WorldWideScience

Sample records for copper tellurides

  1. Studies of antimony telluride and copper telluride films electrodeposition from choline chloride containing ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Catrangiu, Adriana-Simona; Sin, Ion [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Prioteasa, Paula [INCDIE ICPE-Advanced Research, Splaiul Unirii 313, Bucharest (Romania); Cotarta, Adina [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Cojocaru, Anca, E-mail: a_cojocaru@chim.upb.ro [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Anicai, Liana [Center of Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest (Romania); Visan, Teodor [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania)

    2016-07-29

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the deposition of antimony telluride or copper telluride from ionic liquid consisting in mixture of choline chloride with oxalic acid. In addition, the cathodic process during copper telluride formation was studied in the mixture of choline chloride with ethylene glycol. The results indicate that the Pt electrode is first covered with a Te layer, and then the more negative polarisation leads to the deposition of Sb{sub x}Te{sub y} or Cu{sub x}Te{sub y} semiconductor compounds. Thin films were deposited on copper and carbon steel at 60–70 °C and were characterised by scanning electron microscopy, energy X-ray dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Their stoichiometry depends on the bath composition and applied potential. EDS and XRD patterns indicate the possible synthesis of stoichiometric Sb{sub 2}Te{sub 3} phase and Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, and Cu{sub 2.8}Te{sub 2} phases, respectively, by controlling the ratio of ion concentrations in ionic liquid electrolytes and deposition potential. - Highlights: • Sb{sub x}Te{sub y} and Cu{sub x}Te{sub y} films electrodeposited from choline-chloride-based ionic liquids. • The stoichiometry of film depends on the bath composition and deposition potential. • Sb{sub 2}Te{sub 3}, Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, Cu{sub 2.8}Te{sub 2} phases were identified in X-ray diffraction patterns.

  2. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor

    Indian Academy of Sciences (India)

    Sandeep Arya; Saleem Khan; Suresh Kumar; Rajnikant Verma; Parveen Lehana

    2013-08-01

    Copper telluride (CuTe) nanowires were synthesized electrochemically from aqueous acidic solution of copper (II) sulphate (CuSO4.5H2O) and tellurium oxide (TeO2) on a copper substrate by template-assisted electrodeposition method. The electrodeposition was conducted at 30 °C and the length of nanowires was controlled by adjusting deposition time. Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4.81, 8.93, 21, 24.55, 42.5 and 80.1, respectively. The results unequivocally prove that copper telluride nanowires can be fabricated as chemical sensors with enhanced sensitivity and reliability.

  3. Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries

    Science.gov (United States)

    Yu, Hong; Yang, Jun; Geng, Hongbo; Chao Li, Cheng

    2017-04-01

    Uniform carbon wrapped copper telluride nanowires were successfully prepared by using an in situ conversion reaction. The length of these nanowires is up to several micrometers and the width is around 30–40 nm. The unique one dimensional structure and the presence of conformal carbon coating of copper telluride greatly accommodate the large volumetric changes during cycling, significantly increase the electrical conductivity and reduce charge transfer resistance. The copper telluride nanowires show promising performance in a lithium ion battery with a discharge capacity of 130.2 mA h g‑1 at a high current density of 6.0 A g‑1 (26.74 C) and a stable cycling performance of 673.3 mA h g‑1 during the 60th cycle at 100 mA g‑1. When evaluated as anode material for a sodium ion battery, the copper telluride nanowires deliver a reversible capacity of 68.1 mA h g‑1 at 1.0 A g‑1 (∼4.46 C) and have a high capacity retention of 177.5 mA h g‑1 during the 500th cycle at 100 mA g‑1.

  4. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  5. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  6. LEACHING OF CADMIUM, TELLURIUM AND COPPER FROM CADMIUM TELLURIDE PHOTOVOLTAIC MODULES.

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    2004-02-03

    Separating the metals from the glass is the first step in recycling end-of-life cadmium telluride photovoltaic modules and manufacturing scrap. We accomplished this by leaching the metals in solutions of various concentrations of acids and hydrogen peroxide. A relatively dilute solution of sulfuric acid and hydrogen peroxide was found to be most effective for leaching cadmium and tellurium from broken pieces of CdTe PV modules. A solution comprising 5 mL of hydrogen peroxide per kg of PV scrap in 1 M sulfuric acid, gave better results than the 12 mL H{sub 2}O{sub 2}/kg, 3.2 M H{sub 2}SO{sub 4} solution currently used in the industry. Our study also showed that this dilute solution is more effective than hydrochloric-acid solutions and it can be reused after adding a small amount of hydrogen peroxide. These findings, when implemented in large-scale operation, would result in significant savings due to reductions in volume of the concentrated leaching agents (H{sub 2}SO{sub 4} and H{sub 2}O{sub 2}) and of the alkaline reagents required to neutralize the residuals of leaching.

  7. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals.

    Science.gov (United States)

    Tu, Renyong; Xie, Yi; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; Trizio, Luca De; Manna, Liberato

    2016-06-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e., with coordination number 4), such as Cd(2+) or Hg(2+), yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd(2+) and Hg(2+) ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2-xTe particles could be more easily deformed to match the anion framework of the metastable wurtzite structures. As hexagonal HgTe had never been reported to date, this represents another case of metastable new phases that can only be accessed by cation exchange. On the other hand, the exchanges involving octahedrally coordinated ions (i.e., with coordination number 6), such as Pb(2+) or Sn(2+), yielded rock-salt polycrystalline PbTe or SnTe nanocrystals with Cu2-xTe@PbTe or Cu2-xTe@SnTe core@shell architectures at the early stages of the exchange process. In this case, the octahedrally coordinated ions are probably too large to diffuse easily through the Cu2-xTe structure: their limited diffusion rate restricts their initial reaction to the surface of the nanocrystals, where cation exchange is initiated unselectively, leading to core@shell architectures. Interestingly, these heterostructures were found to be metastable as they evolved to stable Janus-like architectures if annealed at 200 °C under vacuum.

  8. Role of the copper-oxygen defect in cadmium telluride solar cells

    Science.gov (United States)

    Corwine, Caroline R.

    Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O

  9. Preparation of Copper Telluride Films by Co-Reduction of Cu(I) and Te(IV) Ions in Choline Chloride: Ethylene Glycol Ionic Liquid

    Science.gov (United States)

    Golgovici, Florentina; Catrangiu, Adriana-Simona; Stoian, Andrei Bogdan; Anicai, Liana; Visan, Teodor

    2016-07-01

    Cathodic processes of direct co-reduction of Cu+ and Te4+ ions on Pt electrode at 60°C were investigated using cyclic voltammetry and electrochemical impedance spectroscopy techniques. The ionic liquid as background electrolyte consisted of a mixture of choline chloride and ethylene glycol (ChCl-EG 1:2 mol ratio) in which 5-20 mM CuCl and 8 mM TeO2 were dissolved. The voltammograms exhibited the following successive cathodic processes: Cu2+/Cu+ reduction, Te underpotential deposition, simultaneous deposition of Cu metal and CuTe compound, and deposition of Te-rich CuTe compound at the most negative potentials (from -0.5 V to -0.8 V). Corresponding dissolution or oxidation peaks were recorded on the anodic branch. The voltammetric results were confirmed by electrochemical impedance spectra. Copper telluride films have been synthesized on platinum substrate via potentiostatic electrodeposition at 60°C. It was found from atomic force microscopy that CuTe film samples prepared from ChCl-EG + 5 mM CuCl + 8 mM TeO2 ionic liquid have high growth rates. The x-ray diffraction patterns of the deposited films from ChCl-EG + 10 mM CuCl + 8 mM TeO2 ionic liquid indicated the presence of a Cu2Te phase for film deposited at -0.7 V and a Cu0.656Te0.344 phase for film deposited at -0.6 V.

  10. Effect of metallic coatings on thermoelectric properties of lead telluride films

    Energy Technology Data Exchange (ETDEWEB)

    Ukhlinov, G.A.; Lakhno, I.G. (Moskovskij Inst. Ehlektronnoj Tekhniki (USSR))

    1984-05-01

    Effect of sprayed coatings of different metals on thermoelectric properties of lead telluride films was investigated. The basic films were prepared by the method of vacuum thermal evaporation of sample of stoichiometric lead telluride at 5x10/sup -4/ Pa residual pressure on mica (muscovite) sublayer at 330-350 deg C and approximately 10 nm/s deposition rate. It was established that fine coatings of copper, silver and gold modify sufficiently electric properties of lead telluride films. The effect is conditioned mainly by decoration and electric shunting of grain boundaries by metal island, which removes the contribution of grain boundaries to film electric conductivity.

  11. Hafnium germanium telluride

    Science.gov (United States)

    Jang, Gyung-Joo; Yun, Hoseop

    2008-01-01

    The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. PMID:21202163

  12. Hafnium germanium telluride

    Directory of Open Access Journals (Sweden)

    Hoseop Yun

    2008-05-01

    Full Text Available The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetrahedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps.

  13. Lead telluride alloy thermoelectrics

    Directory of Open Access Journals (Sweden)

    Aaron D. LaLonde

    2011-11-01

    Full Text Available The opportunity to use solid-state thermoelectrics for waste heat recovery has reinvigorated the field of thermoelectrics in tackling the challenges of energy sustainability. While thermoelectric generators have decades of proven reliability in space, from the 1960s to the present, terrestrial uses have so far been limited to niche applications on Earth because of a relatively low material efficiency. Lead telluride alloys were some of the first materials investigated and commercialized for generators but their full potential for thermoelectrics has only recently been revealed to be far greater than commonly believed. By reviewing some of the past and present successes of PbTe as a thermoelectric material we identify the issues for achieving maximum performance and successful band structure engineering strategies for further improvements that can be applied to other thermoelectric materials systems.

  14. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75 percent or higher at 0.44 microns and a photovoltaic efficiency of 11.5 percent or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65 percent and a photovoltaic conversion efficiency of 5 percent and 8 percent, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD(1-x)Zn(1-x)Te, and Hg(1-x)Zn(x)Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400 C using TEGa and AsH3 as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd(1-x)Zn(x)Te, and Hg(1-x)Zn(x)Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized.

  15. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. (University of South Florida, Tampa, FL (United States))

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  16. Unconventional temperature enhanced magnetism in iron telluride

    Energy Technology Data Exchange (ETDEWEB)

    Zalinznyak, I. [Brookhaven National Laboratory (BNL); Xu, Zhijun [ORNL; Tranquada, John M. [Brookhaven National Laboratory (BNL); Gu, G. D. [Brookhaven National Laboratory (BNL); Tsvelik, A. [Brookhaven National Laboratory (BNL); Stone, Matthew B [ORNL

    2011-01-01

    Discoveries of copper and iron-based high-temperature superconductors (HTSC)1-2 have challenged our views of superconductivity and magnetism. Contrary to the pre-existing view that magnetism, which typically involves localized electrons, and superconductivity, which requires freely-propagating itinerant electrons, are mutually exclusive, antiferromagnetic phases were found in all HTSC parent materials3,4. Moreover, highly energetic magnetic fluctuations, discovered in HTSC by inelastic neutron scattering (INS) 5,6, are now widely believed to be vital for the superconductivity 7-10. In two competing scenarios, they either originate from local atomic spins11, or are a property of cooperative spin-density-wave (SDW) behavior of conduction electrons 12,13. Both assume clear partition into localized electrons, giving rise to local spins, and itinerant ones, occupying well-defined, rigid conduction bands. Here, by performing an INS study of spin dynamics in iron telluride, a parent material of one of the iron-based HTSC families, we have discovered that this very assumption fails, and that conduction and localized electrons are fundamentally entangled. In the temperature range relevant for the superconductivity we observe a remarkable redistribution of magnetism between the two groups of electrons. The effective spin per Fe at T 10 K, in the2 antiferromagnetic phase, corresponds to S 1, consistent with the recent analyses that emphasize importance of Hund s intra-atomic exchange15-16. However, it grows to S 3/2 in the disordered phase, a result that profoundly challenges the picture of rigid bands, broadly accepted for HTSC.

  17. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  18. Dendritic tellurides acting as antioxidants

    Institute of Scientific and Technical Information of China (English)

    XU Huaping; WANG Yapei; WANG Zhiqiang; LIU Junqiu; Mario Smet; Wim Dehaen

    2006-01-01

    We have described the synthesis of a series of poly(aryl ether) dendrimers with telluride in the core and oligo(ethylene oxide) chains at the periphery which act as glutathione peroxidase (GPx) mimics. These series of compounds were well characterized by 1H-NMR, 13C-NMR and ESI-MS. Using different ROOH (H2O2, cumene hydroperoxide) for testing the antioxidizing properties of these compounds, we have found that from generation 0 to 2, the activity of the dendritic GPx mimics first decreased and then increased. This can be explained on the basis of a greater steric hindrance, going from generation 0 to 1, and stronger binding interactions going from generation 1 to 2. In other words, there exists a balance between binding interactions and steric hindrance that may optimize the GPx activity.

  19. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  20. Syntheses and Structures of the Quaternary Copper Tellurides K 3Ln4Cu 5Te 10 ( Ln=Sm, Gd, Er), Rb 3Ln4Cu 5Te 10 ( Ln=Nd, Gd), and Cs 3Gd 4Cu 5Te 10

    Science.gov (United States)

    Huang, Fu Qiang; Ibers, James A.

    2001-09-01

    Six quaternary alkali-metal rare-earth copper tellurides K3Ln4Cu5Te10 (Ln=Sm, Gd, Er), Rb3Ln4Cu5Te10 (Ln=Nd, Gd), and Cs3Gd4Cu5Te10 have been synthesized at 1123 K with the use of reactive fluxes of alkali-metal halides ACl (A=K, Rb, Cs). All crystallographic data were collected at 153 K. These compounds crystallize in space group Pnnm of the orthorhombic system with two formula units in cells of dimensions (A3Ln4, a, b, c (Å)): K3Sm4, 16.590(2), 17.877(2), 4.3516(5); K3Gd4, 16.552(4), 17.767(4), 4.3294(9); K3Er4, 16.460(4), 17.550(4), 4.2926(9); Rb3Nd4, 17.356(1), 17.820(1), 4.3811(3); Rb3Gd4, 17.201(2), 17.586(2), 4.3429(6); Cs3Gd4, 17.512(1), 17.764(1), 4.3697(3). The corresponding R1 indices for the refined structures are 0.0346, 0.0315, 0.0212, 0.0268, 0.0289, and 0.0411. The three K3Ln4Cu5Te10 structures belong to one structure type and the Rb3Ln4Cu5Te10 (Ln=Nd, Gd) and Cs3Gd4Cu5Te10 structures belong to another one, the difference being the location of one of the three unique Cu atoms. Both structure types are three-dimensional tunnel structures that contain similar Ln/Te fragments built from LnTe6 octahedra and CuTe4 tetrahedra. The CuTe4 tetrahedra form 1∞[CuTe5-3] and 1∞[CuTe3-2] chains. The alkali-metal atoms, which are in the tunnels, are coordinated to seven or eight Te atoms.

  1. Ellipsometric Analysis of Cadmium Telluride Films’ Structure

    Directory of Open Access Journals (Sweden)

    Anna Evmenova

    2015-01-01

    Full Text Available Ellipsometric analysis of CdTe films grown on Si and CdHgTe substrates at the “hot-wall” epitaxy vacuum setup has been performed. It has been found that ellipsometric data calculation carried out by using a simple one-layer film model leads to radical distortion of optical constants spectra: this fact authenticates the necessity to attract a more complicated model that should include heterogeneity of films. Ellipsometric data calculation within a two-layer film model permitted to conclude that cadmium telluride films have an outer layer that consists of the three-component mixture of CdTe, cavities, and basic matter oxide. Ratio of mixture components depends on the time of deposition, that is, on the film thickness. The inner layer consists of cadmium telluride.

  2. Molecular modelling of some para-substituted aryl methyl telluride and diaryl telluride antioxidants

    Science.gov (United States)

    Frisell, H.; Engman, L.

    2000-08-01

    Quantum mechanical calculations using the 3-21G(d) basis-set were performed on some p-substituted diaryl tellurides and aryl methyl tellurides, and the corresponding cationic radicals of these compounds. Calculated relative radical stabilization energies (RSE:s) were shown to correlate with experimentally determined peak oxidation potentials ( R=0.93) and 125Te-NMR chemical shifts ( R=0.91). A good correlation was also observed between the RSE:s and the Mulliken charge at the tellurium atoms ( R=0.97). The results showed that Hartree-Fock calculations using the 3-21G(d) basis set was sufficiently accurate for estimating the impact of p-substituents in aryl tellurides on experimentally determined properties such as peak oxidation potentials and 125Te-NMR chemical shifts.

  3. The single molecular precursor approach to metal telluride thin films: imino-bis(diisopropylphosphine tellurides) as examples.

    Science.gov (United States)

    Ritch, Jamie S; Chivers, Tristram; Afzaal, Mohammad; O'Brien, Paul

    2007-10-01

    Interest in metal telluride thin films as components in electronic devices has grown recently. This tutorial review describes the use of single-source precursors for the preparation of metal telluride materials by aerosol-assisted chemical vapour deposition (AACVD) and acquaints the reader with the basic techniques of materials characterization. The challenges in the design and synthesis of suitable precursors are discussed, focusing on metal complexes of the recently-developed imino-bis(diisopropylphosphine telluride) ligand. The generation of thin films and nanoplates of CdTe, Sb(2)Te(3) and In(2)Te(3) from these precursors are used as illustrative examples.

  4. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  5. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  6. Optical Constants of Cadmium Telluride Thin Film

    Science.gov (United States)

    Nithyakalyani, P.; Pandiaraman, M.; Pannir, P.; Sanjeeviraja, C.; Soundararajan, N.

    2008-04-01

    Cadmium Telluride (CdTe) is II-VI direct band gap semiconductor compound with potential application in Solar Energy conversion process. CdTe thin film of thickness 220 mn was prepared by thermal evaporation technique at a high vacuum better than 10-5 m.bar on well cleaned glass substrates of dimensions (l cm×3 cm). The transmittance spectrum and the reflectance spectrum of the prepared CdTc thin film was recorded using UV-Vis Spectrophotometer in the wavelength range between 300 nm and 900 nm. These spectral data were analyzed and the optical band and optical constants of CdTe Thin film have been determined by adopting suitable relations. The optical band gap of CdTe thin film is found to be 1.56 eV and this value is also agreeing with the published works of CdTe thin film prepared by various techniques. The absorption coefficient (α) has been higher than 106 cm-1. The Refractive index (n) and the Extinction Coefficient (k) are found to be varying from 3.0 to 4.0 and 0.1 Cm-1 to 0.5 Cm-1 respectively by varying the energy from l.0 eV to 4.0 eV. These results are also compared with the literature.

  7. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    M P Singh; C M Bhandari

    2004-06-01

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the degrading effect of minority carrier conduction. Lead telluride is among the best-known materials for use in the temperature range 400—900 K. This paper presents a detailed theoretical investigation of the role of minority carriers in degrading the thermoelectric properties of lead telluride and outlines the temperature range for optimal performance.

  8. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  9. Field and photo-emission in a short-pulse, high-charge Cesium telluride RF photoinjector

    Science.gov (United States)

    Wisniewski, Eric E.

    A new high-charge RF gun is now operating at the Argonne Wakefield Accelerator (AWA) facility at Argonne National Laboratory (ANL). The 1.5 cell 1.3 GHz gun uses a Cesium telluride photocathode driven with a 248 nm laser to provide short-pulse, high charge electron beams for the new 75 MeV drive beamline. The high-gradient RF gun (peak field on the cathode > 80MV/m) is a key piece of the facility upgrade. The large Cs2Te photocathode (diameter > 30 mm) was fabricated in-house. The photo-injector will be used to generate high-charge, short pulse, single bunches (Q > 100 nC) and bunch-trains (Q > 1000 nC) for wakefield experiments, typically involving dielectric-loaded accelerating structures. Details of the photocathode fabrication process and the results of associated diagnostic measurements are presented, including QE measurements and work function measurements performed with a Kelvin probe. Fieldemitted dark current from the Cs2Te cathode was measured during RF conditioning and characterized. Fowler-Nordheim plots of the data are presented and compared to similar measurements made using a copper cathode in the initial phase of conditioning. The results for cesium telluride exhibited non-linear regions within the Fowler-Nordheim plots similar to previous experimental results for other p-type semiconductors. Results of quantum efficiency (QE) studies are presented with the cathode operating in both single and bunch-train modes. QE uniformity and lifetime studies are presented. During commissioning, the cesium telluride photocathode produced bunch-charge of 100 nC, breaking the previous record. No evidence of bunch-train position-dependence of QE was found when generating four-bunch trains with total charge up to 200 nC.

  10. Cesium-Telluride Photocathode No. 166

    CERN Document Server

    Barbiero, A; Elsener, K; Losito, R; CERN. Geneva. AB Department

    2007-01-01

    In the CERN photoemission laboratory, a Cs2 Te photocathode has been produced in December 2006. The co-evaporation of Cs and Te onto a copper substrate is observed with two quartz oscillator thickness monitors. The calibration of these monitors and the resulting Cs and Te layer thicknesses are described, and the calculated stoichiometric ratio of the sample is given. The quantum efficiency of cathode No. 166, measured using the cathode in a DC gun, has been found to be 6.2%.

  11. Thin films and solar cells of cadmium telluride and cadmium zinc telluride

    Science.gov (United States)

    Ferekides, Christos Savva

    The objectives of this dissertation are to investigate (1) the metalorganic chemical vapor deposition (MOCVD) and properties of cadmium telluride (CdTe) and cadmium zinc telluride (Cd(1-x)Zn(z)Te) films and junctions, and their potential application to solar cells, and (2) the fabrication and characterization of CdTe solar cells by the close spaced sublimation (CSS) technique. CdTe and Cd(1-x)Zn(x)Te films have been deposited by MOCVD on a variety of substrates at 300-400 C. The effect of the deposition parameters and post deposition heat treatments on the electrical, optical, and structural properties have been investigated. Heterojunctions of the configuration CdTe/transparent conducting semiconductor (TCS) and Cd(1-x)Zn(x)Te/TCS have been prepared and characterized. CdTe(MOCVD)/CdS and Cd(1-x)Zn(x)Te(E sub g = 1.65eV)/Cd(1-x)Zn(x)S solar cells with efficiencies of 9.9 percent and 2.4 percent, respectively have been fabricated. The as-deposited CdTe(MOCVD)/CdS junctions exhibited high dark current densities due to deflects at the interface associated with small grain size. Their characteristics of the Cd(1-x)Zn(x)Te junctions degraded with increasing Zn concentration due to the crystalline quality and very small grain size (0.3 microns) in films with high ZnTe contents (greater than 25 percent). No effective post-deposition heat treatment has been developed. CdTe/CdS solar cells have also been fabricated by the close spaced sublimation (CSS). Significant improvements in material and processing have been made, and in collaboration with fellow researchers an AM1.5 conversion efficiency of 13.4 percent has been demonstrated, the highest efficiency ever measured for such devices. The highest conversion efficiency for the CdTe(CSS)/CdS solar cell was achieved by reaching high open-circuit voltages and fill factors, while the short-circuit current densities were moderate. These results indicate that further improvements to increase the short-circuit current densities

  12. The Cadmium Zinc Telluride Imager on AstroSat

    CERN Document Server

    Bhalerao, V; Vibhute, A; Pawar, P; Rao, A R; Hingar, M K; Khanna, Rakesh; Kutty, A P K; Malkar, J P; Patil, M H; Arora, Y K; Sinha, S; Priya, P; Samuel, Essy; Sreekumar, S; Vinod, P; Mithun, N P S; Vadawale, S V; Vagshette, N; Navalgund, K H; Sarma, K S; Pandiyan, R; Seetha, S; Subbarao, K

    2016-01-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZT's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to > 200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17' over a 4.6 deg x 4.6 deg (FWHM) field of view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarisation above ~100 keV, with exciting possibilities for polarisation studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  13. The Cadmium Zinc Telluride Imager on AstroSat

    Indian Academy of Sciences (India)

    V. Bhalerao; D. Bhattacharya; A. Vibhute; P. Pawar; A. R. Rao; M. K. Hingar; Rakesh Khanna; A. P. K. Kutty; J. P. Malkar; M. H. Patil; Y. K. Arora; S. Sinha; P. Priya; Essy Samuel; S. Sreekumar; P. Vinod; N. P. S. Mithun; S. V. Vadawale; N. Vagshette; K. H. Navalgund; K. S. Sarma; R. Pandiyan; S. Seetha; K. Subbarao

    2017-06-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI’s namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17′ over a 4.6∘× 4.6∘ (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ∼100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  14. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation

    Directory of Open Access Journals (Sweden)

    H. Julian Goldsmid

    2014-03-01

    Full Text Available Bismuth telluride and its alloys are widely used as materials for thermoelectric refrigeration. They are also the best materials for use in thermoelectric generators when the temperature of the heat source is moderate. The dimensionless figure of merit, ZT, usually rises with temperature, as long as there is only one type of charge carrier. Eventually, though, minority carrier conduction becomes significant and ZT decreases above a certain temperature. There is also the possibility of chemical decomposition due to the vaporization of tellurium. Here we discuss the likely temperature dependence of the thermoelectric parameters and the means by which the composition may be optimized for applications above room temperature. The results of these theoretical predictions are compared with the observed properties of bismuth telluride-based thermoelements at elevated temperatures. Compositional changes are suggested for materials that are destined for generator modules.

  15. Kelvin Probe Studies of Cesium Telluride Photocathode for AWA Photoinjector

    CERN Document Server

    Wisniewski, Eric; Yusof, Zikri; Spentzouris, Linda; Terry, Jeff; Harkay, Katherine

    2012-01-01

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (~50 nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  16. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. [University of South Florida, Tampa, FL (United States)

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  17. Gamma-ray peak shapes from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Namboodiri, M.N.; Lavietes, A.D.; McQuaid, J.H.

    1996-09-01

    We report the results of a study of the peak shapes in the gamma spectra measured using several 5 x 5 x 5 mm{sup 3} cadmium zinc telluride (CZT) detectors. A simple parameterization involving a Gaussian and an exponential low energy tail describes the peak shapes sell. We present the variation of the parameters with gamma energy. This type of information is very useful in the analysis of complex gamma spectra consisting of many peaks.

  18. Vacancy defects in cadmium mercury telluride investigated with slow positrons

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.; Rice-Evans, P.; Smith, D.L. (Royal Holloway and Bedford New College, London (United Kingdom). Dept. of Physics); Shaw, N. (Royal Signals and Radar Establishment, Malvern (United Kingdom))

    1993-03-01

    The II-VI semiconductor cadmium mercury telluride has been studied with a low-energy positron beam. Differences in the variation of the Doppler line-shape parameter as a function of positron implantation energy have been observed for annealed and as-grown samples. A diffusion model analysis of the results indicates large changes in the defect concentration in the bulk due to the annealing. This change is attributed to the difference in mercury vacancy concentration in the samples. (author).

  19. Solvothermal synthesis and study of nonlinear optical properties of nanocrystalline thallium doped bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India); Parola, Sowmendran; Avinash Chunduri, L.A.; Aditha, Saikiran; Sai Muthukumar, V; Mimani Rattan, Tanu; Kamisetti, Venkataramaniah [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam-515 134 (India)

    2012-05-15

    Nanocrystalline Bismuth telluride and thallium (4 mol %) doped Bismuth telluride were synthesized through hydrothermal method. The as-prepared products were characterized using Powder X-ray Diffraction, High Resolution Transmission Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, UV-Visible spectroscopy and Fourier Transform Infrared Spectroscopy. Powder XRD results revealed the crystalline nature of the obtained phases. HRTEM showed the particle-like morphology of the products. The decrease in the absorption coefficient due to thallium doping was observed in FTIR spectra. The intensity dependent nonlinear optical properties of nanocrystalline bismuth telluride and thallium doped bismuth telluride were studied using the Z-scan technique in open-aperture configuration. Bismuth telluride doped with thallium showed enhanced nonlinear optical response compared to pristine bismuth telluride and hence could be used as a potential candidate for optical power limiting applications. - Graphical Abstract: Nonlinear transmission (Z-scan) curves of nanocrystalline bismuth telluride ({Delta}) and thallium doped bismuth telluride ({open_square}). Thallium doped bismuth telluride showed enhanced nonlinear absorption compared to bismuth telluride. Inset: TEM micrograph of bismuth telluride nanocrystallites. Highlights: Black-Right-Pointing-Pointer Synthesis of Nanocrystalline Bi{sub 2}Te{sub 3} and Thallium doped Bi{sub 2}Te{sub 3} through solvothermal method. Black-Right-Pointing-Pointer Reduced absorption coefficient due to thallium doping found from IR spectroscopy. Black-Right-Pointing-Pointer Open-aperture Z-scan technique for nonlinear optical studies. Black-Right-Pointing-Pointer Two photon absorption based model for theoretical fitting of Z-scan data. Black-Right-Pointing-Pointer Enhanced nonlinear absorption in Thallium doped Bi{sub 2}Te{sub 3} - potential candidate for optical power limiting applications.

  20. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  1. Origin of anomalous anharmonic lattice dynamics of lead telluride

    CERN Document Server

    Shiga, Takuma; Hori, Takuma; Delaire, Olivier; Shiomi, Junichiro

    2015-01-01

    The origin of the anomalous anharmonic lattice dynamics of lead telluride is investigated using molecular dynamics simulations with interatomic force constants (IFCs) up to quartic terms obtained from first principles. The calculations reproduce the peak asymmetry of the radial distribution functions and the double peaks of transverse optical phonon previously observed with neutron diffraction and scattering experiments. They are identified to be due to the extremely large nearest-neighbor cubic IFCs in the [100] direction. The outstanding strength of the nearest-neighbor cubic IFCs relative to the longer-range ones explains the reason why the distortion in the radial distribution function is local.

  2. Kelvin probe studies of cesium telluride photocathode for AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, Eric E., E-mail: ewisniew@anl.gov [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Velazquez, Daniel [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Yusof, Zikri, E-mail: zyusof@hawk.iit.edu [High Energy Physics Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States); Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Spentzouris, Linda; Terry, Jeff [Physics Department, Illinois Institute of Technology, 3300 South Federal Street, Chicago, IL 60616 (United States); Sarkar, Tapash J. [Rice University, 6100 Main, Houston, TX 77005 (United States); Harkay, Katherine [Accelerator Science Division, Argonne National Laboratory, 9700 S. Cass, Lemont, IL 60439 (United States)

    2013-05-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (>1%), is sufficiently robust in a photoinjector, and has a long lifetime. This photocathode is grown in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch (≈50nC) in a long bunch train. Here, we present a study of the work function of cesium telluride photocathode using the Kelvin probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating. -- Highlights: ► The correlation between Quantum Efficiency (QE) and work function. ► How QE and work function evolve together. ► Rejuvenation of the photocathode via heating and the effect on work function. ► The effects on the work function due to exposure to UV light.

  3. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual subcontract report, 20 March 1993--19 March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J.U.; Furtak, T.E.; Williamson, D.L.; Kim, D. [Colorado School of Mines, Golden, CO (United States)

    1994-07-01

    This report describes the principal results of work performed during the second year of a 3-year program at the Colorado School of Mines (CSM). The work on transparent conducting oxides was carried out primarily by CSM students at NREL and is described in three publications listed in Appendix C. The high-quality ZnO produced from the work was incorporated into a copper indium diselenide cell that exhibited a world-record efficiency of 16.4%. Much of the time was devoted to the improvement of cadmium sulfide films deposited by chemical bath deposition methods and annealed with or without a cadmium chloride treatment. Progress was also made in the electrochemical deposition of cadmium telluride. High-quality films yielding CdS/CdTe/Au cells of greater than 10% efficiency are now being produced on a regular basis. We explored the use of zinc telluride back contacts to form an n-i-p cell structure as previously used by Ametek. We began small-angle x-ray scattering (SAXS) studies to characterize crystal structures, residual stresses, and microstructures of both CdTe and CdS. Large SAXS signals were observed in CdS, most likely because of scattering from gain boundaries. The signals observed to date from CdTe are much weaker, indicating a more homogeneous microstructure. We began to use the ADEPT modeling program, developed at Purdue University, to guide our understanding of the CdS/CdTe cell physics and the improvements that will most likely lead to significantly enhanced efficiencies.

  4. Cadmium Telluride-Titanium Dioxide Nanocomposite for Photodegradation of Organic Substance.

    Science.gov (United States)

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2015-12-01

    Cadmium telluride-titanium dioxide nanocomposite was prepared by hydrothermal reaction of sol-gel derived titanium dioxide and organically modified cadmium telluride. The crystallinity of titanium dioxide in the nanocomposite was higher than that of pure titanium dioxide obtained by the reaction under the same temperature and pressure conditions, showing that cadmium telluride induced the crystallization of titanium dioxide. Diffuse reflectance spectrum of the nanocomposite showed the higher absorption efficiency in the UV-visible region due to band-gap excitation of titanium dioxide. The nanocomposite significantly showed the improvement of photocatalytic activity for 4-chlorophenol with UV light.

  5. Synthesis of 1,3-diynes via detelluration of bis(ethynyl)tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, Helio A.; PenaI, Jesus M. [Universidade de Sao Paulo (FCF/USP), SP (Brazil). Fac. de Ciencias Farmaceuticas; Zukerman-Schpector, Julio [Universidade Federal de Sao Carlos (DQ/UFSCar), SP (Brazil). Dept. de Quimica; Tiekink, Edward R.T. [University of Malaya, Kuala Lumpur (Malaysia). Dept. of Chemistry

    2011-07-01

    The synthesis of symmetric conjugated diyne systems with electron-withdrawing or electron-donating substituents via a palladium-catalyzed detelluration of bis(arylethynyl)tellurides and bis(alkylethynyl)tellurides is described. This procedure is effected under atmospheric conditions in DMF using Pd(OAc)2 as a catalyst and AgOAc as an additive in the presence of triethylamine. This route offers efficient access to conjugated diyne systems in short reaction time. X-ray crystallographic structure and solid-state conformation of bis(p-tolylethynyl)telluride show a supramolecular chain aligned along the b axis, sustained by C-H...p interactions. (author)

  6. Suzuki-Miyaura cross-coupling reactions of aryl tellurides with potassium aryltrifluoroborate salts.

    Science.gov (United States)

    Cella, Rodrigo; Cunha, Rodrigo L O R; Reis, Ana E S; Pimenta, Daniel C; Klitzke, Clécio F; Stefani, Hélio A

    2006-01-06

    [reaction: see text] Palladium(0)-catalyzed cross-coupling between potassium aryltrifluoroborate salts and aryl tellurides proceeds readily to afford the desired biaryls in good to excellent yield. The reaction seems to be unaffected by the presence of electron-withdrawing or electron-donating substituents in both the potassium aryltrifluoroborate salts and aryl tellurides partners. Biaryls containing a variety of functional groups can be prepared. A chemoselectivity study was also carried out using aryl tellurides bearing halogen atoms in the same compound. In addition, this new version of the Suzuki-Miyaura cross-coupling reaction was monitored by electrospray ionization mass spectrometry where some reaction intermediates were detected and analyzed.

  7. Copper hypersensitivity.

    Science.gov (United States)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  8. Copper transport.

    Science.gov (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  9. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  10. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  11. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    Science.gov (United States)

    Kulsi, Chiranjit; Kargupta, Kajari; Banerjee, Dipali

    2016-04-01

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S1) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S2). But due to a substantial increase in the electrical conductivity (σ) of the film (S2) over the pellet (S1), the power factor and the figure of merit is higher for sample S2 than the sample S1 at room temperature.

  12. Structural properties of oxygenated amorphous cadmium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    El Azhari, M.Y. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Azizan, M. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Bennouna, A. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Outzourhit, A. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Ameziane, E.L. [Laboratoire de Physique des Solides et des Couches Minces, Marakech (Morocco). Dept. de Physique; Brunel, M. [Laboratoire de Cristallographie, CNRS, Grenoble (France)

    1997-02-28

    Cadmium telluride (CdTe) thin films were prepared by diode radio-frequency sputtering from polycrystalline CdTe targets in an atmosphere of argon, nitrogen and oxygen. The layers prepared in the presence of nitrogen gas were amorphous and their oxygen contents increased with the partial pressure of nitrogen. The evolution of the composition of the layers as a function of the nitrogen partial pressure during deposition was followed by X-ray photoelectron spectroscopy. It is found that the oxygen is bound to both tellurium and cadmium atoms. The surface of the CdTe thin films was also studied as a function of their exposure time to a plasma containing a mixture of nitrogen and oxygen. It is found that the oxygen contents of the surface increases with increased exposure time. Also, this exposure resulted in an increase of the oxide thickness and a net decrease in the surface roughness of the films. (orig.)

  13. Study on thermal annealing of cadmium zinc telluride (CZT) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.E.; Fochuk, P.M.; Camarda, G.S.; Cui, Y.; Hossain, A.; Kim, K.; Horace, J.; McCall, B.; Gul, R.; Xu, L.; Kopach, O.V.; and James, R.B.

    2010-08-01

    Cadmium Zinc Telluride (CZT) has attracted increasing interest with its promising potential as a room-temperature nuclear-radiation-detector material. However, different defects in CZT crystals, especially Te inclusions and dislocations, can degrade the performance of CZT detectors. Post-growth annealing is a good approach potentially to eliminate the deleterious influence of these defects. At Brookhaven National Laboratory (BNL), we built up different facilities for investigating post-growth annealing of CZT. Here, we report our latest experimental results. Cd-vapor annealing reduces the density of Te inclusions, while large temperature gradient promotes the migration of small-size Te inclusions. Simultaneously, the annealing lowers the density of dislocations. However, only-Cd-vapor annealing decreases the resistivity, possibly reflecting the introduction of extra Cd in the lattice. Subsequent Te-vapor annealing is needed to ensure the recovery of the resistivity after removing the Te inclusions.

  14. Growth of lead-tin telluride crystals under high gravity

    Science.gov (United States)

    Regel, L. L.; Turchaninov, A. M.; Shumaev, O. V.; Bandeira, I. N.; An, C. Y.; Rappl, P. H. O.

    1992-04-01

    The influence of high gravity environment on several growth habits of lead-tin telluride crystals began to be investigated. Preliminary experiments with Pb 0.8Sn 0.2te grown by the Bridgman technique had been made at the centrifuge facilities of the Y.A. Gagarin Cosmonauts Center in the USSR, using accelerations of 5 g, 5.2 g and 8 g. The Sn distribution for these crystals was compared with that obtained for growth at normal gravity and the results show the existence of significant compositional inhomogeneities along the axial direction. Convection currents at high gravity seem to help multiple nucleation and subsequent random orientation of growth. Analyses of carrier concentrations as well as morphological characteristics were also made.

  15. Photosensitive cadmium telluride thin-film field-effect transistors.

    Science.gov (United States)

    Yang, Gwangseok; Kim, Donghwan; Kim, Jihyun

    2016-02-22

    We report on the graphene-seeded growth and fabrication of photosensitive Cadmium telluride (CdTe)/graphene hybrid field-effect transistors (FETs) subjected to a post-growth activation process. CdTe thin films were selectively grown on pre-defined graphene, and their morphological, electrical and optoelectronic properties were systemically analyzed before and after the CdCl2 activation process. CdCl2-activated CdTe FETs showed p-type behavior with improved electrical features, including higher electrical conductivity (reduced sheet resistance from 1.09 × 10(9) to 5.55 × 10(7) Ω/sq.), higher mobility (from 0.025 to 0.20 cm2/(V·s)), and faster rise time (from 1.23 to 0.43 s). A post-growth activation process is essential to fabricate high-performance photosensitive CdTe/graphene hybrid devices.

  16. Mercury Cadmium Telluride Photoconductive Long Wave Infrared Linear Array Detectors

    Directory of Open Access Journals (Sweden)

    Risal Singh

    2003-07-01

    Full Text Available Mercury cadmium telluride (Hg1-x, CdxTe (MCT photoconductive long wave infrared linear arrays are still in demand due to several advantages. The linear array technology is well established, easier, economical and is quite relevant to thermal imaging even today. The scan thermal imaging systems based on this technology offer wider field of view coverage and capacity for higher resolution in the scan direction relative to staring systems that use expensive and yet to mature focal plane array detector technology. A critical review on photoconductive n-Hg1-x CdxTe linear array detector technology for the long wave infrared range has been presented. The emphasis lies on detector design and processing technology. The critical issues of diffusion and drift effects, Hi-Lo and heterostructure blocking contacts, surface passivation, and other related aspects have been considered from the detector design angle. The device processing technology aspects are of vital importance

  17. Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders

    Science.gov (United States)

    Beck, Jan; Alvarado, Manuel; Nemir, David; Nowell, Mathew; Murr, Lawrence; Prasad, Narasimha

    2012-06-01

    Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results.

  18. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  19. Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact

    Science.gov (United States)

    Mount, Michael; Duarte, Fernanda; Paudel, Naba; Yan, Yanfa; Wang, Weining

    Cadmium Telluride (CdTe) solar cell is one of the most promising thin film solar cells and its highest efficiency has reached 21%. To keep improving the efficiency of CdTe solar cells, a few issues need to be addressed, one of which is the back contact. The back contact of CdTe solar cells are mostly Cu-base, and the problem with Cu-based back contact is that Cu diffuses into the grain boundary and into the CdS/CdTe junction, causing degradation problem at high temperature and under illumination. To continue improving the efficiency of CdTe/CdS solar cells, a good ohmic back contact with high work function and long term stability is needed. In this work, we report our studies on the potential of conducting polymer being used as the back contact of CdTe/CdS solar cells. Conducting polymers are good candidates because they have high work functions and high conductivities, are easy to process, and cost less, meeting all the requirements of a good ohmic back contact for CdTe. In our studies, we used poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) with different conductivities and compared them with traditional Cu-based back contact. It was observed that the CdTe solar cell performance improves as the conductivity of the PEDOT:PSS increase, and the efficiency (9.1%) is approaching those with traditional Cu/Au back contact (12.5%). Cadmium Telluride Solar Cells with PEDOT:PSS Back Contact.

  20. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    OpenAIRE

    Zhouling Wang; Yu Hu; Wei Li; Guanggen Zeng; Lianghuan Feng; Jingquan Zhang; Lili Wu; Jingjing Gao

    2014-01-01

    Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was high...

  1. Study of copper-free back contacts to thin film cadmium telluride solar cells

    Science.gov (United States)

    Viswanathan, Vijay

    The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.

  2. Thin tungsten telluride layer preparation by thermal annealing

    Science.gov (United States)

    Lu, Wei; Zhang, Yudao; Zhu, Zusong; Lai, Jiawei; Zhao, Chuan; Liu, Xuefeng; Liu, Jing; Sun, Dong

    2016-10-01

    We report a simple method to prepare a thin Tungsten Telluride (WTe2) flake with accurate thickness control, which allows preparing and studying this two dimensional material conveniently. First, the WTe2 flake, which is relatively thick due to its strong interlayer van der Waals forces, is obtained by a conventional mechanical exfoliation method. Then, the exfoliated flake is annealed at 600 °C under a constant Ar protecting flow. Raman and atomic force spectroscopy characterizations demonstrate that thermal annealing can effectively thin down the WTe2 flake and retain its original lattice structure, though its surface smoothness is slightly deteriorated. Additionally, systematical study indicates that the thinning process strongly depends on the initial thickness of the WTe2 flake before annealing: the thinning rate increases from 0.12 nm min-1 to 0.36 nm min-1 as the initial thickness increases from 10 nm to 45 nm, while the roughness of the final product also increases with the increase of its initial thickness. However, the method fails when it is applied to WTe2 flakes thicker than 100 nm, resulting in uneven or burnt surface, which is possibly caused by big cavities formed by a large amount of defects gathered at the top surface.

  3. Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics

    Science.gov (United States)

    Li, Guodong; Aydemir, Umut; Wood, Max; Goddard, William A., III; Zhai, Pengcheng; Zhang, Qingjie; Snyder, G. Jeffrey

    2017-07-01

    Lanthanum telluride (La3Te4) is an n-type high-performance thermoelectric material in the high temperature range, but its mechanical properties remain unknown. Since we want robust mechanical properties for their integration into industrial applications, we report here quantum mechanics (QM) simulations to determine the ideal strength and deformation mechanisms of La3Te4 under pure shear deformations. Among all plausible shear deformation paths, we find that shearing along the (0 0 1)/ slip system has the lowest ideal shear strength of 0.99 GPa, making it the most likely slip system to be activated under pressure. We find that the long range La-Te ionic interactions play the predominant role in resisting shear deformation. To enhance the mechanical strength, we suggest improving the long ionic La-Te bond stiffness to strengthen the ionic La-Te framework in La3Te4 by a defect-engineering strategy, such as partial substitution of La by Ce or Pr having isotypic crystal structures. This work provides the fundamental information to understand the intrinsic mechanics of La3Te4.

  4. High efficiency thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Britt, J.; Chen, G.; Ferekides, C.; Schultz, N.; Wang, C.; Wu, C. Q.

    1992-12-01

    Cadmium sulfide (CdS), grown from an aqueous solution, and zinc oxide (ZnO), cadmium zinc sulfide (Cd1-xZnxS), and zinc selenide (ZnSe), deposited by metalorganic chemical vapor deposition (MOCVD), have been used as the window for thin film cadmium telluride (CdTe) solar cells. Thin film solar cells were prepared by the successive deposition of the window and p-CdTe (by MOCVD and close-spaced sublimation, CSS) on SnO2:F/glass substrates. CdS/CdTe(CSS) solar cells show considerably better characteristics than CdS/CdTe(MOCVD) solar cells because of the better microstructure of CSS CdTe films. Total area conversion efficiency of 14.6%, verified by the National Renewable Energy Laboratory, has been achieved for solar cells of about 1 cm2 area. Solar cell prepared by using ZnO, ZnSe, or Cd1-xZnxS as window have significantly lower photovoltage than CdS/CdTe solar cells.

  5. Brief review of cadmium telluride-based photovoltaic technologies

    Science.gov (United States)

    Başol, Bülent M.; McCandless, Brian

    2014-01-01

    Cadmium telluride (CdTe) is the most commercially successful thin-film photovoltaic technology. Development of CdTe as a solar cell material dates back to the early 1980s when ˜10% efficient devices were demonstrated. Implementation of better quality glass, more transparent conductive oxides, introduction of a high-resistivity transparent film under the CdS junction-partner, higher deposition temperatures, and improved Cl-treatment, doping, and contacting approaches yielded >16% efficient cells in the early 2000s. Around the same time period, use of a photoresist plug monolithic integration process facilitated the demonstration of the first 11% efficient module. The most dramatic advancements in CdTe device efficiencies were made during the 2013 to 2014 time frame when small-area cell conversion efficiency was raised to 20% range and a champion module efficiency of 17% was reported. CdTe technology is attractive in terms of its limited life-cycle greenhouse gas and heavy metal emissions, small carbon footprint, and short energy payback times. Limited Te availability is a challenge for the growth of this technology unless Te utilization rates are greatly enhanced along with device efficiencies.

  6. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-12-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid.

  7. Frustrated square lattice Heisenberg model and magnetism in Iron Telluride

    Science.gov (United States)

    Zaliznyak, Igor; Xu, Zhijun; Gu, Genda; Tranquada, John; Stone, Matthew

    2011-03-01

    We have measured spin excitations in iron telluride Fe1.1Te, the parent material of (1,1) family of iron-based superconductors. It has been recognized that J1-J2-J3 frustrated Heisenberg model on a square lattice might be relevant for the unusual magnetism and, perhaps, the superconductivity in cuprates [1,2]. Recent neutron scattering measurements show that similar frustrated model might also provide reasonable account for magnetic excitations in iron pnictide materials. We find that it also describes general features of spin excitations in FeTe parent compound observed in our recent neutron measurements, as well as in those by other groups. Results imply proximity of magnetic system to the limit of extreme frustration. Selection of spin ground state under such conditions could be driven by weak extrinsic interactions, such as lattice distortion, or strain. Consequently, different nonuniversal types of magnetic order could arise, both commensurate and incommensurate. These are not necessarily intrinsic to an ideal J1-J2-J3 model, but might result from lifting of its near degeneracy by weak extrinsic perturbations.

  8. Inverting polar domains via electrical pulsing in metallic germanium telluride

    Science.gov (United States)

    Nukala, Pavan; Ren, Mingliang; Agarwal, Rahul; Berger, Jacob; Liu, Gerui; Johnson, A. T. Charlie; Agarwal, Ritesh

    2017-04-01

    Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71o domain boundaries into 109o boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage.

  9. Thickness-induced structural phase transformation of layered gallium telluride.

    Science.gov (United States)

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W

    2016-07-28

    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  10. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Kulsi, Chiranjit; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal (India); Kargupta, Kajari [Chemical Engineering Department, Jadavpur University, Kolkata-700032, West Bengal (India)

    2016-04-13

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S{sub 1}) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S{sub 2}). But due to a substantial increase in the electrical conductivity (σ) of the film (S{sub 2}) over the pellet (S{sub 1}), the power factor and the figure of merit is higher for sample S{sub 2} than the sample S{sub 1} at room temperature.

  11. Using atomistic simulations to model cadmium telluride thin film growth

    Science.gov (United States)

    Yu, Miao; Kenny, Steven D.

    2016-03-01

    Cadmium telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to conduct research on how defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. On-the-fly kinetic Monte Carlo technique is used to simulate the CdTe thin film growth on the (1 1 1) surfaces. The results show that on the (1 1 1) surfaces the growth mechanisms on surfaces which are terminated by Cd or Te are quite different, regardless of the deposition energy (0.1∼ 10 eV). On the Te-terminated (1 1 1) surface the deposited clusters first form a single mixed species layer, then the Te atoms in the mixed layer moved up to form a new layer. Whilst on the Cd-terminated (1 1 1) surface the new Cd and Te layers are formed at the same time. Such differences are probably caused by stronger bonding between ad-atoms and surface atoms on the Te layer than on the Cd layer.

  12. Inverting polar domains via electrical pulsing in metallic germanium telluride

    Science.gov (United States)

    Nukala, Pavan; Ren, Mingliang; Agarwal, Rahul; Berger, Jacob; Liu, Gerui; Johnson, A. T. Charlie; Agarwal, Ritesh

    2017-01-01

    Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71o domain boundaries into 109o boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage. PMID:28401949

  13. Precision timing detectors with cadmium-telluride sensor

    Science.gov (United States)

    Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2017-09-01

    Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

  14. Near Infrared Quantum Cutting Luminescence of Er(3+)/Tm(3+) Ion Pairs in a Telluride Glass.

    Science.gov (United States)

    Chen, Xiaobo; Li, Song; Hu, Lili; Wang, Kezhi; Zhao, Guoying; He, Lizhu; Liu, Jinying; Yu, Chunlei; Tao, Jingfu; Lin, Wei; Yang, Guojian; Salamo, Gregory J

    2017-05-16

    The multiphoton near-infrared, quantum cutting luminescence in Er(3+)/Tm(3+) co-doped telluride glass was studied. We found that the near-infrared 1800-nm luminescence intensity of (A) Er(3+)(8%)Tm(3+)(0.5%):telluride glass was approximately 4.4 to 19.5 times larger than that of (B) Tm(3+)(0.5%):telluride glass, and approximately 5.0 times larger than that of (C) Er(3+)(0.5%):telluride glass. Additionally, the infrared excitation spectra of the 1800 nm luminescence, as well as the visible excitation spectra of the 522 nm and 652 nm luminescence, of (A) Er(3+)(8%)Tm(3+)(0.5%):telluride glass are very similar to those of Er(3+) ions in (C) Er(3+)(0.5%):telluride glass, with respect to the shapes of their excitation spectral waveforms and peak wavelengths. Moreover, we found that there is a strong spectral overlap and energy transfer between the infrared luminescence of Er(3+) donor ions and the infrared absorption of Tm(3+) acceptor ions. The efficiency of this energy transfer {(4)I13/2(Er(3+)) → (4)I15/2(Er(3+)), (3)H6(Tm(3+)) → (3)F4(Tm(3+))} between the Er(3+) and Tm(3+) ions is approximately 69.8%. Therefore, we can conclude that the observed behaviour is an interesting multiphoton, near-infrared, quantum cutting luminescence phenomenon that occurs in novel Er(3+)-Tm(3+) ion pairs. These findings are significant for the development of next-generation environmentally friendly germanium solar cells, and near-to-mid infrared (1.8-2.0 μm) lasers pumped by GaN light emitting diodes.

  15. Effect of Indium on the Superconducting Transition Temperature of Tin Telluride

    Science.gov (United States)

    Zhong, Ruidan; Schneeloch, John; Shi, Xiaoya; Li, Qiang; Tranquada, John; Gu, Genda

    2013-03-01

    Indium-doped tin telluride is one of the most appealing topological superconductors. We have grown a series of Sn1-xInxTe crystals with different indium concentrations (0.1 <=x <=1.0). The results show indium doping improves the superconducting transition temperature significantly and is highly related to the indium concentration. The maximum Tc of indium-doped tin telluride polycrystalline is 4.5K for x =0.4. Single crystals of Sn1-xInxTe were also grown by the floating zone method, and their magnetic properties were characterized.

  16. Telluride films and waveguides for IR integrated optics

    Energy Technology Data Exchange (ETDEWEB)

    Barthelemy, Eleonore; Vigreux, Caroline; Pradel, Annie [Institut Charles Gerhardt Montpellier, UMR CNRS 5253, Universite Montpellier II, CC1503, 34095 Montpellier Cedex 5 (France); Parent, Gilles [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, Universite de Nancy-Lorraine, BP239, 54506 Vandoeuvre Les Nancy Cedex (France); Barillot, Marc [Thales Alenia Space, 100 Bld. du midi, BP99, 06156 Cannes La Bocca Cedex (France)

    2011-09-15

    The fabrication of micro-components for far infrared applications such as spatial interferometry requires the realization of single-mode channel waveguides being able to work in the infrared region. One of the key issues in case of channel waveguides is the selection of materials for the core layer. Amorphous telluride films are particularly attractive for their transparency in a large spectral domain in the infrared region. A second key issue is the selection of an appropriate method for film deposition. Indeed, waveguides for far infrared applications are characterized by a thick core layer (10-15 {mu}m, typically). The challenge is thus to select a deposition method which ensures the deposition of thick films of optical quality. In this paper, it is shown that thermal co-evaporation meets this challenge. In particular, it allows varying the composition of the films very easily and thus adjusting their optical properties (refractive index, optical band gap). The example of thermally co-evaporated Te-Ge films is given. Films with typical thickness of 7-15 {mu}m were elaborated. Their morphological, structural, thermal and optical properties were measured. A particular attention was paid to the checking of the film homogeneity. The realized waveguiding structures and their optical testing are then described. In particular, the first transmission measurements at 10.6 {mu}m are presented. In conclusion, the feasibility of micro-components based on the stacking and etching of chalcogenide films is demonstrated, opening the door to applications related to detection in the mid- and thermal infrared spectral domains (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Current transport mechanisms in mercury cadmium telluride diode

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [Institute of Defence Scientists and Technologists, CFEES Complex, Brig. S. K. Majumdar Marg, Delhi 110054 (India); Li, Qing; He, Jiale; Hu, Weida, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); He, Kai; Lin, Chun [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-08-28

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  18. Directional Solidification of Mercury Cadmium Telluride in Microgravity

    Science.gov (United States)

    Lechoczhy, Sandor L.; Gillies, Donald C.; Szofran, Frank R.; Watring, Dale A.

    1998-01-01

    Mercury cadmium telluride (MCT) has been directionally solidified for ten days in the Advanced Automated Directional Solidification Furnace (AADSF) on the second United States Microgravity Payload Mission (USMP-2). A second growth experiment is planned for the USMP-4 mission in November 1997. Results from USMP-2 demonstrated significant changes between microgravity and ground-based experiments, particularly in the compositional homogeneity. Changes were also observed during the microgravity mission which were dependent on the attitude of the space shuttle and the relative magnitudes of axial and transverse residual accelerations with respect to the growth axis of the crystal. Issues of shuttle operation, especially those concerned with safety and navigation, and the science needs of other payloads dictated the need for changes in attitude. One consequence for solidification of MCT in the USMP4 mission is the desire for a shorter growth time to complete the experiment without subjecting the sample to shuttle maneuvers. By using a seeded technique and a pre-processed boule of MCT with an established diffusion layer quenched into the solid, equilibrium steady state growth can be established within 24 hours, rather than the three days needed in USMP-2. The growth of MCT in AADSF during the USMP-4 mission has been planned to take less than 72 hours with 48 hours of actual growth time. A review of the USMP-2 results will be presented, and the rationale for the USMP-4 explained. Pre-mission ground based tests for the USN4P-4 mission will be presented, as will any available preliminary flight results from the mission.

  19. Current transport mechanisms in mercury cadmium telluride diode

    Science.gov (United States)

    Gopal, Vishnu; Li, Qing; He, Jiale; He, Kai; Lin, Chun; Hu, Weida

    2016-08-01

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I-V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I-V characteristics have been modelled over a range of gate voltages from -9 V to -2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I-V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from -3 V to -5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  20. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  1. Photoluminescence study of copper-doped cadmium-telluride and related stability issues for cadmium-sulfide/cadmium-telluride solar-cell devices

    Science.gov (United States)

    Grecu, Dan S.

    Lifetime predictions for CdTe photovoltaic modules represent a complex problem, partly due to the fact that a fundamental understanding of the CdTe material properties and device operation is far from being complete. One of the stability issues actively investigated is the use of Cu for the formation of a back contact. Cu is one of the few good p-dopants for CdTe, which, by forming a p+ layer at the surface of the CdTe, relaxes the requirement for a high work function metal at the back contact. On the other hand, it is known that Cu is a fast diffuser in CdTe and it was suggested that Cu migration within the device could lead to some of the observed degradation effects. in this work, we explore Cu states and migration effects in CdTe and CdS/CdTe devices using photoluminescence (PL) as the main investigative method. We confirm the assignment of several Cu-related PL transitions observed in the CdTe spectrum, namely, a bound exciton transition (X, CUCd) at 1.59eV and a donor-acceptor pair (DAP) (D, CuCd) at 1.45eV. In addition, we observe and characterize new effects related to Cu diffusion in CdTe: (a) the quenching of a DAP, Cd-vacancy related band, at 1.55eV, and (b) the formation of a new strong lattice-coupled transition at 1.555eV. These effects, we suggest, are consistent with Cu atoms occupying substitutional positions on the Cd sublattice and/or forming Frenkel pairs of the type CUi-VCd- with Cd vacancies. Similar spectral characteristics are observed for the low-S-content CdS-CdTe alloy existent in the vicinity of the junction in solar-cell devices. Using Cu-induced changes in the PL spectrum, we propose that Cu diffuses rapidly through an interstitial mechanism, as a positively charged ion, throughout the CdTe and possibly the CdS layer during the back-contact fabrication procedure. Applied electrical fields can reverse the direction of Cu migration leading to device performance degradation. In addition, it was found that Cu-doped CdTe samples exhibit a substantial, thermally restorable "aging" behavior. PL results indicate that Cu acceptor states decay simultaneously with the formation of nonradiative recombination centers.

  2. Low-temperature, template-free synthesis of single-crystal bismuth telluride nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Purkayastha, A. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Lupo, F. [Max Planck Institut fuer Metallforschung, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Kim, S.; Borca-Tasciuc, T. [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Ramanath, G. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Max Planck Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2006-02-17

    Synthesis of single-crystal bismuth telluride nanorods is reported by using a low-temperature, template-free approach. Films of thioglycolic acid functionalized nanorods doped with sulfur exhibit n-type behavior with a high Seebeck coefficient, holding promise for thermoelectric device applications. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the form

  4. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Science.gov (United States)

    Termentzidis, K.; Pokropivny, A.; Xiong, S.-Y.; Chumakov, Y.; Cortona, P.; Volz, S.

    2012-10-01

    Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  5. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  6. CYCLIC VOLTAMMETRY STUDIES OF COPPER (II AND TELLURIUM (IV IONS IN ACIDIC AQUEOUS SOLUTIONS FOR THIN FILM DEPOSITION

    Directory of Open Access Journals (Sweden)

    SARAVANAN NAGALINGAM

    2014-05-01

    Full Text Available Cyclic voltammetry studies of copper (II and tellurium (IV ions in acidic aqueous solutions were carried out to determine the optimum condition for copper telluride thin film deposition. The voltammetry studies include reversible scans at different solution pH. Based on the voltammogram, suitable deposition conditions was determined to be in the range of -0.35 V to -0.45 V versus Ag/AgCl at pH values between 2.0 to 2.2 under non diffusion-limited conditions.

  7. Potential for improved extraction of tellurium as a byproduct of current copper mining processes

    Science.gov (United States)

    Hayes, S. M.; Spaleta, K. J.; Skidmore, A. E.

    2016-12-01

    Tellurium (Te) is classified as a critical element due to its increasing use in high technology applications, low average crustal abundance (3 μg kg-1), and primary source as a byproduct of copper extraction. Although Te can be readily recovered from copper processing, previous studies have estimated a 4 percent extraction efficiency, and few studies have addressed Te behavior during the entire copper extraction process. The goals of the present study are to perform a mass balance examining Te behavior during copper extraction and to connect these observations with mineralogy of Te-bearing phases which are essential first steps in devising ways to optimize Te recovery. Our preliminary mass balance results indicate that less than 3 percent of Te present in copper ore is recovered, with particularly high losses during initial concentration of copper ore minerals by flotation. Tellurium is present in the ore in telluride minerals (e.g., Bi-Te-S phases, altaite, and Ag-S-Se-Te phases identified using electron microprobe) with limited substitution into sulfide minerals (possibly 10 mg kg-1 Te in bulk pyrite and chalcopyrite). This work has also identified Te accumulation in solid-phase intermediate extraction products that could be further processed to recover Te, including smelter dusts (158 mg kg-1) and pressed anode slimes (2.7 percent by mass). In both the smelter dusts and anode slimes, X-ray absorption spectroscopy indicates that about two thirds of the Te is present as reduced tellurides. In anode slimes, electron microscopy shows that the remaining Te is present in an oxidized form in a complex Te-bearing oxidate phase also containing Pb, Cu, Ag, As, Sb, and S. These results clearly indicate that more efficient, increased recovery of Te may be possible, likely at minimal expense from operating copper processing operations, thereby providing more Te for manufacturing of products such as inexpensive high-efficiency solar panels.

  8. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3)

    Science.gov (United States)

    Zurhelle, Alexander F.; Deringer, Volker L.; Stoffel, Ralf P.; Dronskowski, Richard

    2016-03-01

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ▵H f (Bi2Te3)  =  -102 kJ mol-1 at 298 K.

  9. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  10. Epitaxial growth of cadmium telluride films on silicon with a buffer silicon carbide layer

    Science.gov (United States)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.

    2017-02-01

    An epitaxial 1-3-μm-thick cadmium telluride film has been grown on silicon with a buffer silicon carbide layer using the method of open thermal evaporation and condensation in vacuum for the first time. The optimum substrate temperature was 500°C at an evaporator temperature of 580°C, and the growth time was 4 s. In order to provide more qualitative growth of cadmium telluride, a high-quality 100-nm-thick buffer silicon carbide layer was previously synthesized on the silicon surface using the method of topochemical substitution of atoms. The ellipsometric, Raman, X-ray diffraction, and electron-diffraction analyses showed a high structural perfection of the CdTe layer in the absence of a polycrystalline phase.

  11. Synthesis of lead telluride particles by thermal decomposition method for thermoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Leontyev, V.G.; Ivanova, L.D. [Institution of Russian Academy of Sciences A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskii prospect, 49, 119991 Moscow (Russian Federation); Bente, K.; Lazenka, V.V. [Institut fuer Mineralogie, Kristallographie und Materialwissenschaft, Leipzig University, Scharnhorst str. 20, 04275 Leipzig (Germany); Gremenok, V.F. [Scientific-Practical Materials Research Centre of the NAS of Belarus, P. Brovka str. 19, 220072 Minsk (Belarus)

    2012-06-15

    The lead telluride fine crystalline particles were synthesized using thermal decomposition and chemical interaction of lead acetate and tellurium powder mixture in reducing atmosphere (H{sub 2}). For the process control, thermal gravimetry (TG), the different-scanning calorimetry (DSC), X-ray diffraction (XRD), electronic microscopy (SEM) and measurements of the specific surface of particles were used. Additionally the influence of gas phases on the decomposition kinetics, crystal structure, size, specific surface of the particles and the physical properties were analyzed. Seebeck coefficient values increased with decreasing synthesis temperature and increasing specific surfaces of the powder. The presented method of preparing lead telluride polydisperse particles is developed to create nano-structured thermoelectric materials with high figure of merit. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  13. Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The structural and optical properties of amorphous semiconductor mercury cadmium telluride (a-MCT) are obtained by the first principles calculations. The total pair distribution functions and the density of states show that the a-MCT has the semiconductor characteristic. The calculated results of dielectric function show that E2 peak of the imaginary of dielectric function for the crystal mercury cadmium telluride abruptly disappears in the amorphous case due to the long-range disorders. And the imaginary of dielectric function of a-MCT shows a large broad peak, which is in agreement with the available results of other amorphous semiconductors. From the linear extrapolation of the curve ωε 2(ω)1/2 versus ω, it can be obtained that the optical energy gap of amorphous semiconductor Hg0.5Cd0.5Te is 0.51±0.05 eV.

  14. Kelvin probe studies of cesium telluride photocathode for the AWA photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, D.; Wisniewski, E. E.; Yusof, Z.; Harkay, K.; Spentzouris, L.; Terry, J. [Physics Department at Illinois Institute of Technology, Chicago, IL 60616 and High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); High Energy Physics Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Accelerator Science Division at Argonne National Laboratory, Lemont, IL 60439 (United States); Physics Department at Illinois Institute of Technology, Chicago, IL 60616 (United States)

    2012-12-21

    Cesium telluride is an important photocathode as an electron source for particle accelerators. It has a relatively high quantum efficiency (> 1%), is robust in a photoinjector, and long lifetime. This photocathode is fabricated in-house for a new Argonne Wakefield Accelerator (AWA) beamline to produce high charge per bunch ({approx}50 nC) in a long bunch train. We present some results from a study of the work function of cesium telluride photocathode using the Kelvin Probe technique. The study includes an investigation of the correlation between the quantum efficiency and the work function, the effect of photocathode aging, the effect of UV light exposure on the work function, and the evolution of the work function during and after photocathode rejuvenation via heating.

  15. Aqueous-solution route to zinc telluride films for application to CO₂ reduction.

    Science.gov (United States)

    Jang, Ji-Wook; Cho, Seungho; Magesh, Ganesan; Jang, Youn Jeong; Kim, Jae Young; Kim, Won Yong; Seo, Jeong Kon; Kim, Sungjee; Lee, Kun-Hong; Lee, Jae Sung

    2014-06-01

    As a photocathode for CO2 reduction, zinc-blende zinc telluride (ZnTe) was directly formed on a Zn/ZnO nanowire substrate by a simple dissolution-recrystallization mechanism without any surfactant. With the most negative conduction-band edge among p-type semiconductors, this new photocatalyst showed efficient and stable CO formation in photoelectrochemical CO2 reduction at -0.2--0.7 V versus RHE without a sacrificial reagent.

  16. The heat capacity of solid antimony telluride Sb2Te3

    Science.gov (United States)

    Pashinkin, A. S.; Malkova, A. S.; Mikhailova, M. S.

    2008-05-01

    The literature data on the heat capacity of solid antimony telluride over the range 53 895 K were analyzed. The heat capacity of Sb2Te3 was measured over the range 350 700 K on a DSM-2M calorimeter. The equation for the temperature dependence was suggested. The thermodynamic functions of Sb2Te3 were calculated over the range 298.15 700 K.

  17. Use of a Soluble Anode in Electrodeposition of Thick Bismuth Telluride Layers

    Science.gov (United States)

    Maas, M.; Diliberto, S.; de Vaulx, C.; Azzouz, K.; Boulanger, C.

    2014-10-01

    Integration of thermoelectric devices within an automotive heat exchanger could enable conversion of lost heat into electrical energy, contributing to improved total output from the engine. For this purpose, synthesis of thick bismuth telluride (Bi2Te3) films is required. Bismuth telluride has been produced by an electrochemical method in nitric acid with a sacrificial bismuth telluride anode as the source of cations. The binary layer grows on the working electrode while the counter-electrode, a Bi2Te3 disk obtained by high frequency melting, is oxidized to BiIII and TeIV. This process leads to auto-regeneration of the solution without modification of its composition. The thickness of films deposited by use of the Bi2Te3 anode was approximately 10 times that without. To demonstrate the utility of a soluble anode in electrochemical deposition, we report characterization of the composition and morphology of the films obtained under different experimental conditions. Perfectly dense and regular Bi2Te3 films (˜400 μm) with low internal stress and uniform composition across the cross-section were prepared. Their thermoelectric properties were assessed.

  18. Synthesis and Characterization of Antimony Telluride for Thermoelectric and Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Zybała R.

    2017-06-01

    Full Text Available Antimony telluride (Sb2Te3 is an intermetallic compound crystallizing in a hexagonal lattice with R-3m space group. It creates a c lose packed structure of an ABCABC type. As intrinsic semiconductor characterized by excellent electrical properties, Sb2Te3 is widely used as a low-temperature thermoelectric material. At the same time, due to unusual properties (strictly connected with the structure, antimony telluride exhibits nonlinear optical properties, including saturable absorption. Nanostructurization, elemental doping and possibilities of synthesis Sb2Te3 in various forms (polycrystalline, single crystal or thin film are the most promising methods for improving thermoelectric properties of Sb2Te3. Applications of Sb2Te3 in optical devices (e.g. nonlinear modulator, in particular saturable absorbers for ultrafast lasers are also interesting. The antimony telluride in form of bulk polycrystals and layers for thermoelectric and optoelectronic applications respectively were used. For optical applications thin layers of the material were formed and studied. Synthesis and structural characterization of Sb2Te3 were also presented here. The anisotropy (packed structure and its influence on thermoelectric properties have been performed. Furthermore, preparation and characterization of Sb2Te3 thin films for optical uses have been also made.

  19. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Anderson Fuzer [Departamento de Química, CCE, Universidade Federal do Espírito Santo, Campus Goiabeiras, 29075-910 Vitória, Espírito Santo (Brazil); Porto, Arilza de Oliveira, E-mail: arilzaporto@yahoo.com.br [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Magela de Lima, Geraldo [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Paniago, Roberto [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Ardisson, José Domingos [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, Minas Gerais (Brazil)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of cadmium and tin telluride. ► Chemical route to obtain pure crystalline cadmium and tin telluride. ► Effect of the annealing temperature on the crystalline phases. ► Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by {sup 119}Sn Mössbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 °C has proven to be useful to reduce the amount of oxide produced as side product.

  20. Studies in hydride generation atomic fluorescence determination of selenium and tellurium. Part 1 — self interference effect in hydrogen telluride generation and the effect of KI

    Science.gov (United States)

    D'Ulivo, A.; Marcucci, K.; Bramanti, E.; Lampugnani, L.; Zamboni, R.

    2000-08-01

    The effects of tetrahydroborate (0.02-1%) and iodide (0-3 M) were investigated in determination of tellurium and selenium by hydride generation atomic fluorescence spectrometry. The effect of tetrahydroborate and iodide concentration were tested on the shape of calibration curves in concentration range of 1-1000 ng ml -1 analyte. Reductant deficiency resulted in a moderate sensitivity depression for tellurium but dramatically reduced the useful dynamic range down to 50 ng ml -1. On the contrary, selenium calibration curves retained a linear character even under conditions generating strong sensitivity depression. Curvature and rollover of tellurium calibration curves has been addressed to a self-interference effect caused by the formation of finely dispersed elemental tellurium. Iodide ions were found to have beneficial or no negative effects in the hydrogen telluride generation. Addition of iodide on-line to the sample has been proved effective in the control of the self-interference effect and allows to work in mild reaction conditions. Moreover, it allows a good control of Cu(II) interference and eliminates Ni(II) and Co(II) interferences. The method has been successfully applied to determination of tellurium in copper and lead ores certified reference materials.

  1. Copper allergy from dental copper amalgam?

    Science.gov (United States)

    Gerhardsson, Lars; Björkner, Bert; Karlsteen, Magnus; Schütz, Andrejs

    2002-05-06

    A 65-year-old female was investigated due to a gradually increasing greenish colour change of her plastic dental splint, which she used to prevent teeth grinding when sleeping. Furthermore, she had noted a greenish/bluish colour change on the back of her black gloves, which she used to wipe her tears away while walking outdoors. The investigation revealed that the patient had a contact allergy to copper, which is very rare. She had, however, had no occupational exposure to copper. The contact allergy may be caused by long-term exposure of the oral mucosa to copper from copper-rich amalgam fillings, which were frequently used in childhood dentistry up to the 1960s in Sweden. The deposition of a copper-containing coating on the dental splint may be caused by a raised copper intake from drinking water, increasing the copper excretion in saliva, in combination with release of copper due to electrochemical corrosion of dental amalgam. The greenish colour change of the surface of the splint is probably caused by deposition of a mixture of copper compounds, e.g. copper carbonates. Analysis by the X-ray diffraction technique indicates that the dominant component is copper oxide (Cu2O and CuO). The corresponding greenish/bluish discoloration observed on the back of the patient's gloves may be caused by increased copper excretion in tears.

  2. Copper Products Capacity Expansion Stimulate the Copper Consumption

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The dramatic growth of copper consumption in China can directly be seen from the expansion of copper products capacity.According to sta- tistics,in the past 4 years,the improvement on the balance of trade on copper bar,copper,and copper alloy and copper wire & cable has driven the growth of copper consumption a lot.

  3. Formation of Semimetallic Cobalt Telluride Nanotube Film via Anion Exchange Tellurization Strategy in Aqueous Solution for Electrocatalytic Applications.

    Science.gov (United States)

    Patil, Supriya A; Kim, Eun-Kyung; Shrestha, Nabeen K; Chang, Jinho; Lee, Joong Kee; Han, Sung-Hwan

    2015-11-25

    Metal telluride nanostructures have demonstrated several potential applications particularly in harvesting and storing green energy. Metal tellurides are synthesized by tellurization process performed basically at high temperature in reducing gas atmosphere, which makes the process expensive and complicated. The development of a facile and economical process for desirable metal telluride nanostructures without complicated manipulation is still a challenge. In an effort to develop an alternative strategy of tellurization, herein we report a thin film formation of self-standing cobalt telluride nanotubes on various conducting and nonconducting substrates using a simple binder-free synthetic strategy based on anion exchange transformation from a thin film of cobalt hydroxycarbonate nanostructures in aqueous solution at room temperature. The nanostructured films before and after ion exchange transformation reaction are characterized using field emission scanning electron microscope, energy dispersive X-ray analyzer, X-ray photoelectron spectroscopy, thin film X-ray diffraction technique, high resolution transmission electron microscope, and selected area electron diffraction analysis technique. After the ion exchange transformation of nanostructures, the film shows conversion from insulator to highly electrical conductive semimetallic characteristic. When used as a counter electrode in I3(-)/I(-) redox electrolyte based dye-sensitized solar cells, the telluride film exhibits an electrocatalytic reduction activity for I3(-) with a demonstration of solar-light to electrical power conversion efficiency of 8.10%, which is highly competitive to the efficiency of 8.20% exhibited by a benchmarked Pt-film counter electrode. On the other hand, the telluride film electrode also demonstrates electrocatalytic activity for oxygen evolution reaction from oxidation of water.

  4. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  5. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  6. Spatial mapping of cadmium zinc telluride materials properties and electrical response to improve device yield and performance

    CERN Document Server

    Van Scyoc, J M; Yoon, H; Gilbert, T S; Hilton, N R; Lund, J C; James, R B

    1999-01-01

    Cadmium zinc telluride has experienced tremendous growth in its application to various radiation sensing problems over the last five years. However, there are still issues with yield, particularly of the large volume devices needed for imaging and sensitivity-critical applications. Inhomogeneities of various types and on various length scales currently prevent the fabrication of large devices of high spectral performance. This paper discusses the development of a set of characterization tools for quantifying these inhomogeneities, in order to develop improvement strategies to achieve the desired cadmium zinc telluride crystals for detector fabrication.

  7. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  8. Copper and copper proteins in Parkinson's disease.

    Science.gov (United States)

    Montes, Sergio; Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  9. Seeded Physical Vapor Transport of Cadmium-Zinc Telluride Crystals: Growth and Characterization

    Science.gov (United States)

    Palosz, W.; George, M. A.; Collins, E. E.; Chen, K.-T.; Zhang, Y.; Burger, A.

    1997-01-01

    Crystals of Cd(1-x)Zn(x)Te with x = 0.2 and 40 g in weight were grown on monocrystalline cadmium-zinc telluride seeds by closed-ampoule physical vapor transport with or without excess (Cd + Zn) in the vapor phase. Two post-growth cool-down rates were used. The crystals were characterized using low temperature photoluminescence, atomic force microscopy, chemical etching, X-ray diffraction and electrical measurements. No formation of a second, ZnTe-rich phase was observed.

  10. Te-doped cadmium telluride films fabricated by close spaced sublimation

    Science.gov (United States)

    Li, J.; Zheng, Y. F.; Xu, J. B.; Dai, K.

    2003-07-01

    Te-doped cadmium telluride (CdTe) films were deposited on ITO/glass substrates using the close spaced sublimation (CSS) method. The films were characterized by x-ray diffraction (XRD), the x-ray fixed-quantity (XRF) method, scanning electron microscopy (SEM) and the Hall effect. The XRD and SEM results show that appropriate Te doping would be favourable to the growth of CdTe crystallite. The Hall effect measurements indicate that the conductivity of CdTe films could be dramatically improved by Te doping. The work presented here suggests that p-type doping CdTe films can be produced using this deposition method.

  11. Charge Carrier Processes in Photovoltaic Materials and Devices: Lead Sulfide Quantum Dots and Cadmium Telluride

    Science.gov (United States)

    Roland, Paul

    Charge separation, transport, and recombination represent fundamental processes for electrons and holes in semiconductor photovoltaic devices. Here, two distinct materials systems, based on lead sulfide quantum dots and on polycrystalline cadmium telluride, are investigated to advance the understanding of their fundamental nature for insights into the material science necessary to improve the technologies. Lead sulfide quantum dots QDs have been of growing interest in photovoltaics, having recently produced devices exceeding 10% conversion efficiency. Carrier transport via hopping through the quantum dot thin films is not only a function of inter-QD distance, but of the QD size and dielectric media of the surrounding materials. By conducting temperature dependent transmission, photoluminescence, and time resolved photoluminescence measurements, we gain insight into photoluminescence quenching and size-dependent carrier transport through QD ensembles. Turning to commercially relevant cadmium telluride (CdTe), we explore the high concentrations of self-compensating defects (donors and acceptors) in polycrystalline thin films via photoluminescence from recombination at defect sites. Low temperature (25 K) photoluminescence measurements of CdTe reveal numerous radiative transitions due to exciton, trap assisted, and donor-acceptor pair recombination events linked with various defect states. Here we explore the difference between films deposited via close space sublimation (CSS) and radio frequency magnetron sputtering, both as-grown and following a cadmium chloride treatment. The as-grown CSS films exhibited a strong donor-acceptor pair transition associated with deep defect states. Constructing photoluminescence spectra as a function of time from time-resolved photoluminescence data, we report on the temporal evolution of this donor-acceptor transition. Having gained insight into the cadmium telluride film quality from low temperature photoluminescence measurements

  12. Iron telluride nanorods-based system for the detection of total mercury in blood

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Prathik; Lin, Zong-Hong [Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China); Liang, Chi-Te [Department of Physics, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China); Chang, Huan-Tsung, E-mail: changht@ntu.edu.tw [Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 106, Taiwan (China)

    2012-12-15

    Graphical abstract: Elucidation of the detection of mercury using iron telluride nanorods (FeTe NRs), and dose-response curve for varying concentrations of Hg{sup 2+}. Highlights: Black-Right-Pointing-Pointer Iron telluride nanorods (FeTe NRs) are prepared from tellurium nanowires (Te NWs). Black-Right-Pointing-Pointer Mercury telluride nanorods (HgTe NRs) form by cation exchange reaction of FeTe NRs. Black-Right-Pointing-Pointer Fe{sup 2+} ions released catalyze the oxidation of ABTS by H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer Mercury is effectively determined in blood with an LOD of 1.31 nM at S/N ratio 3. - Abstract: We have developed a simple, colorimetric iron telluride (FeTe) nanorods (NRs) based system for the detection of mercury, mainly based on the cation exchange reaction between FeTe NRs and Hg{sup 2+}. FeTe NRs (length, 105 {+-} 21 nm) react with Hg{sup 2+} to form HgTe NRs (length, 112 {+-} 26 nm) and consequently release Fe{sup 2+} ions that catalyzes the oxidation between a peroxidase substrate 2,2 Prime -azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) and H{sub 2}O{sub 2}. The concentration of Fe{sup 2+} and thereby Hg{sup 2+} can be determined by measuring the absorbance of the ABTS oxidized product at 418 nm. This approach allows the detection of Hg{sup 2+}, with a limit of detection of 1.31 nM at a signal-to-noise ratio 3 and a linear range 5-100 nM (R{sup 2} = 0.99). The low-cost, simple, sensitive, and reproducible assay has been validated for the detection of Hg{sup 2+} in a blood sample (SRM 955c), with the result being in good agreement with that provided by National Institute of Standards and Technology.

  13. Terahertz-field-induced second harmonic generation through Pockels effect in zinc telluride crystal.

    Science.gov (United States)

    Cornet, Marion; Degert, Jérôme; Abraham, Emmanuel; Freysz, Eric

    2014-10-15

    We report on the second harmonic generation (SHG) of a near-infrared pulse in a zinc telluride crystal through the Pockels effect induced by an intense terahertz pulse. The temporal and angular behaviors of the SHG have been measured and agree well with theoretical predictions. This phenomenon, so far overlooked, makes it possible to generate second harmonic through cascading of two second-order nonlinear phenomena in the near-infrared and terahertz ranges. We also show how this cascading process can be used to sample terahertz pulses.

  14. Structure and Surface Analysis of SHI Irradiated Thin Films of Cadmium Telluride

    OpenAIRE

    Neelam Pahwa; A.D. Yadav; S.K. Dubey; A.P. Patel; Arvind Singh; D.C. Kothari

    2012-01-01

    Cadmium Telluride (CdTe) thin films grown by thermal evaporation on quartz substrates were irradiated with swift (100 MeV) Ni + 4 ions at various fluences in the range 1011 – 1013 cm – 2. The modification in structure and surface morphology has been analyzed as a function of fluence using XRD and AFM techniques. The XRD showed a reduction in peak intensity and grain size with increasing fluence. The AFM micrographs of irradiated thin films show small spherical nanostructures. In addition to d...

  15. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium telluride alloys

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1981-01-01

    Differential thermal analysis data were obtained on mercury cadmium telluride alloys in order to establish the liquidus temperatures for the various alloy compositions. Preliminary theoretical analyses was performed to establish the ternary phase equilibrium parameters for the metal rich region of the phase diagram. Liquid-solid equilibrium parameters were determined for the pseudobinary alloy system. Phase equilibrium was calculated and Hg(l-x) Cd(x) Te alloys were directionally solidified from pseudobinary melts. Electrical resistivity and Hall coefficient measurements were obtained.

  16. Cadmium Telluride Semiconductor Detector for Improved Spatial and Energy Resolution Radioisotopic Imaging.

    Science.gov (United States)

    Abbaspour, Samira; Mahmoudian, Babak; Islamian, Jalil Pirayesh

    2017-01-01

    The detector in single-photon emission computed tomography has played a key role in the quality of the images. Over the past few decades, developments in semiconductor detector technology provided an appropriate substitution for scintillation detectors in terms of high sensitivity, better energy resolution, and also high spatial resolution. One of the considered detectors is cadmium telluride (CdTe). The purpose of this paper is to review the CdTe semiconductor detector used in preclinical studies, small organ and small animal imaging, also research in nuclear medicine and other medical imaging modalities by a complete inspect on the material characteristics, irradiation principles, applications, and epitaxial growth method.

  17. High resolution X-ray diffraction imaging of lead tin telluride

    Science.gov (United States)

    Steiner, Bruce; Dobbyn, Ronald C.; Black, David; Burdette, Harold; Kuriyama, Masao; Spal, Richard; Simchick, Richard; Fripp, Archibald

    1991-01-01

    High resolution X-ray diffraction images of two directly comparable crystals of lead tin telluride, one Bridgman-grown on Space Shuttle STS 61A and the other terrestrially Bridgman-grown under similar conditions from identical material, present different subgrain structure. In the terrestrial, sample 1 the appearance of an elaborate array of subgrains is closely associated with the intrusion of regions that are out of diffraction in all of the various images. The formation of this elaborate subgrain structure is inhibited by growth in microgravity.

  18. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    OpenAIRE

    Gu, Y.; Matteson, J. L.; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV thr...

  19. Operational Studies of Cadmium Zinc Telluride Microstrip Detectors using SVX ASIC Electronics

    Science.gov (United States)

    Krizmanic, John; Barbier, L. M.; Barthelmy, S.; Bartlett, L.; Birsa, F.; Gehrels, N.; Hanchak, C.; Kurczynski, P.; Odom, J.; Parsons, A.; Palmer, D.; Sheppard, D.; Snodgrass, S.; Stahle, C. M.; Teegarden, B.; Tueller, J.

    1997-04-01

    We have been investigating the operational properties of cadmium zinc telluride (CZT) microstrip detectors by using SVX ASIC readout electronics. This research is in conjunction with the development of a CZT-based, next generation gamma-ray telescope for use in the gamma-ray Burst ArcSecond Imaging and Spectroscopy (BASIS) experiment. CZT microstrip detectors with 128 channels and 100 micron strip pitch have been fabricated and were interfaced to SVX electronics at Goddard Space Flight Center. Experimental results involving position sensing, spectroscopy, and CZT operational properties will be presented.

  20. Electrowetting on dielectric-actuation of microdroplets of aqueous bismuth telluride nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Dash, Raj K [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Borca-Tasciuc, T [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Purkayastha, A [Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Ramanath, G [Materials Science and Engineering Department, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States)

    2007-11-28

    This work reports the actuation of droplets of nanofluid by the electrowetting on dielectric (EWOD) effect. The nanofluid is comprised of an aqueous (deionized water) suspension of 3 nm diameter bismuth telluride nanoparticles capped with thioglycolic acid (TGA). Microdroplets of nanofluid are cast on Si(001) wafers coated with 100 nm thick layers of silicon dioxide and AF Teflon. Applying an electric field between the substrate and an electrode immersed in the nanofluid droplet results in a strong change in the contact angle from 110{sup 0} to 84{sup 0} for a 0-60 V voltage range. The droplets of nanofluid exhibit enhanced stability and absence of contact angle saturation in the tested voltage range when compared with droplets of aqueous solutions of 0.01 M Na{sub 2}SO{sub 4} or thioglycolic acid in deionized water. We propose that ion generation due to capping-agent desorption is a key factor determining the EWOD effect in the bismuth telluride nanofluid along with the nanoparticle contribution to charge transport. Our results open up new vistas for using nanofluids for microscale actuator device applications.

  1. Facile production of thermoelectric bismuth telluride thick films in the presence of polyvinyl alcohol.

    Science.gov (United States)

    Lei, C; Burton, M R; Nandhakumar, I S

    2016-06-01

    Bismuth telluride is currently the best performing thermoelectric material for room temperature operations in commercial thermoelectric devices. We report the reproducible and facile production of 600 micron thick bismuth telluride (Bi2Te3) layers by low cost and room temperature pulsed and potentiostatic electrodeposition from a solution containing bismuth and tellurium dioxide in 2 M nitric acid onto nickel in the presence of polyvinyl alcohol (PVA). This was added to the electrolyte to promote thick layer formation and its effect on the structure, morphology and composition of the electrodeposits was investigated by SEM and EDX. Well adherent, uniform, compact and stoichiometric n-type Bi2Te3 films with a high Seebeck coefficient of up to -200 μV K(-1) and a high electrical conductivity of up to 400 S cm(-1) resulting in a power factor of 1.6 × 10(-3) W m(-1) K(-2) at film growth rates of 100 μm h(-1) for potentiostatic electrodeposition were obtained. The films also exhibited a well defined hexagonal structure as determined by XRD.

  2. Synthesis of ultra-long cadmium telluride nanotubes via combinational chemical transformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kee-Ryung; Cho, Hong-Baek; Choa, Yong-Ho, E-mail: choa15@hanyang.ac.kr

    2017-03-01

    Synthesis of high-throughput cadmium telluride (CdTe) nanotubes with an ultra-long aspect ratio is presented via a combination process concept combined with electrospinning, electrodeposition, and cationic exchange reaction. Ultra-long sacrificial silver (Ag) nanofibers were synthesized by electrospinning involving two-step calcination, and were then electrodeposited to create silver telluride nanotubes. These nanotubes underwent cationic exchange reaction in cadmium nitrate tetrahydrate solution with the aid of a ligand, tributylphosphine (TBP). Analysis showed that ultra-long pure zinc blende CdTe nanotubes were obtained with controlled dimension and uniform morphology. The thermodynamic driving force induced by the coordination of methanol solvent and TBP attributed to overcome the kinetic barrier between Ag{sub 2}Te and CdTe nanotubes, facilitating the synthesis of CdTe nanotubes. This synthetic process involving a topotactic reaction route paves a way for high-throughput extended synthesis of new chalcogenide hollow nanotubes for application in photodetectors and solar cells. - Highlights: • High throughput synthetic route of hollow CdTe nanotubes with ultra-long aspect ratio. • Chemical combination of electrospinning, electrodeposition & cation exchange reaction. • Pure zinc blende CdTe by controlled dimension & structural variation of Ag nanofibers. • Potential for the high throughput synthesis of new exotic chalcogenide nanotubes.

  3. A density-functional study on the electronic and vibrational properties of layered antimony telluride

    Science.gov (United States)

    Stoffel, Ralf P.; Deringer, Volker L.; Simon, Ronnie E.; Hermann, Raphaël P.; Dronskowski, Richard

    2015-03-01

    We present a comprehensive survey of electronic and lattice-dynamical properties of crystalline antimony telluride (Sb2Te3). In a first step, the electronic structure and chemical bonding have been investigated, followed by calculations of the atomic force constants, phonon dispersion relationships and densities of states. Then, (macroscopic) physical properties of Sb2Te3 have been computed, namely, the atomic thermal displacement parameters, the Grüneisen parameter γ, the volume expansion of the lattice, and finally the bulk modulus B. We compare theoretical results from three popular and economic density-functional theory (DFT) approaches: the local density approximation (LDA), the generalized gradient approximation (GGA), and a posteriori dispersion corrections to the latter. Despite its simplicity, the LDA shows excellent performance for all properties investigated—including the Grüneisen parameter, which only the LDA is able to recover with confidence. In the absence of computationally more demanding hybrid DFT methods, the LDA seems to be a good choice for further lattice dynamical studies of Sb2Te3 and related layered telluride materials.

  4. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  5. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  6. [Copper pathology (author's transl)].

    Science.gov (United States)

    Mallet, B; Romette, J; Di Costanzo, J D

    1982-01-30

    Copper is an essential dietary component, being the coenzyme of many enzymes with oxidase activity, e.g. ceruloplasmin, superoxide dismutase, monoamine oxidase, etc. The metabolism of copper is complex and imperfectly known. Active transport of copper through the intestinal epithelial cells involves metallothionein, a protein rich in sulfhydryl groups which also binds the copper in excess and probably prevents absorption in toxic amounts. In hepatocytes a metallothionein facilitates absorption by a similar mechanism and regulates copper distribution in the liver: incorporation in an apoceruloplasmin, storage and synthesis of copper-dependent enzymes. Metallothioneins and ceruloplasmin are essential to adequate copper homeostasis. Apart from genetic disorders, diseases involving copper usually result from hypercupraemia of varied origin. Wilson's disease and Menkes' disease, although clinically and pathogenetically different, are both marked by low ceruloplasmin and copper serum levels. The excessive liver retention of copper in Wilson's disease might be due to increased avidity of hepatic metallothioneins for copper and decreased biliary excretion through lysosomal dysfunction. Menkes' disease might be due to low avidity of intestinal and hepatic metallothioneins for copper. The basic biochemical defect responsible for these two hereditary conditions has not yet been fully elucidated.

  7. [Copper IUDs (author's transl)].

    Science.gov (United States)

    Thiery, M

    1983-10-01

    Following initial development of the Grafenberg ring in the 1920's, IUDs fell into disuse until the late 1950s, when plastic devices inserted using new technology began to gain worldwide acceptance. Further research indicated that copper had a significant antifertility effect which increased with increasing surface area, and several copper IUDs were developed and adapted, including the Copper T 200, the Copper T 220C, and the Copper T 380 A, probably the most effective yet. The Gravigard and Multiload are 2 other copper devices developed according to somewhat different principles. Copper devices are widely used not so much because of their great effectiveness as because of their suitability for nulliparous patients and their ease of insertion, which minimizes risk of uterine perforation. Records of 2584 women using Copper IUDs for 7190 women-years and 956 women using devices without copper for 6059 women-years suggest that the copper devices were associated with greater effectiveness and fewer removals for complications. Research suggests that the advantages of copper IUDs become more significant with increased duration of use. Contraindications to copper devices include allergy to copper and hepatolenticular degeneration. No carcinogenic or teratogenic effect of copper devices has been found, but further studies are needed to rule out other undesirable effects. Significant modifications of copper devices in recent years have been developed to increase their effectiveness, prolong their duration of usefulness, facilitate insertion and permit insertion during abortion or delivery. The upper limit of the surface area of copper associated with increased effectiveness appears to be between 200-300 sq mm, and at some point increases in copper exposure may provoke expulsion of the IUD. The duration of fertility inhibition of copper IUDs is usually estimated at 2-3 years, but recent research indicates that it may be 6-8 years, and some devices may retain copper surface

  8. Controlled cadmium telluride thin films for solar cell applications (emerging materials systems for solar cell applications). Quarterly progress report No. 1, April 9-July 8, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Vedam, K.

    1979-08-01

    Preparation and properties of cadmium telluride thin films for use in solar cells are studied. CdTe sputter deposition, crystal doping, and carrier typing are discussed. Future experimental plans are described. (WHK)

  9. Nanoscale arrays of antimony telluride single crystals by selective chemical vapor deposition

    Science.gov (United States)

    Huang, Ruomeng; Benjamin, Sophie L.; Gurnani, Chitra; Wang, Yudong; Hector, Andrew L.; Levason, William; Reid, Gillian; De Groot, C. H. (Kees)

    2016-01-01

    Arrays of individual single nanocrystals of Sb2Te3 have been formed using selective chemical vapor deposition (CVD) from a single source precursor. Crystals are self-assembled reproducibly in confined spaces of 100 nm diameter with pitch down to 500 nm. The distribution of crystallite sizes across the arrays is very narrow (standard deviation of 15%) and is affected by both the hole diameter and the array pitch. The preferred growth of the crystals in the orientation along the diagonal of the square holes strongly indicates that the diffusion of adatoms results in a near thermodynamic equilibrium growth mechanism of the nuclei. A clear relationship between electrical resistivity and selectivity is established across a range of metal selenides and tellurides, showing that conductive materials result in more selective growth and suggesting that electron donation is of critical importance for selective deposition. PMID:27283116

  10. New Insights into High-Performance Thermoelectric Tellurides from ^125Te NMR Spectroscopy

    Science.gov (United States)

    Levin, E. M.; Hu, Y.-Y.; Cook, B. A.; Harringa, J. L.; Schmidt-Rohr, K.; Kanatzidis, M. G.

    2009-11-01

    Thermoelectric materials are widely used for direct transformation of heat to electricity (Seebeck effect) and for solid state refrigeration (Peltier effect). Efforts to increase the efficiency of high-performance thermoelectrics, which include narrow-gap, doped tellurium-based semiconductors, require detailed knowledge of their local structure and bonding. We have used ^125Te nuclear magnetic resonance (NMR) as a local probe for obtaining better understanding of these high-performance thermoelectric tellurides, specifically PbTe doped with Ag and Sb (LAST materials) and GeTe doped with Ag and Sb (TAGS materials). The resonance frequencies and line shapes of the NMR spectra, as well as spin-lattice relaxation times and chemical shift anisotropies are highly sensitive to the composition and synthesis conditions of LAST and TAGS materials, enabling studies of the local composition, distortion, bonding, and carrier concentration. Several intriguing phenomena including electronic inhomogeneity and local distortions of the crystal lattice have been observed by NMR.

  11. Role of Van der Waals interactions in determining the structure of liquid tellurides

    Science.gov (United States)

    Micoulaut, Matthieu; Flores-Ruiz, Hugo; Coulet, Vanessa; Piarristeguy, Andrea; Johnson, Mark; Cuello, Gabriel; Pradel, Annie

    The simulation of tellurides using standard density functional (DFT) theory based molecular dynamics usually leads to an overestimation of the bond distances and a noticeable mismatch between theory and experiments when e.g. structure functions are being directly compared. Here, the structural properties of several compositions of Ge-Te and Ge-Sb-Te liquids are studied from a combination of neutron diffraction and DFT-based molecular dynamics. Importantly, we find an excellent agreement in the reproduction of the structure in real and reciprocal spaces, resulting from the incorporation of dispersion forces in the simulation. We then investigate structural properties including structure factors, pair distribution functions, angular distributions, coordination numbers, neighbor distributions, and compare our results with experimental findings. References:Physical Review B 92, 134205 (2015)Physical Review B 89, 174205 (2014)Physical Review B 90, 094207 (2014) Support from Agence Nationale de la Recherche (ANR) (Grant No. ANR-11-BS08-0012) is gratefully acknowledged.

  12. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yunqing; Ye Chao; Zhu Zhenghui [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Hu Yuzhu [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China) and Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China)], E-mail: njhuyuzu@126.com

    2008-03-03

    The pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as proton probes for tiopronin determination. Based on the fluorescence quenching of CdTe QDs caused by tiopronin, a simple, rapid and specific quantitative method was proposed. Under the optimal conditions, the calibration plot of ln(F{sub 0}/F) with concentration of tiopronin was linear in the range of 0.15-20 {mu}g mL{sup -1}(0.92-122.5 {mu}mol L{sup -1}) with correlation coefficient of 0.998. The limit of detection (LOD) (3{sigma}/k) was 0.15 {mu}g mL{sup -1}(0.92 {mu}mol mL{sup -1}). The content of tiopronin in pharmaceutical tablet was determined by the proposed method and the result agreed with that obtained from the oxidation-reduction titration method and the claimed value.

  13. Structure and Surface Analysis of SHI Irradiated Thin Films of Cadmium Telluride

    Directory of Open Access Journals (Sweden)

    Neelam Pahwa

    2012-10-01

    Full Text Available Cadmium Telluride (CdTe thin films grown by thermal evaporation on quartz substrates were irradiated with swift (100 MeV Ni + 4 ions at various fluences in the range 1011 – 1013 cm – 2. The modification in structure and surface morphology has been analyzed as a function of fluence using XRD and AFM techniques. The XRD showed a reduction in peak intensity and grain size with increasing fluence. The AFM micrographs of irradiated thin films show small spherical nanostructures. In addition to direct imaging, AFM profile data enable to derive the Power Spectral Density (PSD of the surface roughness. In the present work PSD spectra computed from AFM data were used for studying the surface morphology of films. The PSD curves were fitted with an appropriate analytic function and characteristic parameters were deduced and discussed in order to compare film morphology with varying fluence levels.

  14. Experiments and Monte Carlo modeling of a higher resolution Cadmium Zinc Telluride detector for safeguards applications

    Science.gov (United States)

    Borella, Alessandro

    2016-09-01

    The Belgian Nuclear Research Centre is engaged in R&D activity in the field of Non Destructive Analysis on nuclear materials, with focus on spent fuel characterization. A 500 mm3 Cadmium Zinc Telluride (CZT) with enhanced resolution was recently purchased. With a full width at half maximum of 1.3% at 662 keV, the detector is very promising in view of its use for applications such as determination of uranium enrichment and plutonium isotopic composition, as well as measurement on spent fuel. In this paper, I report about the work done with such a detector in terms of its characterization. The detector energy calibration, peak shape and efficiency were determined from experimental data. The data included measurements with calibrated sources, both in a bare and in a shielded environment. In addition, Monte Carlo calculations with the MCNPX code were carried out and benchmarked with experiments.

  15. Preparation of bismuth telluride thin film by electrochemical atomic layer epitaxy(ECALE)

    Institute of Scientific and Technical Information of China (English)

    ZHU Wen; YANG Junyou; GAO Xianhui; HOU Jie; BAO Siqian; FAN Xian

    2007-01-01

    Thin-layer electrochemical studies of the underpotential deposition(UPD)of Bi and Te on cold rolled silver substrate have been performed.The voltammetric analysis of underpotential shift demonstrates that the initial Te UPD on Bi-covered Ag and Bi UPD on Te-covered Ag fitted UPD dynamics mechanism.A thin film of bismuth telluride was formed by alternately depositing Te and Bi via an automated flow deposition system.X-ray diffraction indicated the deposits of Bi2Te3.Energy Dispersive X-ray Detector quantitative analysis gave a 2:3 stoichiornetric ratio of Bi to Te,which was consistent with X-ray Diffraction results.Electron probe microanalysis of the deposits showed a network structure that results from the surface defects of the cold rolled Ag substrate and the lattice mismatch between substrate and deposit.

  16. Chemical pressure and hidden one-dimensional behavior in rare earth tri-telluride

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Giamarchi, T.; /Geneva U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.

    2009-12-14

    We report on the first optical measurements of the rare-earth tri-telluride charge-density-wave systems. Our data, collected over an extremely broad spectral range, allow us to observe both the Drude component and the single-particle peak, ascribed to the contributions due to the free charge carriers and to the charge-density-wave gap excitation, respectively. The data analysis displays a diminishing impact of the charge-density-wave condensate on the electronic properties with decreasing lattice constant across the rare-earth series. We propose a possible mechanism describing this behavior and we suggest the presence of a one-dimensional character in these two-dimensional compounds. We also envisage that interactions and umklapp processes might play a relevant role in the formation of the charge-density-wave state in these compounds.

  17. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo

    2016-01-01

    Bismuth antimony telluride (BixSb2-xTe3, 0.4 Sb1.6Te3 samples were prepared under various conditions (temperature, holding time, and ramp......-rate) using spark plasma sintering (SPS). The effects of SPS conditions on the anisotropic thermoelectric properties and microstructure evolutions were systematically investigated. The change of sintering temperature showed stronger influence than other sintering parameters to the resulting thermoelectric...... properties. Samples sintered over the temperature range between 653 K and 773 K showed significant differences in the degrees of orientations. The change was mainly caused by grain growth and re-orientation. Despite of the anisotropy, zT value as high as 1.2 to 1.3 was achieved over the temperature range...

  18. Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Zhaoyun [National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province (China); Xu, Ling, E-mail: xuling@nju.edu.cn [National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Zhang, Renqi; Xue, Zhaoguo; Wang, Hongyu; Xu, Jun; Yu, Yao; Su, Weining; Ma, Zhongyuan; Chen, Kunji [National Laboratory of Solid State Microstructures and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China)

    2015-04-15

    Highlights: • We introduce an intermediate cadmium telluride quantum dots (CdTe QDs) layer between the organic with silicon nanowires of hybrid solar cells as a down-shifting layer. • The hybrid solar cell got the maximum short circuit current density of 33.5 mA/cm{sup 2}, getting an increase of 15.1% comparing to solar cell without CdTe QDs. • The PCE of the hybrid solar cells with CdTe QDs layer increases 28.8%. - Abstract: We fabricated silicon nanowire/cadmium telluride quantum dots (CdTe QDs)/organic hybrid solar cells and investigated their structure and electrical properties. Transmission electron microscope revealed that CdTe QDs were uniformly distributed on the surface of the silicon nanowires, which made PEDOT:PSS easily filled the space between SiNWs. The current density–voltage (J–V) characteristics of hybrid solar cells were investigated both in dark and under illumination. The result shows that the performance of the hybrid solar cells with CdTe QDs layer has an obvious improvement. The optimal short-circuit current density (J{sub sc}) of solar cells with CdTe QDs layer can reach 33.5 mA/cm{sup 2}. Compared with the solar cells without CdTe QDs, J{sub sc} has an increase of 15.1%. Power conversion efficiency of solar cells also increases by 28.8%. The enhanced performance of the hybrid solar cells with CdTe QDs layers are ascribed to down-shifting effect of CdTe QDs and the modification of the silicon nanowires surface with CdTe QDs. The result of our experiments suggests that hybrid solar cells with CdTe QDs modified are promising candidates for solar cell application.

  19. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.

  20. Geology of the florencia gold – telluride deposit (camagüey, cuba) and some metallurgical considerations

    OpenAIRE

    López K Jesús M.; Moreira Jesús; Gandarillas José

    2011-01-01

    This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after b...

  1. Canine models of copper toxicosis for understanding mammalian copper metabolism

    OpenAIRE

    Fieten, Hille; Leegwater, Peter A. J.; Watson, Adrian L.; Rothuizen, Jan

    2011-01-01

    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeo...

  2. Hair copper in intrauterine copper device users.

    Science.gov (United States)

    Thiery, M; Heyndrickx, A; Uyttersprot, C

    1984-03-01

    The antifertility effect of copper-bearing IUDs is based on continuous release of copper, which is a result of the reaction between the metal and the uterine secretions. Released cupric ions collect in the endometrium and in the uterine fluid but significant accumulation has not been found in the bloodstream or elsewhere. Following Laker's suggestion that hair be used for monitoring essential trace elements, e.g., copper, we checked the copper content of the hair of women wearing copper-bearing IUDs. Samples of untreated pubic hair removed by clipping before diagnostic curettage were obtained from 10 young (24-34 years old), white caucasian females who until then had been wearing an MLCu250 IUD for more than 1 year. Pubes from 10 comparable (sex, age, race) subjects who had never used a Cu-containing device served as controls. The unwashed material was submitted to the toxicology laboratory, where the copper content was assessed by flameless atomic absorption, a technique whose lower limit of measurement lies at a concentration of 0.05 mcg Cu/ml fluid (50 ppb). Hair samples were washed to remove extraneous traces of metal according to the prescriptions of the International Atomic Energy Agency, weighed, and mineralized, after which a small volume (10 mcl) of the diluted fluid was fed into the graphite furnace. Each sample (75-150 mg) was analyzed 4 times, both before and after washing. Since the cleaning procedure reduces the weight of the sample (mainly by the removal of fat, dust, etc.) this explains why the percentage copper content of washed hair is higher than that of unwashed hair belonging to the same subject. The results indicate that there was no significant difference (Mann-Whitney U test) between the mean copper levels of both unwashed and washed pubes from women who were using or had never used an MLCu250 IUD. We therefore conclude that the use of this copper-containing device is not associated with significant accumulation of copper in (pubic) hair.

  3. China Copper Processing Industry Focus

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>1. Market Consumption The ’China Factor’ and Copper Price Fluctuation We all know China is an enormous consumer of copper,but the exact levels of consumption and where the copper has gone remains a mystery.

  4. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications.

    Science.gov (United States)

    Rubilar, Olga; Rai, Mahendra; Tortella, Gonzalo; Diez, Maria Cristina; Seabra, Amedea B; Durán, Nelson

    2013-09-01

    Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.

  5. High-Rate Vapor Deposition of Cadmium Telluride Films for Solar Cells

    Science.gov (United States)

    Khan, Nasim Akhter

    1992-01-01

    High rate vapor deposition is presently used for large scale low cost deposition of thin films for packaging and other applications. The feasibility of using this technology for low cost deposition of solar cells was explored. After an exhaustive literature survey, the cadmium telluride (CdTe) solar cell was found to be most suitable candidate for high rate vapor deposition. The high rate vapor deposition was investigated by sublimation with a short distance between sublimation source and the substrate (Close-Spaced Sublimation, CSS). Cadmium telluride (CdTe) solar cells were fabricated by depositing CdTe films at different rates on cadmium sulphide (CdS) films deposited by CSS or by evaporation. The CdTe films deposited at higher deposition rates were observed to have open circuit voltages (V_{ rm oc}) comparable to those deposited at lower rates. The effect of CdS film which acts as window layer for the cells were also investigated on the V_ {rm oc} of the solar cells. The results achieved proved the fact that CdS window layer is necessary to achieve higher V_{ rm oc} from solar cells. The substrate temperature during deposition of films by close space sublimation plays a vital role in the performance of solar cell. The increase in the substrate temperature during deposition of CdTe films increased the V_{rm oc} of solar cells. The solar cells with indium tin oxide (ITO) as top conductor, i.e. ITO/CdS/CdTe configuration were fabricated at rates up to 34 mum/minute and with tin oxide (TO) i.e. TO/CdTe configuration fabricated at rates up to 79 mum/minute have shown similar V_{rm oc} compared to those produced at lower rates. Higher CdTe film deposition rates are possible with larger capacity experimental setup. The method of contacting CdTe, used in this study, results in higher series resistance. An improved method of contacting CdTe needs to be developed.

  6. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  7. Multi-stage uplift of the Rocky Mountains: new age constraints on the Telluride Conglomerate and regional compilation of apatite fission track ages

    Science.gov (United States)

    Donahue, M. S.; Karlstrom, K. E.; Gonzales, D. A.; Pecha, M.; McKeon, R. E.

    2011-12-01

    The Telluride Conglomerate, exposed on the western flanks of Oligocene caldera complexes of the San Juan Mountains of Colorado, has historically been considered an Eocene alluvial deposit overlying the "Rocky Mountain erosion surface" and pre-dating Oligocene volcanism. Measured sections show that the Telluride preserves an unroofing sequence with basal units dominated by Paleozoic sedimentary clasts transitioning into upper units dominated by locally derived Proterozoic basement mixed with previously unrecognized andesitic Oligocene volcanics. Paleoflow directions and thicknesses of the preserved unit indicate the Telluride Conglomerate was deposited by a large, high-energy WNW- flowing braided river system. Detrital zircon analysis indicates minimum ages for individual grains within the Telluride Conglomerate of 28.0 to 31.5 Ma. This, plus the entrained volcanic clasts, redefines the unit as being of Oligocene age and indicates that conglomeratic deposition overlapped with regional San Juan volcanism and just predated major caldera eruptions at 28.4 Ma (San Juan and Uncompahgre) and 27.6 Ma (Silverton). We interpret the deposition of the Telluride Conglomerate to be the depositional response to regional uplift and erosion related to early stages of San Juan magmatism. These units have undergone significant post-depositional tectonism: the Telluride Conglomerate is found at ~9,000ft elevation near Telluride, CO, but is at ~13,000' at its westernmost exposure at Mt. Wilson. We attribute this differential uplift to be associated with faulting, pluton emplacement, and additional mantle driven uplift associated with the emplacement and cooling of the Wilson Stock in the last 20-22 Ma as documented by Miocene cooling seen in apatite helium (AHe) ages. This cooling fits into our regional compilation of published apatite fission track (AFT) and AHe data showing temporally and spatially partitioned Cenozoic cooling indicative of multistage uplift of the Rocky Mountain

  8. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  9. Coping with copper

    DEFF Research Database (Denmark)

    Nunes, Ines; Jacquiod, Samuel; Brejnrod, Asker

    2016-01-01

    Copper has been intensively used in industry and agriculture since mid-18(th) century and is currently accumulating in soils. We investigated the diversity of potential active bacteria by 16S rRNA gene transcript amplicon sequencing in a temperate grassland soil subjected to century-long exposure......, suggesting a potential promising role as bioindicators of copper contamination in soils....

  10. Optical properties of cadmium telluride in zinc-blende and wurzite structure

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, S.M. [Department of Physics, Materials and Electroceramics Laboratory, Ferdowsi University of Mashhad (Iran, Islamic Republic of)], E-mail: sma_hosseini@yahoo.com

    2008-05-01

    The optical properties of cadmium telluride including the linear optical dielectric function, the refractive index, the extinction coefficient, the reflectivity and the plasmon energy have been calculated by density functional theory (DFT). The full potential linearized augmented plane wave (FL-LAPW) method was used with the generalized gradient approximation (GGA) including the orbital dependence of the self-energy, i.e. the orbital-dependent potentials of Coulomb and exchange interactions (GGA+U). Using only LDA or GGA methods underestimates the electronic parameters (band gap and band dispersion). Applying orbital-dependent potentials splits the Te-5s state and shifts the binding energies of the Cd-4d levels towards the experimentally determined position. The calculated results indicated that although Te-5s and Cd-4d overlap, Cd-4d plays an important role in absorption and reflectivity constants. The optical constants of CdTe in hexagonal structure exhibit anisotropy (birefringence) in two directions (in basal-plan and c-axis) but the difference is very small in the static limit.

  11. Optical properties of cadmium telluride in zinc-blende and wurzite structure

    Science.gov (United States)

    Hosseini, S. M.

    2008-05-01

    The optical properties of cadmium telluride including the linear optical dielectric function, the refractive index, the extinction coefficient, the reflectivity and the plasmon energy have been calculated by density functional theory (DFT). The full potential linearized augmented plane wave (FL-LAPW) method was used with the generalized gradient approximation (GGA) including the orbital dependence of the self-energy, i.e. the orbital-dependent potentials of Coulomb and exchange interactions (GGA+ U). Using only LDA or GGA methods underestimates the electronic parameters (band gap and band dispersion). Applying orbital-dependent potentials splits the Te-5s state and shifts the binding energies of the Cd-4d levels towards the experimentally determined position. The calculated results indicated that although Te-5s and Cd-4d overlap, Cd-4d plays an important role in absorption and reflectivity constants. The optical constants of CdTe in hexagonal structure exhibit anisotropy (birefringence) in two directions (in basal-plan and c-axis) but the difference is very small in the static limit.

  12. Properties of Te-rich cadmium telluride thin films fabricated by closed space sublimation technique

    Science.gov (United States)

    Abbas Shah, N.; Ali, A.; Ali, Z.; Maqsood, A.; Aqili, A. K. S.

    2005-11-01

    Cadmium telluride (CdTe) thin films were prepared by the closed space sublimation (CSS) technique, using CdTe powder as evaporant onto substrates of water-white glass. In the next step, the same procedure was adopted by using tellurium as evaporant and already deposited CdTe film as substrate. Such compositions were then annealed at 300 °C for 30 min to obtain Te-enriched films. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), spectrophotometry, DC electrical resistivity, dark conductivity and activation energy analysis as a function of temperature by two-probe method. The electron microprobe analyzer (EMPA) results showed an increase of Te content composition in the samples as the mass of the Te-deposition increased in CdTe. The Hall measurements indicated the increase in mobility and carrier concentrations of CdTe films by addition of tellurium. A significant change in the shape and size of the CdTe grains were observed.

  13. Novel Cadmium Zinc Telluride Devices for Myocardial Perfusion Imaging-Technological Aspects and Clinical Applications.

    Science.gov (United States)

    Ben-Haim, Simona; Kennedy, John; Keidar, Zohar

    2016-07-01

    Myocardial perfusion imaging plays an important role in the assessment of patients with known or suspected coronary artery disease and is well established for diagnosis and for prognostic evaluation in these patients. The dedicated cardiac SPECT cameras with solid-state cadmium zinc telluride (CZT) detectors were first introduced a decade ago. A large body of evidence is building up, showing the superiority of the new technology compared with conventional gamma cameras. Not only the CZT detectors, but also new collimator geometries, the ability to perform focused imaging optimized for the heart and advances in data processing algorithms all contribute to the significantly improved sensitivity up to 8-10 times, as well as improved energy resolution and improved reconstructed spatial resolution compared with conventional technology. In this article, we provide an overview of the physical characteristics of the CZT cameras, as well as a review of the literature published so far, including validation studies in comparison with conventional myocardial perfusion imaging and with invasive coronary angiography, significant reduction in radiation dose, and new imaging protocols enabled by the new technology.

  14. The behaviour of Gd in lead and tin tellurides and its effect on their physical properties

    Science.gov (United States)

    Zayachuk, D. M.; Matulenis, E. L.; Mikityuk, V. I.

    1992-06-01

    The behaviour of gadolinium in Pb 1- xSn xTe (0 ⩽ x ⩽ 0.3) introduced during Bridgman growth and its effect on the composition profiles and free carrier concentration is investigated. The Gd, Pb, Sn and Te contents in crystals were determined by electron microprobe analysis, and the free carrier concentration was obtained by Hall measurements. The results indicate that Gd behaves like an impurity with a segregation coefficient larger than unity, which strongly depends on the Gd concentration N( L) Gd in the melt and is given by KS = 1 + Aexp( - BN( L) Gd), where A takes values of 8 or 9 and B a value of about 10 -20 cm 3. The effect of such a strong KS( N( L) Gd) dependence is that all the Gd impurity concentrates in the first-to-freeze section, leaving the rest of the ingot free from the impurity. Thus, by introducing Gd during melt growth of lead-tin telluride crystals, one can obtain high quality crystals of the solid solutions studied.

  15. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  16. Investigations of Cadmium Manganese Telluride Crystals for Room-Temperature Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.; Bolotnikov, A.; Camarda, G.; Cui, Y.; Hossain, A.; Kim, K.; Carcelen, V.; Gul, R.; James, R.

    2009-10-06

    Cadmium manganese telluride (CMT) has high potential as a material for room-temperature nuclear-radiation detectors. We investigated indium-doped CMT crystals taken from the stable growth region of the ingot, and compared its characteristics with that from the last-to-freeze region. We employed different techniques, including synchrotron white-beam X-ray topography (SWBXT), current-voltage (I-V) measurements, and low-temperature photoluminescence spectra, and we also assessed their responses as detectors to irradiation exposure. The crystal from the stable growth region proved superior to that from the last-to-freeze region; it is a single-grain crystal, free of twins, and displayed a resistivity higher by two orders-of-magnitude. The segregation of indium dopant in the ingot might be responsible for its better resistivity. Furthermore, we recorded a good response in the detector fabricated from the crystal taken from the stable growth region; its ({mu}{tau}){sub e} value was 2.6 x 10{sup -3} cm{sup 2}/V, which is acceptable for thin detectors, including for applications in medicine.

  17. Spectroscopic ellipsometry as a process control tool for manufacturing cadmium telluride thin film photovoltaic devices

    Science.gov (United States)

    Smith, Westcott P.

    In recent decades, there has been concern regarding the sustainability of fossil fuels. One of the more promising alternatives is Cadmium Telluride (CdTe) thin-film photovoltaic (PV) devices. Improved quality measurement techniques may aid in improving this existing technology. Spectroscopic ellipsometry (SE) is a common, non-destructive technique for measuring thin films in the silicon wafer industry. SE results have also been tied to properties believed to play a role in CdTe PV device efficiency. A study assessing the potential of SE for use as a quality measurement tool had not been previously reported. Samples of CdTe devices produced by both laboratory and industrial scale processes were measured by SE and Scanning Electron Microscopy (SEM). Mathematical models of the optical characteristics of the devices were developed and fit to SE data from multiple angles and locations on each sample. Basic statistical analysis was performed on results from the automated fits to provide an initial evaluation of SE as a quantitative quality measurement process. In all cases studied, automated SE models produced average stack thickness values within 10% of the values produced by SEM, and standard deviations for the top bulk layer thickness were less than 1% of the average values.

  18. Resonant Enhancement of Charge Density Wave Diffraction in the Rare-Earth Tri-Tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.S.; Sorini, A.P.; Yi, M.; Chuang, Y.D.; Moritz, B.; Yang, W.L.; Chu, J.-H.; Kuo, H.H.; Gonzalez, A.G.Cruz; Fisher, I.R.; Hussain, Z.; Devereau, T.P.; Shen, Z.X.

    2012-05-15

    We performed resonant soft X-ray diffraction on known charge density wave (CDW) compounds, rare earth tri-tellurides. Near the M{sub 5} (3d - 4f) absorption edge of rare earth ions, an intense diffraction peak is detected at a wavevector identical to that of CDW state hosted on Te{sub 2} planes, indicating a CDW-induced modulation on the rare earth ions. Surprisingly, the temperature dependence of the diffraction peak intensity demonstrates an exponential increase at low temperatures, vastly different than that of the CDW order parameter. Assuming 4f multiplet splitting due to the CDW states, we present a model to calculate X-ray absorption spectrum and resonant profile of the diffraction peak, agreeing well with experimental observations. Our results demonstrate a situation where the temperature dependence of resonant X-ray diffraction peak intensity is not directly related to the intrinsic behavior of the order parameter associated with the electronic order, but is dominated by the thermal occupancy of the valence states.

  19. Near-infrared photodetectors based on mercury indium telluride single crystals

    Science.gov (United States)

    Zhang, Xiaolei; Sun, Weiguo; Lu, Zhengxiong; Zhang, Liang; Zhao, Lan; Ding, JiaXin; Yan, Guoqing

    2008-03-01

    Attempt to form the Schottky barrier on mercury indium telluride (MIT) surface by deposition transparent conducting electrode (TCE) and avoid the negative results by non-rectifier contacts nature, we have investigated the oxidation of clean MIT surfaces to form an insulating layer to overcome this disadvantage by metal-insulator-semiconductor (MIS) photodetectors designing. Oxide film is grown on the MIT surface by plasma enhance chemical vapor deposition (PECVD). Previously cleaned MIT wafers were dipped and boiled in solution, which consists of mixture of bromine and an organic solvent in ratio of 1:50. By the way of using these films as intermediate slightly conducting insulator, a fast-response MIT based surface-barrier photodetectors have been developed. Pt films were used as TCE frontal electrode by vacuum magnetron sputtering (VMS). The current-voltage characteristic is described quantitatively based on the energy diagram and the found parameters of the Schottky barrier. Details of oxidation process, Schottky diodes, as well as the photodetectors fabrication and characterizations are discussed.

  20. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-09-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations.

  1. Directional Solidification of Mercury Cadmium Telluride During the Second United States Microgravity Payload Mission (USMP-2)

    Science.gov (United States)

    Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Watring, D. A.; Alexander, H. A.; Jerman, G. A.

    1996-01-01

    As a solid solution semiconductor having, a large separation between liquidus and solidus, mercury cadmium telluride (MCT) presents a formidable challenge to crystal growers desiring an alloy of high compositional uniformity. To avoid constitutional supercooling during Bridgman crystal growth it is necessary to solidify slowly in a high temperature gradient region. The necessary translation rate of less than 1 mm/hr results in a situation where fluid flow induced by gravity on earth is a significant factor in material transport. The Advanced Automated Directional Solidification Furnace (AADSF) is equipped to provide the stable thermal environment with a high gradient, and the required slow translation rate needed. Ground based experiments in AADSF show clearly the dominance of flow driven transport. The first flight of AADSF in low gravity on USMP-2 provided an opportunity to test theories of fluid flow in MCT and showed several solidification regimes which are very different from those observed on earth. Residual acceleration vectors in the orbiter during the mission were measured by the Orbital Acceleration Research Experiment (OARE), and correlated well with observed compositional differences in the samples.

  2. Macro-loading Effects in Inductively Coupled Plasma Etched Mercury Cadmium Telluride

    Science.gov (United States)

    Apte, Palash; Rybnicek, Kimon; Stoltz, Andrew

    2016-09-01

    This paper reports the effect of macro-loading on mercury cadmium telluride (Hg1- x Cd x Te) and Photoresist (PR) etched in an inductively coupled plasma (ICP). A significant macro-loading effect is observed, which affects the etch rates of both PR and Hg1- x Cd x Te. It is observed that the exposed silicon area has a significant effect on the PR etch rate, but not on the Hg1- x Cd x Te etch rate. It is also observed that the exposed Hg1- x Cd x Te area has a significant effect on the etch rate of the PR, but the exposed PR area does not seem to have an effect on the Hg1- x Cd x Te etch rate. Further, the exposed Hg1- x Cd x Te area is shown to affect the etch rate of the Hg1- x Cd x Te, but there does not seem to be a similar effect for the exposed PR area on the etch rate of the PR. Since the macro-loading affects the selectivity significantly, this effect can cause significant problems in the etching of deep trenches. A few techniques to reduce the effect of macro-loading on the etch rates of the PR and Hg1- x Cd x Te are listed, herein.

  3. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  4. Band gap engineering of zinc selenide thin films through alloying with cadmium telluride.

    Science.gov (United States)

    Al-Kuhaili, M F; Kayani, A; Durrani, S M A; Bakhtiari, I A; Haider, M B

    2013-06-12

    This work investigates band gap engineering of zinc selenide (ZnSe) thin films. This was achieved by mixing ZnSe with cadmium telluride (CdTe). The mass ratio (x) of CdTe in the starting material was varied in the range x = 0-0.333. The films were prepared using thermal evaporation. The chemical composition of the films was investigated through energy dispersive spectroscopy and Rutherford backscattering spectrometry. Structural analysis was carried out using X-ray diffraction and atomic force microscopy. Normal incidence transmittance and reflectance were measured over the wavelength range 300-1300 nm. The absorption coefficients and band gaps were determined from these spectrophotometric measurements. The band gap monotonically decreased from 2.58 eV (for x = 0) to 1.75 eV (for x = 0.333). Photocurrent measurements indicated that the maximum current density was obtained for films with x = 0.286. A figure of merit, based on crystallinity, band gap, and photocurrent, was defined. The optimum characteristics were obtained for the films with x = 0.231, for which the band gap was 2.14 eV.

  5. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.

    Science.gov (United States)

    Kovalenko, Maksym V; Spokoyny, Boris; Lee, Jong-Soo; Scheele, Marcus; Weber, Andrew; Perera, Susanthri; Landry, Daniel; Talapin, Dmitri V

    2010-05-19

    The energy efficiency of heat engines could be improved by the partial recovery of waste heat using thermoelectric (TE) generators. We show the possibility of designing nanostructured TE materials using colloidal inorganic nanocrystals functionalized with molecular antimony telluride complexes belonging to the family of Zintl ions. The unique advantage of using Zintl ions as the nanocrystal surface ligands is the possibility to convert them into crystalline metal chalcogenides, thus linking individual nanobuilding blocks into a macroscopic assembly of electronically coupled functional modules. This approach allows preserving the benefits of nanostructuring and quantum confinement while enabling facile charge transport through the interparticle boundaries. A developed methodology was applied for solution-based fabrication of nanostructured n- and p-type Bi(2-x)Sb(x)Te(3) alloys with tunable composition and PbTe-Sb(2)Te(3) nanocomposites with controlled grain size. Characterization of the TE properties of these materials showed that their Seebeck coefficients, electrical and thermal conductivities, and ZT values compared favorably with those of previously reported solution-processed TE materials.

  6. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  7. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z. [Institute of Semiconductor Physics, 03028 Kiev (Ukraine); Dvoretskii, S. [Institute of Semiconductor Physics of SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  8. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae.

    Science.gov (United States)

    Fan, Junpeng; Shao, Ming; Lai, Lu; Liu, Yi; Xie, Zhixiong

    2016-01-01

    Cadmium telluride quantum dots (CdTe QDs) are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe) QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L) were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L) to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator), combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells.

  9. Simulation study comparing high-purity germanium and cadmium zinc telluride detectors for breast imaging

    Science.gov (United States)

    Campbell, D. L.; Peterson, T. E.

    2014-11-01

    We conducted simulations to compare the potential imaging performance for breast cancer detection with High-Purity Germanium (HPGe) and Cadmium Zinc Telluride (CZT) systems with 1% and 3.8% energy resolution at 140 keV, respectively. Using the Monte Carlo N-Particle (MCNP5) simulation package, we modelled both 5 mm-thick CZT and 10 mm-thick HPGe detectors with the same parallel-hole collimator for the imaging of a breast/torso phantom. Simulated energy spectra were generated, and planar images were created for various energy windows around the 140 keV photopeak. Relative sensitivity and scatter and the torso fractions were calculated along with tumour contrast and signal-to-noise ratios (SNR). Simulations showed that utilizing a ±1.25% energy window with an HPGe system better suppressed torso background and small-angle scattered photons than a comparable CZT system using a -5%/+10% energy window. Both systems provided statistically similar contrast and SNR, with HPGe providing higher relative sensitivity. Lowering the counts of HPGe images to match CZT count density still yielded equivalent contrast between HPGe and CZT. Thus, an HPGe system may provide equivalent breast imaging capability at lower injected radioactivity levels when acquiring for equal imaging time.

  10. Energy-discriminating X-ray computed tomography system utilizing a cadmium telluride detector

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Eiichi, E-mail: eiichisato@hotmail.co [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Abderyim, Purkhet [Department of Physics, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba 028-3694 (Japan); Enomoto, Toshiyuki; Watanabe, Manabu [The 3rd Department of Surgery, Toho University School of Medicine, 2-17-6 Ohashi, Meguro-ku, Tokyo 153-8515 (Japan); Hitomi, Keitaro [Department of Electronics and Intelligent Systems, Tohoku Institute of Technology, 35-1 Yagiyama Kasumi-cho, Taihaku-ku, Sendai 982-8577 (Japan); Takahasi, Kiyomi; Sato, Shigehiro [Department of Microbiology, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505 (Japan); Ogawae, Akira [Department of Neurosurgery, School of Medicine, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505 (Japan); Onagawa, Jun [Department of Electronics, Faculty of Engineering, Tohoku Gakuin University, 1-13-1 Chuo, Tagajo 985-8537 (Japan)

    2010-07-21

    An energy-discriminating K-edge X-ray computed tomography (CT) system is useful for increasing contrast resolution of a target region utilizing contrast media and for reducing the absorbed dose for patients. The CT system is of the first-generation type with a cadmium telluride (CdTe) detector, and a projection curve is obtained by translation scanning using the CdTe detector in conjunction with an x-stage. An object is rotated by the rotation step angle using a turntable between the translation scans. Thus, CT is carried out by repeating the translation scanning and the rotation of an object. Penetrating X-ray photons from the object are detected by the CdTe detector, and event signals of X-ray photons are produced using charge-sensitive and shaping amplifiers. Both the photon energy and the energy width are selected by use of a multi-channel analyzer, and the number of photons is counted by a counter card. Demonstration of enhanced iodine K-edge X-ray CT was carried out by selecting photons with energies just beyond the iodine K-edge energy of 33.2 keV.

  11. Friction Consolidation Processing of n-Type Bismuth-Telluride Thermoelectric Material

    Energy Technology Data Exchange (ETDEWEB)

    Whalen, Scott A.; Jana, Saumyadeep; Catalini, David; Overman, Nicole R.; Sharp, Jeffrey

    2016-04-13

    This work focused on the development of a new mechanical processing route, called Friction Consolidation Processing (FCP), for densifying bismuth-telluride (Bi2Te3) powders into bulk form. FCP is a solid-state process wherein a rotating tool was used to generate severe plastic deformation within the Bi2Te3 powder, resulting in a recrystallizing flow of material. Upon cooling, the non-equilibrium microstructure within the flow was locked into the material. FCP was demonstrated on -325 mesh (~44 micron) n-type Bi2Te3 feedstock powder to form pucks with 92% theoretical density having a diameter of 25.4mm and thickness of 4.2mm. FCP was shown to achieve highly textured bulk materials, with sub-micron grain size, directly from coarse particle feedstock powders in a single process. An average grain size of 0.8 microns was determined for one sample and a multiple of uniform distribution (MUD) value of 15.49 was calculated for the (0001) pole figure from another sample. These results indicate that FCP can yield highly refined grains and textural alignment of the (0001) basal planes in Bi2Te3. ZT=0.37 at 336K was achieved for undoped stoichiometric Bi2Te3, which is near the “text book” value of ZT=0.5.

  12. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Y; Levin, C S [Department of Electrical Engineering, Stanford University, Stanford, CA 94305 (United States); Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M, E-mail: cslevin@stanford.edu [Center for Astrophysics and Space Sciences, University of California, San Diego, La Jolla, CA 92093 (United States)

    2011-03-21

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm x 40 mm x 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 {+-} 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 {+-} 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 {+-} 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes-as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  13. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y.; Matteson, J. L.; Skelton, R. T.; Deal, A. C.; Stephan, E. A.; Duttweiler, F.; Gasaway, T. M.; Levin, C. S.

    2011-03-01

    This paper investigates the performance of 1 mm resolution cadmium zinc telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06 ± 0.39% at 511 keV throughout most of the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44 ± 0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78 ± 0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes—as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system.

  14. Study of a high-resolution, 3-D positioning cadmium zinc telluride detector for PET

    Science.gov (United States)

    Gu, Y; Matteson, J L; Skelton, R T; Deal, A C; Stephan, E A; Duttweiler, F; Gasaway, T M; Levin, C S

    2011-01-01

    This paper investigates the performance of 1 mm resolution Cadmium Zinc Telluride (CZT) detectors for positron emission tomography (PET) capable of positioning the 3-D coordinates of individual 511 keV photon interactions. The detectors comprise 40 mm × 40 mm × 5 mm monolithic CZT crystals that employ a novel cross-strip readout with interspersed steering electrodes to obtain high spatial and energy resolution. The study found a single anode FWHM energy resolution of 3.06±0.39% at 511 keV throughout most the detector volume. Improved resolution is expected with properly shielded front-end electronics. Measurements made using a collimated beam established the efficacy of the steering electrodes in facilitating enhanced charge collection across anodes, as well as a spatial resolution of 0.44±0.07 mm in the direction orthogonal to the electrode planes. Finally, measurements based on coincidence electronic collimation yielded a point spread function with 0.78±0.10 mm FWHM, demonstrating 1 mm spatial resolution capability transverse to the anodes – as expected from the 1 mm anode pitch. These findings indicate that the CZT-based detector concept has excellent performance and shows great promise for a high-resolution PET system. PMID:21335649

  15. Atomic ordering in cubic bismuth telluride alloy phases at high pressure

    Science.gov (United States)

    Loa, I.; Bos, J.-W. G.; Downie, R. A.; Syassen, K.

    2016-06-01

    Pressure-induced transitions from ordered intermetallic phases to substitutional alloys to semi-ordered phases were studied in a series of bismuth tellurides. By using angle-dispersive x-ray diffraction, the compounds Bi4Te5 , BiTe, and Bi2Te were observed to form alloys with the disordered body-centered cubic (bcc) crystal structure upon compression to above 14-19 GPa at room temperature. The BiTe and Bi2Te alloys and the previously discovered high-pressure alloys of Bi2Te3 and Bi4Te3 were all found to show atomic ordering after gentle annealing at very moderate temperatures of ˜100 ∘C . Upon annealing, BiTe transforms from bcc to the B2 (CsCl) crystal-structure type, and the other phases adopt semi-disordered variants thereof, featuring substitutional disorder on one of the two crystallographic sites. The transition pressures and atomic volumes of the alloy phases show systematic variations across the BimTen series including the end members Bi and Te. First-principles calculations were performed to characterize the electronic structure and chemical bonding properties of B2-type BiTe and to identify the driving forces of the ordering transition. The calculated Fermi surface of B2-type BiTe has an intricate structure and is predicted to undergo three topological changes between 20 and 60 GPa.

  16. Low-cost cadmium zinc telluride radiation detectors based on electron-transport-only designs

    Energy Technology Data Exchange (ETDEWEB)

    B. A. Brunett; J. C. Lund; J. M. Van Scyoc; N. R. Hilton; E. Y. Lee; R. B. James

    1999-01-01

    The goal of this project was to utilize a novel device design to build a compact, high resolution, room temperature operated semiconductor gamma ray sensor. This sensor was constructed from a cadmium zinc telluride (CZT) crystal. It was able to both detect total radiation intensity and perform spectroscopy on the detected radiation. CZT detectors produced today have excellent electron charge carrier collection, but suffer from poor hole collection. For conventional gamma-ray spectrometers, both the electrons and holes must be collected with high efficiency to preserve energy resolution. The requirement to collect the hole carriers, which have relatively low lifetimes, limits the efficiency and performance of existing experimental devices. By implementing novel device designs such that the devices rely only on the electron signal for energy information, the sensitivity of the sensors for detecting radiation can be increased substantially. In this report the authors describe a project to develop a new type of electron-only CZT detector. They report on their successful efforts to design, implement and test these new radiation detectors. In addition to the design and construction of the sensors the authors also report, in considerable detail, on the electrical characteristics of the CZT crystals used to make their detectors.

  17. 3D Particle Track Reconstrution in a Single Layer Cadmium-Telluride Hybrid Active Pixel Detector

    CERN Document Server

    Filipenko, Mykhaylo; Anton, Gisela; Michel, Thilo

    2014-01-01

    In the past 20 years the search for neutrinoless double beta decay has driven many developements in all kind of detector technology. A new branch in this field are highly-pixelated semiconductor detectors - such as the CdTe-Timepix detectors. It compromises a cadmium-telluride sensor of 14 mm x 14 mm x 1 mm size with an ASIC which has 256 x 256 pixel of 55 \\textmu m pixel pitch and can be used to obtain either spectroscopic or timing information in every pixel. In regular operation it can provide a 2D projection of particle trajectories; however, three dimensional trajectories are desirable for neutrinoless double beta decay and other applications. In this paper we present a method to obtain such trajectories. The method was developed and tested with simulations that assume some minor modifications to the Timepix ASIC. Also, we were able to test the method experimentally and in the best case achieved a position resolution of about 90 \\textmu m with electrons of 4.4 GeV.

  18. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-01-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations. PMID:27669995

  19. Nanostructure Characterization of Bismuth Telluride-Based Powders and Extruded Alloys by Various Experimental Methods

    Science.gov (United States)

    Vasilevskiy, D.; Bourbia, O.; Gosselin, S.; Turenne, S.; Masut, R. A.

    2011-05-01

    High-resolution transmission electron microscopy (HRTEM) observations of mechanically alloyed powders and bulk extruded alloys give experimental evidence of nanosized grains in bismuth telluride-based materials. In this study we combine HRTEM observations and x-ray diffraction (XRD) measurements, of both mechanically alloyed powders and extruded samples, with mechanical spectroscopy (MS) of extruded rods. Both HRTEM and XRD show that nanostructures with an average grain size near 25 nm can be achieved within 2 h of mechanical alloying from pure elements in an attritor-type milling machine. Residual strain orthogonal to the c-axis of powder nanoparticles has been evaluated at about 1.2% by XRD peak broadening. In contrast, XRD has been found unreliable for evaluation of grain size in highly textured extruded materials for which diffraction conditions are similar to those of single crystals, while MS appears promising for study of bulk extruded samples. Nanostructured extruded alloys at room temperature exhibit an internal friction (IF) background that is one order of magnitude higher than that of conventional zone-melted material with a grain size of several millimeters. IF as a function of sample temperature gives activation energies that are also different between bulk materials having nano- and millimeter-size grains, a result that is attributed to different creep mechanisms. Nanograin size, as well as orientation and volumetric proportion, provide valuable information for optimization of technological parameters of thermoelectric alloys and should be carefully cross-examined by various independent methods.

  20. Spectral x-ray computed tomography scanner using a cadmium telluride detector

    Science.gov (United States)

    Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2016-10-01

    To obtain four tomograms with four different photon energy ranges simultaneously, we have developed a quad-energy Xray photon counter with a cadmium telluride (CdTe) detector and four sets of comparators and frequency-voltage converters (FVCs). X-ray photons are detected using the CdTe detector, and the event pulses from a shaping amplifier are sent to four comparators simultaneously to regulate four threshold energies of 20, 35, 50 and 65 keV. Using this counter, the energy ranges are 20-100, 35-100, 50-100 and 65-100 keV; the maximum energy corresponds to the tube voltage. Xray photons in the four ranges are counted using the comparators, and the logical pulses from the comparators are input to the FVCs. The outputs from the four FVCs are input to a personal computer through an analog-digital converter (ADC) to carry out quad-energy imaging. To observe contrast variations with changes in the threshold energy, we performed spectral computed tomography utilizing the quad-energy photon counter at a tube voltage of 100 kV and a current of 8.0 μA. In the spectral CT, four tomograms were obtained simultaneously with four energy ranges. The image contrast varied with changes in the threshold energy, and the exposure time for tomography was 9.8 min.

  1. Kunpeng Copper:The largest Copper Smelting Company of Sichuan

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>On September 9,Liangshan Mining Company’s 100,000 tons/year cathode copper project kicked off.It is another key project of the company following the successful launch of the 100,000 tons/year anode copper project.Based on ISA copper smelting technology of the largest open-cast copper mine in southwest China,

  2. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level. Th

  3. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  4. [Copper and the human body].

    Science.gov (United States)

    Krízek, M; Senft, V; Motán, J

    1997-11-19

    Copper is one of the essential trace elements. It is part of a number of enzymes. Deficiency of the element is manifested by impaired haematopoesis, bone metabolism, disorders of the digestive, cardiovascular and nervous system. Deficiency occurs in particular in patients suffering from malnutrition, malabsorption, great copper losses during administration of penicillamine. Sporadically copper intoxications are described (suicidal intentions or accidental ingestion of beverages with a high copper content). Acute exposure to copper containing dust is manifested by metal fume fever. Copper salts can produce local inflammations. Wilson's disease is associated with inborn impaired copper metabolism. In dialyzed patients possible contaminations of the dialyzate with copper must be foreseen as well as the possible release of copper from some dialyzation membranes. With the increasing amount of copper in the environment it is essential to monitor the contamination of the environment.

  5. Spectroscopic properties of 2.7 μm emission in Er{sup 3+} doped telluride glasses and fibers

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xiaokang [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Kefeng, E-mail: kfli@siom.ac.cn [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Xia; Kuan, Peiwen; Wang, Xin [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-12-05

    Highlights: • Telluride glasses with high Er{sup 3+} doping concentration and good thermal property are prepared. • Energy transfer processes for 1.5 μm, 2.7 μm and visible emission are fully discussed. • Enhanced 2.7 μm emission is achieved from the bulk glasses. • An Er{sup 3+} doped fiber is successfully drawn and strong upconversion emission is observed in the fiber. - Abstract: Emissions at 2.7 μm from telluride glasses with various Er{sub 2}O{sub 3} doping concentrations are investigated. The prepared glasses have excellent thermostability and high rare-earth solubility. Judd–Ofelt parameters are calculated based on the absorption spectra. A large emission cross section (1.12 × 10{sup −20} cm{sup 2}) and a high spontaneous radiative coefficient (57.8 s{sup −1}) are obtained at 2.7 μm. The fluorescence properties of glasses with different concentrations are analyzed and presented. An Er{sup 3+}-doped fiber is fabricated via a rod-in-tube technique, and the loss at 1310 nm is ∼2.1 dB/m measured by using the cut-back method. Strong upconversion emission caused by intense pump absorption is observed from the Er{sup 3+}doped fiber under excitation by a 980 nm laser diode (LD). Telluride glasses with high Er{sup 3+} doping concentration and good thermal property are prepared. Energy transfer processes for 1.5 μm, and 2.7 μm, as well as visible emission are fully discussed. Enhanced 2.7 μm emission is achieved from the bulk glass. An Er{sup 3+} doped fiber is successfully drawn, and strong upconversion emission is observed in the fiber.

  6. Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Matin, M.A. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Electrical and Electronics Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong (Bangladesh); Mannir Aliyu, M.; Quadery, Abrar H. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Amin, Nowshad [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia)

    2010-09-15

    Cadmium telluride (CdTe) thin film solar cell has long been recognized as a leading photovoltaic candidate for its high efficiency and low cost. A numerical simulation has been performed using AMPS-1D simulator to explore the possibility of higher efficiency and stable CdS/CdTe cell among several cell structures with indium tin oxide (ITO) and cadmium stannate (Cd{sub 2}SnO{sub 4}) as front contact material, tin oxide (SnO{sub 2}), zinc oxide (ZnO) and zinc stannate (Zn{sub 2}SnO{sub 4}) as buffer layer, and silver (Ag) or antimony telluride (Sb{sub 2}Te{sub 3}) with molybdenum (Mo) or zinc telluride (ZnTe) with aluminium (Al) as back contact material. The cell structure ITO/i-ZnO/CdS/CdS{sub x}Te{sub 1-x}/CdTe/Ag has shown the best conversion efficiency of 16.9% (Voc=0.9 V, Jsc=26.35 mA/cm{sup 2}, FF=0.783). This analysis has shown that ITO as front contact material, ZnO as buffer layer and ZnTe or Sb{sub 2}Te{sub 3} back surface reflector (BSR) are suitable material system for high efficiency (>15%) and stable CdS/CdTe cells. The cell normalized efficiency linearly decreased at a temperature gradient of -0.25%/ C for ZnTe based cells, and at -0.40%/ C for other cells. (author)

  7. Targeting copper in cancer therapy: 'Copper That Cancer'.

    Science.gov (United States)

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.

  8. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  9. Laser photolysis and thermolysis of organic selenides and tellurides for chemical gas-phase deposition of nanostructured materials.

    Science.gov (United States)

    Pola, Josef; Ouchi, Akihiko

    2009-03-12

    Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn) element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  10. NaBH{sub 4}/[bmim]BF{sub 4}: a new reducing system to access vinyl selenides and tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Goncalves, Loren C.C.; Mendes, Samuel R.; Saraiva, Maiara T.; Alves, Diego; Jacob, Raquel G.; Perin, Gelson, E-mail: lenardao@ufpel.edu.b [Universidade Federal de Pelotas (UFPel), RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)

    2010-07-01

    A general and simple method for the synthesis of vinyl selenides and tellurides starting from terminal alkynes and diorganyl chalcogenides using NaBH{sub 4} and [bmim]BF{sub 4} as a recyclable solvent was developed. This efficient and improved method furnishes the corresponding vinyl chalcogenides preferentially with Z configuration. We also observed that when the same protocol was applied to phenyl acetylene, (E)-bis-phenylchalcogeno styrenes were obtained in good yields and high selectivity. The ionic liquid was reused up three times without lost of efficiency. (author)

  11. Lattice thermal conductivity diminution and high thermoelectric power factor retention in nanoporous macroassemblies of sulfur-doped bismuth telluride nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanliang; Mehta, Rutvik J.; Belley, Matthew; Han, Liang; Ramanath, Ganpati; Borca-Tasciuc, Theodorian

    2012-01-01

    We report ultralow lattice thermal conductivity in the 0.3 ≤ κL ≤ 0.6 W m⁻¹ K⁻¹ range in nanoporous bulk bismuth telluride pellets obtained by sintering chemically synthesized nanostructures, together with single-crystal-like electron mobilities and Seebeck coefficients at comparable charge carrier concentrations. The observed κL is up to 35% lower than classical effective medium predictions, and can be quantitatively explained by increased phonon scattering at nanopores and nanograins. Our findings are germane to tailoring nanoporous thermoelectric materials for efficient solid-state refrigeration, thermal energy harvesting, and thermal management applications.

  12. Iron isotope constraints on the mineralization processes of the Sandaowanzi telluride gold deposit, NE China

    Science.gov (United States)

    Li, Xingxing; Liu, Junlai; Lu, Di; Ren, Shunli; Liu, Zhengyang

    2016-04-01

    Iron isotopes have been widely applied to interpret the fluid evolution, supergene alteration and the metallogenic material sources of the hydrothermal deposit. It may also have significant potentials on the research of the deposit. The Sandaowanzi telluride gold deposit, located in the Great Hinggan Range metallogenic Belt in NE China, is a large epithermal gold deposit of low-sulphidation type. It has a total reserve of ≥25t of Au and an average of 15 g/t. Gold-bearing quartz veins or gold lodes strike to the NW and dip 50-80°northeastward. Ore bodies, including low-grade ores along margins and high-grade ores in the central parts, principally occur in quartz veins. More than the 95 percent Au budgets are hosted in gold-silver tellurides. A six-stage paragenetic sequence of mineralization is revealed according to the compositions and microstructures of the mineral assemblages. Although sulfide minerals in the bonanza quartz veins are rare, pyrite are widespread in quartz veins and altered host rocks. Meanwhile there are always chalcopyrite veins within bonanza quartz veins. Pyrite Fe isotope compositions from different levels (from +50m to +210m) of the main ore body of the Sandaowanzi gold ore deposit are investigated. There is an overall variation in δ57Fe values from -0.09 to +0.99 (av. 0.33). Among them, twenty three samples from different mining levels give positiveδ57Fe values, with the maximum positive value at the economic bonanza ores (level +130m). Four samples, however, possess negative values, one at level 170m, one at level 130m, and two at level 50m, respectively. The two negative values from the levels 170m and 130m are near the cores of the high grade ore body. The two negative values from the level 50m occur at one end of the lode ore body. The above data set shows that the δ57Fe values are not homogeneous at different levels of the ore body. On the other hand, a general trend for the positive values is that the highest δ57Fe value is

  13. Simultaneous Analysis of the 2nu2, nu1, and nu3 Bands of Hydrogen Telluride

    Science.gov (United States)

    Flaud; Betrencourt; Arcas; Burger; Polanz; Lafferty

    1997-04-01

    Spectra of a natural sample of hydrogen telluride as well as a spectrum of monoisotopic H2 130Te have been recorded by means of Fourier transform spectrometry with a resolution of 0.003 cm-1 in the spectral domain 7.5-4.3 μm where it is easy to observe the main absorbing bands nu1 and nu3. We have located and assigned for the first time the 2nu2 band which appears in the lower wavenumber range of the recorded spectral domain near 1700 cm-1. It proved necessary to treat simultaneously the three states (020), (100), and (001). nu1 and nu3 are indeed Coriolis-coupled vibration-rotation bands and it was observed that a few rotational levels of (001) could not be fitted to within their experimental accuracy without considering the second-order Coriolis interaction between the rotational levels of (020) and (001). In this way all the experimental levels were calculated to within the experimental uncertainty, and precise sets of vibrational energies and rotational and coupling constants were obtained for the seven most abundant H2Te isotopic species, namely H2 130Te, H2 128Te, H2 126Te, H2 125Te, H2 124Te, H2 123Te, and H2 122Te. For the most abundant isotopic species H2 130Te the bands centers arenu0 (2nu2) = 1715.9568, nu0 (nu1) = 2065.2709, nu0 (nu3) = 2072.1101 cm-1. Copyright 1997Academic Press

  14. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  15. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  16. Friction Consolidation Processing of n-Type Bismuth-Telluride Thermoelectric Material

    Science.gov (United States)

    Whalen, Scott; Jana, Saumyadeep; Catalini, David; Overman, Nicole; Sharp, Jeffrey

    2016-07-01

    Refined grain sizes and texture alignment have been shown to improve transport properties in bismuth-telluride (Bi2Te3) based thermoelectric materials. In this work we demonstrate a new approach, called friction consolidation processing (FCP), for consolidating Bi2Te3 thermoelectric powders into bulk form with a high degree of grain refinement and texture alignment. FCP is a solid-state process wherein a rotating tool is used to generate severe plastic deformation within the Bi2Te3 powder, resulting in a recrystallizing flow of material. Upon cooling, the far-from-equilibrium microstructure within the flow can be retained in the material. FCP was demonstrated on n-type Bi2Te3 feedstock powder having a -325 mesh size to form pucks with a diameter of 25.4 mm and thickness of 4.2 mm. Microstructural analysis confirmed that FCP can achieve highly textured bulk materials, with sub-micrometer grain size, directly from coarse feedstock powders in a single process. An average grain size of 0.8 μm was determined for regions of one sample and a multiple of uniform distribution (MUD) value of 15.49 was calculated for the (0001) pole figure of another sample. These results indicate that FCP can yield ultra-fine grains and textural alignment of the (0001) basal planes in Bi2Te3. ZT = 0.37 at 336 K was achieved for undoped stoichiometric Bi2Te3, which approximates literature values of ZT = 0.4-0.5. These results point toward the ability to fabricate bulk thermoelectric materials with refined microstructure and desirable texture using far-from-equilibrium FCP solid-state processing.

  17. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  18. Sintered cadmium telluride nanocrystal photovoltaics: Improving chemistry to facilitate roll-to-roll fabrication

    Science.gov (United States)

    Kurley, James Matthew, III

    Recent interest in clean, renewable energy has increased importance on cost-effective and materials efficient deposition methods. Solution-processed solar cells utilizing cadmium telluride nanocrystal inks offer a viable method for reducing cost, increasing materials effectiveness, and decreasing the need for fossil fuels in the near future. Initial work focused on developing a useful platform for testing new chemistries for solubilizing and depositing nanocrystal inks. Layer-by-layer deposition using a combination of spincoating, cadmium chloride treatment, and annealing created a photovoltaic-grade CdTe absorber layer. In conjunction with layer-by-layer deposition, a device architecture of ITO/CdTe/ZnO/Al was utilized to create power conversion efficiencies of over 12% with the help of current/light soaking. Detailed exploration of device geometry, capacitance measurements, and intensity- and temperature-dependent testing determined the ITO/CdTe interface required additional scrutiny. This initial investigation sparked three new. avenues of research: create an Ohmic contact to CdTe, remove the cadmium chloride bath treatment, and create a roll-to-roll friendly process. Improved contact between ITO and CdTe was achieved by using a variety of materials already proven to create Ohmic contact to CdTe. While most of these materials were previously employed using standard approaches, solution-processed analogs were explored. The cadmium chloride bath treatment proved inconsistent, wasteful, and difficult to utilize quickly. It was removed by using trichlorocadmate-capped nanocrystals to combine the semiconductor with the required grain growth agent. To establish roll-to-roll friendly process, the deposition method was improved, heating source changed, and cadmium chloride bath step was removed. Spraycoating or doctor-blading the trichlorocadmate-capped nanocrystals followed by annealing with an IR lamp established a process that can deposit CdTe in a high throughput

  19. Novel doxorubicin loaded PEGylated cuprous telluride nanocrystals for combined photothermal-chemo cancer treatment.

    Science.gov (United States)

    Wang, Xianwen; Ma, Yan; Chen, Huajian; Wu, Xiaoyi; Qian, Haisheng; Yang, Xianzhu; Zha, Zhengbao

    2017-02-06

    Recently, combined photothermal-chemo therapy has attracted great attention due to its enhanced anti-tumor efficiency via synergistic effects. Herein, PEGylated cuprous telluride nanocrystals (PEGylated Cu2Te NCs) were developed as novel drug nanocarriers for combined photothermal-chemo treatment of cancer cells. PEGylated Cu2Te NCs were fabricated through a simple two-step process, comprised of hot injection and thin-film hydration. The as-prepared PEGylated Cu2Te NCs (average diameter of 5.21±1.05nm) showed a noticeable photothermal conversion efficiency of 33.1% and good capacity to load hydrophobic anti-cancer drug. Due to the protonated amine group at low pH, the doxorubicin (DOX)-loaded PEGylated Cu2Te NCs (PEGylated Cu2Te-DOX NCs) exhibited an acidic pH promoted drug release profile. Moreover, a three-parameter model, which considers the effects of drug-carrier interactions on the initial burst release and the sustained release of drug from micro- and nano-sized carriers, was used to gain insight into how pH and laser irradiation affect drug release from PEGylated Cu2Te-DOX NCs. Based on the results from in vitro cell study, PEGylated Cu2Te-DOX NCs revealed remarkably photothermal-chemo synergistic effect to HeLa cells, attributed to both the PEGylated Cu2Te NCs mediated photothermal ablation and enhanced cellular uptake of the drug. Thus, our results encourage the usage of Cu2Te-DOX drug nanocarriers for enhanced treatment of cancer cells by combined photothermal-chemo therapy.

  20. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    Energy Technology Data Exchange (ETDEWEB)

    Manciu, Felicia S., E-mail: fsmanciu@utep.edu [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Salazar, Jessica G. [Department of Physics, The University of Texas at El Paso, El Paso, TX 79968 (United States); Diaz, Aryzbe; Quinones, Stella A. [Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)

    2015-08-31

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  1. Development and evaluation of polycrystalline cadmium telluride dosimeters for accurate quality assurance in radiation therapy

    Science.gov (United States)

    Oh, K.; Han, M.; Kim, K.; Heo, Y.; Moon, C.; Park, S.; Nam, S.

    2016-02-01

    For quality assurance in radiation therapy, several types of dosimeters are used such as ionization chambers, radiographic films, thermo-luminescent dosimeter (TLD), and semiconductor dosimeters. Among them, semiconductor dosimeters are particularly useful for in vivo dosimeters or high dose gradient area such as the penumbra region because they are more sensitive and smaller in size compared to typical dosimeters. In this study, we developed and evaluated Cadmium Telluride (CdTe) dosimeters, one of the most promising semiconductor dosimeters due to their high quantum efficiency and charge collection efficiency. Such CdTe dosimeters include single crystal form and polycrystalline form depending upon the fabrication process. Both types of CdTe dosimeters are commercially available, but only the polycrystalline form is suitable for radiation dosimeters, since it is less affected by volumetric effect and energy dependence. To develop and evaluate polycrystalline CdTe dosimeters, polycrystalline CdTe films were prepared by thermal evaporation. After that, CdTeO3 layer, thin oxide layer, was deposited on top of the CdTe film by RF sputtering to improve charge carrier transport properties and to reduce leakage current. Also, the CdTeO3 layer which acts as a passivation layer help the dosimeter to reduce their sensitivity changes with repeated use due to radiation damage. Finally, the top and bottom electrodes, In/Ti and Pt, were used to have Schottky contact. Subsequently, the electrical properties under high energy photon beams from linear accelerator (LINAC), such as response coincidence, dose linearity, dose rate dependence, reproducibility, and percentage depth dose, were measured to evaluate polycrystalline CdTe dosimeters. In addition, we compared the experimental data of the dosimeter fabricated in this study with those of the silicon diode dosimeter and Thimble ionization chamber which widely used in routine dosimetry system and dose measurements for radiation

  2. A Fumonisins Immunosensor Based on Polyanilino-Carbon Nanotubes Doped with Palladium Telluride Quantum Dots

    Directory of Open Access Journals (Sweden)

    Milua Masikini

    2014-12-01

    Full Text Available An impedimetric immunosensor for fumonisins was developed based on poly(2,5-dimethoxyaniline-multi-wall carbon nanotubes doped with palladium telluride quantum dots onto a glassy carbon surface. The composite was assembled by a layer-by-layer method to form a multilayer film of quantum dots (QDs and poly(2,5-dimethoxyaniline-multi-wall carbon nanotubes (PDMA-MWCNT. Preparation of the electrochemical immunosensor for fumonisins involved drop-coating of fumonisins antibody onto the composite modified glassy carbon electrode. The electrochemical impedance spectroscopy response of the FB1 immunosensor (GCE/PT-PDMA-MWCNT/anti-Fms-BSA gave a linear range of 7 to 49 ng L−1 and the corresponding sensitivity and detection limits were 0.0162 kΩ L ng−1 and 0.46 pg L−1, respectively, hence the limit of detection of the GCE/PT-PDMA-MWCNT immunosensor for fumonisins in corn certified material was calculated to be 0.014 and 0.011 ppm for FB1, and FB2 and FB3, respectively. These results are lower than those obtained by ELISA, a provisional maximum tolerable daily intake (PMTDI for fumonisins (the sum of FB1, FB2, and FB3 established by the Joint FAO/WHO expert committee on food additives and contaminants of 2 μg kg−1 and the maximum level recommended by the U.S. Food and Drug Administration (FDA for protection of human consumption (2–4 mg L−1.

  3. The crystal structures and powder diffraction patterns of the uranium tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, R.L. (State Univ. of New York, Alfred, NY (USA). Inst. of Ceramic Superconductivity); Nichols, M.C.; Boehme, D.R. (Sandia National Labs., Livermore, CA (USA))

    1990-10-03

    A critical review of all of the reported structures and powder diffraction patterns in the uranium telluride system has been undertaken. Structures that are correct: Cubic -- UTe: no experimental pattern exists. Retain calculated 15--865. Cubic --U{sub 3}Te{sub 4}: retain the poor quality 12--610 but adopt the pattern calculated here. Cubic U{sub 2}Te{sub 3}: no experimental pattern exists. Adopt pattern calculated here. Orthorhombic UTe{sub 2}: Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Monoclinic {alpha}UTe{sub 3} Adopt the new pattern of Boehme et al. Orthorhombic {beta}UTe{sub 3}: Adopt pattern calculated here. Orthorhombic UTe{sub 5}: Adopt the new pattern of Boehme et al. Structures in need of refinement: Orthorhombic U{sub 2}Te{sub 3}:Adopt pattern calculated here over 34--807. Hexagonal U{sub 7}Te{sub 12}: Adopt pattern calculated here but retain 24--1368. Orthorhombic UTe{sub 1.78}: Adopt pattern calculated here and retain our modified 21--1404 reported for U{sub 4}Te{sub 7}. Orthorhombic UTe{sub 2.5}: Adopt pattern calculated here. Orthorhombic UTe{sub 3.4}: Accept recent pattern of Boehme et al. Phases for which no structures or reliable patterns exist: Orthorhombic U{sub 3}Te{sub 4}: no published pattern. Tetragonal U{sub 3}Te{sub 5}: three patterns 21--1407, 34--766 and 34--896 exit but all are of very poor quality. Phases which probably do not exist: Tetragonal UTe{sub 1.78}, Tetragonal UTe{sub 2}, Cubic UTe{sub 2} U{sub 3}Te{sub 7}(21--1402), U{sub 3}Te{sub 8}(21--1406).

  4. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  5. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  6. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  7. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing.

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-19

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm(-1) K(-2)), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  8. Structural, optical, and transport properties of nanocrystalline bismuth telluride thin films treated with homogeneous electron beam irradiation and thermal annealing

    Science.gov (United States)

    Takashiri, Masayuki; Asai, Yuki; Yamauchi, Kazuki

    2016-08-01

    We investigated the effects of homogeneous electron beam (EB) irradiation and thermal annealing treatments on the structural, optical, and transport properties of bismuth telluride thin films. Bismuth telluride thin films were prepared by an RF magnetron sputtering method at room temperature. After deposition, the films were treated with homogeneous EB irradiation, thermal annealing, or a combination of both the treatments (two-step treatment). We employed Williamson-Hall analysis for separating the strain contribution from the crystallite domain contribution in the x-ray diffraction data of the films. We found that strain was induced in the thin films by EB irradiation and was relieved by thermal annealing. The crystal orientation along c-axis was significantly enhanced by the two-step treatment. Scanning electron microscopy indicated the melting and aggregation of nano-sized grains on the film surface by the two-step treatment. Optical analysis indicated that the interband transition of all the thin films was possibly of the indirect type, and that thermal annealing and two-step treatment methods increased the band gap of the films due to relaxation of the strain. Thermoelectric performance was significantly improved by the two-step treatment. The power factor reached a value of 17.2 μW (cm-1 K-2), approximately 10 times higher than that of the as-deposited thin films. We conclude that improving the crystal orientation and relaxing the strain resulted in enhanced thermoelectric performance.

  9. Copper and Copper Proteins in Parkinson’s Disease

    OpenAIRE

    Sergio Montes; Susana Rivera-Mancia; Araceli Diaz-Ruiz; Luis Tristan-Lopez; Camilo Rios

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased pr...

  10. Role of stirring assist during solvothermal synthesis for preparing single-crystal bismuth telluride hexagonal nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Kai, Shintaro; Wada, Kodai [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Takasugi, Soichi [Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Tomita, Koji [Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-04-15

    We investigated the role of stirring assist during solvothermal synthesis for preparing high quality bismuth telluride (Bi{sub 2}Te{sub 3}) hexagonal nanoplates. We performed a series of experiments that comprised solvothermal synthesis with stirring assist at 500 rpm and without stirring assist. As a result, high purity Bi{sub 2}Te{sub 3} hexagonal nanoplates with uniform morphology and edge length of 400–800 nm were obtained by solvothermal synthesis using stirring assist, whereas intermediate products such as tellurium and tellurium oxide compounds were also produced besides the Bi{sub 2}Te{sub 3} hexagonal nanoplates by solvothermal synthesis without stirring assist. To further study the nanostructure of the nanoplates with stirring assist, we performed high-resolution transmission electron microscopy and selected-area electron diffraction analysis. It was found that the Bi{sub 2}Te{sub 3} hexagonal nanoplates were composed of rhombohedral phases and highly single-crystalline structures. Based on the experimental and analytical results, we propose a possible reaction process and growth mechanism of the Bi{sub 2}Te{sub 3} hexagonal nanoplates. The reaction rate is the key factor to control the shapes of nanostructures. When the reaction rate was sufficient, it proceeded to the final stage, and then Bi{sub 2}Te{sub 3} nanoplates were produced. However, when the reaction rate was insufficient, the entire morphology evolution process was terminated at the intermediate stage, and intermediate products besides Bi{sub 2}Te{sub 3} nanoplates were also produced. - Highlights: • High quality Bi{sub 2}Te{sub 3} hexagonal nanoplates were prepared by solvothermal synthesis. • Role of stirring assist during the solvothermal synthesis were investigated. • Bi{sub 2}Te{sub 3} hexagonal nanoplates with edge length of 400–800 nm were obtained. • Bi{sub 2}Te{sub 3} hexagonal nanoplates were composed of single-crystalline structures. • The reaction rate is the key

  11. Inhibition of autophagy contributes to the toxicity of cadmium telluride quantum dots in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fan J

    2016-07-01

    Full Text Available Junpeng Fan,1–4 Ming Shao,1–4 Lu Lai,3–5 Yi Liu,3–5 Zhixiong Xie1–4,6 1College of Life Sciences, Wuhan University, 2Hubei Provincial Cooperative Innovation Center of Industrial Fermentation,3State Key Laboratory of Virology, 4Key Laboratory of Analytical Chemistry for Biology and Medicine (MOE, 5College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 6School of Life Science and Technology, Hubei Engineering University, Xiaogan, People’s Republic of China Abstract: Cadmium telluride quantum dots (CdTe QDs are used as near-infrared probes in biologic and medical applications, but their cytological effects and mechanism of potential toxicity are still unclear. In this study, we evaluated the toxicity of CdTe QDs of different sizes and investigated their mechanism of toxicity in the yeast Saccharomyces cerevisiae. A growth inhibition assay revealed that orange-emitting CdTe (O-CdTe QDs (half inhibitory concentration [IC50] =59.44±12.02 nmol/L were more toxic than green-emitting CdTe QDs (IC50 =186.61±19.74 nmol/L to S. cerevisiae. Further studies on toxicity mechanisms using a transmission electron microscope and green fluorescent protein tagged Atg8 processing assay revealed that O-CdTe QDs could partially inhibit autophagy at a late stage, which differs from the results reported in mammalian cells. Moreover, autophagy inhibited at a late stage by O-CdTe QDs could be partially recovered by enhancing autophagy with rapamycin (an autophagy activator, combined with an increased number of living cells. These results indicate that inhibition of autophagy acts as a toxicity mechanism of CdTe QDs in S. cerevisiae. This work reports a novel toxicity mechanism of CdTe QDs in yeast and provides valuable information on the effect of CdTe QDs on the processes of living cells. Keywords: CdTe quantum dots, Saccharomyces cerevisiae, toxicity, autophagy

  12. Jiangxi Copper Plans to Increase its Refined Copper Output

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>According to news published on March 30th, China’s largest copper producer--Jiangxi Copper alleged in its 2010 Financial Report Statement that it plans to improve its output of refined copper by 4.4% in 2011, to increase from 900,000 tonnes last year to 940,000 tons.

  13. [Copper metabolism and genetic disorders].

    Science.gov (United States)

    Shimizu, Norikazu

    2016-07-01

    Copper is one of essential trace elements. Copper deficiency lead to growth and developmental failure and/or neurological dysfunction. However, excess copper is also problems for human life. There are two disorders of inborn error of copper metabolism, Menkes disease and Wilson disease. Menkes disease is an X linked recessive disorder with copper deficiency and Wilson disease is an autosomal recessive disorder with copper accumulation. These both disorders result from the defective functioning of copper transport P-type ATPase, ATP7A of Menkes disease and ATP7B of Wilson disease. In this paper, the author describes about copper metabolism of human, and clinical feature, diagnosis and treatment of Menkes disease and Wilson disease.

  14. Chinese Copper Manufacturers Expand Overseas

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>In 2012,China’s apparent copper consumption reached 8.84 million tons,accounting for 43%of the global total demand.Spurred by strong demand,China’s copper smelting capacity roars with annual average growth in domestic copper smelting capacity reaching approx-

  15. Fabrication and Characterization of Metallic Copper and Copper Oxide Nanoflowers

    Directory of Open Access Journals (Sweden)

    *H. S. Virk

    2011-12-01

    Full Text Available Copper nanoflowers have been fabricated using two different techniques; electro-deposition of copper in polymer and anodic alumina templates, and cytyltrimethal ammonium bromide (CTAB-assisted hydrothermal method. Scanning Electron Microscope (SEM images record some interesting morphologies of metallic copper nanoflowers. Field Emission Scanning Electron Microscope (FESEM has been used to determine morphology and composition of copper oxide nanoflowers. X-ray diffraction (XRD pattern reveals the monoclinic phase of CuO in the crystallographic structure of copper oxide nanoflowers. There is an element of random artistic design of nature, rather than science, in exotic patterns of nanoflowers fabricated in our laboratory.

  16. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  17. Photoluminescence and extended X-ray absorption fine structure studies on cadmium telluride material

    Science.gov (United States)

    Liu, Xiangxin

    The direct-band-gap semiconductor CdTe is an important material for fabricating high efficiency, polycrystalline thin-film solar cells in a heterojunction configuration. The outstanding physical properties of this material such as its good band-gap match to the solar spectrum, ease of fabrication of stoichiometric films, and easy grain boundary passivation make it an important candidate for large area, thin-film solar cells. However, there are several poorly understood processing steps that are commonly utilized in cell fabrication. One of these is a CdCl2 treatment near 400°C in the presence of oxygen, which can improve the cell efficiency a factor of two or more. Another factor is the role of copper in cell performance. In high performance CdS/CdTe thin-film solar cells, copper is usually included in the fabrication of low-resistance back contacts to obtain heavy p-type doping of the absorber CdTe at the contact. However, most of the copper is not electrically active. For example, secondary ion mass spectroscopy (SIMS) on typical CdTe cells has shown Cu concentrations of 1019 atoms/cm3 and even higher, although capacitance-voltage (C-V) measurements indicate typical ionized acceptor levels on the order of 1014/cm 3. Thus, there is great interest in the location and role of this inactive copper in CdTe photovoltaic (PV) devices. In this thesis, I will describe results obtained on magnetron-sputtered CdTe films that were diffused with copper following the procedure used for creating a cell back contact. Extended X-ray Absorption Fine Structure (EXAFS) measurements identified the chemical environment of the majority of the copper and show major differences depending on whether the CdTe film has been treated with chloride prior to the Cu diffusion. The EXAFS data indicate that the Cu chemistry is strongly affected by the chloride treatments---predominantly Cu2Te when Cu was diffused into the as-deposited CdTe film, but a Cu2O environment when Cu was diffused after

  18. Industrial experiment of copper electrolyte purification by copper arsenite

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ya-jie; XIAO Fa-xin; WANG Yong; LI Chun-hua; XU Wei; JIAN Hong-sheng; MA Yut-ian

    2008-01-01

    Copper electrolyte was purified by copper arsenite that was prepared with As2O3. And electrolysis experiments of purified electrolyte were carried out at 235 and 305 A/m2, respectively. The results show that the yield of copper arsenite is up to 98.64% when the molar ratio of Cu to As is 1.5 in the preparation of copper arsenite. The removal rates of Sb and Bi reach 74.11% and 65.60% respectively after copper arsenite is added in electrolyte. The concentrations of As, Sb and Bi in electrolyte nearly remain constant during electrolysis of 13 d. The appearances of cathode copper obtained at 235 and 305 A/m2 are slippery and even, and the qualification rate is 100% according to the Chinese standard of high-pure cathode copper(GB/T467-97).

  19. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  20. The Effect of Copper

    African Journals Online (AJOL)

    higher (p<0.05) in the broodfish fed CSD0 and CSD1 diets than the other diets. Exposure of Clarias gariepinus fish to copper in water, at concentrations above 1.0mg CuSO4/g elicits adverse ... introduction of a toxicant to an aquatic system ..... Toxicity of four commonly used agrochemicals on. Oreochromis niloticus (L) fry.

  1. Presenilin promotes dietary copper uptake.

    Directory of Open Access Journals (Sweden)

    Adam Southon

    Full Text Available Dietary copper is essential for multicellular organisms. Copper is redox active and required as a cofactor for enzymes such as the antioxidant Superoxide Dismutase 1 (SOD1. Copper dyshomeostasis has been implicated in Alzheimer's disease. Mutations in the presenilin genes encoding PS1 and PS2 are major causes of early-onset familial Alzheimer's disease. PS1 and PS2 are required for efficient copper uptake in mammalian systems. Here we demonstrate a conserved role for presenilin in dietary copper uptake in the fly Drosophila melanogaster. Ubiquitous RNA interference-mediated knockdown of the single Drosophila presenilin (PSN gene is lethal. However, PSN knockdown in the midgut produces viable flies. These flies have reduced copper levels and are more tolerant to excess dietary copper. Expression of a copper-responsive EYFP construct was also lower in the midgut of these larvae, indicative of reduced dietary copper uptake. SOD activity was reduced by midgut PSN knockdown, and these flies were sensitive to the superoxide-inducing chemical paraquat. These data support presenilin being needed for dietary copper uptake in the gut and so impacting on SOD activity and tolerance to oxidative stress. These results are consistent with previous studies of mammalian presenilins, supporting a conserved role for these proteins in mediating copper uptake.

  2. OPTIMUM STOICHIOMETRY OF CADMIUM ZINC TELLURIDE THIN FILMS IN THE LIGHT OF OPTICAL, STRUCTURAL AND PHOTON GENERATED GAIN STUDIES

    Directory of Open Access Journals (Sweden)

    Dr. MONISHA CHAKRABORTY

    2011-05-01

    Full Text Available Cadmium Zinc Telluride (Cd1-xZnxTe is a potential material for high energy imaging devices. Proper methods are adopted in this work to fabricate large area device grade Cd1-xZnxTe thin films for ‘x’ varying from 0.0567 to 0.2210. Large work function Nickel (Ni is the contact points on these films. The fabricated films are subjected to optical characterization, structural characterization and photon generated gain studies. Properties of fabricated films are found to vary with ‘x’. Photon generated gains of Ni-Cd1-xZnxTe structures are obtained. The present paper dealt with the estimation of optimum ‘x’ in Cd1-xZnxTe thin films in the light of optical, structural and photon generated gain studies.

  3. Thin-film cadmium telluride photovoltaic cells. Final subcontract report, 1 November 1992--1 January 1994

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.D.; Bohn, R.G. [Toledo Univ., OH (United States)

    1994-09-01

    This report describes work to develop and optimize radio-frequency (rf) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by rf sputtering was studied as a function of substrate temperature, gas pressure, and rf power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.

  4. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots.

    Science.gov (United States)

    Tashkhourian, Javad; Absalan, Ghodratollah; Jafari, Marzieh; Zare, Saber

    2016-01-05

    A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of <10s. The results revealed that doxycycline could quench the fluorescence of TGA/CdTe QDs via electron transfer from the QDs to doxycycline through a dynamic quenching mechanism. The sensor permitted determination of doxycycline in a concentration range of 1.9×10(-6)-6.1×10(-5)molL(-1) with a detection limit of 1.1×10(-7)molL(-1). The sensor was applied for determination of doxycycline in honey and human serum samples.

  5. Structural and Optical Properties of Sputtered Cadmium Telluride Thin Films Deposited on Flexible Substrates for Photovoltaic Applications.

    Science.gov (United States)

    Song, Woochang; Lee, Kiwon; Kim, Donguk; Lee, Jaehyeong

    2016-05-01

    Cadmium telluride (CdTe) is a photovoltaic technology based on the use of thin films of CdTe to absorb and convert sunlight into electricity. In this paper, polycrystalline CdTe thin films were deposited using radio frequency magnetron sputtering onto flexible substrates including polyimide and molybdenum foil. The structural and optical properties of the films grown at various sputtering pressures were investigated using X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and UV/Nis/NIR spectrophotometry. The sputtering pressure was found to have significant effects on the structural properties, including crystallinity, preferential orientation, and microstructure. Deterioration of the optical properties of CdTe thin films were observed at high sputtering pressure.

  6. The effect of substrate rotation rate on physical properties of cadmium telluride films prepared by a glancing angle deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Siyanaki, Fatemeh, E-mail: fatemeh.hosseini@gmail.com; Rezagholipour Dizaji, Hamid, E-mail: hrgholipour@semnan.ac.ir; Ehsani, Mohammad Hossein, E-mail: mhe_ehsani@yahoo.com; Khorramabadi, Shiva, E-mail: khorramabadi.sh@gmail.com

    2015-02-27

    Physical properties of cadmium telluride thin films, deposited on glass substrates by modified glancing angle deposition (GLAD) technique with various substrate rates of rotation, were investigated in this study. In contrast to obliquely columnar thin films fabricated by the conventional GLAD technique, in which higher columnar angle is coupled to higher degree of porosity, this study introduces obliquely deposited thin films which have packed columnar structures despite their highly tilted columns. Structural and optical properties and surface morphology of the CdTe thin films deposited by this technique were studied using X-ray diffraction, UV–visible spectroscopy and field emission scanning electron microscopy. - Highlights: • Glancing angle deposition technique was employed to prepare CdTe thin films. • The effect of substrate rate of rotation on optical properties was studied. • Highly tilted and packed columnar structure was fabricated. • A dramatic decline in refractive index in one of the specimens was observed.

  7. Cuprous Iodide Catalyzed Synthesis of Diaryl Selenide and Telluride from Organoboronic Acids with Diphenyl Diselenide and Ditelluride

    Institute of Scientific and Technical Information of China (English)

    WANG,Lei; WANG,Min; YAN,Jin-Can; LI,Pin-Hua

    2004-01-01

    @@ Organoselenium and tellurium compounds have received much attention not only as synthetic reagents or intermediates in organic synthesis but also as promising donor molecules for conductive materials.[1] A number of synthetic methods have been reported to prepare organoselenium and tellurium derivatives. A convenient and general method to introduce a selenium or tellurium moiety into organic molecules is the reaction of a metal selenolate or tellurolate with appropriate electrophiles such as organic halides, acyl chlorides, epoxides, and α, β-enones.[2] However, it is difficult to synthesize the unsymmetrical diarylselenides and tellurides through the reaction of selenide anion with organic halides because of the less reactivity of aryl halides. To accomplish this purpose, the reaction (iodobenzene with phenylselenol)was generally carried out in the presence of catalysts, ligands and strong bases. But, the reaction needs longer time to accomplish and form the products in moderate yields.

  8. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    Science.gov (United States)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  9. Charge carrier effective mass and concentration derived from combination of Seebeck coefficient and 125Te NMR measurements in complex tellurides

    Science.gov (United States)

    Levin, E. M.

    2016-06-01

    Thermoelectric materials utilize the Seebeck effect to convert heat to electrical energy. The Seebeck coefficient (thermopower), S , depends on the free (mobile) carrier concentration, n , and effective mass, m*, as S ˜m*/n2 /3 . The carrier concentration in tellurides can be derived from 125Te nuclear magnetic resonance (NMR) spin-lattice relaxation measurements. The NMR spin-lattice relaxation rate, 1 /T1 , depends on both n and m* as 1 /T1˜(m*)3/2n (within classical Maxwell-Boltzmann statistics) or as 1 /T1˜(m*)2n2 /3 (within quantum Fermi-Dirac statistics), which challenges the correct determination of the carrier concentration in some materials by NMR. Here it is shown that the combination of the Seebeck coefficient and 125Te NMR spin-lattice relaxation measurements in complex tellurides provides a unique opportunity to derive the carrier effective mass and then to calculate the carrier concentration. This approach was used to study A gxS bxG e50-2xT e50 , well-known GeTe-based high-efficiency tellurium-antimony-germanium-silver thermoelectric materials, where the replacement of Ge by [Ag+Sb] results in significant enhancement of the Seebeck coefficient. Values of both m* and n derived using this combination show that the enhancement of thermopower can be attributed primarily to an increase of the carrier effective mass and partially to a decrease of the carrier concentration when the [Ag+Sb] content increases.

  10. Bulk growth and surface characterization of epitaxy ready cadmium zinc telluride substrates for use in IR imaging applications

    Science.gov (United States)

    Flint, J. P.; Martinez, B.; Betz, T. E. M.; MacKenzie, J.; Kumar, F. J.; Bindley, G.

    2016-05-01

    Cadmium Zinc Telluride (CZT) is an important compound semiconductor material upon which Mercury Cadmium Telluride (MCT) layers are deposited epitaxially to form structures that are used in high performance detectors covering a wide infrared (IR) spectral band. The epitaxial growth of high quality MCT layers presents many technical challenges and a critical determinant of material performance is the quality of the underlying bulk CZT substrate. CZT itself is a difficult material to manufacture where traditional methods of bulk growth are complex and low yielding, which constrains the supply of commercially available substrates. In this work we report on the epitaxy-ready finishing of Travelling Heather Method (THM) grown Cd0.96Zn0.04Te substrates. The THM method is well established for the growth of high quality CZT crystals used in nuclear, X-ray and spectroscopic imaging applications and in this work we demonstrate the application of this technique to the growth of IR specification CZT substrates with areas of up to 5 cm x 5 cm square. We will discuss the advantages of the THM method over alternative methods of bulk CZT growth where the high yield and material uniformity advantages of this technique will be demonstrated. Chemo-mechanical polishing (CMP) of 4 cm x 4 cm CZT substrates reveals that III-V (InSb/GaSb) like levels of epitaxy-ready surface finishing may be obtained with modified process chemistries. Surface quality assessments will be made by various surface analytical and microscopy techniques from which the suitability of the material for subsequent assessment of quality by epitaxial growth will be ascertained.

  11. Comparative characteristics of copper, copper chloride, and copper bromide vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, M.A.; Petrash, G.G.; Trofimov, A.N.

    1980-03-01

    The paper reports the results of a comparative study of copper and copper halide vapor lasers emitting in a repetitively-pulsed regime. Copper chloride and copper bromide vapor lasers are found to have identical lasing characteristics under any excitation conditions. These characteristics are different from those of a copper vapor laser. An average lasing power of 13 W has been obtained for all lasers studied for an efficiency of 1%. It is shown that the choice of a laser will largely depend on the laser design suitability for a specific application.

  12. Production of ultrahigh purity copper using waste copper nitrate solution.

    Science.gov (United States)

    Choi, J Y; Kim, D S

    2003-04-25

    The production of ultrahigh purity copper (99.9999%) by electrolysis in the presence of a cementation barrier has been attempted employing a waste nitric copper etching solution as the electrolyte. The amount of copper deposited on the cathode increased almost linearly with electrolysis time and the purity of copper was observed to increase as the electrolyte concentration was increased. At some point, however, as the electrolyte concentration increased, the purity of copper decreased slightly. As the total surface area of cementation barrier increased, the purity of product increased. The electrolyte temperature should be maintained below 35 degrees C in the range of investigated electrolysis conditions to obtain the ultrahigh purity copper. Considering that several industrial waste solutions contain valuable metallic components the result of present study may support a claim that electrowinning is a very desirable process for their treatment and recovery.

  13. Tongling:Copper Industry Giant Takes Shape

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>Centering on the strategic goal of building "World Copper Capital", Tongling constantly extends its product lines and improves the copper industry chain. Now, the copper industry with a production value of RMB 100 billion has taken shape.As the largest copper wire rod manufacturer in Asia, Tongling Quanwei Copper Technologies Co., Ltd., upon its moving into the local market,

  14. Direct Production of Copper

    Science.gov (United States)

    Victorovich, G. S.; Bell, M. C.; Diaz, C. M.; Bell, J. A. E.

    1987-09-01

    The use of commercially pure oxygen in flash smelting a typical chalcopyrite concentrate or a low grade comminuted matte directly to copper produces a large excess of heat. The heat balance is controlled by adjusting the calorific value of the solid feed. A portion of the sulfide material is roasted to produce a calcine which is blended with unroasted material, and the blend is then autogeneously smelted with oxygen and flux directly to copper. Either iron silicate or iron calcareous slags are produced, both being subject to a slag cleaning treatment. Practically all of the sulfur is contained in a continuous stream of SO2 gas, most of which is strong enough for liquefaction. A particularly attractive feature of these technologies is that no radically new metallurgical equipment needs to be developed. The oxygen smelting can be carried out not only in the Inco type flash furnace but in other suitable smelters such as cyclone furnaces. Another major advantage stems from abolishion of the ever-troublesome converter aisle, which is replaced with continuous roasting of a fraction of the copper sulfide feed.

  15. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Science.gov (United States)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-06-01

    p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.

  16. Mechanochemical reactions on copper-based compounds

    NARCIS (Netherlands)

    Castricum, H.L.; Bakker, H.; Poels, E.K.

    1999-01-01

    Mechanochemical reactions of copper and copper oxides with oxygen and carbon dioxide are discussed, as well as decomposition and reduction of copper compounds by mechanical milling under high-vacuum conditions.

  17. Oxidation Mechanism of Copper Selenide

    Science.gov (United States)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  18. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  19. Removal of copper from ferrous scrap

    Science.gov (United States)

    Blander, Milton; Sinha, Shome N.

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  20. Variations of serum copper values in pregnancy

    OpenAIRE

    Vukelić Jelka; Kapamadžija Aleksandra; Petrović Đorđe; Grujić Zorica; Novakov-Mikić Aleksandra; Kopitović Vesna; Bjelica Artur

    2012-01-01

    Introduction. Copper is essential micronutrient and has an important role in the human body. The serum copper increases during pregnancy and is doubled at full term. Lower levels of serum copper in pregnancy are connected with some pathological conditions. Objective. The aim of this study was to estimate the levels of serum copper in normal and pathological pregnancies, comparing them with values of serum copper in non-pregnant women, to determine if serum copper is lower in some pathol...

  1. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  2. Study of Copper Substitute in High Copper Price Market Environment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>The high price of copper drives up industry cost,also it is difficult for terminal products to raise price to transfer the cost pressure brought by increase in copper price,as a result downstream consumption markets instead try to seek

  3. Fixation Property of Copper Triazole Wood Preservatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to AWPA E11-2006 standard,copper fixation rates of several copper-based formulations,such as ammoniacal copper,amine copper,and ammoniacal-ethanolamine copper,as well as alkaline copper quaternary(ACQ),were tested and compared in this paper.And the fixation rates of tebuconazole(TEB) and propiconazole(PPZ) in several formulations,such as copper azole,emulsified type and solvent type,were also compared.The determination of copper content in the leachate was analyzed by atomic absorption spectrom...

  4. INTERACTION OF COPPER BASED PRESERVATIVES WITH WOOD

    Directory of Open Access Journals (Sweden)

    Ali Temiz

    2004-11-01

    Full Text Available Copper is highly toxic to fungi and the element is widely used in many preservative formulations over 50 years. The interactions of wood and copper-based preservatives impact both the performance and the environment aspects of treated wood. Copper might be present in treated wood as coppercellulose complex, copper-lignin complex, and crystalline or amorphous inorganic/organic copper compounds. In this review; it was aimed to investigate the interactions of wood and copper-based preservatives, Copper Adsorpsion factors and copper forms in treated wood

  5. Electroleaching of Copper Waste with Recovery of Copper by Electrodialysis

    Directory of Open Access Journals (Sweden)

    Nuñez P.

    2013-04-01

    Full Text Available A new process to leach and recover copper from solid waste using electric fields was designed. The leaching with electro migration is presented as an alternative to traditional leaching. Preliminary data indicate that the copper ion migration is facilitated by using the electrical potential difference; therefore applying a potential difference in the processes of leaching facilitates the removal of copper. This is especially useful when mineral concentrations are very low. Different phenomena associated with transport of copper in solution are studied to generate a model able predict the state of the copper ion concentration in time. A kinetic model for the process was developed and fitted very well the experimental data.

  6. Synthesis of copper/copper oxide nanoparticles by solution plasma

    Science.gov (United States)

    Saito, Genki; Hosokai, Sou; Tsubota, Masakatsu; Akiyama, Tomohiro

    2011-07-01

    This paper describes the synthesis of copper/copper oxide nanoparticles via a solution plasma, in which the effect of the electrolyte and electrolysis time on the morphology of the products was mainly examined. In the experiments, a copper wire as a cathode was immersed in an electrolysis solution of a K2CO3 with the concentration from 0.001 to 0.50 M or a citrate buffer (pH = 4.8), and was melted by the local-concentration of current. The results demonstrated that by using the K2CO3 solution, we obtained CuO nanoflowers with many sharp nanorods, the size of which decreased with decreasing the concentration of the solution. Spherical particles of copper with/without pores formed when the citrate buffer was used. The pores in the copper nanoparticles appeared when the applied voltage changed from 105 V to 130 V, due to the dissolution of Cu2O.

  7. Studies of copper transport in mammalian cells using copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    The trace element copper poses a major problem for all organisms. It is essential as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Using the copper radioisotopes {sup 64}Cu (t1/2 = 12.8 hr) and {sup 67}Cu (t1/2 = 61 hr) we have developed a number of systems for studying copper transport in mammalian cells. These include investigation of copper uptake, copper efflux and ligand blot assays for Cu-binding proteins. Our studies have focused on Menkes disease which is an inherited and usually lethal copper deficiency disorder in humans. We have demonstrated that the Menkes protein is directly involved as a copper efflux pump in mammalian cells. Using cells overexpressing the Menkes protein we have provided the first biochemical evidence that this functions as a Cu translocating (across the membrane) P-type ATPase (Voskoboinik et al., FEBS Letters, in press). These studies were carried out using purified plasma membrane vesicles. We are now carrying out structure- function studies on this protein using targeted mutations and assaying using the radiocopper vesicle assay. Recently we have commenced studies on the role of amyloid precursor protein (APP) in copper transport and relationship of this to Alzheimers disease

  8. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    OpenAIRE

    Choveaux David L; Przyborski Jude M; Goldring JP

    2012-01-01

    Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper st...

  9. Nanocrystalline copper based microcomposites

    OpenAIRE

    J.P. Stobrawa; Z.M. Rdzawski; W. Głuchowski; J. Domagała-Dubiel

    2012-01-01

    Purpose: The aim of this work was to investigate microstructure, mechanical properties and deformation behavior of copper microcomposites: Cu- Y2O3, Cu- ZrO2 and Cu-WC produced by powder metallurgy techniques.Design/methodology/approach: Tests were made with Cu-Y2O3, Cu-ZrO2 and Cu-WC microcomposites containing up to 2% of a strengthening phase. The materials were fabricated by powder metallurgy techniques, including milling of powders, followed by their compacting and sintering. The main mec...

  10. The Bauschinger Effect in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L .M.; Stobbs, W. M.

    1981-01-01

    A study of the Bauschinger effect in pure copper shows that by comparison with dispersion hardened copper the effect is very small and independent of temperature. This suggests that the obstacles to flow are deformable. A simple composite model based on this principle accounts for the data semi...

  11. Effects of copper(II) and copper oxides on THMs formation in copper pipe.

    Science.gov (United States)

    Li, Bo; Qu, Jiuhui; Liu, Huijuan; Hu, Chengzhi

    2007-08-01

    Little is known about how the growth of trihalomethanes (THMs) in drinking water is affected in copper pipe. The formation of THMs and chlorine consumption in copper pipe under stagnant flow conditions were investigated. Experiments for the same water held in glass bottles were performed for comparison. Results showed that although THMs levels firstly increased in the presence of chlorine in copper pipe, faster decay of chlorine as compared to the glass bottle affected the rate of THMs formation. The analysis of water phase was supplemented by surface analysis of corrosion scales using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDX). The results showed the scales on the pipe surface mainly consisted of Cu(2)O, CuO and Cu(OH)(2) or CuCO(3). Designed experiments confirmed that the fast depletion of chlorine in copper pipe was mainly due to effect of Cu(2)O, CuO in corrosion scales on copper pipe. Although copper(II) and copper oxides showed effect on THMs formation, the rapid consumption of chlorine due to copper oxide made THM levels lower than that in glass bottles after 4h. The transformations of CF, DCBM and CDBM to BF were accelerated in the presence of copper(II), cupric oxide and cuprous oxide. The effect of pH on THMs formation was influenced by effect of pH on corrosion of copper pipe. When pH was below 7, THMs levels in copper pipe was higher as compared to glass bottle, but lower when pH was above 7.

  12. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  13. Physical properties of Ag-doped cadmium telluride thin films fabricated by closed-space sublimation technique

    Science.gov (United States)

    Abbas Shah, N.; Ali, A.; Aqili, A. K. S.; Maqsood, A.

    2006-05-01

    Cadmium telluride (CdTe) thin films were prepared by the closed-space sublimation (CSS) technique, using CdTe powder as evaporant onto substrates of water-white glass. In the next step, the annealed films at 450 °C for 30 min were dipped in AgNO 3-H 2O solution at room temperature. These films were again annealed at 450 °C for 1 h to obtain silver-doped samples. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrically i.e. DC electrical resistivity as well as photo resistivity by van der Pauw method at room temperature, dark conductivity, activation energy analysis as a function of temperature by two-probe method under vacuum, and spectrophotometry. The electron microprobe analyzer (EMPA) results showed an increase of Ag content composition in the samples by increasing the immersion time of films in solution. The Hall measurements indicated the increase in mobility and carrier concentrations of CdTe films by doping of Ag. A significant change in the shape and size of the CdTe grains were observed.

  14. Controlled cadmium telluride thin films for solar-cell applications. Final technical report, June 1, 1980-May 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Das, M.B.; Krishnaswamy, S.V.

    1981-06-01

    The objectives of this contract were to carry out a systematic study on the preparation and characterization of rf-sputtered CdTe thin films in order to establish reproducibility of the films with good electrical characteristics and to demonstrate the feasibility of fabricating various types of junctions and ohmic contacts with reproducible characteristics and finally to optimize the most promising solar cell structure in order to achieve an efficiency of 6% or higher. Efforts have been directed to the control of various sputtering parameters in order to obtain good quality films. The structure, crystallographic, compositional and electrical properties of cadmium telluride films sputtered over a wide range of conditions have been evaluated. A series of doping experiments have been carried out using primarily Cd, Te, In, as the n-type dopants and Cu as the p-type dopant. Of these dopants, indium doping provided films with which S.B. junctions can be obtained for further electrical characterization. Use of cadmium overpressure during CdTe:In sputtering has improved the film characteristics. Ion Beam Sputtering was attempted as an alternative technique for film preparation. For lack of time and due to a number of mechanical failures, no significant results could be obtained.

  15. A simple fast microwave-assisted synthesis of thermoelectric bismuth telluride nanoparticles from homogeneous reaction-mixture

    Science.gov (United States)

    Pradhan, Susmita; Das, Rashmita; Bhar, Radhaballabh; Bandyopadhyay, Rajib; Pramanik, Panchanan

    2017-02-01

    A new simple chemical method for synthesis of nanocrystalline bismuth telluride (Bi2Te3) has been developed by microwave assisted reduction of homogeneous tartrate complexes of bismuth and tellurium metal ions with hydrazine. The reaction is performed at pH 10. The nano-crystallites have rhombohedral phase identified by XRD. The size distribution of nanoparticle is narrow and it ranges between 50 to 70 nm. FESEM shows that the fine powders are composed of small crystallites. The TEM micrographs show mostly deformed spherical particles and the lattice fringes are found to be 0.137 nm. Energy dispersive X-ray spectroscopy (EDX) analysis shows the atomic composition ratio between bismuth and tellurium is 2:3. Thermoelectric properties of the materials are studied after sintering by spark plasma sintering method (SPS). The grain size of the material after sintering is in the nanometer range. The material shows enhanced Seebeck coefficient and electrical conductivity value at 300 K. The figure of merit is found to be 1.18 at 300 K.

  16. Bismuth telluride topological insulator nanosheet saturable absorbers for q-switched mode-locked Tm:ZBLAN waveguide lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiantao; Gross, Simon; Withford, Michael J.; Fuerbach, Alexander [Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) and MQ Photonics Research Centre, Dept. of Physics and Astronomy, Macquarie Univ., NSW (Australia); Zhang, Han; Guo, Zhinan [SZU-NUS Collaborative Innovation Centre for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education, College of Optoelectronic Engineering, Shenzhen Univ. (China)

    2016-08-15

    Nanosheets of bismuth telluride (Bi{sub 2}Te{sub 3}), a topological insulator material that exhibits broadband saturable absorption due to its non-trivial Dirac-cone like energy structure, are utilized to generate short pulses from Tm:ZBLAN waveguide lasers. By depositing multiple layers of a carefully prepared Bi{sub 2}Te{sub 3} solution onto a glass substrate, the modulation depth and the saturation intensity of the fabricated devices can be controlled and optimized. This approach enables the realization of saturable absorbers that feature a modulation depth of 13% and a saturation intensity of 997 kW/cm{sup 2}. For the first time to our knowledge, Q-switched mode-locked operation of a linearly polarized mid-IR ZBLAN waveguide chip laser was realized in an extended cavity configuration using the topological insulator Bi{sub 2}Te{sub 3}. The maximum average output power of the laser is 16.3 mW and the Q-switched and mode-locked repetition rates are 44 kHz and 436 MHz, respectively. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite

    Science.gov (United States)

    Chatterjee, Krishanu; Mitra, Mousumi; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2013-05-01

    Bismuth telluride (Bi2Te3) nanorods and polyaniline (PANI) nanoparticles have been synthesized by employing solvothermal and chemical oxidative processes, respectively. Nanocomposites, comprising structurally ordered PANI preferentially grown along the surface of a Bi2Te3 nanorods template, are synthesized using in situ polymerization. X-ray powder diffraction, UV-vis and Raman spectral analysis confirm the highly ordered chain structure of PANI on Bi2Te3 nanorods, leading to a higher extent of doping, higher chain mobility and enhancement of the thermoelectric performance. Above 380 K, the PANI-Bi2Te3 nanocomposite with a core-shell/cable-like structure exhibits a higher thermoelectric power factor than either pure PANI or Bi2Te3. At room temperature the thermal conductivity of the composite is lower than that of its pure constituents, due to selective phonon scattering by the nanointerfaces designed in the PANI-Bi2Te3 nanocable structures. The figure of merit of the nanocomposite at room temperature is comparable to the values reported in the literature for bulk polymer-based composite thermoelectric materials.

  18. Thermoelectric properties of n-type nanocrystalline bismuth-telluride-based thin films deposited by flash evaporation

    Science.gov (United States)

    Takashiri, M.; Takiishi, M.; Tanaka, S.; Miyazaki, K.; Tsukamoto, H.

    2007-04-01

    The thermal conductivity of n-type nanocrystalline bismuth-telluride-based thin films (Bi2.0Te2.7Se0.3) is investigated by a differential 3ω method at room temperature. The nanocrystalline thin films are grown on a glass substrate by a flash evaporation method, followed by hydrogen annealing at 250 °C. The structure of the thin films is studied by means of atomic force microscopy, x-ray diffraction, and energy-dispersive x-ray spectroscopy. The thin films exhibit an average grain size of 60 nm and a cross-plane thermal conductivity of 0.8 W/m K. The in-plane electrical conductivity and in-plane Seebeck coefficient are also investigated. Assuming that the in-plane thermal conductivity of the thin films is identical to that of the cross-plane direction, the in-plane figure of merit of the thin films is estimated to be ZT =0.7. As compared with a sintered bulk sample with average grain size of 30 μm and nearly the same composition as the thin films, the nanocrystalline thin films show approximately a 50% reduction in the thermal conductivity, but the electrical conductivity also falls 40%. The reduced thermal and electrical conductivities are attributed to increased carrier trapping and scattering in the nanocrystalline film.

  19. Microstructural analysis of lead telluride obtained by epitaxial grown; Analise microestrutural de telureto de chumbo obtido por crescimento epitaxial

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Miriam Kasumi

    2000-07-01

    Lead telluride (PbTe) films applied in devices to detect infrared radiation, were grown on silicon (100) and barium fluoride (111) substrates by Hot Wall Epitaxy (HWE). The films were investigated by X ray diffraction, to verify the crystallinity and the growth planes; scanning electron microscopy, to observe the topography; transmission electron microscopy, to study the films microstructure in the cross section and selected-area electron diffraction to analyse the growth directions. PbTe films grown on barium fluoride (BaF{sub 2}) show good crystallinity and homogeneity, their growth is according to Frank-van der Merwe's Model. On the other hand, PbTe films grown on silicon (Si) substrate were not so crystalline and homogeneous owing to the impurities presence, great difference in the substrate and film lattice parameters and the thermal expansion coefficient mismatch. On Si substrate the growth follows the Volmer-Weber Model (Island). X ray diffraction provided enough data for testing the crystallography quality and the scanning and transmission electron microscopy analyses completed the study. (author)

  20. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  1. Jiangxi Copper Corporation Builds 900,000-Ton Copper Production Capacity

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>The Eastward Refined Copper Expansion Pro- ject of Guixi Smelting Plant under Jiangxi Copper Corporation has output its first lot of Copper cathode,marking the company’s pos- session of a 900,000-ton copper production ca- pacity.Thus the company further strengthens its position as the top 3 of the copper world.

  2. Porphyry-copper mineralisation in the central Srednogorie zone, Bulgaria

    Science.gov (United States)

    Strashimirov, Strashimir; Petrunov, Rumen; Kanazirski, Milko

    2002-08-01

    The porphyry-copper systems in the central part of the Srednogorie zone (Bulgaria) are represented by three major deposits (Elatsite, Medet and Assarel) and several smaller deposits and occurrences, all of them within the Panagyurishte ore district. The hydrothermal systems are related to Late Cretaceous calc-alkaline igneous complexes. Ore mineralisation is developed predominantly in the apical parts of subvolcanic and intrusive bodies as well as within the volcanic and basement metamorphic rocks. Several of the porphyry systems are spatially associated with shallow-level intermediate and high-sulphidation volcanic-hosted epithermal deposits of economic importance, such as the major gold-copper mine at Chelopech located 10 km from the Elatsite porphyry-copper deposit. Mineralisation processes in the porphyry deposits start with intensive hydrothermal alteration of the wall rocks. K-silicate alteration is characteristic for pre-ore hydrothermal activity in all of them, and it is located mostly in their central parts. Propylitic alteration is prominent in the Medet and Assarel deposits. The Assarel deposit is located in the central part of a palaeovolcanic structure and shows a large spectrum of pre-ore alterations, including propylitic, sericitic, and advanced argillic assemblages. The initial stages of the hydrothermal systems are characterised by high temperatures (>550-500 °C) and highly saline (50-20 wt% NaCl equiv.) and vapour-rich fluids of likely magmatic origin. The composition of the fluids gradually changes from H2O-NaCl±FeCl2 to H2O-NaCl-KCl and H2O-NaCl-dominated as the fluids cool, react with wall rocks, and may become diluted with meteoric water. Fe-Ti-oxide mineral associations were formed early in all deposits, later followed, in the Elatsite deposit, by an assemblage of bornite, chalcopyrite, platinum group element (PGE) phases, Co-Ni thiospinels, Ag- and Bi-tellurides, and selenides. The main ore stage in all deposits is dominated by

  3. Secondary Copper Industry Entered Rapid Growth Period

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    In China’s copper output,secondary copper accounts for about 40%,for power cable industry,the usage percentage of secondary copper is about 50%.Under the favorable policy of the government to vigorously support recycling industry,secondary copper rod enterprises begin to expand,and are confident toward the industry’s potentials.

  4. Unravelling the Chemical Nature of Copper Cuprizone

    OpenAIRE

    Messori, L.; Casini, A.; C.Gabbiani; Sorace, L.; Muniz-Miranda, M.; Zatta, P

    2007-01-01

    During the last 50 years, formation of the highly chromogenic copper cuprizone complex has been exploited for spectrophotometric determinations of copper although the precise chemical nature of the resulting species has never been ascertained; we eventually show here, in contrast to current opinion, that copper cuprizone is a copper(III) complex.

  5. Secondary Copper Consumption and Location in China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> China is short of copper resources and is alsothe second largest copper consuming country inthe world.The way to overcome the contradic-tion between the resource shortage and fastgrowth in consumption is to import copper rawmaterial in large quantities.Since the 1990’s,China’s import quantity of copper scrap hasincreased considerably.During the last twoyears,China has imported copper scrap worthof US$2.25 billion,1.32 times of the value ofimported copper concentrates in the same pe-riod.China is one of the biggest copper scrap

  6. An Introduction to Copper Deposits in China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    There are 11 genetic types of copper deposit in China, three of which (porphyry,contact metasomatic and VMS types) are the most important. The copper deposits distribute widely both temporally and spatially in China. The features of copper ores in China are mostly poor in copper tenor and complex in metal associated. The copper metallogeny in China predominantly occurs in three metallogenic megadomains, namely the circum-Pacific, the paleo-Asian and the Tethys-Himalayan.

  7. Determination of the Origin of Crystal Orientation for Nanocrystalline Bismuth Telluride-Based Thin Films Prepared by Use of the Flash Evaporation Method

    Science.gov (United States)

    Takashiri, M.; Tanaka, S.; Miyazaki, K.

    2014-06-01

    We have investigated the origin of crystal orientation for nanocrystalline bismuth telluride-based thin films. Thin films of p-type bismuth telluride antimony (Bi-Te-Sb) and n-type bismuth telluride selenide (Bi-Te-Se) were fabricated by a flash evaporation method, with exactly the same deposition conditions except for the elemental composition of the starting powders. For p-type Bi-Te-Sb thin films the main x-ray diffraction (XRD) peaks were from the c-axis (Σ{00l}/Σ{ hkl} = 0.88) whereas n-type Bi-Te-Se thin films were randomly oriented (Σ{00l}/Σ{ hkl} = 0.40). Crystal orientation, crystallinity, and crystallite size were improved for both types of thin film by sintering. For p-type Bi-Te-Sb thin films, especially, high-quality structures were obtained compared with those of n-type Bi-Te-Se thin films. We also estimated the thermoelectric properties of the as-grown and sintered thin films. The power factor was enhanced by sintering; maximum values were 34.9 μW/cm K2 for p-type Bi-Te-Sb thin films at a sintering temperature of 300°C and 23.9 μW/cm K2 for n-type Bi-Te-Se thin films at a sintering temperature of 350°C. The exact mechanisms of film growth are not yet clear but we deduce the crystal orientation originates from the size of nano-clusters generated on the tungsten boat during flash evaporation.

  8. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  9. The Revovery of Copper and Cobalt from Oxidized Copper Ore and Converter Slag

    OpenAIRE

    ZİYADANOĞULLARI, Berrin; ZİYADANOĞULLARI, Recep

    1999-01-01

    The aim of this study was to develop a method for obtaining copper and cobalt from oxidized copper ore and converter slag. In order to convert the copper and cobalt into sulfate compounds the main step was to roast the samples obtained by sulfurization and transfer the samples into solution. First the oxidized copper ore was roasted, followed by the mixture of converter slag and oxidized copper ore. Since the levels of copper and cobalt were low, the sulfurization process was carri...

  10. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller;

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  11. Majorana Electroformed Copper Mechanical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.

    2012-04-30

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.

  12. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    can be successfully treated, emphasizing the importance of early diagnosis. Serum ferritin values, transferrin saturation and genetic analysis are used when diagnosing haemochromatosis. The diagnostics of Wilson's disease depends on the use of urinary copper values, serum ceruloplasmin and liver...

  13. Tip-force induced surface deformation in the layered commensurate tellurides NbA xTe 2 (A = Si, Ge) during atomic force microscopy measurements

    Science.gov (United States)

    Bengel, H.; Cantow, H.-J.; Magonov, S. N.; Monconduit, L.; Evain, M.; Whangbo, M.-H.

    1994-12-01

    The Te-atom surfaces of commensurate layered tellurides NbA xTe 2 ( A = Si, x = {1}/{2}; A = Ge, x = {1}/{3}, {2}/{5}, {3}/{7}) were examined by atomic force microscopy (AFM) at different applied forces. Although the bulk crystal structures show a negligible height corrugation in the surface Te-atom sheets, the AFM images exhibit dark linear patterns that become strongly pronounced at high applied forces (several hundreds nN). This feature comes about because the tip-sample force interactions induce a surface corrugation according to the local hardness variation of the surface.

  14. Acetic acid-confined synthesis of uniform three-dimensional (3D) bismuth telluride nanocrystals consisting of few-quintuple-layer nanoplatelets

    KAUST Repository

    Yuan, Qiang

    2011-01-01

    High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi2Te3) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi2Te3 nanocrystals as building blocks. © The Royal Society of Chemistry 2011.

  15. Mechanistic aspects of the isomerization of Z-vinylic tellurides double bonds in the synthesis of potassium Z-vinyltrifluoroborate salts

    Directory of Open Access Journals (Sweden)

    Botteselle Giancarlo V

    2008-02-01

    Full Text Available Abstract Through direct transmetalation reaction of Z-vinylic tellurides with nBuLi was observed the unexpected isomerization of double bonds leading to potassium E-vinyltrifluoroborates salts in low to moderate yields. Using EPR spin trapping experiments the radical species that promoted the stereoinversion of Z-vinylic organometallic species during the preparation of potassium vinyltrifluoroborate salts was identified. The experiments support the proposed mechanism, which is based on the homolytic cleavage of the TenBu bond.

  16. The 3-5 semiconductor solid solution single crystal growth. [low gravity float zone growth experiments using gallium indium antimonides and cadmium tellurides

    Science.gov (United States)

    Gertner, E. R.

    1980-01-01

    Techniques used for liquid and vapor phase epitaxy of gallium indium arsenide are described and the difficulties encountered are examined. Results show that the growth of bulk III-V solid solution single crystals in a low gravity environment will not have a major technological impact. The float zone technique in a low gravity environment is demonstrated using cadmium telluride. It is shown that this approach can result in the synthesis of a class of semiconductors that can not be grown in normal gravity because of growth problems rooted in the nature of their phase diagrams.

  17. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve

    Energy Technology Data Exchange (ETDEWEB)

    Mouden, Mohamed [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Ottervanger, Jan Paul; Timmer, Jorik R. [Isala klinieken, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Reiffers, Stoffer; Oostdijk, Ad H.J.; Jager, Pieter L. [Isala klinieken, Department of Nuclear Medicine, Zwolle (Netherlands); Boer, Menko-Jan de [University Medical Centre Nijmegen, Department of Cardiology, Nijmegen (Netherlands)

    2014-05-15

    Recently introduced ultrafast cardiac SPECT cameras with cadmium zinc telluride-based (CZT) detectors may provide superior image quality allowing faster acquisition with reduced radiation doses. Although the level of concordance between conventional SPECT and invasive fractional flow reserve (FFR) measurement has been studied, that between FFR and CZT-based SPECT is not yet known. Therefore, we aimed to assess the level of concordance between CZT SPECT and FFR in a large patient group with stable coronary artery disease. Both invasive FFR and myocardial perfusion imaging with a CZT-based SPECT camera, using Tc-tetrofosmin as tracer, were performed in 100 patients with stable angina and intermediate grade stenosis on invasive coronary angiography. A cut-off value of <0.75 was used to define abnormal FFR. The mean age of the patients was 64 ± 11 years, and 64 % were men. SPECT demonstrated ischaemia in 31 % of the patients, and 20 % had FFR <0.75. The concordance between CZT SPECT and FFR was 73 % on a per-patient basis and 79 % on a per-vessel basis. Discordant findings were more often seen in older patients and were mainly (19 %) the result of ischaemic SPECT findings in patients with FFR ≥0.75, whereas only 8 % had an abnormal FFR without ischaemia as demonstrated by CZT SPECT. Only 20 - 30 % of patients with intermediate coronary stenoses had significant ischaemia as assessed by CZT SPECT or invasive FFR. CZT SPECT showed a modest degree of concordance with FFR, which is comparable with previous results with conventional SPECT. Further investigations are particularly necessary in patients with normal SPECT and abnormal FFR, especially to determine whether these patients should undergo revascularization. (orig.)

  18. Downstream resource utilization following hybrid cardiac imaging with an integrated cadmium-zinc-telluride/64-slice CT device

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, Michael; Kaufmann, Philipp A. [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland); Ghadri, Jelena R.; Wolfrum, Mathias; Kuest, Silke M.; Pazhenkottil, Aju P.; Nkoulou, Rene N.; Herzog, Bernhard A.; Gebhard, Catherine; Fuchs, Tobias A.; Gaemperli, Oliver [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland)

    2012-03-15

    Low yield of invasive coronary angiography and unnecessary coronary interventions have been identified as key cost drivers in cardiology for evaluation of coronary artery disease (CAD). This has fuelled the search for noninvasive techniques providing comprehensive functional and anatomical information on coronary lesions. We have evaluated the impact of implementation of a novel hybrid cadmium-zinc-telluride (CZT)/64-slice CT camera into the daily clinical routine on downstream resource utilization. Sixty-two patients with known or suspected CAD were referred for same-day single-session hybrid evaluation with CZT myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA). Hybrid MPI/CCTA images from the integrated CZT/CT camera served for decision-making towards conservative versus invasive management. Based on the hybrid images patients were classified into those with and those without matched findings. Matched findings were defined as the combination of MPI defect with a stenosis by CCTA in the coronary artery subtending the respective territory. All patients with normal MPI and CCTA as well as those with isolated MPI or CCTA finding or combined but unmatched findings were categorized as ''no match''. All 23 patients with a matched finding underwent invasive coronary angiography and 21 (91%) were revascularized. Of the 39 patients with no match, 5 (13%, p < 0.001 vs matched) underwent catheterization and 3 (8%, p < 0.001 vs matched) were revascularized. Cardiac hybrid imaging in CAD evaluation has a profound impact on patient management and may contribute to optimal downstream resource utilization. (orig.)

  19. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    Energy Technology Data Exchange (ETDEWEB)

    Verger, Antoine; Karcher, Gilles [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Djaballah, Wassila [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Fourquet, Nicolas [Clinique Pasteur, Toulouse (France); Rouzet, Francois; Le Guludec, Dominique [AP-HP, Hopital Bichat, Department of Nuclear Medicine, Paris (France); INSERM U 773 Inserm and Denis Diderot University, Paris (France); Koehl, Gregoire; Roch, Veronique [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Imbert, Laetitia [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Centre Alexis Vautrin, Department of Radiotherapy, Vandoeuvre (France); Poussier, Sylvain [INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Fay, Renaud [INSERM, Centre d' Investigation Clinique CIC-P 9501, Nancy (France); Marie, Pierre-Yves [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); INSERM U961, Nancy (France); Hopital de Brabois, CHU-Nancy, Medecine Nucleaire, Vandoeuvre-les-Nancy (France)

    2013-03-15

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving {sup 201}Tl (n = 120) or {sup 99m}Tc-sestamibi injected at low dose at stress ({sup 99m}Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ({sup 99m}Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, {sup 201}Tl 92 %, {sup 99m}Tc-Low 86 %, {sup 99m}Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the {sup 201}Tl or {sup 99m}Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 {+-} 101 kcounts) and dramatically enhanced with CZT SPECT (+279 {+-} 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  20. The energetic impact of small Cd{sub x}Te{sub y} clusters on Cadmium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Miao, E-mail: M.Yu2@lboro.ac.uk; Kenny, Steven D., E-mail: S.D.Kenny@lboro.ac.uk

    2015-06-01

    Cadmium Telluride (CdTe) is an excellent material for low-cost, high efficiency thin film solar cells. It is important to do research on how these defects are formed during the growth process, since defects lower the efficiency of solar cells. In this work we use computer simulation to predict the growth of a sputter deposited CdTe thin film. Single deposition tests have been performed, to study the behaviour of deposited clusters under different conditions. We deposit a Cd{sub x}Te{sub y} (x,y = 0,1) cluster onto the (100) and (111) Cd and Te terminated surfaces with energies ranging from 1 to 40 eV. More than 1000 simulations have been performed for each of these cases so as to sample the possible deposition positions and to collect sufficient statistics. The results show that Cd atoms are more readily sputtered from the surface than Te atoms and the sticking probability is higher on Te terminated surfaces than Cd terminated surfaces. They also show that increasing the deposition energy typically leads to an increase in the number of atoms sputtered from the system and tends to decrease the number of atoms that sit on or in the surface layer, whilst increasing the number of interstitials observed. - Highlights: • Deposition of Cd, Te and CdTe particles on (100) and (111) Cd and Te surfaces • Cd atoms are more readily sputtered from the surface than Te atoms. • The Te terminated surfaces have a higher sticking probability than the Cd ones. • Higher impact energies imply more sputtered atoms from the surface.

  1. Compositional analysis of electrodeposited bismuth telluride thermoelectric thin films using combined electrochemical quartz crystal microgravimetry--stripping voltammetry.

    Science.gov (United States)

    Ham, Sunyoung; Jeon, Soyeon; Lee, Ungki; Park, Minsoon; Paeng, Ki-Jung; Myung, Noseung; Rajeshwar, Krishnan

    2008-09-01

    Bismuth telluride (Bi 2Te 3 ) is a benchmark material for thermoelectric power generation and cooling applications. Electrodeposition is a versatile technique for preparing thin films of this material; however, it affords films of variable composition depending on the preparation history. A simple and rapid assay of electrodeposited films, therefore, has both fundamental and practical importance. In this study, a new protocol for the electroanalysis of Bi 2Te 3 thin films is presented by combining the two powerful and complementary techniques of electrochemical quartz crystal microgravimetry (EQCM) and stripping voltammetry. First, any free (and excess) tellurium in the electrodeposited film was reduced to soluble Te ( 2- ) species by scanning to negative potentials in a 0.1 M Na 2SO 4 electrolyte, and the accompanying frequency increase (mass loss) was used to determine the content of free tellurium. The film was again subjected to cathodic stripping in the same medium (to generate Bi (0) and soluble Te (2-) from the Bi 2 Te 3 film component of interest), and the EQCM frequency change was used to determine the content of chemically bound Te in the Bi 2Te 3 thin film and thereby the compound stoichiometry. Finally, the EQCM frequency change during Bi oxidation to Bi (3+) and the difference between total Bi and Bi in Bi 2Te 3 resulted in the assay of free (excess) Bi in the electrodeposited film. Problems associated with the chemical/electrochemical stability of the free Bi species were circumvented by a flow electroanalysis approach. Data are also presented on the sensitivity of electrodeposited Bi 2Te 3 film composition to the electrodeposition potential. This newly developed method can be used for the compositional analysis of other thermoelectric thin-film material candidates in general.

  2. Use of copper radioisotopes in investigating disorders of copper metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Rusden Campus, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes {sup 64}Cu (t 1/2 = 12.8 hr) and {sup 67}Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  3. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  4. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  5. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  6. Effect of preparation procedure and nanostructuring on the thermoelectric properties of the lead telluride-based material system AgPbmBiTe2+m (BLST-m)

    Science.gov (United States)

    Falkenbach, Oliver; Schmitz, Andreas; Hartung, David; Dankwort, Torben; Koch, Guenter; Kienle, Lorenz; Klar, Peter J.; Mueller, Eckhard; Schlecht, Sabine

    2016-06-01

    We report on the preparation and thermoelectric properties of the quaternary system AgPbmBiTe2+m (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Room temperature Hall measurements yielded carrier concentrations in the order of 1019 cm-3, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.

  7. Influence of proton-pump inhibitors on stomach wall uptake of 99mTc-tetrofosmin in cadmium-zinc-telluride SPECT myocardial perfusion imaging.

    Science.gov (United States)

    Mouden, Mohamed; Rijkee, Karlijn S; Schreuder, Nanno; Timmer, Jorik R; Jager, Pieter L

    2015-02-01

    Proton-pump inhibitors (PPIs) induce potentially interfering stomach wall activity in single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) with technetium-99m ((99m)Tc)-sestamibi. However, no data are available for (99m)Tc-tetrofosmin. We assessed the influence of prolonged (>2 weeks) PPI use on the stomach wall uptake of (99m)Tc-tetrofosmin in patients referred for stress MPI with a cadmium-zinc-telluride-based SPECT camera and its relation with dyspepsia symptoms. Consecutive patients (n=127) underwent a 1-day adenosine stress-first SPECT-MPI with (99m)Tc-tetrofosmin, of whom 54 (43%) patients had been on PPIs for more than 2 weeks. Stomach wall activity was identified on stress SPECT using computed tomographic attenuation maps and was scored using a four-point grading scale into clinically relevant (scores 2 or 3) or nonrelevant (scores 0 or 1).Patients on PPIs had stomach wall uptake more frequently as compared with patients not using PPIs (22 vs. 7%, P=0.017). Dyspepsia was similar in both groups. Prolonged use of PPIs is associated with stomach wall uptake of (99m)Tc-tetrofosmin in stress cadmium-zinc-telluride-SPECT images. Gastric symptoms were not associated with stomach wall uptake.

  8. Diaroyl Tellurides: Synthesis, Structure and NBO Analysis of (2-MeOC6H4CO2Te – Comparison with Its Sulfur and Selenium Isologues. The First Observation of [MgBr][R(C=TeO] Salts

    Directory of Open Access Journals (Sweden)

    Fumio Ando

    2009-07-01

    Full Text Available A series of aromatic diacyl tellurides were prepared in moderate to good yields by the reactions of sodium orpotassium arenecarbotelluroates with acyl chlorides in acetonitrile. X-ray structure analyses and theoretical calculations of 2-methoxybenzoic anhydride and bis(2-methoxybenzoyl sulfide, selenide and telluride were carried out. The two 2-MeOC6H4CO moieties of bis(2-methoxybenzoyl telluride are nearly planar and the two methoxy oxygen atoms intramolecularly coordinate to the central tellurium atom from both side of C(11-Te(11-C(22 plane. In contrast, the oxygen and sulfur isologues (2-MeOC6H4CO2E (E = O, S, show that one of the two methoxy oxygen atoms contacts with the oxygen atom of the carbonyl group connected to the same benzene ring. The structure of di(2-methoxybenzoyl selenide which was obtained by MO calculation resembles that of tellurium isologues rather than the corresponding oxygen and sulfur isologues. The reactions of di(aroyl tellurides with Grignard reagents lead to the formation of tellurocarboxylato magnesium complexes [MgBr][R(C=TeO].

  9. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll...

  10. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity...

  11. Testing Corrosion Inhibitors for the Conservation of Archaeological Copper and Copper Alloys

    Directory of Open Access Journals (Sweden)

    Robert B. Faltermeier

    1997-11-01

    Full Text Available This is a synopsis of the Ph.D. research undertaken at the Institute of Archaeology, University College London. The aim was to evaluate corrosion inhibitors for use in the conservation of copper and copper alloy archaeological artefacts. The objective of this work was to acquire an insight into the performance of copper corrosion inhibitors, when applied to archaeological copper.

  12. The link between copper and Wilson's disease.

    Science.gov (United States)

    Purchase, Rupert

    2013-01-01

    Wilson's disease (hepatolenticular degeneration) is a rare inherited autosomal recessive disorder of copper metabolism leading to copper accumulation in the liver and extrahepatic organs such as the brain and cornea. Patients may present with combinations of hepatic, neurological and psychiatric symptoms. Copper is the therapeutic target for the treatment of Wilson's disease. But how did copper come to be linked with Wilson's disease? The answer encompasses a study of enzootic neonatal ataxia in lambs in the 1930s, the copper-chelating properties of British Anti-Lewisite, and the chemical analysis for copper of the organs of deceased Wilson's disease patients in the mid-to-late 1940s. Wilson's disease is one of a number of copper-related disorders where loss of copper homeostasis as a result of genetic, nutritional or environmental factors affects human health.

  13. Determination of copper in clarified apple juices.

    Science.gov (United States)

    Zeiner, Michaela; Juranović Cindrić, Iva; Kröppl, Michaela; Stingeder, Gerhard

    2010-03-24

    Inorganic copper compounds are not considered as synthetic fertilizers for apple trees as they are traditional fertilizers. Thus, they are used in organic farming for soil or foliar applications. The European Union is for health reasons interested in reducing copper in apple orchards. Because the fertilizer application rate affects the nutrition of apples, the applied copper might also be reflected in the copper concentration of apple juices. Thus, the determination of copper is of concern for investigating the application of copper-containing fertilizers. Samples of clarified apple juice commercially available in the European market were analyzed for their copper content. Prior to quantification by inductively coupled plasma-optical emission spectrometry, the juices were processed by a microwave-assisted digestion system using HNO(3). All samples were also measured directly after dilution with HNO(3). The copper concentrations measured using both methods were all below the limit of detection (17 microg/L).

  14. Synthesis of aminoarenethiolato-copper(I) complexes

    NARCIS (Netherlands)

    Sperotto, E.; van Klink, G.P.M.; van Koten, G.

    2008-01-01

    Copper(I)-mediated reactions have recently become the choice for large industrial scale applications, since copper is environmentally friendly and cheaper than other transition metals already explored. However, most organocopper compounds still present several limitations including the sensitivity t

  15. Global assessment of undiscovered copper resources

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Deposits, prospects, and permissive tracts for porphyry and sediment-hosted copper resources worldwide, with estimates of undiscovered copper resources. pCu_tracts...

  16. EFFECT OF COPPER ON PASSIVITY AND CORROSION ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... metallic copper enriched on the surface film of austenitic stainless ... Dispersed inclusions of this phase can influence the stability of .... two microstructures showed that copper concentration possessed a non-uniform chemical.

  17. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  18. Preparation of Pure Copper Powder from Acidic Copper Chloride Waste Etchant

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder.Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling.

  19. From front contact to back contact in cadmium telluride/cadmium sulfide solar cells: Buffer layer and interfacial layer

    Science.gov (United States)

    Roussillon, Yann

    Cadmium telluride (CdTe) polycrystalline thin film solar cells, with their near optimum direct band-gap of 1.4 eV matching almost perfectly the sun radiation spectrum, are a strong contender as a less expensive alternative, among photovoltaic materials, than the more commonly used silicon-based cells. Polycrystalline solar cells are usually deposited over large areas. Such devices often exhibit strong fluctuations (nonuniformities) in electronic properties, which originate from deposition and post-deposition processes, and are detrimental to the device performance. Therefore their effects need to be constrained. A new approach in this work was, when a CdS/CdTe solar cell is exposed to light and immersed in a proper electrolyte, fluctuations in surface potential can drive electrochemical reactions which result in a nonuniform interfacial layer that could balance the original nonuniformity. This approach improved the device efficiency for CdS/CdTe photovoltaic devices from 1--3% to 11--12%. Cadmium sulfide (CdS), used as a window layer and heterojunction partner to CdTe, is electrically inactive and absorb light energies above its band-gap of 2.4 eV. Therefore, to maximize the device efficiency, a thin US layer needs to be used. However, more defects, such as pinholes, are likely to be present in the film, leading to shunts. A resistive transparent layer, called buffer layer, is therefore deposited before CdS. A key observation was that the open-circuit voltage (Voc) for cells made using a buffer layer was high, around 800 mV, similar to cells without buffer layer after Cu doping. The standard p-n junction theory cannot explain this phenomena, therefore an alternative junction mechanism, similar to metal-insulator-semiconductor devices, was developed. Furthermore, alternative Cu-free back-contacts were used in conjunction with a buffer layer. The Voc of the devices was found to be dependent of the back contact used. This change occurs as the back-contact junction

  20. Size and temperature dependence of the photoluminescence properties of NIR emitting ternary alloyed mercury cadmium telluride quantum dots

    Science.gov (United States)

    Jagtap, Amardeep M.; Chatterjee, Abhijit; Banerjee, Arup; Babu Pendyala, Naresh; Koteswara Rao, K. S. R.

    2016-04-01

    Exciton-phonon coupling and nonradiative relaxation processes have been investigated in near-infrared (NIR) emitting ternary alloyed mercury cadmium telluride (CdHgTe) quantum dots. Organically capped CdHgTe nanocrystals of sizes varying from 2.5-4.2 nm have been synthesized where emission is in the NIR region of 650-855 nm. Temperature-dependent (15-300 K) photoluminescence (PL) and the decay dynamics of PL at 300 K have been studied to understand the photophysical properties. The PL decay kinetics shows the transition from triexponential to biexponential on increasing the size of the quantom dots (QDs), informing the change in the distribution of the emitting states. The energy gap is found to be following the Varshni relation with a temperature coefficient of 2.1-2.8  ×  10-4 eV K-1. The strength of the electron-phonon coupling, which is reflected in the Huang and Rhys factor S, is found in the range of 1.17-1.68 for QDs with a size of 2.5-4.2 nm. The integrated PL intensity is nearly constant until 50 K, and slowly decreases up to 140 K, beyond which it decreases at a faster rate. The mechanism for PL quenching with temperature is attributed to the presence of nonradiative relaxation channels, where the excited carriers are thermally stimulated to the surface defect/trap states. At temperatures of different region (<140 K and 140-300 K), traps of low (13-25 meV) and high (65-140 meV) activation energies seem to be controlling the quenching of the PL emission. The broadening of emission linewidth is found to due to exciton-acoustic phonon scattering and exciton-longitudinal optical (LO) phonon coupling. The exciton-acoustic phonon scattering coefficient is found to be enhanced up to 55 μeV K-1 due to a stronger confinement effect. These findings give insight into understanding the photophysical properties of CdHgTe QDs and pave the way for their possible applications in the fields of NIR photodetectors and other optoelectronic devices.

  1. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions.

    Science.gov (United States)

    Glick, Stephen J; Didier, Clay

    2013-10-14

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5-3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion

  2. Facile synthesis and thermoelectric studies of n-type bismuth telluride nanorods with cathodic stripping Te electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guoqiu [School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu (China); Li, Yusong [School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu (China); Department of Chemistry and Chemical Engineering, Southeast University, 210092 Jiangsu (China); Bao, Ning [School of Public Health, Nantong University, Nantong 226019, Jiangsu (China); Miao, Jianwen [School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu (China); Ge, Cunwang, E-mail: gecunwang@ntu.edu.cn [School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu (China); Wang, Yihong [Department of Chemistry and Chemical Engineering, Southeast University, 210092 Jiangsu (China)

    2014-01-15

    Bismuth telluride (Bi{sub 2}Te{sub 3}) nanorods (NRs) of n-type thermoelectric materials were prepared using an electrogenerated precursor of tellurium electrode in the presence of Bi{sup 3+} and mercapto protecting agent in aqueous solution under atmosphere condition. The optimal preparation conditions were obtained with ratio of Bi{sup 3+} to mercapto group and Te coulomb by photoluminescence spectra. The mechanism for generation of Bi{sub 2}Te{sub 3} precursor was investigated via the cyclic voltammetry. The highly crystalline rhombohedral structure of as-prepared Bi{sub 2}Te{sub 3} NRs with the shell of Bi{sub 2}S{sub 3} was evaluated with high resolution transmission electron microscopy (HRTEM) and powder X-ray diffraction (XRD) spectroscopy. The near-infrared absorption of synthetic Bi{sub 2}Te{sub 3} NRs was characterized with spectrophotometer to obtain information of electron at interband transition. The thermoelectric performance of Bi{sub 2}Te{sub 3} NRs was assessed with the result of electrical resistivity, Seebeck coefficient, thermal conductivity, and the figure of merit ZT parameters, indicating that thermoelectric performance of as-prepared Bi{sub 2}Te{sub 3} nanocrystals was improved by reducing thermal conductivity while maintaining the power factor. - Graphical abstract: The nanorods of n-type chalcogenides semiconductors of Bi{sub 2}Te{sub 3} are prepared using electrochemical technique with Te electrode. The highly crystalline rhombohedral structure of Bi{sub 2}Te{sub 3} nanorods with the shell of Bi{sub 2}S{sub 3} is demonstrated. The thermoelectric measurement indicated that thermoelectric performance of Bi{sub 2}Te{sub 3} NRs was improved by a highly reduced thermal conductivity while maintaining the power factor. - Highlights: • The n-type Bi{sub 2}Te{sub 3} nanorods are prepared using an electrogenerated precursor. • The rhombohedral structure of Bi{sub 2}Te{sub 3} nanorods with the shell of Bi{sub 2}S{sub 3} is demonstrated. • Bi

  3. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Peng Hao; Levin, Craig S, E-mail: haopeng@stanford.ed, E-mail: cslevin@stanford.ed [Department of Radiology, Molecular Imaging Program, Stanford University School of Medicine, Stanford, CA 94305 (United States)

    2010-05-07

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 x 15 cm{sup 2} area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve {approx}32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be {approx}94.2 kcts s{sup -1} (breast volume: 720 cm{sup 3} and activity concentration: 3.7 kBq cm{sup -3}) for a {approx}10% energy window around 511 keV and {approx}8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity ({sigma}{sub rms}/mean) {<=} 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres

  4. Design study of a high-resolution breast-dedicated PET system built from cadmium zinc telluride detectors

    Science.gov (United States)

    Peng, Hao; Levin, Craig S.

    2010-05-01

    We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The proposed system consists of two 4 cm thick 12 × 15 cm2 area cadmium zinc telluride (CZT) panels with adjustable separation, which can be put in close proximity to the breast and/or axillary nodes. Unique characteristics distinguishing the proposed system from previous efforts in breast-dedicated PET instrumentation are the deployment of CZT detectors with superior spatial and energy resolution, using a cross-strip electrode readout scheme to enable 3D positioning of individual photon interaction coordinates in the CZT, which includes directly measured photon depth-of-interaction (DOI), and arranging the detector slabs edge-on with respect to incoming 511 keV photons for high photon sensitivity. The simulation results show that the proposed CZT dual-panel PET system is able to achieve superior performance in terms of photon sensitivity, noise equivalent count rate, spatial resolution and lesion visualization. The proposed system is expected to achieve ~32% photon sensitivity for a point source at the center and a 4 cm panel separation. For a simplified breast phantom adjacent to heart and torso compartments, the peak noise equivalent count (NEC) rate is predicted to be ~94.2 kcts s-1 (breast volume: 720 cm3 and activity concentration: 3.7 kBq cm-3) for a ~10% energy window around 511 keV and ~8 ns coincidence time window. The system achieves 1 mm intrinsic spatial resolution anywhere between the two panels with a 4 cm panel separation if the detectors have DOI resolution less than 2 mm. For a 3 mm DOI resolution, the system exhibits excellent sphere resolution uniformity (σrms/mean) <= 10%) across a 4 cm width FOV. Simulation results indicate that the system exhibits superior hot sphere visualization and is expected to visualize 2 mm diameter spheres with a 5:1 activity concentration ratio within roughly 7 min

  5. Coating of a steel wire with copper

    Science.gov (United States)

    Vdovin, K. N.; Dubskii, G. A.; Nefed'ev, A. A.; Derevyanko, D. V.

    2016-03-01

    The process of coating of a steel wire with liquid copper at a high speed (>1 m/s) is considered. The results of long-term studies of copperizing under laboratory conditions and electron-microscopic investigation of the copper-steel adhesion are used to develop a mathematical model for coating of a steel wire with copper and to create a commercial setup to implement this process.

  6. Canine Models for Copper Homeostasis Disorders

    OpenAIRE

    Xiaoyan Wu; Leegwater, Peter A. J.; Hille Fieten

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper me...

  7. 49 CFR 192.279 - Copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings or... heavier wall pipe listed in Table C1 of ASME/ANSI B16.5. [Amdt. 192-62, 54 FR 5628, Feb. 6, 1989, as...

  8. Modulation of tau phosphorylation by environmental copper

    OpenAIRE

    Voss, Kellen; Harris, Christopher; Ralle, Martina; Duffy, Megan; Murchison, Charles; Joseph F. Quinn

    2014-01-01

    Background The transition metal copper enhances amyloid β aggregation and neurotoxicity, and in models of concomitant amyloid and tau pathology, copper also promotes tau aggregation. Since it is not clear if the effects of environmental copper upon tau pathology are dependent on the presence of pathological amyloid β, we tested the effects of copper overload and complexing in disease models which lack pathological amyloid β. Methods We used cell culture and transgenic murine models to test th...

  9. Canine Models for Copper Homeostasis Disorders

    OpenAIRE

    Xiaoyan Wu; Leegwater, Peter A.J.; Hille Fieten

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper me...

  10. Tensile behavior of nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Weertman, J.R. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Eastman, J.A. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering]|[Argonne National Lab., IL (United States). Materials Science Div.

    1995-11-01

    High density nanocrystalline copper produced by inert gas condensation was tested in tension. Displacements were measured using foil strain gauges, which greatly improved the accuracy of the strain data. The Young`s modulus of nanocrystalline copper was found to be consistent with that of coarse-grained copper. Total elongations of {approx} 1% were observed in samples with grain sizes less than 50 nm, while a sample with a grain size of 110 nm exhibited more than 10% elongation, perhaps signifying a change to a dislocation-based deformation mechanism in the larger-grained material. In addition, tensile tests were performed as a function of strain rate, with a possible trend of decreased strength and increased elongation as the strain rate was decreased.

  11. Monitoring copper in Wilson's disease.

    Science.gov (United States)

    Walshe, J M

    2010-01-01

    Monitoring copper metabolism in patients with Wilson's disease is not an exact science. At present, there are no simple methods of estimating the total body load of this metal. Indirect methods must therefore be used. A survey of the current literature shows that most approaches rely on the determination of blood and urine copper concentration. Both these should decrease with treatment. In parallel with decreased copper concentration, there should be subsequent improvement in more routine laboratory tests including liver and renal function, blood count parameters, and clotting factors. Lack of compliance is revealed by a reversal of this trend. This chapter critically reviews current testing methods and describes other approaches that may be helpful.

  12. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  13. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  14. LIWU Copper Plans to Get Listed

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>According to recently-released "Notice con-cerning Environmental Protection Checks for IPO of Sichuan LIWU Copper Co., Ltd.", Sichuan LIWU Copper Co., Ltd. (hereinafter referred to as LIWU Copper) plans to issue 68 million shares, and all the funds raised will be

  15. Canine Models for Copper Homeostasis Disorders

    NARCIS (Netherlands)

    Wu, Xiaoyan; Leegwater, Peter A J|info:eu-repo/dai/nl/074236539; Fieten, Hille|info:eu-repo/dai/nl/314112596

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurolog

  16. Extra-Hepatic Storage of Copper

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else; Horn, N.

    1975-01-01

    The distribution of copper among the organs of an aborted, male foetus, expected to develop Menkes' syndrome, was entirely different from the distribution in 4 normal foetuses. Copper concentrations determined by neutron activation analysis showed a considerably reduced content in the liver......, but increased concentrations in the other organs analysed; total foetal copper was normal....

  17. Quanwei Copper Processing Base Put Into Operation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>Quanwei (Tongling) Copper Co.,Ltd’s copper processing base in Tongling of Anhui Province has been put into operation at the end of De- cember last year. It is reported that the copper processing project, invested by Zhengwei (Shenzhen) Technology

  18. Study on copper adsorption on olivine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The copper adsorption on olivine supplied by A/S Olivine production plant at Aheim in western Norway has been studied. The factors which affect the uptake of copper have been evaluated. The results reveal that the equilibrium pH in aqueous solution has the greatest influence on the copper adsorption thanks to the competitive adsorption between proton and copper ions, and the adsorption of copper to olivine increases rapidly with the pH increasing from 4 to 6. The initial copper concentration and olivine dose also possess significant effect on copper adsorption. The adsorption efficieny of copper increases with the increase of olivine dose or the decrease of initial copper concentration at the same pH. The ionic strength effect on the adsorption has also been investigated, but it owns little effect on the adsorption process of copper due to the formation of inner sphere surface complexation of copper on olivine. The experimental data show that olivine has a high acid buffer capacity and is an effective adsorbent for copper.

  19. Canine Models for Copper Homeostasis Disorders

    NARCIS (Netherlands)

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurolog

  20. Preparation of Copper-loaded Microcapsule Formulations

    Directory of Open Access Journals (Sweden)

    Nenad Jalšenjak

    2011-06-01

    Full Text Available Novel copper-loaded chitosan or chitosan/alginate based microcapsules formulations have been presented. It was shown that prolonged release of copper from microcapsules accompanied with possible prolonged presence of copper on leaves is useful in crop protection.

  1. Preparation of Copper-loaded Microcapsule Formulations

    Directory of Open Access Journals (Sweden)

    Nenad Jalšenjak

    2014-02-01

    Full Text Available Novel copper-loaded chitosan or chitosan/alginate based microcapsules formulations have been presented. It was shown that prolonged release of copper from microcapsules accompanied with possible prolonged presence of copper on leaves is useful in crop protection.

  2. Canine Models for Copper Homeostasis Disorders

    NARCIS (Netherlands)

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and

  3. Copper coating specification for the RHIC arcs

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  4. Distribution of Copper in Rats Submitted to Treatment With Copper Aspirinate

    OpenAIRE

    LIU, Weiping; Yang, Yikun; Xiong, Huizhou; Lu, Ying; Yang, Rong

    1998-01-01

    The distribution of copper in Sprague – Dawley rats following a three month oral administration of 0,10 or 50mg/kg copper aspirinate has been investigated. Metal content was determined by ICP – AES in blood, brain, kidney, liver, lung, spleen, and dejection. The results show that treatment with copper aspirinate did not cause accumulation of copper in rats and excess ingested copper was excreted through feces.

  5. Chinalco Straightened Out Copper Assets, and Delegated Stock Equity of Yunnan Copper

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Immediately after the news that Chinalco transferred 58%stock equity of Yunnan Copper Group to its wholly-owned subsidiary China Copper Corporation Limited free of charge was disclosed on July 9,many individual investors couldn’t help but to think:Does it mean China Copper Corporation Limited will assemble assets for overall listing?At present,among main copper business companies under China Copper Corporation

  6. A copper vapor laser by using a copper-vapor-complex reaction at a low temperature

    OpenAIRE

    Kano, Toshiyuki; Taniguchi, Hiroshi; Saito, Hiroshi

    1987-01-01

    A copper vapor laser performance by using ametal-vapor-complex reaction (Cu+AlBr3) is reported. The laser operation is obtained at a low temperature without externalheating because of the AlBr3 vapors evaporating at a room temperature. The copper vapor laser using this metal-vapor-complex reaction has an advantage of deposition-free of a metallic copper to the laser tube wall, which is different from the copper halide and the organometallic copper lasers.

  7. Copper metabolism and copper-mediated alterations in the metabolism of cultured astrocytes

    OpenAIRE

    Scheiber, Ivo Florin

    2012-01-01

    Copper is an essential element that is required for a variety of important cellular functions. Since not only copper deficiency, but also excess of copper can seriously affect cellular functions, cellular copper metabolism is tightly regulated. Disturbances of copper homeostasis are the underlying defect of the inherited diseases Menkes and Wilson s disease and have also been linked to several neurodegenerative diseases including Alzheimer s disease and Parkinson s disease. Known astrocytes f...

  8. Electrochemical nucleation and growth of copper and copper alloys

    Science.gov (United States)

    Shao, Wenbo

    This dissertation aims to contribute to a fundamental understanding of the physicochemical processes occurring in electrochemical nucleation and growth. To this end, the effects of various anions (chloride (Cl-), sulfate (SO42-) and sulfamate (NH2SO 3-)) on the electrochemical kinetics and the mechanism of copper reduction, as well as on the microstructure of the resulting films, were studied. On the basis of this work, the deposition of copper alloys (Cu-Ag with positive heat of mixing, Cu-Au with negative heat of mixing) was investigated with the main objective to achieve an insight on the role of solid state thermodynamics on the electrocrystallization process. Chloride ions cause two competing effects: at low chloride concentration the formation of an adsorbed chloride layer introduces an additional reaction pathway, resulting in an overall depolarization of the reduction process with no significant change of the Tafel slope. At high chloride concentration, complexation phenomena induce a cathodic polarization of the deposition process and a decrease in the Tafel slope. Chlorides cause a decrease in the density and an increased size of copper nuclei. Sulfamate depolarizes copper reduction the most and results in the largest nucleus density. Chloride promotes the faceting, and dendritic growth of copper deposits along direction by introducing interfacial anisotropy. Addition of Ag in the solution or in the electrode substrate enhances copper deposition and results in an additional reduction peak. Codeposition of Cu-Ag increases nucleus density and decreases nucleus size. Such enhancement of copper deposition, the increase in nucleus density and the decrease in nucleus size by Ag could be due to the continued formation of a surface alloy of Cu-Ag and the fast interface dynamics of Ag deposition. Cu can be underpotentially codeposited in the Cu-Au alloy. Homogeneous solid solutions are grown under conditions of underpotential deposition of Cu, while precipitation

  9. Preparation, crystal structures, experimental and theoretical electronic band structures of cobalt tellurides in the composition range CoTe{sub 1.3}-CoTe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muhler, M. [Institut fuer Technische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Bensch, W.; Schur, M. [Institut fuer Anorganische Chemie, Christian-Albrechts-Universitaet Kiel, Olshausenstrasse 40, D-24098 Kiel (Germany)

    1998-04-06

    Cobalt tellurides in the composition range CoTe{sub 1.3}-CoTe{sub 2} crystallize in a CdI{sub 2}-type structure with short intra- and interslab Te-Te contacts indicating a polymeric network with multiple Te-Te bonds explaining the very low c/a values of 1.38 to 1.41 of the hexagonal cells. Single-crystal x-ray investigations performed on CoTe{sub 2} confirm the marcasite-type structure in the centrosymmetric space group Pnnm. Experimental valence band spectra (UPS) confirm that the Co tellurides in the composition range CoTe{sub x} (1.3 < x < 2) are metals. The emission at the Fermi level E{sub F} decreases with the Te content and is due to Co 3d and Te 5p states. This assignment is supported by the results of the calculated density of states curve (DOS) which demonstrates that Te p states contribute about 50% in the CdI{sub 2}-type and about 35% in the marcasite-type structure. The Te d states contribute about 15% to the total Te contributions. This behaviour cannot be understood on the basis of a simple tight-binding description, ignoring d-valence states of Te. Core level spectra (XPS) suggest that all CoTe{sub x} samples are best described as intermetallic compounds. Small chemical shifts between the different samples are mainly due to the different Madelung contributions rather than to changes of the electron density located on the Co atoms. An oxidation number for Te <-1 in all CoTe{sub x} samples is deduced, in good agreement with the value of about -1.3 for the Te in CoTe{sub 2} that would be deduced from the relation between the Te-Te distances versus oxidation states of the anion in (Te{sub 2}){sup -11}, Te{sup -11}. The three-dimensional character of the Co tellurides deduced from the crystal structure is further confirmed by the calculated energy dispersion E(k). (author)

  10. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    C L Aravinda; S M Mayanna; V R Muralidharan

    2000-10-01

    A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the deposition of copper involves the slow formation of a monovalent species. Adsorption of this species obeys Langmuir isotherm. In TEA solutions the deposition involves the formation of monovalent ions obeying the non-activated Temkin isotherm. Conversion of divalent to monovalent copper is also slow. In TEA and TSC alkaline copper solutions, the predominant species that undergo stepwise reduction contain only TEA ligands

  11. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  12. Spectroscopic studies of copper enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-05-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present.

  13. Copper complexes as chemical nucleases

    Indian Academy of Sciences (India)

    Akhil R Chakravarty; Pattubala A N Reddy; Bidyut K Santra; Anitha M Thomas

    2002-08-01

    Redox active mononuclear and binuclear copper(II) complexes have been prepared and structurally characterized. The complexes have planar N-donor heterocyclic bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) ligands that are suitable for intercalation to B-DNA. Complexes studied for nuclease activity have the formulations [Cu(dpq)2(H2O)] (ClO4)2.H2O (1), [{CuL(H2O)}2(-ox)](ClO4)2 (L = bpy, 2; phen, 3; dpq, 4; and dppz, 5) and [Cu(L)(salgly)] (L = bpy, 6; phen, 7; dpq, 8; and dppz, 9), where salgly is a tridentate Schiff base obtained from the condensation of glycine and salicylaldehyde. The dpq complexes are efficient DNA binding and cleavage active species. The dppz complexes show good binding ability but poor nuclease activity. The cleavage activity of the bis-dpq complex is significantly higher than the bis-phen complex of copper(II). The nuclease activity is found to be dependent on the intercalating nature of the complex and on the redox potential of the copper(II)/copper(I) couple. The ancillary ligand plays a significant role in binding and cleavage activity.

  14. Copper proteomes, phylogenetics and evolution.

    Science.gov (United States)

    Decaria, Leonardo; Bertini, Ivano; Williams, Robert J P

    2011-01-01

    This paper is a continuation of our study of the connection between the changing environment and the changing use of particular elements in organisms in the course of their combined evolution (Decaria, Bertini and Williams, Metallomics, 2010, 2, 706). Here we treat the changes in copper proteins in historically the same increasingly oxidising environmental conditions. The study is a bioinformatic analysis of the types and the numbers of copper domains of proteins from 435 DNA sequences of a wide range of organisms available in NCBI, using the method developed by Andreini, Bertini and Rosato in Accounts of Chemical Research 2009, 42, 1471. The copper domains of greatest interest are found predominantly in copper chaperones, homeostatic proteins and redox enzymes mainly used outside the cytoplasm which are in themselves somewhat diverse. The multiplicity of these proteins is strongly marked. The contrasting use of the iron and heme iron proteins in oxidations, mostly in the cytoplasm, is compared with them and with activity of zinc fingers during evolution. It is shown that evolution is a coordinated development of the chemistry of elements with use of novel and multiple copies of their proteins as their availability rises in the environment.

  15. CopperCore Service Integration

    Science.gov (United States)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; van Rosmalen, Peter; Koper, Rob

    2007-01-01

    In an e-learning environment there is a need to integrate various e-learning services like assessment services, collaboration services, learning design services and communication services. In this article we present the design and implementation of a generic integrative service framework, called CopperCore Service Integration (CCSI). We will…

  16. Reactivity test between beryllium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Kato, M. [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700{degrees}C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper).

  17. Friction stir welding of copper alloys

    Institute of Scientific and Technical Information of China (English)

    Liu Shuhua; Liu Meng; Wang Deqing; Xu Zhenyue

    2007-01-01

    Copper plates,brass plates and copper/brass plates were friction stir welded with various parameters. Experimental results show that the microstructure of the weld is characterized by its much finer grains as contrasted with the coarse grains of parent materials and the heat-affected zones are very narrow. The microhardness of the copper weld is a little higher than that of parent plate. The microhardness of brass weld is about 25% higher than that of parent material. The tensile strength of copper joints increases with increasing welding speed in the test range. The range of parameters to obtain good welds for copper is much wider than that for brass. When different materials were welded, the position of copper plate before welding affected the quality of FSW joints. If the copper plate was put on the advancing side of weld, the good quality of weld could be got under proper parameters.

  18. Catastrophic Oxidation of Copper: A Brief Review

    Science.gov (United States)

    Belousov, V. V.; Klimashin, A. A.

    2012-10-01

    A brief review of the current understanding of copper accelerated oxidation in the presence of low-melting oxides (Bi2O3, MoO3, and V2O5) is given. Special attention is paid to the kinetics, thermodynamics, and mechanisms of accelerated oxidation of copper. The mechanisms of two stages (fast and superfast) of the copper accelerated oxidation are considered. It is shown that the fast oxidation of copper occurs by a diffusion mechanism. Oxygen diffusion along the liquid channels in the oxide scale is the rate-limiting step in the overall mechanism. The superfast oxidation of copper occurs by a fluxing mechanism. Realization of the particular mechanism depends on the mass ratio of low-melting oxide to the metal. The mass ratios of low-melting oxide to the metal and the oxygen partial pressures for superfast oxidation of copper are established. A model of the fast oxidation of copper is discussed.

  19. Process Of Bonding Copper And Tungsten

    Science.gov (United States)

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  20. Radiation resistance of copper alloys at high exposure levels

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A. (Pacific Northwest Lab., Richland, WA (USA)); Zinkle, S.J. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    Copper alloys are currently being considered for high heat flux applications in fusion power devices. A review is presented of the results of two separate series of experiments on the radiation response of copper and copper alloys. One of these involved pure copper and boron-doped copper in the ORR mixed spectrum reactor. The other series included pure copper and a wide array of copper alloys irradiated in the FFTF fast reactor 16 refs., 13 figs.

  1. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration

    OpenAIRE

    Mario Manto

    2014-01-01

    As a cofactor of proteins and enzymes involved in critical molecular pathways in mammals and low eukaryotes, copper is a transition metal essential for life. The intra-cellular and extra-cellular metabolism of copper is under tight control, in order to maintain free copper concentrations at very low levels. Copper is a critical element for major neuronal functions, and the central nervous system is a major target of disorders of copper metabolism. Both the accumulation of copper and copper d...

  2. Smelting chlorination method applied to removal of copper from copper slags

    Institute of Scientific and Technical Information of China (English)

    李磊; 王华; 胡建杭

    2015-01-01

    In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However, the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34%is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, CaCl2 addition amount of 0.1 (mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible.

  3. Grain Refinement of Deoxidized Copper

    Science.gov (United States)

    Balart, María José; Patel, Jayesh B.; Gao, Feng; Fan, Zhongyun

    2016-10-01

    This study reports the current status of grain refinement of copper accompanied in particular by a critical appraisal of grain refinement of phosphorus-deoxidized, high residual P (DHP) copper microalloyed with 150 ppm Ag. Some deviations exist in terms of the growth restriction factor ( Q) framework, on the basis of empirical evidence reported in the literature for grain size measurements of copper with individual additions of 0.05, 0.1, and 0.5 wt pct of Mo, In, Sn, Bi, Sb, Pb, and Se, cast under a protective atmosphere of pure Ar and water quenching. The columnar-to-equiaxed transition (CET) has been observed in copper, with an individual addition of 0.4B and with combined additions of 0.4Zr-0.04P and 0.4Zr-0.04P-0.015Ag and, in a previous study, with combined additions of 0.1Ag-0.069P (in wt pct). CETs in these B- and Zr-treated casts have been ascribed to changes in the morphology and chemistry of particles, concurrently in association with free solute type and availability. No further grain-refining action was observed due to microalloying additions of B, Mg, Ca, Zr, Ti, Mn, In, Fe, and Zn (~0.1 wt pct) with respect to DHP-Cu microalloyed with Ag, and therefore are no longer relevant for the casting conditions studied. The critical microalloying element for grain size control in deoxidized copper and in particular DHP-Cu is Ag.

  4. The copper metallome in prokaryotic cells.

    Science.gov (United States)

    Rensing, Christopher; McDevitt, Sylvia Franke

    2013-01-01

    As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.

  5. Variations of serum copper values in pregnancy

    Directory of Open Access Journals (Sweden)

    Vukelić Jelka

    2012-01-01

    Full Text Available Introduction. Copper is essential micronutrient and has an important role in the human body. The serum copper increases during pregnancy and is doubled at full term. Lower levels of serum copper in pregnancy are connected with some pathological conditions. Objective. The aim of this study was to estimate the levels of serum copper in normal and pathological pregnancies, comparing them with values of serum copper in non-pregnant women, to determine if serum copper is lower in some pathological pregnancies and if this is of some importance. Methods. A total of 2170 plasma samples for copper analyses were made in the following groups: healthy non-pregnant women; healthy pregnant women from the 5th-40th gestational week, during the first delivery stage and during the first three postpartum weeks, in pregnant women with habitual abortion, imminent abortion, abortion in progress, missed abortion (9th-24th weeks, missed labour and premature rupture of membranes (29th-40th weeks. Levels of serum copper were determined by colorimetric technique of bathocuproin with disulphate as a chromogen. Results. Serum copper values in non-pregnant women range from 11.6-25.8 μmol/L. In healthy pregnant women, there is a constant trend of the increase of serum copper. The mean serum copper values revealed three significant peaks at the 22nd, 27th and 35th gestational week. Serum copper values in the patients with some pathological pregnancies in relation to the serum copper values of the healthy pregnant women were significantly lower. Conclusion. Serum copper values can be used as an indicator of some pathological pregnancies.

  6. Variations of serum copper values in pregnancy.

    Science.gov (United States)

    Vukelić, Jelka; Kapamadzija, Aleksandra; Petrović, Djordje; Grujić, Zorica; Novakov-Mikić, Aleksandra; Kopitović, Vesna; Bjelica, Artur

    2012-01-01

    Copper is essential micronutrient and has an important role in the human body. The serum copper increases during pregnancy and is doubled at full term. Lower levels of serum copper in pregnancy are connected with some pathological conditions. The aim of this study was to estimate the levels of serum copper in normal and pathological pregnancies, comparing them with values of serum copper in non-pregnant women, to determine if serum copper is lower in some pathological pregnancies and if this is of some importance. A total of 2170 plasma samples for copper analyses were made in the following groups: healthy non-pregnant women; healthy pregnant women from the 5th-40th gestational week, during the first delivery stage and during the first three postpartum weeks, in pregnant women with habitual abortion, imminent abortion, abortion in progress, missed abortion (9th-24th weeks), missed labour and premature rupture of membranes (29th-40th weeks). Levels of serum copper were determined by colorimetric technique of bathocuproin with disulphate as a chromogen. Serum copper values in non-pregnant women range from 11.6-25.8 micromol/L. In healthy pregnant women, there is a constant trend of the increase of serum copper. The mean serum copper values revealed three significant peaks at the 22nd, 27th and 35th gestational week. Serum copper values in the patients with some pathological pregnancies in relation to the serum copper values of the healthy pregnant women were significantly lower. Serum copper values can be used as an indicator of some pathological pregnancies.

  7. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  8. Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.; Ramesh, K. P.; Menon, R. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Anjaneyulu, P. [Department of Physics, Gitam University, Hyderabad 502329 (India)

    2015-06-07

    Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.

  9. Bismuth (III) Telluride (Bi2Te3) Based Topological Insulator Embedded in PVA as Passive Saturable Absorber in Erbium-Doped Fiber Laser

    Science.gov (United States)

    Apandi, N. H. M.; Ahmad, F.; Ambran, S.; Yamada, M.; Harun, S. W.

    2017-06-01

    We demonstrate a passive Q-switched by integrating a Bismuth (III) Telluride (Bi2Te3) dispersed in Polyvinyl Alcohol (PVA) as passive saturable absorber. The experimental works show that the proposed passive saturable absorber operated at input power ranging from 21.69 mW to 126.89 mW with central operating wavelength of 1531 nm. We observe the tunable repetition rate from 40 kHz to 166 kHz with the shortest pulse width of 1.32 μs. The laser produced maximum instantaneous output peak power and pulse energy of 1.62 mW and 11.2 nJ, respectively. The signal to noise ratio was measured at 49 dB which indicates the stability of the generated pulse.

  10. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    Science.gov (United States)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-04-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and logfTe2 (gas) - 1/T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  11. Investigation of the Internal Electric Field in Cadmium Zinc Telluride Detectors Using the Pockels Effect and the Analysis of Charge Transients

    Science.gov (United States)

    Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng; hide

    2010-01-01

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.

  12. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  13. Jiangxi Copper and Yates Joined Hands in High-Grade Copper Foil Project Construction

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The construction of a large-scale copper foilproject recently started in the High-Tech De-velopment Zone of Nanchang,the capital ofJiangxi Province.This new copper foil factory,with a designed annual production capacity of6,000 tons of high-grade copper foil,is a jointventure project between Jiangxi Copper Group,the No.1 copper producer in China,and YatesInc.,a leading US copper product company andthe world’s first electrical circuit board maker.

  14. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  15. Nanolithography on Mercury Telluride

    OpenAIRE

    Mühlbauer, Mathias Josef

    2016-01-01

    Topological insulators belong to a new quantum state of matter that is currently one of the most recognized research fields in condensed matter physics. Strained bulk HgTe and HgTe/HgCdTe quantum well structures are currently one of few topological insulator material systems suitable to be studied in transport experiments. In addition HgTe quantum wells provide excellent requirements for the conduction of spintronic experiments. A fundamental requirement for most experiments, h...

  16. Radiocopper for the imaging of copper metabolism.

    Science.gov (United States)

    Hueting, Rebekka

    2014-04-01

    The redox-active transition metal copper is an essential trace element for growth and development and serves as a structural or catalytic cofactor for many enzymes in a range of physiological processes. Mammalian copper homeostasis is tightly regulated, and an imbalance in copper metabolism is implicated in various pathological disorders. Radioactive copper isotopes, in particular (64) Cu (t1/2  = 12.7 h) and (67) Cu (t1/2  = 62.01 h), have made important contributions to the understanding of copper metabolism in health and disease. This review gives a brief account of how radiolabelled copper(II) salts and bioreductive copper complexes have been used to trace copper uptake, transport and efflux in vitro and in vivo. Recently, positron emission tomography (PET) has emerged as a noninvasive tool to image copper metabolism in living subjects and (64) Cu-PET is investigated for the study of copper-related neurological disorders, genetic diseases and cancer.

  17. Canine Models for Copper Homeostasis Disorders

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2016-02-01

    Full Text Available Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  18. Canine Models for Copper Homeostasis Disorders.

    Science.gov (United States)

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-02-04

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  19. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  20. Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica.

    Science.gov (United States)

    Zhu, Libin; Elguindi, Jutta; Rensing, Christopher; Ravishankar, Sadhana

    2012-05-01

    Copper has shown antibacterial effects against foodborne pathogens. The objective of this study was to evaluate the antibacterial activity of copper surfaces on copper resistant and sensitive strains of Salmonella enterica. Six different copper alloy coupons (60-99.9% copper) were tested along with stainless steel as the control. The coupons were surface inoculated with either S. Enteritidis or one of the 3 copper resistant strains, S. Typhimurium S9, S19 and S20; stored under various incubation conditions at room temperature; and sampled at various times up to 2 h. The results showed that under dry incubation conditions, Salmonella only survived 10-15 min on high copper content alloys. Salmonella on low copper content alloys showed 3-4 log reductions. Under moist incubation conditions, no survivors were detected after 30 min-2 h on high copper content alloys, while the cell counts decreased 2-4 logs on low copper content coupons. Although the copper resistant strains survived better than S. Enteritidis, they were either completely inactivated or survival was decreased. Copper coupons showed better antimicrobial efficacy in the absence of organic compounds. These results clearly show the antibacterial effects of copper and its potential as an alternative to stainless steel for selected food contact surfaces.

  1. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    Directory of Open Access Journals (Sweden)

    R Andreazza

    2011-03-01

    Full Text Available Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária experimental station, Bento Gonçalves, RS, Brazil (29º09'53.92''S and 51º31'39.40''W and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30º29'43.48''S and 53'32'37.87W. Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L-1 in 24 h. Contrarily isolate N11 (Bacillus pumilus displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h. GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration.

  2. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption.

    Science.gov (United States)

    Andreazza, R; Pieniz, S; Okeke, B C; Camargo, F A O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09'53.92″S and 51°31'39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29'43.48″S and 53'32'37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L(-1) in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration.

  3. The Present Conditions of China’s Copper Industry

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>China’s copper industry has formed a complete production system and by the end of 2004, China had 600,000 tons of copper mining capacities, 1.5 million tons of copper smelting capacities, 2.15 million tons of copper refining capacities and 3.8 million tons of copper fabricating capacities.

  4. Thermoelectric Study of Copper Selenide

    Science.gov (United States)

    Yao, Mengliang; Liu, Weishu; Ren, Zhifeng; Opeil, Cyril

    2014-03-01

    Nanostructuring has been shown to be an effective approach in reducing lattice thermal conductivity and improving the figure of merit of thermoelectric materials. Copper selenide is a layered structure material, which has a low thermal conductivity and p-type Seebeck coefficient at low temperatures. We have evaluated several hot-pressed, nanostructured copper selenide samples with different dopants for their thermoelectric properties. The phenomenon of the charge-density wave observed in the nanocomposite, resistivity, Seebeck, thermal conductivity and carrier mobility will be discussed. Funding for this research was provided by the Solid State Solar - Thermal Energy Conversion Center (S3TEC), an Energy Frontier Research Center sponsored by the DOE, Office of Basic Energy Science, Award No. DE-SC0001299/ DE-FG02-09ER46577.

  5. Rapid iodometric determination of copper in some copper-base alloys

    NARCIS (Netherlands)

    Agterdenbos, J.; Eelberse, P.A.

    1966-01-01

    Copper-base alloys, especially those containing tin, are readily dissolved in a mixture of hydrofluoric and nitric acids. In the resulting solution copper can be titrated iodometrically in the conventional manner.

  6. Xinjiang Non-ferrous Metals Wuxin Copper 100,000-ton Cathode Copper Project Commences

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>The construction of Xinjiang Nonferrous Met-als’ Wuxin Copper’s 100,000-ton Cathode Copper Project commenced at the Fukang Xin-jiang Industrial Park of Innovative Non-Ferrous Materials recently. Xinjiang Wuxin Copper

  7. Explosive compact-coating of tungsten–copper alloy to a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-03-01

    This study proposed a new method for coating tungsten–copper alloy to copper surface. First, the tungsten–copper alloy powder was pre-compacted to the copper surface. Then, the powder in the hydrogen atmosphere was sintered, and the pre-compacted powder was compacted by explosive compact-coating. Finally, diffusion sintering was conducted to improve the density of the coating layer. The theoretical density of the coating reached 99.3%. Microstructure characteristics indicated that tungsten and copper powders were well mixed. Tungsten particles were larger than copper particles. Scanning electron microscope (SEM) fracture surface analysis was different from the traditional fracture of metals. Coating and substrate joint surfaces, which were analyzed by SEM, indicated that the tungsten–copper alloy was sintered on the copper surface. The hardness of the coating layer was 197.6–245.2 HV, and the hardness of the substrate was approximately 55 HV.

  8. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    Science.gov (United States)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  9. ANALYSIS AND DEVELOPMENT OF COPPER RECYCLING OF DEAD COPPER-CONTAINING CATALYSTS

    OpenAIRE

    O. S. Komarov; I. V. Provorova; V. I. Volosatikov; D. O. Komarov; N. I. Urbanovich

    2009-01-01

    The technology of processing of copper-bearing dead catalysts, which includes leaching and deposition of copper by means of electrolysis and also their application in composition of the mixture for alloy doping is offered.

  10. ANALYSIS AND DEVELOPMENT OF COPPER RECYCLING OF DEAD COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2009-01-01

    Full Text Available The technology of processing of copper-bearing dead catalysts, which includes leaching and deposition of copper by means of electrolysis and also their application in composition of the mixture for alloy doping is offered.

  11. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  12. Yunnan Copper Co., Ltd. Invested 1.5 Billion Yuan for 200,000-Ton Refined Copper Project in Baoding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Yunnan Copper(Group)Co.,Ltd.has signed a strategic agreement with Baoding Municipal Government of Heibei Province in Kunming on the joint development of a copper smelting project.With the joint investment from Baoding Xinxian Government,Yunnan Copper Co.,Ltd.and Baoding Dali Copper Ltd,a copper refinery with an annual capacity of

  13. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  14. In situ Fabrication of Monolithic Copper Azide

    Science.gov (United States)

    Li, Bing; Li, Mingyu; Zeng, Qingxuan; Wu, Xingyu

    2016-04-01

    Fabrication and characterization of monolithic copper azide were performed. The monolithic nanoporous copper (NPC) with interconnected pores and nanoparticles was prepared by decomposition and sintering of the ultrafine copper oxalate. The preferable monolithic NPC can be obtained through decomposition and sintering at 400°C for 30 min. Then, the available monolithic NPC was in situ reacted with the gaseous HN3 for 24 h and the monolithic NPC was transformed into monolithic copper azide. Additionally, the copper particles prepared by electrodeposition were also reacted with the gaseous HN3 under uniform conditions as a comparison. The fabricated monolithic copper azide was characterized by Fourier transform infrared (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and differential scanning calorimetry (DSC).

  15. SRB Sells Copper for Market Stability

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>In order to ease the tight supply situation for copper on the domestic market and meet the consumption requirement of the industry, the State Goods and Materials Adjustment Center under the State Reserves Bureau (SRB) is ready to sell 20,000 tons of copper by way of open bid. In addition, the SRB also prepares to sell 40,000 tons of copper later in December and

  16. Copper metabolism in analbuminaemic rats fed a high-copper diet.

    NARCIS (Netherlands)

    Yu, S.; Berg, van den G.J.; Beynen, A.C.

    1995-01-01

    Copper metabolism in male Nagase analbuminaemic (NA) rats was compared with that in male Sprague Dawley (SD) rats fed purified diets containing either 5 or 100 mg Cu/kg diet. Dietary copper loading increased hepatic and kidney copper concentrations in both strains to the same extent, but baseline va

  17. Pc Electrolytic System Of Zhangjiagang Copper Industry Company Successfully Produced Copper After Resuming Production

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    On March 17,the PC electrolytic system of Zhangjiagang Copper Industry Co.,Ltd successfully produced the first batch of qualified PC electrolytic copper after resuming production.This company’s 100,000 t/a PC electrolytic copper project was completed and launched into production in April last year.

  18. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  19. Jiangxi Copper Planning to Produce Copper Products of More Than 480,000 Tons This Year

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>It is learned from Jiangxi Copper Group that the company has made the plan to produce copper processing products of more than 480,000 tons, and meanwhile its 100,000-ton copper plate and strip project is planned to be

  20. Tongling’s Ambition for Copper Processing Industrial Leadership

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Known as the "Copper Capital of Ancient China", Tongling’s copper industry posted sub-stantial growth as the domestic copper price rose. According to Wang Yijun, the Director of Tongling DPC, the local government was

  1. TonglingExtended Copper Intensive Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Despite the adverse impacts including decline in copper price, in 2012, Tongling’s copper in-dustry development still made steady progress. The number of copper enterprises in Tongling with industrial output value above 100 million

  2. [Copper in methane oxidation: a review].

    Science.gov (United States)

    Su, Yao; Kong, Jiao-Yan; Zhang, Xuan; Xia, Fang-Fang; He, Ruo

    2014-04-01

    Methane bio-oxidation plays an important role in the global methane balance and warming mitigation, while copper has a crucial function in methane bio-oxidation. On one side, copper is known to be a key factor in regulating the expression of the genes encoding the two forms of methane monooxygenases (MMOs) and is the essential metal element of the particulate methane monooxygenase (pMMO). On the other side, the content and fractionation of copper in the environment have great effects on the distribution of methanotrophs and their metabolic capability of methane and non-methane organic compounds, as well as on the copper-specific uptake systems in methanotrophs. Thus, it is meaningful to know the role of copper in methane bio-oxidation for comprehensive understanding of this process and is valuable for guiding the application of methanotrophs in greenhouse gas removal and pollution remediation. In this paper, the roles of copper in methane oxidation were reviewed, including the effect of copper on methanotrophic community structure and activity, the expression and activity of MMOs as well as the copper uptake systems in methanotrophs. The future studies of copper and methane oxidation were also discussed.

  3. Level of copper in human split ejaculate.

    Science.gov (United States)

    Skandhan, Kalanghot; Valsa, James; Sumangala, Balakrishnan; Jaya, Vasudevan

    2017-02-03

    The purpose of this study was to understand the details of splits of an ejaculate and to locate the origin of release of copper into semen. Laboratory methods routinely followed for semen analysis were carried out. Copper was estimated by employing atomic absorption spectrophotometry. First split of ejaculate showed the highest number of motile sperm, the quality of which decreased from first to third. Copper level in splits 1, 2 and 3 was 29, 23 and 22 µg%, respectively. This study concluded that copper was released from throughout the genital tract.

  4. Structure of a copper-isoniazid complex.

    Science.gov (United States)

    Hanson, J C; Camerman, N; Camerman, A

    1981-11-01

    It is well-known that complex formation with copper ions increases the in vitro mycobactericidal action of the antituberculosis agent isoniazid. We report here the preparation and structure of a copper(II)-isoniazid complex. Unit cell parameters are a = 9.575, b = 14.855, and c = 7.056 A and space group P2(1)2(1)2(1). Copper bonding geometry is square planar with the isoniazid carbonyl oxygen and hydrazide amino nitrogen atoms and two chlorines occupying coordination positions. Complexing with copper(II) does not significantly alter the isoniazid molecular conformation.

  5. Synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes; Synthese und Charakterisierung niedervalenter Actinoidphosphidtelluride und ternaerer Selen-Halogenid-Komplexe des Iridiums

    Energy Technology Data Exchange (ETDEWEB)

    Stolze, Karoline

    2016-04-07

    The thesis on the synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes includes two parts: a description of the experimental synthesis of UPTe and U2PTe2O and ThPTe and the synthesis of selenium-chloride iridium complexes and selenium-bromide iridium complexes. The characterization included X-ray diffraction and phase studies.

  6. Copper Nanoparticles in Click Chemistry.

    Science.gov (United States)

    Alonso, Francisco; Moglie, Yanina; Radivoy, Gabriel

    2015-09-15

    The challenges of the 21st century demand scientific and technological achievements that must be developed under sustainable and environmentally benign practices. In this vein, click chemistry and green chemistry walk hand in hand on a pathway of rigorous principles that help to safeguard the health of our planet against negligent and uncontrolled production. Copper-catalyzed azide-alkyne cycloaddition (CuAAC), the paradigm of a click reaction, is one of the most reliable and widespread synthetic transformations in organic chemistry, with multidisciplinary applications. Nanocatalysis is a green chemistry tool that can increase the inherent effectiveness of CuAAC because of the enhanced catalytic activity of nanostructured metals and their plausible reutilization capability as heterogeneous catalysts. This Account describes our contribution to click chemistry using unsupported and supported copper nanoparticles (CuNPs) as catalysts prepared by chemical reduction. Cu(0)NPs (3.0 ± 1.5 nm) in tetrahydrofuran were found to catalyze the reaction of terminal alkynes and organic azides in the presence of triethylamine at rates comparable to those achieved under microwave heating (10-30 min in most cases). Unfortunately, the CuNPs underwent dissolution under the reaction conditions and consequently could not be recovered. Compelling experimental evidence on the in situ generation of highly reactive copper(I) chloride and the participation of copper(I) acetylides was provided. The supported CuNPs were found to be more robust and efficient catalyst than the unsupported counterpart in the following terms: (a) the multicomponent variant of CuAAC could be applied; (b) the metal loading could be substantially decreased; (c) reactions could be conducted in neat water; and (d) the catalyst could be recovered easily and reutilized. In particular, the catalyst composed of oxidized CuNPs (Cu2O/CuO, 6.0 ± 2.0 nm) supported on carbon (CuNPs/C) was shown to be highly versatile and very

  7. Conclusion on the peer review of the pesticide risk assessment of confirmatory data submitted for the active substance Copper (I, copper (II variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper (I oxide, Bordeaux mixture

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-06-01

    Full Text Available The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessment carried out by the competent authority of the rapporteur Member State France, for the pesticide active substance copper (I, copper (II variants (formerly referred to as copper compounds are reported. The context of the peer review was that requested by the European Commission following the submission and evaluation of confirmatory environmental fate and behaviour and ecotoxicology data. The conclusions were reached on the basis of the evaluation of the representative uses of copper (I, copper (II variants as a fungicide/bactericide on grapes and tomatoes. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Concerns are identified.

  8. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.

    Science.gov (United States)

    Park, Kyung Chan; Fouani, Leyla; Jansson, Patric J; Wooi, Danson; Sahni, Sumit; Lane, Darius J R; Palanimuthu, Duraippandi; Lok, Hiu Chuen; Kovačević, Zaklina; Huang, Michael L H; Kalinowski, Danuta S; Richardson, Des R

    2016-09-01

    Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.

  9. Energy and materials flows in the copper industry

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  10. Duobaoshan Porphyry Copper Deposit and Its Associated Components

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Duobaoshan porphyry copper deposit, situated in Nenjiang County of Heilongjiang Province, Northeast China, lies tectonically in the Mongolian-Okhotsk geosyncline.Duobaoshan porphyry copper ore field consisting of Duobaoshan copper deposit and Tongshan copper deposit contains rich copper associated with molybdenum, gold, silver and osmium (OsX87). In this sense, this porphyry copper ore field will turn into a large industrial base of copper, gold, silver and osmium. At present, in Duobaoshan porphyry copper deposit occurs a usable B+C+-D grade reserve of 3 276 630ton Cu, 122 920 ton Mo, 87 ton gold and 1 417 ton Ag.

  11. Energy and materials flows in the copper industry

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  12. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  13. Synthesis of copper nanoparticles by electrolysis of DNA utilizing copper as sacrificial anode.

    Science.gov (United States)

    Singh, Dinesh Pratap; Srivastava, Onkar Nath

    2007-06-01

    Copper nanoparticles have been synthesized by anodic oxidation through a simple electrolysis process employing de-oxy ribonucleic acid (DNA) as electrolyte. Platinum was taken as cathode and copper as anode. The applied voltage was 4 V and the electrolysis was performed for duration of 1 h. The copper nanoparticles were prepared in situ from the electron beam irradiation on residues of electrolyte consisting of DNA and copper particles: DNA (Cu) complexes. The size of the nanoparticles ranges between 5-50 nm. A tentative explanation has been given for the formation of copper nanoparticles.

  14. Different pathways for copper sulphate and copper nitrate antioxidation and organic acid excretion in Typha latifolia?

    OpenAIRE

    Lyubenova L.; Kuhn A.; Höltkemeier A.; Bipuah H.; Belford E.; Schröder P.

    2013-01-01

    The major topic of the present experiment was the investigation of the antioxidative enzymes and the root exudate excretion after plant exposure to copper. The copper was added for each treatment as copper sulphate and copper nitrate in the concentrations of 10 μM, 50 μM and 100 μM, respectively. The plant species chosen for the study was Typha latifolia. The experiment gives insight into the plant responses to different copper supplies during the same conditions of exposure. Remarkable resul...

  15. Geomorphology of the lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.

    1997-01-01

    The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1995, 11 bridges were located along this section of the highway. These bridges cross parts of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. When the outflow rate from Van Cleve Lake reaches it peak, the flow of the Copper River will increase between 150,000 to 190,000 cubic feet per second. Data collected by bedload sampling and continuous seismic reflection indicated that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lake, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow-gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake

  16. Liver copper concentration in Wilson's disease: effect of treatment with 'anti-copper' agents.

    Science.gov (United States)

    Gibbs, K; Walshe, J M

    1990-01-01

    Serial copper determinations have been made on the livers of 10 patients with Wilson's disease. Two were studied before and eight after the start of treatment in order to assess the effect, if any, on the concentration of the metal. In two patients who were receiving no therapy and in one in whom it had been discontinued, the level of copper rose. In the latter patient, resumption of treatment then resulted in a fall in the level of copper in the liver. A similar fall was seen in seven patients on continuous therapy. In one patient, a very poor complier, there was a tendency for the liver copper concentration to rise over a 5-year period. All three therapies investigated--penicillamine, trientine and tetrathiomolybdate--when taken regularly, appear to be effective in reducing liver copper levels. Sixty-nine single determinations of liver copper have been plotted against time on treatment. This shows that the copper concentration falls rapidly in the first year. Thereafter, there is no linear relationship between the duration of treatment and liver copper. Poor compliers have a higher liver copper concentration than do good compliers. Determinations made from different portions of the liver showed that in only one of 19 examples was there an overlap between the near normal and the abnormal range. The principal mechanism of action of 'anti-copper' agents in Wilson's disease appears to be the mobilization of copper from the tissues, but a secondary detoxifying action may come into play later.

  17. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  18. Three stages of copper accumulation in hepatocellular lysosomes: X-ray microanalysis of copper-loaded golden hamsters.

    OpenAIRE

    Yagi, A.; Hayashi, H; Higuchi, T.; Hishida, N.; Sakamoto, N.

    1992-01-01

    Male golden hamsters were loaded with copper by supplying them for up to 12 weeks with drinking water containing 0.5% cupric acetate. The copper feeding increased hepatic copper to widely varying levels. Energy dispersive X-ray microanalysis could always identify a copper-sulphur complex in the hepatocyte lysosomes of copper-loaded hamsters and the X-ray intensity of copper was found to be a reliable parameter to measure in-situ copper accumulation. Combining this parameter with the copper bi...

  19. Theory of Copper Oxide Superconductors

    CERN Document Server

    Kamimura, Hiroshi; Shunichi Matsuno; Tsuyoshi Hamada

    2005-01-01

    This is an advanced textbook for graduate students and researchers wishing to learn about high temperature superconductivity in copper oxides, in particular the Kamimura-Suwa (K-S) model. Because a number of models have been proposed since the discovery of high temperature superconductivity by Bednorz and Müller in 1986, the book first explains briefly the historical development that led to the K-S model. It then focuses on the physical background necessary to understand the K-S model and on the basic principles behind various physical phenomena such as electronic structures, electrical, thermal and optical properties, and the mechanism of high temperature superconductivity.

  20. Copper Scrap Industry Remained in Cold Winter

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Beginning from 2012,domestic copper scrap enterprises entered"winter"period,this year the situation further worsened.According to survey,most medium to small sized copper scrap trading enterprises have either closed down,transferred to other businesses,or reduced trading volume,though large trading

  1. Smelting Oxidation Desulfurization of Copper Slags

    Institute of Scientific and Technical Information of China (English)

    LI Lei; HU Jian-hang; WANG Hua

    2012-01-01

    According to the mechanism of sulfur removal easily through oxidation, the process of smelting oxidation desulfurization of copper slags is studied, which supplies a new thinking for obtaining the molten iron of lower sulfur content by smelting reduction of copper slags. Special attention is given to the effects of the holding temperature, the holding time and CaF2, CaO addition amounts on the desulfurization rate of copper slags. The results indicate that the rate of copper slags smelting oxidation desulfurization depends on the matte mass transfer rate through the slag phase. After the oxidation treatment, sulfur of copper slags can be removed as SO2 efficiently. Amount of Ca2+ of copper slags affects the desulfurization rate greatly, and the slag desulfurization rate is reduced by adding a certain amount of CaF2 and CaO. Compared with CaF2, CaO is negative to slags sulfur removal with equal Ca2+ addition. Under the air flow of 0.3 U/min, the sulfur content of copper slags can be reduced to 0. 004 67% in the condition of the holding time of 3 min and the holding temperature of 1 500 ℃. The sulfur content of molten iron is reduced to 0. 000 8 % in the smelting reduction of treated slags, and the problem of high sulfur content of molten iron obtained by smelting reduction with copper slag has been successively solved.

  2. Copper and Aluminium Fabricators in Deep Waters

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The copper processing industry of Yingtan represents over 60% of the provincial fiscal revenue.Due to the fallout of the global finan- cial crisis,most of the 78 copper processing enterprises in Yingtan City have or are about to shut down.In late October,Yingtan city spe-

  3. Spent nuclear fuel rods encapsulated in copper

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, H.D.

    1984-04-01

    Using hot isostatic pressing, spent nuclear fuel rods and other radioactive wastes can be encapsulated in solid copper. The copper capsule which is formed is free of pores and cracks, and is highly resistant to attack by reducing ground waters. Such capsules should contain radioactive materials safely for hundreds of thousands of years in underground storage.

  4. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  5. High Copper Amalgam Alloys in Dentistry

    Directory of Open Access Journals (Sweden)

    Gaurav Solanki

    2012-07-01

    Full Text Available Amalgam Restoration is an example of the material giving its name to the process. Amalgam fillings are made up of mercury, powdered silver and tin. They are mixed and packed into cavities in teeth where it hardens slowly and replaces the missing tooth substance. The high copper have become material of choice as compared to low copper alloys nowadays because of their improved mechanical properties, corrosion resistance, better marginal integrity and improved performance in clinical trial. The high copper amalgam was used as a restorative material. The application of high copper amalgam was found to be much more useful than low copper amalgam. High copper had much more strength, corrosion resistance, durability and resistance to tarnish as compared to low copper amalgams. No marked expansion or condensation was noted in the amalgam restoration after its setting after 24 hrs. By using the high copper alloy, the chances of creep were also minimized in the restored tooth. No discomfort or any kind of odd sensation in the tooth was noted after few days of amalgam restoration in the tooth.

  6. China Curbs the Investment in Copper Smelting

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>According to a recent document released by the State Development and Reform Commission (SDRC), the investment in copper smelting by China’s enterprises will be put under strict control so as to prevent the blind investment and duplication in copper smelting projects at low technical standard. The document stipulated a series of conditions including equipment, technology, energy consumption and environmental protection.

  7. Jinchuan Becomes a Shareholder of Huading Copper

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>At the end of 2011, the signing ceremony was held for China Jinchuan Nonferrous Metals Holding Co., Ltd. to become a shareholder of Baotou Huading Copper Development Co., Ltd. As a leading company of the copper deep processing industry in the high-tech rare earth

  8. Cellular copper distribution: a mechanistic systems biology approach.

    Science.gov (United States)

    Banci, Lucia; Bertini, Ivano; Cantini, Francesca; Ciofi-Baffoni, Simone

    2010-08-01

    Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.

  9. Solar thermal extraction of copper from sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, L.; Guesdon, C.; Sturzenegger, M.

    2003-03-01

    With the aim to develop a solar-driven process for the extraction of copper from sulfide concentrates re-search on the decomposition of copper sulfides under inert atmospheres has been initiated. Thermogravimetric measurements on chalcocite (Cu{sub 2}S) revealed that copper is formed already at 1823 K. Chalcopyrite (CuFeS{sub 2}) also disintegrates at this temperature, although at a lower rate. Copper and iron have been identified in the solid residue. The results confirm the feasibility of copper extraction by direct decomposition of sulfides under atmospheric pressure. The decomposition under inert atmosphere prevents generation of SO{sub 2}, and is beneficial to the removal of volatile impurities. Chemical equilibrium calculations for CuFeS{sub 2} contaminated with enargite (Cu{sub 3}AsS{sub 4}) have shown that the absence of an oxidic slag allows for a complete evaporation of arsenic and subsequent separation. (author)

  10. Bioremediation: Copper Nanoparticles from Electronic-waste

    Directory of Open Access Journals (Sweden)

    D. R. MAJUMDER

    2012-10-01

    Full Text Available A single-step eco-friendly approach has been employed to synthesize copper nanoparticles. The superfast advancement in the field of electronics has given rise to a new type of waste called electronic waste. Since the physical and chemical recycling procedures have proved to be hazardous, the present work aims at the bioremediation of e-waste in order to recycle valuable metals. Microorganisms such as Fusarium oxysporum and Pseudomonas sp. were able to leach copper (84-130 nm from integrated circuits present on electronic boards under ambient conditions. Lantana camara, a weed commonly found in Maharashtra was also screened for leaching copper. The characteristics of the copper nanoparticles obtained were studied using X-ray diffraction analysis, energy-dispersive spectroscopy, scanning electron microscopy, Fourier Tranform Infrared analysis, Transmission electron microscopy, Thermogravimetric analysis and Cyclic Voltammetry. Copper nanoparticles were found to be effective against hospital strain Escherichia coli 2065.

  11. Xinjiang to Build Its Largest Copper Mine

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>On September 16, the 6,000,000-ton mining project of Hudehe Copper Mine kicked off, which is the largest copper mine in Xinjiang.Jointly developed by Xinjiang Nonferrous Metals Group and Gansu Jianxin Group, Hudehe Copper Mine is located at Tuoli County, Tacheng Prefecture, Xinjiang. It is a large-scale porphyry-type copper deposit with proven copper reserve of 362,500 tons and prospective reserve of 1,000,000 tons(metal content). According to the preliminary plan, it will be built into a mine with mining and dressing capacity of 6,000,000 tons/year. With a total investment of RMB 1.466 billion, the project is expected to achieve annual sales revenue of RMB 0.8 billion and provide jobs for nearly 1,000 people.

  12. An Analysis of Contemporary Copper Recycling in China

    Institute of Scientific and Technical Information of China (English)

    YUE Qiang; LU Zhong-wu

    2006-01-01

    Copper consumption increased very quickly in China in recent years, which could not be met by inland copper industry. In order to achieve a sustainable development of copper industry, an analysis of copper recycling in China was necessary. For the life cycle of copper products a copper-flow diagram with time factor was worked out and the contemporary copper recycling in China was analyzed, from which the following data were obtained. The average life cycle of copper products was 30 years. From 1998 to 2002, the use ratio of copper scraps in copper production, the use ratio of copper scraps in copper manufacture, the materials self-support ratio in copper production, and the materials self-support ratio in copper manufacture were 26.50%, 15.49%, 48.05% and 59.41%, respectively. The materials self-support ratios in copper production and manufacture declined year by year in recent years on the whole, and the latter dropped more quickly. The average index of copper ore and copper scrap from 1998 to 2002 were 0.8475 t/t and 0.0736 t/t, respectively; and copper resource efficiency was 1.1855 t/t. Some efforts should be paid to reduce copper ores consumption and promote copper scraps regeneration.Copper scraps were mostly imported from foreign countries because of shortage in recent years in China. Here the reasons related to copper scraps deficiency were also demonstrated. But we can forecast: when copper production was in a slow rise or in a steady state in China, the deficiency of copper scraps may be mitigated; when copper production was in a steady state for a very long time, copper scraps may become relatively abundant. According to the status of copper industry in China, the raw materials of copper production and manufacture have to depend on oversea markets heavily in recent years, and at the same time, the copper scraps using proportion and efficiency in copper industry should be improved.

  13. Surface films and corrosion of copper

    Energy Technology Data Exchange (ETDEWEB)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  14. [Atomic absorption spectrophotometry study of copper ion release by copper-bearing intrauterine devices].

    Science.gov (United States)

    Berthou, J; Chrétien, F C; Driguez, P A

    1998-11-01

    Copper release from copper-bearing IUD's was studied in vitro and in vivo using atomic absorption spectrophotometry in deionized water, normal saline solution and normal ovulatory cervical mucus. In these media, copper release from a 375 mm2 DIU occurs without latency, showing comparable amounts for identical time intervals. Daily copper release was shown to be respectively 8 and 11 times higher in cervical mucus and normal saline solution than in deionized water. Although copper ions are detectable in ovulatory cervical mucus under physiological conditions, the copper content appears 5 to 6 times higher in women bearing a copper IUD. Obviously, the copper amount is dependent on the copper exposed surface: the daily in vitro release from a 250 mm2 IUD is 18% inferior to that observed from a 375 mm2 model. In vivo, the daily copper release in ovulatory mucus of 380 or 200 mm2 IUD users is respectively 5 and 3.5 times higher than in controls.

  15. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-11-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents.

  16. Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses*

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-01-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents. PMID:23882024

  17. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    Science.gov (United States)

    Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606

  18. Investigation of quad-energy high-rate photon counting for X-ray computed tomography using a cadmium telluride detector.

    Science.gov (United States)

    Matsukiyo, Hiroshi; Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Sato, Yuichi; Hagiwara, Osahiko; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2017-09-10

    To obtain four kinds of tomograms at four different X-ray energy ranges simultaneously, we have constructed a quad-energy (QE) X-ray photon counter with a cadmium telluride (CdTe) detector and four sets of comparators and microcomputers (MCs). X-ray photons are detected using the CdTe detector, and the event pulses produced using amplifiers are sent to four comparators simultaneously to regulate four threshold energies of 20, 33, 50 and 65keV. Using this counter, the energy ranges are 20-33, 33-50, 50-65 and 65-100keV; the maximum energy corresponds to the tube voltage. We performed QE computed tomography (QE-CT) at a tube voltage of 100kV. Using a 0.5-mm-diam lead pinhole, four tomograms were obtained simultaneously at four energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-50 and 50-65keV, respectively. At a tube voltage of 100kV and a current of 60 μA, the count rate was 15.2 kilocounts per second (kcps), and the minimum count rates after penetrating objects in QE-CT were regulated to approximately 2 kcps by the tube current. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system

    Science.gov (United States)

    Abbaszadeh, Shiva; Gu, Yi; Reynolds, Paul D.; Levin, Craig S.

    2016-09-01

    Cadmium zinc telluride (CZT) offers key advantages for small animal positron emission tomography (PET), including high spatial and energy resolution and simple metal deposition for fabrication of very small pixel arrays. Previous studies have investigated the intrinsic spatial, energy, and timing resolution of an individual sub-millimeter resolution CZT detector. In this work we present the first characterization results of a system of these detectors. The 3D position sensitive dual-CZT detector module and readout electronics developed in our lab was scaled up to complete a significant portion of the final PET system. This sub-system was configured as two opposing detection panels containing a total of twelve 40~\\text{mm}× 40~\\text{mm}× 5 mm monolithic CZT crystals for proof of concept. System-level characterization studies, including optimizing the trigger threshold of each channel’s comparators, were performed. 68Ge and 137Cs radioactive isotopes were used to characterize the energy resolution of all 468 anode channels in the sub-system. The mean measured global 511 keV photopeak energy resolution over all anodes was found to be 7.35+/- 1.75 % FWHM after correction for photon interaction depth-dependent signal variation. The measured global time resolution was 37 ns FWHM, a parameter to be further optimized, and the intrinsic spatial resolution was 0.76 mm FWHM.

  20. Nuclear myocardial perfusion imaging with a novel cadmium-zinc-telluride detector SPECT/CT device: first validation versus invasive coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, Michael; Kaufmann, Philipp A. [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland); Ghadri, Jelena R.; Kuest, Silke M.; Pazhenkottil, Aju P.; Wolfrum, Mathias; Nkoulou, Rene N.; Goetti, Robert; Gaemperli, Oliver [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland)

    2011-11-15

    We evaluated the diagnostic accuracy of attenuation corrected nuclear myocardial perfusion imaging (MPI) with a novel hybrid single photon emission computed tomography (SPECT)/CT device consisting of an ultrafast dedicated cardiac gamma camera with cadmium-zinc-telluride (CZT) solid-state semiconductor detectors integrated onto a multislice CT scanner to detect coronary artery disease (CAD). Invasive coronary angiography served as the standard of reference. The study population included 66 patients (79% men; mean age 63 {+-} 11 years) who underwent 1-day {sup 99m}Tc-tetrofosmin pharmacological stress/rest examination and angiography within 3 months. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) as well as accuracy of the CT X-ray based attenuation corrected CZT MPI for detection of CAD ({>=}50% luminal narrowing) was calculated on a per-patient basis. The prevalence of angiographic CAD in the study population was 82%. Sensitivity, specificity, PPV, NPV and accuracy were 87, 67, 92, 53 and 83%, respectively. In this first report on CZT SPECT/CT MPI comparison versus angiography we confirm a high accuracy for detection of angiographically documented CAD. (orig.)

  1. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Denis [CHU Caen and Normandy University, Department of Nuclear Medicine, Caen (France); Normandy University, Caen (France); Marie, Pierre-Yves [University of Lorraine, Faculty of Medicine, Nancyclotep Experimental Imaging Platform, Nancy (France); University of Lorraine, Faculty of Medicine, CHU Nancy, Department of Nuclear Medicine, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Ben-Haim, Simona [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Ramat Gan (Israel); Rouzet, Francois [University Hospital of Paris-Bichat, UMR 1148, Inserm et Paris Diderot-Paris 7 University Paris, Department of Nuclear Medicine, Paris (France); UMR 1148, Inserm and Paris Diderot-Paris 7 University Paris, Paris (France); Songy, Bernard [Centre Cardiologique du Nord, Saint-Denis (France); Giordano, Alessandro [Institute of Nuclear Medicine, Catholic University of Sacred Heart, Largo A. Gemelli, Department of Bioimages and Radiological Sciences, Rome (Italy); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hyafil, Fabien [Bichat University Hospital, Assistance Publique - Hopitaux de Paris, UMR 1148, Inserm and Paris Diderot-Paris 7 University, Department of Nuclear Medicine, Paris (France); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Bucerius, Jan [Maastricht University Medical Center, Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Verberne, Hein J. [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Faculty of Science and Technology, Department of Biomedical Photonic Imaging, Enschede (Netherlands); Lindner, Oliver [Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center NRW, Bad Oeynhausen (Germany); Collaboration: Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-12-15

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  2. Investigation of the electrochemical deposition of thick layers of cadmium telluride; Etude du depot electrochimique de couches epaisses de tellurure de cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J

    2007-04-15

    This research thesis deals with the problem of electrochemical deposition of thick layers of cadmium telluride (CdTe) meeting the requirements of high energy radiation detection. The author first recalls the physicochemical properties of CdTe and the basic principles of radiology. He details the different criteria which define a material for X ray detection. He describes the experimental conditions, the nature and preparation of substrates, and the different electrochemical systems used in this research. He studies the impact of the applied potential on the material properties, and compares previously obtained results available in the literature with those obtained in the chosen pool conditions. He discusses the synthesis of CdTe thick layers for which different methods are tested: static in potential, static in intensity, pulsed. The coatings obtained with a given potential and then with a given current are investigated. Finally, the influence of a thermal treatment in presence or absence of a sintering agent on the morphology, the chemical composition, and the crystalline and electric properties of the deposited material is discussed, and the results of the behaviour under X rays of a electrodeposited layer are presented.

  3. The influence of reaction times on structural, optical and luminescence properties of cadmium telluride nanoparticles prepared by wet-chemical process

    Energy Technology Data Exchange (ETDEWEB)

    Kiprotich, Sharon, E-mail: KiprotichS@qwa.ufs.ac.za [Department of Physics, University of the Free State (QwaQwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa); Dejene, Francis B.; Ungula, Jatani [Department of Physics, University of the Free State (QwaQwa campus), Private Bag X-13, Phuthaditjhaba 9866 (South Africa); Onani, Martin O. [Departments of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535 (South Africa)

    2016-01-01

    This paper explains one pot synthesis of type II water soluble L-cysteine capped cadmium telluride (CdTe) core shell quantum dots using cadmium acetate, potassium tellurite and L-cysteine as the starting materials. The reaction was carried out in a single three necked flask without nitrogen under reflux at 100 °C. Results from PL show a sharp absorption excitonic band edge of the CdTe core with respect to the core shell which loses its shoulder during the growth of the shell on the core. The PL spectra indicate a drastic shift in emission window of the core which is simultaneously accompanied by an increase in emission intensity. X-ray diffraction pattern confirms the formation of hexagonal phase for all samples. Some difference in absorption edges were observed due to varying synthesis time of CdTe NPs. The position of the absorption band is observed to shift towards the lower wavelength side for shorter durations of synthesis.

  4. Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Jin, Feng; Trivedi, Sudhir; Brown, Eiei; Hommerich, Uwe; Khurgin, Jacob B; Samuels, Alan C

    2016-11-10

    A mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5 s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR, ∼5.6-10 μm) was recently developed. Similar to the conventional ultraviolet-visible LIBS, a broadband emission spectrum of condensed phase samples covering a 5.6-10 μm spectral region could be acquired from just a single laser-induced micro-plasma. Intense and distinct atomic and molecular LWIR emission signatures of various solid inorganic energetic materials were readily observed and identified. Time resolved emissions of inorganic energetic materials were studied to assess the lifetimes of LWIR atomic and molecular emissions. The LWIR atomic emissions generally decayed fast on the scale of tens of microseconds, while the molecular signature emissions from target molecules excited by the laser-induced plasma appeared to be very long lived (∼millisecond). The time dependence of emission intensities and peak wavelengths of these signature emissions gave an insight into the origin and the environment of the emitting target species. Moreover, observed lifetimes of these LWIR emissions can be utilized for further optimization of the signal quality and detection limits of this technique.

  5. Microstructure and Electrical Properties of Antimony Telluride Thin Films Deposited by RF Magnetron Sputtering on Flexible Substrate Using Different Sputtering Pressures

    Science.gov (United States)

    Khumtong, T.; Sukwisute, P.; Sakulkalavek, A.; Sakdanuphab, R.

    2017-02-01

    The microstructural, electrical, and thermoelectric properties of antimony telluride (Sb2Te3) thin films have been investigated for thermoelectric applications. Sb2Te3 thin films were deposited on flexible substrate (polyimide) by radiofrequency (RF) magnetron sputtering from a Sb2Te3 target using different sputtering pressures in the range from 4 × 10-3 mbar to 1.2 × 10-2 mbar. The crystal structure, [Sb]:[Te] ratio, and electrical and thermoelectric properties of the films were analyzed by grazing-incidence x-ray diffraction (XRD) analysis, energy-dispersive x-ray spectroscopy (EDS), and Hall effect and Seebeck measurements, respectively. The XRD spectra of the films demonstrated polycrystalline structure with preferred orientation of (015), (110), and (1010). A high-intensity spectrum was found for the film deposited at lower sputtering pressure. EDS analysis of the films revealed the effects of the sputtering pressure on the [Sb]:[Te] atomic ratio, with nearly stoichiometric films being obtained at higher sputtering pressure. The stoichiometric Sb2Te3 films showed p-type characteristics with electrical conductivity, carrier concentration, and mobility of 35.7 S cm-1, 6.38 × 1019 cm-3, and 3.67 cm2 V-1 s-1, respectively. The maximum power factor of 1.07 × 10-4 W m-1 K-2 was achieved for the film deposited at sputtering pressure of 1.0 × 10-2 mbar.

  6. Linearly polarized, Q-switched, erbium-doped fiber laser incorporating a bulk-structured bismuth telluride/polyvinyl alcohol saturable absorber

    Science.gov (United States)

    Lee, Jinho; Lee, Junsu; Koo, Joonhoi; Chung, Hojai; Lee, Ju Han

    2016-07-01

    We experimentally demonstrate a linearly polarized, passively Q-switched, erbium (Er)-doped fiber laser using a saturable absorber (SA) based on a composite consisting of a bulk-structured bismuth telluride (Bi2Te3) topological insulator (TI) and polyvinyl alcohol (PVA). The SA was constructed on a polarization maintaining (PM) fiber ferrule platform, which had a sandwich structure. Its saturation intensity and modulation depth were measured to be ˜ and ˜4.1%, respectively. Using the prepared Bi2Te3/PVA SA in a PM Er-doped fiber ring laser, stable Q-switched pulses with a degree of polarization of ˜98.6% and an azimuth angle of ˜-0.34 deg were demonstrated. The minimum pulse width was measured to be ˜1.58 μs at a repetition rate of 47.1 kHz. This experimental demonstration verifies that a thin film based on a bulk-structured Bi2Te3 TI can fit into a sandwich-structured SA based on PM fiber ferrules.

  7. Investigation of dual-energy X-ray photon counting using a cadmium telluride detector with dual-energy selection electronics

    Science.gov (United States)

    Sato, Eiichi; Kosuge, Yoshiyuki; Yamanome, Hayato; Mikata, Akiko; Miura, Tatsuya; Oda, Yasuyuki; Ishii, Tomotaka; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Watanabe, Manabu; Kusachi, Shinya

    2017-01-01

    To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have developed a dual-energy X-ray photon counter with a cadmium telluride (CdTe) detector and two energy-selecting devices (ESDs). The ESD consists of two comparators and a microcomputer (MC). X-ray photons are detected using the CdTe detector, and the event pulses from a shaping amplifier are sent to two ESDs simultaneously to determine two energy ranges. X-ray photons in the two ranges are counted using the MCs, and the logical pulses from the MCs are input to frequency-to-voltage converters (FVCs). The outputs from the two FVCs are input to a personal computer through an analog-to-digital converter to carry out dual-energy computed tomography. The tube voltage and current were 80 kV and 8.5 μA, respectively. Two tomograms were obtained simultaneously with two energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-45 and 50-65 keV, respectively. The maximum count rate was 6.8 kilocounts per second with energies ranging from 10 to 80 keV, and the exposure time for tomography was 9.8 min.

  8. Cadmium telluride (CdTe) and cadmium selenide (CdSe) leaching behavior and surface chemistry in response to pH and O2.

    Science.gov (United States)

    Zeng, Chao; Ramos-Ruiz, Adriana; Field, Jim A; Sierra-Alvarez, Reyes

    2015-05-01

    Cadmium telluride (CdTe) and cadmium selenide (CdSe) are increasingly being applied in photovoltaic solar cells and electronic components. A major concern is the public health and ecological risks associated with the potential release of toxic cadmium, tellurium, and/or selenium species. In this study, different tests were applied to investigate the leaching behavior of CdTe and CdSe in solutions simulating landfill leachate. CdTe showed a comparatively high leaching potential. In the Toxicity Characteristic Leaching Procedure (TCLP) and Waste Extraction Test (WET), the concentrations of cadmium released from CdTe were about 1500 and 260 times higher than the regulatory limit (1 mg/L). In contrast, CdSe was relatively stable and dissolved selenium in both leaching tests was below the regulatory limit (1 mg/L). Nonetheless, the regulatory limit for cadmium was exceeded by 5- to 6- fold in both tests. Experiments performed under different pH and redox conditions confirmed a marked enhancement in CdTe and CdSe dissolution both at acidic pH and under aerobic conditions. These findings are in agreement with thermodynamic predictions. Taken as a whole, the results indicate that recycling of decommissioned CdTe-containing devices is desirable to prevent the potential environmental release of toxic cadmium and tellurium in municipal landfills.

  9. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  10. First principles phase transition, elastic properties and electronic structure calculations for cadmium telluride under induced pressure: density functional theory, LDA, GGA and modified Becke-Johnson potential

    Science.gov (United States)

    Kabita, Kh; Maibam, Jameson; Indrajit Sharma, B.; Brojen Singh, R. K.; Thapa, R. K.

    2016-01-01

    We report first principles phase transition, elastic properties and electronic structure for cadmium telluride (CdTe) under induced pressure in the light of density functional theory using the local density approximation (LDA), generalised gradient approximation (GGA) and modified Becke-Johnson (mBJ) potential. The structural phase transition of CdTe from a zinc blende (ZB) to a rock salt (RS) structure within the LDA calculation is 2.2 GPa while that within GGA is found to be at 4 GPa pressure with a volume collapse of 20.9%. The elastic constants and parameters (Zener anisotropy factor, Shear modulus, Poisson’s ratio, Young’s modulus, Kleinmann parameter and Debye’s temperature) of CdTe at different pressures of both the phases have been calculated. The band diagram of the CdTe ZB structure shows a direct band gap of 1.46 eV as predicted by mBJ calculation which gives better results in close agreement with experimental results as compared to LDA and GGA. An increase in the band gap of the CdTe ZB phase is predicted under induced pressure while the metallic nature is retained in the CdTe RS phase.

  11. Testing and Further Development of Improved Etches and Etching Methods for the Analysis of Bridgman Grown Semiconductor Crystals with an Emphasis on Lead-Tin-Telluride

    Science.gov (United States)

    Barber, Patrick G.

    1998-01-01

    The goals outlined for the research project for this year have been completed, and the following supporting documentation is attached: 1. A copy of the proposal outlining the principal goals: (a) Improve the characterization of semiconductor crystals through new etches and etching procedures. (b) Developed a novel voltammetric method to characterize semiconductor crystals as a result of searching for improved etches for lead-tin-telluride. (c) Presented paper at ACCG- 10. (d) Prepared manuscripts for publication. Completed additional testing suggested by reviewers and re-submitted manuscripts. (e) Worked with an undergraduate student on this project to provide her an opportunity to have a significant research experience prior to graduation. 2. In addition to the anticipated goals the following were also accomplished: (a) Submitted the newly developed procedures for consideration as a patent or a NASA Tech Brief. (b) Submitted a paper for presentation at the forthcoming ICCG- 12 conference. 3. A copy of the final draft of the publication as submitted to the editors of the Journal of Crystal Growth.

  12. Kinetics of the conversion of copper sulfide to blister copper

    Directory of Open Access Journals (Sweden)

    Carrillo, F.

    2002-10-01

    Full Text Available The desulfurization of copper sulfide by air and oxygen has been studied in two laboratory reactors where the gas is blown onto the melt surface. Rates of oxidation in a vertical resistance furnace may be explained by the mass transfer control in the gas phase. However, results for a horizontal tube suggest that the chemical resistance is controlling.

    La desulfuración del sulfuro cuproso con aire y oxígeno se ha estudiado en dos reactores de laboratorio, en los cuales el gas se sopla sobre la superficie del fundido. La velocidad de reacción en un horno de resistencias verticales se puede explicar considerando como controlante la resistencia a la transferencia de materia de la fase gas. Sin embargo, los resultados del horno horizontal indican que la resistencia química es la controlante.

  13. Relapsing hypocupraemic myelopathy requiring high‐dose oral copper replacement

    OpenAIRE

    Prodan, C.I.; Bottomley, S S; Holland, N R; Lind, S. E.

    2006-01-01

    Adult‐onset copper deficiency with neurological manifestations is a newly recognised syndrome. Long‐term oral copper replacement therapy has been the mainstay of treatment in the literature. A case of relapsing hypocupraemic myelopathy responsive to increased doses of copper replacement is reported. Standard doses of copper may not be sufficient for all patients.

  14. The various faces of copper in laboratory animals

    NARCIS (Netherlands)

    Wolf, Ingeborg Désirée de

    2001-01-01

    All research described in this thesis focuses on the role of copper in various biochemical processes. It appears that copper has various faces in laboratory animals. On the one hand, copper is an essential trace element, which implicates that a certain requirement for copper exists. On the other

  15. China’s Copper Industry Development and the Prospects

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Since the founding of the People’s Republic, China has given priority to the development of the copper industry, and for a long period of time, copper industry has been placed in the first categories of the industry development in China. Nevertheless, due to the restricted copper resources, the copper mining industry development was rather slow and by the end of

  16. Tarnished copper IUDs still safe and effective.

    Science.gov (United States)

    1989-01-01

    Due to the presence of tarnish on copper T 380A (TCU 380A) intrauterine devices (IUDs) still in their wrappers, family planning providers in developing countries were concerned over their safety and effectiveness. This article explains why there is tarnish on the copper IUDs and why these IUDs are still sterile as long as their packaging is intact. The Population Council and Finishing Enterprises, the developer and the manufacturer of the devise respectively, along with several chemists, have determined that the tarnishing in no way reflects the sterility of the IUD. The IUD packages are permeable to gases but impermeable to microorganisms so that packages of IUDs can be sterilized with ethylene oxide and then stay sterile because no microorganisms can get to the IUD. Tarnishing is caused by the normal oxidation of copper which gives a surface layer of copper oxide. Normally, this surface layer is too thin to be visible, but 10% of the time a thicker layer of copper oxide or what is called "tarnishing" develops on copper IUDs. Copper IUDs have the same efficiency whether or not they are tarnished. Finishing Enterprises is now conducting research on how to slow down the oxidation process.

  17. Electrochromism in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  18. Fully additive copper metallization on BCB

    Energy Technology Data Exchange (ETDEWEB)

    Stolle, T. [FhG-IZM Berlin (Germany); Schwencke, B.; Reichl, H.

    2000-07-01

    A fully additive copper metallization process on benzocyclobutene cyclotene trademark (BCB) has been investigated for application in MCM-D technology. The process consists of surface pretreatment of the BCB basic layer by reactive ion etching (RIE), spin-coating and photopatterning of an organic seed layer by broad-band I-line photolithography followed by developing and activation steps. The metallization of the seed patterns is performed by a 2-step process by means of electroless copper baths. A height of about 5 {mu}m selectively deposited copper can be achieved. The electrical conductivity of patterns is in the range of 80% - 85% of the bulk conductivity of pure copper. Adhesive strength tests during accelerated aging show good adhesion of copper to the BCB surface, which is influenced by RIE pretreatment, exposure dose and thermal load. Shear experiments performed with optimal treated 200 x 200 {mu}m bumps show shear forces > 150 cN. Design rules have to take into account the lateral growth of copper patterns, which is nearly equal to the vertical growth. Real spaces of {>=} 30 {mu}m between copper lines are possible. The process is considered as a low cost technology because of replacing of sputter technique, few process steps and waste reduction. (orig.)

  19. Electron Percolation In Copper Infiltrated Carbon

    Science.gov (United States)

    Krcho, Stanislav

    2015-11-01

    The work describes the dependence of the electrical conductivity of carbon materials infiltrated with copper in a vacuum-pressure autoclave on copper concentration and on the effective pore radius of the carbon skeleton. In comparison with non-infiltrated material the electrical conductivity of copper infiltrated composite increased almost 500 times. If the composite contained less than 7.2 vol% of Cu, a linear dependence of the electrical conductivity upon cupper content was observed. If infiltrated carbon contained more than 7.2 vol% of Cu, the dependence was nonlinear - the curve could be described by a power formula (x - xc)t. This is a typical formula describing the electron percolation process in regions containing higher Cu fraction than the critical one. The maximum measured electrical conductivity was 396 × 104 Ω-1 m-1 for copper concentration 27.6 vol%. Experiments and analysis of the electrical conductivity showed that electron percolation occurred in carbon materials infiltrated by copper when the copper volume exceeded the critical concentration. The analysis also showed a sharp increase of electrical conductivity in composites with copper concentration higher than the threshold, where the effective radius of carbon skeleton pores decreased to 350 nanometres.

  20. The Effective Electrolytic Recovery of Dilute Copper from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Teng-Chien Chen

    2013-01-01

    Full Text Available Electroplating copper industry was discharged huge amount wastewater and cause serious environmental and health damage in Taiwan. This research applied electrical copper recovery system to recover copper metal. In this work, electrotreatment of a industrial copper wastewater ([Cu] = 30000 mg L−1 was studied with titanium net coated with a thin layer of RuO2/IrO2 (DSA reactor. The optimal result for simulated copper solution was 99.9% copper recovery efficiency in current density 0.585 A/dm2 and no iron ion. Due to high concentration of iron and chloride ions in real industrial wastewater, the copper recovery efficiency was down to 60%. Although, the copper recovery efficiency was not high as simulated copper solution, high environmental economic value was included in the technology. The possibility of pretreating the wastewater with iron is the necessary step, before the electrical recovery copper system.

  1. In situ deposits of copper and copper oxide containing condensation polyimide films

    Science.gov (United States)

    Porta, G. M.; Taylor, L. T.

    1987-01-01

    Novel copper-polyimide composites have been synthesized via simultaneous thermal decomposition of solid solutions of bis (trifluoroacetylacetonato) copper (II) and thermal cyclodehydration of polyimide acid. In contrast to conventional filled polymer composites which are prepared by dispersion of particles or fibers in a polymer matrix this study has yielded in general uniform Cu or CuO dispersions of very small particle size that reside near the film surface that was exposed to the atmosphere during curing. The nature of the copper deposit, the thickness of the copper deposit, and the polyimide overlayer which bonds the copper to the polymer substrate depend on the curing atmosphere used. A variety of analytical surface methods along with thermogravimetric analysis and variable temperature (surface and volume) electrical resistivity measurements have been used to characterize these thin, flexible copper doped polyimide films.

  2. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  3. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  4. Thermodynamic Study on Process in Copper Converters (The Copper-making Stage)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Theoretical calculations were based on thermodynamic equilibrium in the multi-component and multi-phase system with heat and mass balance as well as the oxygen efficiency to take account for the effects of process kinetics. The variations of temperature, mass fractions of dissolved oxygen and sulfur in blister copper, partial pressures for O2, S2, SO2 in gas phase for the copper-making stage were calculated. The model predicted temperature, time of blowing as well as mass of the blister copper at end points for 6 heats showed a fairly good agreements with corresponding plant data. The calculated content of 0.065% and content of 0.87% in blister copper were both at reasonable levels. Compared with the so called Goto model, the present model has very much improved process description of copper-making stage as well as the prediction of end points for a copper converter by introducing the oxygen efficiency.

  5. Jiangrun Copper Limited Company Set its Eyes on the Leading Position of Copper Processing Industry in China

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Jiangrun Copper Limited Company’s total investment volume for projects of stranded copper wire with high strength and high conductivity as well as high-performance copper and copper alloy wire are 500 million yuan and 360 million yuan, respectively. The company plans to introduce 85 units (sets) of high-end

  6. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...

  7. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...... waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics....

  8. Nanocrystalline Ni-W coatings on copper

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece); Plainakis, G.D.; Lagaris, D.A. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece)

    2011-04-15

    Nanocrystalline Ni-W coatings were produced on copper substrates with the aid of electrodeposition technique. The morphology, chemical composition and structure of the produced coatings were examined with the aid of scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The microhardness of alloy Ni-W coatings on copper substrate was also studied. The adhesion between the Ni-W coating, having W content 50 wt%, and the copper substrate, was also studied with a scratch testing apparatus. The scratch tests resulted in the coatings suffering an intensive brittle fracture and minor delamination.

  9. Dietary Management of Labrador Retrievers with Subclinical Hepatic Copper Accumulation

    OpenAIRE

    Fieten, H.; Biourge, V.C.; Watson, A.L.; Leegwater, P.A.J.; van den Ingh, T.S.G.A.M.; Rothuizen, J.

    2015-01-01

    Background Genetic and environmental factors, including dietary copper intake, contribute to the pathogenesis of copper‐associated hepatitis in Labrador retrievers. Clinical disease is preceded by a subclinical phase in which copper accumulates in the liver. Objective To investigate the effect of a low‐copper, high‐zinc diet on hepatic copper concentration in Labrador retrievers with increased hepatic copper concentrations. Animals Twenty‐eight clinically healthy, client‐owned Labrador retrie...

  10. Evolution of Copper Transporting ATPases in Eukaryotic Organisms

    OpenAIRE

    Gupta, Arnab; Lutsenko, Svetlana

    2012-01-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases i...

  11. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  12. Metallochaperones regulate intracellular copper levels.

    Directory of Open Access Journals (Sweden)

    W Lee Pang

    Full Text Available Copper (Cu is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.

  13. Copper Homeostasis in Mycobacterium tuberculosis

    Science.gov (United States)

    Shi, Xiaoshan; Darwin, K. Heran

    2015-01-01

    Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host. PMID:25614981

  14. China Metallurgical Group and Jiangxi Copper Having Signed Agreement on Copper Mines with Afghanistan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On May 25,the joint investment combo formed by China Metallurgical Group Corp.(MCC) and Jiangxi Copper Co.has formally signed agreement with Afghan government in Kabul on the exploitation of Aynak copper mine.The mine is situated in the north of Loghar in the middle east of Afghanistan,which is about 35km from the Capital City of Kabul.The ex- tra-large copper mine was found at the begin-

  15. Outlook for China’s Copper Rod & Copper Wire Markets-Part Ⅰ

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Along with its economic development,China is growing in its demand for copper material,and the Chinese copper processing industry has got into the period of rapid expansion.During2001-2009,output of copper material was growing by nearly 20%annually in this country.In 2009,fueled by the national economic stimulus policy,the output hit a high of 22.2%.Since 2009,it has been growing by nearly 12% annually.

  16. The general situation of the production of copper foil for copper clad laminate in China Mainland

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The"Report of Survey & Analysis on copper clad laminate industry in China Mainland"from copper clad laminate branch of China Electronic Material Industrial Association showed that in spite of several unfavorable fac- tors confronted by the whole industry including the large up-rise of raw material price of copper foil,the appreciation of RMB currency,the ad- justment of export policies and the implementa- tion of 2 orders on environmental protection

  17. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by the influx of copper ions into the cells, but the exact mechanism is not fully understood. This study showed that the kinetics of contact killing of copper surfaces depended greatly on the amount...... of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper ion-resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing...... of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...

  18. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis.

    Science.gov (United States)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-05-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in humans and animals. At present, Wilson's disease is the best-described and best-studied copper-storage disorder in humans; it is caused by mutations in the ATP7B gene. In dogs, a mutation in the COMMD1 gene has been found to be associated with copper toxicosis. Using a liver-specific Commd1 knockout mouse, the biological role of Commd1 in copper homeostasis has been confirmed. Yet, the exact mechanism by which COMMD1 regulates copper homeostasis is still unknown. Here, we give an overview of the current knowledge and perspectives on the molecular function of COMMD1 in copper homeostasis.

  19. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides.

    Science.gov (United States)

    Björkbacka, Åsa; Yang, Miao; Gasparrini, Claudia; Leygraf, Christofer; Jonsson, Mats

    2015-09-28

    One of the main challenges for the nuclear power industry today is the disposal of spent nuclear fuel. One of the most developed methods for its long term storage is the Swedish KBS-3 concept where the spent fuel is sealed inside copper canisters and placed 500 meters down in the bedrock. Gamma radiation will penetrate the canisters and be absorbed by groundwater thereby creating oxidative radiolysis products such as hydrogen peroxide (H2O2) and hydroxyl radicals (HO˙). Both H2O2 and HO˙ are able to initiate corrosion of the copper canisters. In this work the kinetics and mechanism of reactions between the stable radiolysis product, H2O2, and copper and copper oxides were studied. Also the dissolution of copper into solution after reaction with H2O2 was monitored by ICP-OES. The experiments show that both H2O2 and HO˙ are present in the systems with copper and copper oxides. Nevertheless, these species do not appear to influence the dissolution of copper to the same extent as observed in recent studies in irradiated systems. This strongly suggests that aqueous radiolysis can only account for a very minor part of the observed radiation induced corrosion of copper.

  20. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...

  1. Effect of fission neutron irradiation on the tensile and electrical properties of copper and copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Institute, St. Petersburg (Russian Federation); Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)] [and others

    1995-04-01

    The objective of this study is to evaluate the properties of several copper alloys following fission reactor irradiation at ITER-relevant temperatures of 80 to 200{degrees}C. This study provides some of the data needed for the ITER research and development Task T213. These low temperature irradiations caused significant radiation hardening and a dramatic decrease in the work hardening ability of copper and copper alloys. The uniform elongation was higher at 200{degree}C compared to 100{degree}C, but still remained below 1% for most of the copper alloys.

  2. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  3. Copper catalysed synthesis of indolylquinazolinone alkaloid bouchardatine

    Indian Academy of Sciences (India)

    Mayavan Viji; Rajagopal Nagarajan

    2014-07-01

    We describe the total synthesis of indolylquinazolinone alkaloid bouchardatine and some of the quinazolinone derivatives. The aerobic oxidation induced by copper(I) bromide, followed by Vilsmeier-Haack formylation gives the natural product bouchardatine alkaloid in good yield.

  4. Diffusion of copper in porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Andsager, D.; Hetrick, J.M.; Hilliard, J.; Nayfeh, M.H. [Department of Physics, 1110 West Green Street, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1995-05-01

    We present a study on the nature of diffusion of copper in {ital p}-type porous silicon. The diffusion of evaporated copper in porous silicon and deposition of metal ions in aqueous solution through the porous network was measured by monitoring the metal concentration depth profile as a function of time using Auger electron spectroscopy. We observed that increasing metal penetration from copper evaporated samples correlates with quenching of photoluminescence, in agreement with previous ion quenching results. We extracted a diffusion coefficient from Auger concentration depth profiles which was seven orders of magnitude lower than that expected for diffusion of copper in bulk crystalline Si at room temperature. Deposition of ionic species cannot be characterized as a simple diffusion process. The observed deposition rates were strongly dependent on the solution concentration.

  5. Map and table of world copper smelters

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map and table comprise information on 124 world copper smelters (2 of which are closed and 1 of which is under development) and 4 (low-grade solvent...

  6. Electrodialytic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, A.; Ottpsen, Lisbeth M.

    2005-01-01

    Mining activities in Chile have generated large amounts of solid waste, which have been deposited in mine tailing impoundments. These impoundments cause concern to the communities due to dam failures or natural leaching to groundwater and rivers.This work shows the laboratory results of nine...... electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4......, and the copper by this reason was released in the solution. Furthermore, with acidic tailing the potential gradient was less than 2V/cm.The maximum copper removal reached in the anode side was 53% with addition of sulphuric acid in 21 days experiment at 20V using approximately 1.8kg mine tailing on dry basis...

  7. Disturbed Copper Bioavailability in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Daniela Kaden

    2011-01-01

    Full Text Available Recent data from in vitro, animal, and human studies have shed new light on the positive roles of copper in many aspects of AD. Copper promotes the non-amyloidogenic processing of APP and thereby lowers the Aβ production in cell culture systems, and it increases lifetime and decreases soluble amyloid production in APP transgenic mice. In a clinical trial with Alzheimer patients, the decline of Aβ levels in CSF, which is a diagnostic marker, is diminished in the verum group (8 mg copper/day, indicating a beneficial effect of the copper treatment. These observations are in line with the benefit of treatment with compounds aimed at normalizing metal levels in the brain, such as PBT2. The data reviewed here demonstrate that there is an apparent disturbance in metal homeostasis in AD. More research is urgently needed to understand how this disturbance can be addressed therapeutically.

  8. Porphyry copper deposits of the world

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Information on porphyry copper deposits from around the world with grade and tonnage models, a general classification based on geologic setting, mineralogy, with...

  9. 21 CFR 524.463 - Copper naphthenate.

    Science.gov (United States)

    2010-04-01

    ... and ponies for thrush caused by organisms susceptible to copper naphthenate. (3) Limitations. Use on horses and ponies only. Avoid contact around eyes. Do not contaminate feed. Do not use in horses...

  10. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  11. Measuring the stability of three copper alloys

    Science.gov (United States)

    Doiron, Theodore D.; Stoup, John R.; Snoots, Patricia; Chaconas, Grace

    1990-11-01

    In this paper we report measurements of the dimensional stability of samples of brass, beryllium copper, and tellurium copper taken over an 18 month time span. Of the materials, brass was the most stable, decreasing slightly in length at the rate of 1 part per million per year (ppm/y) with an uncertainty (3a) of about 1 ppm/y. Tellurium copper shrank at an average rate of 2.Li ppm/y and beryllium copper, the least stable, at the rate of 5.8 ppm/y. To measure the instrumental uncertainty 4 samples of each material were measured, and the measurement scheme was designed to detect and correct for thermal drift ,during measurements. The experiment design problems associated with these measurements and the associated uncertainties are discussed.

  12. Water requirements of the copper industry

    Science.gov (United States)

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  13. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  14. Microstructure and Service Properties of Copper Alloys

    OpenAIRE

    Polok-Rubiniec M.; Konieczny J.; Labisz K.; Włodarczyk-Fligier A.

    2016-01-01

    This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was...

  15. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  16. Pharmacological Properties of Nanometals (Silver, Copper, Iron

    Directory of Open Access Journals (Sweden)

    Chekman, I.S.

    2015-01-01

    Full Text Available The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper. It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  17. EXPERIMENTAL STUDY OF THERMODYNAMICS OF LOADED COPPER

    OpenAIRE

    Barannikov, V.; Nikolaeva, E; Kasatkina, S.

    2005-01-01

    This paper presents an experimental technique to investigate the dynamic behavior of copper under compression using the split Hopkinson pressure bar. We propose to measure thermophysical characteristics of copper specimens with the use of a classic adiabatic calorimeter. The measurements of heat energy, microand macrohardness and density of deformed specimens are made. The obtained results indicate that the evolution of the material structure plays a leading role in the dynamic process of pla...

  18. The Influence of Copper on Steel

    Science.gov (United States)

    1917-02-07

    quenching in oil instead of water. He con- cludes that the presence of copper need not cause apprehension, although tere may not be any advantage in its...present work of .r. Breuil, to be h- zein de- scribed, re 2 resents on; of the most extended investigations on the zffect of copper on the properties...Clevenger and Ray, which will now be described. Experimantal. MAKING INGOTS. 𔄂mall, circular, oil fired fuinace used, (using IoA pressure burner), to heat

  19. Atomistic simulations of dislocation processes in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Jacobsen, K.W.

    2002-01-01

    We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example, the sta......We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example...

  20. China Resumes Processing Trade of Copper Concentrate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>On December 31,2008,China’s Ministry of Commerce and General Administration of Cus- toms issued its year-2008 No.121 announce- ment,saying it will adjust the forbidden cate- gory of processing trade,which includes non- ferrous metal products such as copper concen- trate,nickel concentrate,cobalt concentrate, refined copper,nickel and nickel alloy.The above products will be exempt from being for- bidden to process starting from Feb.1,2009.

  1. Interactions of catechins with copper ions

    OpenAIRE

    Řihošková, Petra

    2014-01-01

    Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Pharmaceutical botanic and ecology Candidate: Mgr. Petra Řihošková Supervisor: PharmDr. Jana Karlíčková, Ph.D. Title of Thesis: Interactions of catechins with copper ions Keywords: catechins, chelating activity, copper, bathocuproine, hematoxylin, antioxidants Flavonoids are a class of plant polyphenols with significant antioxidant activity, which positively affects human health. Flavonoids are able to chelate me...

  2. Bonding and structure of copper nitrenes.

    Science.gov (United States)

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  3. Bitrex: A new levelling agent for copper

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.K., E-mail: J.F.K.Cooper@gmail.com [Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Barnes, C.H.W. [Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-10-30

    Highlights: > Bitrex is a new levelling agent for copper. > The addition of Bitrex increases corrosion resistance of copper films. > The nature of pure copper electrodeposits depends on the growth template size. > Bitrex increases coppers current efficiency. - Abstract: We investigate the effects of denatonium benzoate (Bitrex) on the electrodeposition of copper films from a boric acid bath using scanning electron microscopy, cyclic voltammetry, electrochemical quartz microbalance (EQCM) measurements and corrosion studies. In the absence of Bitrex, pure copper films grown by this method are optically black owing to the appearance of complex surface nanostructures. The addition of Bitrex acts as a levelling agent preventing the formation of these nanostructures even for concentrations as low as 0.02 mM producing a lustrous film with low surface roughness. Bitrex is also found to improve the corrosion resistance by up to a factor of 20 and increase the current efficiency by over a factor of two. Bitrex is hypothesised to act directly on the cathode, partially inhibiting the growth or lowering the deposition current.

  4. Material characterization of ancient Indian copper

    Indian Academy of Sciences (India)

    A Srivastava; R Balasubramaniam

    2003-10-01

    A chalcolithic (2350–1800 BC) copper chisel from Balathal has been characterized by X-ray diffraction, microstructural and electrochemical methods. The surface patina was composed of sulfates and oxysulfates in the outer layers while the inner layers were rich in copper oxides. The chisel exhibited smaller grain sizes near two of the surfaces while the structure in the interior was equiaxed. The deformed grains and inclusions near the surfaces and variation in the microhardness of the sample from different faces proved that the copper chisel was processed by cold deformation after initial casting of the square cross-section chisel. The electrochemical behaviour of chalcolithic Cu has been compared with that of a modern Cu sample by potentiodynamic polarization studies. The corrosion rate of chalcolithic Cu in aerated 3.5% NaCl solution was only marginally higher than that of modern Cu. The higher rate of corrosion has been attributed to the presence of second phase sulfide inclusions. The excellent condition of preservation of the 3800-year-old copper object, with no indications of stress corrosion cracking, suggests that pure copper or copper-based materials can be seriously considered as candidate canister materials for long-term underground storage of nuclear wastes in underground repositories.

  5. Electrochemical Synthesis and Structural Characterization of a Novel Mixed-valence Copper (I)-copper (II) Complex: {[Bis(ethylenediamine) Copper (II)] Bis[diiodocuprate (I)]}

    OpenAIRE

    Mahboobeh Dashti Ardakani; Majid M. Heravi; Saeed Dehghanpour; Lida Fotouhi

    2007-01-01

    A novel, mixed-valent copper(I)-copper(II) complex, {[bis(ethylene-diamine)copper(II)] bis[diiodocuprate(I)]} (1), has been prepared by electrochemicaldissolution of a sacrificial copper anode in a solution of ethylenediamine (en), I2 andtetraethylammoniumperchlorate (TEAP) as supporting electrolyte in acetonitrile (AcN)and characterized by single-crystal X-ray structure determination. The crystal structure ofthe complex 1 shows that it consists of a CuI2 polymer formed from I- ligands bridgi...

  6. a Cdlts Study of the Deep Levels in n- and P - Cadmium Telluride Thin Films Deposited by Hot Wall Evaporation

    Science.gov (United States)

    Ginting, Masno

    CdTe thin films, both undoped and with different dopants, have been deposited unto graphite and Corning 7059 glass substrates using a Three-Stage Hot Wall Vacuum Evaporator (TSHWVE) system. The dopants were incorporated into the CdTe thin films using a "delta doping" technique. The conductivity type of the doped CdTe thin films was determined using the hot probe method, and the film stoichiometry was determined using X-ray and Auger electron spectroscopy measurements. Schottky diodes fabricated on the CdTe thin films that were deposited on graphite substrates have been studied using Current-Voltage (I-V), Capacitance-Voltage (C-V), and Capacitance Deep Level Transient Spectroscopy (CDLTS). The conductivity type of CdTe films that were undoped and doped with Antimony (Sb), Phosphorus (P), Gold (Au), Silver (Ag), and Copper (Cu) were found to be p-type, while Indium (In) doped CdTe thin films were found to be n-type. The highest carrier concentration of the CdTe films are 1 times 10^ {16} cm^{-3} , 1 times 10^ {17} cm^{-3} , and 7.5 times 10 ^{15} cm^{ -3} for In-, Sb-, and P-doped CdTe, respectively. For the In-doped CdTe films three majority carrier trap are found with activation energies measured from the conduction band of 0.23 +/- 0.05 eV, 0.46 +/- 0.06 eV, and 0.78 +/- 0.05 eV. For the Sb-doped CdTe films three majority carrier traps are found with activation energies measured from the valence band of 0.27 +/- 0.06 eV, 0.50 +/- 0.06 eV, and 0.80 +/- 0.06 eV. For the P-doped CdTe films three majority carrier traps are found with activation energies measured from the valence band of 0.28 +/- 0.05 eV, 0.50 +/- 0.06 eV and 0.75 +/- 0.05 eV. Our capture measurements on In-, Sb-, and P-doped CdTe showed non-exponential transients, however they could be fitted very well by Pons theory, and allowed us to determine values for the trap concentration (N_{ rm T}), the trap capture rate (c _{rm n,p}) and the trap capture cross-section (sigma_{rm n,p}). However, the capture

  7. Copper-resistant bacteria enhance plant growth and copper phytoextraction.

    Science.gov (United States)

    Yang, Renxiu; Luo, Chunling; Chen, Yahua; Wang, Guiping; Xu, Yue; Shen, Zhenguo

    2013-01-01

    In this study, we investigated the role of rhizospheric bacteria in solubilizing soil copper (Cu) and promoting plant growth. The Cu-resistant bacterium DGS6 was isolated from a natural Cu-contaminated soil and was identified as Pseudomonas sp. DGS6. This isolate solubilized Cu in Cu-contaminated soil and stimulated root elongation of maize and sunflower. Maize was more sensitive to inoculation with DGS6 than was sunflower and exhibited greater root elongation. In pot experiment, inoculation with DGS6 increased the shoot dry weight of maize by 49% and sunflower by 34%, and increased the root dry weight of maize by 85% and sunflower by 45%. Although the concentrations of Cu in inoculated and non-inoculated seedlings did not differ significantly, the total accumulation of Cu in the plants increased after inoculation. DGS6 showed a high ability to solubilize P and produce iron-chelating siderophores, as well as significantly improved the accumulation of P and Fe in both maize and sunflower shoots. In addition, DGS6 produced indole-3-acetic acid (IAA) and ACC deaminase, which suggests that it may modulate ethylene levels in plants. The bacterial strain DGS6 could be a good candidate for re-vegetation of Cu-contaminated sites. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  8. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators

    Science.gov (United States)

    Bae, Eun Jin; Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-05-01

    Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and the power factor of those materials can be effectively tuned over a wide range depending on the acid concentration of the treatment. The power factors of the synthesized Te-Bi2Te3/PEDOT:PSS hybrids were optimized to 60.05 μW m-1 K-2 with a Seebeck coefficient of 93.63 μV K-1 and an electrical conductivity of 69.99 S cm-1. The flexible thermoelectric generator fabricated by spray-printing Te-Bi2Te3/PEDOT:PSS hybrid solutions showed an open-circuit voltage of 1.54 mV with six legs at ΔT = 10 °C. This approach presents the potential for realizing printing-processable hybrid thermoelectric materials for application in flexible thermoelectric generators.Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and

  9. Synthesis of the copper chelator TGTA and evaluation of its ability to protect biomolecules from copper induced degradation during copper catalyzed azide-alkyne bioconjugation reactions.

    Science.gov (United States)

    Ekholm, F S; Pynnönen, H; Vilkman, A; Koponen, J; Helin, J; Satomaa, T

    2016-01-21

    One of the most successful bioconjugation strategies to date is the copper(I)-catalyzed cycloaddition reaction (CuAAC), however, the typically applied reaction conditions have been found to degrade sensitive biomolecules. Herein, we present a water soluble copper chelator which can be utilized to protect biomolecules from copper induced degradation.

  10. Real-time breath-hold triggering of myocardial perfusion imaging with a novel cadmium-zinc-telluride detector gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Buechel, Ronny R.; Pazhenkottil, Aju P.; Herzog, Bernhard A.; Husmann, Lars; Nkoulou, Rene N.; Burger, Irene A.; Valenta, Ines; Wyss, Christophe A.; Ghadri, Jelena R. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland)

    2010-10-15

    The aim of this study was to assess the ability of real-time breath-hold-triggered myocardial perfusion imaging (MPI) using a novel cadmium-zinc-telluride (CZT) gamma camera to discriminate artefacts from true perfusion defects. A group of 40 patients underwent a 1-day {sup 99m}Tc-tetrofosmin pharmacological stress/rest imaging protocol on a conventional dual detector SPECT gamma camera with and without attenuation correction (AC), immediately followed by scanning on an ultrafast CZT camera with and without real-time breath-hold triggering (instead of AC) by intermittent scanning confined to breath-hold at deep inspiration (using list mode acquisition). We studied the use of breath-hold triggering on the CZT camera and its ability to discriminate artefacts from true perfusion defects using AC SPECT MPI as the reference standard. Myocardial tracer uptake (percent of maximum) from CZT was compared to AC SPECT MPI by intraclass correlation and by calculating Bland-Altman limits of agreement. AC of SPECT MPI identified 19 apparent perfusion defects as artefacts. Of these, 13 were correctly identified and 4 were partially unmasked (decrease in extent and/or severity) by breath-hold triggering of the CZT scan. All perfusion defects verified by SPECT MPI with AC were appropriately documented by CZT with and without breath-hold triggering. This was supported by the quantitative analysis, as the correlation (r) of myocardial tracer uptake between CZT and AC SPECT improved significantly from 0.81 to 0.90 (p<0.001) when applying breath-hold triggering. Similarly, Bland-Altman limits of agreement were narrower for CZT scans with breath-hold triggering. This novel CZT camera allows real-time breath-hold triggering as a potential alternative to AC to assist in the discrimination of artefacts from true perfusion defects. (orig.)

  11. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays.

    Science.gov (United States)

    Kim, Hyunki; Furenlid, Lars R; Crawford, Michael J; Wilson, Donald W; Barber, H Bradford; Peterson, Todd E; Hunter, William C J; Liu, Zhonglin; Woolfenden, James M; Barrett, Harrison H

    2006-02-01

    The first full single-photon emission computed tomography (SPECT) imager to exploit eight compact high-intrinsic-resolution cadmium zinc telluride (CZT) detectors, called SemiSPECT, has been completed. Each detector consists of a CZT crystal and a customized application-specific integrated circuit (ASIC). The CZT crystal is a 2.7 cm x 2.7 cm x -0.2 cm slab with a continuous top electrode and a bottom electrode patterned into a 64 x 64 pixel array by photolithography. The ASIC is attached to the bottom of the CZT crystal by indium-bump bonding. A bias voltage of -180 V is applied to the continuous electrode. The eight detectors are arranged in an octagonal lead-shielded ring. Each pinhole in the eight-pinhole aperture placed at the center of the ring is matched to each individual detector array. An object is imaged onto each detector through a pinhole, and each detector is operated independently with list-mode acquisition. The imaging subject can be rotated about a vertical axis to obtain additional angular projections. The performance of SemiSPECT was characterized using 99mTc. When a 0.5 mm diameter pinhole is used, the spatial resolution on each axis is about 1.4 mm as estimated by the Fourier crosstalk matrix, which provides an algorithm-independent average resolution over the field of view. The energy resolution achieved by summing neighboring pixel signals in a 3 x 3 window is about 10% full-width-at-half-maximum of the photopeak. The overall system sensitivity is about 0.5 x 10(-4) with the energy window of +/-10% from the photopeak. Line-phantom images are presented to visualize the spatial resolution provided by SemiSPECT, and images of bone, myocardium, and human tumor xenografts in mice demonstrate the feasibility of preclinical small-animal studies with SemiSPECT.

  12. Spectral analysis of the effects of 1.7 MeV electron irradiation on the current transfer characteristic of cadmium telluride solar cells.

    Science.gov (United States)

    Tian, Jin-Xiu; Zeng, Guang-Gen; He, Xu-Lin; Zhang, Jing-Quan; Wu, Li-Li; Li, Wei; Li, Bing; Wang, Wen-Wu; Feng, Liang-Huan

    2014-04-01

    The effects of device performance of 1.7 MeV electron irradiation on cadmium telluride polycrystalline thin film solar cells with the structure of anti-radiation glass/ITO/ZnO/CdS/CdTe/ZnTe/ZnTe : Cu/Ni have been studied. Light and dark I-V characteristics, dark C-V characteristics, quantum efficiency (QE), admittance spectrum (AS) and other testing methods were used to analyze cells performance such as the open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF) and conversion efficiency (eta). It was explored to find out the effects of irradiation on the current transfer characteristic of solar cells combined with the dark current density (Jo), diode ideal factor (A), quantum efficiency, carrier concentration and the depletion layer width. The decline in short-circuit current was very large and the efficiency of solar cells decreased obviously after irradiation. Reverse saturation current density increased, which indicates that p-n junction characteristics of solar cells were damaged, and diode ideal factor was almost the same, so current transport mechanism of solar cells has not changed. Quantum efficiency curves proved that the damage of solar cells' p-n junction influenced the collection of photo-generated carriers. Irradiation made carrier concentration reduce to 40.6%. The analyses have shown that. A new defect was induced by electron irradiation, whose position is close to 0.58 eV above the valence band in the forbidden band, and capture cross section is 1.78 x 10(-16) cm2. These results indicate that irradiation influences the generation of photo-generated carriers, increases the risk of the carrier recombination and the reverse dark current, and eventually makes the short-circuit current of solar cells decay.

  13. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Zeng, Chao; Sierra-Alvarez, Reyes; Teixeira, Luiz H; Field, Jim A

    2016-11-01

    This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity.

  14. Studies on focal alveolar bone healing with technetium (Tc)-99m labeled methylene diphosphonate and gold-collimated cadmium telluride probe

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchimochi, M.; Hosain, F.; Engelke, W.; Zeichner, S.J.; Ruttimann, U.E.; Webber, R.L. (National Institute of Dental Research, Bethesda, MD (USA))

    1991-01-01

    The benefit of using a collimator for a miniaturized cadmium telluride probe was evaluated by monitoring the bone-healing processes for 13 weeks after the induction of small iatrogenic alveolar bone lesions in one side of the mandible in beagles. Technetium (Tc)-99m labeled methylene diphosphonate (200 to 300 MBq, 5.1 to 8.1 mCi, in a solution of 0.5 to 1 ml, intravenously) was used as a bone-seeking radiopharmaceutical. The radioactivity over the bone lesion (L) and the contralateral normal site (C) in the mandible were measured between 1.5 and 2 hours after injection of the tracer, and the activity ratio L/C served as an index of relative bone uptake. A study of six dogs revealed that the healing response to a hemispheric bone defect of 2 mm diameter in the cortical bone could not be detected by an uncollimated probe, and in a repeated study in two dogs the use of a gold collimator (5 mm in diameter, 5 mm in length) did not increase the L/C ratio significantly. A second study in six dogs with 5 mm lesions showed that although systematic trends in the time courses of the L/C ratio obtained both with and without the collimator could be demonstrated, the L/C ratio of collimated versus uncollimated measurements was significantly (p less than 0.005) increased. In three of the latter six dogs, abscesses developed after 9 weeks, leading to a second increase (p less than 0.05) of the L/C ratio with collimation compared with the noninflammation group; without collimation no significant (p greater than 0.15) difference between the two groups could be demonstrated.

  15. Copper Recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  16. Copper toxicity in a New Zealand dairy herd.

    Science.gov (United States)

    Johnston, Howard; Beasley, Laura; MacPherson, Neil

    2014-01-01

    Chronic copper toxicity was diagnosed in a Jersey herd in the Waikato region of New Zealand following an investigation into the deaths of six cattle from a herd of 250 dry cows. Clinical signs and post-mortem examination results were consistent with a hepatopathy, and high concentrations of copper in liver and blood samples of clinically affected animals confirmed copper toxicity. Liver copper concentrations and serum gamma-glutamyl transferase activities were both raised in a group of healthy animals sampled at random from the affected herd, indicating an ongoing risk to the remaining cattle; these animals all had serum copper concentrations within normal limits. Serum samples and liver biopsies were also collected and assayed for copper from animals within two other dairy herds on the same farm; combined results from all three herds showed poor correlation between serum and liver copper concentrations. To reduce liver copper concentrations the affected herd was drenched with 0.5 g ammonium molybdate and 1 g sodium sulphate per cow for five days, and the herd was given no supplementary feed or mineral supplements. Liver biopsies were repeated 44 days after the initial biopsies (approximately 1 month after the end of the drenching program); these showed a significant 37.3% decrease in liver copper concentrations (P record keeping, but multiple sources of copper contributed to a long term copper over supplementation of the herd; the biggest source of copper was a mineral supplement. The farmer perceived this herd to have problems with copper deficiency prior to the diagnosis of copper toxicity, so this case demonstrates the importance of monitoring herd copper status regularly. Also the poor correlation between liver and serum copper concentrations in the three herds sampled demonstrates the importance of using liver copper concentration to assess herd copper status.

  17. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  18. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  19. Tianyi Copper Corporation Copper Belt Project Expected to Start in June

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>The copper belt project initiated by Zhongshan Tianyi Copper Corporation is now under construction. Construction of plant is nearing completion and the installation of equipment will soon begin.According to the schedule,the project is expected to begin operation in June, and the output is expected to reach 30,000 tons by end of year.

  20. Jiangrun Copper Planning for Copper Rod Production of 240,000 tons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>According to Jiangsu Jiangrun Copper Co Ltd, it is planning to achieve 240,000 tons of 8mm copper rod production this year due to brisk demand from the lower reaches and the gradual release of its SCR line capacity.