WorldWideScience

Sample records for copper selenide solar cells

  1. Impact of atmospheric species on copper indium gallium selenide solar cell stability: An overview

    NARCIS (Netherlands)

    Theelen, M.

    2016-01-01

    An overview of the measurement techniques and results of studies on the stability of copper indium gallium selenide (CIGS) solar cells and their individual layers in the presence of atmospheric species is presented: in these studies, Cu(In,Ga)Se2 solar cells, their molybdenum back contact, and their

  2. Realization of ultrathin Copper Indium Gallium Di-selenide (CIGSe) solar cells

    OpenAIRE

    Jehl, Zacharie

    2012-01-01

    In this thesis, we investigate on the possibility to realize ultrathin absorber Copper Indium Gallium Di-Selenide (CIGSe) solar cells, by reducing the CIGSe thickness from 2500 nm down to 100 nm, while conserving a high conversion efficiency.Using numerical modeling, we first study the evolution of the photovoltaic parameters when reducing the absorber thickness. A strong decrease of the efficiency of the solar cell is observed, mainly related to a reduced light absorption and carrier collect...

  3. Design and Optimization of Copper Indium Gallium Selenide Thin Film Solar Cells

    Science.gov (United States)

    2015-09-01

    system is rated at providing 300 W of continuous power that is generated from a set of solar panels rated at 1.6 kW and includes a set of batteries that...region=8 conmob # SOLAR LIGHT (AM 1.5) beam num=1 x.origin=0.5 y.origin=-2 angle =90 am1.5 wavel.start=0.285 wavel.end=1.655 wavel.num=137...OPTIMIZATION OF COPPER INDIUM GALLIUM SELENIDE THIN FILM SOLAR CELLS by Daniel B. Katzman September 2015 Thesis Advisor: Sherif Michael Second

  4. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    Science.gov (United States)

    Ambade, Swapnil B.; Mane, R. S.; Kale, S. S.; Sonawane, S. H.; Shaikh, Arif V.; Han, Sung-Hwan

    2006-12-01

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 °C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu 2- xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm 2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  5. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ambade, Swapnil B. [Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune 411037 (India); Mane, R.S. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of); Kale, S.S. [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of); Sonawane, S.H. [Department of Chemical Engineering, Vishwakarma Institute of Technology, Pune 411037 (India); Shaikh, Arif V. [Department of Electronic Science, AKI' s Poona College of Arts, Science and Commerce, Camp, Pune 411 001 (India); Han, Sung-Hwan [Inorganic Nanomaterials Laboratory, Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791 (Korea, Republic of)]. E-mail: shhan@hanyang.ac.kr

    2006-12-15

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 deg. C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu{sub 2-x}Se phase was confirmed by XRD pattern and spherical grains of 30 {+-} 4 - 40 {+-} 4 nm in size aggregated over about 130 {+-} 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm{sup 2} light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  6. Effects of residual copper selenide on CuInGaSe 2 solar cells

    Science.gov (United States)

    Hsieh, Tung-Po; Chuang, Chia-Chih; Wu, Chung-Shin; Chang, Jen-Chuan; Guo, Jhe-Wei; Chen, Wei-Chien

    2011-02-01

    Large-grain, copper-poor CuInGaSe2 (CIGS) films are favored in the fabrication of highly efficient solar cells. However, the degradation of cell performance caused by residual copper selenide (Cu2-xSe) remains a problem. This work studies the formation and behavior of excess CuxSe and further compares the cell performance of typical copper-poor with that of copper-rich solar cells. Since excess Cu2-xSe cannot be exhausted during the growth, it fully surrounds the polycrystalline CIGS grains. Excess Cu2-xSe in the CIGS film produces serious shunt paths and causes the pn junction to be of poor quality. A short circuit in copper-rich CIGS solar cells is attributable to the conductive Cu2-xSe. The best way to ensure high-efficiency of the cells is to exhaust Cu2-xSe during growth. Otherwise, a dense, chemically treated CIGS film is required to prevent the negative effects of excess Cu2-xSe.

  7. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition.

    Science.gov (United States)

    Jeon, Jong-Ok; Lee, Kee Doo; Seul Oh, Lee; Seo, Se-Won; Lee, Doh-Kwon; Kim, Honggon; Jeong, Jeung-hyun; Ko, Min Jae; Kim, BongSoo; Son, Hae Jung; Kim, Jin Young

    2014-04-01

    Highly efficient copper-zinc-tin-selenide (Cu2ZnSnSe4 ; CZTSe) thin-film solar cells are prepared via the electrodepostion technique. A metallic alloy precursor (CZT) film with a Cu-poor, Zn-rich composition is directly deposited from a single aqueous bath under a constant current, and the precursor film is converted to CZTSe by annealing under a Se atmosphere at temperatures ranging from 400 °C to 600 °C. The crystallization of CZTSe starts at 400 °C and is completed at 500 °C, while crystal growth continues at higher temperatures. Owing to compromises between enhanced crystallinity and poor physical properties, CZTSe thin films annealed at 550 °C exhibit the best and most-stable device performances, reaching up to 8.0 % active efficiency; among the highest efficiencies for CZTSe thin-film solar cells prepared by electrodeposition. Further analysis of the electronic properties and a comparison with another state-of-the-art device prepared from a hydrazine-based solution, suggests that the conversion efficiency can be further improved by optimizing parameters such as film thickness, antireflection coating, MoSe2 formation, and p-n junction properties.

  8. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nadja Rebecca [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Wehrli, Bernhard [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland)

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L{sup −1} molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L{sup −1}. From OPV, copper (14 μg L{sup −1}), zinc (87 μg L{sup −1}) and silver (78 μg L{sup −1}) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. - Highlights: • Photovoltaics may be disposed in the environment after usage. • Copper indium gallium selenide (CIGS) and organic (OPV) cells were compared. • Morphological and molecular effects were assessed in zebrafish embryos. • Environmental condition affected metal leaching and ecotoxicological activity. • Damaged CIGS cells pose higher risk to the environment than OPV cells.

  9. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.

    Science.gov (United States)

    Dong, Hailong; Quintilla, Aina; Cemernjak, Marco; Popescu, Radian; Gerthsen, Dagmar; Ahlswede, Erik; Feldmann, Claus

    2014-02-01

    Selenium nanoparticles with diameters of 100-400nm are prepared via hydrazine-driven reduction of selenious acid. The as-prepared amorphous, red selenium (a-Se) particles were neither a stable phase nor were they colloidally stable. Due to phase transition to crystalline (trigonal), grey selenium (t-Se) at or even below room temperature, the particles merged rapidly and recrystallized as micronsized crystal needles. As a consequence, such Se particles were not suited for layer deposition and as a precursor to manufacture thin-film CIS (copper indium selenide/CuInSe2) solar cells. To overcome this restriction, Se@CuSe core@shell particles are presented here. For these Se@CuSe core@shell nanoparticles, the phase transition a-Se→t-Se is shifted to temperatures higher than 100°C. Moreover, a spherical shape of the particles is retained even after phase transition. Composition and structure of the Se@CuSe core@shell nanostructure are evidenced by electron microscopy (SEM/STEM), DLS, XRD, FT-IR and line-scan EDXS. As a conceptual study, the newly formed Se@CuSe core@shell nanostructures with CuSe acting as a protecting layer to increase the phase-transition temperature and to improve the colloidal stability were used as a selenium precursor for manufacturing of thin-film CIS solar cells and already lead to conversion efficiencies up to 3%.

  10. Development of high-efficiency solar cells on copper indium selenide single crystals (cadmium sulfide, zinc oxide)

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Lap Sum

    1996-12-31

    Photovoltaic cells with a ZnO/CdS/CuInSe{sub 2} structure were fabricated on bulk CuInSe{sub 2} substrates. Conversion efficiencies of more than or near 10 per cent were obtained on cells with an active area and without the use of antireflection coating. Copper indium selenide single crystals can be used as absorbers in thin film solar cells. In this study, the single crystals were grown by a horizontal Bridgman method. An annealing of the CuInSe{sub 2} substrate before the CdS deposition was found to be essential in obtaining high photovoltaic performance.

  11. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    Science.gov (United States)

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk.

  12. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

    NARCIS (Netherlands)

    Xu, M.; Wachters, A.J.H.; Deelen, J. van; Mourad, M.C.D.; Buskens, P.J.P.

    2014-01-01

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the

  13. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

    NARCIS (Netherlands)

    Xu, M.; Wachters, A.J.H.; Van Deelen, J.; Mourad, M.C.D.; Buskens, P.J.P.

    2014-01-01

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIG

  14. CuInSe2 thin film solar cells synthesised from electrodeposited binary selenide precursors

    OpenAIRE

    Fischer, Johannes

    2012-01-01

    The box must contain a summary in a maximum of 1,700 characters, spaces included. The fabrication of a CuInSe2 thin film solar cell from an electrodeposited precursor stack consisting of indium selenide and copper selenide layers is demonstrated. A best conversion efficiency of 5.5% was achieved, a higher efficiency than previously reported in literature. The thesis focuses on three main parts: (i) electrochemistry of indium selenide: The incorporation of indium in the deposit require...

  15. Impact of secondary barriers on copper-indium-gallium-selenide solar-cell operation

    Science.gov (United States)

    Pudov, Alexei O.

    Thin-film solar cells based on CuInSe2 (CIS) absorber with a band gap of Eg = 1.0 eV and also based on CuIn1-x GaxSe2 (CIGS) alloy absorbers with a band-gap range of Eg = 1.0--1.67 eV are investigated in this work. Intermediate "buffer" semiconductor layers in p-n junctions of CIGS solar cells often improve photodiode properties of the devices. The primary goal of the thesis is to study secondary barriers in the conduction band at the buffer/absorber interface, which may limit current transport and thus reduce the efficiency of the solar cells. The secondary goal is to explore alternative wide-bandgap buffers in CIGS cell structures. CIGS cells with standard CdS buffer layers, and alternative ZnS(O,OH) and InS(O,OH) buffer layers were studied. CdS/CuIn1-xGaxSe2 solar cells with variable Ga content have a range of conduction-band offsets (DeltaEc) in the junction from moderately positive (spike offsets) in CdS/CuInSe2 to moderately negative (cliff offsets) in CdS/CuGaSe 2. Moderate conduction-band spikes in CdS/CIS and low-Ga CdS/CIGS are expected to cause distortions in diode current-voltage (J-V) curves of such solar cells under "red" illumination (hnu < Eg(buffer)); no J-V distortions are expected for high-Ga CdS/CIGS with cliff offsets. These predictions were confirmed in experiments: the distortions were absent for cells with Eg above 1.2--1.3 eV, at which CdS/CIGS DeltaE c is near zero. Experiments and numerical simulations showed that one approach to reduce secondary barriers and J-V distortions in low-Ga high-spike cells is to thin the buffer layer(s). Blue photons (hnu above Eg(buffer)) in the solar spectrum induce photoconductivity in the otherwise compensated buffers, which also results in lowering of the secondary barriers. It was shown that CIGS cells with CdS, InS(O,OH), and ZnS(O,OH) buffers have a similar response to "blue" photons: J-V distortion, if present under red light, is reduced or entirely disappears with blue-light exposure within minutes

  16. Co-solvent enhanced zinc oxysulfide buffer layers in Kesterite copper zinc tin selenide solar cells.

    Science.gov (United States)

    Steirer, K Xerxes; Garris, Rebekah L; Li, Jian V; Dzara, Michael J; Ndione, Paul F; Ramanathan, Kannan; Repins, Ingrid; Teeter, Glenn; Perkins, Craig L

    2015-06-21

    A co-solvent, dimethylsulfoxide (DMSO), is added to the aqueous chemical "bath" deposition (CBD) process used to grow ZnOS buffer layers for thin film Cu2ZnSnSe4 (CZTSe) solar cells. Device performance improves markedly as fill factors increase from 0.17 to 0.51 upon the co-solvent addition. X-ray photoelectron spectroscopy (XPS) analyses are presented for quasi-in situ CZTSe/CBD-ZnOS interfaces prepared under an inert atmosphere and yield valence band offsets equal to -1.0 eV for both ZnOS preparations. When combined with optical band gap data, conduction band offsets exceed 1 eV for the water and the water/DMSO solutions. XPS measurements show increased downward band bending in the CZTSe absorber layer when the ZnOS buffer layer is deposited from water only. Admittance spectroscopy data shows that the ZnOS deposited from water increases the built-in potential (Vbi) yet these solar cells perform poorly compared to those made with DMSO added. The band energy offsets imply an alternate form of transport through this junction. Possible mechanisms are discussed, which circumvent the otherwise large conduction band spike between CZTSe and ZnOS, and improve functionality with the low-band gap absorber, CZTSe (Eg = 0.96 eV).

  17. Design and Optimization of Copper Indium Gallium Selenide Solar Cells for Lightweight Battlefield Application

    Science.gov (United States)

    2014-06-01

    those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N...Matrix Flatpanel Displays and Devices, Kyoto , Japan, 2012, pp. 67–70. [23] R. Yang, Z. Bai, D. Wang, and D. Wang, “High efficient thin film CdTe solar

  18. Characterizations of chemical bath-deposited zinc oxysulfide films and the effects of their annealing on copper-indium-gallium-selenide solar cell efficiency

    Science.gov (United States)

    Hsieh, Tsung-Min; Lue, Shingjiang Jessie; Ao, Jianping; Sun, Yun; Feng, Wu-Shiung; Chang, Liann-Be

    2014-01-01

    Zinc oxysulfide (Zn(S,O)) thin films are fabricated using a chemical bath deposition method onto glass substrates and the surface of copper-indium-gallium-selenide (CIGS) adsorption layers for solar cell fabrication. The light and electric properties of the Zn(S,O) layers are improved after rapid thermal annealing (RTA). The Zn(S,O) properties of samples annealed under various atmospheres are compared. The resulting annealed Zn(S,O) films are 80-100 nm thick. The band gap decreases from 3.8 eV to 3.3 eV and the light transmittance is improved by more than 95% after annealing under oxygen atmosphere. The oxygen-annealed sample has a S/(S + O) ratio of 0.28 and a S/Zn ratio of 0.72. The CIGS solar cell that consists of the annealed Zn(S,O) buffer layer is more efficient (6.15%) than that of the non-annealed Zn(S,O) (4.56%). The solar cell performance is correlated with the deposited Zn(S,O) characteristics. The significantly higher carrier concentration, increases light transmittance, and improves crystalline structure of the oxygen-annealed Zn(S,O) film contributes to the improved cell performance.

  19. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  20. Antimony selenide thin-film solar cells

    Science.gov (United States)

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  1. Thermoelectric Study of Copper Selenide

    Science.gov (United States)

    Yao, Mengliang; Liu, Weishu; Ren, Zhifeng; Opeil, Cyril

    2014-03-01

    Nanostructuring has been shown to be an effective approach in reducing lattice thermal conductivity and improving the figure of merit of thermoelectric materials. Copper selenide is a layered structure material, which has a low thermal conductivity and p-type Seebeck coefficient at low temperatures. We have evaluated several hot-pressed, nanostructured copper selenide samples with different dopants for their thermoelectric properties. The phenomenon of the charge-density wave observed in the nanocomposite, resistivity, Seebeck, thermal conductivity and carrier mobility will be discussed. Funding for this research was provided by the Solid State Solar - Thermal Energy Conversion Center (S3TEC), an Energy Frontier Research Center sponsored by the DOE, Office of Basic Energy Science, Award No. DE-SC0001299/ DE-FG02-09ER46577.

  2. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  3. Improving the efficiency of copper indium gallium (Di-selenide (CIGS solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Directory of Open Access Journals (Sweden)

    M. Burghoorn

    2014-12-01

    Full Text Available Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-selenide (CIGS solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%. No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  4. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Xu, M. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Delft University of Technology, Optics Group, Van der Waalsweg 8, 2628 CH, Delft (Netherlands); Vroon, Z. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Zuyd Hogeschool, Nieuw Eyckholt 300, 6419 DJ, Heerlen (Netherlands); Belt, R. van de [Kriya Materials BV, Urmonderbaan 22, 6167 RD, Geleen (Netherlands); Buskens, P., E-mail: pascal.buskens@tno.nl, E-mail: buskens@dwi.rwth-aachen.de [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); DWI – Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen (Germany)

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  5. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Science.gov (United States)

    Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.

    2014-12-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  6. The effect of silicon and copper-indium-gallium-selenide based solar cell structures and processing on temperature dependent performance losses

    Science.gov (United States)

    Hsieh, Judith

    Temperature dependent current voltage measurements (J-V-T) of solar cells. provide both fundamental and practical information. They give detailed insight into. recombination losses within the device as well as information about module. performance losses at higher outdoor operating temperatures. In this thesis, J-V-T. measurements were applied to two distinctly different types of solar cells: crystalline. silicon heterojunction cells and thin film (AgCu)(InGa)Se2 or ACIGS polycrystalline. cells. Crystalline silicon solar cells with heterojunction structure improve the opencircuit. voltage and efficiency. Interdigitated back contact (IBC) Si solar cells obtain a. higher short-circuit current and fill factor compared to front heterojunction (FHJ) solar. cells. ACIGS solar cells have shown higher efficiencies at wider bandgap compared to. the baseline CIGS solar cells. Two high open-circuit voltage CIGS solar cells are. included and compared with ACIGS solar cells. In this thesis, the impact of different. types of solar cells structure and fabrication on temperature dependent performance. losses will be discussed. Devices with higher bandgap are predicted to have higher. open-circuit voltage and lower temperature coefficient of maximum power output. (Pmax). The correlation between temperature coefficient of Pmax and open-circuit. voltage can be found in Si FHJ cells but not Si IBC or ACIGS cells. However, ACIGS. cells show an inverse correlation between temperature coefficient of Pmax and bandgap. as expected. Analysis of diode quality factor and other parameters are interpreted. Sshape. J-V curve can reduce the device's fill factor with a relative high series resistance. This phenomenon tends to occur in FHJ cells rather than IBC at low temperature. Light-dark crossover and roll over effects are commonly seen in ACIGS cells and the. anomaly is enhanced at lower temperature. Most of FHJ and IBC cells obtain the. ideality factor between 1 and 2 while some of ACIGS

  7. Oxidation Mechanism of Copper Selenide

    Science.gov (United States)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  8. Metal Selenides as Efficient Counter Electrodes for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng

    2017-04-18

    Solar energy is the most abundant renewable energy available to the earth and can meet the energy needs of humankind, but efficient conversion of solar energy to electricity is an urgent issue of scientific research. As the third-generation photovoltaic technology, dye-sensitized solar cells (DSSCs) have gained great attention since the landmark efficiency of ∼7% reported by O'Regan and Grätzel. The most attractive features of DSSCs include low cost, simple manufacturing processes, medium-purity materials, and theoretically high power conversion efficiencies. As one of the key materials in DSSCs, the counter electrode (CE) plays a crucial role in completing the electric circuit by catalyzing the reduction of the oxidized state to the reduced state for a redox couple (e.g., I3(-)/I(-)) in the electrolyte at the CE-electrolyte interface. To lower the cost caused by the typically used Pt CE, which restricts the large-scale application because of its low reserves and high price, great effort has been made to develop new CE materials alternative to Pt. A lot of Pt-free electrocatalysts, such as carbon materials, inorganic compounds, conductive polymers, and their composites with good electrocatalytic activity, have been applied as CEs in DSSCs in the past years. Metal selenides have been widely used as electrocatalysts for the oxygen reduction reaction and light-harvesting materials for solar cells. Our group first expanded their applications to the DSSC field by using in situ-grown Co0.85Se nanosheet and Ni0.85Se nanoparticle films as CEs. This finding has inspired extensive studies on developing new metal selenides in order to seek more efficient CE materials for low-cost DSSCs, and a lot of meaningful results have been achieved in the past years. In this Account, we summarize recent advances in binary and mutinary metal selenides applied as CEs in DSSCs. The synthetic methods for metal selenides with various morphologies and stoichiometric ratios and deposition

  9. Simulation of a thin film solar cell based on copper zinc tin sulfo-selenide Cu2ZnSn(S,Se)4

    Science.gov (United States)

    Benmir, Abdelkader; Aida, Mohamed Salah

    2016-03-01

    The aim of this work is to do a simulation of a Cu2ZnSn(S,Se)4 thin film photovoltaic solar cell to link the characteristics of this cell with the materials parameters in order to improve its performances. It is found that, the cell performances are almost invariables while the thickness of the buffer layer is equal to or less than the space charge zone width of its side. But, as soon as it exceeds this width, a slight reduction in these performances is observed. However, the absorber layer thickness must have a value at least equal to the space charge region width of its side and at most equal to the sum of this space charge region width and the electrons diffusion length. An optimum value of the absorber band gap around 1.5 eV is obtained. This value is the compromise between the decreases of the short circuit current density and the increases of the open circuit voltage with the increases of the gap. This leads to a maximum cell efficiency of 12.1%.

  10. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung

    2011-12-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  11. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells.

    Science.gov (United States)

    Duan, Yanyan; Tang, Qunwei; Liu, Juan; He, Benlin; Yu, Liangmin

    2014-12-22

    The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  13. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, Jiwu; Liu, Wei; Kovalgin, Alexey Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  14. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency.

    Science.gov (United States)

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-11-07

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.

  15. Counter electrodes from binary ruthenium selenide alloys for dye-sensitized solar cells

    Science.gov (United States)

    Li, Pinjiang; Cai, Hongyuan; Tang, Qunwei; He, Benlin; Lin, Lin

    2014-12-01

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its merits on clean, cost-effectiveness, relatively high efficiency, and easy fabrication. However, the reduction of fabrication cost without sacrifice of power conversion efficiencies of the DSSCs is a golden rule for their commercialization. Here we design a new binary ruthenium selenide (Ru-Se) alloy counter electrodes (CEs) by a low-temperature hydrothermal reduction method. The electrochemical behaviors are evaluated by cyclic voltammogram, electrochemical impedance, and Tafel measurements, giving an optimized Ru/Se molar ratio of 1:1. The DSSC device with RuSe alloy CE achieves a power conversion efficiency of 7.15%, which is higher than 5.79% from Pt-only CE based DSSC. The new concept, easy process along with promising results provide a new approach for reducing cost but enhancing photovoltaic performances of DSSCs.

  16. Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jinbiao; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Tu, Yongguang; Huo, Jinghao; Zheng, Min; Lin, Jianming

    2015-08-15

    Highlights: • A transparent Ni{sub 0.85}Se is prepared by a facile solvothermal reaction. • Ni{sub 0.85}Se electrode has better electrocatalytic activity than Pt electrode. • DSSC with Ni{sub 0.85}Se electrode obtains efficiency of 8.88%, higher than DSSC with Pt. • DSSC with Ni{sub 0.85}Se/mirror electrode achieves an efficiency of 10.19%. - Abstract: A transparent nickel selenide (Ni{sub 0.85}Se) is prepared by a facile solvothermal reaction and used as an efficient Pt-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). Field emission scanning electron microscopy observes that the as-prepared Ni{sub 0.85}Se possesses porous structure. Cyclic voltammogram measurement indicates that Ni{sub 0.85}Se electrode has larger current density than Pt electrode. Electrochemical impedance spectroscopy shows that the Ni{sub 0.85}Se electrode has lower charge-transfer resistance than Pt electrode. Under simulated solar light irradiation with intensity of 100 mW cm{sup −2} (AM 1.5), the DSSC based on the Ni{sub 0.85}Se CE achieves a power conversion efficiency (PCE) of 8.88%, which is higher than the solar cell based on Pt CE (8.13%). Based on the transparency of Ni{sub 0.85}Se, the DSSC with Ni{sub 0.85}Se/mirror achieves a PCE of 10.19%.

  17. A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells

    Science.gov (United States)

    Dong, Jia; Wu, Jihuai; Jia, Jinbiao; Ge, Jinhua; Bao, Quanlin; Wang, Chaotao; Fan, Leqing

    2017-04-01

    Nickel selenide (Ni0.85Se) was synthesized by a facile one-step hydrothermal reaction and Ni0.85Se film was prepared by spin-coating Ni0.85Se ink on FTO and used as counter electrode (CE) in dye-sensitized solar cells (DSSC). The Ni0.85Se CEs not only show high transmittance in visible range, but also possess remarkable electrocatalytic activity toward I-/I3-. The electrocatalytic ability of Ni0.85Se films was verified by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. The DSSC using Ni0.85Se CE exhibits a power conversion efficiency (PCE) of 8.96%, while the DSSC consisting of sputtered Pt CE only exhibits a PCE of 8.15%. When adding a mirror under Ni0.85Se CE, the resultant DSSC exhibits a PCE of 10.76%, which exceeds that of a DSSC based on sputtered Pt CE (8.44%) by 27.49%.

  18. Photoluminescence Study of Copper Selenide Thin Films

    Science.gov (United States)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.

    2011-10-01

    Thin films of Copper Selenide of composition of composition Cu7Se4 with thickness 350 nm are deposited on glass substrate at a temperature of 498 K±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%) and Selenium (99.99%) as the elemental starting material. The deposited film is characterized structurally using X-ray Diffraction. The structural parameters such as lattice constant, particle size, dislocation density; number of crystallites per unit area and strain in the film are evaluated. Photoluminescence of the film is analyzed at room temperature using Fluoro Max-3 Spectrofluorometer.

  19. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    NARCIS (Netherlands)

    Burghoorn, M.M.A.; Kniknie, B.J.; Deelen, J. van; Xu, M.; Vroon, Z.A.E.P.; Ee, R.J. van; Belt, R. van de; Buskens, P.J.P.

    2014-01-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed

  20. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    NARCIS (Netherlands)

    Burghoorn, M.M.A.; Kniknie, B.J.; Deelen, J. van; Xu, M.; Vroon, Z.A.E.P.; Ee, R.J. van; Belt, R. van de; Buskens, P.J.P.

    2014-01-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed

  1. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    OpenAIRE

    M. Burghoorn; B. Kniknie; Deelen, J; Xu., M; Z. Vroon; van Ee, R.; van de Belt, R.; Buskens, P

    2014-01-01

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transp...

  2. Thin film solar cells. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning research and development of high-efficiency and low-cost thin film solar cells. References discuss the design and fabrication of silicon, gallium arsenide, copper selenide, indium selenide, cadmium telluride, and copper indium selenide solar cells. Applications in space and utilities are examined. Government projects and foreign technology are also reviewed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Temperature influence study on copper selenide films

    OpenAIRE

    V.RAJENDRAN; PACKIASEELI S. ARULMOZHI; MUTHUMARI S.; Vijayalakshmi, R.

    2016-01-01

    Copper selenide was prepared by film is successfully deposited on a Fluorine-doped Tin Oxide (FTO) substrate by a brush plating technique. The film was uniform, had good adherence to the substrate and was annealed at 300 ◦ C and 500 ◦ C. As the annealing temperature increased, the orientation of the crystallites is more randomized than in the as-prepared film. The structural and optical properties of the film were investigated by XRD, SEM, EDAX, UV-Visible and PL. The XRD pattern indicated th...

  4. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi’an 710300 (China); Wang, Ye Feng [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Xue Qing [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2016-04-30

    Highlights: • PbSe thin film is deposited on FTO glass by a pulse voltage electrodeposition method. • The thin film is used as counter electrode (CE) in quantum dot-sensitized solar cell. • Superior electrocatalytic activity and stability in the polysulfide electrolyte is received. • The narrow band gap characteristics and p-type conductivity enhances the cell efficiency. • An efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells. - Abstract: Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  5. Deposition of copper selenide thin films and nanoparticles

    Science.gov (United States)

    Hu, Yunxiang; Afzaal, Mohammad; Malik, Mohammad A.; O'Brien, Paul

    2006-12-01

    A new method is reported for the growth of copper selenide thin films and nanoparticles using copper acetylacetonate and trioctylphosphine selenide. Aerosol-assisted chemical vapor deposition experiments lead to successful deposition of tetragonal Cu 2Se films. In contrast, hexadecylamine capped nanoparticles are composed of cubic Cu 2-xSe. The deposited materials are optically and structurally characterized. The results of this comprehensive study are described and discussed.

  6. Mechanism of copper selenide growth on copper-oxide selenium system

    Science.gov (United States)

    Ishikawa, Y.; Kido, O.; Kimura, Y.; Kurumada, M.; Suzuki, H.; Saito, Y.; Kaito, C.

    2004-01-01

    Transmission electron microscopy was used to study spontaneous copper selenide formation on Cu particles covered with an oxide layer. Even if the copper particle surface was covered with a Cu 2O layer, selenides were formed by diffusion through the metal oxide layer. For a particle size less than 50 nm, selenide was formed in Cu particles by the diffusion of Se atoms passing through the Cu 2O layer. For particles larger than 100 nm in size, selenide was formed in Se film. It was also found that the thickness of the Cu 2O layer on the surface of Cu particle accelerated diffusion of Se atoms to the copper particle.

  7. Progress in Cleaning and Wet Processing for Kesterite Thin Film Solar Cells

    OpenAIRE

    B. Vermang, A. Mule, N. Gampa, S. Sahayaraj, S. Ranjbar, G. Brammertz, M. Meuris, J. Poortmans

    2016-01-01

    Copper indium gallium selenide/sulfide (CIGS) and copper zinc tin selenide/sulfide (CZTS) are two thin film photovoltaic materials with many similar properties. Therefore, three new processing steps – which are well-known to be beneficial for CIGS solar cell processing – are developed, optimized and implemented in CZTS solar cells. For all these novel processing steps an increase in minority carrier lifetime and cell conversion efficiency is measured, as compared to standard CZTS processing. ...

  8. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%

    Science.gov (United States)

    Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C.; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C.

    2015-01-01

    Multiple-exciton generation—a process in which multiple charge-carrier pairs are generated from a single optical excitation—is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley–Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283

  9. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.

    Science.gov (United States)

    Davis, Nathaniel J L K; Böhm, Marcus L; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C

    2015-09-28

    Multiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation.

  10. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  11. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  12. Electrodeposition of copper selenide films from acidic bath and their properties

    Science.gov (United States)

    Mane, Rajaram S.; Shaikh, Arif V.; Joo, Oh-Shim; Han, Sung-Hwan; Pathan, Habib M.

    2012-06-01

    Copper selenide thin films are successfully deposited using electrodeposition method by combining copper sulfate and sodiumseleno sulfate precursors at room temperature in acidic bath. The chemical composition was a key factor in preparing high-quality uniform and smooth thin films of the copper selenide. We present indium-tin-oxide as a substrate for depositing copper selenide films which usually exists as copper (I) selenide or copper (II) selenide. Obtained brownish films of copper selenide are examined for their structural, morphological, compositional and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques, respectively for the structural, morphological and optical analysis.

  13. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    Science.gov (United States)

    Bercegol, Adrien; Chacko, Binoy; Klenk, Reiner; Lauermann, Iver; Lux-Steiner, Martha Ch.; Liero, Matthias

    2016-04-01

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.

  14. Aqueous preparation of surfactant-free copper selenide nanowires.

    Science.gov (United States)

    Chen, Xinqi; Li, Zhen; Yang, Jianping; Sun, Qiao; Dou, Shixue

    2015-03-15

    Uniform surfactant-free copper selenide (Cu2-xSe) nanowires were prepared via an aqueous route. The effects of reaction parameters such as Cu/Se precursor ratio, Se/NaOH ratio, and reaction time on the formation of nanowires were comprehensively investigated. The results show that Cu2-xSe nanowires were formed through the assembling of CuSe nanoplates, accompanied by their self-redox reactions. The resultant Cu2-xSe nanowires were explored as a potential thermoelectric candidate in comparison with commercial copper selenide powder. Both synthetic and commercial samples have a similar performance and their figures of merit are 0.29 and 0.38 at 750K, respectively.

  15. Ambient Facile Synthesis of Gram-Scale Copper Selenide Nanostructures from Commercial Copper and Selenium Powder.

    Science.gov (United States)

    Chen, Xin Qi; Li, Zhen; Dou, Shi Xue

    2015-06-24

    Grams of copper selenides (Cu(2-x)Se) were prepared from commercial copper and selenium powders in the presence of thiol ligands by a one-pot reaction at room temperature. The resultant copper selenides are a mixture of nanoparticles and their assembled nanosheets, and the thickness of nanosheets assembled is strongly dependent on the ratio of thiol ligand to selenium powder. The resultant Cu(2-x)Se nanostructures were treated with hydrazine solution to remove the surface ligands and then explored as a potential thermoelectric candidate in comparison with commercial copper selenide powders. The research provides a novel ambient approach for preparation of Cu(2-x)Se nanocrystallines on a large scale for various applications.

  16. Fabrication and Characterization of Copper System Compound Semiconductor Solar Cells

    Directory of Open Access Journals (Sweden)

    Ryosuke Motoyoshi

    2010-01-01

    Full Text Available Copper system compound semiconductor solar cells were produced by a spin-coating method, and their cell performance and structures were investigated. Copper indium disulfide- (CIS- based solar cells with titanium dioxide (TiO2 were produced on F-doped SnO2 (FTO. A device based on an FTO/CIS/TiO2 structure provided better cell performance compared to that based on FTO/TiO2/CIS structure. Cupric oxide- (CuO- and cuprous oxide- (Cu2O- based solar cells with fullerene (C60 were also fabricated on FTO and indium tin oxide (ITO. The microstructure and cell performance of the CuO/C60 heterojunction and the Cu2O:C60 bulk heterojunction structure were investigated. The photovoltaic devices based on FTO/CuO/C60 and ITO/Cu2O:C60 structures provided short-circuit current density of 0.015 mAcm−2 and 0.11 mAcm−2, and open-circuit voltage of 0.045 V and 0.17 V under an Air Mass 1.5 illumination, respectively. The microstructures of the active layers were examined by X-ray diffraction and transmission electron microscopy.

  17. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    OpenAIRE

    Subiramaniyam, N. P.; P. Thirunavukkarasu; Murali, K. R.

    2013-01-01

    Copper indium gallium selenide (CIGS) films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decre...

  18. on THICKNESS OF COPPER (|) OXIDE (Cu2"O) SOLAR CELL

    African Journals Online (AJOL)

    thickness of copper oxides solar ce[[s prepared 63/ thermaf oxidation method The sampfes were oxidized at di_';§'erent oxidation temperatures and time. The diflerent oxidation ... observed that the later was relatively high. Adrianus (1978).

  19. A Model of the Growth of Copper Selenide Thin Films Controlled by Diffusion and Chemical Reaction

    OpenAIRE

    Bottecchia,Otávio Luiz

    1998-01-01

    A model of the growth of thin films of copper selenides is proposed. A mathematical equation that describes the kinetics of the growth is derived. Simulated results and a discussion on the results of the model are presented. A fitting procedure of literature data with the derived equation is carried out. The diffusion coefficient of copper(I) ions in copper selenide is roughly estimated.

  20. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    Directory of Open Access Journals (Sweden)

    N. P. Subiramaniyam

    2013-01-01

    Full Text Available Copper indium gallium selenide (CIGS films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decreased from 125 cm2V−1s−1 to 20.9 cm2V−1s−1, and carrier concentration decreased from 4.99 × 1017 cm−3 to 2.49 × 1016 cm−3 as the gallium concentration increased. Photosensitivity of the films increased linearly with intensity of illumination and with increase of applied voltage.

  1. Copper selenide thin films by chemical bath deposition

    Science.gov (United States)

    García, V. M.; Nair, P. K.; Nair, M. T. S.

    1999-05-01

    We report the structural, optical, and electrical properties of thin films (0.05 to 0.25 μm) of copper selenide obtained from chemical baths using sodium selenosulfate or N,N-dimethylselenourea as a source of selenide ions. X-ray diffraction (XRD) studies on the films obtained from baths using sodium selenosulfate suggest a cubic structure as in berzelianite, Cu 2- xSe with x=0.15. Annealing the films at 400°C in nitrogen leads to a partial conversion of the film to Cu 2Se. In the case of films obtained from the baths containing dimethylselenourea, the XRD patterns match that of klockmannite, CuSe. Annealing these films in nitrogen at 400°C results in loss of selenium, and consequently a composition rich in copper, similar to Cu 2- xSe, is reached. Optical absorption in the films result from free carrier absorption in the near infrared region with absorption coefficient of ˜10 5 cm -1. Band-to-band transitions which gives rise to the optical absorption in the visible-ultraviolet region may be interpreted in terms of direct allowed transitions with band gap in the 2.1-2.3 eV range and indirect allowed transitions with band gap 1.2-1.4 eV. All the films, as prepared and annealed, show p-type conductivity, in the range of (1-5)×10 3 Ω -1 cm -1. This results in high near infrared reflectance, of 30-80%.

  2. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals.

    Science.gov (United States)

    Lesnyak, Vladimir; Brescia, Rosaria; Messina, Gabriele C; Manna, Liberato

    2015-07-29

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn(2+) and Cd(2+)) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu(2-x)Se) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core-shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu(+) ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu(2-x)Se samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature.

  3. Analysis on the Performance of Copper Indium Gallium Selenide (CIGS Based Photovoltaic Thermal

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available This paper deals with the efficiency improvement of Copper Indium Gallium Selenide (CIGS Photovoltaic (PV and also solar thermal collector. Photovoltaic thermal (PV/T can improve overall efficiency for PV and also solve the problem of limited roof space at urban area. Objective of this study is to clarify the effect of mass flow rate on the efficiency of the PV/T system. A CIGS solar cell is used with rated output power 65 W and 1.18 m2 of area. 4 set of experiments were carried out, which were: thermal collector with 0.12 kg/s flow rate, PV/T with 0.12 kg/s flow rate, PV/T with 0.09 kg/s flow rate and PV. It was found that PV/T with 0.12 kg/s flow rate had the highest electrical efficiency, 2.92 %. PV/T with 0.09 kg/s flow rate had the lowest electrical efficiency, 2.68 %. It also had 2 % higher overall efficiency. The efficiency gained is low due to several factors. The rated output power of the PV is low for the area of 1.18 m2. The packing factor of the PV also need to be considered as it may not be operated at the optimal packing factor. Furthermore, aluminium sheet of the PV may affect the PV temperature due to high thermal conductivity. Further study on more values of mass flow rate and also other parameters that affect the efficiency of the PV/T is necessary.

  4. Effect of a thin intermediate zinc selenide layer on the properties of CuInSe sub 2 solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.B.; Fahrenbruch, A.L.; Bube, R.H. (Stanford Univ., CA (USA). Dept. of Materials Science and Engineering)

    1991-03-01

    We have demonstrated that a thin insulating layer of ZnSe can be a viable alternative to a thin layer of CdS in a CuInSe{sub 2} solar cell, as currently used in the high efficiency ARCO Solar (now Siemens Solar) ZnO/CdS/CuInSe{sub 2} cell. We have investigated the effects of ZnSe thickness and deposition temperature on the properties of CuInSe{sub 2} solar cells, using a CdS window layer for diagnostic purposes. An investigation of the junction transport mechanisms for these cells indicates that in the dark the transport is controlled by recombination in the depletion region at temperatures above room temperature and that multistep tunneling dominates at temperatures below room temperature. The fact that the open-circuit voltage is smaller under illumination that predicted from the dark junction parameters results primarily from a change in the junction transport mechanism upon illumination, associated with an increase in the density of charged acceptors in the CuInSe{sub 2}. (orig.).

  5. Template free-solvothermaly synthesized copper selenide (CuSe, Cu 2- xSe, β-Cu 2Se and Cu 2Se) hexagonal nanoplates from different precursors at low temperature

    Science.gov (United States)

    Kumar, Pushpendra; Singh, Kedar; Srivastava, O. N.

    2010-09-01

    Nonstoichiometric (Cu 2- xSe) and stoichiometric (CuSe, β-Cu 2Se and Cu 2Se) copper selenide hexagonal nanoplates have been synthesized using different general and convenient copper sources, e.g. copper chloride, copper sulphate, copper nitrate, copper acetate, elemental copper with elemental selenium, friendly ethylene glycol and hydrazine hydrate in a defined amount of water at 100 °C within 12 h adopting the solvothermal method. Phase analysis, purity and morphology of the product have been well studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray diffraction (EDAX) techniques. The structural and compositional analysis revealed that the products were of pure phase with corresponding atomic ratios. SEM, TEM and HRTEM analyses revealed that the nanoplates were in the range 200-450 nm and the as-prepared products were uniform and highly crystallized. The nanoplates consisted of {0 0 1} facets of top-bottom surfaces and {1 1 0} facets of the other six side surfaces. This new approach encompasses many advantages over the conventional solvothermal method in terms of product quality (better morphology control with high yield) and reaction conditions (lower temperatures). Copper selenide hexagonal nanoplates obtained by the described method could be potential building blocks to construct functional devices and solar cell. This work may open up a new rationale on designing the solution synthesis of nanostructures for materials possessing similar intrinsic crystal symmetry. On the basis of the carefully controlled experiments mentioned herein, a plausible formation mechanism of the hexagonal nanoplates was suggested and discussed. To the best of our knowledge, this is the first report on nonstoichiometric (Cu 2- xSe) as well as stoichiometric (CuSe, β-Cu 2Se and Cu 2Se) copper selenide hexagonal nanoplates with

  6. 8 COPPER (I) OXIDE (Cu2O) BASED SOLAR CELLS - A REVIEW

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. Copper (I) oxide (Cu2O) is a potential material for the fabrication of low cost solar cells for ... problems of the above energy sources make the international ..... results of their study on ZnO/Cu2O junction solar cells. The best values ...

  7. Characterization of single phase copper selenide nanoparticles and their growth mechanism

    Science.gov (United States)

    Patidar, D.; Saxena, N. S.

    2012-03-01

    The high quality Cu3Se2 phase of copper selenide nanoparticles was synthesized through the solution-phase chemical reaction between copper and selenium. In this synthesis process, hydrazine hydrate acts as reducing agent whereas ethylene glycol controls the nucleation and growth of particles. An effort has been made to explain the growth mechanism to form copper selenide nanoparticles through the coordination of selenium to the Cu2+ complexes with OH groups of ethylene glycol. Result indicates the formation of Cu3Se2 single phase nanoparticles. The particles with the average particle size 25 nm are spherical in shape having tetragonal structure. The particles are well crystallized having 94% degree of crystallinity. An effort has also been made to determine the energy band gap of copper selenide nanoparticles through the absorption spectra.

  8. Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization.

    Science.gov (United States)

    Güzeldir, Betül; Sağlam, Mustafa

    2015-11-05

    Different chemical methods such as Successive Ionic Layer Adsorption and Reaction (SILAR), spin coating and spray pyrolysis methods were used to deposite of copper selenide thin films on the glass substrates. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) spectroscopy and UV-vis spectrophotometry. The XRD and SEM studies showed that all the films exhibit polycrystalline nature and crystallinity of copper selenide thin films prepared with spray pyrolysis greater than spin coating and SILAR methods. From SEM and AFM images, it was observed copper selenide films were uniform on the glass substrates without any visible cracks or pores. The EDX spectra showed that the expected elements exist in the thin films. Optical absorption studies showed that the band gaps of copper selenide thin films were in the range 2.84-2.93 eV depending on different chemical methods. The refractive index (n), optical static and high frequency dielectric constants (ε0, ε∞) values were calculated by using the energy bandgap values for each deposition method. The obtained results from different chemical methods revealed that the spray pyrolysis technique is the best chemical deposition method to fabricate copper selenide thin films. This absolute advantage was lead to play key roles on performance and efficiency electrochromic and photovoltaic devices.

  9. Synthesis and characterisation of Copper Zinc Tin Sulphide (CZTS) compound for absorber material in solar-cells

    Science.gov (United States)

    Kheraj, Vipul; Patel, K. K.; Patel, S. J.; Shah, D. V.

    2013-01-01

    The development of thin-film semiconductor compounds, such as Copper Indium Gallium Selenide (CIGS), has caused remarkable progress in the field of thin-film photovoltaics. However, the scarcity and the increasing prices of indium impose the hunt for alternative materials. The Copper Zinc Tin Sulphide (CZTS) is one of the promising emerging materials with Kesterite-type crystal structure and favourable material properties like high absorption co-efficient and direct band-gap. Moreover, all the constituent elements of CZTS are non-toxic and aplenty on the earth-crust, making it a potential candidate for the thin-film photovoltaics. Here we report the synthesis of CZTS powder from its constituent elements, viz. copper, zinc, tin and sulphur, in an evacuated Quartz ampoule at 1030 K temperature. The sulphur content in the raw mixture in the ampoule was varied and optimised in order to attain the desired atomic stoichiometry of the compound. The synthesised powder was characterised by X-Ray diffraction technique (XRD), Raman Scattering Spectroscopy, Energy Dispersive Analysis of X-Ray (EDAX) and UV-Visible Absorption Spectra. The XRD Patterns of the synthesised compound show the preferred orientation of (112), (220) and (312) planes, confirming the Kesterite structure of CZTS. The chemical composition of the powder was analysed by EDAX and shows good atomic stoichiometry of the constituent elements in the CZTS compound. The UV-Vis absorption spectra confirm the direct band-gap of about 1.45 eV, which is quite close to the optimum value for the semiconductor material as an absorber in solar-cells.

  10. High-temperature conductivity in chemical bath deposited copper selenide thin films

    Science.gov (United States)

    Dhanam, M.; Manoj, P. K.; Prabhu, Rajeev. R.

    2005-07-01

    This paper reports high-temperature (305-523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu 2-xSe) and copper (II) selenide (Cu 3Se 2) thin films. Cu 2-xSe and Cu 3Se 2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu 2-xSe and Cu 3Se 2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.

  11. Investigation of the ablation of zinc oxide thin films on copper-indium-selenide layers by ps laser pulses

    Science.gov (United States)

    Heise, Gerhard; Dickmann, Marcel; Domke, Matthias; Heiss, Andreas; Kuznicki, Thomas; Palm, Jörg; Richter, Isabel; Vogt, Helmut; Huber, Heinz P.

    2011-07-01

    The selective laser structuring of zinc oxide thin films, which serve as the transparent negative electrodes of copper-indium-selenide (CIS) thin film solar cells, is of great common interest as it can replace the mechanical scribing of the so-called pattern 3 (P3) process step for the monolithic serial interconnection of these cells. We present an investigation of the single-pulse ablation behavior of zinc oxide thin films on glass substrates and on CIS layers and of trench scribing with 10-ps laser pulses at 1064 nm and at 532 nm. We show that the ablation behavior strongly depends on the properties of the underling substrate and that the energy required to ablate a specific volume using induced laser processes (often referred to as `lift off') is considerably reduced compared to the direct ablation of zinc oxide. With laser powers below 2 W at a wavelength of 1064 nm process speeds of 6 m/s for the P3 process have been achieved.

  12. Electrodeposited copper front metallization for silicon heterojunction solar cells: materials and processes

    Energy Technology Data Exchange (ETDEWEB)

    Geissbühler, J.; Martin de Nicolas, S.; Faes, A.; Lachowicz, A.; Tomasi, A.; Paviet-Salomon, B.; Lachenal, D.; Papet, P.; Badel, N.; Barraud, L.; Descoeudres, A.; Despeisse, M.; De Wolf, S.; Ballif, C.

    2014-10-20

    Even though screen-printing of low-temperature silver paste remains the state-of-the-art technique for the front-metallization of SHJ solar cells, recent studies have demonstrated large efficiency improvements when copper-electroplated contacts are used instead of screen-printed ones. However, due to the new materials and the new processes introduced by this technique, it is crucial to individually investigate their compatibility with the SHJ cell structure. In this study, we present a detailed analysis of how the performances of SHJ devices may be modified by these new materials and processes. First, effects on the amorphous silicon (a-Si:H) passivation have been studied for various processes such as DI water rinsing, dips in a copper removal solution and direct evaporation of copper on the a-Si:H. Finally, copper electroplating technique has been adapted in order to be applied to more complex cell structures such as high-efficiency IBC-SHJ.

  13. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Vasileska, Dragica [Arizona State University; Ringhofer, Christain [Arizona State University

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  14. Characterization of copper selenide thin films deposited by chemical bath deposition technique

    Science.gov (United States)

    Al-Mamun; Islam, A. B. M. O.

    2004-11-01

    A low-cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films onto glass substrates and deposited films were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Good quality thin films of smooth surface of copper selenide thin films were deposited using sodium selenosulfate as a source of selenide ions. The structural and optical behaviour of the films are discussed in the light of the observed data.

  15. Synthesis and Nanostructures of Metal Selenide Precursors for Cu(In,Ga)Se2 Thin-Film Solar Cells.

    Science.gov (United States)

    Cha, Ji-Hyun; Noh, Se Jin; Jung, Duk-Young

    2015-07-20

    A nanoink solution-based process was developed as a low-costing method for the fabrication of Cu(In,Ga)Se2 (CIGSe) thin-film photovoltaic cells. The sonochemical synthesis of CIGSe nanocrystals of the nanoink through step-by-step mixing of the reactants was investigated. To achieve the ideal stoichiometry of Cu(In0.7 Ga0.3 )Se2 to tune the bandgap and to fabricate high-efficiency photovoltaic cells, the synthetic parameters, the concentration of hydrazine, and the amount used of the gallium precursor were investigated. As the hydrazine concentration increased, gallium loss was observed in the CIGSe product. The gallium content in the reactant mixture strongly affected the metal stoichiometry of the prepared CIGSe nanocrystals. The nanoink solution based fabrication of thin-film photovoltaic cells was also explored, and the resulting device showed a conversion efficiency of 5.17 %.

  16. Fabrication and Characterization of Copper-Based Nanoparticles for Transparent Solar Cell Applications.

    Science.gov (United States)

    Yoon, Hoi Jin; Bang, Ki Su; Lee, Seung-Yun

    2015-10-01

    This paper reports on the fabrication of copper-based nanoparticles using microemulsions, and their optical properties for use in transparent solar cell applications. Microemulsions, containing pure copper nanoparticles, were prepared using the reaction process of CuCl2 with KBH4. We have confirmed that various sized copper nanoparticles, with a radius of up to 10 nm, form within an aqueous concentration of CuCl2 ≤ 2.0 M. Using microstructural observation, we found that parts of pure copper nanoparticles, synthesized in microemulsions, oxidize into cuprous oxide and agglomerate with one another in a normal atmosphere. The copper-based particles were then transferred to substrates by using a spin-coating process. Variations in spin speed led to significant changes in the transmittance and reflectance of the spin-coated particles. Transparent and anti-reflective properties of the particles were obtained at an optimum condition of spin speed. This suggests that the fabrication of the copper-based nanoparticles can be effectively applied to the manufacturing of transparent solar cells.

  17. A study of the stability of cadmium sulfide/copper sulfide and cadmium sulfide copper-indium-diselenide solar cells

    Science.gov (United States)

    Noel, G.; Richard, N.; Gaines, G.

    1984-08-01

    Groups of high efficiency cadmium sulfide/copper sulfide solar cells were exposed to combinations of stresses designed to isolate and accelerate intrinsic degradation mechanisms. Stresses included elevated temperature, illumination intensity, and cell loading conditions. All stress exposures and tests were conducted in a benign (high purity argon) atmosphere. Two primary intrinsic modes of degradation were identified: degradation of the open circuit voltage under continuous illumination and nonzero loading was found to be self recovering upon interruption of illumination or upon shorting or reverse biasing the cells. It was attributed to traps in the depletion region. Recovery from decay of light generated current was not spontaneous but could be partially accomplished by annealing in a reducing (hydrogen) environment. It was attributed to changes in the stoichiometry of the copper sulfide under the influence of electric fields and currents.

  18. Copper conducting electrode with nickel as a seed layer for selective emitter crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, Atteq ur; Shin, Eun Gu; Lee, Soo Hong [Sejong University, Seoul (Korea, Republic of)

    2014-09-15

    In this research, we investigated selective emitter formation with a single-step photolithography process having a metallization scheme composed of nickel/copper metal stacks. The nickel seed layers were deposited by applying the electroless deposition process while copper was formed by light induced electro-plating arrangements as the main conducting electrode. The electroless deposition of nickel, along with a sintering process, was employed to create a diffusion barrier between copper and silicon. The nickel metal stack below the copper-conducting electrode also helped in lowering the sheet resistance and improving the contact adhesion. The nickel used as a seed layer was successfully demonstrated in the fabrication of a homogeneous 60 Ω/ emitter and selective emitter cells. Lower series resistances of 0.165 Ω and 0.253 Ω were achieved for the selective emitter and the homogeneous emitter cells, respectively. The best cell efficiency of 18.37% for the selective emitter solar cell was achieved, with average cell efficiencies of 18.17% and 17.3% for the selective emitter and the homogeneous emitter cells, respectively. An approximate efficiency increase of about 0.8% was recorded for the selective emitter solar cells.

  19. Structural, optical and electrical properties of chemically deposited copper selenide films

    Indian Academy of Sciences (India)

    R H Bari; V Ganesan; S Potadar; L A Patil

    2009-02-01

    Stoichiometric and nonstoichiometric thin films of copper selenide have been prepared by chemical bath deposition technique at temperature below 60°C on glass substrate. The effect of nonstoichiometry on the optical, electrical and structural properties of the film was studied. The bandgap energy was observed to increase with the increase in at % of copper in composition. The grain size was also observed to increase with the decrease of at % of copper in composition. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS), absorption spectroscopy, and AFM. The results are discussed and interpreted.

  20. Investigation of Cadmium Selenide Photoelectrochemical Cells.

    Science.gov (United States)

    1980-01-01

    au xinon gmettant un rayonnement de composition spectrale tras comparable A celle de la lumiare solaire correspondant a des conditions MAl (masse de...important. The irradiance at ground level depends on solar elevation and atmospheric conditions. The atmosphere absorbs solar radiation (e.g. by H20, 03...CO2 and other minor constituents) and scatters solar radiation (e.g. Rayleigh and aerosol scattering). The path length through the atmosphere is

  1. Defect States in Copper Indium Gallium Selenide Solar Cells from Two-Wavelength Excitation Photoluminescence Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Soren A.; Dippo, Patricia; Mansfield, Lorelle M.; Glynn, Stephen; Kuciauskas, Darius

    2016-11-21

    We use two-wavelength excitation photoluminescence spectroscopy to probe defect states in CIGS thin films. Above-Eg excitation is combined with a tunable IR bias light that modulates the population of the defect states. We find that IR illumination in the range of 1400-2000 nm (0.62-0.89 eV) causes a reduction of the PL intensity, the magnitude of which scales linearly with IR power. Further, KF post deposition treatment has only a modest influence on the effect of the IR excitation. Initial data suggest that we have developed an optical characterization tool for band-gap defect states.

  2. The development of 6.7% efficient copper zinc indium selenide devices from copper zinc indium sulfide nanocrystal inks

    Science.gov (United States)

    Graeser, Brian K.

    As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2)0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2)0.5(Zn(S,Se)) 0.5 layer with micron size grains. Due to the large amount of zinc in the film, the sintered grains exhibit the zinc blende structure instead of the usual chalcopyrite structure of CuIn(S,Se)2 films. The use of the selenide films as a p-type absorber layer has yielded solar cells with total area power conversion efficiencies as high as 6.7% (7.4% based on active area). These preliminary results are encouraging and indicate that with further optimization this class of materials has promise as the absorber layer in solar cells.

  3. Silver Selenide Thermodynamics for Copper Anode Slime Refining

    Science.gov (United States)

    Feng, Dawei; Taskinen, Pekka

    Copper anode slimes are a by-product of the electrolytic refining of anode copper, which contains significant amounts of silver, selenium, copper, and gold. Slimes are usually smelted to recover silver and gold. The thermodynamics of the smelting of such selenium-rich materials have received only little attention. In this work, the numerical values on the standard thermodynamic functions of Ag2Se (Naumannite) were determined by the electromotive force (EMF) method in a solid-state galvanic cell with superionic conductor RbAg4I5 as the solid electrolyte. Ag2Se was synthesized from pure elements in evacuated quartz glass ampoules and examined to be homogenous by SEM and EDS. According to the experimental data on the EMF versus temperature, the analytical equations were obtained for the polymorphic forms of Ag2Se. The temperature of phase transformation from α-Ag2Se to β-Ag2Se is determined experimentally to be 407.7 K by interpolation of the EMF vs. T data, and the enthalpy of phase transformation is 6.06 kJ•mol-1. The Gibbs energy of formation for Ag2Se is given by Δ {\\overline G _{α - A{g_2}Se}},J = - ( {40869.14 ± 0.58129} ) - ( {27.94759 ± 1.53034} ) \\cdot T,( {350 < T/K < 408} ), Δ {\\overline G _{β - A{g_2}Se}},J = - ( {35062.17 ± 0.09895} ) - ( {42.17847 ± 0.21827} ) \\cdot T,( {408 < T/K < 500} ).

  4. Metal ions to control the morphology of semiconductor nanoparticles: copper selenide nanocubes.

    Science.gov (United States)

    Li, Wenhua; Zamani, Reza; Ibáñez, Maria; Cadavid, Doris; Shavel, Alexey; Morante, Joan Ramon; Arbiol, Jordi; Cabot, Andreu

    2013-03-27

    Morphology is a key parameter in the design of novel nanocrystals and nanomaterials with controlled functional properties. Here, we demonstrate the potential of foreign metal ions to tune the morphology of colloidal semiconductor nanoparticles. We illustrate the underlying mechanism by preparing copper selenide nanocubes in the presence of Al ions. We further characterize the plasmonic properties of the obtained nanocrystals and demonstrate their potential as a platform to produce cubic nanoparticles with different composition by cation exchange.

  5. Copper selenide nanowires and nanocrystallites in alumina: Carrier relaxation, recombination, and trapping

    Science.gov (United States)

    Statkutė, G.; Tomašiùnas, R.; Jagminas, A.

    2007-06-01

    Nonequilibrium carrier dynamics in copper selenide (Cu2-δSe δ=0.15, Cu3Se2) nanowires (diameter ≈18 nm, height ≈2 μm) and nanocrystallites (diameter≈18 nm) in femto- and picosecond time domains by the means of a transient dynamic grating technique were investigated. Bulk and quantum confinement approaches were used to fit the experimental results using nonequilibrium carrier fast relaxation, recombination, and trapping mechanisms. A nonradiative Auger recombination was concluded to be the main mechanism of nonequilibrium carrier recombination. The Auger coefficient for copper selenide was estimated of the order of 10-30-10-29 cm6 s-1. Hole trapping at shallow impurity centers in nanowires was interpreted. From calculating the experimental results the trapping parameters and high concentration of centers >1020 cm-3 were evaluated. Finally, direct measurement of carrier lifetime in copper selenide nanostructures showed values of the order of ≈10-10 s. Samples were characterized by the means of transmission electron microscopy, scanning electron microscopy, x-ray diffraction, and optical spectroscopy.

  6. Emerging Photovoltaics: Organic, Copper Zinc Tin Sulphide, and Perovskite-Based Solar Cells

    Directory of Open Access Journals (Sweden)

    Shraavya Rao

    2016-01-01

    Full Text Available As the photovoltaics industry continues to grow rapidly, materials other than silicon are being explored. The aim is to develop technologies that use environmentally friendly, abundant materials, low-cost manufacturing processes without compromising on efficiencies and lifetimes. This paper discusses three of the emerging technologies, organic, copper zinc tin sulphide (CZTS, and perovskite-based solar cells, their advantages, and the possible challenges in making these technologies commercially available.

  7. Surface-initiated atom transfer radical polymerization-induced transformation of selenium nanowires into copper selenide@polystyrene core-shell nanowires.

    Science.gov (United States)

    Wang, Michael C P; Gates, Byron D

    2013-10-09

    This Article reports the first preparation of cuprous and cupric selenide nanowires coated with a ∼5 nm thick sheath of polystyrene (copper selenide@polystyrene). These hybrid nanostructures are prepared by the transformation of selenium nanowires in a one-pot reaction, which is performed under ambient conditions. The composition, purity, and crystallinity of the copper selenide@polystyrene products were assessed by scanning transmission electron microscopy, electron energy-loss spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy techniques. We determined that the single crystalline selenium nanowires are converted into polycrystalline copper selenide@polystyrene nanowires containing both cuprous selenide and cupric selenide. The product is purified through the selective removal of residual, non-transformed selenium nanowires by performing thermal evaporation below the decomposition temperature of these copper selenides. Powder X-ray diffraction of the purified copper selenide nanowires@polystyrene identified the presence of hexagonal, cubic, and orthorhombic phases of copper selenide. These purified cuprous and cupric selenide@polystyrene nanowires have an indirect bandgap of 1.44 eV, as determined by UV-vis absorption spectroscopy. This new synthesis of polymer-encapsulated nanoscale materials may provide a method for preparing other complex hybrid nanostructures.

  8. Simultaneous phase and morphology controllable synthesis of copper selenide films by microwave-assisted nonaqueous approach

    Science.gov (United States)

    Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi

    2013-02-01

    Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.

  9. Copper and silver selenide crystal growth rate measurements as a method for determination of ionic conductivity

    Science.gov (United States)

    Vučić, Zlatko; Lovrić, Davorin; Gladić, Jadranko; Etlinger, Božidar

    2004-03-01

    The motivation behind this work is the discrepancy between the measured and calculated growth rates of copper selenide spherical single crystals between 740 and 800 K. The growth of cylindrical polycrystalline samples of copper selenide at high temperatures was monitored in experiments that enabled full control of the geometry of growth. Together with the calculations based on Yokota's transport equation, these measurements eliminated ionic conductivity data as a possible reason behind too high values of the calculated growth rates. The equivalent growth experiments on polycrystalline silver selenide samples were performed as a test of the method, yielding excellent agreement with the results obtained by extrapolation of existing data. On the basis of these measurements and associated analysis, this method is proposed as a method for determination of ionic conductivity of mixed superionic conductors on temperatures up to the temperatures of melting, i.e. in the range in which other methods of ionic conductivity measurements either do not work or are not accurate enough.

  10. Liquid-like cationic sub-lattice in copper selenide clusters

    Science.gov (United States)

    White, Sarah L.; Banerjee, Progna; Jain, Prashant K.

    2017-02-01

    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

  11. Synthesis and characterization of copper antimony tin sulphide thin films for solar cell applications

    Science.gov (United States)

    Ali, N.; Hussain, A.; Ahmed, R.; Wan Shamsuri, W. N.; Fu, Y. Q.

    2016-12-01

    Low price thin film modules based on Copper antimony tin sulphide (CATS) are introduced for solar harvesting to compete for the already developed compound semiconductors. Here, CATS thin films were deposited on soda lime glass by thermal evaporation technique followed by a rapid thermal annealing in an argon atmosphere. From Our XRD analysis, it was revealed that the annealed samples were poly-crystalline and their crystallinity was improved with increasing annealing temperature. The constituent elements and their corresponding chemical states were identified using X-ray photoelectron spectroscopy. The obtained optical band gap of 1.4 eV for CATS thin film is found nearly equal to GaAs - one of the highly efficient thin film material for solar cell technology. Furthermore, our observed good optical absorbance and low transmittance for the annealed CATS thin films in the visible region of light spectrum assured the aptness of the CATS thin films for solar cell applications.

  12. Sonochemical synthesis and mechanistic study of copper selenides Cu(2-x)Se, beta-CuSe, and Cu(3)Se(2).

    Science.gov (United States)

    Xie, Yi; Zheng, Xiuwen; Jiang, Xuchuan; Lu, Jun; Zhu, Liying

    2002-01-28

    Nanocrystallites of nonstoichiometric copper selenide (Cu(2-x)Se) and stoichiometric copper selenides (beta-CuSe and Cu(3)Se(2)) were synthesized in different solutions via sonochemical irradiation at room temperature. The influence of solvents, surfactants, and ultrasonic irradiation on the morphology and phase of products has been investigated. The morphological difference of the products was mainly affected by the solvents and surfactants, which can self-aggregate into lamellar structures or microemulsions, and then these unique structures can act as both supramolecular template and microreactor to direct the growth of copper selenides. On the other hand, it was also found that the sonochemical irradiation and solvents played an important role in the formation of different phases of copper selenides. The proposed formation mechanism of copper selenides is discussed.

  13. Relaxation of Electronic and Ionic Polarization in Liquid Copper Selenide

    Science.gov (United States)

    Itoh, Keiji; Maruyama, Kenji; Misawa, Masakatsu; Tamaki, Shigeru

    2002-01-01

    The diffusion constants of both cation and anion in liquid Cu2Se have been measured based on the time dependence of decaying residual potential due to the charge polarization after the turning-off of applied current. The experimental decaying curves were fitted by three exponential terms. Two terms correspond to the diffusion process of copper and selenium ions, respectively, and the rest is attributed to a relaxation of electronic polarization. It is found that the temperature dependences of diffusion constants of copper and selenium ions are negligibly small, on the other hand, the relaxation time of electronic polarization increases with increasing temperature.

  14. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J. (Lakewood, CO); Miedaner, Alexander (Boulder, CO); van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David S. (Evergreen, CO); Leisch, Jennifer (Denver, CO); Taylor, Matthew (West Simsbury, CT); Stanbery, Billy J. (Austin, TX)

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  15. Structural, morphology and electrical properties of layered copper selenide thin film

    Science.gov (United States)

    Ying Chyi Liew, J.; Talib, Zainal; Mahmood, W.; Yunus, M.; Zainal, Zulkarnain; Halim, Shaari; Moksin, Mohd; Yusoff, Wan; Pah Lim, K.

    2009-06-01

    Thin films of copper selenide (CuSe) were physically deposited layer-by-layer up to 5 layers using thermal evaporation technique onto a glass substrate. Various film properties, including the thickness, structure, morphology, surface roughness, average grain size and electrical conductivity are studied and discussed. These properties are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ellipsometer and 4 point probe at room temperature. The dependence of electrical conductivity, surface roughness, and average grain size on number of layers deposited is discussed.

  16. Ion beam analysis of copper selenide thin films prepared by chemical bath deposition

    Science.gov (United States)

    Andrade, E.; García, V. M.; Nair, P. K.; Nair, M. T. S.; Zavala, E. P.; Huerta, L.; Rocha, M. F.

    2000-03-01

    Analyses of Rutherford back scattered (RBS) 4He+-particle spectra of copper selenide thin films deposited on glass slides by chemical bath were carried out to determine the changes brought about in the thin film by annealing processes. The atomic density per unit area and composition of the films were obtained from these measurements. This analysis shows that annealing in a nitrogen atmosphere at 400°C leads to the conversion of Cu xSe thin film to Cu 2Se. Results of X-ray diffraction, optical, and electrical characteristics on the films are presented to supplement the RBS results.

  17. Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization

    OpenAIRE

    Huang Peng; Kong Yifei; Li Zhiming; Gao Feng; Cui Daxiang

    2010-01-01

    Abstract Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2−) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes gre...

  18. Band structure and transport studies of copper selenide: An efficient thermoelectric material

    Science.gov (United States)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Auluck, S.; Dhar, Ajay

    2014-10-01

    We report the band structure calculations for high temperature cubic phase of copper selenide (Cu2Se) employing Hartree-Fock approximation using density functional theory within the generalized gradient approximation. These calculations were further extended to theoretically estimate the electrical transport coefficients of Cu2Se employing Boltzmann transport theory, which show a reasonable agreement with the corresponding experimentally measured values. The calculated transport coefficients are discussed in terms of the thermoelectric (TE) performance of this material, which suggests that Cu2Se can be a potential p-type TE material with an optimum TE performance at a carrier concentration of ˜ 4 - 6 × 10 21 cm - 3 .

  19. Structures and photovoltaic properties of copper oxides/fullerene solar cells

    Science.gov (United States)

    Oku, Takeo; Motoyoshi, Ryosuke; Fujimoto, Kazuya; Akiyama, Tsuyoshi; Jeyadevan, Balachandran; Cuya, John

    2011-11-01

    Copper oxide (CuOx) thin films were produced by spin-coating and electrodeposition methods, and their microstructures and photovoltaic properties were investigated. Thin film solar cells based on the Cu2O/C60 and CuO/C60 heterojunction or bulk heterojunction structures were fabricated on F-doped or In-doped SnO2, which showed photovoltaic activity under air mass 1.5 simulated sunlight conditions. Microstructures of the CuOx thin films were examined by X-ray diffraction and transmission electron microscopy, which indicated the presence of Cu2O and CuO nanoparticles. The energy levels of the present solar cells were also discussed.

  20. An Illumination- and Temperature-Dependent Analytical Model for Copper Indium Gallium Diselenide (CIGS) Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xingshu; Silverman, Timothy; Garris, Rebekah; Deline, Chris; Alam, Muhammad Ashraful

    2016-09-01

    In this paper, we present a physics-based analytical model for copper indium gallium diselenide (CIGS) solar cells that describes the illumination- and temperature-dependent current-voltage (I-V) characteristics and accounts for the statistical shunt variation of each cell. The model is derived by solving the drift-diffusion transport equation so that its parameters are physical and, therefore, can be obtained from independent characterization experiments. The model is validated against CIGS I-V characteristics as a function of temperature and illumination intensity. This physics-based model can be integrated into a large-scale simulation framework to optimize the performance of solar modules, as well as predict the long-term output yields of photovoltaic farms under different environmental conditions.

  1. Development of technique for air coating and nickel and copper metalization of solar cells

    Science.gov (United States)

    Solar cells were made with a variety of base metal screen printing inks applied over silicon nitride AR coating and copper electroplated. Fritted and fritless nickel and fritless tin base printing inks were evaluated. Conversion efficiencies as high as 9% were observed with fritted nickel ink contacts, however, curve shapes were generally poor, reflecting high series resistance. Problems encountered in addition to high series reistance included loss of adhesion of the nickel contacts during plating and poor adhesion, oxidation and inferior curve shapes with the tin base contacts.

  2. Theoretical Study of Copper Complexes: Molecular Structure, Properties, and Its Application to Solar Cells

    Directory of Open Access Journals (Sweden)

    Jesus Baldenebro-Lopez

    2013-01-01

    Full Text Available We present a theoretical investigation of copper complexes with potential applications as sensitizers for solar cells. The density functional theory (DFT and time-dependent DFT were utilized, using the M06 hybrid meta-GGA functional with the LANL2DZ (D95V on first row and DZVP basis sets. This level of calculation was used to find the optimized molecular structure, the absorption spectra, the molecular orbitals energies, and the chemical reactivity parameters that arise from conceptual DFT. Solvent effects have been taken into account by an implicit approach, namely, the polarizable continuum model (PCM, using the nonequilibrium version of the IEF-PCM model.

  3. Numerical Analysis of Copper-Indium-Gallium-Diselenide-Based Solar Cells by SCAPS-1D

    Directory of Open Access Journals (Sweden)

    S. Ouédraogo

    2013-01-01

    Full Text Available We used a one-dimensional simulation program Solar Cell Capacitance Simulator in 1 Dimension (SCAPS-1D to investigate Copper-Indium-Gallium-Diselenide- (CIGS- based solar cells properties. Starting with a conventional ZnO-B/i-ZnO/CdS/CIGS structure, we simulated the parameters of current-voltage characteristics and showed how the absorber layer thickness, hole density, and band gap influence the short-circuit current density (Jsc, open-circuit voltage (Voc, fill factor (FF, and efficiency of solar cell. Our simulation results showed that all electrical parameters are greatly affected by the absorber thickness (w below 1000 nm, due to the increase of back-contact recombination and very poor absorption. Increasing hole density (p or absorber band gap (Eg improves Voc and leads to high efficiency, which equals value of 16.1% when p = 1016 cm−3 and Eg=1.2 eV. In order to reduce back-contact recombination, the effect of a very thin layer with high band gap inserted near the back contact and acting as electrons reflector, the so-called back-electron reflector (EBR, has been investigated. The performances of the solar cells are significantly improved, when ultrathin absorbers (w < 500 nm are used; the corresponding gain of Jsc due to the EBR is 3 mA/cm2. Our results are in good agreement with those reported in the literature from experiments.

  4. Hybrid Solar Cell with TiO2 Film: BBOT Polymer and Copper Phthalocyanine as Sensitizer

    Directory of Open Access Journals (Sweden)

    Saptadip Saha

    2016-01-01

    Full Text Available An organic-inorganic hybrid solar cell was fabricated using Titanium dioxide (TiO2: 2,5-bis(5-tert-butyl-2-benzoxazolyl thiophene (BBOT film and Copper Phthalocyanine (CuPc as a sensitizer. BBOT was used in photodetector in other reported research works, but as per best of our knowledge, it was not implemented in solar cells till date. The blend of TiO2: BBOT blend was used to fabricate the film on ITO-coated glass and further a thin layer of CuPc was coated on the film. This was acted as photoanode and another ITO coated glass with a platinum coating was used as a counter electrode (cathode. An optimal blend of acetonitrile (solvent (50-100%, 1,3-dimethylimidazolium iodide (10-25%, iodine (2.5-10% and lithium iodide, pyridine derivative and thiocyanate was used as electrolytes in the hybrid solar cell. The different structural, optical and electrical characteristics were measured. The Hybrid solar cell showed a maximum conversion efficiency of 6.51%.

  5. One electron changes everything: a multispecies copper redox shuttle for dye-sensitized solar cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffeditz, William L.; Katz, Michael J.; Deria, Pravas; Cutsail, George E.; Pellin, Michael J.; Farha, Omar K.; Hupp, Joseph T.

    2016-02-25

    Dye-sensitized solar cells (DSCs) are an established alternative photovoltaic technology that offers numerous potential advantages in solar energy applications. However, this technology has been limited by the availability of molecular redox couples that are both noncorrosive/nontoxic and do not diminish the performance of the device. In an effort to overcome these shortcomings, a copper-containing redox shuttle derived from 1,8-bis(2'-pyridyl)-3,6-dithiaoctane (PDTO) ligand and the common DSC additive 4-tert-butylpyridine (TBP) was investigated. Electrochemical measurements, single-crystal X-ray diffraction, and absorption and electron paramagnetic resonance spectroscopies reveal that, upon removal of one metal-centered electron, PDTO-enshrouded copper ions completely shed the tetradentate PDTO ligand and replace it with four or more TBP ligands. Thus, the Cu(I) and Cu(II) forms of the electron shuttle have completely different coordination spheres and are characterized by widely differing Cu(II/I) formal potentials and reactivities for forward versus reverse electron transfer. Notably, the coordination-sphere replacement process is fully reversed upon converting Cu(II) back to Cu(I). In cells featuring an adsorbed organic dye and a nano- and mesoparticulate, TiO2-based, photoelectrode, the dual species redox shuttle system engenders performance superior to that obtained with shuttles based on the (II/I) forms of either of the coordination complexes in isolation.

  6. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells.

    Science.gov (United States)

    Suehiro, Satoshi; Horita, Keisuke; Yuasa, Masayoshi; Tanaka, Tooru; Fujita, Katsuhiko; Ishiwata, Yoichi; Shimanoe, Kengo; Kida, Tetsuya

    2015-08-17

    The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.

  7. Fabrication of Copper(I) Bipyridyl Complex Based Dye Sensitized Solar Cells

    Science.gov (United States)

    Vuong, Son; Nguyen-Dang, Ha-My; Tran, Quang Thinh; Luong, Thi Thu Thuy; Pham, Trang T. T.; Nguyen-Tran, Thuat; Mai, Anh Tuan

    2017-01-01

    This study investigates the performance of dye-sensitized solar cells (DSSC) based on a copper(I) complex. A simple form of copper(I) complex dye was synthesized with a structure of [Cu(L)(CH3CN)], where L is the 6,6'-dimethyl-4,4'-bis(phenylethynyl)-2,2'-bipyridine ligand. The full structure of DSSC investigated in this study is as follows: FTO/TiO2/dye Cu(I) bipyridyl/3I-/I3 - electrolyte/graphite/FTO. The TiO2 photoanodes were deposited from apoly(vinylpyrrolidone)-based paste using a spin coating technique. Different conditions of fabrication, such as paste dispersion time and total TiO2 thickness, were systematically studied in order to optimize the performance of the DSSC. The trigonal planar complex [Cu(L)CH3CN] was revealed to be suitable for applications in DSSC. The highest exhibited short circuit current density was found to be 0.48 mA/cm2, with an open voltage of 477 mV, a form factor of 34% and a power conversion efficiency of 0.08% for the cell with photoanodes thickness of about 2.2 μm. It was shown that the dye and the paste formulation had great potential for applications in DSSC.

  8. Effect of annealing on bulk heterojunction organic solar cells based on copper phthalocyanine and perylene derivative

    KAUST Repository

    Kim, Inho

    2012-02-01

    We investigated the effects of annealing on device performances of bulk heterojunction organic solar cells based on copper phthalocyanine (CuPc) and N,N′-3,4,9,10-perylenetetracarboxylic diimide (PTCDI-C6). Blended films of CuPc and PTCDI-C6 with annealing at elevated temperature were characterized by measuring optical absorption, photoluminescence, and X-ray diffraction. Enhanced molecular ordering and increments in domain sizes of donor and acceptor for the blended films were observed, and their influences on device performances were discussed. Annealing led to substantial improvements in photocurrent owing to enhanced molecular ordering and formation of percolation pathways. © 2011 Elsevier B.V. All rights reserved.

  9. Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization

    Science.gov (United States)

    Huang, Peng; Kong, Yifei; Li, Zhiming; Gao, Feng; Cui, Daxiang

    2010-06-01

    Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2-) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA-CuSe nanosnakes. The prepared BSA-CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA-CuSe nanosnakes have great potentials in applications such as biomedical engineering.

  10. Copper Selenide Nanocrystals as a High Performance, Solution Processed Thermoelectric Material

    Science.gov (United States)

    Forster, Jason; Lynch, Jared; Coates, Nelson; Sahu, Ayaskanta; Liu, Jun; Cahill, David; Urban, Jeff

    Nano-structuring a thermoelectric material often results in enhanced performance due to a decrease in the materials' thermal conductivity. Traditional nano-structuring techniques involve ball milling a bulk material followed by spark plasma sintering, a very energy intensive process. In this talk, we will describe the development of a self-assembled, high-performing, nano-structured thin film based on copper selenide nanocrystals. Mild thermal annealing of these films results in concurrent increases in the Seebeck coefficient and electrical conductivity. We are able to achieve power factors at room temperature that are as high as the best spark plasma sintered materials. These solution-processed films have potential applications as conformal, flexible materials for thermoelectric power generation.

  11. Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-01-01

    Full Text Available Abstract Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA as foaming agent. As the amounts of selenide ions (Se2− released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA–CuSe nanosnakes. The prepared BSA–CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA–CuSe nanosnakes have great potentials in applications such as biomedical engineering.

  12. Nanosize copper encapsulated carbon thin films on a dye-sensitized solar cell cathode.

    Science.gov (United States)

    Huang, Chien-Hua; Wang, H Paul; Liao, Chang-Yu

    2010-07-01

    Deposition of the nanosize copper encapsulated carbon (Cu@C) thin film onto the cathode has been studied to enhance efficiency of the dye-sensitized solar cell (DSSC). The X-ray diffraction (XRD) patterns of the Cu@C are suggestive of existence of metallic copper (Cu) nanoparticles in the thin film. The UV-visible spectrum of the Cu@C coated on indium-doped tin oxide (ITO) shows a red shift (probably due to the longitudinal resonance) as the size of Cu in the Cu@C increases. Moreover, the images observed by field-emission scanning electron microscopy (FE-SEM) indicate that the Cu@C nanoparticles are well dispersed on ITO. By extended X-ray absorption fine structure (EXAFS) spectroscopy, a decrease of the coordination number (CN) of Cu-Cu with decreasing sizes of Cu in the Cu@C is observed. Interestingly, an enhanced efficiency of the DSSC with the Cu@C nanoparticles coated ITO cathode by 50% is found if compared with the relatively expensive Pt electrode. As the size of Cu in the Cu@C on ITO decreases (e.g., 20 --> 7 nm), the efficiency of the DSSC can be increased by 80% approximately.

  13. The emergence of copper(I)-based dye sensitized solar cells.

    Science.gov (United States)

    Housecroft, Catherine E; Constable, Edwin C

    2015-12-01

    Since the discovery of Grätzel-type dye sensitized solar cells (DSCs) in the early 1990s, there has been an exponential growth in the number of publications dealing with their optimization and new design concepts. Conventional Grätzel DSCs use ruthenium(II) complexes as sensitizers, and the highest photon-to-electrical current conversion efficiency for a ruthenium dye is ≈12%. However, ruthenium is both rare and expensive, and replacement by cheaper and more sustainable metals is desirable. In this Tutorial Review, we describe strategies for assembling copper(I) complexes for use as dyes in DSCs, a research area that has been active since ≈2008. We demonstrate design principles for (I) ligands to anchor the complex to a semiconductor surface and promote electron transfer from dye to semiconductor, and (II) ancillary ligands to tune the light absorption properties of the dye and facilitate electron transfer from electrolyte to dye in the DSC. We assess the progress made in terms of light-harvesting and overall photoconversion efficiencies of copper(I)-containing DSCs and highlight areas that remain ripe for development and improvement.

  14. Layer-by-Layer Nanoassembly of Copper Indium Gallium Selenium Nanoparticle Films for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    A. Hemati

    2012-01-01

    Full Text Available Thin films of CIGS nanoparticles interdigited with polymers have been fabricated through a cost-effective nonvacuum film deposition process called layer-by-layer (LbL nanoassembly. CIGS nanoparticles synthesized by heating copper chloride, indium chloride, gallium chloride, and selenium in oleylamine were dispersed in water, and desired surface charges were obtained through pH regulation and by coating the particles with polystyrene sulfonate (PSS. Raising the pH of the nanoparticle dispersion reduced the zeta-potential from +61 mV at pH 7 to −51 mV at pH 10.5. Coating the CIGS nanoparticles with PSS (CIGS-PSS produced a stable dispersion in water with −56.9 mV zeta-potential. Thin films of oppositely charged CIGS nanoparticles (CIGS/CIGS, CIGS nanoparticles and PSS (CIGS/PSS, and PSS-coated CIGS nanoparticles and polyethylenimine (CIGS-PSS/PEI were constructed through the LbL nanoassembly. Film thickness and resistivity of each bilayer of the films were measured, and photoelectric properties of the films were studied for solar cell applications. Solar cell devices fabricated with a 219 nm CIGS film, when illuminated by 50 W light-source, produced 0.7 V open circuit voltage and 0.3 mA/cm2 short circuit current density.

  15. Ultra-high aspect ratio copper nanowires as transparent conductive electrodes for dye sensitized solar cells

    Science.gov (United States)

    Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.

    2016-09-01

    We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.

  16. Fabrication and characteristics of CH3NH3PbI3 perovskite solar cells with molybdenum-selenide hole-transport layer

    Science.gov (United States)

    Chen, Lung-Chien; Tseng, Zong-Lieng; Chen, Cheng-Chiang; Hsiung Chang, Sheng; Ho, Cheng-Han

    2016-12-01

    We present a solar cell with an FTO/MoSe2/perovskite/C60/bathocuproine (BCP)/silver structure. The hole-transport material (HTM), active photovoltaic layer, electron-transport layer, and electron-buffer layer were made of MoSe2, perovskite, C60, and BCP, respectively. The domain sizes of the CH3NH3PbI3 (MAPbI3) perovskite films that were deposited on the MoSe2 HTM films following annealing at 500, 600, and 700 °C were determined to be 23, 25, and 27 nm, respectively, revealing that the domain size of the MAPbI3 perovskite film increased with the annealing temperature of the MoSe2 HTM film under it. Therefore, the crystallinities of the perovskite layers were improved by increasing the annealing temperatures of the HTM layers. Following optimization, the maximum power-conversion efficiency was 8.23%.

  17. Hydrothermal synthesis of copper selenides with controllable phases and morphologies from an ionic liquid precursor

    Science.gov (United States)

    Liu, Xiaodi; Duan, Xiaochuan; Peng, Peng; Zheng, Wenjun

    2011-12-01

    Cu2-xSe nanocrystals and CuSe nanoflakes are successfully synthesized through a convenient hydrothermal method from an ionic liquid precursor 1-n-butyl-3-ethylimidazolium methylselenite ([BMIm][SeO2(OCH3)]). The phases and morphologies of the copper selenides can be controlled by simply changing the atom ratio of Cu/Se in the reactants and reaction temperature. Furthermore, it is found that the [BMIm][SeO2(OCH3)] not only serves as Se source but also has influence on the shapes of CuSe nanoflakes. The adsorption of alkyl imidazolium rings ([BMIm]+) onto the (0001) facets of covellite CuSe prohibits the growth in the [0001] direction, and CuSe nuclei growth mainly processes along the six symmetric directions (+/-[01&cmb.macr;11], +/-[101&cmb.macr;1&cmb.macr;], and +/-[1&cmb.macr;100]) to form flakelike CuSe. The obtained copper selenides are characterized by XRD, SEM, EDS, XPS, TEM, and HRTEM. The results indicate that the Cu2-xSe nanocrystals are nearly spherical particles with an average diameter of about 20 nm, the hexagonal CuSe nanoflakes are single crystals with an edge length of 100-400 nm and a thickness of 25-50 nm. The potential formation mechanism of the copper selenides is also proposed.Cu2-xSe nanocrystals and CuSe nanoflakes are successfully synthesized through a convenient hydrothermal method from an ionic liquid precursor 1-n-butyl-3-ethylimidazolium methylselenite ([BMIm][SeO2(OCH3)]). The phases and morphologies of the copper selenides can be controlled by simply changing the atom ratio of Cu/Se in the reactants and reaction temperature. Furthermore, it is found that the [BMIm][SeO2(OCH3)] not only serves as Se source but also has influence on the shapes of CuSe nanoflakes. The adsorption of alkyl imidazolium rings ([BMIm]+) onto the (0001) facets of covellite CuSe prohibits the growth in the [0001] direction, and CuSe nuclei growth mainly processes along the six symmetric directions (+/-[01&cmb.macr;11], +/-[101&cmb.macr;1&cmb.macr;], and +/-[1

  18. Electrochemical synthesis and optical characterization of copper selenide nanowire arrays within the alumina pores

    Science.gov (United States)

    Jagminas, A.; Juškėnas, R.; Gailiūtė, I.; Statkutė, G.; Tomašiūnas, R.

    2006-09-01

    By choosing an appropriate aqueous solution containing CuSO 4, H 2SeO 3, MgSO 4, and H 2SO 4 the suitable composition for two- or one-phase copper selenide deposition within the alumina pores under alternating current (AC) electrolysis conditions was created. X-ray diffraction spectra recorded within 15-55° 2 Θ range revealed fabrication of Cu 3Se 2+Cu 2-xSe or almost pure Cu 2-xSe crystalline material. The compositional and morphological studies using XRD, EDX, SEM, and TEM techniques show fabrication of nearly pure Cu 2-xSe with some deficiency of copper, say, Cu 1.75Se, nanowires in length up to several microns when the selenious acid to copper-ion ratio is close to 1:2 and pH of the bath is <1.25. The fundamental absorption spectrum for this nanostructured material was shown to be formed by allowed direct and indirect interband transitions with the evaluated energy band gaps 2.3 and 1.1 eV, respectively.

  19. Copper and Transparent-Conductor Reflectarray Elements on Thin-Film Solar Cell Panels

    CERN Document Server

    Dreyer, Philippe; Nicolay, Sylvain; Ballif, Christophe; Perruisseau-Carrier, Julien

    2013-01-01

    This work addresses the integration of reflectarray antennas (RA) on thin film Solar Cell (SC) panels, as a mean to save real estate, weight, or cost in platforms such as satellites or transportable autonomous antenna systems. Our goal is to design a good RA unit cell in terms of phase response and bandwidth, while simultaneously achieving high optical transparency and low microwave loss, to preserve good SC and RA energy efficiencies, respectively. Since there is a trade-off between the optical transparency and microwave surface conductivity of a conductor, here both standard copper and transparent conductors are considered. The results obtained at the unit cell level demonstrates the feasibility of integrating RA on a thin-film SC, preserving for the first time good performance in terms of both SC and RA efficiency. For instance, measurement at X-band demonstrate families of cells providing a phase range larger than 270{\\deg} with average microwave loss of -2.45dB (resp. -0.25dB) and average optical transpa...

  20. CONTROL OF LASER RADIATION PARAMETERS: Passive laser Q switches made of glass doped with oxidised nanoparticles of copper selenide

    Science.gov (United States)

    Yumashev, K. V.

    2000-01-01

    Passive Q switching of Nd3+:YAG (λ = 1060 nm) and YAlO3:Nd3+ (1340 nm) lasers, as well as of an Er3+ (1540 nm) glass laser was realised by using glass doped with oxidised nanoparticles of copper selenide. Nonlinear optical properties of the nanoparticles (radius of 25 nm) in a glass matrix were studied by the picosecond absorption spectroscopy technique.

  1. Near-IR absorption saturation and mechanism of picosecond recovery dynamics of copper selenide nanostructured via alumina

    Science.gov (United States)

    Statkutė, G.; Mikulskas, I.; Tomašiùnas, R.; Jagminas, A.

    2009-06-01

    Absorption saturation at 1.064 μm wavelength in Cu2-xSe material nanostructured by means of an original method—formation and hosting in an array of electrochemically grown alumina voids—was investigated. Columnlike channels provide growth of copper selenide in a shape of nanowire with a fixed diameter. Experimental results obtained from measuring nanowires of various diameters (∅10, 15, 20, and 70 nm) revealed that the ∅20 nm case is most efficient for absorption saturation, manifesting highest optical modulation depth and lowest interlevel transition rate evaluated. A model to analyze the conditions for absorption saturation and absorption recovery dynamics was developed. Depending on pump intensity the nonmonotonous increase in recovery time for the highest applied values was interpreted as filling up of states at an intermediate energy level. From modeling, important material science parameters, such as concentration of resonant and trapping/recombination states, interlevel transition rate, capture time, characteristic for copper selenide, have been evaluated and compared for different samples. Finally, the consequence of the model to a working copper selenide energy level scheme was considered.

  2. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  3. Solar Photovoltaic Cells.

    Science.gov (United States)

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  4. Development of technique for AR coating and nickel and copper metallization of solar cells: FPS project, product development

    Science.gov (United States)

    Rominger, C. G.

    1981-01-01

    Silicon nitride and nickel pastes are investigated in conjunction with a brush copper plating process for the purpose of identifying one or more fabrication sequences which yield at least 10 percent efficient N(+)/P(+) flat plate solar cells. The adhesion of all nickel pastes is reduced significantly when subjected to acidic and alkaline brush copper plating solutions as a result of a combination of thermally induced stress and chemical attack of the frit, which occurs at the interface with the silicon solar cell. The AgF is penetrating the 800 a of Si3N4 and ohmic contact is occurring at all fire-in tempertures. During the brush plating process, fingers and buss bars tend to spread.

  5. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    Science.gov (United States)

    Nair, M. T. S.; Nair, Padmanabhan K.; Garcia, Victor M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  6. Selective ablation of Copper-Indium-Diselenide solar cells monitored by laser-induced breakdown spectroscopy and classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Diego-Vallejo, David [Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17, Juni 135, 10623 Berlin (Germany); Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany); Ashkenasi, David, E-mail: d.ashkenasi@lmtb.de [Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany); Lemke, Andreas [Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany); Eichler, Hans Joachim [Technische Universität Berlin, Institute of Optics and Atomic Physics, Straße des 17, Juni 135, 10623 Berlin (Germany); Laser- und Medizin- Technologie Berlin GmbH (LMTB), Applied Laser Technology, Fabeckstr. 60-62, 14195 Berlin (Germany)

    2013-09-01

    Laser-induced breakdown spectroscopy (LIBS) and two classification methods, i.e. linear correlation and artificial neural networks (ANN), are used to monitor P1, P2 and P3 scribing steps of Copper-Indium-Diselenide (CIS) solar cells. Narrow channels featuring complete removal of desired layers with minimum damage on the underlying film are expected to enhance efficiency of solar cells. The monitoring technique is intended to determine that enough material has been removed to reach the desired layer based on the analysis of plasma emission acquired during multiple pass laser scribing. When successful selective scribing is achieved, a high degree of similarity between test and reference spectra has to be identified by classification methods in order to stop the scribing procedure and avoid damaging the bottom layer. Performance of linear correlation and artificial neural networks is compared and evaluated for two spectral bandwidths. By using experimentally determined combinations of classifier and analyzed spectral band for each step, classification performance achieves errors of 7, 1 and 4% for steps P1, P2 and P3, respectively. The feasibility of using plasma emission for the supervision of processing steps of solar cell manufacturing is demonstrated. This method has the potential to be implemented as an online monitoring procedure assisting the production of solar cells. - Highlights: • LIBS and two classification methods were used to monitor CIS solar cells processing. • Selective ablation of thin-film solar cells was improved with inspection system. • Customized classification method and analyzed spectral band enhanced performance.

  7. Nanosize Copper Dispersed Ionic Liquids As an Electrolyte of New Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Fu-Lin Chen

    2009-01-01

    Full Text Available To enhance the electrical conductivity of the electrolyte for a newly developed dye-sensitized solar cell (DSSC, metallic copper (Cu encapsulated within the carbon shell (Cu@C nanoparticles dispersed in a room temperature ionic liquid (RTIL (e.g., [bmim+][PF6−] has been studied in the present work. By the pulsed-field gradient spin-echo NMR method, the self-diffusion coefficients of cations and anions of the RTIL have been determined. The self-diffusion coefficient of the [bmim+] cations in the RTIL dispersed with 0.08% of Cu@C nanoparticles is increased by 35%. The electrical conductivity of the Cu@C dispersed RTIL is also increased by 65% (1.0 → 2.3 ms/cm. It is very clear the nanosize Cu@C dispersed RTIL with a relatively greater diffusion coefficient and electrical conductivity can be a very effective electrolyte especially utilized in DSSCs.

  8. Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer

    Science.gov (United States)

    Chaudhary, Neeraj; Kesari, J. P.; Chaudhary, Rajiv; Patra, Asit

    2016-08-01

    In the present work, we have shown the performance of solution-processable copper iodide (CuI) as an alternative hole transporting layer (HTL) for polymeric solar cells. Optical spectra of the CuI thin film reveal highly transparent and practically no absorption in the range vis-NIR region (450-1110 nm). X-ray diffraction (XRD) patterns of CuI exhibits as a p-type semiconductor as well as crystalline nature. The photovoltaic devices were fabricated using PCDTBT and PTB7 as donor materials blended with PC71BM as an acceptor material. The power conversion efficiencies (PCEs) based on CuI as an HTL have been achieved to up to 3.04% and 4.48% for PCDTBT and PTB7 based donor materials respectively with a configuration based on ITO/CuI(40 nm)/active layer (60 nm)/Al (120 nm). This study clearly indicated that the devices made with CuI as an HTL showed superior performance than the device fabricated from PEDOT:PSS layer as an HTL. Morphological characterization of the HTL using scanning electron microscopy (SEM) and atomic force microscope (AFM) were carried for better understanding.

  9. Development of technique for AR coating and nickel and copper metallization of solar cells. FPS Project: Product development

    Science.gov (United States)

    Taylor, W.

    1982-01-01

    Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.

  10. An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide.

    Science.gov (United States)

    Christians, Jeffrey A; Fung, Raymond C M; Kamat, Prashant V

    2014-01-15

    Organo-lead halide perovskite solar cells have emerged as one of the most promising candidates for the next generation of solar cells. To date, these perovskite thin film solar cells have exclusively employed organic hole conducting polymers which are often expensive and have low hole mobility. In a quest to explore new inorganic hole conducting materials for these perovskite-based thin film photovoltaics, we have identified copper iodide as a possible alternative. Using copper iodide, we have succeeded in achieving a promising power conversion efficiency of 6.0% with excellent photocurrent stability. The open-circuit voltage, compared to the best spiro-OMeTAD devices, remains low and is attributed to higher recombination in CuI devices as determined by impedance spectroscopy. However, impedance spectroscopy revealed that CuI exhibits 2 orders of magnitude higher electrical conductivity than spiro-OMeTAD which allows for significantly higher fill factors. Reducing the recombination in these devices could render CuI as a cost-effective competitor to spiro-OMeTAD in perovskite solar cells.

  11. Obtenção de filmes espessos de seleneto de cobre sobre carbono vítreo, ouro, titânio e cobre Obtaining copper selenide thick films on vitreous carbon, gold, titanium and copper

    OpenAIRE

    Adriano César Rabelo; Tatiane Moraes Arantes; Otávio Luiz Bottecchia

    2007-01-01

    Copper selenide (berzelianite) films were prepared on the title substrates using the chemical bath deposition technique (CBD). Film composition was determined by energy dispersion of x-rays. The kinetics of film growth is parabolic and film adherence limits the film thickness. On titanium, copper selenide forms islands that do not completely cover the surface, unless the substrate is prepared with a tin oxide layer; film composition also depends on the titanium oxide layer. On vitreous carbon...

  12. Spray pyrolysed Cu2ZnSnS4/In2S3 thin film solar cell: Effect of varying copper concentration on cell parameters

    Science.gov (United States)

    Menon, M. R. Rajesh; Rajeshmon, V. G.; Thomas, Titu; Kartha, C. Sudha; Vijayakumar, K. P.

    2016-05-01

    A double layer Cu2ZnSnS4 absorber was employed for the first time to improve the performance of spray pyrolysed Cu2ZnSnS4/In2S3 thin film solar cell. Copper concentration in the two layers of Cu2ZnSnS4 was adjusted and effect on performance parameters was studied. It was observed that higher copper concentration in the absorber layer adjacent to the electrode is beneficial for device performance, whereas, lower copper concentration in absorber layer near to the junction has detrimental effect on the device properties.

  13. Influence of different deposition potential on the structural and optical properties of copper selenide nanowires

    Science.gov (United States)

    Kaur, Harmanmeet; Kaur, Jaskiran; Singh, Lakhwant

    2016-09-01

    In this paper, nanowires were successfully fabricated from the aqueous solution containing 0.2 M/l CuSO4.5H2O, 0.1 M/l SeO2, 1 g/l PVP and a few drops of H2SO4 in Milli-Q water using electrodeposition technique at room temperature. Influence of different deposition potential on structural and optical properties of copper selenide nanowires has been investigated here. Morphological, structural and optical properties were monitored through field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD) and UV-visible 1800 spectrophotometer. From the XRD analysis, it was found that the stoichiometric (CuSe) nanowires are formed at deposition potential (-0.6 V) and (+0.6 V). Band gap of nanowires were found to be maximum around 3.13 eV for deposition potential (-0.8 V) and minimum of 2.81 eV for deposition potential (-0.6 V).

  14. Highly efficient organic solar Cells based on a robust room-temperature solution-processed copper iodide hole transporter

    KAUST Repository

    Zhao, Kui

    2015-07-30

    Achieving high performance and reliable organic solar cells hinges on the development of stable and energetically suitable hole transporting buffer layers in tune with the electrode and photoactive materials of the solar cell stack. Here we have identified solution-processed copper(I) iodide (CuI) thin films with low-temperature processing conditions as an effective hole–transporting layer (HTL) for a wide range of polymer:fullerene bulk heterojunction (BHJ) systems. The solar cells using CuI HTL show higher power conversion efficiency (PCE) in standard device structure for polymer blends, up to PCE of 8.8%, as compared with poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, for a broad range of polymer:fullerene systems. The CuI layer properties and solar cell device behavior are shown to be remarkably robust and insensitive to a wide range of processing conditions of the HTL, including processing solvent, annealing temperature (room temperature up to 200 °C), and film thickness. CuI is also shown to improve the overall lifetime of solar cells in the standard architecture as compared to PEDOT:PSS. We further demonstrate promising solar cell performance when using CuI as top HTL in an inverted device architecture. The observation of uncommon properties, such as photoconductivity of CuI and templating effects on the BHJ layer formation, are also discussed. This study points to CuI as being a good candidate to replace PEDOT:PSS in solution-processed solar cells thanks to the facile implementation and demonstrated robustness of CuI thin films.

  15. Exploring the doping effects of copper on thermoelectric properties of lead selenide

    Science.gov (United States)

    Gayner, Chhatrasal; Sharma, Raghunandan; Mallik, Iram; Das, Malay K.; Kar, Kamal K.

    2016-07-01

    In this work, we have explored the effect of dopant concentration (copper (Cu)) on the thermoelectric performance of Cu doped lead selenide (Pb1-x Cu x Se (0  ⩽  x  ⩽  0.1)). With increasing the dopant concentration, sign inversion of majority charge carriers takes place for x  ⩾  0.04 due to the donor behaviour of Cu in the P-type pristine PbSe. The room temperature Seebeck coefficients of Pb1-x Cu x Se with x  =  0.01, 0.02, 0.04, 0.06 and 0.08 are observed to be 233, 337, -473.7, -392.5 and  -257.6 μV K-1, respectively as compared to that of 186.4 μV K-1 of the pristine PbSe. This increment in Seebeck coefficient is the result of low carrier concentration and is not related to the resonance states created by Cu dopant. At room temperature, the lattice thermal conductivity of pristine PbSe is 0.52 W m-1 K-1 while for Cu doped PbSe, it varies from 0.8 to 1.1 W m-1 K-1. Finally, with ZT of ~0.59 and power factor of ~700 at 500 K, Pb0.98Cu0.02Se exhibits the highest thermoelectric performance among the studied Pb1-x Cu x Se systems. Owing to the high ZT and power factor, a single thermoelement of Pb0.98Cu0.02Se exhibits thermovoltage of  >100 mV at a temperature gradient of 200 °C.

  16. Effects of Au nanoparticle addition to hole transfer layer in organic solar cells based on copper naphthalocyanine and fullerene

    Directory of Open Access Journals (Sweden)

    Akihiko Nagata

    2014-06-01

    Full Text Available Organic solar cells based on copper naphthalocyanine (CuNc and fullerene (C60 were fabricated, and their photovoltaic properties were investigated. C60 and CuNc were used as n-type and p-type semiconductors, respectively. In addition, the effect of Au nanoparticle addition on a hole transfer layer was investigated, and the power conversion efficiency of the devices was improved after blending the Au nanoparticles into the hole transport layer. Nanostructures of Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructure and electronic properties were discussed.

  17. Effects of Au nanoparticle addition to hole transfer layer in organic solar cells based on copper naphthalocyanine and fullerene

    Institute of Scientific and Technical Information of China (English)

    Akihiko Nagata; Takeo Okun; Tsuyoshi Akiyaman; Atsushi Suzuki

    2014-01-01

    Organic solar cells based on copper naphthalocyanine (CuNc) and fullerene (C60) were fabricated, and their photovoltaic properties were investigated. C60 and CuNc were used as n-type and p-type semiconductors, respectively. In addition, the effect of Au nanoparticle addition on a hole transfer layer was investigated, and the power conversion efficiency of the devices was improved after blending the Au nanoparticles into the hole transport layer. Nanostructures of Au nanoparticles were investigated by transmission electron microscopy and X-ray diffraction. Energy levels of molecules were calculated by molecular orbital calculations, and the nanostructure and electronic properties were discussed.

  18. Synthesis of Cu-Poor Copper-Indium-Gallium-Diselenide Nanoparticles by Solvothermal Route for Solar Cell Applications

    OpenAIRE

    Chung Ping Liu; Ming Wei Chang; Chuan Lung Chuang; Nien Po Chen

    2014-01-01

    Copper-indium-gallium-diselenide (CIGS) thin films were fabricated using precursor nanoparticle ink and sintering technology. The precursor was a Cu-poor quaternary compound with constituent ratios of Cu/(In+Ga)=0.603, Ga/(In+Ga)=0.674, and Se/(Cu+In+Ga)=1.036. Cu-poor CIGS nanoparticles of chalcopyrite for solar cells were successfully synthesized using a relatively simple and convenient elemental solvothermal route. After a fixed reaction time of 36 h at 180°C, CIGS nanocrystals with diamet...

  19. Efficiency enhancement of TiO2 (active material) solar cell by inserting copper particles grown with pulse voltage electroplating method

    Science.gov (United States)

    Rokhmat, Mamat; Sutisna; Wibowo, Edy; Khairurrijal; Abdullah, Mikrajuddin

    2017-01-01

    Here, we report the manufacture of a solar cell using TiO2 nanoparticles as photon absorbers and copper bridges inserted between the TiO2 particles. The copper bridges were synthesized by the pulse voltage electroplating method, and the effect of the pulse duty cycle was explored. The amount of copper deposited between TiO2 particles can be controlled by varying the duty cycles and the deposition time. We found that the cell fabricated by the deposition of copper at duty cycles of 60% and a deposition time of 30 s exhibited the highest efficiency (2.21%). Efficiency was improved to 3.5% following the post-treatment of the cell with NaOH. We also proposed a simple mathematical model to explain the dependence of the efficiency on the amount of copper. Efficiencies of more than 3% for solar cells made by a simple method and using inexpensive materials make these solar cells promising competition for the current commercial solar cells.

  20. Obtenção de filmes espessos de seleneto de cobre sobre carbono vítreo, ouro, titânio e cobre Obtaining copper selenide thick films on vitreous carbon, gold, titanium and copper

    Directory of Open Access Journals (Sweden)

    Adriano César Rabelo

    2007-04-01

    Full Text Available Copper selenide (berzelianite films were prepared on the title substrates using the chemical bath deposition technique (CBD. Film composition was determined by energy dispersion of x-rays. The kinetics of film growth is parabolic and film adherence limits the film thickness. On titanium, copper selenide forms islands that do not completely cover the surface, unless the substrate is prepared with a tin oxide layer; film composition also depends on the titanium oxide layer. On vitreous carbon, CBD and mechanical immobilization techniques lead to films with similar resistances for the electron transfer across the film/substrate interface. On gold, composition studies revealed that film composition is always the same if the pH is in the range from 8 to 12, in contrast to films prepared by an ion-ion combination route. On copper, a new procedure for obtaining copper selenide films as thick as 5 µm has been developed.

  1. Role of the copper-oxygen defect in cadmium telluride solar cells

    Science.gov (United States)

    Corwine, Caroline R.

    Thin-film CdTe is one of the leading materials used in photovoltaic (PV) solar cells. One way to improve device performance and stability is through understanding how various device processing steps alter defect states in the CdTe layer. Photoluminescence (PL) studies can be used to examine radiative defects in materials. This study uses low-temperature PL to probe the defects present in thin-film CdTe deposited for solar cells. One key defect seen in the thin-film CdTe was reproduced in single-crystal (sX) CdTe by systematic incorporation of known impurities in the thin-film growth process, hence demonstrating that both copper and oxygen were necessary for its formation. Polycrystalline (pX) thin-film glass/SnO2:F/CdS/CdTe structures were examined. The CdTe layer was grown via close-spaced sublimation (CSS), vapor transport deposition (VTD), and physical vapor deposition (PVD). After CdTe deposition, followed by a standard CdC12 treatment and a ZnTe:Cu back contact, a PL peak was seen at ˜1.46 eV from the free back surface of all samples (1.456 eV for CSS and PVD, 1.460-1.463 eV for VTD). However, before the Cu-containing contact was added, this peak was not seen from the front of the CdTe (the CdS/CdTe junction region) in any device with CdTe thickness greater than 4 mum. The CdCl2 treatment commonly used to increase CdTe grain size did not enhance or reduce the peak at ˜1.46 eV relative to the rest of the PL spectrum. When the Cu-containing contact was applied, the PL spectra from both the front and back of the CdTe exhibited the peak at 1.456 eV. The PL peak at ˜1.46 eV was present in thin-film CdTe after deposition, when the dominant impurities are expected to be both Cu from the CdTe source material and O introduced in the chamber during growth to assist in CdTe film density. Since Cu and/or O appeared to be involved in this defect, PL studies were done with sX CdTe to distinguish between the separate effects of Cu or O and the combined effect of Cu and O

  2. Thin tantalum-silicon-oxygen/tantalum-silicon-nitrogen films as high-efficiency humidity diffusion barriers for solar cell encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, H. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany)]. E-mail: Henning.Heuer@izfp-d.fraunhofer.de; Wenzel, C. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Herrmann, D. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Zentrum fuer Sonnenenergie-und Wasserstoff-Forschung (ZSW) Industriestrasse 6, 70565 Stuttgart (Germany); Huebner, R. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Leibniz Institut fuer Festkoerper-und Werkstoffforschung Dresden (IFW) Helmholtzstrasse 20, 01069, Dresden (Germany); Zhang, Z.L. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany); Max-Planck-Gesellschaft fuer Metallforschung (MPI) Heisenbergstrasse 3, 70569 Stuttgart (Germany); Bartha, J.W. [Institut fuer Halbleiter-und Mikrosystemtechnik (IHM) Technische Universitaet Dresden, Helmholtzstrasse 10, 01062 Dresden (Germany)

    2006-12-05

    Flexible thin-film solar cells require flexible encapsulation to protect the copper-indium-2 selenide (CIS) absorber layer from humidity and aggressive environmental influences. Tantalum-silicon-based diffusion barriers are currently a favorite material to prevent future semiconductor devices from copper diffusion. In this work tantalum-silicon-nitrogen (Ta-Si-N) and tantalum-silicon-oxygen (Ta-Si-O) films were investigated and optimized for thin-film solar cell encapsulation of next-generation flexible solar modules. CIS solar modules were coated with tantalum-based barrier layers. The performance of the thin-film barrier encapsulation was determined by measuring the remaining module efficiency after a 1000 h accelerated aging test. A significantly enhanced stability against humidity diffusion in comparison to non-encapsulated modules was reached with a reactively sputtered thin-film system consisting of 250 nm Ta-Si-O and 15 nm Ta-Si-N.

  3. Effects of UV-ozone irradiation on copper doped nickel acetate and its applicability to perovskite solar cells

    Science.gov (United States)

    Kim, Jeongmo; Lee, Hee Ryung; Kim, Hyeong Pil; Lin, Tengda; Kanwat, Anil; Mohd Yusoff, Abd. Rashid Bin; Jang, Jin

    2016-04-01

    The effects of UV-ozone (UVO) irradiation on copper-doped nickel acetate and its applicability to perovskite solar cells were investigated. UVO irradiation of copper-doped nickel acetate significantly increased the electrical conductivity (from 4.28 × 10-4 S cm-1 to 5.66 × 10-2 S cm-1), which is due to the increased carrier concentration (from 3.53 × 1013 cm-3 to 2.41 × 1016 cm-3), and the charge extraction efficiency was enhanced, leading to better compatibility with the hole transport layer. By UVO irradiation, the work function was increased from 4.95 eV to 5.33 eV by the surface dipole formation, which effectively reduced the interface barrier between the hole transport layer and the MAPbI3 light absorbing layer. UVO Irradiation of the underlying layer also allows the MAPbI3 precursors to form better morphology with highly arranged crystallinity. Compared to the cells using non-irradiated copper doped nickel acetate, UVO-irradiated copper-doped nickel acetate devices showed an enhanced open-circuit voltage (3% increase), short circuit current (16% increase), fill factor (5% increase), showing an enhanced power conversion efficiency of 12.2% (21% increase).The effects of UV-ozone (UVO) irradiation on copper-doped nickel acetate and its applicability to perovskite solar cells were investigated. UVO irradiation of copper-doped nickel acetate significantly increased the electrical conductivity (from 4.28 × 10-4 S cm-1 to 5.66 × 10-2 S cm-1), which is due to the increased carrier concentration (from 3.53 × 1013 cm-3 to 2.41 × 1016 cm-3), and the charge extraction efficiency was enhanced, leading to better compatibility with the hole transport layer. By UVO irradiation, the work function was increased from 4.95 eV to 5.33 eV by the surface dipole formation, which effectively reduced the interface barrier between the hole transport layer and the MAPbI3 light absorbing layer. UVO Irradiation of the underlying layer also allows the MAPbI3 precursors to form

  4. Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer

    Science.gov (United States)

    Huangfu, Minzan; Shen, Yue; Zhu, Gongbo; Xu, Kai; Cao, Meng; Gu, Feng; Wang, Linjun

    2015-12-01

    This study is the first to report the preparation of Copper iodide (CuI) thick films by means of convenient airbrush process and their application as inorganic hole transport layers (HTL) in organo-lead halide perovskite-based solar cells. CuI thick films exhibit high conductivity, wide-band-gap and solution-processable. Organo-lead halide perovskite solar cells with different thickness of mesoporous layers and CuI hole transport layers were fabricated. Performance of the cells were mainly controlled by the thickness of TiO2 mesoporous layers. Under optimized conditions, a power conversion efficiency of 5.8% has been achieved with short-circuit current density JSC of 22.3 mA/cm2, open-circuit voltage VOC of 614 mV and fill factor of 42%. However, the VOC remains low in comparison with the state of the art perovskite-based solar cells, which is attributed to the high recombination in CuI devices as determined by impedance spectroscopy.

  5. A Photoelectrochemical Solar Cell: An Undergraduate Experiment.

    Science.gov (United States)

    Boudreau, Sharon M.; And Others

    1983-01-01

    Preparation and testing of a cadmium selenide photoelectrical solar cell was introduced into an environmental chemistry course to illustrate solid state semiconductor and electrochemical principles. Background information, procedures, and results are provided for the experiment which can be accomplished in a three- to four-hour laboratory session…

  6. An efficient copper phthalocyanine additive of perovskite precursor for improving the photovoltaic performance of planar perovskite solar cells

    Science.gov (United States)

    Wu, Shufang; Liu, Qingwei; Zheng, Ya; Li, Renjie; Peng, Tianyou

    2017-08-01

    Solution processable planar heterojunction perovskite solar cell has drawn much attention as a promising low-cost photovoltaic device, and much effort has been made to improve its power conversion efficiency by choosing appropriate additives for the perovskite precursor solution. Different to those additives reported, a soluble and thermal stable tert-butyl substituted copper phthalocyanine (CuPc(tBu)4) as additive is first introduced into the perovskite precursor solution of a planar perovskite solar cell that is fabricated via the one-step solution process. It is found that the pristine device without CuPc(tBu)4 additive exhibits a power conversion efficiency of 15.3%, while an extremely low concentration (4.4 × 10-3 mM) of CuPc(tBu)4 in the precursor solution leads to the corresponding device achieving an enhanced power conversion efficiency of 17.3%. CuPc(tBu)4 as an additive can improve the quality of perovskite layer with higher crystallinity and surface coverage, then resulting in enhanced light absorption and reduced charge recombination, and thus the better power conversion efficiency. The finding presented here provides a new choice for improving the quality of perovskite layer and the photovoltaic performance of the planar heterojunction perovskite solar cells.

  7. Nickel Phosphide as a Copper Free Back Contact for CdTe-Based Solar Cells

    Science.gov (United States)

    Sunderland, Brian; Gupta, Akhlesh; Compaan, Alvin D.

    2002-03-01

    Nickel phosphide back contacts were deposited onto polycrystalline, thin-film, CdS/CdTe solar cells using DC magnetron sputtering. The effects of the etching procedure, substrate temperature, deposition duration, post-deposition diffusion temperature, and ambient on the initial performance and on the long term stability of the devices were studied. We found that the initial performance of nickel phosphide contacts was lower than typical Cu-based back contacts. However, the stability of the cells at open circuit under one-sun light soak for several months is better than for our standard contact with evaporated Cu and Au. The use of sputtered graphite as an interfacial layer improved the performance. Average efficiencies of over 8.6were achieved. The excellent stability makes Ni2P an attractive candidate for a Cu-free back contact to CdTe-based solar cells. Work supported by NREL and by NSF-REU.

  8. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Ying [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Bradley, Donal D. C.; Anthopoulos, Thomas D., E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Department of Physics and Centre for Plastic Electronics, Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Vourlias, George; Patsalas, Panos A. [Department of Physics, Laboratory of Applied Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: t.anthopoulos@imperial.ac.uk [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2015-06-15

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ∼5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  9. Efficient organic solar cells using copper(I) iodide (CuI) hole transport layers

    Science.gov (United States)

    Peng, Ying; Yaacobi-Gross, Nir; Perumal, Ajay K.; Faber, Hendrik A.; Vourlias, George; Patsalas, Panos A.; Bradley, Donal D. C.; He, Zhiqun; Anthopoulos, Thomas D.

    2015-06-01

    We report the fabrication of high power conversion efficiency (PCE) polymer/fullerene bulk heterojunction (BHJ) photovoltaic cells using solution-processed Copper (I) Iodide (CuI) as hole transport layer (HTL). Our devices exhibit a PCE value of ˜5.5% which is equivalent to that obtained for control devices based on the commonly used conductive polymer poly(3,4-ethylenedioxythiophene): polystyrenesulfonate as HTL. Inverted cells with PCE >3% were also demonstrated using solution-processed metal oxide electron transport layers, with a CuI HTL evaporated on top of the BHJ. The high optical transparency and suitable energetics of CuI make it attractive for application in a range of inexpensive large-area optoelectronic devices.

  10. Constructing submicron textures on mc-Si solar cells via copper-catalyzed chemical etching

    Science.gov (United States)

    Zha, Jiawei; Wang, Ting; Pan, Chengfeng; Chen, Kexun; Hu, Fenqin; Pi, Xiaodong; Su, Xiaodong

    2017-02-01

    Mass production of diamond-wire-sawn (DWS) multicrystalline silicon (mc-Si) solar cells reached a significant point of maturity through utilization of metal-catalyzed chemical etching (MCCE). However, nanotextured DWS mc-Si solar cells usually produced with Ag-MCCE still suffer from certain drawbacks, such as remaining saw marks, color differences among grains, and slight decreases in the open-circuit voltage (Voc). In this work, we show that unoriented Cu-based MCCE (Cu-MCCE) not only depresses the saw marks and color differences but also introduces random shallow pits, which act as artificial defects that can be easily converted into a submicron texture using conventional HNO3/HF etching. Moreover, we demonstrate that the efficiency of DWS mc-Si solar cells produced with the Cu-MCCE process is greater than 19%, with improved Voc resulting from better surface passivation. This cost-effective Cu-MCCE method is, therefore, of significant potential for the photovoltaic industry.

  11. Role of Copper in the Performance of CdS/CdTe Solar Cells (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Demtsu, S.; Albin, D.; Sites, J.

    2006-05-01

    The performance of CdS/CdTe solar cells made with evaporated Cu as a primary back contact was studied through current-voltage (JV) at different intensities, quantum efficiency (QE) under light and voltage bias, capacitance-voltage (CV), and drive-level capacitance profiling (DLCP) measurements. The results show that while modest amounts of Cu enhance cell performance, excessive amounts degrade device quality and reduce performance. The analysis is supported with numerical simulations to reproduce and explain some of the experimental results.

  12. Role of Copper in the Performance of CdS/CdTe Solar Cells: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Demtsu, S.; Albin, D.; Sites, J.

    2006-05-01

    The performance of CdS/CdTe solar cells made with evaporated Cu as a primary back contact was studied through current-voltage (JV) at different intensities, quantum efficiency (QE) under light and voltage bias, capacitance-voltage (CV), and drive-level capacitance profiling (DLCP) measurements. The results show that while modest amounts of Cu enhance cell performance, excessive amounts degrade device quality and reduce performance. The analysis is supported with numerical simulations to reproduce and explain some of the experimental results.

  13. Characterization of Al2O3 as CIGS surface passivation layer in high-efficiency CIGS solar cells

    OpenAIRE

    Joel, Jonathan

    2014-01-01

    In this thesis, a novel method of reducing the rear surface recombination in copper indium gallium (di) selenide (CIGS) thin film solar cells, using atomic layer deposited (ALD) Al2O3, has been evaluated via qualitative opto-electrical characterization. The idea stems from the silicon (Si) industry, where rear surface passivation layers are used to boost the open-circuit voltage and, hence, the cell efficiency. To enable a qualitative assessment of the passivation effect, Al/Al2O3/CIGS metal-...

  14. Plasmonic copper nanowire@TiO2 nanostructures for improving the performance of dye-sensitized solar cells

    Science.gov (United States)

    Zhang, Ye; Zhou, Ning; Zhang, Keqin; Yan, Feng

    2017-02-01

    Plasmonic copper nanowires@TiO2 (Cu NWs@TiO2) core-shell nanostructures are synthesized and applied for dye sensitized solar cells (DSSCs). Both experimental and theoretical studies (Finite Difference Time Domain Simulation) reveal that doping of the Cu NWs@TiO2 nanostructures into the TiO2 photoanodes can enhance the light absorption of dye molecules and the carrier's separation through the localized surface plasmon resonance (LSPR) and plasmonic waveguide (PW) effects, and thus significantly improve the light harvesting efficiency of the device. The optimized doped DSSCs show the best power conversion efficiency (PCE) of 9.44%, which is 23.40% higher than that of undoped DSSCs (7.65%).

  15. Solar Cells Based on Low-dimensional Nanocomposite Structures

    Directory of Open Access Journals (Sweden)

    S.L. Khrypko

    2016-12-01

    Full Text Available Converting solar energy into electric energy with using of solar batteries is a major task for developers and research teams. In this article we will look at the development of different generations of solar batteries for to create a nanocomposite structure. Production of solar batteries has gone through some steps, taking into account technological and economic aspects that have been associated with improved of their parameters. Thus the first generations of solar batteries have been based on the single-crystal silicon substrates (с-Si. The use of polycrystalline silicon and multi- crystalline allowed lower costs of modules, but due to the efficiency of solar energy conversion. The solar batteries of the second generation were based on thin-film technology, in which use different materials: silicon films based on amorphous silicon (a-Si, a film based on cadmium telluride (CdTe and film selenide copper-indium-gallium (CuInGaSe2, or CIGS. The use of such technology has allowed increasing the coefficient of performance (COP solar cell with a significant reduction in costs. The solar batteries of third-generation based on nanotechnology, nanocrystals and nano-sized clusters of semiconductors. The creation of such solar cells requires availability of a low-dimensional composite structure. Low-dimensional nanocomposite structures that are constructed on quantum dots and nano-porous materials have new modified optoelectronic properties. They can be used in solar elements, where absorption bands can be optimally adapted to the wavelength of radiation light. These structures could theoretically can lead to increased efficiency of solar energy conversion more than 65%, which can double practically current efficiency of solar batteries.

  16. Copper variation in Cu(In,Ga)Se{sub 2} solar cells with indium sulphide buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Spiering, S., E-mail: stefanie.spiering@zsw-bw.de [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Paetel, S.; Kessler, F. [Zentrum für Sonnenenergie- und Wasserstoff-Forschung (ZSW) Baden-Wuerttemberg, Industriestrasse 6, 70565 Stuttgart (Germany); Igalson, M.; Abdel Maksoud, H. [Warsaw University of Technology (WUT), Faculty of Physics, Koszykowa 75, 00-662 Warszawa (Poland)

    2015-05-01

    In the manufacturing of Cu(In,Ga)Se{sub 2} (CIGS) thin film solar cells the application of a buffer layer on top of the absorber is essential to obtain high efficiency devices. Regarding the roll-to-roll production of CIGS cells and modules a vacuum deposition process for the buffer is preferable to the conventional cadmium sulphide buffer deposited in a chemical bath. Promising results have already been achieved for the deposition of indium sulphide buffer by different vacuum techniques. The solar device performance is very sensitive to the conditions at the absorber-buffer heterojunction. In view of optimization we investigated the influence of the Cu content in the absorber on the current-voltage characteristics. In this work the integral copper content was varied between 19 and 23 at.% in CIGS on glass substrates. An improvement of the cell performance by enhanced open circuit voltage was observed for a reduction to ~ 21 at.% when thermally evaporated indium sulphide was applied as the buffer layer. The influence of stoichiometry deviations on the transport mechanism and secondary barriers in the device was studied using detailed dark and light current-voltage analysis and admittance spectroscopy and compared to the reference CdS-buffered cells. We conclude that the composition of the absorber in the interface region affects current transport in In{sub x}S{sub y}-buffered and CdS-buffered cells in different ways hence optimal Cu content in those two types of devices is different. - Highlights: • Influence of Cu-variation in CIGS cells with In{sub x}S{sub y} buffer layer on cell performance • Enhanced efficiency by slight reduction of Cu-content to 21 at.% • Contribution of tunnelling-enhanced interface recombination for higher Cu-content.

  17. Non-toxic and environmentally friendly route for preparation of copper indium sulfide based thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sankir, Nurdan Demirci, E-mail: nsankir@etu.edu.tr; Aydin, Erkan; Ugur, Esma; Sankir, Mehmet

    2015-08-15

    Highlights: • Substrate structure of spray pyrolyzed CuInS{sub 2}/In{sub 2}S{sub 3} heterojunction solar cells. • Low cost and environmentally friendly fabrication of CuInS{sub 2} based solar cells. • Low RF power deposition of TCO layer. • AZO–Ag–AZO sandwich structure. • Effect of the thickness of buffer layer on the photovoltaic performance. - Abstract: In this study, copper based thin film solar cells with substrate structure have been built via spray pyrolysis method. Toxic material usage was avoided during the material deposition and the post-treatment steps. Novel device configuration of Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO was studied as a function of the In{sub 2}S{sub 3} buffer layer thickness. In order to utilize the zinc oxide (ZnO) and aluminum doped zinc oxide (AZO) transparent conductive layers, deposited by physical vapor deposition (PVD), on top of the spray pyrolyzed thin films, the RF power was lowered to 30 W. Although this minimized the unwanted penetration of the highly energetic particles, created during PVD process, sheet resistivity of the AZO films increased enormously. Hence very thin silver layer has been deposited between two AZO films. This resulted the decrease in the sheet resistivity more than 10{sup 6} times. Electrical measurements under illumination revealed that short circuit current density (J{sub sc}), open circuit voltage (V{sub oc}), fill factor (FF) and efficiency (η) of the Mo/CuInS{sub 2}/In{sub 2}S{sub 3}/ZnO/AZO–Ag–AZO type solar cells increased with increasing the thickness of the In{sub 2}S{sub 3} layer. The maximum J{sub sc} of 9.20 mA/cm{sup 2}, V{sub oc} of 0.43 V, FF of 0.44 have been observed for the 0.94 μm-thick In{sub 2}S{sub 3} layer. Extraordinarily thick buffer layer provided better diffusion barrier between the absorber and the TCO layers and also resulted better photosensitivity. These could be the key factors to produce substrate configuration of the spray pyrolyzed

  18. Full-solution processed flexible organic solar cells using low-cost printable copper electrodes.

    Science.gov (United States)

    Li, Kan; Zhen, Hongyu; Niu, Liyong; Fang, Xu; Zhang, Yaokang; Guo, Ruisheng; Yu, You; Yan, Feng; Li, Haifeng; Zheng, Zijian

    2014-11-12

    Full-solution-processed flexible organic solar cells (OSCs) are fabricated using low-cost and high-quality printable Cu electrodes, which achieve a power conversion efficiency as high as 2.77% and show remarkable stability upon 1000 bending cycles. This device performance is thought to be the best among all full-solution-processed OSCs reported in the literature using the same active materials. This printed Cu electrode is promising for application in roll-to-roll fabrication of flexible OSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of Cu-Poor Copper-Indium-Gallium-Diselenide Nanoparticles by Solvothermal Route for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Chung Ping Liu

    2014-01-01

    Full Text Available Copper-indium-gallium-diselenide (CIGS thin films were fabricated using precursor nanoparticle ink and sintering technology. The precursor was a Cu-poor quaternary compound with constituent ratios of Cu/(In+Ga=0.603, Ga/(In+Ga=0.674, and Se/(Cu+In+Ga=1.036. Cu-poor CIGS nanoparticles of chalcopyrite for solar cells were successfully synthesized using a relatively simple and convenient elemental solvothermal route. After a fixed reaction time of 36 h at 180°C, CIGS nanocrystals with diameters in the range of 20–70 nm were observed. The nanoparticle ink was fabricated by mixing CIGS nanoparticles, a solvent, and an organic polymer. Analytical results reveal that the Cu-poor CIGS absorption layer prepared from a nanoparticle-ink polymer by sintering has a chalcopyrite structure and a favorable composition. For this kind of sample, its mole ratio of Cu : In : Ga : Se is equal to 0.617 : 0.410 : 0.510 : 2.464 and related ratios of Ga/(In+Ga and Cu/(In+Ga are 0.554 and 0.671, respectively. Under the condition of standard air mass 1.5 global illumination, the conversion efficiency of the solar cell fabricated by this kind of sample is 4.05%.

  20. Chemical spray pyrolysis of copper indium diselenide/cadmium sulfide solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.J.

    1989-01-01

    This dissertation concentrates on Chemical Spray Pyrolysis (CSP) of CuInSe{sub 2} and CdS thin films and solar cells. The primary goal is to gain an understanding of the chemistry and physics of CSP, and apply this knowledge to the fabrication of CuInSe{sub 2}/CdS solar cells. It provide an extensive review of the literature on the properties of CuInSe{sub 2} an CdS produced by CSP and other techniques. The films are characterized by x-ray diffractometry, scanning electron microscopy, electron microprobe, van der Pauw-Hall measurements, and optical absorption spectroscopy, and the devices are characterized electrically in the dark and under illumination. A model for the chemical mechanisms involved in CSP of CdS an CuInSe{sub 2} thin films is developed which is used to point out similarities between the two systems and explain the correlation between spray solution pH and second phases in CuInSe{sub 2} thin films. Structural investigations show that the CuInSe{sub 2} films can be produced in either the ordered or disordered crystal structure, while different substrates radically change the morphology of the films. By taking into account the effect of second phases, the electrical and optical properties of the sprayed films agree with published results for CuInSe{sub 2} produced by other techniques. The properties of the sprayed CdS films in this work are shown to agree with those sprayed by others. The device properties of cells fabricated in both the backwall and reverse backwall configuration are compared with each other and related to the materials properties of the semiconductor layers. The highest efficiency cell employing sprayed CuInSe{sub 2} is reported; however, the efficiency of the cells still need improvement before becoming practical. The dissertation concludes with recommendations for increasing the efficiency of completely sprayed CuInSe{sub 2}/CdS solar cells.

  1. Study of copper-free back contacts to thin film cadmium telluride solar cells

    Science.gov (United States)

    Viswanathan, Vijay

    The goals of this project are to study Cu free back contact alternatives for CdS/CdTe thin film solar cells, and to research dry etching for CdTe surface preparation before contact application. In addition, an attempt has been made to evaluate the stability of some of the contacts researched. The contacts studied in this work include ZnTe/Cu2Te, Sb2Te 3, and Ni-P alloys. The ZnTe/Cu2Te contact system is studied as basically an extension of the earlier work done on Cu2Te at USF. RF sputtering from a compound target of ZnTe and Cu2Te respectively deposits these layers on etched CdTe surface. The effect of Cu2Te thickness and deposition temperature on contact and cell performance will be studied with the ZnTe depositions conditions kept constant. C-V measurements to study the effect of contact deposition conditions on CdTe doping will also be performed. These contacts will then be stressed to high temperatures (70--100°C) and their stability with stress time is analyzed. Sb2Te3 will be deposited on glass using RF sputtering, to study film properties with deposition temperature. The Sb2Te 3 contact performance will also be studied as a function of the Sb 2Te3 deposition temperature and thickness. The suitability of Ni-P alloys for back contacts to CdTe solar cells was studied by forming a colloidal mixture of Ni2P in graphite paste. The Ni-P contacts, painted on Br-methanol etched CdTe surface, will be studied as a function of Ni-P concentration (in the graphite paste), annealing temperature and time. Some of these cells will undergo temperature stress testing to determine contact behavior with time. Dry etching of CdTe will be studied as an alternative for wet etching processes currently used for CdTe solar cells. The CdTe surface is isotropically etched in a barrel reactor in N2, Ar or Ar:O 2 ambient. The effect of etching ambient, pressure, plasma power and etch time on contact performance will be studied.

  2. A review on solar cells from Si-single crystals to porous materials and quantum dots.

    Science.gov (United States)

    Badawy, Waheed A

    2015-03-01

    Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12-16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper-indium-selenide) and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe-TiO2 architecture have been developed.

  3. Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells.

    Science.gov (United States)

    Yoon, Seok Min; Lou, Sylvia J; Loser, Stephen; Smith, Jeremy; Chen, Lin X; Facchetti, Antonio; Marks, Tobin J; Marks, Tobin

    2012-12-12

    Zinc oxide is a promising candidate as an interfacial layer (IFL) in inverted organic photovoltaic (OPV) cells due to the n-type semiconducting properties as well as chemical and environmental stability. Such ZnO layers collect electrons at the transparent electrode, typically indium tin oxide (ITO). However, the significant resistivity of ZnO IFLs and an energetic mismatch between the ZnO and the ITO layers hinder optimum charge collection. Here we report that inserting nanoscopic copper hexadecafluorophthalocyanine (F(16)CuPc) layers, as thin films or nanowires, between the ITO anode and the ZnO IFL increases OPV performance by enhancing interfacial electron transport. In inverted P3HT:PC(61)BM cells, insertion of F(16)CuPc nanowires increases the short circuit current density (J(sc)) versus cells with only ZnO layers, yielding an enhanced power conversion efficiency (PCE) of ∼3.6% vs ∼3.0% for a control without the nanowire layer. Similar effects are observed for inverted PTB7:PC(71)BM cells where the PCE is increased from 8.1% to 8.6%. X-ray scattering, optical, and electrical measurements indicate that the performance enhancement is ascribable to both favorable alignment of the nanowire π-π stacking axes parallel to the photocurrent flow and to the increased interfacial layer-active layer contact area. These findings identify a promising strategy to enhance inverted OPV performance by inserting anisotropic nanostructures with π-π stacking aligned in the photocurrent flow direction.

  4. Continuous Preparation of Copper/Carbon Nanotube Composite Films and Application in Solar Cells.

    Science.gov (United States)

    Luo, Xiao Gang; Le Wu, Min; Wang, Xiao Xia; Zhong, Xin Hua; Zhao, Ke; Wang, Jian Nong

    2016-02-08

    Realizing the continuous and large scale preparation of particle/carbon nanotube (CNT) composites with enhanced functionalities, and broad applications in energy conversion, harvesting, and storage systems, remains as a big challenge. Here, we report a scalable strategy to continuously prepare particle/CNT composite films in which particles are confined by CNT films. This is achieved by the continuous condensation and deposition of a cylindrical assembly of CNTs on a paper strip and the in situ incorporation of particles during the layer-by-layer deposition process. A Cu/CNT composite film is prepared as an example; such a film exhibits very high power conversion efficiency when it is used as a counter electrode in a solar cell, compared with previous materials under otherwise identical conditions. The proposed method can be extended to other CNT-based composite films with excellent functionalities for wide applications.

  5. Characterization of laser doped silicon and overcoming adhesion challenges of solar cells with nickel-copper plated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Christian

    2015-07-01

    The combination of localized laser patterning and metal plating allows to replace conventional silver screen printing with nickel-copper plating to form inexpensive front contacts for crystalline silicon solar cells. In this work, a focus is put on effects that could cause inhomogeneous metal deposition and low metal contact adhesion. A descriptive model of the silicon nitride ablation mechanism is derived from SEM imaging and a precise recombination analysis using QSSPC measurements. Surface sensitive XPS measurements are conducted to prove the existence of a parasitic surface layer, identified as SiO{sub x}N{sub y}. The dense SiO{sub x}N{sub y} layer is an effective diffusion barrier, hindering the formation of a nickel silicide interlayer. After removal of the SiO{sub x}N{sub y} layer, cells show severe degradation caused by metal-induced shunting. These shunts are imaged using reverse biased electroluminescence imaging. A shunting mechanism is proposed and experimentally verified. New laser process sequences are devised and proven to produce cells with adhering Ni-Cu contacts. Conclusively the developed processes are assessed based on their industrial feasibility as well as on their efficiency potential.

  6. Spray-on Thin Film PV Solar Cells: Advances, Potentials and Challenges

    Directory of Open Access Journals (Sweden)

    Morteza Eslamian

    2014-01-01

    Full Text Available The capability to fabricate photovoltaic (PV solar cells on a large scale and at a competitive price is a milestone waiting to be achieved. Currently, such a fabrication method is lacking because the effective methods are either difficult to scale up or expensive due to the necessity for fabrication in a vacuum environment. Nevertheless, for a class of thin film solar cells, in which the solar cell materials can be processed in a solution, up scalable and vacuum-free fabrication techniques can be envisioned. In this context, all or some layers of polymer, dye-sensitized, quantum dot, and copper indium gallium selenide thin film solar cells illustrate some examples that may be processed in solution. The solution-processed materials may be transferred to the substrate by atomizing the solution and carrying the spray droplets to the substrate, a process that will form a thin film after evaporation of the solvent. Spray coating is performed at atmospheric pressure using low cost equipment with a roll-to-roll process capability, making it an attractive fabrication technique, provided that fairly uniform layers with high charge carrier separation and transport capability can be made. In this paper, the feasibility, the recent advances and challenges of fabricating spray-on thin film solar cells, the dynamics of spray and droplet impaction on the substrate, the photo-induced electron transfer in spray-on solar cells, the challenges on characterization and simulation, and the commercialization status of spray-on solar cells are discussed.

  7. Sonochemical method for preparation of copper indium sulfide nanoparticles and their application for solar cell.

    Science.gov (United States)

    Amiri, Omid; Salavati-Niasari, Masoud; Sabet, Mohammad; Ghanbari, Davood

    2014-02-01

    In this paper, CuInS2 (CIS) nanoparticles were synthesized successfully via a new copper precursor [bis(acetylacetonato)copper(II)], [Cu(acac)2]; at room temperature by ultrasonic method. The effect of sulfur source, solvent, and reaction time was investigated on product morphology and particle size. A series of analyses was performed to characterize the CuInS2 microsphere including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. CuInS2 nanoparticles were prepared and coated on FTO. Later, the coated FTO was sintered so that a compact and dense CuInS2 film was produced and measured for photovoltaic characteristics such as Voc, Jsc and FF.

  8. Layer-by-Layer Nanoassembly of Copper Indium Gallium Selenium Nanoparticle Films for Solar Cell Applications

    OpenAIRE

    Hemati, A; Shrestha, S; M. Agarwal; K. Varahramyan

    2012-01-01

    Thin films of CIGS nanoparticles interdigited with polymers have been fabricated through a cost-effective nonvacuum film deposition process called layer-by-layer (LbL) nanoassembly. CIGS nanoparticles synthesized by heating copper chloride, indium chloride, gallium chloride, and selenium in oleylamine were dispersed in water, and desired surface charges were obtained through pH regulation and by coating the particles with polystyrene sulfonate (PSS). Raising the pH of the nanoparticle disper...

  9. Orienting the Microstructure Evolution of Copper Phthalocyanine as an Anode Interlayer in Inverted Polymer Solar Cells for High Performance.

    Science.gov (United States)

    Li, Zhiqi; Liu, Chunyu; Zhang, Xinyuan; Li, Shujun; Zhang, Xulin; Guo, Jiaxin; Guo, Wenbin; Zhang, Liu; Ruan, Shengping

    2017-09-20

    Recent advances in the interfacial modification of inverted-type polymer solar cells (PSCs) have resulted from controlling the surface energy of the cathode-modified layer (TiO2 or ZnO) to enhance the short-circuit current (Jsc) or optimizing the contact morphology of the cathode (indium tin oxide or fluorine-doped tin oxide) and active layer to increase the fill factor. Herein, we report that the performance enhancement of PSCs is achieved by incorporating a donor macromolecule copper phthalocyanine (CuPc) as an anode modification layer. Using the approach based on orienting the microstructure evolution, uniformly dispersed island-shaped CuPc spot accumulations are built on the top of PTB7:PC71BM blend film, leading to an efficient spectral absorption and photogenerated exciton splitting. The best power conversion efficiency of PSCs is increased up to 9.726%. In addition to the enhanced light absorption, the tailored anode energy level alignment and optimized boundary morphology by incorporating the CuPc interlayer boost charge extraction efficiency and suppress the interfacial molecular recombination. These results demonstrate that surface morphology induction through molecular deposition is an effective method to improve the performance of PSCs, which reveals the potential implications of the interlayer between the organic active layer and the electrode buffer layer.

  10. THE DEVELOPMENT OF 6.7% EFFICIENT COPPER ZINC INDIUM SELENIDE DEVICES FROM COPPER ZINC INDIUM SULFIDE NANOCRYSTAL INKS

    OpenAIRE

    Graeser, Brian Kemp

    2014-01-01

    As solar cell absorber materials, alloys of CuIn(S,Se)2 and Zn(S,Se) provide an opportunity to reduce the usage of indium along with the ability to tune the band gap. Here we report successful synthesis of alloyed (CuInS2 )0.5(ZnS)0.5 nanocrystals by a method that solely uses oleylamine as the liquid medium for synthesis. The reactive sintering of a thin film of these nanocrystals via selenization at 500 °C results in a uniform composition alloy (CuIn(S,Se)2 )0.5 (Zn(S,Se)) 0.5 layer with mic...

  11. Influence of growth and photocatalytic properties of copper selenide (CuSe) nanoparticles using reflux condensation method

    Science.gov (United States)

    Sonia, S.; Kumar, P. Suresh; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2013-10-01

    Influence of reaction conditions on the synthesis of copper selenide (CuSe) nanoparticles and their photo degradation activity is studied. Nearly monodispersed uniform size (23-44 nm) nanoparticles are synthesized by varying the reaction conditions using reflux condensation method. The obtained nanoparticles are characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and UV-visible absorption spectroscopy. The X-ray diffraction analysis of the sample shows the formation of nanoparticles with hexagonal CuSe structure. The result indicates that on increasing the reaction time from 4 to 12 h, the particle size decreases from 44 to 23 nm, but an increase in the reaction temperature increases the particle size. The calculated band gap Eg is ranging from 2.34 to 3.05 eV which is blue shifted from the bulk CuSe (2.2 eV). The photocatalytic degradation efficiency of the CuSe nanoparticles on two organic dyes Methylene blue (MB) and Rhodamine-B (RhB) in aqueous solution under UV region is calculated as 76 and 87% respectively.

  12. Influence of growth and photocatalytic properties of copper selenide (CuSe) nanoparticles using reflux condensation method

    Energy Technology Data Exchange (ETDEWEB)

    Sonia, S. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Ponpandian, N.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India)

    2013-10-15

    Influence of reaction conditions on the synthesis of copper selenide (CuSe) nanoparticles and their photo degradation activity is studied. Nearly monodispersed uniform size (23–44 nm) nanoparticles are synthesized by varying the reaction conditions using reflux condensation method. The obtained nanoparticles are characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and UV–visible absorption spectroscopy. The X-ray diffraction analysis of the sample shows the formation of nanoparticles with hexagonal CuSe structure. The result indicates that on increasing the reaction time from 4 to 12 h, the particle size decreases from 44 to 23 nm, but an increase in the reaction temperature increases the particle size. The calculated band gap E{sub g} is ranging from 2.34 to 3.05 eV which is blue shifted from the bulk CuSe (2.2 eV). The photocatalytic degradation efficiency of the CuSe nanoparticles on two organic dyes Methylene blue (MB) and Rhodamine-B (RhB) in aqueous solution under UV region is calculated as 76 and 87% respectively.

  13. Liquid precursor for deposition of copper selenide and method of preparing the same

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J.; Miedaner, Alexander; Franciscus Antonius Maria Van Hest, Marinus; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-08

    Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.

  14. Synthesis of colloidal nanoscaled copper-indium-gallium-selenide (CIGS) particles for photovoltaic applications.

    Science.gov (United States)

    Mousavi, S H; Müller, T S; de Oliveira, P W

    2012-09-15

    In this work, Cu(In,Ga)Se(2) (CIGS) nanoparticles were synthesized using a wet chemical method. The method is based on a non-vacuum thermal process that does not use selenization. The effects of temperature, source materials, and growth conditions on the phase and particle size were investigated. X-ray diffraction results confirm the formation of a tetragonal CIGS structure as the main phase with the purity more than 99% obtained by energy-dispersive X-ray spectroscopy (EDX). The morphology and size of the samples were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Using these methods, 20-80nm particles were obtained. Through measurements of the absorption spectra of CIGS nanoparticles, the band gap of the synthesized material was determined to be about 1.44eV, which corresponds to an acceptable wavelength region for absorber layers in solar cells.

  15. Ultrasonic Spray Pyrolysis Deposited Copper Sulphide Thin Films for Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Y. E. Firat

    2017-01-01

    Full Text Available Polycrystalline copper sulphide (CuxS thin films were grown by ultrasonic spray pyrolysis method using aqueous solutions of copper chloride and thiourea without any complexing agent at various substrate temperatures of 240, 280, and 320°C. The films were characterized for their structural, optical, and electrical properties by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive analysis of X-rays (EDAX, atomic force microscopy (AFM, contact angle (CA, optical absorption, and current-voltage (I-V measurements. The XRD analysis showed that the films had single or mixed phase polycrystalline nature with a hexagonal covellite and cubic digenite structure. The crystalline phase of the films changed depending on the substrate temperature. The optical band gaps (Eg of thin films were 2.07 eV (CuS, 2.50 eV (Cu1.765S, and 2.28 eV (Cu1.765S–Cu2S. AFM results indicated that the films had spherical nanosized particles well adhered to the substrate. Contact angle measurements showed that the thin films had hydrophobic nature. Hall effect measurements of all the deposited CuxS thin films demonstrated them to be of p-type conductivity, and the current-voltage (I-V dark curves exhibited linear variation.

  16. Computational Molecular Nanoscience Study of the Properties of Copper Complexes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jorge Almaral-Sánchez

    2012-11-01

    Full Text Available In this work, we studied a copper complex-based dye, which is proposed for potential photovoltaic applications and is named Cu (I biquinoline dye. Results of electron affinities and ionization potentials have been used for the correlation between different levels of calculation used in this study, which are based on The Density Functional Theory (DFT and time-dependent (TD DFT. Further, the maximum absorption wavelengths of our theoretical calculations were compared with the experimental data. It was found that the M06/LANL2DZ + DZVP level of calculation provides the best approximation. This level of calculation was used to find the optimized molecular structure and to predict the main molecular vibrations, the molecular orbitals energies, dipole moment, isotropic polarizability and the chemical reactivity parameters that arise from Conceptual DFT.

  17. Computational molecular nanoscience study of the properties of copper complexes for dye-sensitized solar cells.

    Science.gov (United States)

    Baldenebro-López, Jesús; Castorena-González, José; Flores-Holguín, Norma; Almaral-Sánchez, Jorge; Glossman-Mitnik, Daniel

    2012-11-28

    In this work, we studied a copper complex-based dye, which is proposed for potential photovoltaic applications and is named Cu (I) biquinoline dye. Results of electron affinities and ionization potentials have been used for the correlation between different levels of calculation used in this study, which are based on The Density Functional Theory (DFT) and time-dependent (TD) DFT. Further, the maximum absorption wavelengths of our theoretical calculations were compared with the experimental data. It was found that the M06/LANL2DZ + DZVP level of calculation provides the best approximation. This level of calculation was used to find the optimized molecular structure and to predict the main molecular vibrations, the molecular orbitals energies, dipole moment, isotropic polarizability and the chemical reactivity parameters that arise from Conceptual DFT.

  18. Solar thermal extraction of copper from sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, L.; Guesdon, C.; Sturzenegger, M.

    2003-03-01

    With the aim to develop a solar-driven process for the extraction of copper from sulfide concentrates re-search on the decomposition of copper sulfides under inert atmospheres has been initiated. Thermogravimetric measurements on chalcocite (Cu{sub 2}S) revealed that copper is formed already at 1823 K. Chalcopyrite (CuFeS{sub 2}) also disintegrates at this temperature, although at a lower rate. Copper and iron have been identified in the solid residue. The results confirm the feasibility of copper extraction by direct decomposition of sulfides under atmospheric pressure. The decomposition under inert atmosphere prevents generation of SO{sub 2}, and is beneficial to the removal of volatile impurities. Chemical equilibrium calculations for CuFeS{sub 2} contaminated with enargite (Cu{sub 3}AsS{sub 4}) have shown that the absence of an oxidic slag allows for a complete evaporation of arsenic and subsequent separation. (author)

  19. Thin film CIGS solar cells with a novel low cost process - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, A. N.; Romanyuk, Y.

    2010-01-15

    Novel manufacturing routes for efficient and low-cost Cu(In,Ga)Se{sub 2} (called CIGS) thin film solar cells are explored and patented. CIGS has proven its suitability for highly efficient and extremely stable solar cells. The low-cost methods allow impurity free material synthesis, fast large-area deposition, high material utilization and a very short energy payback time with drastically lower manufacturing costs. Two non-vacuum, solution-based approaches are investigated to deposit thin layers of CIGS. The first approach considers incorporation of copper into indium gallium selenide precursor layers by ion-exchange from aqueous or organic solutions. Organic solutions provide faster copper incorporation and do not corrode the metal back contact. Solar cells processed from selenized precursor films exhibit efficiencies of up to 4.1%. The second approach with paste coating of inorganic salt solution results in a solar cell efficiency of 4% (record 6.7%), where further improvements are hindered by the presence of the residual carbon layer. Using alternative organic binders, pre-deposited selenium layers, non-binder recipes helps to avoid the carbon layer although the obtained layers are inhomogeneous and contain impurity phases. A patent for the ion-exchange approach is pending, and the obtained research results on the paste coating approach will be scrutinized during new European FP7 project 'NOVA-CIGS'. (authors)

  20. Real-time observation of Cu2ZnSn(S,Se)4 solar cell absorber layer formation from nanoparticle precursors.

    Science.gov (United States)

    Mainz, Roland; Walker, Bryce C; Schmidt, Sebastian S; Zander, Ole; Weber, Alfons; Rodriguez-Alvarez, Humberto; Just, Justus; Klaus, Manuela; Agrawal, Rakesh; Unold, Thomas

    2013-11-07

    The selenization of Cu-Zn-Sn-S nanocrystals is a promising route for the fabrication of low-cost thin film solar cells. However, the reaction pathway of this process is not completely understood. Here, the evolution of phase formation, grain size, and elemental distributions is investigated during the selenization of Cu-Zn-Sn-S nanoparticle precursor thin films by synchrotron-based in situ energy-dispersive X-ray diffraction and fluorescence analysis as well as by ex situ electron microscopy. The precursor films are heated in a closed volume inside a vacuum chamber in the presence of selenium vapor while diffraction and fluorescence signals are recorded. The presented results reveal that during the selenization the cations diffuse to the surface to form large grains on top of the nanoparticle layer and the selenization of the film takes place through two simultaneous reactions: (1) a direct and fast formation of large grained selenides, starting with copper selenide which is subsequently transformed into Cu2ZnSnSe4; and (2) a slower selenization of the remaining nanoparticles. As a consequence of the initial formation of copper selenides at the surface, the subsequent formation of CZTSe starts under Cu-rich conditions despite an overall Cu-poor composition of the film. The implications of this process path for the film quality are discussed. Additionally, the proposed growth model provides an explanation for the previously observed accumulation of carbon from the nanoparticle precursor beneath the large grained layer.

  1. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Science.gov (United States)

    Sandoval-Paz, M. G.; Rodríguez, C. A.; Porcile-Saavedra, P. F.; Trejo-Cruz, C.

    2016-07-01

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films.

  2. Efficiency enhancement of dye-sensitized solar cell utilizing copper indium sulphide/zinc sulphide quantum dot plasticized cellulose acetate polymer electrolyte

    Science.gov (United States)

    Samsi, N. S.; Effendi, N. A. S.; Zakaria, R.; Ali, A. M. M.

    2017-04-01

    This paper describes the efficiency of solar cells that have been prepared by mixing quantum dots (QD) in gel polymer electrolytes (GPEs) based on plasticized cellulose acetate. Copper indium sulfide/zinc sulfide (CuInS/ZnS) QD was doped into GPEs and was characterized for application in a dye-sensitized solar cell (DSSC). The addition of QD into GPEs increases the conductivity up to 1.6  ×  10-1 S cm-1 at room temperature made them a promising electrolyte for DSSC. Atomic force microscopy analysis affirmed the uniform distribution of QD into the polymer matrix. The photovoltaic efficiency performance of DSSC using QD-doped GPE electrolyte was found to be increased up to 8.02%.

  3. Bath Parameter Dependence of Chemically-Deposited Copper Selenide Thin Film

    Science.gov (United States)

    Al-Mamun; Islam, A. B. M. O.

    In this article, a low cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films on to glass substrate. Different thin films (0.2-0.6 μm) were prepared by adjusting the bath parameter like concentration of ammonia, deposition time, temperature of the solution, and the ratios of the mixing composition between copper and selenium in the reaction bath. From these studies, it reveals that at low concentration of ammonia or TEA, the terminal thicknesses of the films are less, which gradually increases with the increase of concentrations and then drop down at still higher concentrations. It has been found that complexing the Cu2+ ions with TEA first, and then addition of ammonia yields better results than the reverse process. The film thickness increases with the decrease of value x of Cu2-xSe.

  4. Synthesis and structure determination of potassium copper selenide nanowires and solid-state supercapacitor application

    Science.gov (United States)

    Zhang, Kaiyou; Chen, Hong; Wang, Xue; Guo, Donglin; Hu, Chenguo; Wang, Shuxia; Sun, Junliang; Leng, Qiang

    2014-12-01

    The new ternary alkali metal copper chalcogenide KCu4Se8 nanowires with average length of 30 μm are synthesized using a modified composite-hydroxide mediated (M-CHM) approach. The prepared KCu4Se8 is characterized by XRD, EDS, FESEM and TEM analysis. The structure is determined by the newly developed Rotation Electron Diffraction technique. It is identified to be a body center tetragonal phase. The prepared KCu4Se8 is used to fabricate solid-state supercapacitors in which the thin film of the electrodes are made with pressure of 0 MPa, 5 MPa and 10 MPa, and their electrochemical properties are tested. It is found that 0 MPa supercapacitor displays best electrochemical performance and the specific capacitance of 25.3 F g-1 is obtained at the scan rate of 5 mV s-1. It also shows good long-term cycle property by recording 5000 cycles of galvanostatic charge/discharge operation. The specific capacitance can be enhanced to 93.7 F g-1 at the scan rate of 5 mV s-1 by coating 0.1 mg V2O5 nanowire on 0 MPa KCu4Se8 electrode.

  5. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  6. Nanostructured Solar Cells.

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  7. INVESTIGATION OF THIN FILM CADMIUM SULFIDE SOLAR CELLS.

    Science.gov (United States)

    SOLAR CELLS , *CADMIUM COMPOUNDS, FILMS, SULFIDES, VAPOR PLATING, VACUUM APPARATUS, SINGLE CRYSTALS, TITANIUM, COPPER COMPOUNDS, CHLORIDES, INDIUM, MOLYBDENUM, SILICON COMPOUNDS, MONOXIDES, SURFACE PROPERTIES, ENERGY CONVERSION.

  8. One-step fabrication of copper sulfide nanoparticles decorated on graphene sheets as highly stable and efficient counter electrode for CdS-sensitized solar cells

    Science.gov (United States)

    Hessein, Amr; Wang, Feiju; Masai, Hirokazu; Matsuda, Kazunari; Abd El-Moneim, Ahmed

    2016-11-01

    Quantum-dot-sensitized solar cells (QDSSCs) are thin-film photovoltaics and highly promising as next-generation solar cells owing to their high theoretical efficiency, easy fabrication process, and low production cost. However, the practical photoconversion efficiencies (PCEs) of QDSSCs are still far below the theoretically estimated value owing to the lack of an applicable design of the materials and electrodes. In this work, we developed a highly stable and efficient counter electrode (CE) from copper sulfide nanocrystals and reduced graphene oxide (Cu x S@RGO) for QDSSC applications. The Cu x S@RGO electrocatalyst was successfully prepared by a facile one-pot hydrothermal method, then directly applied to a fluorine-doped tin oxide (FTO)-coated glass substrate by the simple drop-casting technique. Owing to the synergistic effect between Cu x S nanocrystals and conductive RGO sheets, the Cu x S@RGO CE showed high electrocatalytic activity for polysulfide electrolyte reduction. A CdS QDSSC based on the Cu x S@RGO CE yielded a high and reproducible PCE of 2.36%, exceeding those of 1.57 and 1.33% obtained with the commonly used Cu2S/brass and Pt CEs, respectively. Moreover, the QDSSC with the Cu x S@RGO CE showed excellent photostability in a light-soaking test without any obvious decay in the photocurrent, whereas the cell based on the Cu2S/brass CE was severely degraded.

  9. Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p–i–n perovskite solar cells

    KAUST Repository

    Zhao, Kui

    2015-08-27

    CuSCN is a highly transparent, highly stable, low cost and easy to solution process HTL that is proposed as a low cost replacement to existing organic and inorganic metal oxide hole transporting materials. Here, we demonstrate hybrid organic-inorganic perovskite-based p-i-n planar heterojunction solar cells using a solution-processed copper(I) thiocyanate (CuSCN) bottom hole transporting layer (HTL). CuSCN, with its high workfunction, increases the open circuit voltage (Voc) by 0.23 V to 1.06 V as compared with devices based on the well-known poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (0.83 V), resulting in a superior power conversion efficiency (PCE) of 10.8% without any notable hysteresis. Photoluminescence measurements suggest a similar efficiency of charge transfer at HTL/perovskite interface as PEDOT:PSS. However, we observe more efficient light harvesting in the presence of CuSCN at shorter wavelengths despite PEDOT:PSS being more transparent. Further investigation of the microstructure and morphology reveals differences in the crystallographic texture of the polycrystalline perovskite film, suggesting somewhat modified perovskite growth on the surface of CuSCN. The successful demonstration of the solution-processed inorganic HTL using simple and low temperature processing routes bodes well for the development of reliable and efficient flexible p-i-n perovskite modules or for integration as a front cell in hybrid tandem solar cells.

  10. Nanostructured Solar Cells

    Science.gov (United States)

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  11. Influence of hydrogen sulfide annealing on copper-zinc-tin-sulfide solar cells sputtered from a quaternary compound target

    Energy Technology Data Exchange (ETDEWEB)

    Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla (Sweden); Solid State Electronics, Uppsala University, Box 534, 75121 Uppsala (Sweden); Sterner, Jan, E-mail: jan.sterner@midsummer.se [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla (Sweden); Platzer-Björkman, Charlotte, E-mail: charlotte.platzer@angstrom.uu.se [Solid State Electronics, Uppsala University, Box 534, 75121 Uppsala (Sweden)

    2015-05-01

    With a theoretical efficiency around 30% and an optimized band gap for sunlight absorption, Cu{sub 2}ZnSnS{sub 4} (CZTS) is a promising, earth-abundant, material for thin film solar cells. Sputtering CZTS from a quaternary compound target is a quick and potentially industrial-scaled process that has not been investigated deeply yet. Our approach is based on an in-line vacuum system for the complete device. CZTS is sputtered from a compound target on a sodium molybdate (MoNa) pre-sputtered stainless steel substrate, and then annealed in high-pressure H{sub 2}S atmosphere. A 1 μm thick absorber is obtained within 7 minute sputtering. Top layers are then deposited, without vacuum breaking. The effects of different annealing temperatures on the absorber morphology and composition are investigated. It is observed that recrystallization already occurs at 420 °C and that crystallinity improves with increasing temperature up to 550 °C. However, micro-sphere formation underneath the film degrades the corresponding solar cell performance dramatically above 510 °C. It is shown that sodium is needed in order to enhance recrystallization of CZTS but the MoNa layer thickness seems not to be a critical parameter. Scanning electron microscopy, X-ray diffraction, X-ray fluorescence and current-voltage measurement were used to characterize the samples. - Highlights: • CZTS sputtered from a quaternary compound target for solar cell fabrication • In-line vacuum tool for the complete device • Increasing crystallinity with sodium incorporation and annealing temperature up to 550 °C • Best device exhibits 4.2% efficiency.

  12. Formation pathway of CuInSe2 nanocrystals for solar cells.

    Science.gov (United States)

    Kar, Mahaprasad; Agrawal, Rakesh; Hillhouse, Hugh W

    2011-11-02

    Copper, indium, and gallium chalcogenide nanocrystals (binary, ternary, and quaternary) have been used to fabricate high-efficiency thin-film solar cells. These solution-based methods are being scaled-up and may serve as the basis for the next generation of low-cost solar cells. However, the formation pathway to reach stoichiometric ternary CuInSe(2) or any chalcopyrite phase ternary or quaternary nanocrystal in the system has not been investigated but may be of significant importance to improving nanocrystal growth and discovering new methods of synthesis. Here, we present the results of X-ray diffraction, electron microscopy, compositional analysis, IR absorption, and mass spectrometry that reveal insights into the formation pathway of CuInSe(2) nanocrystals. Starting with CuCl, InCl(3), and elemental Se all dissolved in oleylamine, the overall reaction that yields CuInSe(2) involves the chlorination of the hydrocarbon groups of the solvent. Further, we show that the amine and alkene functional groups in oleylamine are not necessary for the formation of CuInSe(2) nanocrystals by conducting successful syntheses in 1-octadecene and octadecane. Hence, the role of oleylamine is not limited to nanocrystal size and morphology control; it also acts as a reactant in the formation pathway. Typically, the formation of copper selenide (CuSe) and indium selenide (InSe) nanocrystals precedes the formation of CuInSe(2) nanocrystals in oleylamine. But it was also found that Cu(2-x)Se (0 < x < 0.5) and In(2)Se(3) were the primary intermediates involved in the formation of CISe in a purely non-coordinating solvent such as 1-octadecene, which points to the surface-stabilization effect of the coordinating solvent on the less thermodynamically stable indium selenide (InSe) nanocrystals. We also show that the yield of the chalcopyrite phase of CuInSe(2) (as opposed to the sphalerite phase) can be increased by reacting CuSe nanocrystals with InCl(3).

  13. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman, E-mail: anis@eee.buet.ac.bd [Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka 1205 (Bangladesh)

    2016-05-21

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  14. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Science.gov (United States)

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-05-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  15. Synthesis and structure of an "iron-doped" copper selenide cluster molecule: [Cu30Fe2Se6(SePh)24(dppm)4].

    Science.gov (United States)

    Eichhöfer, Andreas; Olkowska-Oetzel, Jolanta; Fenske, Dieter; Fink, Karin; Mereacre, Valeriu; Powell, Annie K; Buth, Gernot

    2009-09-21

    CuCl and bis(diphenylphosphanyl)methane (dppm) react in the presence of small amounts of FeCl(3) with PhSeSiMe(3) and Se(SiMe(3))(2) to yield [Cu(30)Fe(2)Se(6)(SePh)(24)(dppm)(4)]. The crystal structure of the compound was determined by single-crystal X-ray analysis to give a mixed copper selenide/selenolate cluster molecule of a new structural type incorporating two central iron atoms. The formal oxidation state of the iron atoms was determined by Mössbauer spectroscopy to be +3, in agreement with quantum chemical calculations and modeling of the magnetic data. In addition, Mössbauer studies show no magnetic hyperfine structure in zero field, and the magnetically perturbed spectrum displays a pattern typical for a diamagnetic species in a transverse field, suggesting a singlet ground state. However, the inclusion of the iron atoms has a distinct influence on the optical properties of the compound compared to similar clusters containing only copper and selenium atoms.

  16. Development of technique for AR coating nickel and copper metallization of solar cells FPS project product development

    Science.gov (United States)

    Taylor, W.

    1982-01-01

    Experimental matrices were conducted to determine a suitable firing schedule for fritless tin printing ink. considerable difficulties were encountered with oxidation. Best results were obtained with a firing cycle consisting of 400 C for 20 minutes in nitrogen followed by 5 minutes in air at 500 C. Elimination of oxidizing conditions impaired the adhesion of both tin and copper fritless printing inks, although adhesion of fritless copper inks was obtained when fired in nitrogen with slight oxidation.

  17. Historic Developments, Current Technologies and Potential of Nanotechnology to Develop Next Generation Solar Cells with Improved Efficiency

    Directory of Open Access Journals (Sweden)

    Nisith Raval

    2015-07-01

    Full Text Available Sun is the continuous source of renewable energy, from where we can get abundant of solar energy. Concept of conversionof solar energy into heat was used back in 200 B.C. since then, the solar cells have been developed which can convert solar energy into theelectrical energy and these systems have been produced commercially. The technologies to enhance the power conversion efficiency (PCEhave been continuously improved. Different technologies used for developing solar cells can be categorized either on the basis of materialused or techniques of technology development which is further termed as ‘first generation’ (e.g. crystalline silicon, ‘second generation’(thin films of Amorphous silicon, Copper indium gallium selenide, Cadmium telluride, ‘Third generation’ (Concentrated, Organic and Dyesensitize solar cell. These technologies give PCE up to 25% depending on the technology and the materials used. Nanotechnology enablesthe use of nanomaterial whose size is below 100 nm with extraordinary properties which has the capability to enhance the PCE to greaterextent. Various nanomaterials like Quantum Dots, Quantum well, carbon nanotubes, Nanowire and graphene have been used to makeefficient and economical solar cells, which not only provide high conversion efficiency economically but also are easy to produce. Today,by using nanotechnology, conversion efficiency up to 44.7 % has been achieved by Fraunhofer Institute at Germany. In this review article,we have reviewed the literature including various patents and publications, summarized the history of solar cell development, developmentof different technologies and rationale of their development highlighting the advantages and challenges involved in their development forcommercial purpose. We have also included the recent developments in solar cell research where different nanomaterials have beendesigned and used successfully to prove their superiority over conventional systems.

  18. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    Science.gov (United States)

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  19. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    Science.gov (United States)

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  20. Characterization of copper selenide thin film hole-injection layers deposited at room temperature for use with p-type organic semiconductors

    Science.gov (United States)

    Hiramatsu, Hidenori; Koizumi, Ikue; Kim, Ki-Beom; Yanagi, Hiroshi; Kamiya, Toshio; Hirano, Masahiro; Matsunami, Noriaki; Hosono, Hideo

    2008-12-01

    Copper selenide, CuxSe(x ˜2), was examined as a hole-injection layer for low-temperature organic devices. Crystalline CuxSe films grown at room temperature with atomically flat surfaces exhibited metallic conduction with a high electrical conductivity of 4.5×103 S/cm, a hole concentration of 1.4×1022 cm-3, and a mobility of 2.0 cm2/(V s). Analysis of the free carrier absorption using the Drude model estimated the effective mass of a hole as 1.0me. Photoemission spectroscopy measurements of the interfaces between CuxSe and organic hole transport layers, N ,N'-bis(naphthalen-1-yl)-N ,N'-bis(phenyl) benzidine (NPB) and copper phthalocyanine (CuPc), verified that the hole-injection barriers of these interfaces (0.4 eV for NPB and 0.3 eV for CuPc) are smaller than that of a conventional indium tin oxide (ITO) hole-injection electrode/NPB interface (0.6 eV) but are comparable to that of an ITO electrode/CuPc interface (0.3 eV). Hole-only devices using the CuxSe layer as a hole-injection anode exhibited very low threshold voltages (0.4-0.5 V) and nearly Ohmic characteristics. The NPB layer on the CuxSe layer was found to be highly doped at 1017-1019 cm-3, probably due to copper diffusion, while the CuPc layer is nearly intrinsic with a doping concentration lower than 1015 cm-3. These results indicated that a CuxSe film combined with CuPc is a promising candidate for a low-voltage hole-injection anode or a buffer layer in low-temperature devices such as organic light-emitting diodes and thin film transistors.

  1. Effect of Cu content and temperature on the properties of Cu2ZnSnSe4 solar cells

    Science.gov (United States)

    Sahayaraj, Sylvester; Brammertz, Guy; Buffière, Marie; Meuris, Marc; Vleugels, Jef; Poortmans, Jef

    2016-09-01

    The complexity involved in obtaining pure Kesterite Cu2ZnSnSe4 (CZTSe) thin film primarily arises due to its narrow region of stability, leading to the presence of unavoidable binary selenides of the constituent metals. This study offers an insight on the formation of Cu selenides when the amount of Cu is varied in the precursor from Cu poor to Cu rich. The amount of Cu selenides was found to decrease when the composition of CZTSe absorber approached Cu rich conditions but functional devices were not obtained. Detailed characterizations also showed that the Cu and Sn binary phases were present at the backside interface of CZTSe solar cells. However with an increase in the selenization temperature it was found that the amount of Cu selenides and other secondary phases could be drastically minimized or even eliminated leading to high efficiency devices.

  2. Effect of Cu content and temperature on the properties of Cu2ZnSnSe4 solar cells

    Directory of Open Access Journals (Sweden)

    Sahayaraj Sylvester

    2016-01-01

    Full Text Available The complexity involved in obtaining pure Kesterite Cu2ZnSnSe4 (CZTSe thin film primarily arises due to its narrow region of stability, leading to the presence of unavoidable binary selenides of the constituent metals. This study offers an insight on the formation of Cu selenides when the amount of Cu is varied in the precursor from Cu poor to Cu rich. The amount of Cu selenides was found to decrease when the composition of CZTSe absorber approached Cu rich conditions but functional devices were not obtained. Detailed characterizations also showed that the Cu and Sn binary phases were present at the backside interface of CZTSe solar cells. However with an increase in the selenization temperature it was found that the amount of Cu selenides and other secondary phases could be drastically minimized or even eliminated leading to high efficiency devices.

  3. Copper indium disulfide nanocrystals supported on carbonized chicken eggshell membranes as efficient counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Wang, Lidan; He, Jianxin; Zhou, Mengjuan; Zhao, Shuyuan; Wang, Qian; Ding, Bin

    2016-05-01

    A domestic waste, chicken eggshell membrane (ESM), is used as a raw material to fabricate carbonized ESM loaded with chalcopyrite CuInS2 nanocrystals (denoted CESM-CuInS2) by a simple liquid impregnation and carbonization method. The CESM-CuInS2 composite possesses a natural three-dimensional macroporous network structure in which numerous CuInS2 nanocrystals with a size of about 25 nm are inlaid in carbon submicron fibers that form a microporous network. The CESM-CuInS2 composite is used as the counter electrode in a dye-sensitized solar cell (DSSC) and its photoelectric performance is tested. The DSSC with a CESM-CuInS2 counter electrode exhibits a short-circuit current density of 12.48 mA cm-2, open-circuit voltage of 0.78 V and power conversion efficiency of 5.8%; better than the corresponding values for a DSSC with a CESM counter electrode, and comparable to that of a reference DSSC with a platinum counter electrode. The favorable photoelectric performance of the CESM-CuInS2 counter electrode is attributed to its hierarchical structure, which provides a large specific surface area and numerous catalytically active sites to facilitate the oxidation of the electrolyte. This new composite material has many advantages, such as low cost and simple preparation, compared with Pt and pure CuInS2 counter electrodes.

  4. Copper and nitrogen doping on TiO2 photoelectrodes and their functions in dye-sensitized solar cells

    Science.gov (United States)

    Park, Jun-Yong; Kim, Chan-Soo; Okuyama, Kikuo; Lee, Hye-Moon; Jang, Hee-Dong; Lee, Sung-Eun; Kim, Tae-Oh

    2016-02-01

    The influence of Cu doping on the function of dye-sensitized solar cells (DSSCs) dependent on Cu/N-doped TiO2 photoelectrodes was examined. Cu/N-doped TiO2 photoelectrodes with diverse Cu concentration were synthesized using the sol-gel process. Upon adequate addition of Cu, the nanoparticles exhibited small particle sizes, high surface area, and a significant red alteration of their absorption to the visible region in relation to Degussa P25 nanomaterials. Furthermore, the traces of Cu/N-doped TiO2 nanoparticles enhanced the charge transfer and reduced the charge recombination. The addition of sufficient Cu and N increased the surface area, elevating the dye adsorption degree, and decreasing the level of electron recombination. A DSSC fabricated with a 1 mM Cu/N-doped TiO2 nanoparticles accomplished 11.35% of the highest power conversion efficiency, with a short-circuit current of 22.5 mA/cm2. The energy conversion efficiency of this photoelectrode was approximately 37% greater than that of the control, Degussa P25. The increased energy efficiency can be resulted from the extension in surface area, which enabled larger dye charging amount, and the deduction in charge recombination, which accelerated the charge transfer.

  5. Bulk measurement of copper and sodium content in CuIn(0.7)Ga(0.3)Se(2) (CIGS) solar cells with nanosecond pulse length laser induced breakdown spectroscopy (LIBS)

    CERN Document Server

    Kowalczyk, Jeremy M D; DeAngelis, Alexander; Kaneshiro, Jess; Mallory, Stewart A; Chang, Yuancheng; Gaillard, Nicolas

    2013-01-01

    In this work, we show that laser induced breakdown spectroscopy (LIBS) with a nanosecond pulse laser can be used to measure the copper and sodium content of CuIn(0.7)Ga(0.3)Se(2) (CIGS) thin film solar cells on molybdenum. This method has four significant advantages over methods currently being employed: the method is inexpensive, measurements can be taken in times on the order of one second, without high vacuum, and at distances up to 5 meters or more. The final two points allow for in-line monitoring of device fabrication in laboratory or industrial environments. Specifically, we report a linear relationship between the copper and sodium spectral lines from LIBS and the atomic fraction of copper and sodium measured via secondary ion mass spectroscopy (SIMS), discuss the ablation process of this material with a nanosecond pulse laser compared to shorter pulse duration lasers, and examine the depth resolution of nanosecond pulse LIBS.

  6. Comprehensive Investigation of Silver Nanoparticle/Aluminum Electrodes for Copper Indium Sulfide/Polymer Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Arar, Mario; Pein, Andreas; Haas, Wernfried

    2012-01-01

    Electrode materials are primarily chosen based on their work function to suit the energy levels of the absorber materials. In this paper, we focus on the modification of aluminum cathodes with a thin silver interlayer (2 nm) in copper indium sulfide/poly[(2,7-silafluorene)-alt-(4,7-di-2-thienyl-2...... nanoparticles in an aluminum oxide matrix between the absorber layer and the aluminum cathode. In combination with complementary optical investigations, the origin of the improvement is ascribed to a facilitated charge extraction....

  7. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    Science.gov (United States)

    Rodriguez-Torres, Marcos R.; Velez, Christian; Zayas, Beatriz; Rivera, Osvaldo; Arslan, Zikri; Gonzalez-Vega, Maxine N.; Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo; Primera-Pedrozo, Oliva M.

    2015-06-01

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd2+]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to evaluate the

  8. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Torres, Marcos R. [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Velez, Christian; Zayas, Beatriz [Universidad Metropolitana, ChemTox Laboratory, School of Environmental Affairs (United States); Rivera, Osvaldo [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Arslan, Zikri [Jackson State University, Department of Chemistry (United States); Gonzalez-Vega, Maxine N. [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo [University of Puerto Rico, Molecular Science Research Center (United States); Primera-Pedrozo, Oliva M., E-mail: oprimera1@suagm.edu [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States)

    2015-06-15

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd{sup 2+}]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to

  9. Amorphous Indium Selenide Thin Films Prepared by RF Sputtering: Thickness-Induced Characteristics.

    Science.gov (United States)

    Han, Myoung Yoo; Park, Yong Seob; Kim, Nam-Hoon

    2016-05-01

    The influence of indium composition, controlled by changing the film thickness, on the optical and electrical properties of amorphous indium selenide thin films was studied for the application of these materials as Cd-free buffer layers in CI(G)S solar cells. Indium selenide thin films were prepared using RF magnetron sputtering method. The indium composition of the amorphous indium selenide thin films was varied from 94.56 to 49.72 at% by increasing the film thickness from 30 to 70 nm. With a decrease in film thickness, the optical transmittance increased from 87.63% to 96.03% and Eg decreased from 3.048 to 2.875 eV. Carrier concentration and resistivity showed excellent values of ≥1015 cm(-3) and ≤ 10(4) Ω x cm, respectively. The conductivity type of the amorphous indium selenide thin films could be controlled by changing the film-thickness-induced amount of In. These results indicate the possibility of tuning the properties of amorphous indium selenide thin films by changing their composition for use as an alternate buffer layer material in CI(G)S solar cells.

  10. One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells.

    Science.gov (United States)

    Harati, Mohammad; Jia, Jia; Giffard, Kévin; Pellarin, Kyle; Hewson, Carly; Love, David A; Lau, Woon Ming; Ding, Zhifeng

    2010-12-14

    Herein we report the one-pot electrodeposition of copper indium gallium diselenide, CuIn(1-x)Ga(x)Se(2) (CIGS), thin films as the p-type semiconductor in an ionic liquid medium consisting of choline chloride/urea eutectic mixture known as Reline. The thin films were characterized by scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman microspectroscopy, and UV-visible spectroscopy. Based on the results of the characterizations, the electrochemical bath recipe was optimized to obtain stoichiometric CIGS films with x between 0.2 and 0.4. The chemical activity and photoreactivity of the optimized CIGS films were found to be uniform using scanning electrochemical microscopy and scanning photoelectrochemical microscopy. Low-cost stoichiometric CIGS thin films in one-pot were successfully fabricated.

  11. Nanostructured Organic Solar Cells

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Rubahn, Horst-Günter; Madsen, Morten

    Recent forecasts for alternative energy generation predict emerging importance of supporting state of art photovoltaic solar cells with their organic equivalents. Despite their significantly lower efficiency, number of application niches are suitable for organic solar cells. This work reveals...... the principles of bulk heterojunction organic solar cells fabrication as well as summarises major differences in physics of their operation....

  12. PEROVSKITE SOLAR CELLS (REVIEW ARTICLE)

    OpenAIRE

    Benli, Deniz Ahmet

    2015-01-01

    A solar cell is a device that converts sunlight into electricity. There are different types of solar cells but this report mainly focuses on a type of new generation solar cell that has the name organo-metal halide perovskite, shortly perovskite solar cells. In this respect, the efficiency of power conversion is taken into account to replace the dominancy of traditional and second generation solar cell fields by perovskite solar cells. Perovskite solar cell is a type of solar cell including a...

  13. Layer-by-Layer Fabrication of Porphyrin Multilayer Films via Copper(I)-Catalyzed Azide-Alkyne Cycloaddition: Film Properties and Applications in Dye-Sensitized Solar Cells

    Science.gov (United States)

    Palomaki, Peter Karl Bunk

    Solar energy may be the only renewable source of energy available to the human race that could provide the energy we require while at the same time minimizing negative impacts on the planet and population. These characteristics may be instrumental in diminishing the potential for societal conflict. In order for photovoltaic devices to succeed on a global scale, research and development must lead to reduced costs and/or increased efficiency. Dye-Sensitized Solar Cells (DSSCs) are one class of nextgeneration photovoltaic technologies with the potential to realize these goals. Herein, I describe efforts towards developing a new light harvesting array of chromophores assembled on oxide substrates using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC or ‘click’ chemistry) that could prove useful in improving DSCC performance while maintaining low cost and simple fabrication. Specifically, molecular multilayers of porphyrin-based chromophores have been fabricated via sequential selflimiting CuAAC reactions to generate multilayered light harvesting films. Films of synthetic porphyrins, perylenes, and mixtures of the two are constructed in order to highlight the versatility of this molecular layer-by-layer (LbL) technique. Characterization in the form of electrochemical techniques, UV-Visible spectroscopy, infrared spectroscopy (IR), and water contact angle all indicate that the films are reacting as expected. Film thickness and morphology are investigated using X-ray reflectivity showing that film growth displays a high degree of linearity, while the roughness increases with thickness. Growth angles based on the porphyrin plane are estimated via a comparison of molecular models and experimentally determined thickness measurements. A more finite measurement of growth angle (and as a result the primary bonding mode) is determined by grazing angle IR spectroscopy. Blocking layer studies suggest that the films could be useful as a self-passivating layer in DSSCs to

  14. Local Structure Analysis of Materials for Solar Cell Absorber Layer

    OpenAIRE

    Jewell, Leila Elizabeth

    2016-01-01

    This dissertation examines solar cell absorber materials that have the potential to replace silicon in solar cells, including several copper-based sulfides and perovskites. Earth-abundant absorbers such as these become even more cost-effective when used in a nanostructured solar cell. Atomic layer deposition (ALD) and chemical vapor deposition (CVD) deposit highly conformal films and hence are important tools for developing extremely thin absorber solar cells with scalability. Thus, the prima...

  15. Interfacial Engineering of Perovskite Solar Cells by Employing a Hydrophobic Copper Phthalocyanine Derivative as Hole-Transporting Material with Improved Performance and Stability.

    Science.gov (United States)

    Jiang, Xiaoqing; Yu, Ze; Lai, Jianbo; Zhang, Yuchen; Hu, Maowei; Lei, Ning; Wang, Dongping; Yang, Xichuan; Sun, Licheng

    2017-04-22

    In high-performance perovskite solar cells (PSCs), hole-transporting materials (HTMs) play an important role in extracting and transporting the photo-generated holes from the perovskite absorber to the cathode, thus reducing unwanted recombination losses and enhancing the photovoltaic performance. Herein, solution-processable tetra-4-(bis(4-tert-butylphenyl)amino)phenoxy-substituted copper phthalocyanine (CuPc-OTPAtBu) was synthesized and explored as a HTM in PSCs. The optical, electrochemical, and thermal properties were fully characterized for this organic metal complex. The photovoltaic performance of PSCs employing this CuPc derivative as a HTM was further investigated, in combination with a mixed-ion perovskite as a light absorber and a low-cost vacuum-free carbon as cathode. The optimized devices [doped with 6 % (w/w) tetrafluoro-tetracyano-quinodimethane (F4TCNQ)] showed a decent power conversion efficiency of 15.0 %, with an open-circuit voltage of 1.01 V, a short-circuit current density of 21.9 mA cm(-2) , and a fill factor of 0.68. Notably, the PSC devices studied also exhibited excellent long-term durability under ambient condition for 720 h, mainly owing to the introduction of the hydrophobic HTM interlayer, which prevents moisture penetration into the perovskite film. The present work emphasizes that solution-processable CuPc holds a great promise as a class of alternative HTMs that can be further explored for efficient and stable PSCs in the future. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Laser scribing of CIGS thin-film solar cell on flexible substrate

    Science.gov (United States)

    Hwang, David J.; Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Kim, Gayeon; Kim, Won Mok; Jeong, Jeung-hyun

    2017-01-01

    Laser scribing technology has been actively developed for thin-film solar cell fabrication taking a number of advantages over mechanical scribing. Its non-contact processing nature enables reliable and precise scribing processes. In particular, it is almost unavoidable to use laser scribing method for fabricating high-quality flexible thin-film solar cells. Despite the fundamental merits that laser scribing can offer, still a number of challenges should be addressed in order to replace the mechanical counterpart for wider range of thin-film solar cells. In this study, we explore optimal laser scribing conditions for copper-indium-gallium-selenide (CIGS) thin-film solar cells, especially based on flexible polyimide (PI) substrate in close comparison with that based on soda-lime glass substrate. Picosecond-pulsed laser of repetition rate up to 100 kHz and wavelength of 532 nm ( 12 ps temporal pulse width) was mainly tested, and scribing speed in the range of 0.01-1 m/s was examined with a few different laser focal spot diameters (27, 34, and 62 μm). Main focus of this study is in understanding distinct laser scribing mechanisms for flexible substrate configurations, thereby finding out intrinsic optimal processing parameters. One of the most critical requirements is to prevent possible damage or deformation of underlying thin-film layer(s) or PI substrate. Effect of microstructures of thin films (in particular, Mo and CIGS) on the scribing behavior was also examined. In order to further improve the performance of the scribing process and reduce the laser power budget as well, mild gas injection scheme was tested.

  17. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    OpenAIRE

    Rodriguez-Torres, Marcos R.; Velez, Christian; Zayas, Beatriz; Rivera, Osvaldo; Arslan, Zikri; Gonzalez-Vega, Maxine N.; Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo; Primera-Pedrozo, Oliva M.

    2015-01-01

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, ...

  18. Determination of the some electronic parameters of nanostructure copper selenide and Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure

    Energy Technology Data Exchange (ETDEWEB)

    Güzeldir, B.; Sağlam, M. [Department of Physics, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey); Ateş, A. [Department of Material Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, Ankara (Turkey); Türüt, A. [Department of Physics Engineering, Faculty of Sciences, Istanbul Medeniyet University, 34000 Istanbul (Turkey)

    2015-04-05

    Highlights: • Introducing to a new degree of freedom in the control of effective barrier height by using Cu. • We want to experimentally observe whether or not the diode continues the ideality in the temperature range of 60–400 K. • We have modified the Richardson’s plot using the temperature dependent values of effective area of the patches. - Abstract: The nanostructure copper selenide thin film has been grown on n-type gallium arsenide substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The film has been characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) measurements. X-ray diffraction analysis of the film confirms a polycrystalline with preferred orientation. The AFM and SEM micrographs of the film reveal smooth and uniform surface pattern without any dark pits, pinholes and microcracks. The Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure has been thermally formed in evaporating system after the SILAR process. The electrical analysis of Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure has been investigated by means of current–voltage (I–V) measurements in the temperature range of 60–400 K in dark conditions. The values of barrier height (BH) and ideality factor (n) ranged from 0.21 eV and 4.97 (60 K) to 0.83 eV and 1.14 (400 K), respectively. In the calculations, the electrical parameters of the experimental forward bias I–V characteristics of the Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In with the homogeneity in the 60–400 K range have been explained by means of the thermionic emission (TE), considering Gaussian distribution (GD) of BH with linear bias dependence.

  19. Studies of copper transport in mammalian cells using copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    The trace element copper poses a major problem for all organisms. It is essential as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Using the copper radioisotopes {sup 64}Cu (t1/2 = 12.8 hr) and {sup 67}Cu (t1/2 = 61 hr) we have developed a number of systems for studying copper transport in mammalian cells. These include investigation of copper uptake, copper efflux and ligand blot assays for Cu-binding proteins. Our studies have focused on Menkes disease which is an inherited and usually lethal copper deficiency disorder in humans. We have demonstrated that the Menkes protein is directly involved as a copper efflux pump in mammalian cells. Using cells overexpressing the Menkes protein we have provided the first biochemical evidence that this functions as a Cu translocating (across the membrane) P-type ATPase (Voskoboinik et al., FEBS Letters, in press). These studies were carried out using purified plasma membrane vesicles. We are now carrying out structure- function studies on this protein using targeted mutations and assaying using the radiocopper vesicle assay. Recently we have commenced studies on the role of amyloid precursor protein (APP) in copper transport and relationship of this to Alzheimers disease

  20. The use of the adding-doubling method for the optical optimization of planar luminescent down shifting layers for solar cells.

    Science.gov (United States)

    Leyre, Sven; Cappelle, Jan; Durinck, Guy; Abass, Aimi; Hofkens, Johan; Deconinck, Geert; Hanselaer, Peter

    2014-05-05

    To enhance the efficiency of solar cells, a luminescent down shifting layer can be applied in order to adapt the solar spectrum to the spectral internal quantum efficiency of the semiconductor. Optimization of such luminescent down shifting layers benefits from quick and direct evaluation methods. In this paper, the potential of the adding-doubling method is investigated to simulate the optical behavior of an encapsulated solar cell including a planar luminescent down shifting layer. The results of the adding-doubling method are compared with traditional Monte Carlo ray tracing simulations. The average relative deviation is found to be less than 1.5% for the absorptance in the active layer and the reflectance from the encapsulated cell, while the computation time can be decreased with a factor 52. Furthermore, the adding-doubling method is adopted to investigate the suitability of the SrB4O7:5%Sm2 + ,5%Eu2 + phosphor as a luminescent down shifting material in combination with a Copper Indium Gallium Selenide solar cell. A maximum increase of 9.0% in the short-circuit current can be expected if precautions are taken to reduce the scattering by matching the refractive index of host material to the phosphor particles. To be useful as luminescent down shifting material, the minimal value of the quantum yield of the phosphor is determined to be 0.64.

  1. High efficiency thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Britt, J.; Chen, G.; Ferekides, C.; Schultz, N.; Wang, C.; Wu, C. Q.

    1992-12-01

    Cadmium sulfide (CdS), grown from an aqueous solution, and zinc oxide (ZnO), cadmium zinc sulfide (Cd1-xZnxS), and zinc selenide (ZnSe), deposited by metalorganic chemical vapor deposition (MOCVD), have been used as the window for thin film cadmium telluride (CdTe) solar cells. Thin film solar cells were prepared by the successive deposition of the window and p-CdTe (by MOCVD and close-spaced sublimation, CSS) on SnO2:F/glass substrates. CdS/CdTe(CSS) solar cells show considerably better characteristics than CdS/CdTe(MOCVD) solar cells because of the better microstructure of CSS CdTe films. Total area conversion efficiency of 14.6%, verified by the National Renewable Energy Laboratory, has been achieved for solar cells of about 1 cm2 area. Solar cell prepared by using ZnO, ZnSe, or Cd1-xZnxS as window have significantly lower photovoltage than CdS/CdTe solar cells.

  2. Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells

    Science.gov (United States)

    Jehl, Z.; Bouttemy, M.; Lincot, D.; Guillemoles, J. F.; Gerard, I.; Etcheberry, A.; Voorwinden, G.; Powalla, M.; Naghavi, N.

    2012-06-01

    The influence of Cu(In,Ga)Se2 (CIGSe) surface roughness on the photovoltaic parameters of state of the art devices is reported, highlighting the importance of the roughness of the as-grown CIGSe absorbers on solar cell efficiencies. As-grown CIGSe surface is progressively smoothed using a chemical etch, and characterized by SEM, AFM, XPS, μ-Raman spectroscopy, x-ray diffraction (XRD), and reflectivity. The decrease of roughness has no marked influence on crystal structure and surface composition of the absorber. The main effect is that the total reflectivity of the CIGSe surface increases with decreasing roughness. The samples are processed into solar cells and characterized by current-voltage measurements. While the open circuit voltage (Voc) and fill factor remain constant, the short circuit current (Jsc) decreases markedly with decreasing roughness, resulting in a reduction of the solar cell efficiency from 14% down to 11%, which exceeds the expected decrease from increased reflectivity. Quantum efficiency and reflectivity measurements on complete cells are performed to analyze those effects. The influence of surface roughness on the theorical effective space charge region and diffusion length is based on a simple theoretical model. This paper discusses the comparison of CIGSe solar cells with n-i-p structures.

  3. Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jehl, Z.; Lincot, D.; Guillemoles, J. F.; Naghavi, N. [Institut de Recherche et Developpement sur l' Energie Photovoltaieque (IRDEP - UMR 7174 EDF/CNRS/CHIMIE-PARISTECH), 6 quai Watier, 78401 Chatou Cedex (France); Bouttemy, M.; Gerard, I.; Etcheberry, A. [ILV - UMR 8180 CNRS, Universite de Versailles St Quentin, 45 Av. des Etats Unis, 78035 Versailles CEDEX (France); Voorwinden, G. [Wuerth Elektronik Research GmbH, Industriestr. 4, 70565 Stuttgart (Germany); Powalla, M. [Zentrum fuer Sonnenenergie-und Wasserstoff-Forschung (ZSW), Industriestr. 6, 70565 Stuttgart (Germany)

    2012-06-01

    The influence of Cu(In,Ga)Se{sub 2} (CIGSe) surface roughness on the photovoltaic parameters of state of the art devices is reported, highlighting the importance of the roughness of the as-grown CIGSe absorbers on solar cell efficiencies. As-grown CIGSe surface is progressively smoothed using a chemical etch, and characterized by SEM, AFM, XPS, {mu}-Raman spectroscopy, x-ray diffraction (XRD), and reflectivity. The decrease of roughness has no marked influence on crystal structure and surface composition of the absorber. The main effect is that the total reflectivity of the CIGSe surface increases with decreasing roughness. The samples are processed into solar cells and characterized by current-voltage measurements. While the open circuit voltage (V{sub oc}) and fill factor remain constant, the short circuit current (J{sub sc}) decreases markedly with decreasing roughness, resulting in a reduction of the solar cell efficiency from 14% down to 11%, which exceeds the expected decrease from increased reflectivity. Quantum efficiency and reflectivity measurements on complete cells are performed to analyze those effects. The influence of surface roughness on the theorical effective space charge region and diffusion length is based on a simple theoretical model. This paper discusses the comparison of CIGSe solar cells with n-i-p structures.

  4. Rectenna solar cells

    CERN Document Server

    Moddel, Garret

    2013-01-01

    Rectenna Solar Cells discusses antenna-coupled diode solar cells, an emerging technology that has the potential to provide ultra-high efficiency, low-cost solar energy conversion. This book will provide an overview of solar rectennas, and provide thorough descriptions of the two main components: the diode, and the optical antenna. The editors discuss the science, design, modeling, and manufacturing of the antennas coupled with the diodes. The book will provide concepts to understanding the challenges, fabrication technologies, and materials required to develop rectenna structures. Written by e

  5. The copper metallome in prokaryotic cells.

    Science.gov (United States)

    Rensing, Christopher; McDevitt, Sylvia Franke

    2013-01-01

    As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.

  6. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...

  7. Quantum dot solar cells

    CERN Document Server

    Wu, Jiang

    2013-01-01

    The third generation of solar cells includes those based on semiconductor quantum dots. This sophisticated technology applies nanotechnology and quantum mechanics theory to enhance the performance of ordinary solar cells. Although a practical application of quantum dot solar cells has yet to be achieved, a large number of theoretical calculations and experimental studies have confirmed the potential for meeting the requirement for ultra-high conversion efficiency. In this book, high-profile scientists have contributed tutorial chapters that outline the methods used in and the results of variou

  8. Dye sensitized solar cells.

    Science.gov (United States)

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  9. Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Di Wei

    2010-03-01

    Full Text Available Dye sensitized solar cell (DSSC is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  10. Solar cell radiation handbook

    Science.gov (United States)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  11. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  12. Photovoltaic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  13. Photovoltaic solar cell

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  14. Numerical Analysis of In2S3 Layer Thickness, Band Gap and Doping Density for Effective Performance of a CIGS Solar Cell Using SCAPS

    Science.gov (United States)

    Khoshsirat, Nima; Md Yunus, Nurul Amziah

    2016-11-01

    The effect of indium sulfide buffer layer's geometrical and electro-optical properties on the Copper-Indium-Gallium-diSelenide solar cell performance using numerical simulation is investigated. The numerical simulation software used is a solar cell capacitance simulator in (SCAPS). The innermost impacts of buffer layer thickness, band gap, and doping density on the cells output parameters such as open circuit voltage, short circuit current density, fill factor, and the efficiency were extensively simulated. The results show that the cell efficiency, which was innovatively illustrated as a two-dimensional contour plot function, depends on the buffer layer electron affinity and doping density by keeping all the other parameters at a steady state. The analysis, which was made from this numerical simulation, has revealed that the optimum electron affinity is to be 4.25 ± 0.2 eV and donor density of the buffer layer is over 1× 10 ^{17} cm^{-3}. It is also shown that the cell with an optimum thin buffer layer has higher performance and efficiency due to the lower optical absorption of the buffer layer.

  15. Nanocrystal Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ilan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  16. Pulse electro-deposition of copper on molybdenum for Cu(In,Ga)Se2 and Cu2ZnSnSe4 solar cell applications

    Science.gov (United States)

    Bi, Jinlian; Yao, Liyong; Ao, Jianping; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Zhang, Yi

    2016-09-01

    The issues of rough surface morphology and the incorporated additives of the electro-deposited Cu layers, which exists in electrodeposition-based processes, is one of the major obstacles to improve the efficiency of Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) solar cells. In this study, the pulse current electro-deposition method is employed to deposit smooth Cu film on Mo substrate in CuSO4 solution without any additives. Grain size of the deposited Cu film is decreased by high cathode polarization successfully. And the concentration polarization, which results from high pulse current density, is controlled successfully by adjusting the pulse frequency. Flat Cu film with smooth surface and compact structure is deposited as pulse current density @ 62.5 mA cm-2, pulse frequency @100,000 Hz, and duty cycle @ 25%. CIGSe and CZTSe absorber films with flat surface and uniform elemental distribution are prepared by selenizing the stacking metal layers electro-deposited by pulse current method. Finally, the CIGSe and CZTSe solar cells with conversion efficiency of 10.39% and 7.83% respectively are fabricated based on the smooth Cu films, which are better than the solar cells fabricated by the rough Cu film deposited by direct current electro-deposition method.

  17. Photoelectrochemical Solar Cells.

    Science.gov (United States)

    McDevitt, John T.

    1984-01-01

    This introduction to photoelectrochemical (PEC) cells reviews topics pertaining to solar energy conversion and demonstrates the ease with which a working PEC cell can be prepared with n-type silicon as the photoanode and a platinum counter electrode (both immersed in ethanolic ferrocene/ferricenium solutions). Experiments using the cell are…

  18. Welded solar cell interconnection

    Science.gov (United States)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  19. Transparent solar cell module

    Science.gov (United States)

    Antonides, G. J.; Dillard, P. A.; Fritz, W. M.; Lott, D. P.

    1979-01-01

    Modified solar cell module uses high transmission glass and adhesives, and heat dissipation to boost power per unit area by 25% (9.84% efficiency based on cell area at 60 C and 100 mW/sq cm flux). Design is suited for automatic production and is potentially more cost effective.

  20. Copper Sulfide Catalyzed Porous Fluorine-Doped Tin Oxide Counter Electrode for Quantum Dot-Sensitized Solar Cells with High Fill Factor

    Directory of Open Access Journals (Sweden)

    Satoshi Koyasu

    2017-01-01

    Full Text Available The performance of quantum dot-sensitized solar cell (QDSSC is mainly limited by chemical reactions at the interface of the counter electrode. Generally, the fill factor (FF of QDSSCs is very low because of large charge transfer resistance at the interface between the counter electrode and electrolyte solution containing redox couples. In the present research, we demonstrate the improvement of the resistance by optimization of surface area and amount of catalyst of the counter electrode. A facile chemical synthesis was used to fabricate a composite counter electrode consisting of fluorine-doped tin oxide (FTO powder and CuS nanoparticles. The introduction of a sputtered gold layer at the interface of the porous-FTO layer and underlying glass substrate also markedly reduced the resistance of the counter electrode. As a result, we could reduce the charge transfer resistance and the series resistance, which were 2.5 [Ω] and 6.0 [Ω], respectively. This solar cell device, which was fabricated with the presently designed porous-FTO counter electrode as the cathode and a PbS-modified electrode as the photoanode, exhibited a FF of 58%, which is the highest among PbS-based QDSSCs reported to date.

  1. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  2. Optoelectronics of solar cells

    CERN Document Server

    Smestad, Greg P

    2002-01-01

    With concerns about worldwide environmental security, global warming, and climate change due to emissions of carbon dioxide from the burning of fossil fuels, it is desirable to have a wide range of energy technologies in a nation's portfolio. Photovoltaics, or solar cells, are a viable option as a nonpolluting renewable energy source. This text is designed to be an overview of photovoltaic solar cells for those in the fields of optics and optical engineering, as well as those who are interested in energy policy, economics, and the requirements for efficient photo-to-electric energy conversion.

  3. Dye solar cell research

    CSIR Research Space (South Africa)

    Cummings, F

    2009-11-01

    Full Text Available stream_source_info Cummings_2009.pdf.txt stream_content_type text/plain stream_size 3362 Content-Encoding UTF-8 stream_name Cummings_2009.pdf.txt Content-Type text/plain; charset=UTF-8 DYE SOLAR CELL RESEARCH Franscious... Cummings Energy and Processes Materials Science and Manufacturing Council for Scientific and Industrial Research P.O. Box 395 Pretoria 0001, South Africa 27 November 2009 CONTENT head2rightBackground head2rightCSIR Dye Solar Cell Research head2...

  4. Black Silicon Solar Cells with Black Ribbons

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average reflecta......We present the combination of mask-less reactive ion etch (RIE) texturing and blackened interconnecting ribbons as a method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon made by mask-less reactive ion etching has total, average...... reflectance below 0.5% across a 156x156 mm2 silicon (Si) wafer. Black interconnecting ribbons were realized by oxidizing copper resulting in reflectance below 3% in the visible wavelength range. Screen-printed Si solar cells were realized on 156x156 mm2 black Si substrates with resulting efficiencies...... in the range 15.7-16.3%. The KOH-textured reference cell had an efficiency of 17.9%. The combination of black Si and black interconnecting ribbons may result in aesthetic, all-black panels based on conventional, front-contacted silicon solar cells....

  5. Solar cells: state of the art and trends; Solarzellen: Stand der Technik und Trends

    Energy Technology Data Exchange (ETDEWEB)

    Wettling, W. [Fraunhofer-Institut fuer Solare Energiesysteme, Freiburg (Germany)

    1997-12-31

    The present article gives an overview of the state of the art of solar cell design. In this connection it deals with the following technologies: solar cells of crystalline silicon (serigraphic solar cells of Cs silicon and mc silicon, high-efficiency silicon solar cells), thin film solar cells (solar cells of amorphous silicon; solar cells of gallium arsenide, solar cells of copper indium (gallium) diselenide, solar cells of cadmium telluride), crystalline silicon film solar cells, and nanocrystalline dye-sensitised solar cells. (HW) [Deutsch] Der vorliegende Beitrag gibt einen Ueberblick ueber den Stand der Technik bei Solarzellen. In diesem Zusammenhang wird auf folgende Technologien eingegangen: Solarzellen aus kristallinem Silizium (Siebdruck-Solarzellen aus Cs-Silicium und mc-Silicium, High-efficiency-Silicium-Solarzellen), Duennschicht-Solarzellen (Solarzellen aus amorphem Silicium, Solarzellen aus Galliumarsenid, Solarzellen aus Kupferindium(Gallium)diselenid, Solarzellen aus Cadmiumtellurid), kristalline Silicium-Film-Solarzellen, Nanokristalline farbstoffsensibilisierte Solarzellen. (HW)

  6. Harnessing Sun's Energy with Quantum Dots Based Next Generation Solar Cell.

    Science.gov (United States)

    Halim, Mohammad A

    2012-12-27

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun's broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  7. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell

    Science.gov (United States)

    Halim, Mohammad A.

    2012-01-01

    Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal) and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%. PMID:28348320

  8. Harnessing Sun’s Energy with Quantum Dots Based Next Generation Solar Cell

    Directory of Open Access Journals (Sweden)

    Mohammad A. Halim

    2012-12-01

    Full Text Available Our energy consumption relies heavily on the three components of fossil fuels (oil, natural gas and coal and nearly 83% of our current energy is consumed from those sources. The use of fossil fuels, however, has been viewed as a major environmental threat because of their substantial contribution to greenhouse gases which are responsible for increasing the global average temperature. Last four decades, scientists have been searching for alternative sources of energy which need to be environmentally clean, efficient, cost-effective, renewable, and sustainable. One of the promising sustainable sources of energy can be achieved by harnessing sun energy through silicon wafer, organic polymer, inorganic dye, and quantum dots based solar cells. Among them, quantum dots have an exceptional property in that they can excite multiple electrons using only one photon. These dots can easily be synthesized, processed in solution, and incorporated into solar cell application. Interestingly, the quantum dots solar cells can exceed the Shockley-Queisser limit; however, it is a great challenge for other solar cell materials to exceed the limit. Theoretically, the quantum dots solar cell can boost the power conversion efficiency up to 66% and even higher to 80%. Moreover, in changing the size of the quantum dots one can utilize the Sun’s broad spectrum of visible and infrared ranges. This review briefly overviews the present performance of different materials-based solar cells including silicon wafer, dye-sensitized, and organic solar cells. In addition, recent advances of the quantum dots based solar cells which utilize cadmium sulfide/selenide, lead sulfide/selenide, and new carbon dots as light harvesting materials has been reviewed. A future outlook is sketched as to how one could improve the efficiency up to 10% from the current highest efficiency of 6.6%.

  9. NASA Facts, Solar Cells.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The design and function of solar cells as a source of electrical power for unmanned space vehicles is described in this pamphlet written for high school physical science students. The pamphlet is one of the NASA Facts Science Series (each of which consists of four pages) and is designed to fit in the standard size three-ring notebook. Review…

  10. Nanoimprinted polymer solar cell.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Aryal, Mukti; Zakhidov, Anvar; Hu, Walter

    2012-04-24

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. A vertically bicontinuous and interdigitized heterojunction between donor and acceptor has been regarded as one of the ideal structures to enable both efficient charge separation and transport. Synergistic control of polymer orientation in the nanostructured heterojunction is also critical to improve the performance of polymer solar cells. Nanoimprint lithography has emerged as a new approach to simultaneously control both the heterojunction morphology and polymer chains in organic photovoltaics. Currently, in the area of nanoimprinted polymer solar cells, much progress has been achieved in the fabrication of nanostructured morphology, control of molecular orientation/crystallinity, deposition of acceptor materials, patterned electrodes, understanding of structure-property correlations, and device performance. This review article summarizes the recent studies on nanoimprinted polymer solar cells and discusses the outstanding challenges and opportunities for future work.

  11. Thin, Lightweight Solar Cell

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Weinberg, Irving

    1991-01-01

    Improved design for thin, lightweight solar photovoltaic cells with front contacts reduces degradation of electrical output under exposure to energetic charged particles (protons and electrons). Increases ability of cells to maintain structural integrity under exposure to ultraviolet radiation by eliminating ultraviolet-degradable adhesives used to retain cover glasses. Interdigitated front contacts and front junctions formed on semiconductor substrate. Mating contacts formed on back surface of cover glass. Cover glass and substrate electrostatically bonded together.

  12. A review on solar cells from Si-single crystals to porous materials and quantum dots

    Directory of Open Access Journals (Sweden)

    Waheed A. Badawy

    2015-03-01

    Full Text Available Solar energy conversion to electricity through photovoltaics or to useful fuel through photoelectrochemical cells was still a main task for research groups and developments sectors. In this article we are reviewing the development of the different generations of solar cells. The fabrication of solar cells has passed through a large number of improvement steps considering the technological and economic aspects. The first generation solar cells were based on Si wafers, mainly single crystals. Permanent researches on cost reduction and improved solar cell efficiency have led to the marketing of solar modules having 12–16% solar conversion efficiency. Application of polycrystalline Si and other forms of Si have reduced the cost but on the expense of the solar conversion efficiency. The second generation solar cells were based on thin film technology. Thin films of amorphous Si, CIS (copper–indium–selenide and t-Si were employed. Solar conversion efficiencies of about 12% have been achieved with a remarkable cost reduction. The third generation solar cells are based on nano-crystals and nano-porous materials. An advanced photovoltaic cell, originally developed for satellites with solar conversion efficiency of 37.3%, based on concentration of the solar spectrum up to 400 suns was developed. It is based on extremely thin concentration cells. New sensitizer or semiconductor systems are necessary to broaden the photo-response in solar spectrum. Hybrids of solar and conventional devices may provide an interim benefit in seeking economically valuable devices. New quantum dot solar cells based on CdSe–TiO2 architecture have been developed.

  13. Degradation of CIGS solar cells

    NARCIS (Netherlands)

    Theelen, M.J.

    2015-01-01

    Thin film CIGS solar cells and individual layers within these solar cells have been tested in order to assess their long term stability. Alongside with the execution of standard tests, in which elevated temperatures and humidity levels are used, the solar cells have also been exposed to a combinatio

  14. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  15. Black silicon solar cells with black bus-bar strings

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Tang, Peter Torben; Mizushima, Io

    2016-01-01

    We present the combination of black silicon texturing and blackened bus-bar strings as a potential method for obtaining all-black solar panels, while using conventional, front-contacted solar cells. Black silicon was realized by maskless reactive ion etching resulting in total, average reflectance...... below 0.5% across a 156x156 mm2 silicon wafer. Four different methods to obtain blackened bus-bar strings were compared with respect to reflectance, and two of these methods (i.e., oxidized copper and etched solder) were used to fabricate functional allblack solar 9-cell panels. The black bus-bars (e.......g., by oxidized copper) have a reflectance below 3% in the entire visible wavelength range. The combination of black silicon cells and blackened bus-bars results in aesthetic, all-black panels based on conventional, front-contacted solar cells without compromising efficiency....

  16. Steps Towards Industrialization of Cu-III-VI2Thin-Film Solar Cells:Linking Materials/Device Designs to Process Design For Non-stoichiometric Photovoltaic Materials.

    Science.gov (United States)

    Hwang, Huey-Liang; Chang, Hsueh-Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae-Heng

    2016-10-01

    The concept of in-line sputtering and selenization become industrial standard for Cu-III-VI2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto-electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non-stoichiometric CuMSe2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full-function analytical solar cell simulator. The future prospects regarding the development of copper-indium-gallium-selenide thin film solar cells have also been discussed.

  17. Aluminium or copper substrate panel for selective absorption of solar energy

    Science.gov (United States)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  18. EDITORIAL: Nanostructured solar cells Nanostructured solar cells

    Science.gov (United States)

    Greenham, Neil C.; Grätzel, Michael

    2008-10-01

    Conversion into electrical power of even a small fraction of the solar radiation incident on the Earth's surface has the potential to satisfy the world's energy demands without generating CO2 emissions. Current photovoltaic technology is not yet fulfilling this promise, largely due to the high cost of the electricity produced. Although the challenges of storage and distribution should not be underestimated, a major bottleneck lies in the photovoltaic devices themselves. Improving efficiency is part of the solution, but diminishing returns in that area mean that reducing the manufacturing cost is absolutely vital, whilst still retaining good efficiencies and device lifetimes. Solution-processible materials, e.g. organic molecules, conjugated polymers and semiconductor nanoparticles, offer new routes to the low-cost production of solar cells. The challenge here is that absorbing light in an organic material produces a coulombically bound exciton that requires dissociation at a donor-acceptor heterojunction. A thickness of at least 100 nm is required to absorb the incident light, but excitons only diffuse a few nanometres before decaying. The problem is therefore intrinsically at the nano-scale: we need composite devices with a large area of internal donor-acceptor interface, but where each carrier has a pathway to the respective electrode. Dye-sensitized and bulk heterojunction cells have nanostructures which approach this challenge in different ways, and leading research in this area is described in many of the articles in this special issue. This issue is not restricted to organic or dye-sensitized photovoltaics, since nanotechnology can also play an important role in devices based on more conventional inorganic materials. In these materials, the electronic properties can be controlled, tuned and in some cases completely changed by nanoscale confinement. Also, the techniques of nanoscience are the natural ones for investigating the localized states, particularly at

  19. Quantum Dot Solar Cells

    Science.gov (United States)

    Raffaelle, Ryne P.; Castro, Stephanie L.; Hepp, Aloysius; Bailey, Sheila G.

    2002-01-01

    We have been investigating the synthesis of quantum dots of CdSe, CuInS2, and CuInSe2 for use in an intermediate bandgap solar cell. We have prepared a variety of quantum dots using the typical organometallic synthesis routes pioneered by Bawendi, et. al., in the early 1990's. However, unlike previous work in this area we have also utilized single-source precursor molecules in the synthesis process. We will present XRD, TEM, SEM and EDS characterization of our initial attempts at fabricating these quantum dots. Investigation of the size distributions of these nanoparticles via laser light scattering and scanning electron microscopy will be presented. Theoretical estimates on appropriate quantum dot composition, size, and inter-dot spacing along with potential scenarios for solar cell fabrication will be discussed.

  20. Enhanced photovoltaic performance of dye-sensitized solar cells by the strategy of introducing copper(II) silicotungstate into photoanode and counter electrode

    Science.gov (United States)

    Jiang, Yanxia; Yang, Yulin; Qiang, Liangsheng; Ye, Tengling; Li, Liang; Su, Ting; Fan, Ruiqing

    2016-09-01

    The device of polyoxometalate (POM) modified photoelectrodes is designed and successfully constructed. K6SiW11O39Cu(H2O)·xH2O (SiW11Cu) has been synthesized and explored as an efficient photoanode and counter electrode material to develop dye-sensitized solar cells (DSSCs) with enhanced performance. The SiW11Cu modified TiO2 (SiW11Cu/TiO2) powders is mixed with commercial P25 in a ratio of 1:9 as a photoanode. The modified TiO2 is used as an efficient material by improving the electronic injection ability and reducing the pohotogenerated charge recombination. The counter electrode is consisted of one layer SiW11Cu and two layers conventional Pt nanoparticles, denoted as (Cu/Pt). The DSSC based on SiW11Cu modified photoelectrodes has an improved power conversion efficiency of 7.62%, which is 16% higher than that of traditional DSSC based on P25-Pt. Under standard AM 1.5G, Jsc reaches 17.91 mA cm-2, which results in a much better power conversion efficiency. This can be attributed to the good catalytic activity of the new counter electrode. This result is analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), Tafel-polarization curves, the incident photon to current conversion efficiency (IPCE) and UV-vis spectra techniques.

  1. Silicon heterojunction solar cells

    CERN Document Server

    Fahrner, W R; Neitzert, H C

    2006-01-01

    The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made

  2. Space solar cells - tradeoff analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M.R. [ISRO Satellite Centre, Bangalore (India). Power Systems Group

    2003-05-15

    This paper summarizes the study that had the objective to tradeoff space solar cells and solar array designs to determine the best choice of solar cell and array technology that would be more beneficial in terms of mass, area and cost for different types of space missions. Space solar cells, which are commercially now available in the market and to be available in the near future, were considered for this trade study. Four solar array designs: rigid, flexible, thin film flexible and concentrator solar arrays were considered for assessment. Performance of the solar cells along with solar array designs were studied for two types of space missions:geo synchronous orbit (GEO) and low earth orbit (LEO) spacecraft. The Solar array designs assumed were to provide 15 kW power for 15 years mission life in GEO and 5 kW power for 5 years mission life in LEO altitudes. To perform tradeoff analysis a spread sheet model was developed that calculates the size, mass and estimates the cost of solar arrays based on different solar cell and array technologies for given set of mission requirements. Comparative performance metrics (W/kg, W/m{sup 2}, kg/m{sup 2}, and $/W) were calculated for all solar arrays studied and compared, at the solar array subsystem level and also at the spacecraft system level. The trade analysis results show that high-efficiency multijunction solar cells bring lot of cost advantages for both types of missions. The trade study also shows that thin film solar cells with moderate efficiency with ultra lightweight flexible array design may become competitive with well-established single crystalline solar cell technologies in the future. (author)

  3. Space solar cells. Tradeoff analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, M. Raja [Power Systems Group, Solar Panels Division, ISRO Satellite Centre, Bangalore 560017 (India)

    2003-05-15

    This paper summarizes the study that had the objective to tradeoff space solar cells and solar array designs to determine the best choice of solar cell and array technology that would be more beneficial in terms of mass, area and cost for different types of space missions. Space solar cells, which are commercially now available in the market and to be available in the near future, were considered for this trade study. Four solar array designs: rigid, flexible, thin film flexible and concentrator solar arrays were considered for assessment. Performance of the solar cells along with solar array designs were studied for two types of space missions: geo synchronous orbit (GEO) and low earth orbit (LEO) spacecraft. The Solar array designs assumed were to provide 15kW power for 15 years mission life in GEO and 5kW power for 5 years mission life in LEO altitudes. To perform tradeoff analysis a spread sheet model was developed that calculates the size, mass and estimates the cost of solar arrays based on different solar cell and array technologies for given set of mission requirements. Comparative performance metrics (W/kg, W/m{sup 2}, kg/m{sup 2}, and $/W) were calculated for all solar arrays studied and compared, at the solar array subsystem level and also at the spacecraft system level. The trade analysis results show that high-efficiency multijunction solar cells bring lot of cost advantages for both types of missions. The trade study also show that thin film solar cells with moderate efficiency with ultra lightweight flexible array design may become competitive with well-established single crystalline solar cell technologies in the future.

  4. CIGS薄膜太阳能电池无镉缓冲层制备方法的研究现状%Deposition Technologies of Cd-Free Buffer Layers in Solar Cells Made of Copper Indium Gallium Diselenide Films

    Institute of Scientific and Technical Information of China (English)

    霍晓旭; 莫晓亮; 陈国荣

    2012-01-01

    The latest progress in the development of deposition technology of the Cd-free buffer layers in the solar cells made of copper indium gallium diselenide(CIGS) films was tentatively reviewed.The discussions focused on three topics: first, the film growth techniques and related properties of the three alternative Cd-free buffer layer materials (In2S3,ZnS,and Zn1-xMgxO) ; next,the possible impacts of the three alternative films and their deposition techniques on the fabrication and performance of the solar cells; finally, the development trends of the Cd-free layers in fabricating the CIGS solar cells.The strengths and weaknesses of the techniques, including the chemical bath deposition(CBD) , atomic layer deposition (AID) and sputtering depositions, on industrial scale production were evaluated in a thought-provoking way. We suggest that the sputtering deposition be most feasible to large scale industrial production. The technical problems to be solved were also discussed.%回顾了近年来CIGS薄膜太阳能电池无镉缓冲层的研究进展;着重介绍了In2S3,ZnS,Zn1-xMgxO三种可替代CdS缓冲层材料的常用制备方法及相关特性,并且对应给出了每种材料和方法获得的电池组件效率.展望了无镉缓冲层的发展前景,分析了化学水浴、原子层沉积、溅射三种缓冲层沉积技术各自在大规模工业化应用中的优劣势.认为溅射沉积技术是现阶段最理想的工业化制备技术,同时指出了无镉缓冲层在大规模工业化应用中亟需解决的问题.

  5. Solution-processed highly efficient Cu2ZnSnSe4 thin film solar cells by dissolution of elemental Cu, Zn, Sn, and Se powders.

    Science.gov (United States)

    Yang, Yanchun; Wang, Gang; Zhao, Wangen; Tian, Qingwen; Huang, Lijian; Pan, Daocheng

    2015-01-14

    Solution deposition approaches play an important role in reducing the manufacturing cost of Cu2ZnSnSe4 (CZTSe) thin film solar cells. Here, we present a novel precursor-based solution approach to fabricate highly efficient CZTSe solar cells. In this approach, low-cost elemental Cu, Zn, Sn, and Se powders were simultaneously dissolved in the solution of thioglycolic acid and ethanolamine, forming a homogeneous CZTSe precursor solution to deposit CZTSe nanocrystal thin films. Based on high-quality CZTSe absorber layer, pure selenide CZTSe solar cell with a photoelectric conversion efficiency of 8.02% has been achieved without antireflection coating.

  6. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    Directory of Open Access Journals (Sweden)

    Chen Yubin

    2016-09-01

    Full Text Available Photoelectrochemical (PEC water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, GaSe2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

  7. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    Science.gov (United States)

    Chen, Yubin; Feng, Xiaoyang; Liu, Maochang; Su, Jinzhan; Shen, Shaohua

    2016-09-01

    Photoelectrochemical (PEC) water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, Ga)Se2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

  8. CZTSe solar cells prepared by electrodeposition of Cu/Sn/Zn stack layer followed by selenization at low Se pressure

    Science.gov (United States)

    Yao, Liyong; Ao, Jianping; Jeng, Ming-Jer; Bi, Jinlian; Gao, Shoushuai; He, Qing; Zhou, Zhiqiang; Sun, Guozhong; Sun, Yun; Chang, Liann-Be; Chen, Jian-Wun

    2014-12-01

    Cu2ZnSnSe4 (CZTSe) thin films are prepared by the electrodeposition of stack copper/tin/zinc (Cu/Sn/Zn) precursors, followed by selenization with a tin source at a substrate temperature of 530°C. Three selenization processes were performed herein to study the effects of the source of tin on the quality of CZTSe thin films that are formed at low Se pressure. Much elemental Sn is lost from CZTSe thin films during selenization without a source of tin. The loss of Sn from CZTSe thin films in selenization was suppressed herein using a tin source at 400°C (A2) or 530°C (A3). A copper-poor and zinc-rich CZTSe absorber layer with Cu/Sn, Zn/Sn, Cu/(Zn + Sn), and Zn/(Cu + Zn + Sn) with metallic element ratios of 1.86, 1.24, 0.83, and 0.3, respectively, was obtained in a selenization with a tin source at 530°C. The crystallized CZTSe thin film exhibited an increasingly (112)-preferred orientation at higher tin selenide (SnSe x ) partial pressure. The lack of any obvious Mo-Se phase-related diffraction peaks in the X-ray diffraction (XRD) diffraction patterns may have arisen from the low Se pressure in the selenization processes. The scanning electron microscope (SEM) images reveal a compact surface morphology and a moderate grain size. CZTSe solar cells with an efficiency of 4.81% were produced by the low-cost fabrication process that is elucidated herein.

  9. Zinc selenide photoelectrodes: efficient radiative recombination in a stable photoelectrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Smiley, P.M.; Biagioni, R.N.; Ellis, A.B.

    1984-05-01

    A study has been made of photoluminescence (PL) and electroluminescence (EL) from single-crystal n-type ZnSe:Al electrodes. It is shown that emission from the electrodes, with a measured radiative quantum yield of 0.1-0.01, competes favorably with other deactivation paths in stable efficient photoelectrochemical cells. As observed with other semiconductor electrodes, the PL of n-ZnSe:Al electrodes can be perturbed and EL initiated by interfacial charge-transfer processes. It is shown that PL quenching by applied potential is compatible with a dead-layer model used to describe such quenching in other photoelectrochemical cells and in Au-ZnSe Schottky diodes. 24 references.

  10. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  11. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  12. Analysis of copper-rich precipitates in silicon: chemical state,gettering, and impact on multicrystalline silicon solar cellmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Buonassisi, Tonio; Marcus, Matthew A.; Istratov, Andrei A.; Heuer, Matthias; Ciszek, Theodore F.; Lai, Barry; Cai, Zhonghou; Weber,Eicke R.

    2004-11-08

    In this study, synchrotron-based x-ray absorption microspectroscopy (mu-XAS) is applied to identifying the chemical states of copper-rich clusters within a variety of silicon materials, including as-grown cast multicrystalline silicon solar cell material with high oxygen concentration and other silicon materials with varying degrees of oxygen concentration and copper contamination pathways. In all samples, copper silicide (Cu3Si) is the only phase of copper identified. It is noted from thermodynamic considerations that unlike certain metal species, copper tends to form a silicide and not an oxidized compound because of the strong silicon-oxygen bonding energy; consequently the likelihood of encountering an oxidized copper particle in silicon is small, in agreement with experimental data. In light of these results, the effectiveness of aluminum gettering for the removal of copper from bulk silicon is quantified via x-ray fluorescence microscopy (mu-XRF),and a segregation coefficient is determined from experimental data to beat least (1-2)'103. Additionally, mu-XAS data directly demonstrates that the segregation mechanism of Cu in Al is the higher solubility of Cu in the liquid phase. In light of these results, possible limitations for the complete removal of Cu from bulk mc-Si are discussed.

  13. Microanalysis of Solar Cells

    Science.gov (United States)

    Kazmerski, Lawrence L.

    1980-11-01

    Applications of complementary surface analysis techniques (AES, SIMS, XPS) to solar cell device problems are discussed. Several examples of device interface and grain boundary problems are presented. Silicon, gallium arsenide and indium phosphide based devices are reviewed. Results of compositional and chemical analysis are correlated directly with EBIC measurements performed in-situ on identical sample areas. Those are, in turn, correlated with resulting photovoltaic device performance. The importance of microanalysis to the solution of critical device problems in the photovoltaics technology is emphasized.

  14. Bifacial tandem solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wojtczuk, Steven J.; Chiu, Philip T.; Zhang, Xuebing; Gagnon, Edward; Timmons, Michael

    2016-06-14

    A method of fabricating on a semiconductor substrate bifacial tandem solar cells with semiconductor subcells having a lower bandgap than the substrate bandgap on one side of the substrate and with subcells having a higher bandgap than the substrate on the other including, first, growing a lower bandgap subcell on one substrate side that uses only the same periodic table group V material in the dislocation-reducing grading layers and bottom subcells as is present in the substrate and after the initial growth is complete and then flipping the substrate and growing the higher bandgap subcells on the opposite substrate side which can be of different group V material.

  15. Space Solar Cell Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures, characterizes, and analyzes photovoltaic materials and devices. The primary focus is the measurement and characterization of solar cell response...

  16. Dye Sensitized Solar Cell, DSSC

    Directory of Open Access Journals (Sweden)

    Pongsatorn Amornpitoksuk

    2003-07-01

    Full Text Available A dye sensitized solar cell is a new type of solar cell. The operating system of this solar cell type is similar to plant’s photosynthesis process. The sensitizer is available for absorption light and transfer electrons to nanocrystalline metal oxide semiconductor. The ruthenium(II complexes with polypyridyl ligands are usually used as the sensitizers in solar cell. At the present time, the complex of [Ru(2,2',2'’-(COOH3- terpy(NCS3] is the most efficient sensitizer. The total photon to current conversion efficiency was approximately 10% at AM = 1.5.

  17. Monocrystalline solar cells are gaining ground; Monokristallin im Aufwind

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, Johannes

    2011-10-31

    Increasingly, manufacturers use selective emitters for serial production of solar cells of monocrystalline silicon with an efficiency of 19 percent. Strong competition will soon have them reach 20 percent. For the same reason, copper will become a substitute for expensive silver front contacts.

  18. Leveraging the Experimental Method to Inform Solar Cell Design

    Science.gov (United States)

    Rose, Mary Annette; Ribblett, Jason W.; Hershberger, Heather Nicole

    2010-01-01

    In this article, the underlying logic of experimentation is exemplified within the context of a photoelectrical experiment for students taking a high school engineering, technology, or chemistry class. Students assume the role of photochemists as they plan, fabricate, and experiment with a solar cell made of copper and an aqueous solution of…

  19. Leveraging the Experimental Method to Inform Solar Cell Design

    Science.gov (United States)

    Rose, Mary Annette; Ribblett, Jason W.; Hershberger, Heather Nicole

    2010-01-01

    In this article, the underlying logic of experimentation is exemplified within the context of a photoelectrical experiment for students taking a high school engineering, technology, or chemistry class. Students assume the role of photochemists as they plan, fabricate, and experiment with a solar cell made of copper and an aqueous solution of…

  20. Photoluminescence study of copper-doped cadmium-telluride and related stability issues for cadmium-sulfide/cadmium-telluride solar-cell devices

    Science.gov (United States)

    Grecu, Dan S.

    Lifetime predictions for CdTe photovoltaic modules represent a complex problem, partly due to the fact that a fundamental understanding of the CdTe material properties and device operation is far from being complete. One of the stability issues actively investigated is the use of Cu for the formation of a back contact. Cu is one of the few good p-dopants for CdTe, which, by forming a p+ layer at the surface of the CdTe, relaxes the requirement for a high work function metal at the back contact. On the other hand, it is known that Cu is a fast diffuser in CdTe and it was suggested that Cu migration within the device could lead to some of the observed degradation effects. in this work, we explore Cu states and migration effects in CdTe and CdS/CdTe devices using photoluminescence (PL) as the main investigative method. We confirm the assignment of several Cu-related PL transitions observed in the CdTe spectrum, namely, a bound exciton transition (X, CUCd) at 1.59eV and a donor-acceptor pair (DAP) (D, CuCd) at 1.45eV. In addition, we observe and characterize new effects related to Cu diffusion in CdTe: (a) the quenching of a DAP, Cd-vacancy related band, at 1.55eV, and (b) the formation of a new strong lattice-coupled transition at 1.555eV. These effects, we suggest, are consistent with Cu atoms occupying substitutional positions on the Cd sublattice and/or forming Frenkel pairs of the type CUi-VCd- with Cd vacancies. Similar spectral characteristics are observed for the low-S-content CdS-CdTe alloy existent in the vicinity of the junction in solar-cell devices. Using Cu-induced changes in the PL spectrum, we propose that Cu diffuses rapidly through an interstitial mechanism, as a positively charged ion, throughout the CdTe and possibly the CdS layer during the back-contact fabrication procedure. Applied electrical fields can reverse the direction of Cu migration leading to device performance degradation. In addition, it was found that Cu-doped CdTe samples exhibit a

  1. Quantum Junction Solar Cells

    KAUST Repository

    Tang, Jiang

    2012-09-12

    Colloidal quantum dot solids combine convenient solution-processing with quantum size effect tuning, offering avenues to high-efficiency multijunction cells based on a single materials synthesis and processing platform. The highest-performing colloidal quantum dot rectifying devices reported to date have relied on a junction between a quantum-tuned absorber and a bulk material (e.g., TiO 2); however, quantum tuning of the absorber then requires complete redesign of the bulk acceptor, compromising the benefits of facile quantum tuning. Here we report rectifying junctions constructed entirely using inherently band-aligned quantum-tuned materials. Realizing these quantum junction diodes relied upon the creation of an n-type quantum dot solid having a clean bandgap. We combine stable, chemically compatible, high-performance n-type and p-type materials to create the first quantum junction solar cells. We present a family of photovoltaic devices having widely tuned bandgaps of 0.6-1.6 eV that excel where conventional quantum-to-bulk devices fail to perform. Devices having optimal single-junction bandgaps exhibit certified AM1.5 solar power conversion efficiencies of 5.4%. Control over doping in quantum solids, and the successful integration of these materials to form stable quantum junctions, offers a powerful new degree of freedom to colloidal quantum dot optoelectronics. © 2012 American Chemical Society.

  2. Zinc selenide photoelectrodes. Efficient radiative recombination in a stable photoelectrochemical cell. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Smiley, P.M.; Biagioni, R.N.; Ellis, A.B.

    1984-05-25

    Photoluminescence (PL) and electroluminescence (EL) from single-crystal, n-type, A1-doped ZnSe (ZnSe:A1) electrodes have been studied. These samples exhibit both edge emission (lambda(max) approx. 460 nm) and subband gap emission when excited at several ultraband gap wavelengths. The latter PL band is particularly intense, with a measured radiative quantum yield of approx. 0.1 to 0.01; the transition seems at least partially self-activated (SA) in origin, based on previously reported PL data. Excited-state communication involving the two emissive states is inferred from time-resolved PL measurements. Stable photoelectrochemical cells (PEC's) can be constructed from n-ZnSe:A1 electrodes and aqueous diselenide or ditelluride electrolytes. Applied potential quenches both of the photoanodes' PL bands roughly in parallel. The extent of PL quenching is consistent with a dead-layer model previously used to describe quenching in Au-ZnSe Schottky diodes. When used as a dark cathode in aqueous, alkaline peroxydisulfate eletrolyte, EL from ZnSe:A1 electrodes is observed.

  3. Atomically Thin-Layered Molybdenum Disulfide (MoS2) for Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Singh, Eric; Kim, Ki Seok; Yeom, Geun Young; Nalwa, Hari Singh

    2017-02-01

    Transition metal dichalcogenides (TMDs) are becoming significant because of their interesting semiconducting and photonic properties. In particular, TMDs such as molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2), tungsten disulfide (WS2), tungsten diselenide (WSe2), titanium disulfide (TiS2), tantalum sulfide (TaS2), and niobium selenide (NbSe2) are increasingly attracting attention for their applications in solar cell devices. In this review, we give a brief introduction to TMDs with a focus on MoS2; and thereafter, emphasize the role of atomically thin MoS2 layers in fabricating solar cell devices, including bulk-heterojunction, organic, and perovskites-based solar cells. Layered MoS2 has been used as the hole-transport layer (HTL), electron-transport layer (ETL), interfacial layer, and protective layer in fabricating heterojunction solar cells. The trilayer graphene/MoS2/n-Si solar cell devices exhibit a power-conversion efficiency of 11.1%. The effects of plasma and chemical doping on the photovoltaic performance of MoS2 solar cells have been analyzed. After doping and electrical gating, a power-conversion efficiency (PCE) of 9.03% has been observed for the MoS2/h-BN/GaAs heterostructure solar cells. The MoS2-containing perovskites-based solar cells show a PCE as high as 13.3%. The PCE of MoS2-based organic solar cells exceeds 8.40%. The stability of MoS2 solar cells measured under ambient conditions and light illumination has been discussed. The MoS2-based materials show a great potential for solar cell devices along with high PCE; however, in this connection, their long-term environmental stability is also of equal importance for commercial applications.

  4. Carbon Nanotube Solar Cells

    Science.gov (United States)

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement. PMID:22655070

  5. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  6. Photocurrent generation in nanostructured organic solar cells.

    Science.gov (United States)

    Yang, Fan; Forrest, Stephen R

    2008-05-01

    Photocurrent generation in nanostructured organic solar cells is simulated using a dynamical Monte Carlo model that includes the generation and transport properties of both excitons and free charges. Incorporating both optical and electrical properties, we study the influence of the heterojunction nanostructure (e.g., planar vs bulk junctions) on donor-acceptor organic solar cell efficiencies based on the archetype materials copper phthalocyanine (CuPc) and C(60). Structures considered are planar and planar-mixed heterojunctions, homogeneous and phase-separated donor-acceptor (DA) mixtures, idealized structures composed of DA pillars, and nanocrystalline DA networks. The thickness dependence of absorption, exciton diffusion, and carrier collection efficiencies is studied for different morphologies, yielding results similar to those experimentally observed. The influences of charge mobility and exciton diffusion length are studied, and optimal device thicknesses are proposed for various structures. Simulations show that, with currently available materials, nanocrystalline network solar cells optimize both exciton diffusion and carrier collection, thus providing for highly efficient solar energy conversion. Estimations of achievable energy conversion efficiencies are made for the various nanostructures based on current simulations used in conjunction with experimentally obtained fill factors and open-circuit voltages for conventional small molecular weight materials combinations.

  7. Colloidal quantum dot solar cells

    Science.gov (United States)

    Sargent, Edward H.

    2012-03-01

    Solar cells based on solution-processed semiconductor nanoparticles -- colloidal quantum dots -- have seen rapid advances in recent years. By offering full-spectrum solar harvesting, these cells are poised to address the urgent need for low-cost, high-efficiency photovoltaics.

  8. An Introduction to Solar Cells

    Science.gov (United States)

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  9. An Introduction to Solar Cells

    Science.gov (United States)

    Feldman, Bernard J.

    2010-01-01

    Most likely, solar cells will play a significant role in this country's strategy to address the two interrelated issues of global warming and dependence on imported oil. The purpose of this paper is to present an explanation of how solar cells work at an introductory high school, college, or university physics course level. The treatment presented…

  10. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  11. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    CERN Document Server

    Bjørk, R

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  12. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di) selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low...... efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.......The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...

  13. Polymer Substrates For Lightweight, Thin-Film Solar Cells

    Science.gov (United States)

    Lewis, Carol R.

    1993-01-01

    Substrates survive high deposition temperatures. High-temperature-resistant polymers candidate materials for use as substrates of lightweight, flexible, radiation-resistant solar photovoltaic cells. According to proposal, thin films of copper indium diselenide or cadmium telluride deposited on substrates to serve as active semiconductor layers of cells, parts of photovoltaic power arrays having exceptionally high power-to-weight ratios. Flexibility of cells exploited to make arrays rolled up for storage.

  14. High Performance Perovskite Solar Cells.

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  15. Measurement of CuInSe{sub 2} solar cell AC parameters

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, M.P.; Nagaraju, J. [Solar Energy and Thermodynamics Laboratory, Department of Instrumentation, Indian Institute of Science, Bangalore 560 012 (India)

    2005-01-31

    The AC parameters (cell capacitance and cell resistance) of Copper Indium Diselenide (CuInSe{sub 2}) solar cell are measured using time-domain technique. The cell capacitance is calculated from the open circuit voltage decay (OCVD) and cell resistance with solar cell I-V characteristics measured in dark. The solar cell exhibits high parallel resistance and low parallel capacitance. The doping concentration and built in voltage are derived from the 1/C{sub P}{sup 2} versus bias voltage graph. The built-in voltage of the solar cell shows good agreement with measurements published in the literature.

  16. Upconversion in solar cells.

    Science.gov (United States)

    van Sark, Wilfried Gjhm; de Wild, Jessica; Rath, Jatin K; Meijerink, Andries; Schropp, Ruud Ei

    2013-02-15

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells.

  17. Upconversion in solar cells

    Science.gov (United States)

    2013-01-01

    The possibility to tune chemical and physical properties in nanosized materials has a strong impact on a variety of technologies, including photovoltaics. One of the prominent research areas of nanomaterials for photovoltaics involves spectral conversion. Modification of the spectrum requires down- and/or upconversion or downshifting of the spectrum, meaning that the energy of photons is modified to either lower (down) or higher (up) energy. Nanostructures such as quantum dots, luminescent dye molecules, and lanthanide-doped glasses are capable of absorbing photons at a certain wavelength and emitting photons at a different (shorter or longer) wavelength. We will discuss upconversion by lanthanide compounds in various host materials and will further demonstrate upconversion to work for thin-film silicon solar cells. PMID:23413889

  18. Nanostructuring of Solar Cell Surfaces

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    Solar energy is by far the most abundant renewable energy source available, but the levelized cost of solar energy is still not competitive with that of fossil fuels. Therefore there is a need to improve the power conversion effciency of solar cells without adding to the production cost. The main...... objective of this PhD thesis is to develop nanostructured silicon (Si) solar cells with higher power conversion efficiency using only scalable and cost-efficient production methods. The nanostructures, known as 'black silicon', are fabricated by single-step, maskless reactive ion etching and used as front...

  19. Spatial and RF power dependence of the structural and electrical characteristics of copper zinc tin selenide thin films prepared by single elementary target sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Yeon Hwa; Jang, Jin Woo; Cho, Yong Soo, E-mail: ycho@yonsei.ac.kr

    2014-11-14

    The spatial variations of the structural, optical and electrical properties of Cu{sub 2}ZnSnSe{sub 4} thin films grown by radio-frequency (RF) magnetron sputtering across a distance of 60 mm were investigated as a function of the discharge power. Noticeable changes in the deposition rate and elemental distribution were observed in the as-deposited films at the central and near-edge regions. After annealing in a Se atmosphere, the dependence of the phase evolution and electrical properties on the spatial position and power was also evident. Deposition at a low power of 30 W seems to be more promising in generating dominant Cu{sub 2}ZnSnSe{sub 4} phase with well-packed crystallites on the surface. On the other hand, deposition at higher power tended to result in a significant portion of a secondary SnSe{sub 2} phase, which is responsible for the higher optical band gap and lower electrical resistivity, depending on the specific region of the film. - Highlights: • Single elementary target sputtering of Cu{sub 2}ZnSnSe{sub 4} thin films for solar cells. • Deposition rate and elemental distribution are different at central and edge regions. • Low RF power is promising in generating single phase with less spatial variation. • High RF power induces a secondary SnSe{sub 2} phase and a higher band gap. • Carrier concentration is smaller at centers than at near-edges of the films.

  20. Crystal structures of the four new quaternary copper(I)-selenides A0.5CuZrSe3 and ACuYSe3(A=Sr, Ba)

    Science.gov (United States)

    Maier, Stefan; Prakash, Jai; Berthebaud, David; Perez, Olivier; Bobev, Svilen; Gascoin, Franck

    2016-10-01

    The four new quaternary copper(I)-selenides, Sr0.5CuZrSe3 (a=3.8386(7), b=14.197(2), c=10.1577(17) Å), Ba0.5CuZrSe3 (a=3.8386(7), b=14.196(2), c=10.1577(17) Å), SrCuYSe3 (a=10.620(2), b=4.1000(8), c=13.540(3) Å) and BaCuYSe3 (a=4.1800(7), b=13.940(2), c=10.6200(17) Å) were synthesized by high-temperature solid state reactions and their crystal structures were determined using single-crystal X-ray diffraction. A0.5CuZrSe3 (A= Sr, Ba) and BaCuYSe3 crystallize in the KCuZrS3 structure type (Cmcm), while SrCuYSe3 is isostructural to Eu2CuS3 (Pnma). All compounds form layered structures in which the charge of the - ∞ 2[CuZrSe3 and 2 - ∞ 2[CuYSe3 ] layers as well as the site occupancy of the A cations depend on the transition metal. Combining the alkaline earth metals Sr and Ba with tetravalent Zr leads to the formation of cation vacancies between the - ∞ 2[CuZrSe3 ] layers and structure type as well as symmetry are determined by the ratio between the cation and transition metal ionic radii r(A2+)/r(M3+/4+).

  1. Progress in polymer solar cell

    Institute of Scientific and Technical Information of China (English)

    LI LiGui; LU GuangHao; YANG XiaoNiu; ZHOU EnLe

    2007-01-01

    This review outlines current progresses in polymer solar cell. Compared to traditional silicon-based photovoltaic (PV) technology, the completely different principle of optoelectric response in the polymer cell results in a novel configuration of the device and more complicated photovoltaic generation process. The conception of bulk-heterojunction (BHJ) is introduced and its advantage in terms of morphology is addressed. The main aspects including the morphology of photoactive layer, which limit the efficiency and stability of polymer solar cell, are discussed in detail. The solutions to boosting up both the efficiency and stability (lifetime) of the polymer solar cell are highlighted at the end of this review.

  2. Photon management in solar cells

    CERN Document Server

    Rau, Uwe; Gombert, Andreas

    2015-01-01

    Written by renowned experts in the field of photon management in solar cells, this one-stop reference gives an introduction to the physics of light management in solar cells, and discusses the different concepts and methods of applying photon management. The authors cover the physics, principles, concepts, technologies, and methods used, explaining how to increase the efficiency of solar cells by splitting or modifying the solar spectrum before they absorb the sunlight. In so doing, they present novel concepts and materials allowing for the cheaper, more flexible manufacture of solar cells and systems. For educational purposes, the authors have split the reasons for photon management into spatial and spectral light management. Bridging the gap between the photonics and the photovoltaics communities, this is an invaluable reference for materials scientists, physicists in industry, experimental physicists, lecturers in physics, Ph.D. students in physics and material sciences, engineers in power technology, appl...

  3. Differential cytotoxicity of copper ferrite nanoparticles in different human cells.

    Science.gov (United States)

    Ahmad, Javed; Alhadlaq, Hisham A; Alshamsan, Aws; Siddiqui, Maqsood A; Saquib, Quaiser; Khan, Shams T; Wahab, Rizwan; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Akhtar, Mohd Javed; Ahamed, Maqusood

    2016-10-01

    Copper ferrite nanoparticles (NPs) have the potential to be applied in biomedical fields such as cell labeling and hyperthermia. However, there is a lack of information concerning the toxicity of copper ferrite NPs. We explored the cytotoxic potential of copper ferrite NPs in human lung (A549) and liver (HepG2) cells. Copper ferrite NPs were crystalline and almost spherically shaped with an average diameter of 35 nm. Copper ferrite NPs induced dose-dependent cytotoxicity in both types of cells, evident by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide and neutral red uptake assays. However, we observed a quite different susceptibility in the two kinds of cells regarding toxicity of copper ferrite NPs. Particularly, A549 cells showed higher susceptibility against copper ferrite NP exposure than those of HepG2 cells. Loss of mitochondrial membrane potential due to copper ferrite NP exposure was observed. The mRNA level as well as activity of caspase-3 enzyme was higher in cells exposed to copper ferrite NPs. Cellular redox status was disturbed as indicated by induction of reactive oxygen species (oxidant) generation and depletion of the glutathione (antioxidant) level. Moreover, cytotoxicity induced by copper ferrite NPs was efficiently prevented by N-acetylcysteine treatment, which suggests that reactive oxygen species generation might be one of the possible mechanisms of cytotoxicity caused by copper ferrite NPs. To the best of our knowledge, this is the first report showing the cytotoxic potential of copper ferrite NPs in human cells. This study warrants further investigation to explore the mechanisms of differential toxicity of copper ferrite NPs in different types of cells. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se2 thin-film solar cell absorbers

    Science.gov (United States)

    Lehmann, Jascha; Lehmann, Sebastian; Lauermann, Iver; Rissom, Thorsten; Kaufmann, Christian A.; Lux-Steiner, Martha Ch.; Bär, Marcus; Sadewasser, Sascha

    2014-12-01

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for "realistic" surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In1-xGax)Se2 thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH3-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is - apart from a slight change in surface composition - identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.

  5. Sulfurization induced surface constitution and its correlation to the performance of solution-processed Cu2ZnSn(S,Se)4 solar cells

    Science.gov (United States)

    Zhong, Jie; Xia, Zhe; Luo, Miao; Zhao, Juan; Chen, Jie; Wang, Liang; Liu, Xinsheng; Xue, Ding-Jiang; Cheng, Yi-Bing; Song, Haisheng; Tang, Jiang

    2014-09-01

    To obtain high photovoltaic performances for the emerging copper zinc tin sulfide/selenide (CZTSSe) thin film solar cells, much effort has deservedly been placed on CZTSSe phase purification and CZTSSe grain size enhancement. Another highly crucial but less explored factor for device performance is the elemental constitution of CZTSSe surface, which is at the heart of p-n junction where major photogenerated carriers generate and separate. In this work we demonstrate that, despite the well-built phase and large grained films are observed by common phases and morphology characterization (XRD, Raman and SEM), prominent device efficiency variations from short circuited to 6.4% are obtained. Insight study highlights that the surface (0-250 nm) compositions variation results in different bulk defect depths and doping densities in the depletion zone. We propose that suitable sulfurization (at ~10 kPa sulfur pressure) drives optimization of surface constitution by managing the Cu, Zn and Sn diffusion and surface reaction. Therefore, our study reveals that the balance of elemental diffusion and interface reactions is the key to tuning the surface quality CZTSSe film and thus the performance of as resulted devices.

  6. Development of the data base for a degradation model of a selenide RTG. [Radioisotope Thermoelectric Generator

    Science.gov (United States)

    Stapfer, G.; Truscello, V. C.

    1977-01-01

    The paper is concerned with the evaluation of the materials used in a selenide radioisotope thermoelectric generator (RTG). These materials are composed of n-type gadolinium selenide and n-type copper selenide. A three-fold evaluation approach is being used: (1) the study of the rate of change of the thermal conductivity of the material, (2) the investigation of the long-term stability of the material's Seebeck voltage and electrical resistivity under current and temperature gradient conditions, and (3) determination of the physical behavior and compatibility of the material with surrounding insulation at elevated temperatures. Programmatically, the third category of characteristic evaluation is being emphasized.

  7. High Efficiency c-Silicon Solar Cells Based on Micro-Nanoscale Structure

    Science.gov (United States)

    2011-06-01

    film materials: (1) amorphous Si (a-Si) (4), cadmium telluride ( CdTe ) (5), and copper indium diselenide (CIS) (6), which are the most mature thin ...microblock design and fabrication. Current thin - film and c-Si solar cells have a limited conversion efficiency of 10–20% and cost $3–$5/W-peak and state...more efficient solar cells has been underway for several decades, from the development of thin - film solar cells with efficiencies greater than 10

  8. New Materials for Chalcogenide Based Solar Cells

    Science.gov (United States)

    Tosun, Banu Selin

    Thin film solar cells based on copper indium gallium diselenide (CIGS) have achieved efficiencies exceeding 20 %. The p-n junction in these solar cells is formed between a p-type CIGS absorber layer and a composite n-type film that consists of a 50-100 nm thin n-type CdS followed by a 50-200 nm thin n-type ZnO. This dissertation focuses on developing materials for replacing CdS and ZnO films to improve the damp-heat stability of the solar cells and for minimizing the use of Cd. Specifically, I demonstrate a new CIGS solar cell with better damp heat stability wherein the ZnO layer is replaced with SnO2. The efficiency of solar cells made with SnO2 decreased less than 5 % after 120 hours at 85 °C and 85 % relative humidity while the efficiency of solar cells made with ZnO declined by more than 70 %. Moreover, I showed that a SnO2 film deposited on top of completed CIGS solar cells significantly increased the device lifetime by forming a barrier against water diffusion. Semicrystalline SnO2 films deposited at room temperature had nanocrystals embedded in an amorphous matrix, which resulted in films without grain boundaries. These films exhibited better damp-heat stability than ZnO and crystalline SnO2 films deposited at higher temperature and this difference is attributed to the lack of grain boundary water diffusion. In addition, I studied CBD of Zn1-xCdxS from aqueous solutions of thiourea, ethylenediaminetetraacetic acid and zinc and cadmium sulfate. I demonstrated that films with varying composition (x) can be deposited through CBD and studied the structure and composition variation along the films' thickness. However, this traditional chemical bath deposition (CBD) approach heats the entire solution and wastes most of the chemicals by homogenous particle formation. To overcome this problem, I designed and developed a continuous-flow CBD approach to utilize the chemicals efficiently and to eliminate homogenous particle formation. Only the substrate is heated to

  9. 8.6% Efficient CZTSSe Solar Cells Sprayed from Water-Ethanol CZTS Colloidal Solutions.

    Science.gov (United States)

    Larramona, Gerardo; Bourdais, Stéphane; Jacob, Alain; Choné, Christophe; Muto, Takuma; Cuccaro, Yan; Delatouche, Bruno; Moisan, Camille; Péré, Daniel; Dennler, Gilles

    2014-11-06

    Copper zinc tin sulfide-selenide, Cu2ZnSn(S1-xSex)4 (CZTSSe), thin film photovoltaic devices were fabricated using a fast and environmentally friendly preparation method, consisting of the following steps: An instantaneous synthesis of a Cu-Zn-Sn-S (no Se) colloid, a nonpyrolytic spray of a dispersion of this colloid in a water-ethanol mixture, and a sequential annealing first in a N2 atmosphere and second in a Se atmosphere. The achievement of cell efficiencies up to 8.6% under AM1.5G (cell area 0.25 cm(2)) and without antireflecting coating indicates that this method can compete with other vacuum-based or more complex wet deposition methods.

  10. Development and characterization of PCDTBT:CdSe QDs hybrid solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Shiv Kumar, E-mail: shivkumardixit.7@gmail.com; Bhatnagar, Chhavi, E-mail: shivkumardixit.7@gmail.com; Kumari, Anita, E-mail: shivkumardixit.7@gmail.com; Madhwal, Devinder, E-mail: shivkumardixit.7@gmail.com; Bhatnagar, P. K., E-mail: shivkumardixit.7@gmail.com; Mathur, P. C., E-mail: shivkumardixit.7@gmail.com [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 (India)

    2014-10-15

    Solar cell consisting of low band gap polymer poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10, 30-benzothiadiazole)] (PCDTBT) as donor and cadmium selenide/zinc sulphide (CdSe/ZnS) core shell quantum dots (QDs) as an acceptor has been developed. The absorption measurements show that the absorption coefficient increases in bulk heterojunction (BHJ) structure covering broad absorption spectrum (200nm–700nm). Also, the photoluminescence (PL) of the PCDTBT:QDs film is found to decrease by an order of magnitude showing a significant transfer of electrons to the QDs. With this approach and under broadband white light with an irradiance of 8.19 mW/cm{sup 2}, we have been able to achieve a power conversion efficiency (PCE) of 3.1 % with fill factor 0.42 for our typical solar cell.

  11. Dust Removal from Solar Cells

    Science.gov (United States)

    Ashpis, David E. (Inventor)

    2015-01-01

    A solar panel cleaning device includes a solar panel having a plurality of photovoltaic cells arranged in rows and embedded in the solar panel with space between the rows. A transparent dielectric overlay is affixed to the solar panel. A plurality of electrode pairs each of which includes an upper and a lower electrode are arranged on opposite sides of the transparent dielectric and are affixed thereto. The electrodes may be transparent electrodes which may be arranged without concern for blocking sunlight to the solar panel. The solar panel may be a dielectric and its dielectric properties may be continuously and spatially variable. Alternatively the dielectric used may have dielectric segments which produce different electrical field and which affects the wind "generated."

  12. Copper as a key regulator of cell signalling pathways.

    Science.gov (United States)

    Grubman, Alexandra; White, Anthony R

    2014-05-22

    Copper is an essential element in many biological processes. The critical functions associated with copper have resulted from evolutionary harnessing of its potent redox activity. This same property also places copper in a unique role as a key modulator of cell signal transduction pathways. These pathways are the complex sequence of molecular interactions that drive all cellular mechanisms and are often associated with the interplay of key enzymes including kinases and phosphatases but also including intracellular changes in pools of smaller molecules. A growing body of evidence is beginning to delineate the how, when and where of copper-mediated control over cell signal transduction. This has been driven by research demonstrating critical changes to copper homeostasis in many disorders including cancer and neurodegeneration and therapeutic potential through control of disease-associated cell signalling changes by modulation of copper-protein interactions. This timely review brings together for the first time the diverse actions of copper as a key regulator of cell signalling pathways and discusses the potential strategies for controlling disease-associated signalling processes using copper modulators. It is hoped that this review will provide a valuable insight into copper as a key signal regulator and stimulate further research to promote our understanding of copper in disease and therapy.

  13. Fundamentals of thin solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yablonovitch, E. [Univ. of California, Los Angeles, CA (United States)

    1995-08-01

    It is now widely recognized that thin solar cells can present certain advantages for performance and cost. This is particularly the case when light trapping in the semiconductor film is incorporated, as compensation for the diminished single path thickness of the solar cell. In a solar cell thinner than a minority carrier diffusion length, the current collection is of course very easy. More importantly the concentration of an equivalent number of carriers in a thinner volume results in a higher Free Energy, or open circuit voltage. This extra Free Energy may be regarded as due to the concentration factor, just as it would be for photons, electrons, or for any chemical species. The final advantage of a thin solar cell is in the diminished material usage, a factor of considerable importance when we consider the material cost of the high quality semiconductors which we hope to employ.

  14. Solar cell with back side contacts

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  15. Solar cell with back side contacts

    Science.gov (United States)

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

    2013-12-24

    A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

  16. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  17. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  18. Industrial Silicon Wafer Solar Cells

    Directory of Open Access Journals (Sweden)

    Dirk-Holger Neuhaus

    2007-01-01

    Full Text Available In 2006, around 86% of all wafer-based silicon solar cells were produced using screen printing to form the silver front and aluminium rear contacts and chemical vapour deposition to grow silicon nitride as the antireflection coating onto the front surface. This paper reviews this dominant solar cell technology looking into state-of-the-art equipment and corresponding processes for each process step. The main efficiency losses of this type of solar cell are analyzed to demonstrate the future efficiency potential of this technology. In research and development, more various advanced solar cell concepts have demonstrated higher efficiencies. The question which arises is “why are new solar cell concepts not transferred into industrial production more frequently?”. We look into the requirements a new solar cell technology has to fulfill to have an advantage over the current approach. Finally, we give an overview of high-efficiency concepts which have already been transferred into industrial production.

  19. Solar electron source and thermionic solar cell

    Directory of Open Access Journals (Sweden)

    Parham Yaghoobi

    2012-12-01

    Full Text Available Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed “Heat Trap” effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  20. Plasma Etching Improves Solar Cells

    Science.gov (United States)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  1. Dye Sysentized Solar Cell (Dyssc

    Directory of Open Access Journals (Sweden)

    A. Dileep,

    2015-11-01

    Full Text Available This paper presents a Dye sensitized solar cell (DYSSC, which is called as future generation solar cell. It is a new class of green photovoltaic cell based on photosynthesis principle in nature. DYSSCs are fabricated using two different natural dyes as sensitizers, which extracted from the materials existing in nature and our life, such as flowers, leaves, fruits, traditional Chinese medicines, and beverages. The use of sensitizers having a broad absorption band in conjunction with oxide films of nanocrystalline morphology permits to harvest a large fraction of sunlight. There are good prospects to produce these cells at lower cost and much better efficiency than conventional semiconductor devices by introducing various chemical and natural dyes. DYSSC are implemented with simple and new technique to overcome the energy crisis and excess cost of semiconductor solar cells.

  2. Electrical characterization of Cu{sub 2}ZnSnSe{sub 4} solar cells from selenization of sputtered metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Brammertz, Guy, E-mail: Guy.Brammertz@imec.be [Imec — Partner of Solliance, Kapeldreef 75, 3001 Heverlee (Belgium); Ren, Yi; Buffière, Marie [Imec — Partner of Solliance, Kapeldreef 75, 3001 Heverlee (Belgium); Department of Metallurgy and Materials Engineering, K.U. Leuven, Kasteelpark Arenberg 44, 3001 Heverlee (Belgium); Mertens, Sofie; Hendrickx, Jurgen; Marko, Hakim [Imec — Partner of Solliance, Kapeldreef 75, 3001 Heverlee (Belgium); Zaghi, Armin E.; Lenaers, Nick [Imec — Partner of Solliance, Kapeldreef 75, 3001 Heverlee (Belgium); Department of Metallurgy and Materials Engineering, K.U. Leuven, Kasteelpark Arenberg 44, 3001 Heverlee (Belgium); Köble, Christine [Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Vleugels, Jef [Department of Metallurgy and Materials Engineering, K.U. Leuven, Kasteelpark Arenberg 44, 3001 Heverlee (Belgium); Meuris, Marc; Poortmans, Jef [Imec — Partner of Solliance, Kapeldreef 75, 3001 Heverlee (Belgium)

    2013-05-01

    We report on the electrical and physical properties of Cu{sub 2}ZnSnSe{sub 4} (CZTSe) solar cells consisting of an absorber layer fabricated by selenization of sputtered Cu, Zn, Sn multilayers. Cross-section scanning electron microscopy images show that the polycrystalline absorber layers are approximately 1 μm thick and that the typical grain size is of the order of 1 μm. Energy-dispersive X-ray spectroscopy measurements show Cu-poor and Zn-rich compositions with Cu/(Zn + Sn) ∼ 0.8 and Zn/Sn ∼ 1.2. Solar cells are fabricated out of this absorber material using a standard process flow for chalcogenide solar cells. Under AM1.5 G illumination, the best 1 × 1 cm{sup 2} CZTSe solar cell shows an efficiency of 6.3% with a maximum short circuit current of 31.3 mA/cm{sup 2}, an open circuit voltage of 0.39 V and a fill factor of 52%. Doping density of the absorber layers is derived using the drivel level capacitance profiling (DLCP) technique, showing low p-type doping density which seems to increase exponentially with the Zn/Sn ratio. Comparing the values obtained from DLCP to the ones derived from Mott–Schottky plots of the same devices, it is shown that for CZTSe care has to be taken when deriving the doping density. Similar to copper indium gallium selenide junctions, Mott–Schottky plots overestimate the amount of free carriers in the buffer due to the presence of fast defect states inside the bandgap. - Highlights: ► Fabrication of η = 6.3% Cu{sub 2}ZnSnSe{sub 4} solar cells from selenization of sputtered metals ► Determination of doping level of the absorber layers ► Observation of fast traps which influence the results of the Mott–Schottky plots ► Identification of exponential relationship between Zn/Sn and doping of absorber.

  3. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design

    Directory of Open Access Journals (Sweden)

    Ethiene Castellucci Estevam

    2015-07-01

    Full Text Available Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS, they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.

  4. Copper corrosion and its relationship to solar collectors:a compendium.

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F.; Mahoney, Alan Roderick

    2007-07-01

    Copper has many fine qualities that make it a useful material. It is highly conductive of both heat and electricity, is ductile and workable, and reasonably resistant to corrosion. Because of these advantages, the solar water heating industry has been using it since the mid-1970s as the material of choice for collectors, the fundamental component of a solar water heating system. In most cases copper has performed flawlessly, but in some situations it has been known to fail. Pitting corrosion is the usual failure mode, but erosion can also occur. In 2000 Sandia National Laboratories and the Copper Development Association were asked to analyze the appearance of pin-hole leaks in solar collector units installed in a housing development in Arizona, and in 2002 Sandia analyzed a pitting corrosion event that destroyed a collector system at Camp Pendleton. This report includes copies of the reports and accounts of these corrosion failures, and provides a bibliography with references to many papers and articles that might be of benefit to the solar community. It consolidates in a single source information that has been accumulated at Sandia relative to copper corrosion, especially as it relates to solar water heaters.

  5. Advances in Perovskite Solar Cells.

    Science.gov (United States)

    Zuo, Chuantian; Bolink, Henk J; Han, Hongwei; Huang, Jinsong; Cahen, David; Ding, Liming

    2016-07-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite-based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non-PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large-scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed.

  6. Interdigitated back contact solar cells

    Science.gov (United States)

    Lundstrom, M. S.; Schwartz, R. J.

    1980-08-01

    The interdigitated back contact solar cell (IBC cell) was shown to possess a number of advantages for silicon solar cells, which operate at high concentration. A detailed discussion of the factors which need to be considered in the analysis of semiconducting devices which utilize heavily doped regions such as those which are found in solar cells in both the emitter and in the back surface field regions is given. This discussion covers the questions of: how to handle degeneracy, how to compute carrier concentrations in the absence of knowledge of the details of the band structure under heavily doped conditions, and how to reconcile the usual interpretation of heavy doping as a rigid shift of the bands with the band tailing and impurity level conduction models. It also discusses the reasons for the observed discrepancies between various experimental measurements of bandgap narrowing.

  7. Advances in Perovskite Solar Cells

    Science.gov (United States)

    Zuo, Chuantian; Bolink, Henk J.; Han, Hongwei; Huang, Jinsong

    2016-01-01

    Organolead halide perovskite materials possess a combination of remarkable optoelectronic properties, such as steep optical absorption edge and high absorption coefficients, long charge carrier diffusion lengths and lifetimes. Taken together with the ability for low temperature preparation, also from solution, perovskite‐based devices, especially photovoltaic (PV) cells have been studied intensively, with remarkable progress in performance, over the past few years. The combination of high efficiency, low cost and additional (non‐PV) applications provides great potential for commercialization. Performance and applications of perovskite solar cells often correlate with their device structures. Many innovative device structures were developed, aiming at large‐scale fabrication, reducing fabrication cost, enhancing the power conversion efficiency and thus broadening potential future applications. This review summarizes typical structures of perovskite solar cells and comments on novel device structures. The applications of perovskite solar cells are discussed.

  8. Compact Concentrators for Solar Cells

    Science.gov (United States)

    Whang, V. S.

    1984-01-01

    Each cell in array has own concentrator. A Cassegrain Reflector combination of paraboloidal and hyperboloidar mirrors-used with conical reflector at each element of array. Three components direct light to small solar cell. No cooling fins, fans, pumps, or heat pipes needed, not even in vacuum.

  9. Structural and optical properties of copper-coated substrates for solar thermal absorbers

    Science.gov (United States)

    Pratesi, Stefano; De Lucia, Maurizio; Meucci, Marco; Sani, Elisa

    2016-10-01

    Spectral selectivity, i.e. merging a high absorbance at sunlight wavelengths to a low emittance at the wavelengths of thermal spectrum, is a key characteristics for materials to be used for solar thermal receivers. It is known that spectrally selective absorbers can raise the receiver efficiency for all solar thermal technologies. Tubular sunlight receivers for parabolic trough collector (PTC) systems can be improved by the use of spectrally selective coatings. Their absorbance is increased by deposing black films, while the thermal emittance is minimized by the use of properly-prepared substrates. In this work we describe the intermediate step in the fabrication of black-chrome coated solar absorbers, namely the fabrication and characterization of copper coatings on previously nickel-plated stainless steel substrates. We investigate the copper surface features and optical properties, correlating them to the coating thickness and to the deposition process, in the perspective to assess optimal conditions for solar absorber applications.

  10. Polymer tandem solar cells

    NARCIS (Netherlands)

    Hadipour, Afshin

    2007-01-01

    The global demand for energy is expanding continually. Therefore, realization of green power sources are needed since combustion of fossil fuels will have serious consequences for the climate on the Earth. With a photovoltaic device, the solar light can be converted into electricity which is the mos

  11. Sodium selenide toxicity is mediated by O2-dependent DNA breaks.

    Directory of Open Access Journals (Sweden)

    Gérald Peyroche

    Full Text Available Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H(2Se/HSe(-/Se(2-. Among the genes whose deletion caused hypersensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O(2-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The (•OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O(2. Finally we showed that, in vivo, toxicity strictly depended on the presence of O(2. Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O(2-dependent radical-based mechanism.

  12. Solar Electricity and Solar Fuels: Status and Perspectives in the Context of the Energy Transition.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2016-01-04

    The energy transition from fossil fuels to renewables is already ongoing, but it will be a long and difficult process because the energy system is a gigantic and complex machine. Key renewable energy production data show the remarkable growth of solar electricity technologies and indicate that crystalline silicon photovoltaics (PV) and wind turbines are the workhorses of the first wave of renewable energy deployment on the TW scale around the globe. The other PV alternatives (e.g., copper/indium/gallium/selenide (CIGS) or CdTe), along with other less mature options, are critically analyzed. As far as fuels are concerned, the situation is significantly more complex because making chemicals with sunshine is far more complicated than generating electric current. The prime solar artificial fuel is molecular hydrogen, which is characterized by an excellent combination of chemical and physical properties. The routes to make it from solar energy (photoelectrochemical cells (PEC), dye-sensitized photoelectrochemical cells (DSPEC), PV electrolyzers) and then synthetic liquid fuels are presented, with discussion on economic aspects. The interconversion between electricity and hydrogen, two energy carriers directly produced by sunlight, will be a key tool to distribute renewable energies with the highest flexibility. The discussion takes into account two concepts that are often overlooked: the energy return on investment (EROI) and the limited availability of natural resources-particularly minerals-which are needed to manufacture energy converters and storage devices on a multi-TW scale.

  13. Investigation of Organic Solar Cells Based on Donor——A ccepter Heterojunction%Investigation of Organic Solar Cells Based onDonor——A ccepter Heterojunction

    Institute of Scientific and Technical Information of China (English)

    Gao Yinhao

    2008-01-01

    The single-l ayer structure and heterojunction structure organic solar cells based on copper phthalocyanine (CuPc),3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) and fullerene C60 were fabricated to study their photovoltaic (PV) properties. The PV performance of heterojunction structure solar cells was improved compared with the single layer structure cell.This is due to the introduction of donor-acceptor heterojunction that both expands the absorption range and offers efficient excit on dissociation site.In heterojunction structure solar cells,the PV performance of device with C60 as acceptor has highly improved because C60 has longer diffusion length o f excitons.

  14. Development of concentrator solar cells

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

  15. Solar cell is not absolutely ecologically sound

    Energy Technology Data Exchange (ETDEWEB)

    Van Calmthout, M.

    1988-11-01

    The University of Utrecht, Netherlands, inventorized the social costs of a large-scale solar cell industry in particular with regard to the environmental impacts. During production and dismantlement of photovoltaic systems hazardous wastes and dangerous situations can be released respectively can occur. The most important results are discussed. Four solar cell technologies are highlighted: the crystalline silicon solar cell, the amorphous silicon solar cell, the CdS/CuInSe/sub 2/ solar cell, and the GaAs solar cell. 1 fig., 1 tab.

  16. Photon upconversion for thin film solar cells

    NARCIS (Netherlands)

    de Wild, J.

    2012-01-01

    In this research one of the many possible methods to increase the efficiency of solar cells is described. The method investigated is based on adapting the solar light in such a way that the solar cell can convert more light into electricity. The part of the solar spectrum that is adapted is the part

  17. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; Kuznetsov, V. I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  18. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; V. I. Kuznetsov

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  19. Porphyrins and phthalocyanines in solar photovoltaic cells

    OpenAIRE

    Walter, Michael G.; Rudine, Alexander B.; Wamser, Carl C.

    2010-01-01

    This review summarizes recent advances in the use of porphyrins, phthalocyanines, and related compounds as components of solar cells, including organic molecular solar cells, polymer cells, and dye-sensitized solar cells. The recent report of a porphyrin dye that achieves 11% power conversion efficiency in a dye-sensitized solar cell indicates that these classes of compounds can be as efficient as the more commonly used ruthenium bipyridyl derivatives.

  20. Current-Enhanced Quantum Well Solar Cells

    Institute of Scientific and Technical Information of China (English)

    LOU Chao-Gang; SUN Qiang; XU Jun; ZHANG Xiao-Bing; LEI Wei; WANG Bao-Ping; CHEN Wen-Jun; QIAO Zai-Xiang

    2006-01-01

    We present the experimental results that demonstrate the enhancement of the short-circuit current of quantum well solar cells. The spectral response shows that the introduction of quantum wells extends the absorption spectrum of solar cells. The current densities under different truncated spectrums significantly increase, showing that quantum well solar cells are suitable to be the middle cells of GaInP/GaAs/Ge triple-junction solar cells to increase their overall conversion efficiency.

  1. Integrating Copper Nanowire Electrodes for Low Temperature Perovskite Photovoltaic Cells

    Science.gov (United States)

    Mankowski, Trent

    Recent advances in third generation photovoltaics, particularly the rapid increase in perovskite power conversion efficiencies, may provide a cheap alternative to silicon solar cells in the near future. A key component to these devices is the transparent front electrode, and in the case of Dye Sensitized Solar Cells, it is the most expensive part. A lightweight, cost-effective, robust, and easy-to-fabricate new generation TCE is required to enable competition with silicon. Indium Tin Oxide, commonly used in touchscreen devices, Organic Light Emitting Diodes (OLEDs), and thin film photovoltaics, is widely used and commonly referred to as the industry standard. As the global supply of indium decreases and the demand for this TCE increases, a similar alternative TCE is required to accompany the next generation solar cells that promise energy with lighter and significantly cheaper modules. This alternative TCE needs to provide similar sheet resistance and optical transmittance to ITO, while also being mechanically and chemically robust. The work in this thesis begins with an exploration of several synthesized ITO replacement materials, such as copper nanowires, conductive polymer PEDOT:PSS, zinc oxide thin films, reduced graphene oxide and combinations of the above. A guiding philosophy to this work was prioritizing cheap, easy deposition methods and overall scalability. Shortcomings of these TCEs were investigated and different materials were hybridized to take advantage of each layers strengths for development of an ideal ITO replacement. For CuNW-based composite electrodes, 85% optical transmittance and 25 O/sq were observed and characterized to understand the underlying mechanisms for optimization. The second half of this work is an examination of many different perovskite synthesis methods first to achieve highest performance, and then to integrate compatible methods with our CuNW TCEs. Several literature methods investigated were irreproducible, and those that

  2. Graphene-based transparent electrodes for hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Pengfei eLi

    2014-11-01

    Full Text Available The graphene-based transparent and conductive films were demonstrated to be cost-effective electrodes working in organic-inorganic hybrid Schottky solar cells. Large area graphene films were produced by chemical vapor deposition (CVD on copper foils and transferred onto glass as transparent electrodes. The hybrid solar cell devices consist of solution processed poly (3, 4-ethlenedioxythiophene: poly (styrenesulfonate (PEDOT: PSS which is sandwiched between silicon wafer and graphene electrode. The solar cells based on graphene electrodes, especially those doped with HNO3, has comparable performance to the reference devices using commercial indium tin oxide (ITO. Our work suggests that graphene-based transparent electrode is a promising candidate to replace ITO.

  3. Solar cell circuit and method for manufacturing solar cells

    Science.gov (United States)

    Mardesich, Nick (Inventor)

    2010-01-01

    The invention is a novel manufacturing method for making multi-junction solar cell circuits that addresses current problems associated with such circuits by allowing the formation of integral diodes in the cells and allows for a large number of circuits to readily be placed on a single silicon wafer substrate. The standard Ge wafer used as the base for multi-junction solar cells is replaced with a thinner layer of Ge or a II-V semiconductor material on a silicon/silicon dioxide substrate. This allows high-voltage cells with multiple multi-junction circuits to be manufactured on a single wafer, resulting in less array assembly mass and simplified power management.

  4. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Lincan [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Shen, Hongmei [Cancer Center of Integrative Medicine, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhao, Guangqiang [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Yang, Runxiang [Cancer Chemotherapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Cai, Xinyi [Colorectal Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Zhang, Lijuan [Department of Pathology, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Jin, Congguo [Cancer Institute, The Third Affiliated Hospital of Kunming Medical University, Kunming (China); Huang, Yunchao, E-mail: daliduanlincan@163.com [Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming (China)

    2014-04-18

    Highlights: • Disulfiram and copper synergistically inhibit lung cancer cell proliferation. • Lung cancer cell colony formation ability is inhibited by Disulfiram/copper. • Disulfiram/copper increases the sensitivity of cisplatin to lung cancer cells. • Lung cancer stem cells are specifically targeted by Disulfiram/copper complex. - Abstract: Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  5. PHOTOELECTROCHEMICAL SOLAR CELLS BASED ON DYE ...

    African Journals Online (AJOL)

    potential application in liquid junction photovoltaic cells. ... negative than the semiconductor conduction band potential to enable ... carbon nanotubes could help to make nanoparticle- based solar ..... nanocrystallinc solar cells: synthesis and.

  6. Graded bandgap perovskite solar cells

    Science.gov (United States)

    Ergen, Onur; Gilbert, S. Matt; Pham, Thang; Turner, Sally J.; Tan, Mark Tian Zhi; Worsley, Marcus A.; Zettl, Alex

    2017-05-01

    Organic-inorganic halide perovskite materials have emerged as attractive alternatives to conventional solar cell building blocks. Their high light absorption coefficients and long diffusion lengths suggest high power conversion efficiencies, and indeed perovskite-based single bandgap and tandem solar cell designs have yielded impressive performances. One approach to further enhance solar spectrum utilization is the graded bandgap, but this has not been previously achieved for perovskites. In this study, we demonstrate graded bandgap perovskite solar cells with steady-state conversion efficiencies averaging 18.4%, with a best of 21.7%, all without reflective coatings. An analysis of the experimental data yields high fill factors of ~75% and high short-circuit current densities up to 42.1 mA cm-2. The cells are based on an architecture of two perovskite layers (CH3NH3SnI3 and CH3NH3PbI3-xBrx), incorporating GaN, monolayer hexagonal boron nitride, and graphene aerogel.

  7. Fullerene based organic solar cells

    NARCIS (Netherlands)

    Popescu, Lacramioara Mihaela

    2008-01-01

    The direct conversion of the sunlight into electricity is the most elegant process to generate environmentally-friendly renewable energy. Plastic solar cells offer the prospect of flexible, lightweight, lower cost of manufacturing, and hopefully an efficient way to produce electricity from sunlight.

  8. Semi-transparent solar cells

    Science.gov (United States)

    Sun, J.; Jasieniak, J. J.

    2017-03-01

    Semi-transparent solar cells are a type of technology that combines the benefits of visible light transparency and light-to-electricity conversion. One of the biggest opportunities for such technologies is in their integration as windows and skylights within energy-sustainable buildings. Currently, such building integrated photovoltaics (BIPV) are dominated by crystalline silicon based modules; however, the opaque nature of silicon creates a unique opportunity for the adoption of emerging photovoltaic candidates that can be made truly semi-transparent. These include: amorphous silicon-, kesterite-, chalcopyrite-, CdTe-, dye-sensitized-, organic- and perovskite- based systems. For the most part, amorphous silicon has been the workhorse in the semi-transparent solar cell field owing to its established, low-temperature fabrication processes. Excitement around alternative classes, particularly perovskites and the inorganic candidates, has recently arisen because of the major efficiency gains exhibited by these technologies. Importantly, each of these presents unique opportunities and challenges within the context of BIPV. This topic review provides an overview into the broader benefits of semi-transparent solar cells as building-integrated features, as well as providing the current development status into all of the major types of semi-transparent solar cells technologies.

  9. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  10. Fullerene based organic solar cells

    NARCIS (Netherlands)

    Popescu, Lacramioara Mihaela

    2008-01-01

    The direct conversion of the sunlight into electricity is the most elegant process to generate environmentally-friendly renewable energy. Plastic solar cells offer the prospect of flexible, lightweight, lower cost of manufacturing, and hopefully an efficient way to produce electricity from sunlight.

  11. Investigation of transport properties of ZnO/PbS heterojunction solar cells

    Science.gov (United States)

    Cheng, Yang; Whitaker, Michael D. C.; Whiteside, Vincent R.; Bumm, Lloyd A.; Sellers, Ian R.

    Lead sulfide (PbS) and lead selenide (PbSe) colloidal quantum dots (CQDs) are considered as a potential candidate material for solar cell applications due to their large band gap tunability range (0.5 to 1.7 eV) and cost-effective solution based processing. A series of Glass/ITO/ZnO/PbS/MoO3/Au heterojunction solar cells were processed and analyzed. A stable (reproducible) 2% conversion efficiency under 1-sun is achieved based on the result of J - V measurements. Absorbance and external quantum efficiency (EQE) measurements clearly show photo-generated carrier extraction from PbS active layers in the solar cell. However, a non-ideal J - V behavior is observed in current-voltage measurements. This behavior may be attributed to a high density of trap states at the QD surface or defect states at the PbS/ZnO or ITO/ZnO interfaces. C-V and Impedance spectroscopy measurements are used to study this unusual behavior. These techniques could also help probe the transport properties and limitation of these heterojunction solar cells. This research is funded through NASA EPSCoR program Award # NNX13AN101A.

  12. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    Concentrated sunlight provides a novel approach to the study of the physical and electrical parameters of organic solar cells. The study of performance of organic solar cells at high solar concentrations provides insight into the physics, which cannot be studied with conventional solar simulators....... A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...... studies of polymers for organic solar cells. Degradation was monitored by the evolution of the UV-vis absorption over time. Varying the solar intensity from 1 to 200 suns, the degradation rates were increased by more than a factor of 100 relative to degradation at 1 simulated sun. 5 different polymers...

  13. Concentrated sunlight for organic solar cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    2010-01-01

    Concentrated sunlight provides a novel approach to the study of the physical and electrical parameters of organic solar cells. The study of performance of organic solar cells at high solar concentrations provides insight into the physics, which cannot be studied with conventional solar simulators...... studies of polymers for organic solar cells. Degradation was monitored by the evolution of the UV-vis absorption over time. Varying the solar intensity from 1 to 200 suns, the degradation rates were increased by more than a factor of 100 relative to degradation at 1 simulated sun. 5 different polymers....... A high solar intensity study of inverted P3HT:PCBM solar cells is presented. Performance peak positions were found to be in the range of 1-5 suns, with smaller cells peaking at higher solar concentrations. Additionally, concentrated sunlight is demonstrated as a practical tool for accelerated stability...

  14. Silicon solar cells: Physical metallurgy principles

    Science.gov (United States)

    Mauk, Michael G.

    2003-05-01

    This article reviews the physical metallurgy aspects of silicon solar cells. The production of silicon solar cells relies on principles of thermochemical extractive metallurgy, phase equilibria, solidification, and kinetics. The issues related to these processes and their impact on solar cell performance and cost are discussed.

  15. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  16. Film adhesion in amorphous silicon solar cells

    Indian Academy of Sciences (India)

    A R M Yusoff; M N Syahrul; K Henkel

    2007-08-01

    A major issue encountered during fabrication of triple junction -Si solar cells on polyimide substrates is the adhesion of the solar cell thin films to the substrates. Here, we present our study of film adhesion in amorphous silicon solar cells made on different polyimide substrates (Kapton VN, Upilex-S and Gouldflex), and the effect of tie coats on film adhesion.

  17. Increasing intracellular bioavailable copper selectively targets prostate cancer cells.

    Science.gov (United States)

    Cater, Michael A; Pearson, Helen B; Wolyniec, Kamil; Klaver, Paul; Bilandzic, Maree; Paterson, Brett M; Bush, Ashley I; Humbert, Patrick O; La Fontaine, Sharon; Donnelly, Paul S; Haupt, Ygal

    2013-07-19

    The therapeutic efficacy of two bis(thiosemicarbazonato) copper complexes, glyoxalbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(gtsm)] and diacetylbis[N4-methylthiosemicarbazonato]Cu(II) [Cu(II)(atsm)], for the treatment of prostate cancer was assessed in cell culture and animal models. Distinctively, copper dissociates intracellularly from Cu(II)(gtsm) but is retained by Cu(II)(atsm). We further demonstrated that intracellular H2gtsm [reduced Cu(II)(gtsm)] continues to redistribute copper into a bioavailable (exchangeable) pool. Both Cu(II)(gtsm) and Cu(II)(atsm) selectively kill transformed (hyperplastic and carcinoma) prostate cell lines but, importantly, do not affect the viability of primary prostate epithelial cells. Increasing extracellular copper concentrations enhanced the therapeutic capacity of both Cu(II)(gtsm) and Cu(II)(atsm), and their ligands (H2gtsm and H2atsm) were toxic only toward cancerous prostate cells when combined with copper. Treatment of the Transgenic Adenocarcinoma of Mouse Prostate (TRAMP) model with Cu(II)(gtsm) (2.5 mg/kg) significantly reduced prostate cancer burden (∼70%) and severity (grade), while treatment with Cu(II)(atsm) (30 mg/kg) was ineffective at the given dose. However, Cu(II)(gtsm) caused mild kidney toxicity in the mice, associated primarily with interstitial nephritis and luminal distention. Mechanistically, we demonstrated that Cu(II)(gtsm) inhibits proteasomal chymotrypsin-like activity, a feature further established as being common to copper-ionophores that increase intracellular bioavailable copper. We have demonstrated that increasing intracellular bioavailable copper can selectively kill cancerous prostate cells in vitro and in vivo and have revealed the potential for bis(thiosemicarbazone) copper complexes to be developed as therapeutics for prostate cancer.

  18. Asymmetric tandem organic solar cells

    Science.gov (United States)

    Howells, Thomas J.

    Organic photovoltaics (OPVs) is an area that has attracted much attention recently as a potential low cost, sustainable source of energy with a good potential for full-scale commercialisation. Understanding the factors that determine the efficiency of such cells is therefore a high priority, as well as developing ways to boost efficiency to commercially-useful levels. In addition to an intensive search for new materials, significant effort has been spent on ways to squeeze more performance out of existing materials, such as multijunction cells. This thesis investigates double junction tandem cells in the context of small molecule organic materials. . Two different organic electron donor materials, boron subphthalocyanine chloride (SubPc) and aluminium phthalocyanine chloride (ClAlPc) were used as donors in heterojunctions with C60 to create tandem cells for this thesis. These materials have been previously used for solar cells and the absorption spectra of the donor materials complement each other, making them good candidates for tandem cell architectures. The design of the recombination layer between the cells is considered first, with silver nanoparticles demonstrated to work well as recombination centres for charges from the front and back sub-cells, necessary to avoid a charge build-up at the interface. The growth conditions for the nanoparticles are optimised, with the tandem cells outperforming the single heterojunction architecture. Optical modelling is considered as a method to improve the understanding of thin film solar cells, where interference effects from the reflective aluminium electrode are important in determining the magnitude of absorption a cell can achieve. The use of such modelling is first demonstrated in hybrid solar cells based on a SubPc donor with a titanium oxide (TiOx) acceptor; this system is ideal for observing the effects of interference as only the SubPc layer has significant absorption. The modelling is then applied to tandem cells

  19. Polymer-based solar cells

    Directory of Open Access Journals (Sweden)

    Alex C. Mayer

    2007-11-01

    Full Text Available A significant fraction of the cost of solar panels comes from the photoactive materials and sophisticated, energy-intensive processing technologies. Recently, it has been shown that the inorganic components can be replaced by semiconducting polymers capable of achieving reasonably high power conversion efficiencies. These polymers are inexpensive to synthesize and can be solution-processed in a roll-to-roll fashion with high throughput. Inherently poor polymer properties, such as low exciton diffusion lengths and low mobilities, can be overcome by nanoscale morphology. We discuss polymer-based solar cells, paying particular attention to device design and potential improvements.

  20. Soft X-ray absorption spectroscopy investigation of the surface chemistry and treatments of copper indium gallium diselenide (CIGS)

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig; Nordlund, Dennis; Sokaras, Dimosthenis; Contreras, Miguel; Weng, Tsu-Chien; Mansfield, Lorelle; Hurst, Katherine E.; Dameron, Arrelaine; Ramanathan, Kannan; Prendergast, David; Christensen, Steven T.

    2017-02-01

    The surface and near surface structure of copper-indium-gallium-selenide (CIGS) absorber layers is integral to the producing a high-quality photovoltaic junction. By using X-ray absorption spectroscopy (XAS) and monitoring multiple elemental absorption edges with both theory and experiment, we are able to identify several features of the surface of CIGS as a function of composition and surface treatments. The XAS data shows trends in the near surface region of oxygen, copper, indium and gallium species as the copper content is varied in the films. The oxygen surface species are also monitored through a series of experiments that systematically investigates the effects of water and various solutions of: ammonium hydroxide, cadmium sulfate, and thiourea. These being components of cadmium sulfide chemical bath deposition (CBD). Characteristics of the CBD are correlated with a restorative effect that produces as normalized, uniform surface chemistry as measured by XAS. This surface chemistry is found in CIGS solar cells with excellent power conversion efficiency (<19%). The results provide new insight for CIGS processing strategies that seek to replace CBD and/or cadmium sulfide.

  1. Application of Atomic Layer Deposition in New Generations of Solar Cells%原子层沉积技术在新型太阳能电池中的应用∗

    Institute of Scientific and Technical Information of China (English)

    胡航; 董兵海; 万丽; 孔梦琴; 赵丽; 王二静; 王世敏

    2016-01-01

    Atomic layer deposition (ALD),as an important and developing process for the fabrication of novel structures,demonstrates peculiar advantages in the preparation of nanostructures and composite nanostructures,and promises great potential and prospects in new thin-film solar cells.In the review,the applications of ALD technology in silicon-based solar cells and copper indium gallium selenide (CIGS)type film solar cells are briefly introduced after describing the working principle of ALD,and then the utilization of ALD-fabricated functional nanofilms in new thin-film solar cells represented by dye-sensitized solar cells (DSSCs)and perovskite solar cells (PSCs)is empathetically elaborated.At last,the characteristics and advantages of functional nanofilms fabricated by ALD technology are sum-marized,and the application potential and tendency of ALD technology in new energy material and devices are prospected.%原子层沉积技术(ALD)是一项正处于发展之中、在许多领域具有巨大应用前景的新型材料制备技术,该技术在纳米结构和纳米复合结构的制备方面显示出独特的优势,在新型薄膜太阳能电池领域呈现出巨大的发展潜力和前景。首先概述了 ALD技术的工作原理,简要介绍了近几年 ALD技术在硅基太阳能电池和铜铟镓硒薄膜电池(CIGS)中的应用,然后重点综述了原子层沉积纳米功能薄膜在染料敏化太阳能电池(DSSCs)和有机-无机杂化钙钛矿太阳能电池(PSCs)为代表的新型薄膜太阳能电池中的应用。最后,总结了原子层沉积功能薄膜的特点和优势,展望了 ALD在新能源材料与器件领域的应用前景和发展趋势。

  2. Copper(II) complexes encapsulated in human red blood cells.

    Science.gov (United States)

    Bonomo, R P; De Flora, A; Rizzarelli, E; Santoro, A M; Tabbí, G; Tonetti, M

    1995-09-01

    Copper(II) complexes were encapsulated in human red blood cells in order to test their possible use as antioxidant drugs by virtue of their labile character. ESR spectroscopy was used to verify whether encapsulation in red blood cells leads to the modification of such complexes. With copper(II) complexes bound to dipeptides or tripeptides, an interaction with hemoglobin was found to be present, the hemoglobin having a strong coordinative site formed by four nitrogen donor atoms. Instead, with copper(II) complexes with TAD or PheANN3, which have the greatest stability. ESR spectra always showed the original species. Only the copper(II) complex with GHL gave rise to a complicated behavior, which contained signals from iron(III) species probably coming from oxidative processes. Encapsulation of all copper(II) complexes in erythrocytes caused a slight oxidative stress, compared to the unloaded and to the native cells. However, no significant differences were observed in the major metabolic properties (GSH, glycolytic rate, hexose monophosphate shunt, Ca(2+)-ATPase) of erythrocytes loaded with different copper(II) complexes, with the exception of methemoglobin levels, which were markedly increased in the case of [Cu(GHL)H-1] compared to [Cu(TAD)]. This latter finding suggests that methemoglobin formation can be affected by the type of complex used for encapsulation, depending on the direct interaction of the copper(II) complex with hemoglobin.

  3. Galvanic cell without liquid junction for potentiometric determination of copper.

    Science.gov (United States)

    Migdalski, Jan; Błaz, Teresa; Zrałka, Barbara; Lewenstam, Andrzej

    2007-07-01

    This paper describes potentiometric measurements in an integrated galvanic cell with both indicator and reference electrodes. Both electrodes are conducting polymer-based. The copper-sensitive indicator electrode is made by using poly(3,4-ethylenedioxythiophene) (PEDOT) doped with 2-(o-arsenophenylazo)-1,8-dihydroxynaphthalene-3,6-disulphonic sodium salt (Arsenazo-I) as the electroactive substance in the film, while the reference electrode is based on PEDOT doped by 2-morpholineoethanesulfonic acid (MES). It is shown that the galvanic cell can be used for determination of copper both in non-aqueous media (where all PVC-based membranes failed) and in the presence of chloride ions, which disturb the signal of conventional copper ion-selective electrodes with solid-state membranes. It is further shown that the titration of copper ions can be successfully monitored using the described electrochemical cell.

  4. Towards stable silicon nanoarray hybrid solar cells.

    Science.gov (United States)

    He, W W; Wu, K J; Wang, K; Shi, T F; Wu, L; Li, S X; Teng, D Y; Ye, C H

    2014-01-16

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.

  5. A Rapid and Cost-Effective Laser Based Synthesis of High Purity Cadmium Selenide Quantum Dots.

    Science.gov (United States)

    Gondall, M A; Qahtan, Talal F; Dastageer, M A; Yamani, Z H; Anjum, D H

    2016-01-01

    A rapid and cost effective method is developed to synthesize high purity cadmium Selenide (CdSe) quantum dots in acetone medium using second harmonic of Nd:YAG nanosecond pulsed laser of 532 nm wavelength. The thermal agglomeration due the nanosecond pulse duration of the laser was successfully eliminated by using unfocussed laser beam and thereby providing a favorable conditions for the synthesis of quantum dots having the grain size of 3 nm. The morphological and optical characterizations like XRD, HRTEM, optical absorption of the synthesized CdSe quantum dots, reveal that the material possesses the similar characteristics of the one synthesized through cumbersome wet chemical methods. Relative to the CdSe bulk material, the synthesized CdSe quantum dots showed a blue shift in the measured band gap energy from near infrared spectral region to visible region, making this material very attractive for many solar energy harvesting applications like photo-catalysis and solar cells.

  6. Pin solar cells made of amorphous silicon

    Science.gov (United States)

    Plaettner, R. D.; Kruehler, W. W.

    Investigations leading to solar cells with a structure SnO2-pin and an efficiency up to 9.8% are reviewed. The production of large-surface metal/pin/transparent conductive oxide (TCO)-solar cells is discussed. A two-chamber reactor, grid structure and tinning of cells, and an a-Si-module are described. The production of glass/TCO/pin/metal-solar cells and a-SiGe:H-compounds is outlined. Measurements on solar cells and diodes including the efficiency of a-Si:H-solar cells, spectral sensitivity, diffusion lengths, field effect measurements, and modifications of solar cells (space-charge limited currents, reduction of solar cells aging) are treated.

  7. ELECTRON BOMBARDMENT OF SILICON SOLAR CELLS,

    Science.gov (United States)

    DAMAGE, ELECTRON IRRADIATION, SOLAR CELLS , SILICON, PHOTOELECTRIC CELLS(SEMICONDUCTOR), QUARTZ, GLASS, SHIELDING, CRYSTAL DEFECTS, HEAT TREATMENT, ARTIFICIAL SATELLITES, SPACECRAFT, GRAPHICS, GRAPHICS.

  8. Hybrid emitter all back contact solar cell

    Science.gov (United States)

    Loscutoff, Paul; Rim, Seung

    2016-04-12

    An all back contact solar cell has a hybrid emitter design. The solar cell has a thin dielectric layer formed on a backside surface of a single crystalline silicon substrate. One emitter of the solar cell is made of doped polycrystalline silicon that is formed on the thin dielectric layer. The other emitter of the solar cell is formed in the single crystalline silicon substrate and is made of doped single crystalline silicon. The solar cell includes contact holes that allow metal contacts to connect to corresponding emitters.

  9. High Efficiency Polymer Solar Cells Technologies

    Institute of Scientific and Technical Information of China (English)

    Abdrhman M G; LI Hang-quan; ZHANG Li-ye; ZHOU Bing

    2006-01-01

    The conjugated polymer-based solar cell is one of the most promising devices in search of sustainable, renewable energy sources in last decade. It is the youngest field in organic solar cell research and also is certainly the fastest growing one at the moment. In addition, the key factor for polymer-based solar cells with high-efficiency is to invent new materials. Organic solar cell has attracted significant researches and commercial interest due to its low cost in fabrication and flexibility in applications. However, they suffer from relatively low conversion efficiency. The summarization of the significance and concept of high efficiency polymer solar cell technologies are presented.

  10. Morphology of polymer solar cells

    DEFF Research Database (Denmark)

    Böttiger, Arvid P.L.

    the morphology of the active layer of the solar cells when produced with water based inks using R2R coating. Using a broad range of scattering and imaging techniques, cells coated with water based inks were investigated, and compared to their spin coated counterpart. Two challenges to be addressed were small...... cells. Ptychography offers desirable properties such as potentially high resolution, quantitative contrast and possibility for tomography. Both these X-ray imaging techniques were used to measure the samples with high spatial and chemical resolution. In addition, these experiments explored and reviewed...

  11. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    OpenAIRE

    Ming-Jer Jeng; Zih-Yang Chen; Yu-Ling Xiao; Liann-Be Chang; Jianping Ao; Yun Sun; Ewa Popko; Witold Jacak; Lee Chow

    2015-01-01

    This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies w...

  12. Automated solar-cell-array assembly machine

    Science.gov (United States)

    Costogue, E. N.; Mueller, R. L.; Person, J. K.; Yasui, R. K.

    1978-01-01

    Continuous-feeding machine automatically bonds solar cells to printed-circuit substrate. In completed machine, cells move to test station where electrical characteristics could be checked. If performance of cell is below specifications, that cell is marked and removed. All machine functions are synchronized by electronics located within unit. It may help to lower costs in future solar-cell production.

  13. Three-Terminal Amorphous Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Cheng-Hung Tai

    2011-01-01

    Full Text Available Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si solar cell achieved an efficiency of 11.4%, while the efficiency of a typical a-Si p-i-n solar cell was 9.0%. Furthermore, an efficiency of 11.7% was achieved by thickness optimization of the three-terminal solar cell.

  14. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration.

    Directory of Open Access Journals (Sweden)

    Andrew Crowe

    Full Text Available Copper, an essential trace element acquired through nutrition, is an important co-factor for pro-angiogenic factors including vascular endothelial growth factor (VEGF. Decreasing bioavailable copper has been used as an anti-angiogenic and anti-cancer strategy with promising results. However, the role of copper and its potential as a therapy in mesothelioma is not yet well understood. Therefore, we monitored copper levels in progressing murine mesothelioma tumors and analyzed the effects of lowering bioavailable copper. Copper levels in tumors and organs were assayed using atomic absorption spectrophotometry. Mesothelioma tumors rapidly sequestered copper at early stages of development, the copper was then dispersed throughout growing tumor tissues. These data imply that copper uptake may play an important role in early tumor development. Lowering bioavailable copper using the copper chelators, penicillamine, trientine or tetrathiomolybdate, slowed in vivo mesothelioma growth but did not provide any cures similar to using cisplatin chemotherapy or anti-VEGF receptor antibody therapy. The impact of copper lowering on tumor blood vessels and tumor infiltrating T cells was measured using flow cytometry and confocal microscopy. Copper lowering was associated with reduced tumor vessel diameter, reduced endothelial cell proliferation (reduced Ki67 expression and lower surface ICAM/CD54 expression implying reduced endothelial cell activation, in a process similar to endothelial normalization. Copper lowering was also associated with a CD4(+ T cell infiltrate. In conclusion, these data suggest copper lowering is a potentially useful anti-mesothelioma treatment strategy that slows tumor growth to provide a window of opportunity for inclusion of other treatment modalities to improve patient outcomes.

  15. Conjugated Polymer Solar Cells

    Science.gov (United States)

    2006-05-01

    oxygen since their EPR and conductivity data indicated the presence of unpaired charges. On the other hand, intramolecular CT complexes have recently...been reported for polythiophene [2], where weak CT occurs from a polymer unit cell to the covalently bonded acceptor molecule. Nevertheless, it was...intracavity optical doubler (532 nm), diode lasers (670, 810 nm) and light emitting diodes (490, 630 nm). Measurements were conducted for pump intensity 0.1

  16. NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL

    OpenAIRE

    Phuyal, Dibya

    2012-01-01

    Dye Sensitized solar cells (DSSCs) are a promising candidate for next generation photovoltaic panels due to their low cost, easy fabrication process, and relative high efficiency. Despite considerable effort on the advancement of DSSCs, the efficiency has been stalled for nearly a decade due to the complex interplay among various DSSC components. DSSCs consist of a photoanode on a conducting substrate, infiltrated dye for light absorption and electron injection, and an electrolyte to regenera...

  17. Solution-Phase Synthesis of SnSe Nanocrystals for Use in Solar Cells

    KAUST Repository

    Franzman, Matthew A.

    2010-03-31

    Nanocrystals of phase-pure tin(II) selenide (SnSe) were synthesized via a solution-phase route employing stoichiometric amounts of di-tert-butyl dlselenlde as a novel and facile selenium source. The direct band gap of the resulting nanocrystals (E8 = 1.71 eV) is significantly blue-shifted relative to the bulk value (E8 = 1.30 eV), a likely consequence of quantum confinement resulting from the relatively small average diameter of the nanocrystals (μD < 20 nm). Preliminary solar cell devices incorporating SnSe nanocrystals into a poly[2-methoxy5-(3\\',7\\'-d1methyloctyloxy)-1,4- phenylenev1nylene] matrix demonstrate a significant enhancement In quantum efficiency and short-circuit current density, suggesting that this earth-abundant material could be a valuable component In future photovoltaic devices. Copyright © 2010 American Chemical Society.

  18. Flexible, Low Cost, and Platinum-Free Counter Electrode for Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Ali, Abid; Shehzad, Khurram; Ur-Rahman, Faiz; Shah, Syed Mujtaba; Khurram, Muhammad; Mumtaz, Muhammad; Sagar, Rizwan Ur Rehman

    2016-09-28

    A platinum-free counter electrode composed of surface modified aligned multiwalled carbon nanotubes (MWCNTs) fibers was fabricated for efficient flexible dye-sensitized solar cells (DSSCs). Surface modification of MWCNTs fibers with simple one step hydrothermal deposition of cobalt selenide nanoparticles, confirmed by scanning electron microscopy and X-ray diffraction, provided a significant improvement (∼2-times) in their electrocatalytic activity. Cyclic voltammetry and electrochemical impedance spectroscopy suggest a photoelectric conversion efficiency of 6.42% for our modified fibers, higher than 3.4% and 5.6% efficeincy of pristine MWCNTs fiber and commonly used Pt wire, respectively. Good mechanical and performance stability after repeated bending and high output voltage for in-series connection suggest that our surface modified MWCNTs fiber based DSSCs may find applications as flexible power source in next-generation flexible/wearable electronics.

  19. Recovery of Pb-Sn Alloy and Copper from Photovoltaic Ribbon in Spent Solar Module

    Science.gov (United States)

    Lee, Jin-Seok; Ahn, Young-Soo; Kang, Gi-Hwan; Wang, Jei-Pil

    2017-09-01

    This research was attempted to recover metal alloy and copper from photovoltaic ribbon (PV ribbon) of spent solar module by means of thermal treatment. In this study, thermal method newly proposed was applied to remove coating layer composed of tin and lead and separate copper substrate. Using thermal treatment under reductive gas atmosphere with CH4 gas coating layer was easily melted down at the range of temperature of 700 °C to 800 °C. In the long run, metal alloy and copper substrate were successfully obtained and their chemical compositions were examined by inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM) and energy dispersive x-ray Spectroscopy (EDS).

  20. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  1. The formation of CuInSe{sub 2}-based thin-film solar cell absorbers from alternative low-cost precursors

    Energy Technology Data Exchange (ETDEWEB)

    Jost, S.

    2008-01-18

    This work deals with real-time investigations concerning the crystallisation process of CuInSe{sub 2}-based thin-film solar cell absorbers while annealing differently produced and composed ''low-cost'' precursors. Various types of precursors have been investigated concerning their crystallisation behaviour. Three groups of experiments have been performed: (i) Investigations concerning the crystallisation process of the quaternary chalcopyrite Cu(In,Al)Se{sub 2} and Cu(In,Al)S{sub 2}, (ii) investigations concerning the formation process of the compound semiconductor CuInSe{sub 2} from electroplated precursors, and (iii) investigations concerning the crystallisation of Cu(In,Ga)Se{sub 2} using precursors with thermally evaporated indium. A specific sample surrounding has been constructed, which enables to perform time-resolved angle-dispersive X-ray powder diffraction experiments during the annealing process of precursor samples. A thorough analysis of subsequently recorded diffraction patterns using the Rietveld method provides a detailed knowledge about the semiconductor crystallisation process while annealing. Based on these fundamental investigations, conclusions have been drawn concerning an adaptation of the precursor deposition process in order to optimise the final solar cell results. The investigations have shown, that one class of electroplated precursors shows a crystallisation behaviour identical to the one known for vacuum-deposited precursors. The investigations concerning the crystallisation process of the quaternary chalcopyrite Cu(In,Al)Se{sub 2} revealed, that the chalcopyrite forms from the ternary selenide (Al,In){sub 2}Se{sub 3} and Cu{sub 2}Se at elevated process temperatures. This result is used to explain the separation of the absorber layer into an aluminum-rich and an indium-rich chalcopyrite phase, which has been observed at processed Cu(In,Al)Se{sub 2} absorbers from several research groups. In addition, differences

  2. Semiconductors for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.J. (Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Materials Science and Engineering)

    1991-01-01

    This review covers the historical background of the solar cell development, the physical principles of photovoltaic energy conversion, technology of solar cell devices and the structural and physical properties of lattice defects in semiconductors. Single crystal and polycrystalline silicon, single crystal and epitaxial gallium arsenide, polycrystalline thin films and amorphous thin films are discussed in detail. Semiconductors have emerged as the most promising group of materials which can convert sunlight directly into electrical energy. They utilize the fundamental physical process that a photon that penetrates into the semiconductor and is absorbed can generate electron-hole pairs. Because of their opposite charges they can be separated by an internal electrical field and collected at two contacts thus giving rise to a voltage and photocurrent if the two contacts are connected externally. In semiconductors internal electric fields occur in connection with space charges at junctions and a variety of technological concepts are used to produce a built-in voltage. The most widely used device principle is the operation of a solar cell as a diode or p-n junction. Alternative concepts are heterojunction devices where the materials on either side of the junction are different semiconductors. (author).

  3. Perovskite solar cells: Stability lies at interfaces

    Science.gov (United States)

    Lira-Cantú, Mónica

    2017-07-01

    Perovskite solar cells are developing fast but their lifetimes must be extended. Now, large-area printed perovskite solar modules have been shown to be stable for more than 10,000 hours under continuous illumination.

  4. Investigation and Measurement of Copper Nanofluid Impact on Thermal Efficiency of Solar Collectors

    Directory of Open Access Journals (Sweden)

    Assadi Morteza Khalaji

    2014-07-01

    Full Text Available This study compared the impacts of using copper nanofliud to enhance the efficiency of flat solar collectors with closed loop and under forced convection heat transfer circumstances to traditional work fluids. Various concentrations of nanoparticles in water and water/glycol, from 250ppm to 3000ppm, were examined for volume fraction impact. Results indicate that the laboratory tests were different from those under real conditions because of the high concentration of nanoparticles used in laboratory tests; however, by using nanofluid (even with low concentrations around 0.3% solar collector efficiency improved (3.2%.Results have also shown that the use of copper nanofluid in ethylene glycol as the base fluid causes a significant reduction in collector efficiency, due to the increase in viscosity. However, using higher flow rates caused the heat transfer rate to rise because of increased turbulence.

  5. Investigation and Measurement of Copper Nanofluid Impact on Thermal Efficiency of Solar Collectors

    OpenAIRE

    Assadi Morteza Khalaji; Nasersharifi Yahya

    2014-01-01

    This study compared the impacts of using copper nanofliud to enhance the efficiency of flat solar collectors with closed loop and under forced convection heat transfer circumstances to traditional work fluids. Various concentrations of nanoparticles in water and water/glycol, from 250ppm to 3000ppm, were examined for volume fraction impact. Results indicate that the laboratory tests were different from those under real conditions because of the high concentration of nanoparticles used in labo...

  6. Thin-Film Photovoltaic Cells: Long-Term Metal(loid) Leaching at Their End-of-Life

    NARCIS (Netherlands)

    Zimmermann, Y.S.; Schäffer, A.; Corvini, P.F.X.; Lenz, M.

    2013-01-01

    The photovoltaic effect of thin-film copper indium gallium selenide cells (CIGS) is conferred by the latter elements. Organic photovoltaic cells (OPV), relying on organic light-absorbing molecules, also contain a variety of metals (e.g., Zn, Al, In, Sn, Ag). The environmental impact of such

  7. Thin-Film Photovoltaic Cells: Long-Term Metal(loid) Leaching at Their End-of-Life

    NARCIS (Netherlands)

    Zimmermann, Y.S.; Schäffer, A.; Corvini, P.F.X.; Lenz, M.

    2013-01-01

    The photovoltaic effect of thin-film copper indium gallium selenide cells (CIGS) is conferred by the latter elements. Organic photovoltaic cells (OPV), relying on organic light-absorbing molecules, also contain a variety of metals (e.g., Zn, Al, In, Sn, Ag). The environmental impact of such technolo

  8. Silica-Copper Oxide Composite Thin Films as Solar Selective Coatings Prepared by Dipping Sol Gel

    Directory of Open Access Journals (Sweden)

    E. Barrera-Calva

    2008-01-01

    Full Text Available Silica-copper oxide (silica-CuO composite thin films were prepared by a dipping sol-gel route using ethanolic solutions comprised TEOS and a copper-propionate complex. Sols with different TEOS/Cu-propionate (Si/Cu molar ratios were prepared and applied on stainless steel substrates using dipping process. During the annealing process, copper-propionate complexes developed into particulate polycrystalline CuO dispersed in a partially crystallized silica matrix, as indicated by the X-ray diffraction (XRD and X-ray photoelectron spectroscopy (XPS analyses. The gel thermal analysis revealed that the prepared material might be stable up to 400°C. The silica-CuO/stainless steel system was characterized as a selective absorber surface and its solar selectivity parameters, absorptance (α, and emittance (ε were evaluated from UV-NIR reflectance data. The solar parameters of such a system were mostly affected by the thickness and phase composition of the SiO2-CuO film. Interestingly, the best solar parameters (α = 0.92 and ε = 0.2 were associated to the thinnest films, which comprised a CuO-Cu2O mixture immersed in the silica matrix, as indicated by XPS.

  9. Supramolecular photochemistry and solar cells

    Directory of Open Access Journals (Sweden)

    IHA NEYDE YUKIE MURAKAMI

    2000-01-01

    Full Text Available Supramolecular photochemistry as well as solar cells are fascinating topics of current interest in Inorganic Photochemistry and very active research fields which have attracted wide attention in last two decades. A brief outline of the investigations in these fields carried out in our Laboratory of Inorganic Photochemistry and Energy Conversion is given here with no attempt of an exhaustive coverage of the literature. The emphasis is placed on recent work and information on the above mentioned subjects. Three types of supramolecular systems have been the focus of this work: (i cage-type coordination compounds; (ii second-sphere coordination compounds, exemplified by ion-pair photochemistry of cobalt complexes and (iii covalently-linked systems. In the latter, modulation of the photoluminescence and photochemistry of some rhenium complexes are discussed. Solar energy conversion and development of thin-layer photoelectrochemical solar cells based on sensitization of nanocrystalline semiconductor films by some ruthenium polypyridyl complexes are presented as an important application that resulted from specifically engineered artificial assemblies.

  10. A study of nickel silicide in a conventional furnace for Ni/Cu contact monocrystalline-silicon solar cells

    Science.gov (United States)

    Min, Seon Kyu; Lee, Soo Hong

    2013-01-01

    High-conductivity contacts in place of screen-printed contacts are in demand for commercial solar cells. Also, simplifying the process steps is required for commercial solar cells. In addition, very expensive metals are necessary improved efficiency without using scarce. In this research, we replaced screen-printed contacts with Ni/Cu contacts in passivated emitter solar cells. A layer of nickel was used as the seed and the adhesion layer. The main contact was formed by plating with copper. Firing conditions in a conventional furnace were varied so as to form nickel silicide. The best cell showed a solar cell efficiency of 18.76%.

  11. Implementation of submicrometric periodic surface structures toward improvement of organic-solar-cell performances

    Science.gov (United States)

    Cocoyer, C.; Rocha, L.; Sicot, L.; Geffroy, B.; de Bettignies, R.; Sentein, C.; Fiorini-Debuisschert, C.; Raimond, P.

    2006-03-01

    Submicrometric periodic patterning of an organic solar cell surface is investigated in order to optimize the photovoltaic conversion efficiency of the device. Patterning is achieved using a single-step all-optical technique based on photoinduced mass transport in azopolymer films. The polymer film with a structured surface is used as a substrate for an organic solar cell based on a copper phthalocyanine/C60 heterojunction. The effect of periodic patterning is investigated through the solar-cell optical-absorption properties and external quantum efficiency measurements. The possibility to increase the short circuit current density and the corresponding photovoltaic conversion efficiency is evidenced with one-dimensional periodic structures.

  12. Nanostructures for Organic Solar Cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jarosław

    2016-01-01

    The experimental work in this thesis is focused on the fabrication of nanostructures that can be implemented in organic solar cell (OSC) architecture for enhancement of the device performance. Solar devices made from organic material are gaining increased attention, compared to their inorganic...... counterparts, due to the promising advantages, such as transparency, flexibility, ease of processing etc. But their efficiencies cannot be compared to the inorganic ones. Boosting the efficiency of OSCs by nanopatterning has thus been puzzling many researchers within the past years. Therefore various methods...... technique. Resist imprinted Al dimples drag the main focus showing increase in absorption and efficiency enhancement in poly(3-hexylthiophene-2,5-diyl) (P3HT) and Phenyl-C61-butyric acid methyl (PCBM) BHJ devices. Not limited to this, nanostructures by imprinting the organic layer of P3HT:PCBM and imprinted...

  13. Excretion of laccase by sycamore (Acer pseudoplatanus L.) cells. Effects of a copper deficiency.

    Science.gov (United States)

    Bligny, R; Gaillard, J; Douce, R

    1986-07-15

    Copper-deprived sycamore (Acer pseudoplatanus) cells do not excrete molecules of active laccase in their culture medium. In the range of 2-100 micrograms of copper initially present per litre of nutrient solution, the total laccase activity measured in the cell suspensions at the end of the exponential phase of growth was closely proportional to the amount of added copper. However, copper-deprived cells excreted the laccase apoprotein (laccase without copper) at the same rate as copper-supplied cells excreted the active, copper-containing, laccase. When the culture medium was initially supplied with limiting amounts of copper, the active laccase was excreted until all copper molecules were metabolized. Thereafter, the laccase apoprotein was excreted. Consequently, at the end of the exponential phase of growth, the cell supernatants contained a mixture of apoprotein and copper-containing laccase. After purification and concentration, this mixture of copper-containing laccase (blue) and laccase apoprotein (slightly yellow) showed a yellow-green colour. Under copper-limiting culture conditions an equivalent decrease of Type 1, Type 2 and Type 3 Cu2+ was observed. Addition of copper to copper-deficient enzyme solutions does not result in a recovery of the enzyme activity. However, when added to copper-deficient sycamore-cell suspensions, copper induced a recovery of the excretion of active enzyme, at a normal rate, within about 10 h. The first molecules of active laccase were excreted after 3-4 h.

  14. Solar Energy Cell with Rare Earth Film

    Institute of Scientific and Technical Information of China (English)

    Li Baojun; Yang Tao; Zhou Yao; Zhou Meng; Fu Xiliang; Fu Li

    2004-01-01

    The characteristic of the solar energy cell with the rare earth film according to theory of molecular structure was introduced.When sunlight shines, the molecules of the rare earth film can absorb energy of the photon and jump to the excited state from the basic state, and play a role in storing solar energy.When sunlight do not shine, the electron of the excited state returns to the basic state, the rare earth film can automatically give out light and shine to surface of the solar cell, which can make solar cell continuously generate electric current.The rare earth film can absorb direct,scattering sunlight, and increase density of solar energy to reach surface of the solar cell, and play focusing function.The rare earth film can bear 350 ~ 500 ℃, which make the solar cell be able to utilize the focusing function system.Because after luminescence of the rare earth film, it can release again the absorbed solar energy through 1 ~ 8 h, and play a role in storing solar energy; The solar cell with the rare-earth film can generate electricity during night and cloudy days, and remarkably increase efficiency of the solar cell.

  15. Energy Conversion: Nano Solar Cell

    Science.gov (United States)

    Yahaya, Muhammad; Yap, Chi Chin; Mat Salleh, Muhamad

    2009-09-01

    Problems of fossil-fuel-induced climate change have sparked a demand for sustainable energy supply for all sectors of economy. Most laboratories continue to search for new materials and new technique to generate clean energy at affordable cost. Nanotechnology can play a major role in solving the energy problem. The prospect for solar energy using Si-based technology is not encouraging. Si photovoltaics can produce electricity at 20-30 c//kWhr with about 25% efficiency. Nanoparticles have a strong capacity to absorb light and generate more electrons for current as discovered in the recent work of organic and dye-sensitized cell. Using cheap preparation technique such as screen-printing and self-assembly growth, organic cells shows a strong potential for commercialization. Thin Films research group at National University Malaysia has been actively involved in these areas, and in this seminar, we will present a review works on nanomaterials for solar cells and particularly on hybrid organic solar cell based on ZnO nanorod arrays. The organic layer consisting of poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEHPPV) and [6, 6]-phenyl C61-butyric acid 3-ethylthiophene ester (PCBE) was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on FTO glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. A gold electrode was used as the top contact. The device gave a short circuit current density of 2.49×10-4 mA/cm2 and an open circuit voltage of 0.45 V under illumination of a projector halogen light at 100 mW/cm2.

  16. Reliable wet-chemical cleaning of natively oxidized high-efficiency Cu(In,Ga)Se{sub 2} thin-film solar cell absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Jascha [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam (Germany); Lehmann, Sebastian, E-mail: sebastian.lehmann@ftf.lth.se [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Lauermann, Iver; Rissom, Thorsten; Kaufmann, Christian A.; Lux-Steiner, Martha Ch. [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Bär, Marcus, E-mail: marcus.baer@helmholtz-berlin.de [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Institut für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046 Cottbus (Germany); Sadewasser, Sascha, E-mail: sascha.sadewasser@inl.int [Renewable Energies, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga (Portugal)

    2014-12-21

    Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for “realistic” surfaces of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In{sub 1-x}Ga{sub x})Se{sub 2} thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH{sub 3}-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is – apart from a slight change in surface composition – identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.

  17. Cu-doped ZnO nanoporous film for improved performance of CdS/CdSe quantum dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Myeong-Soo; Son, Min-Kyu; Kim, Soo-Kyoung; Park, Songyi; Prabakar, Kandasamy; Kim, Hee-Je, E-mail: heeje@pusan.ac.kr

    2014-11-03

    Copper (Cu) doped zinc oxide (ZnO) powders were synthesized by co-precipitation method with different at% (0 and 0.5 at%) of Cu dopant. Cu-doped ZnO nanoporous (NP) films were fabricated to enhance the performance of the ZnO based cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dot-sensitized solar cells (QDSSCs). The existence of Cu ions in the Cu-doped ZnO NP film was detected by X-ray fluorescence. The surface morphology, microstructure and crystal structure of Cu-doped ZnO NP films were analyzed by scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The optical property of CdS/CdSe co-sensitized Cu-doped ZnO NP film was studied by UV–vis absorption spectroscopy. The photovoltaic performance and electrical property of Cu-doped ZnO CdS/CdSe QDSSCs were studied by current–voltage characteristic curves and electrochemical impedance spectroscopy under air mass 1.5 condition. As a result, short circuit current density and fill factor increased from 9.074 mA/cm{sup 2} and 0.403 to 9.865 mA/cm{sup 2} and 0.427 respectively, based on the enhanced absorbance and electron transport by Cu-doping. This led to the increasing light conversion efficiency from 2.27% to 2.61%. - Highlights: • Cu-doped ZnO powders were synthesized by co-precipitation method. • Cu-doped ZnO nanoporous films with high crystallinity were uniformly deposited. • Absorbance of Cu-doped ZnO nanoporous film was enhanced. • Electron conductivity of Cu-doped ZnO nanoporous film was enhanced. • Performance of Cu-doped ZnO CdS/CdSe QDSSC was improved.

  18. Understanding the photostability of perovskite solar cell

    Science.gov (United States)

    Joshi, Pranav H.

    Global climate change and increasing energy demands have led to a greater focus on cheaper photovoltaic energy solutions. Perovskite solar cells and organic solar cells have emerged as promising technologies for alternative cheaper photovoltaics. Perovskite solar cells have shown unprecedentedly rapid improvement in power conversion efficiency, from 3% in 2009 to more than 21% today. High absorption coefficient, long diffusion lengths, low exciton binding energy, low defect density and easy of fabrication has made perovskites near ideal material for economical and efficient photovoltaics. However, stability of perovskite and organic solar cells, especially photostability is still not well understood. In this work, we study the photostability of organic solar cells and of perovskite solar cells. (Abstract shortened by ProQuest.).

  19. Bypass diode for a solar cell

    Science.gov (United States)

    Rim, Seung Bum; Kim, Taeseok; Smith, David D.; Cousins, Peter J.

    2012-03-13

    Bypass diodes for solar cells are described. In one embodiment, a bypass diode for a solar cell includes a substrate of the solar cell. A first conductive region is disposed above the substrate, the first conductive region of a first conductivity type. A second conductive region is disposed on the first conductive region, the second conductive region of a second conductivity type opposite the first conductivity type.

  20. Near-Unity Emitting Copper-Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators.

    Science.gov (United States)

    Sharma, Manoj; Gungor, Kivanc; Yeltik, Aydan; Olutas, Murat; Guzelturk, Burak; Kelestemur, Yusuf; Erdem, Talha; Delikanli, Savas; McBride, James R; Demir, Hilmi Volkan

    2017-08-01

    Doping of bulk semiconductors has revealed widespread success in optoelectronic applications. In the past few decades, substantial effort has been engaged for doping at the nanoscale. Recently, doped colloidal quantum dots (CQDs) have been demonstrated to be promising materials for luminescent solar concentrators (LSCs) as they can be engineered for providing highly tunable and Stokes-shifted emission in the solar spectrum. However, existing doped CQDs that are aimed for full solar spectrum LSCs suffer from moderately low quantum efficiency, intrinsically small absorption cross-section, and gradually increasing absorption profiles coinciding with the emission spectrum, which together fundamentally limit their effective usage. Here, the authors show the first account of copper doping into atomically flat colloidal quantum wells (CQWs). In addition to Stokes-shifted and tunable dopant-induced photoluminescence emission, the copper doping into CQWs enables near-unity quantum efficiencies (up to ≈97%), accompanied by substantially high absorption cross-section and inherently step-like absorption profile, compared to those of the doped CQDs. Based on these exceptional properties, the authors have demonstrated by both experimental analysis and numerical modeling that these newly synthesized doped CQWs are excellent candidates for LSCs. These findings may open new directions for deployment of doped CQWs in LSCs for advanced solar light harvesting technologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Singlet exciton fission in nanostructured organic solar cells.

    Science.gov (United States)

    Jadhav, Priya J; Mohanty, Aseema; Sussman, Jason; Lee, Jiye; Baldo, Marc A

    2011-04-13

    Singlet exciton fission is an efficient multiexciton generation process in organic molecules. But two concerns must be satisfied before it can be exploited in low-cost solution-processed organic solar cells. Fission must be combined with longer wavelength absorption in a structure that can potentially surpass the single junction limit, and its efficiency must be demonstrated in nanoscale domains within blended devices. Here, we report organic solar cells comprised of tetracene, copper phthalocyanine, and the buckyball C(60). Short wavelength light generates singlet excitons in tetracene. These are subsequently split into two triplet excitons and transported through the phthalocyanine. In addition, the phthalocyanine absorbs photons below the singlet exciton energy of tetracene. To test tetracene in nanostructured blends, we fabricate coevaporated bulk heterojunctions and multilayer heterojunctions of tetracene and C(60). We measure a singlet fission efficiency of (71 ± 18)%, demonstrating that exciton fission can efficiently compete with exciton dissociation on the nanoscale.

  2. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  3. Device operation of organic tandem solar cells

    NARCIS (Netherlands)

    Hadipour, A.; de Boer, B.; Blom, P. W. M.

    2008-01-01

    A generalized methodology is developed to obtain the current-voltage characteristic of polymer tandem solar cells by knowing the electrical performance of both sub cells. We demonstrate that the electrical characteristics of polymer tandem solar cells are correctly predicted for both the series and

  4. Solar Cells Using Quantum Funnels

    KAUST Repository

    Kramer, Illan J.

    2011-09-14

    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems. © 2011 American Chemical Society.

  5. Copper entry into human cells: progress and unanswered questions.

    Science.gov (United States)

    Maryon, Edward B; Molloy, Shannon A; Zimnicka, Adriana M; Kaplan, Jack H

    2007-06-01

    In this brief review we summarize what is known about the role of hCTR1 in mediating the entry of copper into human cells. There is a body of information that clearly identifies this protein as being a major source (though not the only source) of copper entry into human cells, and thus a crucial element of copper homeostasis. However, much remains that is poorly understood and key aspects of the physiological roles of hCTR1 and its regulation are only superficially appreciated. The particular characteristics of a transport process that in vivo involves the binding, transmembrane transport and release of a substrate that is not present in a free form in the intracellular or extracellular compartments poses particular challenges that are not encountered in the transport of more familiar physiologically important metal cations. Thus much of what we have learned about the more commonly encountered transported ions provides an inadequate model for studies of copper homeostasis. In this article we review progress made and identify the major questions that need to be resolved before an adequate description is attained of how copper entry into human cells is mediated and regulated by hCTR1.

  6. Nanostructured organic and hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Weickert, Jonas; Dunbar, Ricky B.; Hesse, Holger C.; Wiedemann, Wolfgang; Schmidt-Mende, Lukas [Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians University (LMU) Munich, Amalienstr. 54, 80799 Munich (Germany)

    2011-04-26

    This progress report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Three-Terminal Amorphous Silicon Solar Cells

    OpenAIRE

    Cheng-Hung Tai; Chu-Hsuan Lin; Chih-Ming Wang; Chun-Chieh Lin

    2011-01-01

    Many defects exist within amorphous silicon since it is not crystalline. This provides recombination centers, thus reducing the efficiency of a typical a-Si solar cell. A new structure is presented in this paper: a three-terminal a-Si solar cell. The new back-to-back p-i-n/n-i-p structure increased the average electric field in a solar cell. A typical a-Si p-i-n solar cell was also simulated for comparison using the same thickness and material parameters. The 0.28 μm-thick three-terminal a-Si...

  8. Very High Efficiency Solar Cell Modules

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, A.; Kirkpatrick, D.; Honsberg, C.; Moore, D.; Wanlass, M.; Emery, K.; Schwartz, R.; Carlson, D.; Bowden, S.; Aiken, D.; Gray, A.; Kurtz, S.; Kazmerski, L., et al

    2009-01-01

    The Very High Efficiency Solar Cell (VHESC) program is developing integrated optical system - PV modules for portable applications that operate at greater than 50% efficiency. We are integrating the optical design with the solar cell design, and have entered previously unoccupied design space. Our approach is driven by proven quantitative models for the solar cell design, the optical design, and the integration of these designs. Optical systems efficiency with an optical efficiency of 93% and solar cell device results under ideal dichroic splitting optics summing to 42.7 {+-} 2.5% are described.

  9. Organic ternary solar cells: a review.

    Science.gov (United States)

    Ameri, Tayebeh; Khoram, Parisa; Min, Jie; Brabec, Christoph J

    2013-08-21

    Recently, researchers have paid a great deal of attention to the research and development of organic solar cells, leading to a breakthrough of over 10% power conversion efficiency. Though impressive, further development is required to ensure a bright industrial future for organic photovoltaics. Relatively narrow spectral overlap of organic polymer absorption bands within the solar spectrum is one of the major limitations of organic solar cells. Among different strategies that are in progress to tackle this restriction, the novel concept of ternary organic solar cells is a promising candidate to extend the absorption spectra of large bandgap polymers to the near IR region and to enhance light harvesting in single bulk-heterojunction solar cells. In this contribution, we review the recent developments in organic ternary solar cell research based on various types of sensitizers. In addition, the aspects of miscibility, morphology complexity, charge transfer dynamics as well as carrier transport in ternary organic composites are addressed.

  10. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  11. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  12. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, Jiwu; Kovalgin, Alexey Y.; Werf, van der Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  13. Reducing the Cost of Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Scanlon, B.

    2012-04-01

    focused on transformative innovation in the domestic PV industry. With knowledge and expertise acquired from the PDIL pilot production line tools, Ampulse plans to design a full-scale production line to accommodate long rolls of metal foil. The Ampulse process 'goes straight from pure silicon-containing gas to high-quality crystal silicon film,' said Brent Nelson, the operational manager for the Process Development Integration Laboratory. 'The advantage is you can make the wafer just as thin as you need it - 10 microns or less.' Most of today's solar cells are made out of wafer crystalline silicon, though thin-film cells made of more exotic elements such as copper, indium, gallium, arsenic, cadmium, tellurium and others are making a strong push into the market. The advantage of silicon is its abundance, because it is derived from sand. Silicon's disadvantage is that purifying it into wafers suitable for solar cells can be expensive and energy intensive. Manufacturers add carbon and heat to sand to produce metallurgical-grade silicon, which is useful in other industries, but not yet suitable for making solar cells. So this metallurgical-grade silicon is then converted to pure trichlorosilane (SiCl3) or silane (SiH4) gas. Typically, the purified gas is then converted to create a silicon feedstock at 1,000 degrees Celsius. This feedstock is melted at 1,414 C and recrystallized into crystal ingots that are finally sawed into wafers. The Ampulse method differs in that it eliminates the last two steps in the traditional process and works directly with the silane gas growing only the needed silicon right onto a foil substrate. A team of NREL scientists had developed a way to use a process called hot-wire chemical vapor deposition to thicken silicon wafers with near perfect crystal structure. Using a hot tungsten filament much like the one found in an incandescent light bulb, the silane gas molecules are broken apart and deposited onto the wafer

  14. Inhibitory effect of Disulfiram/copper complex on non-small cell lung cancer cells.

    Science.gov (United States)

    Duan, Lincan; Shen, Hongmei; Zhao, Guangqiang; Yang, Runxiang; Cai, Xinyi; Zhang, Lijuan; Jin, Congguo; Huang, Yunchao

    2014-04-18

    Non-small cell lung cancer (NSCLC) is the most common cause of cancer-related death in both men and women worldwide. Recently, Disulfiram has been reported to be able to inhibit glioblastoma, prostate, or breast cancer cell proliferation. In this study, the synergistic effect of Disulfiram and copper on NSCLC cell growth was investigated. Inhibition of cancer cell proliferation was detected by 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) assay and cell cycle analysis. Liquid colony formation and tumor spheroid formation assays were used to evaluate their effect on cancer cell clonogenicity. Real-time PCR was performed to test the mRNA level of cancer stem cell related genes. We found that Disulfiram or copper alone did not potently inhibit NSCLC cell proliferation in vitro. However, the presence of copper significantly enhanced inhibitory effect of Disulfiram on NSCLC cell growth, indicating a synergistic effect between Disulfiram and copper. Cell cycle analysis showed that Disulfiram/copper complex caused NSCLC cell cycle arrest in G2/M phase. Furthermore, Disulfiram/copper significantly increased the sensitivity of cisplatin in NSCLC cells tested by MTT assay. Liquid colony formation assay revealed that copper dramatically increased the inhibitory effect of Disulfiram on NSCLC cell colony forming ability. Disulfiram combined with copper significantly attenuated NSCLC cell spheroid formation and recuded the mRNA expression of lung cancer stem cell related genes. Our data suggest that Disulfiram/copper complex alone or combined with other chemotherapy is a potential therapeutic strategy for NSCLC patients.

  15. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  16. Semi-transparent perovskite solar cells for tandems with silicon and CIGS

    KAUST Repository

    Bailie, Colin D.

    2015-01-01

    © 2015 The Royal Society of Chemistry. A promising approach for upgrading the performance of an established low-bandgap solar technology without adding much cost is to deposit a high bandgap polycrystalline semiconductor on top to make a tandem solar cell. We use a transparent silver nanowire electrode on perovskite solar cells to achieve a semi-transparent device. We place the semi-transparent cell in a mechanically-stacked tandem configuration onto copper indium gallium diselenide (CIGS) and low-quality multicrystalline silicon (Si) to achieve solid-state polycrystalline tandem solar cells with a net improvement in efficiency over the bottom cell alone. This work paves the way for integrating perovskites into a low-cost and high-efficiency (>25%) tandem cell.

  17. Ultrasonic seam welding technologies of copper plate and tube for collecting solar energy

    Institute of Scientific and Technical Information of China (English)

    汤勇; 万珍平; 刘亚俊; 刘树道

    2003-01-01

    The ultrasonic welding is applied more and more extensively due to its advantages such as environmental protection, cleaning and energy saving. By researching the mechanism on ultrasonic seam welding of copper plates and tubes for collecting solar energy, it is put forward that the ultrasonic metal welding process can be divided into two stages, and two factors make functions jointly to join the welded metal specimens. In order to successfully join the welding, three basic conditions must be satisfied, that is, there should be high frequency friction vibration in the contact interface; pressure must be imposed on the plate specimen during friction vibration; the time of friction vibration and pressure imposed should be proper. Furthermore, how to select the hardness of copper plate and tube and ultrasonic seam welding parameters is analyzed by experiments.

  18. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    Science.gov (United States)

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  19. NREL preprints for the 23rd IEEE Photovoltaic Specialists Conference

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, M. [ed.

    1993-05-01

    Topics covered include various aspects of solar cell fabrication and performance. Aluminium-gallium arsenides, cadmium telluride, amorphous silicon, and copper-indium-gallium selenides are all characterized in their applicability in solar cells.

  20. Biological Chemistry of Hydrogen Selenide.

    Science.gov (United States)

    Cupp-Sutton, Kellye A; Ashby, Michael T

    2016-11-22

    There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be "Reactive Selenium Compounds" relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe(-) at physiologic pH), is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry.

  1. Biological Chemistry of Hydrogen Selenide

    Directory of Open Access Journals (Sweden)

    Kellye A. Cupp-Sutton

    2016-11-01

    Full Text Available There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be “Reactive Selenium Compounds” relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe− at physiologic pH, is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry.

  2. Monolithic cells for solar fuels.

    Science.gov (United States)

    Rongé, Jan; Bosserez, Tom; Martel, David; Nervi, Carlo; Boarino, Luca; Taulelle, Francis; Decher, Gero; Bordiga, Silvia; Martens, Johan A

    2014-12-07

    Hybrid energy generation models based on a variety of alternative energy supply technologies are considered the best way to cope with the depletion of fossil energy resources and to limit global warming. One of the currently missing technologies is the mimic of natural photosynthesis to convert carbon dioxide and water into chemical fuel using sunlight. This idea has been around for decades, but artificial photosynthesis of organic molecules is still far away from providing real-world solutions. The scientific challenge is to perform in an efficient way the multi-electron transfer reactions of water oxidation and carbon dioxide reduction using holes and single electrons generated in an illuminated semiconductor. In this tutorial review the design of photoelectrochemical (PEC) cells that combine solar water oxidation and CO2 reduction is discussed. In such PEC cells simultaneous transport and efficient use of light, electrons, protons and molecules has to be managed. It is explained how efficiency can be gained by compartmentalisation of the water oxidation and CO2 reduction processes by proton exchange membranes, and monolithic concepts of artificial leaves and solar membranes are presented. Besides transferring protons from the anode to the cathode compartment the membrane serves as a molecular barrier material to prevent cross-over of oxygen and fuel molecules. Innovative nano-organized multimaterials will be needed to realise practical artificial photosynthesis devices. This review provides an overview of synthesis techniques which could be used to realise monolithic multifunctional membrane-electrode assemblies, such as Layer-by-Layer (LbL) deposition, Atomic Layer Deposition (ALD), and porous silicon (porSi) engineering. Advances in modelling approaches, electrochemical techniques and in situ spectroscopies to characterise overall PEC cell performance are discussed.

  3. Infrared-Controlled Welding of Solar Cells

    Science.gov (United States)

    Paulson, R.; Finnell, S. E.; Decker, H. J.; Hodor, J. R.

    1982-01-01

    Proposed apparatus for welding large arrays of solar cells to flexible circuit substrates would sense infrared emission from welding spot. Emission would provide feedback for control of welding heat. Welding platform containing optical fibers moves upward through slots in movable holding fixture to contact solar cells. Fibers pick up infrared radiation from weld area.

  4. Perovskite solar cells: an emerging photovoltaic technology

    Directory of Open Access Journals (Sweden)

    Nam-Gyu Park

    2015-03-01

    Full Text Available Perovskite solar cells based on organometal halides represent an emerging photovoltaic technology. Perovskite solar cells stem from dye-sensitized solar cells. In a liquid-based dye-sensitized solar cell structure, the adsorption of methylammonium lead halide perovskite on a nanocrystalline TiO2 surface produces a photocurrent with a power conversion efficiency (PCE of around 3–4%, as first discovered in 2009. The PCE was doubled after 2 years by optimizing the perovskite coating conditions. However, the liquid-based perovskite solar cell receives little attention because of its stability issues, including instant dissolution of the perovskite in a liquid electrolyte. A long-term, stable, and high efficiency (∼10% perovskite solar cell was developed in 2012 by substituting the solid hole conductor with a liquid electrolyte. Efficiencies have quickly risen to 18% in just 2 years. Since PCE values over 20% are realistically anticipated with the use of cheap organometal halide perovskite materials, perovskite solar cells are a promising photovoltaic technology. In this review, the opto-electronic properties of perovskite materials and recent progresses in perovskite solar cells are described. In addition, comments on the issues to current and future challenges are mentioned.

  5. Si concentrator solar cell development. [Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krut, D.D. [Spectrolab, Inc., Sylmar, CA (United States)

    1994-10-01

    This is the final report of a program to develop a commercial, high-efficiency, low-cost concentrator solar cell compatible with Spectrolab`s existing manufacturing infrastructure for space solar cells. The period covered is between 1991 and 1993. The program was funded through Sandia National Laboratories through the DOE concentrator initiative and, was also cost shared by Spectrolab. As a result of this program, Spectrolab implemented solar cells achieving an efficiency of over 19% at 200 to 300X concentration. The cells are compatible with DOE guidelines for a cell price necessary to achieve a cost of electricity of 12 cents a kilowatthour.

  6. Fullerene surfactants and their use in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jen, Kwan-Yue; Yip, Hin-Lap; Li, Chang-Zhi

    2015-12-15

    Fullerene surfactant compounds useful as interfacial layer in polymer solar cells to enhance solar cell efficiency. Polymer solar cell including a fullerene surfactant-containing interfacial layer intermediate cathode and active layer.

  7. Parabolic solar cooker: Cooking with heat pipe vs direct spiral copper tubes

    Science.gov (United States)

    Craig, Omotoyosi O.; Dobson, Robert T.

    2016-05-01

    Cooking with solar energy has been seen by many researchers as a solution to the challenges of poverty and hunger in the world. This is no exception in Africa, as solar coking is viewed as an avenue to eliminate the problem of food insecurity, insufficient energy supply for household and industrial cooking. There are several types of solar cookers that have been manufactured and highlighted in literature. The parabolic types of solar cookers are known to reach higher temperatures and therefore cook faster. These cookers are currently being developed for indoor cooking. This technology has however suffered low cooking efficiency and thus leads to underutilization of the high heat energy captured from the sun in the cooking. This has made parabolic solar cookers unable to compete with other conventional types of cookers. Several methods to maximize heat from the sun for indirect cooking has been developed, and the need to improve on them of utmost urgency. This paper investigates how to optimize the heat collected from the concentrating types of cookers by proposing and comparing two types of cooking sections: the spiral hot plate copper tube and the heat pipe plate. The system uses the concentrating solar parabolic dish technology to focus the sun on a conical cavity of copper tubes and the heat is stored inside an insulated tank which acts both as storage and cooking plate. The use of heat pipes to transfer heat between the oil storage and the cooking pot was compared to the use of a direct natural syphon principle which is achieved using copper tubes in spiral form like electric stove. An accurate theoretical analysis for the heat pipe cooker was achieved by solving the boiling and vaporization in the evaporator side and then balancing it with the condensation and liquid-vapour interaction in the condenser part while correct heat transfer, pressure and height balancing was calculated in the second experiment. The results show and compare the cooking time, boiling

  8. Nanowire-based All Oxide Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang*, Benjamin D. Yuhas and Peidong; Yang, Peidong

    2008-12-07

    We present an all-oxide solar cell fabricated from vertically oriented zinc oxide nanowires and cuprous oxide nanoparticles. Our solar cell consists of vertically oriented n-type zinc oxide nanowires, surrounded by a film constructed from p-type cuprous oxide nanoparticles. Our solution-based synthesis of inexpensive and environmentally benign oxide materials in a solar cell would allow for the facile production of large-scale photovoltaic devices. We found that the solar cell performance is enhanced with the addition of an intermediate oxide insulating layer between the nanowires and the nanoparticles. This observation of the important dependence of the shunt resistance on the photovoltaic performance is widely applicable to any nanowire solar cell constructed with the nanowire array in direct contact with one electrode.

  9. Methodologies for high efficiency perovskite solar cells.

    Science.gov (United States)

    Park, Nam-Gyu

    2016-01-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  10. High Radiation Resistance IMM Solar Cell

    Science.gov (United States)

    Pan, Noren

    2015-01-01

    Due to high launch costs, weight reduction is a key driver for the development of new solar cell technologies suitable for space applications. This project is developing a unique triple-junction inverted metamorphic multijunction (IMM) technology that enables the manufacture of very lightweight, low-cost InGaAsP-based multijunction solar cells. This IMM technology consists of indium (In) and phosphorous (P) solar cell active materials, which are designed to improve the radiation-resistant properties of the triple-junction solar cell while maintaining high efficiency. The intrinsic radiation hardness of InP materials makes them of great interest for building solar cells suitable for deployment in harsh radiation environments, such as medium Earth orbit and missions to the outer planets. NASA Glenn's recently developed epitaxial lift-off (ELO) process also will be applied to this new structure, which will enable the fabrication of the IMM structure without the substrate.

  11. Methodologies for high efficiency perovskite solar cells

    Science.gov (United States)

    Park, Nam-Gyu

    2016-06-01

    Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell is briefly introduced. Since understanding fundamentals of light absorbers is directly related to their photovoltaic performance, opto-electronic properties of organo lead halide perovskites are investigated in order to provide insight into design of higher efficiency perovskite solar cells. Since the conversion efficiency of perovskite solar cell is found to depend significantly on perovskite film quality, methodologies for fabricating high quality perovskite films are particularly emphasized, including various solution-processes and vacuum deposition method.

  12. Coating Processes Boost Performance of Solar Cells

    Science.gov (United States)

    2012-01-01

    NASA currently has spacecraft orbiting Mercury (MESSENGER), imaging the asteroid Vesta (Dawn), roaming the red plains of Mars (the Opportunity rover), and providing a laboratory for humans to advance scientific research in space (the International Space Station, or ISS). The heart of the technology that powers those missions and many others can be held in the palm of your hand - the solar cell. Solar, or photovoltaic (PV), cells are what make up the panels and arrays that draw on the Sun s light to generate electricity for everything from the Hubble Space Telescope s imaging equipment to the life support systems for the ISS. To enable NASA spacecraft to utilize the Sun s energy for exploring destinations as distant as Jupiter, the Agency has invested significant research into improving solar cell design and efficiency. Glenn Research Center has been a national leader in advancing PV technology. The Center s Photovoltaic and Power Technologies Branch has conducted numerous experiments aimed at developing lighter, more efficient solar cells that are less expensive to manufacture. Initiatives like the Forward Technology Solar Cell Experiments I and II in which PV cells developed by NASA and private industry were mounted outside the ISS have tested how various solar technologies perform in the harsh conditions of space. While NASA seeks to improve solar cells for space applications, the results are returning to Earth to benefit the solar energy industry.

  13. Dye-sensitized Solar Cells for Solar Energy Harvesting

    Science.gov (United States)

    Roy, M. S.; Deol, Y. S.; Kumar, Manish; Prasad, Narottam; Janu, Yojana

    2011-10-01

    Dye-sensitized solar cells (DSSCs) also known as Gratzel cells, have attracted the interests of researchers to a great extent because of its cost effective and easy manufacturing process without involving highly sophisticated lithographic technique and high cost raw materials as usually seen in conventional solar cell. Based on simple photo-electrochemical process, it has got immense potential in converting solar energy to electrical power in remote and desert area where the supply of conventional power is not possible. The overall peak power-production efficiency of dye-sensitized solar cells has been reported around 11 percent, so they are best suited to low-density applications and the price-to-performance ratio obtained through these solar cells is superior to others. DSSCs have ability to absorb even diffused sunlight and therefore work in cloudy whether as well without much impact over the efficiency. The present communication deals with a review of our work on DSSCs wherein we have used cost effective natural dyes/pigments as a sensitizer of nc-TiO2 and discussed about various key factors affecting the conversion efficiency of DSSC.

  14. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  15. Tandem photovoltaic solar cells and increased solar energy conversion efficiency

    Science.gov (United States)

    Loferski, J. J.

    1976-01-01

    Tandem photovoltaic cells, as proposed by Jackson (1955) to increase the efficiency of solar energy conversion, involve the construction of a system of stacked p/n homojunction photovoltaic cells composed of different semiconductors. It had been pointed out by critics, however, that the total power which could be extracted from the cells in the stack placed side by side was substantially greater than the power obtained from the stacked cells. A reexamination of the tandem cell concept in view of the development of the past few years is conducted. It is concluded that the use of tandem cell systems in flat plate collectors, as originally envisioned by Jackson, may yet become feasible as a result of the development of economically acceptable solar cells for large scale terrestrial power generation.

  16. INKJET PRINTING OF NICKEL AND SILVER METAL SOLAR CELL CONTACTS

    Energy Technology Data Exchange (ETDEWEB)

    Pasquarelli, R.; Curtis, C.; Van Hest, M.

    2008-01-01

    With about 125,000 terawatts of solar power striking the earth at any given moment, solar energy may be the only renewable energy resource with enough capacity to meet a major portion of our future energy needs. Thin-fi lm technologies and solution deposition processes seek to reduce manufacturing costs in order to compete with conventional coal-based electricity. Inkjet printing, as a derivative of the direct-write process, offers the potential for low-cost, material-effi cient deposition of the metals for photovoltaic contacts. Advances in contact metallizations are important because they can be employed on existing silicon technology and in future-generation devices. We report on the atmospheric, non-contact deposition of nickel (Ni) and silver (Ag) metal patterns on glass, Si, and ZnO substrates at 180–220°C from metal-organic precursor inks using a Dimatix inkjet printer. Near-bulk conductivity Ag contacts were successfully printed up to 4.5 μm thick and 130 μm wide on the silicon nitride antirefl ective coating of silicon solar cells. Thin, high-resolution Ni adhesion-layer lines were printed on glass and zinc oxide at 80 μm wide and 55 nm thick with a conductivity two orders of magnitude less than the bulk metal. Additionally, the ability to print multi-layered metallizations (Ag on Ni) on transparent conducting oxides was demonstrated and is promising for contacts in copper-indium-diselenide (CIS) solar cells. Future work will focus on further improving resolution, printing full contact devices, and investigating copper inks as a low-cost replacement for Ag contacts.

  17. Planar multijunction high voltage solar cells

    Science.gov (United States)

    Evans, J. C., Jr.; Chai, A. T.; Goradia, C.

    1980-01-01

    Technical considerations, preliminary results, and fabrication details are discussed for a family of high-voltage planar multi-junction (PMJ) solar cells which combine the attractive features of planar cells with conventional or interdigitated back contacts and the vertical multijunction (VMJ) solar cell. The PMJ solar cell is internally divided into many voltage-generating regions, called unit cells, which are internally connected in series. The key to obtaining reasonable performance from this device was the separation of top surface field regions over each active unit cell. Using existing solar cell fabricating methods, output voltages in excess of 20 volts per linear centimeter are possible. Analysis of the new device is complex, and numerous geometries are being studied which should provide substantial benefits in both normal sunlight usage as well as with concentrators.

  18. Solar Cell Panel and the Method for Manufacturing the Same

    Science.gov (United States)

    Richards, Benjamin C. (Inventor); Sarver, Charles F. (Inventor); Naidenkova, Maria (Inventor)

    2016-01-01

    According to an aspect of an embodiment of the present disclosure, there is provided a solar cell panel and a method for manufacturing the same. The solar cell panel comprises: a solar cell for generating electric power from sunlight; a coverglass for covering the solar cell; transparent shims, which are disposed between the solar cell and the coverglass at the points where the distance between the solar cell and the coverglass needs to be controlled, and form a space between the solar cell and the coverglass; and adhesive layer, which fills the space between the solar cell and the coverglass and has the thickness the same as that of the transparent shims.

  19. High-flux solar furnace processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Pitts, J.R.; Landry, M.D.; Menna, P.; Bingham, C.E.; Lewandowski, A.; Ciszek, T.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-06-10

    We used a 10-kW, high-flux solar furnace (HFSF) to diffuse the front-surface n{sup +}-p junction and the back-surface p-p{sup +} junction of single-crystal silicon solar cells in one processing step. We found that all of these HFSF-processed cells have better conversion efficiencies than control cells of identical structures fabricated by conventional furnace diffusion methods. We also used the HFSF to crystallize a-Si:H thin films on glass, to texture crystalline silicon surfaces, to deposit gold contacts on silicon wafers, and to getter impurities from metallurgical grade silicon. HFSF processing offers several advantages over conventional furnace processing: (1) it provides a cold-wall process, which reduces contamination; (2) temperature versus time profiles can be precisely controlled; (3) wavelength, intensity, and spatial distribution of the incident solar flux can be controlled and changed rapidly; (4) a number of high-temperature processing steps can be performed simultaneously; and (5) combined quantum and thermal effects may benefit overall cell performance. We conclude that HFSF processing of silicon solar cells has the potential to improve cell efficiency, reduce cell fabrication costs, and also be an environmentally friendly manufacturing method. We have also demonstrated that the HFSF can be used to achieve solid-phase crystallization of a-Si:H at very high speed

  20. Recent Advancements and Techniques in Manufacture of Solar Cells: Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    B. Naga Venkata Sai Ganesh,

    2013-03-01

    Full Text Available The major problem faced by the society is power crisis. All the non-renewable resources like fossil fuelsnecessary for producing power are being used excessively, which might result a day in future where, the world might godark due to lack of power producing resources. Usage of renewable resources like solar energy can be a solution to thisproblem. Solar cells invented to overcome this problem show rigidity in their structure which is a drawback. Inorganicsolar cells are rigid and can be mounted only on rooftops. Hence only upper surface of buildings are utilized. In this paperwe bring out a new era or solar cells- organic solar cells, which are flexible. These organic solar cells offer the bestsolution for the above problem for a tradeoff of efficiency. This paper briefs the manufacturing technique of solar cellsfrom plastic i.e. ,organic polymers, their architecture, the working process of solar energy production from the organicsolar cells with their ease of usage

  1. Semiconductor quantum dot-sensitized solar cells.

    Science.gov (United States)

    Tian, Jianjun; Cao, Guozhong

    2013-10-31

    Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  2. Semiconductor quantum dot-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Jianjun Tian

    2013-10-01

    Full Text Available Semiconductor quantum dots (QDs have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1 the effect of quantum confinement on QDSCs, 2 the multiple exciton generation (MEG of QDs, 3 fabrication methods of QDs, and 4 nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.

  3. Recent Advances in Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Thomas Kietzke

    2007-01-01

    Full Text Available Solar cells based on organic semiconductors have attracted much attention. The thickness of the active layer of organic solar cells is typically only 100 nm thin, which is about 1000 times thinner than for crystalline silicon solar cells and still 10 times thinner than for current inorganic thin film cells. The low material consumption per area and the easy processing of organic semiconductors offer a huge potential for low cost large area solar cells. However, to compete with inorganic solar cells the efficiency of organic solar cells has to be improved by a factor of 2-3. Several organic semiconducting materials have been investigated so far, but the optimum material still has to be designed. Similar as for organic light emitting devices (OLED small molecules are competing with polymers to become the material of choice. After a general introduction into the device structures and operational principles of organic solar cells the three different basic types (all polymer based, all small molecules based and small molecules mixed with polymers are described in detail in this review. For each kind the current state of research is described and the best of class reported efficiencies are listed.

  4. Nanocomposite enables sensitized solar cell

    Science.gov (United States)

    Phuyal, Dibya D.

    Dye Sensitized solar cells (DSSCs) are a promising candidate for next generation photovoltaic panels due to their low cost, easy fabrication process, and relative high efficiency. Despite considerable effort on the advancement of DSSCs, the efficiency has been stalled for nearly a decade due to the complex interplay among various DSSC components. DSSCs consist of a photoanode on a conducting substrate, infiltrated dye for light absorption and electron injection, and an electrolyte to regenerate the dye. On the photoanode is a high band-gap semiconducting material, primarily of a nanostructure morphology of titanium (II) dioxide (TiO2), dye molecules whose molar absorption is typically in the visible spectrum, are adsorbed onto the surface of TiO 2. To improve the current DSSCs, there are many parameters that can be investigated. In a conventional DSSC, a thick semiconducting layer such as the nanoparticle TiO2 layer induces charge separation efficiently while concurrently increasing the charge transport distance, leading the cell to suffer from more charge recombination and deterioration in charge collection efficiency. To improve on this limitation, TiO2 nanowires (NW) and nanotubes (NT) are explored to replace the nanoparticle photoanode. One-dimensional nanostructures are known for the excellent electron transport properties as well as maintaining a relatively high surface area. Hence one of the focuses of this thesis explores at using different morphologies and composition of TiO2 nanostructures to enhance electron collection efficiency. Another challenge in conventional DSSCs is the limit in light absorption of solar irradiation. Dyes are limited to absorption only in the visible range, and have a low molar absorption coefficient in the near infrared (NIR). Tuning dyes is extremely complicated and may have more disadvantages than simply by extending light harvesting. Therefore our strategy is to incorporate quantum dots to replace the dye, as well as prepare a

  5. High-efficiency silicon heterojunction solar cells: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    De Wolf, S.; Geissbuehler, J.; Loper, P.; Martin de Nicholas, S.; Seif, J.; Tomasi, A.; Ballif, C.

    2015-05-11

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on both-sides contacted n-type cells, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short-wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long- wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metallization grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical

  6. Fractal Aggregation of Copper Particles using Electroless Cell

    Directory of Open Access Journals (Sweden)

    S.Q.Chishty

    2013-12-01

    Full Text Available A phenomenon In which the particles performing Brownian motion when hit the aggregates become the part of it is known as Diffusion limited aggregation (DLA, which produces a fractal shape. Experimental efforts are discussed through which some DLA shapes arc obtained. For this purpose different electrolytic solutions are used. Electro less cells are also designed and constructed using standard methods. The cells have to be flexible in the sense that changing of plates and solutions should be easier for photography. We used compounds of copper,. for growth of fractals. Within a very short time metallic dendrites appeared in the cell at different operating conditions. These images were photographed, while desired branching structures in copper sulphate solution were seen. Results thus obtained are compared with the growth of DLA.

  7. Industrial n-type solar cells with >20% cell efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Romijn, I.G.; Anker, J.; Burgers, A.R.; Gutjahr, A.; Koppes, M.; Kossen, E.J.; Lamers, M.W.P.E.; Heurtault, Benoit; Saynova-Oosterling, D.S.; Tool, C.J.J. [ECN Solar Energy, Petten (Netherlands)

    2013-03-15

    To realize high efficiencies at low costs, ECN has developed the n-Pasha solar cell concept. The n-Pasha cell concept is a bifacial solar cell concept on n-Cz base material, with which average efficiencies of above 20% have been demonstrated. In this paper recent developments at ECN to improve the cost of ownership (lower Euro/Wp) of the n-Pasha cell concept are discussed. Two main drivers for the manufacturing costs of n-type solar cells are addressed: the n-type Cz silicon material and the silver consumption. We show that a large resistivity range between 2 and 8 cm can be tolerated for high cell efficiency, and that the costs due to the silver metallization can be significantly reduced while increasing the solar cell efficiency. Combining the improved efficiency and cost reduction makes the n-Pasha cell concept a very cost effective solution to manufacture high efficient solar cells and modules.

  8. Semiconductor solar cells: Recent progress in terrestrial applications

    Science.gov (United States)

    Avrutin, V.; Izyumskaya, N.; Morkoç, H.

    2011-04-01

    In the last decade, the photovoltaic industry grew at a rate exceeding 30% per year. Currently, solar-cell modules based on single-crystal and large-grain polycrystalline silicon wafers comprise more than 80% of the market. Bulk Si photovoltaics, which benefit from the highly advanced growth and fabrication processes developed for microelectronics industry, is a mature technology. The light-to-electric power conversion efficiency of the best modules offered on the market is over 20%. While there is still room for improvement, the device performance is approaching the thermodynamic limit of ˜28% for single-junction Si solar cells. The major challenge that the bulk Si solar cells face is, however, the cost reduction. The potential for price reduction of electrical power generated by wafer-based Si modules is limited by the cost of bulk Si wafers, making the electrical power cost substantially higher than that generated by combustion of fossil fuels. One major strategy to bring down the cost of electricity generated by photovoltaic modules is thin-film solar cells, whose production does not require expensive semiconductor substrates and very high temperatures and thus allows decreasing the cost per unit area while retaining a reasonable efficiency. Thin-film solar cells based on amorphous, microcrystalline, and polycrystalline Si as well as cadmium telluride and copper indium diselenide compound semiconductors have already proved their commercial viability and their market share is increasing rapidly. Another avenue to reduce the cost of photovoltaic electricity is to increase the cell efficiency beyond the Shockley-Queisser limit. A variety of concepts proposed along this avenue forms the basis of the so-called third generation photovoltaics technologies. Among these approaches, high-efficiency multi-junction solar cells based on III-V compound semiconductors, which initially found uses in space applications, are now being developed for terrestrial applications. In

  9. Thin-film crystalline silicon solar cells

    CERN Document Server

    Brendel, Rolf

    2011-01-01

    This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

  10. Synthesis of POP3HT/lead sulfide nanocomposites for hybrid solar cell

    Science.gov (United States)

    Zhou, Miaoxin

    2007-12-01

    The recent discovery of high efficiency multiexciton generation in lead sulfide (PbS) and lead selenide (PbSe) nanocrystals makes them promising materials for high efficiency solar cells. One complication of extracting charges from the nanocrystals is the insulating ligands capping their surfaces. In this dissertation, we have successfully developed and characterized a phosphonate functionalized poly-3-hexylthiophene (POP3HT-50) and used it in the direct synthesis of PbS nanocrystals without the aid of extraneous ligands. These POP3HT/PbS nanocomposites were characterized by HR-TEM, TM-AFM, 1H NMR and absorption spectroscopy. The nanocomposites were also incorporated into solar cell devices and tested under AM 1.5G conditions. Devices made of POP3HT-50/PbS nanocomposites show an order of magnitude improvement in photocurrent and power conversion efficiency (eta) when compared to that reported for a P3HT/PbS device (eta = 0.011% vs. 0.001%). The improved photocurrent is consistent with improved contact between PbS nanocrystals and POP3HT-50, presumably leading to more efficient charge transfer. However, the overall efficiencies of such devices were still very low suggesting that further modification was needed. Future research could be focused on developing functional conductive polymer with lower ionization potential (Ip) for proper band alignment with these infrared nanocrystals, and on developing elongated nanocrystals with proper aspect ratio to reduce the rate of Auger recombination (decay process of multiexciton state).

  11. High-efficiency silicon heterojunction solar cells: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    De Wolf, S.

    2015-04-27

    Silicon heterojunction technology (HJT) uses silicon thin-film deposition techniques to fabricate photovoltaic devices from mono-crystalline silicon wafers (c-Si). This enables energy-conversion efficiencies above 21 %, also at industrial-production level. In this presentation we review the present status of this technology and point out recent trends. We first discuss how the properties of thin hydrogenated amorphous silicon (a-Si:H) films can be exploited to fabricate passivating contacts, which is the key to high- efficiency HJT solar cells. Such contacts enable very high operating voltages, approaching the theoretical limits, and yield small temperature coefficients. With this approach, an increasing number of groups are reporting devices with conversion efficiencies well over 20 % on n-type wafers, Panasonic leading the field with 24.7 %. Exciting results have also been obtained on p-type wafers. Despite these high voltages, important efficiency gains can still be made in fill factor and optical design. This requires improved understanding of carrier transport across device interfaces and reduced parasitic absorption in HJT solar cells. For the latter, several strategies can be followed: Short- wavelength losses can be reduced by replacing the front a-Si:H films with wider-bandgap window layers, such as silicon alloys or even metal oxides. Long-wavelength losses are mitigated by introducing new high-mobility TCO’s such as hydrogenated indium oxide, and also by designing new rear reflectors. Optical shadow losses caused by the front metalisation grid are significantly reduced by replacing printed silver electrodes with fine-line plated copper contacts, leading also to possible cost advantages. The ultimate approach to minimize optical losses is the implementation of back-contacted architectures, which are completely devoid of grid shadow losses and parasitic absorption in the front layers can be minimized irrespective of electrical transport requirements. The

  12. A practical field study of various solar cells on their performance in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Nowshad [Dept. of Electrical Electronic and System Engineering, National University of Malaysia, 43600 Bangi Selangor (Malaysia); Lung, Chin Wen; Sopian, Kamaruzzaman [Solar Energy Research Institute, National University of Malaysia, 43600 Bangi Selangor (Malaysia)

    2009-08-15

    A practical field study has been carried out with the intention to analyze and compare the performance of various types of commercially available solar panels under Malaysia's weather. Four different types of solar panels, such as mono-crystalline silicon, multi-crystalline silicon, amorphous silicon and copper-indium-diselenide (CIS) solar panels are used for the practical field study. A number of performance related parameters have been collected using data logger over a period of three consecutive days in the hope that this would give some initial information on the real performance of different solar panels. Results show that mono-crystalline silicon and multi-crystalline silicon solar module perform better when they are under hot sun, whereas the CIS and triple junction amorphous silicon solar panel perform better when it is cloudy and has diffused sunshine. Furthermore, the efficiency of crystalline silicon solar panel has been found to drop when the temperature rises higher. This phenomenon does not appear in the CIS and amorphous silicon solar panels, which shows that the performance of CIS and amorphous silicon solar cells are better in terms of power conversion efficiency and overall performance ratio. Better performance of thin film solar cells like amorphous silicon and CIS are observed from the initial results, which draws attention over the selection of solar panels and also may encourage the usage of these in tropical weather like Malaysia. (author)

  13. Mechanochemically Synthesized CIGS Nanocrystalline Powder for Solar Cell Application

    Directory of Open Access Journals (Sweden)

    Bharati Rehani

    2013-05-01

    Full Text Available Copper Indium Gallium Diselenide (CIGS is a compound semiconductor material from the group of I-III-VI. The material is a solid solution of copper, indium and selenium (CIS and copper, gallium and selenium with an empirical formula of CuIn(1 – xGaxSe2, where 0  x  1. CIGS has an exceptionally high absorption coefficient of more than 105 cm – 1 for 1.5 eV. Solar cells prepared from absorber layers of CIGS materials have shown an efficiency higher than 20 %. CuIn(1 – xGaxSe2 (x  0.3 nanocrystalline compound was mechanochemically synthesized by high-energy milling in a planetary ball mill. The phase identification and crystallite size of milled powders at different time intervals were carried out by X-ray diffraction (XRD. The XRD analysis indicates chalcopyrite structure and the crystallite size of about 10 nm of high-energy milled CIGS powder after two and half hours of milling. An attempt for preparing the thin film from CIGS nanocrystalline powder was carried out using the flash evaporation technique. Scanning electron microscopy (SEM reveals uniform distribution of CIGS particles in thin film.

  14. Development of Nanoparticle Sensitized Solar Cells

    OpenAIRE

    2013-01-01

    In this thesis, I have been working with the development of nanoparticle sensitized solar cells. In the subarea of quantum dot sensitized solar cells (QDSCs), I have investigated type-II quantum dots (QDs), quantum rods (QRs) and alloy QDs, and developed novel redox couples as electrolytes. I have also proposed upconversion nanoparticles as energy relay materials for dye-sensitized solar cells (DSCs). Colloidal ZnSe/CdS type-II QDs were applied for QDSCs for the first time. The interesting fe...

  15. Photoelectrochemical Solar Cells Based on Chitosan Electroylte

    Institute of Scientific and Technical Information of China (English)

    M.H.A.Buraidah; A.K.Arof

    2007-01-01

    1 Results ITO-ZnTe/Chitosan-NH4I-I2/ITO photoelectrochemical solar cells have been fabricated and characterized by current-voltage characteristics.In this work,the ZnTe thin film was prepared by electrodeposition on indium-tin-oxide coated glass.The chitosan electrolyte consists of NH4I salt and iodine.Iodine was added to provide the I3-/I- redox couple.The PEC solar cell was fabricated by sandwiching an electrolyte film between the ZnTe semiconductor and ITO conducting glass.The area of the solar cell...

  16. High-flux solar furnace processing of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Pitts, J.R.; Landry, M.D.; Bingham, C.E.; Lewandowski, A.; Ciszek, T.F. [National Renewable Energy Lab., Golden, CO (United States)

    1994-12-31

    The authors used a 10-kW high-flux solar furnace (HFSF) to diffuse the front-surface n{sup +}-p junction and the back-surface p-p{sup +} junction of single-crystal silicon solar cells in one processing step. They found that all of the HFSF-processed cells have better conversion efficiencies than control cells of identical structures fabricated by conventional furnace diffusion methods. HFSF processing offers several advantages that may contribute to improved solar cell efficiency: (1) it provides a cold-wall process, which reduces contamination; (2) temperature versus time profiles can be precisely controlled; (3) wavelength, intensity, and spatial distribution of the incident solar flux can be controlled and changed rapidly; (4) a number of high-temperature processing steps can be performed simultaneously; and (5) combined quantum and thermal effects may benefit overall cell performance. The HFSF has also been successfully used to texture the surface of silicon wafers and to crystallize a-Si:H thin films on glass.

  17. Low-cost electrodes for stable perovskite solar cells

    Science.gov (United States)

    Bastos, João P.; Manghooli, Sara; Jaysankar, Manoj; Tait, Jeffrey G.; Qiu, Weiming; Gehlhaar, Robert; De Volder, Michael; Uytterhoeven, Griet; Poortmans, Jef; Paetzold, Ulrich W.

    2017-06-01

    Cost-effective production of perovskite solar cells on an industrial scale requires the utilization of exclusively inexpensive materials. However, to date, highly efficient and stable perovskite solar cells rely on expensive gold electrodes since other metal electrodes are known to cause degradation of the devices. Finding a low-cost electrode that can replace gold and ensure both efficiency and long-term stability is essential for the success of the perovskite-based solar cell technology. In this work, we systematically compare three types of electrode materials: multi-walled carbon nanotubes (MWCNTs), alternative metals (silver, aluminum, and copper), and transparent oxides [indium tin oxide (ITO)] in terms of efficiency, stability, and cost. We show that multi-walled carbon nanotubes are the only electrode that is both more cost-effective and stable than gold. Devices with multi-walled carbon nanotube electrodes present remarkable shelf-life stability, with no decrease in the efficiency even after 180 h of storage in 77% relative humidity (RH). Furthermore, we demonstrate the potential of devices with multi-walled carbon nanotube electrodes to achieve high efficiencies. These developments are an important step forward to mass produce perovskite photovoltaics in a commercially viable way.

  18. Development and Prospect of Nanoarchitectured Solar Cells

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2015-01-01

    Full Text Available This paper gives an overview of the development and prospect of nanotechnologies utilized in the solar cell applications. Even though it is not clearly pointed out, nanostructures indeed have been used in the fabrication of conventional solar cells for a long time. However, in those circumstances, only very limited benefits of nanostructures have been used to improve cell performance. During the last decade, the development of the photovoltaic device theory and nanofabrication technology enables studies of more complex nanostructured solar cells with higher conversion efficiency and lower production cost. The fundamental principles and important features of these advanced solar cell designs are systematically reviewed and summarized in this paper, with a focus on the function and role of nanostructures and the key factors affecting device performance. Among various nanostructures, special attention is given to those relying on quantum effect.

  19. Optical models for silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T.; Sopori, B. [National Renewable Energy Lab., Golden, CO (United States)

    1995-08-01

    Light trapping is an important design feature for high-efficiency silicon solar cells. Because light trapping can considerably enhance optical absorption, a thinner substrate can be used which, in turn, can lower the bulk carrier recombination and concommitantly increase open-circuit voltage, and fill factor of the cell. The basic concepts of light trapping are similar to that of excitation of an optical waveguide, where a prism or a grating structure increases the phase velocity of the incoming optical wave such that waves propagated within the waveguide are totally reflected at the interfaces. Unfortunately, these concepts break down because the entire solar cell is covered with such a structure, making it necessary to develop new analytical approaches to deal with incomplete light trapping in solar cells. This paper describes two models that analyze light trapping in thick and thin solar cells.

  20. Recent Advances in Dye Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Umer Mehmood

    2014-01-01

    Full Text Available Solar energy is an abundant and accessible source of renewable energy available on earth, and many types of photovoltaic (PV devices like organic, inorganic, and hybrid cells have been developed to harness the energy. PV cells directly convert solar radiation into electricity without affecting the environment. Although silicon based solar cells (inorganic cells are widely used because of their high efficiency, they are rigid and manufacturing costs are high. Researchers have focused on organic solar cells to overcome these disadvantages. DSSCs comprise a sensitized semiconductor (photoelectrode and a catalytic electrode (counter electrode with an electrolyte sandwiched between them and their efficiency depends on many factors. The maximum electrical conversion efficiency of DSSCs attained so far is 11.1%, which is still low for commercial applications. This review examines the working principle, factors affecting the efficiency, and key challenges facing DSSCs.

  1. MoSe2 / Polyaniline Solar Cells

    Directory of Open Access Journals (Sweden)

    H.S. Patel

    2011-01-01

    Full Text Available Solar cells have been investigated since long for harnessing the solar energy. During this decade, a new direction has come up where in the polymers have been used in the fabrication of solar cells. Polyaniline is one of the polymers which has shown potential for its applications in heterostructure solar cells. This material is being used along with the semiconductors like InSe, TiO2, Si etc. to form the photosensitive interface. In this direction, we report our investigations on the use of Molybdenum diselenide (MoSe2 as photosensitive semiconducting material in MoSe2 / polyaniline solar cells. In this paper, the preparation of MoSe2 / polyaniline solar cells has been reported. Also, the photovoltage → photocurrent characteristics of this structure have been discussed in detail in this paper. The variation of different parameters of MoSe2 / polyaniline solar cells (like open circuit voltage, short circuit current, photoconversion efficiency and fill factor with the intensity of incident illuminations has been reported in this paper. In present case, the photocurrent density was found to be around 250 µA/cm2 with the photovoltage around 8.5 mV (which is low the photoconversion efficiency was found to be around 0.7 % along with the fill factor around 0.33. The efforts have been made to explain the low values of the photoconversion efficiency.

  2. Epitaxial lift-off technology of GaAs multijunction solar cells

    Science.gov (United States)

    Knyps, P.; Dumiszewska, E.; Kaszub, W.; Przewłoka, A.; Strupinski, W.

    2016-12-01

    Epitaxial lift-off (ELO) is a process which enables the removal of solar cell structures (one junction GaAs, two junction GaAs/InGaP or three junction GaAs/InGaAs/InGaP) from the substrate on which they are grown and their transfer onto lightweight carriers such as metal or polymeric insulator films. The said solar cells exhibit superior power conversion efficiency compared with alternative single-junction photovoltaic cell designs such as those based on crystalline Si, copper indium gallium sulfide (CIGS) or CdTe. The major advantage of ELO solar cells is the potential for wafer reuse, which can enable significant manufacturing cost reduction by minimizing the consumption of expensive wafers. Here in this work we have grown one junction GaAs solar cells on GaAs (100) substrates. A 10 nm thick AlAs layer has been used as a release layer, which has been selectively etched in HF solution. We have investigated different methods of transferring thin films onto polymer and copper foils, including the usage of temporary mounting adhesives and electro-conductive pastes. Lift-off has been demonstrated to be a very promising technique for producing affordable solar cells with a very high efficiency of up to 30%.

  3. Copper-Catalyzed Click Reaction on/in Live Cells.

    Science.gov (United States)

    Li, Siheng; Wang, Lin; Yu, Fei; Zhu, Zhiling; Shobaki, Dema; Chen, Haoqing; Wang, Mu; Wang, Jun; Qin, Guoting; Erasquin, Uriel J; Ren, Li; Wang, Yingjun; Cai, Chengzhi

    2017-03-01

    We demonstrated that copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction could be performed inside live mammalian cells without using a chelating azide. Under optimized conditions, the reaction was performed in human ovary cancer cell line OVCAR5 in which newly synthesized proteins were metabolically modified with homopropargylglycine (HPG). This model system allowed us to estimate the efficiency of the reaction on the cell membranes and in the cytosol using mass spectrometry. We found that the reaction was greatly promoted by a tris(triazolylmethyl)amine Cu(I) ligand tethering a cell-penetrating peptide. Uptake of the ligand, copper, and a biotin-tagged azide in the cells was determined to be 69 ± 2, 163 ± 3 and 1.3 ± 0.1 µM, respectively. After 10 minutes of reaction, the product yields on the membrane and cytosolic proteins were higher than 18% and 0.8%, respectively, while 75% cells remained viable. By reducing the biothiols in the system by scraping or treatment with N-ethylmalemide, the reaction yield on the cytosolic proteins was greatly improved to ~9% and ~14%, respectively, while the yield on the membrane proteins remained unchanged. The results indicate that out of many possibilities, deactivation of the current copper catalysts by biothiols is the major reason for the low yield of CuAAC reaction in the cytosol. Overall, we have improved the efficiency for CuAAC reaction on live cells by 3-fold. Despite the low yielding inside live cells, the products that strongly bind to the intracellular targets can be detected by mass spectrometry. Hence, the in situ CuAAC reaction can be potentially used for screening of cell-specific enzyme inhibitors or biomarkers containing 1,4-substituted 1,2,3-triazoles.

  4. Nanosolar: Delivering Grid-Parity Solar Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Sager, Brian [Nanosolar, Inc., San Jose, CA (United States)

    2012-05-31

    Nanosolar has developed proprietary technology based on Copper-Indium-Gallium-diSelenide (CIGS) absorber technology that allows the printing of this semiconductor material using a high-speed, high-throughput roll-to-roll manufacturing process. A central challenge in cost-effectively constructing a large-area CIGS-based solar cell or module is that the elements of the CIGS layer must be within a narrow stoichiometric ratio on nano-, meso-, and macroscopic length scale in all three dimensions in order for the resulting cell or module to be highly efficient. Achieving precise stoichiometric composition over relatively large substrate areas is however difficult using traditional vacuum-based deposition processes. For example, it is difficult to uniformly deposit compounds and/or alloys containing more than one element by sputtering or evaporation. Both techniques rely on deposition approaches that are limited to line-of-sight and limited-area sources, tending to result in poor surface coverage. Line-of-sight trajectories and limited-area sources can result in non-uniform three-dimensional distribution of the elements in all three dimensions and/or poor film-thickness uniformity over large areas. These non-uniformities can occur over the nano-, meso-, and/or macroscopic scales. Such non-uniformity also alters the local stoichiometric ratios of the absorber layer, decreasing the potential power conversion efficiency of the complete cell or module. Nanosolar has overcome these challenges by printing nanoparticulate CIGS precursor materials onto low-cost metal foil substrates, and performing a rapid thermal processing to convert the nanoparticulate coating into a CIGS absorber layer By locking in the appropriate stochiometry into the nanoparticulate precursor material, spatial uniformity is ensured in the coated layers, while printing at high speed and throughput minimizes solar cell cost.

  5. Dye solar cells: a different approach to solar energy

    CSIR Research Space (South Africa)

    Le Roux, Lukas J

    2008-11-01

    Full Text Available to chemical analysis, techniques such as impedance spectroscopy (Nyquist and Bode plots), cyclic voltammetry and I-V measurements by means of a PC-interfaced solar simulator are used to determine the stability of the cells. Further work includes research...

  6. Multijunction Solar Cells Optimized for the Mars Surface Solar Spectrum

    Science.gov (United States)

    Edmondson, Kenneth M.; Fetzer, Chris; Karam, Nasser H.; Stella, Paul; Mardesich, Nick; Mueller, Robert

    2007-01-01

    This paper gives an update on the performance of the Mars Exploration Rovers (MER) which have been continually performing for more than 3 years beyond their original 90-day missions. The paper also gives the latest results on the optimization of a multijunction solar cell that is optimized to give more power on the surface of Mars.

  7. High Efficiency, Deployable Solar Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ultrathin, lightweight, flexible, and easily deployable solar cell (SC) capable of specific power greater than 1kW/kg are at an early stage of development for...

  8. Heavily doped polysilicon-contact solar cells

    Science.gov (United States)

    Lindholm, F. A.; Neugroschel, A.; Arienzo, M.; Iles, P. A.

    1985-01-01

    The first use of a (silicon)/heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction or back-surface-field (BSF) structure of silicon solar cells is reported. Compared with BSF and back-ohmic-contact (BOC) control samples, the polysilicon-back solar cells show improvements in red spectral response (RSR) and open-circuit voltage. Measurement reveals that a decrease in effective surface recombination velocity S is responsible for this improvement. Decreased S results for n-type (Si:As) polysilicon, consistent with past findings for bipolar transistors, and for p-type (Si:B) polysilicon, reported here for the first time. Though the present polysilicon-back solar cells are far from optimal, the results suggest a new class of designs for high efficiency silicon solar cells. Detailed technical reasons are advanced to support this view.

  9. Semitransparent Fully Air Processed Perovskite Solar Cells.

    Science.gov (United States)

    Bu, Lingling; Liu, Zonghao; Zhang, Meng; Li, Wenhui; Zhu, Aili; Cai, Fensha; Zhao, Zhixin; Zhou, Yinhua

    2015-08-19

    Semitransparent solar cells are highly attractive for application as power-generating windows. In this work, we present semitransparent perovskite solar cells that employ conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) film as the transparent counter electrode. The PSS electrode is prepared by transfer lamination technique using plastic wrap as the transfer medium. The use of the transfer lamination technique avoids the damage of the CH3NH3PbI3 perovskite film by direct contact of PSS aqueous solution. The semitransparent perovskite solar cells yield a power conversion efficiency of 10.1% at an area of about 0.06 cm(2) and 2.9% at an area of 1 cm(2). The device structure and the fabrication technique provide a facile way to produce semitransparent perovskite solar cells.

  10. Multijunction Ultralight Solar Cells and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a continuing need within NASA for solar cells and arrays with very high specific power densities (1000-5000 kW/kg) for generating power in a new generation...

  11. A space solar cell bonding robot

    Institute of Scientific and Technical Information of China (English)

    FU Zhuang; ZHAO Yan-zheng; LIU Ren-qiang; DONG Zhi

    2006-01-01

    A space solar cell bonding robot system which consists of a three-axis Cartesian coordinate's robot,coating device,bonding device,orientation plate,and control subsystem was studied.A method,which can control the thickness of adhesive layer on the solar cell,was put forward and the mechanism was designed.Another method which can achieve the auto-bonding between thin coverglass and the space solar cell was studied and realized.It produced no air bubble in the adhesives layer under the condition of no vacuum environment,and ensures the assembly dislocation ≤0.1 mm.Compared to the conventional method,it has advantages such as no fragment exists,and no adhesives outflow onto the cover-glass and solar cells.

  12. The perils of solar cell efficiency measurements

    Science.gov (United States)

    Snaith, Henry J.

    2012-06-01

    Ignorance and negligence are frequently causing solar cells to be mischaracterized, and invalid efficiency results have been reported in a number of journals. This problem can be greatly alleviated by employing a few simple precautions and guidelines.

  13. Solar cell efficiency tables (version 50)

    Energy Technology Data Exchange (ETDEWEB)

    Green, Martin A. [Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney 2052 Australia; Hishikawa, Yoshihiro [National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics (RCPV), Central 2, Umezono 1-1-1, Ibaraki Tsukuba 305-8568 Japan; Warta, Wilhelm [Department: Characterisation and Simulation/CalLab Cells, Fraunhofer-Institute for Solar Energy Systems, Heidenhofstr. 2 Freiburg D-79110 Germany; Dunlop, Ewan D. [European Commission-Joint Research Centre, Directorate C-Energy, Transport and Climate, Via E. Fermi 2749 Ispra IT-21027 VA Italy; Levi, Dean H. [National Renewable Energy Laboratory, 15013 Denver West Parkway Golden CO 80401 USA; Hohl-Ebinger, Jochen [Department: Characterisation and Simulation/CalLab Cells, Fraunhofer-Institute for Solar Energy Systems, Heidenhofstr. 2 Freiburg D-79110 Germany; Ho-Baillie, Anita W. H. [Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney 2052 Australia

    2017-06-21

    Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined, and new entries since January 2017 are reviewed.

  14. Solar-cell testing and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakos, E.K.; Collis, W.J.

    1982-04-01

    A two year study of the degradation effects in AlGaAs/GaAs solar cells is described. Illuminated current-voltage measurements were made during temperature and humidity cycling and time dependent degradation measurements were recorded.

  15. Roll-to-roll fabrication of polymer solar cells

    National Research Council Canada - National Science Library

    Søndergaard, Roar; Hösel, Markus; Angmo, Dechan; Larsen-Olsen, Thue T; Krebs, Frederik C

    2012-01-01

    .... Solution processing, low cost, low energy budget, flexible solar cells, are keywords associated with organic solar cells, and through several decades the driving force for research within the field of polymer solar cells has been the huge potential of the technology to enable high throughput production of cheap solar cells. The evolution started with sm...

  16. Singlet fission: Towards efficient solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Havlas, Zdeněk; Wen, Jin [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic); Michl, Josef [Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215 (United States); Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6 (Czech Republic)

    2015-12-31

    Singlet fission (SF) offers an opportunity to improve solar cell efficiency, but its practical use is hindered by the limited number of known efficient materials, limited knowledge of SF mechanism, mainly the relation between the dimer structure and SF efficiency and diffusion of the triplet states allowing injection of electrons into the solar cell semiconductor band. Here we report on our attempt to design new classes of chromophores and to study the relation between the structure and SF efficiency.

  17. Organic Based Solar Cells with Morphology Control

    OpenAIRE

    Andersen, Thomas Rieks; Bundgaard, Eva; Jørgensen, Mikkel

    2013-01-01

    The field of organic solar cells has in the last years gone through an impressive development with efficiencies reported up to 12 %. For organic solar cells to take the leap from primarily being a laboratory scale technology to being utilized as renewable energy source, several issues need to be addressed. Among these are a more direct transfer of new materials tested on a laboratory scale to large scale production than offered by spincoating, a method offering direct control of the morpholog...

  18. Strategies for Optimizing Organic Solar Cells

    OpenAIRE

    Wynands, David

    2011-01-01

    This work investigates organic solar cells made of small molecules. Using the material system α,ω-bis(dicyanovinylene)-sexithiophene (DCV6T) - C60 as model, the correlation between the photovoltaic active layer morphology and performance of the solar cell is studied. The chosen method for controlling the layer morphology is applying different substrate temperatures (Tsub ) during the deposition of the layer. In neat DCV6T layers, substrate heating induces higher crystallinity as is shown b...

  19. Efficiency Enhancement in Plasmonic IBC Solar Cells

    OpenAIRE

    Christian Chaverri-Ramos; J. Ayúcar; L. Bellières; Guillermo Sánchez Plaza; James Connolly

    2012-01-01

    Silicon solar cells dominate photovoltaics but suffer from poor interaction with light. This work reports on progress regarding both spectral conversion and improved light interaction with the LIMA design [1]. This combines an efficient interdigitated back-contact (IBC) solar cell [2] with a silicon quantum dot (Si-QD) [3] to optimize the spectral distribution of the incident spectrum, and finally a front-side plasmon layer to optimize light interaction. Reflectivity after thickness and proce...

  20. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2015-10-01

    Full Text Available This work studies the use of gold (Au and silver (Ag nanoparticles in multicrystalline silicon (mc-Si and copper-indium-gallium-diselenide (CIGS solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

  1. Achieving High Performance Perovskite Solar Cells

    Science.gov (United States)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  2. Perovskite solar cells: from materials to devices.

    Science.gov (United States)

    Jung, Hyun Suk; Park, Nam-Gyu

    2015-01-07

    Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells.

  3. Perovskite Solar Cells: Progress and Advancements

    Directory of Open Access Journals (Sweden)

    Naveen Kumar Elumalai

    2016-10-01

    Full Text Available Organic–inorganic hybrid perovskite solar cells (PSCs have emerged as a new class of optoelectronic semiconductors that revolutionized the photovoltaic research in the recent years. The perovskite solar cells present numerous advantages include unique electronic structure, bandgap tunability, superior charge transport properties, facile processing, and low cost. Perovskite solar cells have demonstrated unprecedented progress in efficiency and its architecture evolved over the period of the last 5–6 years, achieving a high power conversion efficiency of about 22% in 2016, serving as a promising candidate with the potential to replace the existing commercial PV technologies. This review discusses the progress of perovskite solar cells focusing on aspects such as superior electronic properties and unique features of halide perovskite materials compared to that of conventional light absorbing semiconductors. The review also presents a brief overview of device architectures, fabrication methods, and interface engineering of perovskite solar cells. The last part of the review elaborates on the major challenges such as hysteresis and stability issues in perovskite solar cells that serve as a bottleneck for successful commercialization of this promising PV technology.

  4. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis.

    Science.gov (United States)

    Dodani, Sheel C; Leary, Scot C; Cobine, Paul A; Winge, Dennis R; Chang, Christopher J

    2011-06-08

    We present the design, synthesis, spectroscopy, and biological applications of Mitochondrial Coppersensor-1 (Mito-CS1), a new type of targetable fluorescent sensor for imaging exchangeable mitochondrial copper pools in living cells. Mito-CS1 is a bifunctional reporter that combines a Cu(+)-responsive fluorescent platform with a mitochondrial-targeting triphenylphosphonium moiety for localizing the probe to this organelle. Molecular imaging with Mito-CS1 establishes that this new chemical tool can detect changes in labile mitochondrial Cu(+) in a model HEK 293T cell line as well as in human fibroblasts. Moreover, we utilized Mito-CS1 in a combined imaging and biochemical study in fibroblasts derived from patients with mutations in the two synthesis of cytochrome c oxidase 1 and 2 proteins (SCO1 and SCO2), each of which is required for assembly and metalation of functionally active cytochrome c oxidase (COX). Interestingly, we observe that although defects in these mitochondrial metallochaperones lead to a global copper deficiency at the whole cell level, total copper and exchangeable mitochondrial Cu(+) pools in SCO1 and SCO2 patient fibroblasts are largely unaltered relative to wild-type controls. Our findings reveal that the cell maintains copper homeostasis in mitochondria even in situations of copper deficiency and mitochondrial metallochaperone malfunction, illustrating the importance of regulating copper stores in this energy-producing organelle.

  5. Transparent superstrate terrestrial solar cell module

    Science.gov (United States)

    1977-01-01

    The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.

  6. Copper mediates auxin signalling to control cell differentiation in the copper moss Scopelophila cataractae.

    Science.gov (United States)

    Nomura, Toshihisa; Itouga, Misao; Kojima, Mikiko; Kato, Yukari; Sakakibara, Hitoshi; Hasezawa, Seiichiro

    2015-03-01

    The copper (Cu) moss Scopelophila cataractae (Mitt.) Broth. is often found in Cu-enriched environments, but it cannot flourish under normal conditions in nature. Excess Cu is toxic to almost all plants, and therefore how this moss species thrives in regions with high Cu concentration remains unknown. In this study, we investigated the effect of Cu on gemma germination and protonemal development in S. cataractae. A high concentration of Cu (up to 800 µM) did not affect gemma germination. In the protonemal stage, a low concentration of Cu promoted protonemal gemma formation, which is the main strategy adopted by S. cataractae to expand its habitat to new locations. Cu-rich conditions promoted auxin accumulation and induced differentiation of chloronema into caulonema cells, whereas it repressed protonemal gemma formation. Under low-Cu conditions, auxin treatment mimicked the effects of high-Cu conditions. Furthermore, Cu-induced caulonema differentiation was severely inhibited in the presence of the auxin antagonist α-(phenylethyl-2-one)-indole-3-acetic acid, or the auxin biosynthesis inhibitor l-kynurenine. These results suggest that S. cataractae flourishes in Cu-rich environments via auxin-regulated cell differentiation. The copper moss might have acquired this mechanism during the evolutionary process to benefit from its advantageous Cu-tolerance ability. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. CTS and CZTS for solar cells made by pulsed laser deposition and pulsed electron deposition

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt

    , which make them promising alternatives to the commercially successful solar cell material copper indium gallium diselenide (CIGS). Complementing our group's work on pulsed laser deposition of CZTS, we collaborated with IMEM-CNR in Parma, Italy, to deposit CZTS by pulsed electron deposition for the first...... time. We compared the results of CZTS deposition by PLD at DTU in Denmark to CZTS made by PED at IMEM-CNR, where CIGS solar cells have successfully been fabricated at very low processing temperatures. The main results of this work were as follows: Monoclinic-phase CTS films were made by pulsed laser...

  8. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    Energy Technology Data Exchange (ETDEWEB)

    Geissbühler, Jonas, E-mail: jonas.geissbuehler@epfl.ch; Werner, Jérémie; Martin de Nicolas, Silvia; Hessler-Wyser, Aïcha; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); Barraud, Loris; Despeisse, Matthieu; Nicolay, Sylvain [CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland); Ballif, Christophe [Photovoltaics and Thin Film Electronics Laboratory, Institute of Microengineering (IMT), École Polytechnique Fédérale de Lausanne (EPFL), Rue de la Maladière 71b, CH-2000 Neuchâtel (Switzerland); CSEM PV-Center, Jaquet-Droz 1, CH-2000 Neuchâtel (Switzerland)

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  9. Copper-induced immunotoxicity involves cell cycle arrest and cell death in the spleen and thymus.

    Science.gov (United States)

    Mitra, Soham; Keswani, Tarun; Dey, Manali; Bhattacharya, Shaswati; Sarkar, Samrat; Goswami, Suranjana; Ghosh, Nabanita; Dutta, Anuradha; Bhattacharyya, Arindam

    2012-03-11

    Copper is an essential trace element for human physiological processes. To evaluate the potential adverse health impact/immunotoxicological effects of this metal in situ due to over exposure, Swiss albino mice were treated (via intraperitoneal injections) with copper (II) chloride (copper chloride) at doses of 0, 5, or 7.5 mg copper chloride/kg body weight (b.w.) twice a week for 4 wk; these values were derived from LD₅₀ studies using copper chloride doses that ranged from 0 to 40 mg/kg BW (2×/wk, for 4 wk). Copper treated mice evidenced immunotoxicity as indicated by dose-related decreases and increases, respectively, in thymic and splenic weights. Histomorphological changes evidenced in these organs were thymic atrophy, white pulp shrinkage in the spleen, and apoptosis of splenocytes and thymocytes; these observations were confirmed by microscopic analyses. Cell count analyses indicated that the proliferative functions of the splenocytes and thymocytes were also altered because of the copper exposures. Among both cell types from the copper treated hosts, flow cytometric analyses revealed a dose related increase in the percentages of cells in the Sub-G₀/G₁ state, indicative of apoptosis which was further confirmed by Annexin V binding assay. In addition, the copper treatments altered the expression of selected cell death related genes such as EndoG and Bax in a dose related manner. Immunohistochemical analyses revealed that there was also increased ubiquitin expression in both the cell types. In conclusion, these studies show that sublethal exposure to copper (as copper chloride) induces toxicity in the thymus and spleen, and increased Sub G₀/G₁ population among splenocytes and thymocytes that is mediated, in part, by the EndoG-Bax-ubiquitin pathway. This latter damage to these cells that reside in critical immune system organs are likely to be important contributing factors underlying the immunosuppression that has been documented by other

  10. Optimization and performance of Space Station Freedom solar cells

    Science.gov (United States)

    Khemthong, S.; Hansen, N.; Bower, M.

    1991-01-01

    High efficiency, large area and low cost solar cells are the drivers for Space Station solar array designs. The manufacturing throughput, process complexity, yield of the cells, and array manufacturing technique determine the economics of the solar array design. The cell efficiency optimization of large area (8 x 8 m), dielectric wrapthrough contact solar cells are described. The results of the optimization are reported and the solar cell performance of limited production runs is reported.

  11. Tetra methyl substituted Cu(II) phthalocyanine as alternative hole transporting material for organometal halide perovskite solar cells

    Science.gov (United States)

    Sfyri, Georgia; Kumar, Challuri Vijay; Wang, Yu-Long; Xu, Zong-Xiang; Krontiras, C. A.; Lianos, Panagiotis

    2016-01-01

    Copper phthalocyanine is a promising hole transporting material, which can be employed with solid state perovskite solar cells. Tetra methyl substituted copper phthalocyanine was presently studied as a hole transporting material and demonstrated improved performance with respect to unsubstituted copper phthalocyanine. This material shows a strong absorption in the Visible and Near IR part of the electromagnetic spectrum contributing to the absorption of photons. Its LUMO and HOMO level are favourably positioned for injecting electrons and scavenging holes. Methyl substitution facilitates closer molecular packing leading to a stronger extinction coefficient, stronger Ͽ⿿Ͽ interaction and higher charge carrier mobility.

  12. Nanoparticle Solar Cell Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Breeze, Alison, J; Sahoo, Yudhisthira; Reddy, Damoder; Sholin, Veronica; Carter, Sue

    2008-06-17

    The purpose of this work was to demonstrate all-inorganic nanoparticle-based solar cells with photovoltaic performance extending into the near-IR region of the solar spectrum as a pathway towards improving power conversion efficiencies. The field of all-inorganic nanoparticle-based solar cells is very new, with only one literature publication in the prior to our project. Very little is understood regarding how these devices function. Inorganic solar cells with IR performance have previously been fabricated using traditional methods such as physical vapor deposition and sputtering, and solution-processed devices utilizing IR-absorbing organic polymers have been investigated. The solution-based deposition of nanoparticles offers the potential of a low-cost manufacturing process combined with the ability to tune the chemical synthesis and material properties to control the device properties. This work, in collaboration with the Sue Carter research group at the University of California, Santa Cruz, has greatly expanded the knowledge base in this field, exploring multiple material systems and several key areas of device physics including temperature, bandgap and electrode device behavior dependence, material morphological behavior, and the role of buffer layers. One publication has been accepted to Solar Energy Materials and Solar Cells pending minor revision and another two papers are being written now. While device performance in the near-IR did not reach the level anticipated at the beginning of this grant, we did observe one of the highest near-IR efficiencies for a nanoparticle-based solar cell device to date. We also identified several key parameters of importance for improving both near-IR performance and nanoparticle solar cells in general, and demonstrated multiple pathways which showed promise for future commercialization with further research.

  13. HYBRID FUEL CELL-SOLAR CELL SPACE POWER SUBSYSTEM CAPABILITY.

    Science.gov (United States)

    This report outlines the capabilities and limitations of a hybrid solar cell- fuel cell space power subsystem by comparing the proposed hybrid system...to conventional power subsystem devices. The comparisons are based on projected 1968 capability in the areas of primary and secondary battery, fuel ... cell , solar cell, and chemical dynamic power subsystems. The purpose of the investigation was to determine the relative merits of a hybrid power

  14. Modelling the Thermal Process of Copper Sintering in a Solar Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Lacasa, D.; Berenguel, M.; Canadas, I.; Yebra, L.

    2006-07-01

    In this paper, a grey-box model is presented for predicting thermal and heat transfer profiles in the sintering of copper samples in a solar furnace. Since real tests are both time and resource consuming while also being destructive, proves an invaluable tool to yield as well as accelerate model-based automatic control strategies. Specifically, the model was primarily designed to satisfy automation needs, seeking a macroscopic numerical model with very light computational load, as the shift experienced in the sample's properties during sintering is translated into the model in the form of tuning parameters, adjusted by genetic optimization. The implementation of explicit differential equations for energy balance first-principles based solution is addressed. Moreover, training and validation are accomplished by direct comparison with experimental tests. Finally, the initial results and the corresponding simulations are also shown. (Author)

  15. Cell therapy to remove excess copper in Wilson's disease.

    Science.gov (United States)

    Gupta, Sanjeev

    2014-05-01

    To achieve permanent correction of Wilson's disease by a cell therapy approach, replacement of diseased hepatocytes with healthy hepatocytes is desirable. There is a physiological requirement for hepatic ATP7B-dependent copper (Cu) transport in bile, which is deficient in Wilson's disease, producing progressive Cu accumulation in the liver or brain with organ damage. The ability to repopulate the liver with healthy hepatocytes raises the possibility of cell therapy in Wilson's disease. Therapeutic principles included reconstitution of bile canalicular network as well as proliferation in transplanted hepatocytes, despite toxic amounts of Cu in the liver. Nonetheless, cell therapy studies in animal models elicited major differences in the mechanisms driving liver repopulation with transplanted hepatocytes in Wilson's disease versus nondiseased settings. Recently, noninvasive imaging was developed to demonstrate Cu removal from the liver, including after cell therapy in Wilson's disease. Such developments will help advance cell/gene therapy approaches, particularly by offering roadmaps for clinical trials in people with Wilson's disease.

  16. Automated solar cell assembly team process research

    Science.gov (United States)

    Nowlan, M. J.; Hogan, S. J.; Darkazalli, G.; Breen, W. F.; Murach, J. M.; Sutherland, S. F.; Patterson, J. S.

    1994-06-01

    This report describes work done under the Photovoltaic Manufacturing Technology (PVMaT) project, Phase 3A, which addresses problems that are generic to the photovoltaic (PV) industry. Spire's objective during Phase 3A was to use its light soldering technology and experience to design and fabricate solar cell tabbing and interconnecting equipment to develop new, high-yield, high-throughput, fully automated processes for tabbing and interconnecting thin cells. Areas that were addressed include processing rates, process control, yield, throughput, material utilization efficiency, and increased use of automation. Spire teamed with Solec International, a PV module manufacturer, and the University of Massachusetts at Lowell's Center for Productivity Enhancement (CPE), automation specialists, who are lower-tier subcontractors. A number of other PV manufacturers, including Siemens Solar, Mobil Solar, Solar Web, and Texas instruments, agreed to evaluate the processes developed under this program.

  17. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  18. Influence of radiation on the properties of solar cells

    OpenAIRE

    Zdravković Miloš R.; Vasić Aleksandra I.; Radosavljević Radovan Lj.; Vujisić Miloš Lj.; Osmokrović Predrag V.

    2011-01-01

    The wide substitution of conventional types of energy by solar energy lies in the rate of developing solar cell technology. Silicon is still the mostly used element for solar cell production, so efforts are directed to the improvement of physical properties of silicon structures. There are several trends in the development of solar cells, but mainly two directions are indicated: the improvement of the conventional solar cell characteristics based on semiconductor materials, and explorin...

  19. Solar heating of GaAs nanowire solar cells.

    Science.gov (United States)

    Wu, Shao-Hua; Povinelli, Michelle L

    2015-11-30

    We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

  20. Origin of Open-Circuit Voltage Loss in Polymer Solar Cells and Perovskite Solar Cells.

    Science.gov (United States)

    Kim, Hyung Do; Yanagawa, Nayu; Shimazaki, Ai; Endo, Masaru; Wakamiya, Atsushi; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2017-06-14

    Herein, the open-circuit voltage (VOC) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of VOC to discuss the difference in the primary loss mechanism of VOC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of VOC in both solar cells are further discussed on the basis of the experimental data.