1039, 51687 Reims Cedex 2 (France); Lu, J. [LASMIS, Universite de Technologie de Troyes, 12 Rue Marie Curie, Troyes 10010 (France)

    2006-06-15

    Scanning thermal microscopy (SThM) was used to map thermal conductivity images in an ultrafine-grained copper surface layer produced by surface mechanical attrition treatment (SMAT). It is found that the deformed surface layer shows different thermal conductivities that strongly depend on the grain size of the microstructure: the thermal conductivity of the nanostructured surface layer decreases obviously when compared with that of the coarse-grained matrix of the sample. The role of the grain boundaries in thermal conduction is analyzed in correlation with the heat conduction mechanism in pure metal. A theoretical approach, based on this investigation, was used to calculate the heat flow from the probe tip to the sample and then estimate the thermal conductivities at different scanning positions. Experimental results and theoretical calculation demonstrate that SThM can be used as a tool for the thermal property and microstructural analysis of ultrafine-grained microstructures.

  15. A Study on Anti – Fouling Behaviour and Mechanical Properties of PVA/Chitosan/TEOS Hybrid membrane in The Treatment of Copper Solution

    Science.gov (United States)

    Sulaiman, N. A.; Kassim Shaari, N. Z.; Rahman, N. Abdul

    2018-05-01

    In a wastewater treatment by using membrane filtration, fouling has been one of the major problems. In this study, the anti-fouling behaviour of the fabricated thin-film composite membrane were studied during the treatment of water containing copper ion. The membranes were prepared from a polymer blend of 2wt.% chitosan with 10 wt.% poly(vinyl alcohol) (PVA) and then it was cross – linked with tetraethylorthosilicate (TEOS) through sol-gel method. The membrane had been evaluated for its resistance against organic fouling where humic acid had been chosen as organic foulant model which represent the natural organic matter (NOM) in water or wastewater. The dead-end filtration experiments were carried out by using 50 ppm of copper solution with and without the presence of humic acid as feed solution, which was passed through two types of thin film composite membranes. The possible reversible fouling was evaluated by using relative flux decay (RFD) and relative flux recovery (RFR) calculations. The percentage of copper ion removal was evaluated by using Atomic Absorption Spectroscopy (AAS). Based on the results, with the presence of humic acid, the membrane incorporated with silica precursor (TEOS) showed lower flux decay (3%) and higher flux recovery (76%), which show that the formulated hybrid membrane possesses the anti fouling property. The same trend was observed in the mechanical properties of hybrid membrane, where the presence of TEOS has improved the tensile strength and flexibility of the membrane. Therefore, the fabricated thin film composite with the anti-fouling properties and good physical flexibility has potential to be used in the treatment of wastewater containing heavy metal as it could result in good saving in term of operational cost.

  16. Intracellular loop 5 is important for the transport mechanism and molecular pharmacology of the human serotonin transporter

    DEFF Research Database (Denmark)

    Said, Saida; Neubauer, Henrik Amtoft; Müller, Heidi Kaastrup

    2015-01-01

    The serotonin transporter (SERT) belongs to a family of transport proteins called the neurotransmitter:sodium symporters. The specialized members of this family transport different neurotransmitters across the cell membrane, thereby regulating signaling between neurons. Most of these transporters...

  17. Mechanical properties of brazing joints of alumina dispersion strengthened copper to 316 stainless steel for fusion reactor divertor

    International Nuclear Information System (INIS)

    Nishi, Hiroshi; Araki, Toshiaki.

    1994-01-01

    Brazing of alumina dispersion strengthened copper to 316 stainless steel was carried out with the brazing parameters such as brazing alloy, clearance and time to investigate the influence of brazing conditions on the joint strength. Tensile and Charpy impact tests of the joint specimens were performed to evaluate their strength. Microstructure and hardness of the brazed zone were examined with an optical microscope and a Vickers hardness tester. The excellent brazing joint strength was achieved with BAu-2 brazing alloy. The tensile strength of the joint with the brazing clearance of 0.2mm and the brazing time of 300s was as large as that of the diffusion bonding joint. However, Charpy absorbed energy of the brazing was lower than that of the diffusion bonding. Alumina dispersion strengthened copper remelted near the brazed zone because of diffusion of the brazing alloy, and the specimens fractured at the remelted zone. The brazed zone included many voids, which caused a scattering of the strength. (author)

  18. Mechanical integrity of a carbon nanotube/copper-based through-silicon via for 3D integrated circuits: a multi-scale modeling approach.

    Science.gov (United States)

    Awad, Ibrahim; Ladani, Leila

    2015-12-04

    Carbon nanotube (CNT)/copper (Cu) composite material is proposed to replace Cu-based through-silicon vias (TSVs) in micro-electronic packages. The proposed material is believed to offer extraordinary mechanical and electrical properties and the presence of CNTs in Cu is believed to overcome issues associated with miniaturization of Cu interconnects, such as electromigration. This study introduces a multi-scale modeling of the proposed TSV in order to evaluate its mechanical integrity under mechanical and thermo-mechanical loading conditions. Molecular dynamics (MD) simulation was used to determine CNT/Cu interface adhesion properties. A cohesive zone model (CZM) was found to be most appropriate to model the interface adhesion, and CZM parameters at the nanoscale were determined using MD simulation. CZM parameters were then used in the finite element analysis in order to understand the mechanical and thermo-mechanical behavior of composite TSV at micro-scale. From the results, CNT/Cu separation does not take place prior to plastic deformation of Cu in bending, and separation does not take place when standard thermal cycling is applied. Further investigation is recommended in order to alleviate the increased plastic deformation in Cu at the CNT/Cu interface in both loading conditions.

  19. Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Kalayda, Ganna V; Wagner, Christina H; Buß, Irina; Reedijk, Jan; Jaehde, Ulrich

    2008-01-01

    Copper homeostasis proteins ATP7A and ATP7B are assumed to be involved in the intracellular transport of cisplatin. The aim of the present study was to assess the relevance of sub cellular localisation of these transporters for acquired cisplatin resistance in vitro. For this purpose, localisation of ATP7A and ATP7B in A2780 human ovarian carcinoma cells and their cisplatin-resistant variant, A2780cis, was investigated. Sub cellular localisation of ATP7A and ATP7B in sensitive and resistant cells was investigated using confocal fluorescence microscopy after immunohistochemical staining. Co-localisation experiments with a cisplatin analogue modified with a carboxyfluorescein-diacetate residue were performed. Cytotoxicity of the fluorescent cisplatin analogue in A2780 and A2780cis cells was determined using an MTT-based assay. The significance of differences was analysed using Student's t test or Mann-Whitney test as appropriate, p values of < 0.05 were considered significant. In the sensitive cells, both transporters are mainly localised in the trans-Golgi network, whereas they are sequestrated in more peripherally located vesicles in the resistant cells. Altered localisation of ATP7A and ATP7B in A2780cis cells is likely to be a consequence of major abnormalities in intracellular protein trafficking related to a reduced lysosomal compartment in this cell line. Changes in sub cellular localisation of ATP7A and ATP7B may facilitate sequestration of cisplatin in the vesicular structures of A2780cis cells, which may prevent drug binding to genomic DNA and thereby contribute to cisplatin resistance. Our results indicate that alterations in sub cellular localisation of transport proteins may contribute to cisplatin resistance in vitro. Investigation of intracellular protein localisation in primary tumour cell cultures and tumour tissues may help to develop markers of clinically relevant cisplatin resistance. Detection of resistant tumours in patients may in turn

  20. Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells

    Directory of Open Access Journals (Sweden)

    Reedijk Jan

    2008-06-01

    Full Text Available Abstract Background Copper homeostasis proteins ATP7A and ATP7B are assumed to be involved in the intracellular transport of cisplatin. The aim of the present study was to assess the relevance of sub cellular localisation of these transporters for acquired cisplatin resistance in vitro. For this purpose, localisation of ATP7A and ATP7B in A2780 human ovarian carcinoma cells and their cisplatin-resistant variant, A2780cis, was investigated. Methods Sub cellular localisation of ATP7A and ATP7B in sensitive and resistant cells was investigated using confocal fluorescence microscopy after immunohistochemical staining. Co-localisation experiments with a cisplatin analogue modified with a carboxyfluorescein-diacetate residue were performed. Cytotoxicity of the fluorescent cisplatin analogue in A2780 and A2780cis cells was determined using an MTT-based assay. The significance of differences was analysed using Student's t test or Mann-Whitney test as appropriate, p values of Results In the sensitive cells, both transporters are mainly localised in the trans-Golgi network, whereas they are sequestrated in more peripherally located vesicles in the resistant cells. Altered localisation of ATP7A and ATP7B in A2780cis cells is likely to be a consequence of major abnormalities in intracellular protein trafficking related to a reduced lysosomal compartment in this cell line. Changes in sub cellular localisation of ATP7A and ATP7B may facilitate sequestration of cisplatin in the vesicular structures of A2780cis cells, which may prevent drug binding to genomic DNA and thereby contribute to cisplatin resistance. Conclusion Our results indicate that alterations in sub cellular localisation of transport proteins may contribute to cisplatin resistance in vitro. Investigation of intracellular protein localisation in primary tumour cell cultures and tumour tissues may help to develop markers of clinically relevant cisplatin resistance. Detection of resistant tumours

  1. Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance and Stability.

    Science.gov (United States)

    Jiang, Xiaoqing; Yu, Ze; Lai, Jianbo; Zhang, Yuchen; Hu, Maowei; Lei, Ning; Wang, Dongping; Yang, Xichuan; Sun, Licheng

    2017-04-22

    In high-performance perovskite solar cells (PSCs), hole-transporting materials (HTMs) play an important role in extracting and transporting the photo-generated holes from the perovskite absorber to the cathode, thus reducing unwanted recombination losses and enhancing the photovoltaic performance. Herein, solution-processable tetra-4-(bis(4-tert-butylphenyl)amino)phenoxy-substituted copper phthalocyanine (CuPc-OTPAtBu) was synthesized and explored as a HTM in PSCs. The optical, electrochemical, and thermal properties were fully characterized for this organic metal complex. The photovoltaic performance of PSCs employing this CuPc derivative as a HTM was further investigated, in combination with a mixed-ion perovskite as a light absorber and a low-cost vacuum-free carbon as cathode. The optimized devices [doped with 6 % (w/w) tetrafluoro-tetracyano-quinodimethane (F4TCNQ)] showed a decent power conversion efficiency of 15.0 %, with an open-circuit voltage of 1.01 V, a short-circuit current density of 21.9 mA cm -2 , and a fill factor of 0.68. Notably, the PSC devices studied also exhibited excellent long-term durability under ambient condition for 720 h, mainly owing to the introduction of the hydrophobic HTM interlayer, which prevents moisture penetration into the perovskite film. The present work emphasizes that solution-processable CuPc holds a great promise as a class of alternative HTMs that can be further explored for efficient and stable PSCs in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Detachment of sprayed colloidal copper oxychloride-metalaxyl fungicides by a shallow water flow.

    Science.gov (United States)

    Pose-Juan, Eva; Paradelo-Pérez, Marcos; Rial-Otero, Raquel; Simal-Gándara, Jesus; López-Periago, José E

    2009-06-01

    Flow shear stress induced by rainfall promotes the loss of the pesticides sprayed on crops. Some of the factors influencing the losses of colloidal-size particulate fungicides are quantified by using a rotating shear system model. With this device it was possible to analyse the flow shear influencing washoff of a commercial fungicide formulation based on a copper oxychloride-metalaxyl mixture that was sprayed on a polypropylene surface. A factor plan with four variables, i.e. water speed and volume (both variables determining flow boundary stress in the shear device), formulation dosage and drying temperature, was set up to monitor colloid detachment. This experimental design, together with sorption experiments of metalaxyl on copper oxychloride, and the study of the dynamics of metalaxyl and copper oxychloride washoff, made it possible to prove that metalaxyl washoff from a polypropylene surface is controlled by transport in solution, whereas that of copper oxychloride occurs by particle detachment and transport of particles. Average losses for metalaxyl and copper oxychloride were, respectively, 29 and 50% of the quantity applied at the usual recommended dosage for crops. The key factors affecting losses were flow shear and the applied dosage. Empirical models using these factors provided good estimates of the percentage of fungicide loss. From the factor analysis, the main mechanism for metalaxyl loss induced by a shallow water flow is solubilisation, whereas copper loss is controlled by erosion of copper oxychloride particles.

  3. Monte Carlo study of the mechanisms of transport of fast neutrons in various media

    International Nuclear Information System (INIS)

    Ku, L.

    1976-01-01

    The technique of analyzing Monte Carlo histories was used to study the details of neutron transport and slowing down mechanisms. The statistical properties of life histories of ''exceptional'' neutrons, i.e., those staying closer to the source or penetrating to larger distances from the source, were compared to those of the general population. The macroscopic behavior of ''exceptional'' neutrons was also related to the interaction mechanics and to the microscopic properties of the medium

  4. The PTFE-nanocomposites mechanical properties for transport systems dynamic sealing devices elements

    Science.gov (United States)

    Mashkov, Y. K.; Egorova, V. A.; Chemisenko, O. V.; Maliy, O. V.

    2017-06-01

    The mechanical properties study results of polymer nanocomposites based on polytetrafluoroethylene with modifiers in the form of micro- and nanoscale cryptocrystalline graphite and silicon dioxide powders are determined. The nanocomposites mechanical properties determined values provide high sealing degree of transport systems dynamic sealing devices elements. When the temperature changes from cryogenic to high positive then the elastic modulus, tensile strength decrease significantly and nonlinearly, the latter limits the composite usage in heavily loaded tribosystems operating at elevated temperatures.

  5. The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism.

    Science.gov (United States)

    Mulligan, Christopher; Fenollar-Ferrer, Cristina; Fitzgerald, Gabriel A; Vergara-Jaque, Ariela; Kaufmann, Desirée; Li, Yan; Forrest, Lucy R; Mindell, Joseph A

    2016-03-01

    Secondary transporters use alternating-access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters use a 'rocking bundle' motion, wherein the protein moves around an immobile substrate-binding site. However, the glutamate-transporter homolog GltPh translocates its substrate-binding site vertically across the membrane, through an 'elevator' mechanism. Here, we used the 'repeat swap' approach to computationally predict the outward-facing state of the Na(+)/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial elevator-like movement of VcINDY's substrate-binding site, with a vertical translation of ~15 Å and a rotation of ~43°. Our observation that multiple disulfide cross-links completely inhibit transport provides experimental confirmation of the model and demonstrates that such movement is essential. In contrast, cross-links across the VcINDY dimer interface preserve transport, thus revealing an absence of large-scale coupling between protomers.

  6. Transcription factor Afmac1 controls copper import machinery in Aspergillus fumigatus.

    Science.gov (United States)

    Kusuya, Yoko; Hagiwara, Daisuke; Sakai, Kanae; Yaguchi, Takashi; Gonoi, Tohru; Takahashi, Hiroki

    2017-08-01

    Copper (Cu) is an essential metal for all living organisms, although it is toxic in excess. Filamentous fungus must acquire copper from its environment for growth. Despite its essentiality for growth, the mechanisms that maintain copper homeostasis are not fully understood in filamentous fungus. To gain insights into copper homeostasis, we investigated the roles of a copper transcription factor Afmac1 in the life-threatening fungus Aspergillus fumigatus, a homolog of the yeast MAC1. We observed that the Afmac1 deletion mutant exhibited not only significantly slower growth, but also incomplete conidiation including a short chain of conidia and defective melanin. Moreover, the expressions of the copper transporters, ctrA1, ctrA2, and ctrC, and metalloreductases, Afu8g01310 and fre7, were repressed in ∆Afmac1 cells, while those expressions were induced under copper depletion conditions in wild-type. The expressions of pksP and wetA, which are, respectively, involved in biosynthesis of conidia-specific melanin and the late stage of conidiogenesis, were decreased in the ∆Afmac1 strain under minimal media condition. Taken together, these results indicate that copper acquisition through AfMac1 functions in growth as well as conidiation.

  7. Silver (Ag) Transport Mechanisms in TRISO coated particles: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    I J van Rooyen; J H Neethling; J A A Engelbrecht; P M van Rooyen; G Strydom

    2012-10-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  8. Structure and elevator mechanism of the Na(+)-citrate transporter CitS

    NARCIS (Netherlands)

    Lolkema, Juke S; Slotboom, Dirk Jan

    2016-01-01

    The recently determined crystal structure of the bacterial Na(+)-citrate symporter CitS provides unexpected structural and mechanistic insights. The protein has a fold that has not been seen in other proteins, but the oligomeric state, domain organization and proposed transport mechanism strongly

  9. Silver (Ag) transport mechanisms in TRISO coated particles: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: isabella.vanrooyen@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Dunzik-Gougar, M.L. [Department of Nuclear Engineering, Idaho State University, ID (United States); Rooyen, P.M. van [Philip M. van Rooyen Network Consultants, Midlands Estates (South Africa)

    2014-05-01

    Transport of {sup 110m}Ag in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE's fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  10. Mass transport mechanism in the collision of sulphur on medium-weight nuclei

    International Nuclear Information System (INIS)

    Lejeune, A.; Richert, J.

    1980-01-01

    The reactions of 32 S on 59 Co, 65 Cu, 74 Ge, 79 Br, 85 Rb, 89 Y are studied. An explanation for the specific shape of the double differential cross sections as a function of the scattering angle and the mass asymmetry is given in the framework of a transport model. Conclusions about the reaction mechanism are drawn

  11. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  12. Receptor-mediated mechanism for the transport of prolactin from blood to cerebrospinal fluid

    International Nuclear Information System (INIS)

    Walsh, R.J.; Slaby, F.J.; Posner, B.I.

    1987-01-01

    Prolactin (PRL) interacts with areas of the central nervous system which reside behind the blood-brain barrier. While vascular PRL does not cross this barrier, it is readily accessible to the cerebrospinal fluid (CSF) from which it may gain access to the PRL-responsive areas of the brain. Studies were undertaken to characterize the mechanism responsible for the translocation of PRL from blood to CSF. Rats were given external jugular vein injections of [ 125 -I]iodo-PRL in the presence or absence of an excess of unlabeled ovine PRL (oPRL), human GH, bovine GH, or porcine insulin. CSF and choroid plexus were removed 60 min later. CSF samples were electrophoresed on sodium dodecyl sulfate-polyacrylamide slab gels and resultant autoradiographs were analyzed with quantitative microdensitometry. The data revealed that unlabeled lactogenic hormones, viz. oPRL and human GH, caused a statistically significant inhibition of [ 125 I]iodo-PRL transport from blood to CSF. In contrast, nonlactogenic hormones, viz bovine GH and insulin, had no effect on [ 125 I]iodo-PRL transport into the CSF. An identical pattern of competition was observed in the binding of hormone to the choroid plexus. Furthermore, vascular injections of [ 125 I]iodo-PRL administered with a range of concentrations of unlabeled oPRL revealed a dose-response inhibition in the transport of [ 125 I]iodo-PRL from blood to CSF. The study demonstrates that PRL enters the CSF by a specific, PRL receptor-mediated transport mechanism. The data is consistent with the hypothesis that the transport mechanism resides at the choroid plexus. The existence of this transport mechanism reflects the importance of the cerebroventricular system in PRL-brain interactions

  13. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  14. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  15. Private–public partnerships: A mechanism for freight transport infrastructure delivery?

    Directory of Open Access Journals (Sweden)

    Hans W. Ittmann

    2017-02-01

    Full Text Available Background: Freight transport infrastructure is an indispensable requirement for economic growth, development and prosperity. Public–private partnerships (PPPs, as a mechanism to fund and construct freight transport infrastructure, have been suggested by many in private and public sectors. Objectives: The concept of PPPs is dealt with, and the relevance of this mechanism is expanded upon. It is clear that PPPs in the rail environment present huge challenges and complexities. The objective was to determine whether PPPs are a viable mechanism to fund freight transport infrastructure in South Africa. Method: Experiences with rail PPPs worldwide have shown that many failures occurred implementing these. The challenges and complexities of PPPs, in the freight rail environment, are highlighted together with the benefits, risks and best practices of PPPs. It is shown that suitable policies, legislation and regulations concerning PPPs are in place in South Africa. Results: A proper framework and methodology to proceed should be in place. PPPs take time and are complex. Government involvement remains essential. Firm contractual agreements between parties are essential. Risk handling, risk sharing and the magnitude of risks should be clarified with agreement on where the risks reside. Financial viability, with value for money (VfM and financial benefits for private sector role players are non-negotiable. Conclusion: Appropriate legislation for implementing PPPs must be in place while two further important elements are economic circumstances and proper project execution. Taking all these factors into consideration, the freight transport sector can only benefit from successfully negotiated and implemented PPPs.

  16. Spatial and temporal variations of the callus mechanical properties during bone transport

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Macias, J.; Reina-Romo, E.; Pajares, A.; Miranda, P.; Dominguez, J.

    2016-07-01

    Nanoindentation allows obtaining the elastic modulus and the hardness of materials point by point. This technique has been used to assess the mechanical propeties of the callus during fracture healing. However, as fas as the authors know, the evaluation of mechanical properties by this technique of the distraction and the docking-site calluses generated during bone transport have not been reported yet. Therefore, the aim of this work is using nanoindentation to assess the spatial and temporal variation of the elastic modulus of the woven bone generated during bone transport. Nanoindentation measurements were carried out using 6 samples from sheep sacrificed at different stages of the bone transport experiments. The results obtained show an important heterogeneity of the elastic modulus of the woven bone without spatial trends. In the case of temporal variation, a clear increase of the mean elastic modulus with time after surgery was observed (from 7±2GPa 35 days after surgery to 14±2GPa 525 days after surgery in the distraction callus and a similar increase in the docking site callus). Comparison with the evolution of the elastic modulus in the woven bone generated during fracture healing shows that mechanical properties increase slower in the case of the woven bone generated during bone transport. (Author)

  17. Stress corrosion cracking of copper canisters

    International Nuclear Information System (INIS)

    King, Fraser; Newman, Roger

    2010-12-01

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  18. Stress corrosion cracking of copper canisters

    Energy Technology Data Exchange (ETDEWEB)

    King, Fraser (Integrity Corrosion Consulting Limited (Canada)); Newman, Roger (Univ. of Toronto (Canada))

    2010-12-15

    A critical review is presented of the possibility of stress corrosion cracking (SCC) of copper canisters in a deep geological repository in the Fennoscandian Shield. Each of the four main mechanisms proposed for the SCC of pure copper are reviewed and the required conditions for cracking compared with the expected environmental and mechanical loading conditions within the repository. Other possible mechanisms are also considered, as are recent studies specifically directed towards the SCC of copper canisters. The aim of the review is to determine if and when during the evolution of the repository environment copper canisters might be susceptible to SCC. Mechanisms that require a degree of oxidation or dissolution are only possible whilst oxidant is present in the repository and then only if other environmental and mechanical loading conditions are satisfied. These constraints are found to limit the period during which the canisters could be susceptible to cracking via film rupture (slip dissolution) or tarnish rupture mechanisms to the first few years after deposition of the canisters, at which time there will be insufficient SCC agent (ammonia, acetate, or nitrite) to support cracking. During the anaerobic phase, the supply of sulphide ions to the free surface will be transport limited by diffusion through the highly compacted bentonite. Therefore, no HS. will enter the crack and cracking by either of these mechanisms during the long term anaerobic phase is not feasible. Cracking via the film-induced cleavage mechanism requires a surface film of specific properties, most often associated with a nano porous structure. Slow rates of dissolution characteristic of processes in the repository will tend to coarsen any nano porous layer. Under some circumstances, a cuprous oxide film could support film-induced cleavage, but there is no evidence that this mechanism would operate in the presence of sulphide during the long-term anaerobic period because copper sulphide

  19. Molecular Simulation and Biochemical Studies Support an Elevator-type Transport Mechanism in EIIC.

    Science.gov (United States)

    Lee, Jumin; Ren, Zhenning; Zhou, Ming; Im, Wonpil

    2017-06-06

    Enzyme IIC (EIIC) is a membrane-embedded sugar transport protein that is part of the phosphoenolpyruvate-dependent phosphotransferases. Crystal structures of two members of the glucose EIIC superfamily, bcChbC in the inward-facing conformation and bcMalT in the outward-facing conformation, were previously solved. Comparing the two structures led us to the hypothesis that sugar translocation could be achieved by an elevator-type transport mechanism in which a transport domain binds to the substrate and, through rigid body motions, transports it across the membrane. To test this hypothesis and to obtain more accurate descriptions of alternate conformations of the two proteins, we first performed collective variable-based steered molecular dynamics (CVSMD) simulations starting with the two crystal structures embedded in model lipid bilayers, and steered their transport domain toward their own alternative conformation. Our simulations show that large rigid-body motions of the transport domain (55° in rotation and 8 Å in translation) lead to access of the substrate binding site to the alternate side of the membrane. H-bonding interactions between the sugar and the protein are intact, although the side chains of the binding-site residues were not restrained in the simulation. Pairs of residues in bcMalT that are far apart in the crystal structure become close to each other in the simulated model. Some of these pairs can be cross-linked by a mercury ion when mutated to cysteines, providing further support for the CVSMD-generated model. In addition, bcMalT binds to maltose with similar affinities before and after the cross-linking, suggesting that the binding site is preserved after the conformational change. In combination, these results support an elevator-type transport mechanism in EIIC. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations

    Science.gov (United States)

    Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi

    2010-01-01

    There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.

  1. Investigation of particle reduction and its transport mechanism in UHF-ECR dielectric etching system

    International Nuclear Information System (INIS)

    Kobayashi, Hiroyuki; Yokogawa, Ken'etsu; Maeda, Kenji; Izawa, Masaru

    2008-01-01

    Control of particle transport was investigated by using a UHF-ECR etching apparatus with a laser particle monitor. The particles, which float at a plasma-sheath boundary, fall on a wafer when the plasma is turned off. These floating particles can be removed from the region above the wafer by changing the plasma distribution. We measured the distribution of the rotational temperature of nitrogen molecules across the wafer to investigate the effect of the thermophoretic force. We found that mechanisms of particle transport in directions parallel to the wafer surface can be explained by the balance between thermophoretic and gas viscous forces

  2. Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells.

    Science.gov (United States)

    De Rossi, María Cecilia; Wetzler, Diana E; Benseñor, Lorena; De Rossi, María Emilia; Sued, Mariela; Rodríguez, Daniela; Gelfand, Vladimir; Bruno, Luciana; Levi, Valeria

    2017-12-01

    Intracellular transport requires molecular motors that step along cytoskeletal filaments actively dragging cargoes through the crowded cytoplasm. Here, we explore the interplay of the opposed polarity motors kinesin-1 and cytoplasmic dynein during peroxisome transport along microtubules in Drosophila S2 cells. We used single particle tracking with nanometer accuracy and millisecond time resolution to extract quantitative information on the bidirectional motion of organelles. The transport performance was studied in cells expressing a slow chimeric plus-end directed motor or the kinesin heavy chain. We also analyzed the influence of peroxisomes membrane fluidity in methyl-β-ciclodextrin treated cells. The experimental data was also confronted with numerical simulations of two well-established tug of war scenarios. The velocity distributions of retrograde and anterograde peroxisomes showed a multimodal pattern suggesting that multiple motor teams drive transport in either direction. The chimeric motors interfered with the performance of anterograde transport and also reduced the speed of the slowest retrograde team. In addition, increasing the fluidity of peroxisomes membrane decreased the speed of the slowest anterograde and retrograde teams. Our results support the existence of a crosstalk between opposed-polarity motor teams. Moreover, the slowest teams seem to mechanically communicate with each other through the membrane to trigger transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  4. Competitiveness of the railway transportation in the conditions of functioning of the infrastructure new organizational-economic mechanism

    Directory of Open Access Journals (Sweden)

    M.I. Mishchenko

    2012-08-01

    Full Text Available The transport infrastructure of railways of the countries of EU-27 in the conditions of functioning new organizational-economic mechanism, and also dynamics of level of competitiveness of a railway transportation as result of reforming of railways of the countries of EU-27, in the conditions of realisation of the European transport legislation is investigated.

  5. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  6. Structure and elevator mechanism of the Na+-citrate transporter CitS.

    Science.gov (United States)

    Lolkema, Juke S; Slotboom, Dirk Jan

    2017-08-01

    The recently determined crystal structure of the bacterial Na + -citrate symporter CitS provides unexpected structural and mechanistic insights. The protein has a fold that has not been seen in other proteins, but the oligomeric state, domain organization and proposed transport mechanism strongly resemble those of the sodium-dicarboxylate symporter vcINDY, and the putative exporters YdaH and MtrF, thus hinting at convergence in structure and function. CitS and the related proteins are predicted to translocate their substrates by an elevator-like mechanism, in which a compact transport domain slides up and down through the membrane while the dimerization domain is stably anchored. Here we review the large body of available biochemical data on CitS in the light of the new crystal structure. We show that the biochemical data are fully consistent with the proposed elevator mechanism, but also demonstrate that the current structural data cannot explain how strict coupling of citrate and Na + transport is achieved. We propose a testable model for the coupling mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Transport equations, Level Set and Eulerian mechanics. Application to fluid-structure coupling

    International Nuclear Information System (INIS)

    Maitre, E.

    2008-11-01

    My works were devoted to numerical analysis of non-linear elliptic-parabolic equations, to neutron transport equation and to the simulation of fabrics draping. More recently I developed an Eulerian method based on a level set formulation of the immersed boundary method to deal with fluid-structure coupling problems arising in bio-mechanics. Some of the more efficient algorithms to solve the neutron transport equation make use of the splitting of the transport operator taking into account its characteristics. In the present work we introduced a new algorithm based on this splitting and an adaptation of minimal residual methods to infinite dimensional case. We present the case where the velocity space is of dimension 1 (slab geometry) and 2 (plane geometry) because the splitting is simpler in the former

  8. Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium

    DEFF Research Database (Denmark)

    Xia, Dengning; He, Yuan; Li, Qiuxia

    2018-01-01

    are transported. To improve cellular uptake and transport of pure nanodrug in cells, here, a lipid covered saquinavir (SQV) pure drug NP (Lipo@nanodrug) was designed by modifying a pure SQV NP (nanodrug) with a phospholipid bilayer. We studied their endocytosis, intracellular trafficking mechanism using Caco-2...... their intracellular processing, helping to improve drug transport across intestinal epithelium. To our knowledge, this is the first presentation of the novel phospholipid bilayer covered SQV pure drug NP design, and a mechanistic study on intracellular trafficking in in vitro cell models has been described......Pure drug nanoparticles (NPs) represent a promising formulation for improved drug solubility and controlled dissolution velocity. However, limited absorption by the intestinal epithelium remains challenge to their clinical application, and little is known about how these NPs within the cells...

  9. Effect of neutron irradiation and post-irradiation annealing on microstructure and mechanical properties of OFHC-copper

    International Nuclear Information System (INIS)

    Singh, B.N.; Edwards, D.J.; Toft, P.

    2001-01-01

    Specimens of oxygen-free high conductivity (OFHC) copper were irradiated in the DR-3 reactor at Risoe at 100 deg. C to doses in the range 0.01-0.3 dpa (NRT). Some of the specimens were tensile tested in the as-irradiated condition at 100 deg. C whereas others were given a post-irradiation annealing treatment at 300 deg. C for 50 h and subsequently tested at 100 deg. C. The microstructure of specimens was characterized in the as-irradiated as well as irradiated and annealed conditions both before and after tensile deformation. While the interstitial loop microstructure coarsens with irradiation dose, no significant changes were observed in the population of stacking fault tetrahedra (SFT). The post-irradiation annealing leads to only a partial recovery and the level of recovery depends on the irradiation dose level. However, the post-irradiation annealing eliminates the yield drop and reinstates enough uniform elongation to render the material useful again. These results are discussed in terms of the cascade-induced source hardening (CISH) model

  10. Effect of neutron irradiation and post-irradiation annealing on microstructure and mechanical properties of OFHC-copper

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N. E-mail: bachu.singh@risoe.dk; Edwards, D.J.; Toft, P

    2001-12-01

    Specimens of oxygen-free high conductivity (OFHC) copper were irradiated in the DR-3 reactor at Risoe at 100 deg. C to doses in the range 0.01-0.3 dpa (NRT). Some of the specimens were tensile tested in the as-irradiated condition at 100 deg. C whereas others were given a post-irradiation annealing treatment at 300 deg. C for 50 h and subsequently tested at 100 deg. C. The microstructure of specimens was characterized in the as-irradiated as well as irradiated and annealed conditions both before and after tensile deformation. While the interstitial loop microstructure coarsens with irradiation dose, no significant changes were observed in the population of stacking fault tetrahedra (SFT). The post-irradiation annealing leads to only a partial recovery and the level of recovery depends on the irradiation dose level. However, the post-irradiation annealing eliminates the yield drop and reinstates enough uniform elongation to render the material useful again. These results are discussed in terms of the cascade-induced source hardening (CISH) model.