WorldWideScience

Sample records for copper ii complexes

  1. Copper (II) Complex

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    Key Words : Histidine, complex compound, acetylacetone, stability constant, ... of a class of chemical compounds called amino acids, which are organic .... Synthesis and techniques in inorganic chemistry W. B. Saunders campany, 2nd Edition.

  2. Reactivity of copper(II)-alkylperoxo complexes.

    Science.gov (United States)

    Tano, Tetsuro; Ertem, Mehmed Z; Yamaguchi, Satoru; Kunishita, Atsushi; Sugimoto, Hideki; Fujieda, Nobutaka; Ogura, Takashi; Cramer, Christopher J; Itoh, Shinobu

    2011-10-28

    Copper(II) complexes 1a and 1b, supported by tridentate ligand bpa [bis(2-pyridylmethyl)amine] and tetradentate ligand tpa [tris(2-pyridylmethyl)amine], respectively, react with cumene hydroperoxide (CmOOH) in the presence of triethylamine in CH(3)CN to provide the corresponding copper(II) cumylperoxo complexes 2a and 2b, the formation of which has been confirmed by resonance Raman and ESI-MS analyses using (18)O-labeled CmOOH. UV-vis and ESR spectra as well as DFT calculations indicate that 2a has a 5-coordinate square-pyramidal structure involving CmOO(-) at an equatorial position and one solvent molecule at an axial position at low temperature (-90 °C), whereas a 4-coordinate square-planar structure that has lost the axial solvent ligand is predominant at higher temperatures (above 0 °C). Complex 2b, on the other hand, has a typical trigonal bipyramidal structure with the tripodal tetradentate tpa ligand, where the cumylperoxo ligand occupies an axial position. Both cumylperoxo copper(II) complexes 2a and 2b are fairly stable at ambient temperature, but decompose at a higher temperature (60 °C) in CH(3)CN. Detailed product analyses and DFT studies indicate that the self-decomposition involves O-O bond homolytic cleavage of the peroxo moiety; concomitant hydrogen-atom abstraction from the solvent is partially involved. In the presence of 1,4-cyclohexadiene (CHD), the cumylperoxo complexes react smoothly at 30 °C to give benzene as one product. Detailed product analyses and DFT studies indicate that reaction with CHD involves concerted O-O bond homolytic cleavage and hydrogen-atom abstraction from the substrate, with the oxygen atom directly bonded to the copper(II) ion (proximal oxygen) involved in the C-H bond activation step.

  3. Copper(II) complexes with aroylhydrazones

    Indian Academy of Sciences (India)

    Samudranil Pal

    2002-08-01

    The coordination chemistry of copper(II) with tridentate aroylhydrazones is briefly discussed in this article. Two types of aroylhydrazones derived from aroylhydrazines and ortho-hydroxy aldehydes or 2-pyridine-carboxaldehyde have been used. The characterization of the complexes has been performed with the help of various physico-chemical techniques. Solid state structural patterns have been established by X-ray crystallography. In the solid state, structural varieties of these complexes are seen to range from monomeric, dimeric, polymeric and onedimensional self-assembly via hydrogen bonds and - interactions. EPR spectroscopy and variable temperature magnetic susceptibility measurements have been used to reveal the nature of the coordination geometry and magnetic characteristics of these complexes.

  4. Synthetic, spectral and solution studies on imidazolate-bridged copper(II)-copper(II) and copper(II)-zinc(II) complexes

    Indian Academy of Sciences (India)

    Subodh Kumar; R N Patel; P V Khadikar; K B Pandeya

    2001-02-01

    Synthesis, spectral and solution studies on 2-ethyl imidazolate-bridged (2-EtIm) homo-binuclear copper(II)-copper(II) and hetero-binuclear copper(II)-zinc(II) homologue are described. Magnetic moment values of homo-binuclear complexes indicate that the imidazolate group can mediate antiferromagnetic interactions. Optical spectra of hetero-binuclear complex at varying H values suggest that the imidazolate-bridged complex is stable over the H-range 7 15-10 0.

  5. Copper(II) complexes encapsulated in human red blood cells.

    Science.gov (United States)

    Bonomo, R P; De Flora, A; Rizzarelli, E; Santoro, A M; Tabbí, G; Tonetti, M

    1995-09-01

    Copper(II) complexes were encapsulated in human red blood cells in order to test their possible use as antioxidant drugs by virtue of their labile character. ESR spectroscopy was used to verify whether encapsulation in red blood cells leads to the modification of such complexes. With copper(II) complexes bound to dipeptides or tripeptides, an interaction with hemoglobin was found to be present, the hemoglobin having a strong coordinative site formed by four nitrogen donor atoms. Instead, with copper(II) complexes with TAD or PheANN3, which have the greatest stability. ESR spectra always showed the original species. Only the copper(II) complex with GHL gave rise to a complicated behavior, which contained signals from iron(III) species probably coming from oxidative processes. Encapsulation of all copper(II) complexes in erythrocytes caused a slight oxidative stress, compared to the unloaded and to the native cells. However, no significant differences were observed in the major metabolic properties (GSH, glycolytic rate, hexose monophosphate shunt, Ca(2+)-ATPase) of erythrocytes loaded with different copper(II) complexes, with the exception of methemoglobin levels, which were markedly increased in the case of [Cu(GHL)H-1] compared to [Cu(TAD)]. This latter finding suggests that methemoglobin formation can be affected by the type of complex used for encapsulation, depending on the direct interaction of the copper(II) complex with hemoglobin.

  6. Photocleavage of DNA by copper(II) complexes

    Indian Academy of Sciences (India)

    Akhil R Chakravarty

    2006-11-01

    The chemistry of ternary and binary copper(II) complexes showing efficient visible lightinduced DNA cleavage activity is summarized in this article. The role of the metal in photo-induced DNA cleavage reactions is explored by designing complex molecules having a variety of ligands. Ternary copper(II) complexes with amino acid like L-methionone or L-lysine and phenanthroline base are efficient photocleavers of DNA. Complexes of formulation [Cu(L)(phen)](ClO4) with NSO-donor Schiff base (HL) and NN-donor heterocyclic base 1,10-phenanthroline (phen) show significant cleavage of supercoiled (SC) DNA on exposure to red light at ≈ 700 nm. The - and CT electronic bands of the copper(II) complexes play important roles in DNA cleavage reactions. The mechanistic pathways are found to be dependent on the types of ligands present in the copper(II) complexes and the photo-excitation energy. While UV exposure generally proceeds via a type-II process forming singlet oxygen as the reactive species, red-light exposure leads to DNA cleavage following different mechanistic pathways, viz. type-I, type-II and photo-redox pathways. Ternary copper(II) complexes with phen as DNA binder and Schiff base with a thiomethyl group as photosensitizer, cleave SC DNA to its nicked circular (NC) form in a type-II process in red-light. The binary complex [Cu(dpq)2(H2O)](ClO4)2 (dpq, dipyridoquinoxaline) cleaves DNA by photo-redox pathway at 694 nm. The binuclear complex [Cu$^{\\text{II}}_{2}$(RSSR)2], where H2RSSR is a Schiff base derived from 2-(thioethyl)salicylaldimine, cleaves SC DNA at 632.8 nm (CW He-Ne laser) and 694 nm (ruby laser) involving sulphide (type-I process) and hydroxyl radicals (photo-redox pathway) as the reactive species.

  7. Copper(II) complex of 3-cinnamalideneacetylacetone: Synthesis and characterisation

    Indian Academy of Sciences (India)

    A Veeraraj; P Sami; N Raman

    2000-10-01

    A bidentate ligand derived from cinnamaldehyde and acetylacetone and its copper(II) complex have been synthesized and characterized by elemental analysis, UV-Vis, IR, ESR and magnetic susceptibility measurements. Magnetic susceptibility measurements, ESR and electronic spectral data indicate the presence of six coordinated Cu(II) ion. The ligand and complex are tested for antibacterial activity against Pseudomonas aeroginosa. They are found to show the antibacterial activity

  8. Copper(II) complexes of rat amylin fragments.

    Science.gov (United States)

    Kállay, Csilla; Dávid, Agnes; Timári, Sarolta; Nagy, Eszter Márta; Sanna, Daniele; Garribba, Eugenio; Micera, Giovanni; De Bona, Paolo; Pappalardo, Giuseppe; Rizzarelli, Enrico; Sóvágó, Imre

    2011-10-14

    The fragments of rat amylin rIAPP(17-29) (Ac-VRSSNNLGPVLPP-NH(2)), rIAPP(17-22) (Ac-VRSSNN-NH(2)), rIAPP(19-22) (Ac-SSNN-NH(2)) and rIAPP(17-20) (Ac-VRSS-NH(2)) together with the related mutant peptides (Ac-VASS-NH(2) and Ac-VRAA-NH(2)) have been synthesized and their copper(II) complexes studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. Despite the lack of any common strongly coordinating donor functions some of these fragments are able to bind copper(II) ions in the physiological pH range. The longest fragment rat amylin(17-29) keeps one equivalent copper(II) ion in solution in the whole pH range, while two other peptides Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) are also able to interact with copper(II) ions in the slightly alkaline pH range. According to the spectral parameters of the complexes, the peptides can be classified into two different categories: (i) the tetrapeptides Ac-VRSS-NH(2), Ac-VASS-NH(2) and Ac-VRAA-NH(2) can interact with copper(II) only under strongly alkaline conditions (pH > 10.0) and the formation of only one species with four amide nitrogen coordination can be detected; (ii) the peptides Ac-VRSSNNLGPVLPP-NH(2), Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) can form complexes above pH 6.0 with the major stoichiometries [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-). These data support that rIAPP(17-29) can interact with copper(II) ions under physiological conditions and the SSNN tetrapeptide fragment can be considered as the shortest sequence responsible for metal binding. Density functional theory (DFT) calculations provide some information on the possible coordination modes of Ac-SSNN-NH(2) towards the copper(II) ion and suggest that for [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-), the binding of two, three and four deprotonated amide nitrogens, with NH(-) of the side chain of asparagine as anchoring group, is probable. Moreover, these data reveal that peptides can be effective metal binding ligands even in the absence of anchoring

  9. Electrochemical Synthesis and Structural Characterization of a Novel Mixed-valence Copper (I)-copper (II) Complex: {[Bis(ethylenediamine) Copper (II)] Bis[diiodocuprate (I)]}

    OpenAIRE

    Mahboobeh Dashti Ardakani; Majid M. Heravi; Saeed Dehghanpour; Lida Fotouhi

    2007-01-01

    A novel, mixed-valent copper(I)-copper(II) complex, {[bis(ethylene-diamine)copper(II)] bis[diiodocuprate(I)]} (1), has been prepared by electrochemicaldissolution of a sacrificial copper anode in a solution of ethylenediamine (en), I2 andtetraethylammoniumperchlorate (TEAP) as supporting electrolyte in acetonitrile (AcN)and characterized by single-crystal X-ray structure determination. The crystal structure ofthe complex 1 shows that it consists of a CuI2 polymer formed from I- ligands bridgi...

  10. Redox properties of a mononuclear copper(II)-superoxide complex.

    Science.gov (United States)

    Tano, Tetsuro; Okubo, Yuri; Kunishita, Atsushi; Kubo, Minoru; Sugimoto, Hideki; Fujieda, Nobutaka; Ogura, Takashi; Itoh, Shinobu

    2013-09-16

    Redox properties of a mononuclear copper(II) superoxide complex, (L)Cu(II)-OO(•), supported by a tridentate ligand (L = 1-(2-phenethyl)-5-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane) have been examined as a model compound of the putative reactive intermediate of peptidylglycine α-hydroxylating monooxygenase (PHM) and dopamine β-monooxygenase (DβM) (Kunishita et al. J. Am. Chem. Soc. 2009, 131, 2788-2789; Inorg. Chem. 2012, 51, 9465-9480). On the basis of the reactivity toward a series of one-electron reductants, the reduction potential of (L)Cu(II)-OO(•) was estimated to be 0.19 ± 0.07 V vs SCE in acetone at 298 K (cf. Tahsini et al. Chem.-Eur. J. 2012, 18, 1084-1093). In the reaction of TEMPO-H (2,2,6,6-tetramethylpiperidine-N-hydroxide), a simple HAT (hydrogen atom transfer) reaction took place to give the corresponding hydroperoxide complex LCu(II)-OOH, whereas the reaction with phenol derivatives ((X)ArOH) gave the corresponding phenolate adducts, LCu(II)-O(X)Ar, presumably via an acid-base reaction between the superoxide ligand and the phenols. The reaction of (L)Cu(II)-OO(•) with a series of triphenylphosphine derivatives gave the corresponding triphenylphosphine oxides via an electrophilic ionic substitution mechanism with a Hammett ρ value as -4.3, whereas the reaction with thioanisole (sulfide) only gave a copper(I) complex. These reactivities of (L)Cu(II)-OO(•) are different from those of a similar end-on superoxide copper(II) complex supported by a tetradentate TMG3tren ligand (1,1,1-Tris{2-[N(2)-(1,1,3,3-tetramethylguanidino)]ethyl}amine (Maiti et al. Angew. Chem., Int. Ed. 2008, 47, 82-85).

  11. metal complexes of copper(ii)

    African Journals Online (AJOL)

    ABSTRACT. Thermally stable metal complexes based on oligomers were prepared by the reaction ... Besides, coordination compounds of salicylaldehyde Schiff base have proven to be an excellent .... They were insoluble in common organic.

  12. Complex with fullerenol and copper (II

    Directory of Open Access Journals (Sweden)

    Đorđević Aleksandar N.

    2009-01-01

    Full Text Available Polyhydroxy fulleren derivates have significant potential in nanomedical application. Research of polyanion nanoparticle fullerenol C60(OH24 is of high significance for interpretation of biological mechanisms. This paper investigated the properties of polyanion nanoparticle fullerenol C60(OH24 as a potential polydentat ligand. Fullerenol C60(OH24 water solutions were added in solution of [Cu(NH34]2+ in order to form a dark brown complex. Absorbance of [Cu(NH34]2+ solution was decreasing with increasing concentration of polyanion nanoparticle nanoligand fullerenol. This relation was determined in all investigated concentrations of [Cu(NH34]2+. The ratio of Cu2+ complex composer to polyanion polydentat nanoligand fullerenol had an increase from 1.5 to 9, proportional to the increase of the complex composer concentration and decrease of polyanion polydentat nanoligand fullerenol in the alkali medium. The thermogram TGA-DTA of fullerenol and fullerenol and CuSO4 complex, clearly show endothermic effects (which are the result of dehydratation and dehydroxylation and exothermic effects (as the result of degradation of C60(OH24 molecules and processes of oxidation in CO, CO2. At the beginning of TGA-DTA fullerenol thermogram, there is a very well defined endothermic peak of water loss at 100°C, followed by mass decrease as a consequence of lost hydroxyl groups, covalent bounded for C60. The influence of the complex composer is manifested in the moving of thermal stability towards lower temperatures. The complex composer is a catalyst of the process of polyanion polydentat nanoligand fullerenol oxidation to CO and CO2. The temperature peak of fullerenol oxidation is at 490°C and in the case of complex oxidation two peaks were detected at 380 and 410°C.

  13. Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of multihistidine peptide fragments of human prion protein.

    Science.gov (United States)

    Jószai, Viktória; Turi, Ildikó; Kállay, Csilla; Pappalardo, Giuseppe; Di Natale, Giuseppe; Rizzarelli, Enrico; Sóvágó, Imre

    2012-07-01

    Mixed metal copper(II)-nickel(II) and copper(II)-zinc(II) complexes of four peptide fragments of human prion protein have been studied by potentiometric, UV-vis and circular dichroism spectroscopic techniques. One peptide contained three histidyl residues: HuPrP(84-114) with H85 inside and H96, H111 outside the octarepeat domain. The other three peptides contained two histidyl residues; H96 and H111 for HuPrP(91-115) and HuPrP(84-114)H85A while HuPrP(84-114)H96A contained the histidyl residues at positions 85 and 111. It was found that both histidines of the latter peptides can simultaneously bind copper(II) and nickel(II) ions and dinuclear mixed metal complexes can exist in slightly alkaline solution. One molecule of the peptide with three histidyl residues can bind two copper(II) and one nickel(II) ions. H85 and H111 were identified as the major copper(II) and H96 as the preferred nickel(II) binding sites in mixed metal species. The studies on the zinc(II)-PrP peptide binary systems revealed that zinc(II) ions can coordinate to the 31-mer PrP peptide fragments in the form of macrochelates with two or three coordinated imidazol-nitrogens but the low stability of these complexes cannot prevent the hydrolysis of the metal ion in slightly alkaline solution. These data provide further support for the outstanding affinity of copper(II) ions towards the peptide fragments of prion protein but the binding of nickel(II) can significantly modify the distribution of copper(II) among the available metal binding sites.

  14. Structures of dioxobipyridil-12-crown-4 and its complexes with silver (I) and copper (II) cations

    Science.gov (United States)

    Starova, Galina L.; Denisova, Anna S.; Dem'yanchuk, Evgeniya M.

    2008-02-01

    The structures of dioxobipyridil-12-crown-4 ( bpy-CO-crown) and its complexes with copper (II) and silver (I) cations have been determined using single crystal X-ray-diffraction. The results have been compared with the literature data on the complexes of dcmbpy and its complex with silver (I) and copper (II) cations.

  15. Electrochemical synthesis and structural characterization of a novel mixed-valence copper(I)-copper(II) complex: {[bis(ethylenediamine)copper(II)] bis[diiodocuprate(I)]}.

    Science.gov (United States)

    Fotouhi, Lida; Dehghanpour, Saeed; Heravi, Majid M; Ardakani, Mahboobeh Dashti

    2007-07-12

    A novel, mixed-valent copper(I)-copper(II) complex, {[bis(ethylene-diamine)copper(II)] bis[diiodocuprate(I)]} (1), has been prepared by electrochemical dissolution of a sacrificial copper anode in a solution of ethylenediamine (en), I2 and tetraethylammoniumperchlorate (TEAP) as supporting electrolyte in acetonitrile (AcN)and characterized by single-crystal X-ray structure determination. The crystal structure of the complex 1 shows that it consists of a CuI2 polymer formed from I- ligands bridging Cu(I) ions, with a nearly square planar geometry of bivalent Cu(II) atoms chelated by two ethylenediamine ligands. The results also show that direct electrosynthesis of the complex had high current efficiency, purity and electrolysis yield.

  16. Aromatic C-nitrosation by a copper(II)-nitrosyl complex.

    Science.gov (United States)

    Rout, Kanhu Charan; Mondal, Biplab

    2015-01-28

    Copper(II) complex of 4-amino-3-hydroxy-1-sulphonic acid was synthesized and characterized. Upon addition of nitric oxide, the copper(II) center of the complex in methanol was found to undergo reduction through an unstable copper(II)-nitrosyl intermediate. The formation of the intermediate was confirmed by UV-visible and FT-IR spectroscopy. The reduction of the copper(II) center was accompanied with a simultaneous C-nitrosation of the aromatic ring of the ligand. The C-nitrosation product was isolated and characterized by various spectroscopic analyses.

  17. Styrene Oxidation by Copper(II) Complexes Salen-Type Encapsulated into Nay Zeolite

    National Research Council Canada - National Science Library

    I. Kuźniarska-Biernacka; M.A. Carvalho; I. Correia Neves; A. M. Fonseca; A. Lisińska-Czekaj; D. Czekaj

    2013-01-01

    The copper(II) complex with a Schiff-base salen-type ligand has been encapsulated in the nanopores of a NaY zeolite by using two different methodologies, the flexible ligand and in situ complex preparation methods...

  18. Inhibition of respiratory complex I by copper(ii)-bis(thiosemicarbazonato) complexes.

    Science.gov (United States)

    Djoko, Karrera Y; Donnelly, Paul S; McEwan, Alastair G

    2014-12-01

    Several copper(ii) complexes of bis(thiosemicarbazones) [Cu(btsc)s] show promise as therapeutics for the treatment of neurological diseases, cancers and bacterial infections. These complexes are thought to act primarily as copper ionophores or "copper boosting" agents, whereby the Cu(II) centre is reduced by cytosolic reductants and Cu(I) is released as "free" or "bioavailable" ion. It is then assumed that the dissociated Cu(I) ion is the species responsible for many of the observed biological effects of Cu(btsc)s. We recently showed that Cu(btsc) complexes inhibited NADH dehydrogenases in the bacterial respiratory chain. In this work, we demonstrate that Cu(btsc) complexes also inhibit mitochondrial respiration and that Complex I in the mitochondrial electron transport chain is a specific target of inhibition. However, bioavailable Cu ions do not appear to contribute to the action of Cu(btsc) as a respiratory inhibitor. Instead, an intact Cu(btsc) molecule may bind reversibly and competitively to the site of ubiquinone binding in Complex I. Our results add to the growing body of evidence that the intact complex may be important in the overall cellular activity of Cu(btsc) complexes and further the understanding of their biological effects as a potential therapeutic.

  19. Electrochemical Synthesis and Structural Characterization of a Novel Mixed-valence Copper (I-copper (II Complex: {[Bis(ethylenediamine Copper (II] Bis[diiodocuprate (I]}

    Directory of Open Access Journals (Sweden)

    Mahboobeh Dashti Ardakani

    2007-07-01

    Full Text Available A novel, mixed-valent copper(I-copper(II complex, {[bis(ethylene-diaminecopper(II] bis[diiodocuprate(I]} (1, has been prepared by electrochemicaldissolution of a sacrificial copper anode in a solution of ethylenediamine (en, I2 andtetraethylammoniumperchlorate (TEAP as supporting electrolyte in acetonitrile (AcNand characterized by single-crystal X-ray structure determination. The crystal structure ofthe complex 1 shows that it consists of a CuI2 polymer formed from I- ligands bridgingCu(I ions, with a nearly square planar geometry of bivalente Cu(II atoms chelated by twoethylenediamine ligands. The results also show that direct electrosynthesis of the complexhad high current efficiency, purity and electrolysis yield.

  20. Spectral studies of copper(II) complexes of 6-(3-thienyl) pyridine-2-thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoub, Omima Abdalla; Farina, Yang [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2014-09-03

    Two novel copper(II) complexes [Cu(HL)Cl]Cl.H{sub 2}O (1) and [Cu(L)NO{sub 3}]Ðœ‡H{sub 2}O (2) of the three NNS donor thiosemicarbazone ligand 6-(3-thienyl) pyridine-2-thiosemicarbazone have been synthesized. The ligand and its copper(II) complexes were characterized by elemental analysis (C, H, N, and S), FT-IR, UV-visible, magnetic susceptibility and molar conductance. The thiosemicarbazone is present either as the thione form in complex 1 or as thiol form in complex 2 and is coordinated to copper(II) atom via the pyridine nitrogen atom, the azomethine nitrogen atom and the sulfur atom. The physicochemical and spectral data suggest square planar geometry for copper(II) atoms.

  1. Copper-based nanoparticles prepared from copper (II acetate bipyridine complex

    Directory of Open Access Journals (Sweden)

    Lastovina Tatiana A.

    2016-01-01

    Full Text Available We report the synthesis of CuO, Cu/Cu2O and Cu2O/CuO nanoparticles (NPs from the single copper (II acetate bipyridine complex by three different methods:microwave-assisted, solvothermal and borohydride. Presence of bipyridine ligand in the copper complex would impose no need in additional stabilization during synthesis. The phases of formed NPs were identified by X-ray diffraction. CuO NPs of ~11 nm were obtained via solvothermal synthesis from alkaline solution at 160°C. The Cu/Cu2O NPs of ~80 nm were produced via microwave-assisted polyol procedure at 185-200°C, where ethylene glycol can play a triple role as a solvent, a reducing agent and a surfactant. The Cu2O/CuO NPs of ~16 nm were synthesized by a borohydride method at room temperature. Interplanar spacing calculated from the selected-area electron diffraction data confirmed the formation of Cu, CuO and Cu2O phases in respective samples. All NPs are stable and can be used for various applications including biomedicine.

  2. Transition metal complexes of neocryptolepine analogues. Part I: Synthesis, spectroscopic characterization, and invitro anticancer activity of copper(II) complexes

    Science.gov (United States)

    Emam, Sanaa Moustafa; El Sayed, Ibrahim El Tantawy; Nassar, Nagla

    2015-03-01

    New generation of copper(II) complexes with aminoalkylaminoneocryptolepine as bidentate ligands has been synthesized and it is characterized by elemental analyses, magnetic moment, spectra (IR, UV-Vis, 1H NMR and ESR) and thermal studies. The IR data suggest the coordination modes for ligands which behave as a bidentate with copper(II) ion. Based on the elemental analysis, magnetic studies, electronic and ESR data, binuclear square planar geometry was proposed for complexes 7a, 7b, square pyramidal for 9a, 9b and octahedral for 8a, 8b, 10a, 10b. The molar conductance in DMF solution indicates that all complexes are electrolyte except 7a and 7b. The ESR spectra of solid copper(II) complexes in powder form showed an axial symmetry with 2B1g as a ground state and hyperfine structure. The thermal stability and degradation of the ligands and their metal complexes were studied employing DTA and TG methods. The metal-free ligands and their copper(II) complexes were tested for their in vitro anticancer activity against human colon carcinoma (HT-29). The results showed that the synthesized copper(II) complexes exhibited higher anticancer activity than their free ligands. Of all the studied copper(II) complexes, the bromo-substituted complex 9b exhibited high anticancer activity at low micromolar inhibitory concentrations (IC50 = 0.58 μM), compared to the other complexes and the free ligands.

  3. Reaction of beta-diketiminate copper(II) complexes and Na2S2.

    Science.gov (United States)

    Inosako, Masayuki; Kunishita, Atsushi; Shimokawa, Chizu; Teraoka, Junji; Kubo, Minoru; Ogura, Takashi; Sugimoto, Hideki; Itoh, Shinobu

    2008-11-28

    Reaction of beta-diketiminate copper(II) complexes and Na2S2 resulted in formation of (mu-eta2:eta2-disulfido)dicopper(II) complexes (adduct formation) or beta-diketiminate copper(I) complexes (reduction of copper(II)) depending on the substituents of the supporting ligands. In the case of sterically less demanding ligands, adduct formation occurred to provide the (mu-eta2:eta2-disulfido)dicopper(II) complexes, whereas reduction of copper(II) took place to give the corresponding copper(I) complexes with sterically more demanding beta-diketiminate ligands. Spectroscopic examinations of the reactions at low temperature using UV-vis and ESR as well as kinetic analysis have suggested that a 1 : 1 adduct LCuII-S-SNa with an end-on binding mode is initially formed as a common intermediate, from which different reaction pathways exist depending on the steric environment of the metal-coordination sphere provided by the ligands. Thus, with the sterically less demanding ligands, rearrangement of the disulfide adduct from end-on to side-on followed by self-dimerisation occurs to give the (mu-eta2:eta2-disulfido)dicopper(II) complexes, whereas such an intramolecular rearrangement of the disulfide co-ligand does not take place with the sterically more demanding ligands. In this case, homolytic cleavage of the CuII-S bond occurs to give the reduced copper(I) product. The steric effects of the supporting ligands have been discussed on the basis of detailed analysis of the crystal structures of the copper(II) starting materials.

  4. Solvent effects on the stability of nifuroxazide complexes with cobalt(II), nickel(II) and copper(II) in alcohols.

    Science.gov (United States)

    Khan, Mustayeen A; Ali, S Kauser; Bouet, Gilles M

    2002-05-21

    A spectrophotometric study of the complexation of nifuroxazide with cobalt(II), nickel(II) and copper(II) was carried out in different alcohols. The formation of a complex in each case is reported and their stability constants have been calculated. For a given solvent, the stability of the complexes increases from cobalt to copper. In the case of copper(II), the stability varies as an inverse function of the dielectric constant of the solvent. A possible structure of the complex is proposed.

  5. Electrocatalytic water oxidation with a copper(II) polypeptide complex.

    Science.gov (United States)

    Zhang, Ming-Tian; Chen, Zuofeng; Kang, Peng; Meyer, Thomas J

    2013-02-13

    A self-assembly-formed triglycylglycine macrocyclic ligand (TGG(4-)) complex of Cu(II), [(TGG(4-))Cu(II)-OH(2)](2-), efficiently catalyzes water oxidation in a phosphate buffer at pH 11 at room temperature by a well-defined mechanism. In the mechanism, initial oxidation to Cu(III) is followed by further oxidation to a formal "Cu(IV)" with formation of a peroxide intermediate, which undergoes further oxidation to release oxygen and close the catalytic cycle. The catalyst exhibits high stability and activity toward water oxidation under these conditions with a high turnover frequency of 33 s(-1).

  6. Salicylaldimine Copper(II) complex catalyst: Pioneer for ring opening Polymerization of Lactide

    Indian Academy of Sciences (India)

    ANITA ROUTARAY; NIBEDITA NATH; TUNGABIDYA MAHARANA; PRATAP KUMAR SAHOO; JAYA PRAKASH DAS; ALEKHA KUMAR SUTAR

    2016-06-01

    Salicylaldimine copper complex has been synthesized and its reactivity for the ring-opening polymerization(ROP) of lactide has been studied. This monomeric copper complex was prepared by the reaction ofcopper(II) solution with one molar equivalent of salicylaldimine Schiff-base ligand in methanol under nitrogenatmosphere. This copper complex has been characterized by different spectroscopic methods, which showedsquare planar geometry. The molecular structure of the salicylaldimine Schiff-base has been determined byX-ray diffraction studies. The complex was tested as the initiator for the ring-opening polymerization of lactide,with variation in diamine group in ligand. The rate of polymerization is dependent on the diamine groupin the following order: ethylene > propylene > phenyl. The salicylaldimine copper complex allows controlledring-opening polymerization as indicated by the linear relationship between the percentage conversion and thenumber-average molecular weight. On the basis of literature reports, a mechanism for ROP of lactide has beenproposed.

  7. Mono-nuclear copper complexes mimicking the intermediates for the binuclear copper center of the subunit II of cytochrome oxidase: a peptide based approach.

    Science.gov (United States)

    Dutta Gupta, Dwaipayan; Usharani, Dandamudi; Mazumdar, Shyamalava

    2016-11-28

    Three stable copper complexes of peptides derived from the copper ion binding loop of the subunit II of cytochrome c oxidase have been prepared and characterized by various spectroscopic techniques. These stable copper complexes of peptides were found to exhibit cysteine, histidine and/or methionine ligation, which has predominant σ-contribution in the Cys-Cu charge transfer. The copper(ii) peptide complexes showed type-2 EPR spectra, which is uncommon in copper-cysteinate complexes. UV-visible spectra, Raman and EPR results support a tetragonal structure of the coordination geometry around the copper ion. The copper complex of the 9-amino acid peptide suggested the formation of a 'red' copper center while the copper complexes of the 12- and 11-amino acid peptides showed the formation of a 'green' copper center. The results provide insights on the first stable models of the copper complexes formed in the peptide scaffold that mimic the mono-nuclear copper bound protein intermediates proposed during the formation of the binuclear Cu2S2 core of the enzyme. These three copper complexes of peptides derived from the metal ion binding loop of the CuA center of the subunit II of cytochrome c oxidase showed novel spectroscopic properties which have not so far been reported in any stable small complex.

  8. Geometry and Framework Interactions of Zeolite-Encapsulated Copper(II)-Histidine Complexes

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Grommen, R.; Manikandan, P.; Gao, Y.; Shane, T.; Shane, J.J.; Schoonheydt, R.A.; Goldfarb, D.

    2000-01-01

    The coordination geometry of zeolite-encapsulated copper(II)-histidine (CuHis) complexes, prepared by ion exchange of the complexes from aqueous solutions into zeolite NaY, was determined by a combination of UV-vis-NIR diffuse reflectance spectroscopy (DRS), X-band EPR, electron-spin-echo envelope m

  9. Geometry and Framework Interactions of Zeolite-Encapsulated Copper(II)-Histidine Complexes

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Grommen, R.; Manikandan, P.; Gao, Y.; Shane, T.; Shane, J.J.; Schoonheydt, R.A.; Goldfarb, D.

    2000-01-01

    The coordination geometry of zeolite-encapsulated copper(II)-histidine (CuHis) complexes, prepared by ion exchange of the complexes from aqueous solutions into zeolite NaY, was determined by a combination of UV-vis-NIR diffuse reflectance spectroscopy (DRS), X-band EPR, electron-spin-echo envelope m

  10. Spectroscopic study of copper(II) complexes with carboxymethyl dextran and dextran sulfate

    Science.gov (United States)

    Glišić, S.; Nikolić, G.; Cakić, M.; Trutić, N.

    2015-07-01

    The copper(II) ion complexes with carboxymethyl dextran (CMD) and dextran sulfate (DS) were studied by different methods. Content of copper was determined by atomic absorption spectroscopy. It was found that copper : ligand mole ratio (Cu : CMD) is 1 : 2, and Cu : DS is 1 : 1 by mole ratio method. Spectrophotometric parameters of synthesized compounds are characteristic for Cu(II) ion in octahedral ( O h ) coordination. Analyzing of FTIR spectra in ν(C=O) vibration region has showed that -COOH group acts as bidentate ligand, while the compounds of Cu(II) with DS copper ions are in the region of four oxygen atoms of two adjacent sulfo groups. The presence of crystalline water was determined by isotopic substitution of H2O molecules with D2O molecules. Comparison of spectra recorded at room (RT) and liquid nitrogen temperature (LNT) has enabled detection bands of water molecules libration indicating that they are coordinated complementing coordination sphere of Cu(II) ions to six. The complexes are of Cu(II) · (CMD)2 · (H2O)2 or Cu(II) · DS · (H2O)2 type. The similarities of the γ(C-H) range in a part of FTIR spectra indicate that there is no difference in the conformation of the 4 C 1 glucopyranose (Glc) unit CMD and DS synthesized Cu(II) complexes.

  11. Surface Structures Formed by a Copper(II Complex of Alkyl-Derivatized Indigo

    Directory of Open Access Journals (Sweden)

    Akinori Honda

    2016-10-01

    Full Text Available Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM analysis revealed that the copper(II complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed.

  12. Antitubercular and fluorescence studies of copper(II) complexes with quinolone family member, ciprofloxacin

    Science.gov (United States)

    Kharadi, G. J.

    2011-09-01

    Four new mixed-ligand complexes of Cu(II) with ciprofloxacin (Cip) and uninegative bidentate ligands have been synthesized and characterized. The structure of mixed-ligand complexes was investigated using spectroscopic method, physicochemical and elemental analyses. The fluorescence spectra of complexes show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. Antimycobacterial screening of ligand and its copper compound against Mycobacterium tuberculosis shows clear enhancement in the antitubercular activity upon copper complexation.

  13. Supramolecular control of a mononuclear biomimetic copper(II) center: bowl complexes vs funnel complexes.

    Science.gov (United States)

    Gout, Jérôme; Višnjevac, Aleksandar; Rat, Stéphanie; Parrot, Arnaud; Hessani, Assia; Bistri, Olivia; Le Poul, Nicolas; Le Mest, Yves; Reinaud, Olivia

    2014-06-16

    Modeling the mononuclear site of copper enzymes is important for a better understanding of the factors controlling the reactivity of the metal center. A major difficulty stems from the difficult control of the nuclearity while maintaining free sites open to coordination of exogenous ligands. A supramolecular approach consists in associating a hydrophobic cavity to a tripodal ligand that will define the coordination spheres as well as access to the metal ion. Here, we describe the synthesis of a bowl Cu(II) complex based on the resorcinarene scaffold. This study supplements a previous work on Cu(I) coordination. It provides a complete picture of the cavity-copper system in its two oxidation states. The first XRD structure of such a bowl complex was obtained, evidencing a 5-coordinate Cu(II) ion with the three imidazole donors bound to the metal (two in the base of the pyramid, one in the apical position) and with an acetate anion, completing the base of the pyramid, and deeply included in the bowl. Solution studies conducted by EPR and UV-vis absorption spectroscopies as well as cyclic voltammetry highlighted interaction with coordinating solvents, various carboxylates that can sit either in the endo or in the exo position depending on their size as well as possible stabilization of hydroxo species in a mononuclear state. A comparison of the binding and redox properties of the bowl complex with funnel complexes based on the calix[6]arene core further highlights the importance of supramolecular features defining the first, second, and third coordination sphere for control of the metal ion.

  14. Template Syntheses, Crystal Structures and Supramolecular Assembly of Hexaaza Macrocyclic Copper(II) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taehyung; Kim, Ju Chang [Pukyong National Univ., Busan (Korea, Republic of); Lough, Alan J. [Univ. of Toronto, Toronto (Canada)

    2013-06-15

    Two new hexaaza macrocyclic copper(II) complexes were prepared by a template method and structurally characterized. In the solid state, they were self-assembled by intermolecular interactions to form the corresponding supramolecules 1 and 2, respectively. In the structure of 1, the copper(II) macrocycles are bridged by a tp ligand to form a macrocyclic copper(II) dimer. The dimer extends its structure by intermolecular forces such as hydrogen bonds and C-H···π interactions, resulting in the formation of a double stranded 1D supramolecule. In 2, the basic structure is a monomeric copper(II) macrocycle with deprotonated imidazole pendants. An undulated 1D hydrogen bonded array is achieved through hydrogen bonds between imidazole pendants and secondary amines, where the imidazole pendants act as a hydrogen bond acceptor. The 1D hydrogen bonded supramolecular chain is supported by C-H···π interactions between the methyl groups of acetonitrile ligands and imidazole pendants of the copper(II) macrocycles. In both complexes, the introduction of imidazoles to the macrocycle as a pendant plays an important role for the formation of supramolecules, where they act as intermolecular hydrogen bond donors and/or acceptors, C-H···π and π-π interactions.

  15. Interaction of copper (II) complexes by bovine serum albumin: spectroscopic and calorimetric insights.

    Science.gov (United States)

    Singh, Namrata; Pagariya, Darshana; Jain, Surbhi; Naik, Sunil; Kishore, Nand

    2017-07-28

    Serum albumins being the most abundant proteins in the blood and cerebrospinal fluid are significant carriers of essential transition metal ions in the human body. Studies of copper (II) complexes have gained attention because of their potential applications in synthetic, biological, and industrial processes. Study of binding interactions of such bioinorganic complexes with serum albumins improves our understanding of biomolecular recognition process essential for rational drug design. In the present investigation, we have applied quantitative approach to explore interactions of novel synthesized copper (II) complexes viz. [Cu(L(1))(L(2))ClO4] (complex I), [Cu(L(2))(L(3))]ClO4] (complex II) and [Cu(L(4))2(H2O)2] (complex III) with bovine serum albumin (BSA) to evaluate their binding characteristics, site and mode of interaction. The fluorescence quenching of BSA initiated by complexation has been observed to be static in nature. The binding interactions are endothermic driven by entropic factors as confirmed by high sensitivity isothermal titration calorimetry. Changes in secondary and tertiary structure of protein have been studied by circular dichroism and significant reduction in α-helical content of BSA was observed upon binding. Site marking experiments with warfarin and ibuprofen indicated that copper complexes bind at site II of the protein.

  16. Synthesis and DNA cleavage activities of mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes which linked with uracil.

    Science.gov (United States)

    Wang, Xiao-Yan; Zhang, Ji; Li, Kun; Jiang, Ning; Chen, Shan-Yong; Lin, Hong-Hui; Huang, Yu; Ma, Li-Jian; Yu, Xiao-Qi

    2006-10-01

    Mononuclear macrocyclic polyamine zinc(II), copper(II), cobalt(II) complexes, which could attach to peptide nucleic acid (PNA), were synthesized as DNA cleavage agents. The structures of these new mononuclear complexes were identified by MS and (1)H NMR spectroscopy. The catalytic activities on DNA cleavage of these mononuclear complexes with different central metals were subsequently studied, which showed that copper complex was better catalyst in the DNA cleavage process than zinc and cobalt complexes. The effects of reaction time, concentration of complexes were also investigated. The results indicated that the copper(II) complexes could catalyze the cleavage of supercoiled DNA (pUC 19 plasmid DNA) (Form I) under physiological conditions to produce selectively nicked DNA (Form II, no Form III produced) with high yields. The mechanism of the cleavage process was also studied.

  17. Synthetic, Crystallographic, and Computational Study of Copper(II) Complexes of Ethylenediaminetetracarboxylate Ligands

    NARCIS (Netherlands)

    Matovic, Zoran D.; Miletic, Vesna D.; Cendic, Marina; Meetsma, Auke; van Koningsbruggen, Petra J.; Deeth, Robert J.; Matović, Zoran D.; Miletić, Vesna D.; Ćendić, Marina

    2013-01-01

    Copper(II) complexes of hexadentate ethylenediaminetetracarboxylic acid type ligands H(4)eda3p and Rieddadp (H(4)eda3p = ethylenediamine-N-acetic-N,N',N'-tri-3-propionic acid; ateddadp = ethylenediamine-N,N'-diaceticN,N'-di-3-propionic acid) have been prepared. An octahedral trans(O-6) geometry (two

  18. Synthetic, Crystallographic, and Computational Study of Copper(II) Complexes of Ethylenediaminetetracarboxylate Ligands

    NARCIS (Netherlands)

    Matovic, Zoran D.; Miletic, Vesna D.; Cendic, Marina; Meetsma, Auke; van Koningsbruggen, Petra J.; Deeth, Robert J.; Matović, Zoran D.; Miletić, Vesna D.; Ćendić, Marina

    2013-01-01

    Copper(II) complexes of hexadentate ethylenediaminetetracarboxylic acid type ligands H(4)eda3p and Rieddadp (H(4)eda3p = ethylenediamine-N-acetic-N,N',N'-tri-3-propionic acid; ateddadp = ethylenediamine-N,N'-diaceticN,N'-di-3-propionic acid) have been prepared. An octahedral trans(O-6) geometry (two

  19. Copper(II)–imida‐salen Complexes Encapsulated into NaY Zeolite for Oxidations Reactions

    DEFF Research Database (Denmark)

    Kuźniarska‐Biernacka, Iwona; Carvalho, M. Alice; Rasmussen, Søren Birk

    2013-01-01

    The oxidation of phenol, cychohexanol and hydroquinone has been screened in the presence of copper(II) complexes with the Schiff‐base salen ligand, 1,5‐bis[(E)‐5‐chloro‐2‐hydroxybenzylideneamino]‐1H‐imidazole‐4‐carbonitrile, and encapsulated into NaY zeolite by using two different methods. The new...

  20. Copper (II) complexes possessing alkyl-substituted polypyridyl ligands: Structural characterization and in vitro antitumor activity.

    Science.gov (United States)

    Angel, Noah R; Khatib, Raneen M; Jenkins, Julia; Smith, Michelle; Rubalcava, Justin M; Le, Brian Khoa; Lussier, Daniel; Chen, Zhuo Georgia; Tham, Fook S; Wilson, Emma H; Eichler, Jack F

    2017-01-01

    In an effort to find alternatives to the antitumor drug cisplatin, a series of copper (II) complexes possessing alkyl-substituted polypyridyl ligands have been synthesized. Eight new complexes are reported herein: μ-dichloro-bis{2,9-di-sec-butyl-1,10-phenanthrolinechlorocopper(II)} {[((di-sec-butyl)phen)ClCu(μ-Cl)2CuCl((di-sec-butyl)phen)]}(1), 2-sec-butyl-1,10-phenanthrolinedichlorocopper(II) {([mono-sec-butyl)phen) CuCl2} (2), 2,9-di-n-butyl-1,10-phenanthrolinedichlorocopper(II) {[(di-n-butyl)phen) CuCl2}(3), 2-n-butyl-1,10-phenanthrolinedichlorocopper(II) {[(mono-n-butyl)phen) CuCl2} (4), 2,9-di-methyl-1,10-phenanthrolineaquadichlorocopper(II) {[(di-methyl)phen) Cu(H2O)Cl2}(5), μ-dichloro-bis{6-sec-butyl-2,2'-bipyridinedichlorocopper(II)} {((mono-sec-butyl)bipy) ClCu(μ-Cl)2CuCl((mono-sec-butyl)bipy)} (6), 6,6'-di-methyl-2,2'-bipyridinedichlorocopper(II) {(6,6'-di-methyl)bipy) CuCl2} (7), and 4,4'-dimethyl-2,2'-bipyridinedichlorocopper(II) {(4,4'-di-methyl)bipy) CuCl2} (8). These complexes have been characterized via elemental analysis, UV-vis spectroscopy, and mass spectrometry. Single crystal X-ray diffraction experiments revealed the complexes synthesized with the (di-sec-butyl)phen ligand (1) and (mono-sec-butyl)bipy ligand (6) crystallized as dimers in which two copper(II) centers are bridged by two chloride ligands. Conversely, complexes 2, 7, and 8 were isolated as monomeric species possessing distorted tetrahedral geometries, and the [((di-methyl)phen)Cu(H2O)Cl2] (5) complex was isolated as a distorted square pyramidal monomer possessing a coordinating aqua ligand. Compounds 1-8 were evaluated for their in vitro antitumor efficacy. Compounds 1, 5, and 7 in particular were found to exhibit remarkable activity against human derived lung cancer cells, yet this class of copper(II) compounds had minimal cytotoxic effect on non-cancerous cells. In vitro control experiments indicate the activity of the copper(II) complexes most likely does not arise from the

  1. Reactivity of mononuclear alkylperoxo copper(II) complex. O-O bond cleavage and C-H bond activation.

    Science.gov (United States)

    Kunishita, Atsushi; Ishimaru, Hirohito; Nakashima, Satoru; Ogura, Takashi; Itoh, Shinobu

    2008-04-02

    A detailed reactivity study has been carried out for the first time on a new mononuclear alkylperoxo copper(II) complex, which is generated by the reaction of copper(II) complex supported by the bis(pyridylmethyl)amine tridentate ligand containing a phenyl group at the 6-position of the pyridine donor groups and cumene hydroperoxide (CmOOH) in CH3CN. The cumylperoxo copper(II) complex thus obtained has been found to undergo homolytic cleavage of the O-O bond and induce C-H bond activation of exogenous substrates, providing important insights into the catalytic mechanism of copper monooxygenases.

  2. Antiangiogenic activity of mononuclear copper(II) polypyridyl complexes for the treatment of cancers.

    Science.gov (United States)

    Nagababu, Penumaka; Barui, Ayan Kumar; Thulasiram, Bathini; Devi, C Shobha; Satyanarayana, S; Patra, Chitta Ranjan; Sreedhar, Bojja

    2015-07-09

    A series of four new mononuclear copper(II) polypyridyl complexes (1-4) have been designed, developed, and thoroughly characterized by several physicochemical techniques. The CT-DNA binding properties of 1-4 have been investigated by absorption, emission spectroscopy, and viscosity measurements. All the complexes especially 1 and 4 exhibit cytotoxicity toward several cancer cell lines, suggesting their anticancer properties as observed by several in vitro assays. Additionally, the complexes show inhibition of endothelial cell (HUVECs) proliferation, indicating their antiangiogenic nature. In vivo chick embryo angiogenesis assay again confirms the antiangiogenic properties of 1 and 4. The formation of excessive intracellular ROS (H2O2 and O2(•-)) and upregulation of BAX induced by copper(II) complexes may be the plausible mechanisms behind their anticancer activities. The present study may offer a basis for the development of new transition metal complexes through suitable choice of ligands for cancer therapeutics by controlling tumor angiogenesis.

  3. A new stepped tetranuclear copper(II) complex: synthesis, crystal structure and photoluminescence properties.

    Science.gov (United States)

    Gungor, Elif

    2017-05-01

    Binuclear and tetranuclear copper(II) complexes are of interest because of their structural, magnetic and photoluminescence properties. Of the several important configurations of tetranuclear copper(II) complexes, there are limited reports on the crystal structures and solid-state photoluminescence properties of `stepped' tetranuclear copper(II) complexes. A new Cu(II) complex, namely bis{μ3-3-[(4-methoxy-2-oxidobenzylidene)amino]propanolato}bis{μ2-3-[(4-methoxy-2-oxidobenzylidene)amino]propanolato}tetracopper(II), [Cu4(C11H13NO3)4], has been synthesized and characterized using elemental analysis, FT-IR, solid-state UV-Vis spectroscopy and single-crystal X-ray diffraction. The crystal structure determination shows that the complex is a stepped tetranuclear structure consisting of two dinuclear [Cu2(L)2] units {L is 3-[(4-methoxy-2-oxidobenzylidene)amino]propanolate}. The two terminal Cu(II) atoms are four-coordinated in square-planar environments, while the two central Cu(II) atoms are five-coordinated in square-pyramidal environments. The solid-state photoluminescence properties of both the complex and 3-[(2-hydroxy-4-methoxybenzylidene)amino]propanol (H2L) have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong blue emission at 469 nm and H2L displays a green emission at 515 nm.

  4. Redox Activity of Copper(II) Complexes with NSFRY Pentapeptide and Its Analogues

    Science.gov (United States)

    Wiloch, Magdalena Zofia; Wawrzyniak, Urszula Elżbieta; Ufnalska, Iwona; Piotrowski, Grzegorz; Bonna, Arkadiusz; Wróblewski, Wojciech

    2016-01-01

    The influence of cation-π interactions on the electrochemical properties of copper(II) complexes with synthesized pentapeptide C-terminal fragment of Atrial Natriuretic Factor (ANF) hormone was studied in this work. Molecular modeling performed for Cu(II)-NSFRY-NH2 complex indicated that the cation-π interactions between Tyr and Cu(II), and also between Phe-Arg led to specific conformation defined as peptide box, in which the metal cation is isolated from the solvent by peptide ligand. Voltammetry experiments enabled to compare the redox properties and stability of copper(II) complexes with NSFRY-NH2 and its analogues (namely: NSFRA-NH2, NSFRF-NH2, NSAAY-NH2, NSAAA-NH2, AAAAA-NH2) as well as to evaluate the contribution of individual amino acid residues to these properties. The obtained results led to the conclusion, that cation-π interactions play a crucial role in the effective stabilization of copper(II) complexes with the fragments of ANF peptide hormone and therefore could control the redox processes in other metalloproteins. PMID:27517864

  5. Doubly chloro bridged dimeric copper(II) complex: magneto-structural correlation and anticancer activity.

    Science.gov (United States)

    Sikdar, Yeasin; Modak, Ritwik; Bose, Dipayan; Banerjee, Saswati; Bieńko, Dariusz; Zierkiewicz, Wiktor; Bieńko, Alina; Das Saha, Krishna; Goswami, Sanchita

    2015-05-21

    We have synthesized and structurally characterized a new doubly chloro bridged dimeric copper(II) complex, [Cu2(μ-Cl)2(HL)2Cl2] (1) based on a Schiff base ligand, 5-[(pyridin-2-ylmethylene)-amino]-pentan-1-ol). Single crystal X-ray diffraction shows the presence of dinuclear copper(II) centres in a square pyramidal geometry linked by obtuse double chloro bridge. The magnetic study illustrated that weak antiferromagnetic interactions (J = -0.47 cm(-1)) prevail in complex 1 which is well supported by magneto-structural correlation. This compound adds to the library of doubly chloro bridged copper(ii) complexes in the regime of spin state cross over. DFT calculations have been conducted within a broken-symmetry (BS) framework to investigate the exchange interaction further which depicts that the approximate spin projection technique yields the best corroboration of the experimental J value. Spin density plots show the presence of an ∼0.52e charge residing on the copper atom along with a substantial charge on bridging and peripheral chlorine atoms. The potential of complex1 to act as an anticancer agent is thoroughly examined on a series of liver cancer cell lines and screening shows the HepG2 cell line exhibits maximum cytotoxicity by phosphatidyl serine exposure in the outer cell membrane associated with ROS generation and mitochondrial depolarization with increasing time in the in vitro model system.

  6. Copper(II) complexes of prion protein PEG11-tetraoctarepeat fragment: spectroscopic and voltammetric studies.

    Science.gov (United States)

    Bonomo, Raffaele P; Di Natale, Giuseppe; Rizzarelli, Enrico; Tabbì, Giovanni; Vagliasindi, Laura I

    2009-04-14

    Spectroscopic (UV-Vis and EPR) and voltammetric studies have been carried out on the copper(II) complexes with the Ac-PEG11-(PHGGGWGQ)4-NH2 (L) polypeptide. In the ratios Cu : L 3 : 1 and 4 : 1, the two [Cu3(L)H(-6)] and [Cu4(L)H(-8)] complex species have been characterized at neutral pH values. All the copper atoms occupy similar coordination sites formed by imidazole, peptidic nitrogen atoms and carbonyl oxygen atoms in a square base pyramidal geometry. Voltammetric measurements on these systems point out the cooperativity in the electron transfer processes among the copper(II) sites during their reduction. NO interaction with these polynuclear copper species is characterized by the reduction of the copper sites through the formation of two different intermediate complex species. When an excess of the Ac-PEG11-(PHGGGWGQ)4-NH2 ligand is considered, frozen solution EPR parameters and UV-Vis spectroscopic data identify the [Cu(N(im))4]2+ chromophore, which does not interact with NO.

  7. DNA binding and biological studies of some novel water-soluble polymer-copper(II)-phenanthroline complexes.

    Science.gov (United States)

    Kumar, Rajendran Senthil; Arunachalam, Sankaralingam; Periasamy, Vaiyapuri Subbarayan; Preethy, Christo Paul; Riyasdeen, Anvarbatcha; Akbarsha, Mohammad Abdulkader

    2008-10-01

    Some novel water-soluble polymer-copper(II)-phenanthroline complex samples, [Cu(phen)2(BPEI)]Cl(2).4H2O (phen=1,10-phenanthroline, BPEI=branched polyethyleneimine), with different degrees of copper complex content in the polymer chain have been prepared by ligand substitution method in water-ethanol medium and characterized by infrared, UV-visible, EPR spectral and elemental analysis methods. The binding of these complex samples with DNA has been investigated by electronic absorption spectroscopy, emission spectroscopy and gel retardation assay. Electrostatic interactions between DNA molecule and polymer-copper(II) complex molecule containing many high positive charges have been observed. Besides these ionic interactions, van der Waals interactions, hydrogen bonding and other partial intercalation binding modes may also exist in this system. The polymer-copper(II) complex with higher degree of copper complex content was screened for its antimicrobial activity and antitumor activity.

  8. Theoretical study, and infrared and Raman spectra of copper(II) chelated complex with dibenzoylmethane

    DEFF Research Database (Denmark)

    Nekoei, A.-R.; Vakili, M.; Hakimi-Tabar, M.

    2014-01-01

    There are some discrepancies in both the vibrational assignments and in the metal-ligand (M-L) bond strengths predicted in the previous studies on the copper (II) chelated complex of dibenzoylmethane, Cu(dbm)2. Also, there is a lack of theoretical structure, Raman spectrum and full vibrational...... assignment for Cu(dbm)2 in the literatures. Density functional theory (DFT) at the B3LYP level and also MP2 calculations using different basis sets, besides Natural Bond Orbital (NBO) and Atoms-in-Molecules (AIM) analyses, have been employed to investigate the effect of methyl substitution with the phenyl...... group on the stabilities of bis(acetylacetonate) copper (II), Cu(acac)2, and Cu(dbm)2 complexes and the electron delocalization in their chelated rings. Measured solid phase infrared and Raman bands for Cu(dbm)2 complex have been interpreted in terms of the calculated vibrational modes and detailed...

  9. Theoretical Studies on the Spin Exchange Interaction in Copper(II) Complexes Coordinated with Nitronyl Nitroxide

    Institute of Scientific and Technical Information of China (English)

    Jie REN; Hai Yan WEI; Qi Hua ZHAO; Zhi Da CHEN

    2003-01-01

    Nitronyl nitroxide radical 1, NIT (4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxyl-3-oxide) and copper(II) chloride complexes with nitronyl nitroxide 2, [Cu(NITPh)2Cl2] (NITPh=2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide) were studied with density functional theory (DFT). The magnetic orbital analysis reveals that the antiferromagnetic coupling for complex 2 is due to the antibonding σ*-orbital overlap between (Cu) and π* (NO) orbitals. Also, spin population and atomic charge distribution analysis suggest that for AFS of complex 2 the antiferromagnetic coupling between the radical ligands and the copper(II) ion originates from the spin delocalization induced by the α electron transfer from π*(NO) to (Cu) orbital.

  10. Synthesis, spectral, photolysis and electrochemical studies of mononuclear copper(II) complex with a new asymmetric tetradentate ligand: Application as copper nanoparticle precursor

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mikhak, Maryam

    2012-10-01

    A copper(II) complex with asymmetric tetradentate Schiff base ligand, obtained by the single condensation of 1,2-diaminopropane with 2-hydroxy-5-methoxy benzaldehyde was prepared. The ligand and complex were characterized by their IR, UV-Vis, FT-IR, NMR spectra and CV. Crystal structures of the mononuclear copper complex have been obtained by X-ray diffraction studies which revealed to be distorted square planner coordination geometry. The spectral data confirm coordination of ligand to copper ion center. The redox properties of complex at different scan rates exhibit grossly similar features consisting of an electrochemically pseudo-reversible Cu(II)/Cu(I) reduction at ca. -0.97 V and pseudo-reversible Cu(I)/Cu(II) oxidation at ca. -0.81 V. The copper nanoparticles with average size of 73 nm were formed by thermal reduction of copper complex in the presence of triphenylphosphine.

  11. Synthesis, spectral, photolysis and electrochemical studies of mononuclear copper(II) complex with a new asymmetric tetradentate ligand: application as copper nanoparticle precursor.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mikhak, Maryam

    2012-10-01

    A copper(II) complex with asymmetric tetradentate Schiff base ligand, obtained by the single condensation of 1,2-diaminopropane with 2-hydroxy-5-methoxy benzaldehyde was prepared. The ligand and complex were characterized by their IR, UV-Vis, FT-IR, NMR spectra and CV. Crystal structures of the mononuclear copper complex have been obtained by X-ray diffraction studies which revealed to be distorted square planner coordination geometry. The spectral data confirm coordination of ligand to copper ion center. The redox properties of complex at different scan rates exhibit grossly similar features consisting of an electrochemically pseudo-reversible Cu(II)/Cu(I) reduction at ca. -0.97 V and pseudo-reversible Cu(I)/Cu(II) oxidation at ca. -0.81 V. The copper nanoparticles with average size of 73 nm were formed by thermal reduction of copper complex in the presence of triphenylphosphine.

  12. Complexes cobalt(II, zinc(II and copper(II with some newly synthesized benzimidazole derivatives and their antibacterial activity

    Directory of Open Access Journals (Sweden)

    S. O. PODUNAVAC-KUZMANOVIC

    1999-05-01

    Full Text Available The preparation and properties of some complexes of cobalt(II, zinc(II and copper(II with several newly synthesized benzimidazole derivatives (L are reported. The complexes, of the general formula [MCl2L2] (M=Co(II, Zn(II and [CuCl2L(H2O], have a tetrahedral structure. The complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements, IR and absorption electronic spectra. The antibacterial activitiy of the benzimidazoles and their complexes was evaluated against Erwinia carotovora subsp. carotovora and Erwinia amylovora. The complexes were found to be more toxic than the ligands.

  13. Effects of Cu(II) complexes on photosynthesis in spinach chloroplasts. Aqua(aryloxyacetato)copper(II) complexes.

    Science.gov (United States)

    Král'ová, K; Sersen, F; Blahová, M

    1994-12-01

    The inhibitory effect of 14 aqua(aryloxyacetato) copper(II) complexes on oxygen evolution rate in spinach chloroplasts has been investigated. The inhibitory effect of these effectors on photosynthesis was confirmed by Hill reaction as well as by EPR and fluorescence spectroscopies. The results of the EPR study showed that the sites of action of the studied effectors are Z+ and Y+ intermediates at the donor side of the photosystem (PS) 2. The EPR study also showed that another site of action is the oxygen evolving complex, namely its manganese cluster. The above suggestions were supported by the results of the fluorescence study as well. Based on the restoring of the photosynthetic electron transport to 2,6-dichlorophenol-indophenol in chloroplasts inhibited by the studied Cu(II) complexes using sym-diphenylcarbazide it can be assumed that the own core of PS2 (P680) and a part of the electron transport chain-at least up to plastoquinone-remain intact.

  14. Synthesis, characterization and antibacterial studies of a copper(II) levofloxacin ternary complex.

    Science.gov (United States)

    Sousa, Isabel; Claro, Vasco; Pereira, João Lino; Amaral, Ana Luísa; Cunha-Silva, Luís; de Castro, Baltazar; Feio, Maria J; Pereira, Eulália; Gameiro, Paula

    2012-05-01

    Solution behavior of levofloxacin (lvx) complexes with copper(II) in the presence and absence of phen was studied in aqueous solution, by potentiometry. The results obtained show that under physiological conditions (micromolar concentration range and pH 7.4) only copper(II):lvx:phen ternary complexes are stable. Hence, a novel copper(II) ternary complex of fluoroquinolone levofloxacin with nitrogen donor heterocyclic ligand phen was synthesized and characterized by means of UV-Visible and IR spectroscopy, elemental analysis and X-Ray crystallography. In the synthesized complex (1), [Cu(lvx)(phen)(H(2)O)](NO(3)).2H(2)O, levofloxacin acts as a bidentate ligand coordinating to the metal, in its anionic form, through the carbonyl and carboxyl oxygens and phen coordinates through two N-atoms forming the equatorial plane of a distorted square-pyramidal geometry. The fifth ligand of the penta-coordinated Cu(II) centre is occupied axially by an oxygen atom from a water molecule. Minimum inhibitory concentration (MIC) determinations of the complex and comparison with free levofloxacin in various E. coli strains indicated that the Cu-complex is as efficient an antimicrobial as the free antibiotic (both in the case of the dissolved synthesized complex and the complex formed following stoichiometric mixture of the individual components in solution). Moreover, results strongly suggest that the cell intake route of both species is different supporting, therefore, the complex's suitability as a candidate for further biological testing in fluoroquinolone-resistant microorganisms.

  15. Cytotoxicity of copper(II) complexes of N-salicylidene-L-glutamate: modulation by ascorbic acid.

    Science.gov (United States)

    Paulikova, H; Kadlecikova, E; Suchanova, M; Valkova, Z; Rauko, P; Hudecova, D; Valent, A

    2008-01-01

    Cytotoxic/cytostatic activity of N-salicylidene-L-glutamato diaqua copper(II) complex (CuC) against mice leukemia cells L1210 has been estimated and their bioactivity was enhanced by addition of ascorbic acid. The Cu-complex with isoquinoline ligand (IQ-CuC) had stronger cytostatic effect (IC50 =15.6 microM) than parental complex (CuC) and its cytotoxicity several times increased in the presence of 0.1 mM ascorbic acid (IC50 =1.0 microM). The cytotoxicity has been caused by oxidative stress, enhanced creation of TBARS has been confirmed, and formation of 2',7'-dichlorofluorescein from 2',7'- dichlorodihydrofluorescein has been observed, also. Some hallmarks of apoptotic/necrotic death of L1210 cells have been observed by fluorescent microscopy after dyeing of cell with propidium iodide and Hoechst 33342. In addition, it was confirmed that both complexes in the presence of ascorbic acid cleavaged of pDNA. Although these copper complexes were initially prepared as substances with antioxidant properties we have showed that combined treatment of L1210 cells with IQCuC and ascorbic acid induced strong oxidative stress and death of cells. Our results confirmed that physiological concentration of ascorbic acid increases the cytostatic/cytotoxic efficiency of N-salicylidene-L-glutamato diaqua copper(II) complexes.

  16. Changes in magnetic properties from solid state to solution in a trinuclear linear copper(II) complex

    NARCIS (Netherlands)

    Koval, I.A.; Akhideno, H.; Tanase, S.; Belle, C.; Duboc, C.; Saint-Aman, E.; Gamez, P.; Tooke, D.M.; Spek, A.L.; Pierre, J.-L.; Reedijk, J.

    2007-01-01

    A linear trinuclear copper(II) complex containing phenoxido- and alkoxido-bridges between the metal centers has been isolated and structurally characterized. The complex cation consists of a linear array of three copper ions, assembled by means of two doubly deprotonated ligands. The octahedral coor

  17. Synthesis, characterization and antibacterial studies of a copper(II) lomefloxacin ternary complex.

    Science.gov (United States)

    Fernandes, Patrícia; Sousa, Isabel; Cunha-Silva, Luís; Ferreira, Mariana; de Castro, Baltazar; Pereira, Eulália F; Feio, Maria J; Gameiro, Paula

    2014-02-01

    Solution behavior of lomefloxacin (lmx) complexes with copper(II) in the presence and absence of 1,10-phenanthroline (phen) was studied in aqueous solution, by potentiometry. The results obtained showed that under physiological conditions (micromolar concentration range and pH7.4) only copper(II):lmx:phen ternary complexes are stable. Hence, a novel copper(II) ternary complex of lomefloxacin with the nitrogen donor heterocyclic ligand phen was synthesized and characterized by means of UV-visible and IR spectroscopy, elemental analysis and X-ray crystallography. In the synthesized complex (1), [Cu(lmx)(phen)(NO3)]·5H2O, lmx acts as a bidentate ligand coordinating the metal cation, in its anionic form, through the carbonyl and carboxyl oxygens and phen coordinates through two N-atoms forming the equatorial plane of a distorted square-pyramidal geometry. The fifth ligand of the penta-coordinated Cu(II) center is occupied axially by an oxygen atom from the nitrate ion. Minimum inhibitory concentration (MIC) determinations of the complex and comparison with free lomefloxacin in various E. coli strains indicated that the Cu-complex is an antimicrobial which is as efficient as the free antibiotic but strongly suggest that the cell intake route of both species is different. Moreover, spectrophotometric stability studies suggest that the solution of the complex synthesized is considerably more photostable than the free fluoroquinolone supporting, therefore, the complex's suitability as a candidate for further biological testing in fluoroquinolone-resistant microorganisms with possible reduced side-effects.

  18. Copper(II and lead(II complexation by humic acid and humic-like ligands

    Directory of Open Access Journals (Sweden)

    IVANA KOSTIĆ

    2011-09-01

    Full Text Available The stability of metal–humate complexes is an important factor determining and predicting speciation, mobility and bioavailability of heavy metals in the environment. A comparative investigation of the complexation of Cu(II and Pb(II with humic acid and humic-like ligands, such as benzoic and salicylic acid, was performed. The analysis was realized at pH 4.0, a temperature of 25 °C and at an ionic strength of 0.01 mol dm-3 (NaCl using the Schubert ion-exchange method and its modified form. The stability constants were calculated from the experimental data by the Schubert method for complexes with benzoic and humic acid. A modified Schubert method was used for the determination of the stability constants of the complexes with salicylic acid. It was found that Cu(II and Pb(II form mononuclear complexes with benzoic and humic acid while with salicylic acid both metals form polynuclear complexes. The results indicate that Pb(II has a higher binding ability than Cu(II to all the investigated ligands. The Cu(II–salicylate and Pb(II–salicylate complexes showed noticeable higher stability constants compared with their complexes with humic acid, while the stabilities of the complexes with benzoic acid differed less. Salicylic and benzoic acids as humic-like ligands can be used for setting the range of stability constants of humic complexes with Cu(II and Pb(II.

  19. Breast Cancer Stem Cell Potent Copper(II)-Non-Steroidal Anti-Inflammatory Drug Complexes.

    Science.gov (United States)

    Boodram, Janine N; Mcgregor, Iain J; Bruno, Peter M; Cressey, Paul B; Hemann, Michael T; Suntharalingam, Kogularamanan

    2016-02-18

    The breast cancer stem cell (CSC) potency of a series of copper(II)-phenanthroline complexes containing the nonsteroidal anti-inflammatory drug (NSAID), indomethacin, is reported. The most effective copper(II) complex in this series, 4, selectivity kills breast CSC-enriched HMLER-shEcad cells over breast CSC-depleted HMLER cells. Furthermore, 4 reduces the formation, size, and viability of mammospheres, to a greater extent than salinomycin, a potassium ionophore known to selectively inhibit CSCs. Mechanistic studies revealed that the CSC-specificity observed for 4 arises from its ability to generate intracellular reactive oxygen species (ROS) and inhibit cyclooxygenase-2 (COX-2), an enzyme that is overexpressed in breast CSCs. The former induces DNA damage, activates JNK and p38 pathways, and leads to apoptosis.

  20. Fluorescent copper(II complexes: The electron transfer mechanism, interaction with bovine serum albumin (BSA and antibacterial activity

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2017-01-01

    Full Text Available Dinuclear copper(II complexes with formula [Cu2(L2(N32] (1 and [Cu2(L2(NCS2] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized by controlling the molar ratio of Cu(OAC2·6H2O, HL, sodium azide (1 and ammonium thiocyanate (2. The end on bridges appear exclusively in azide and thiocyanate to copper complexes. The electron transfer mechanism of copper(II complexes is examined by cyclic voltammetry indicating copper(II complexes are Cu(II/Cu(I couple. The interactions of copper(II complexes towards bovine serum albumin (BSA were examined with the help of absorption and fluorescence spectroscopic tools. We report a superficial solution-based route for the synthesis of micro crystals of copper complexes with BSA. The antibacterial activity of the Schiff base and its copper complexes were investigated by the agar disc diffusion method against some species of pathogenic bacteria (Escherichia coli, Vibrio cholerae, Streptococcus pneumonia and Bacillus cereus. It has been observed that the antibacterial activity of all complexes is higher than the ligand.

  1. New dinuclear copper(II) and zinc(II) complexes for the investigation of sugar-metal ion interactions.

    Science.gov (United States)

    Bera, Manindranath; Patra, Ayan

    2011-10-18

    We have studied the binding interactions of biologically important carbohydrates (D-glucose, D-xylose and D-mannose) with the newly synthesized five-coordinate dinuclear copper(II) complex, [Cu(2)(hpnbpda)(μ-OAc)] (1) and zinc(II) complex, [Zn(2)(hpnbpda)(μ-OAc)] (2) [H(3)hpnbpda=N,N'-bis(2-pyridylmethyl)-2-hydroxy-1,3-propanediamine-N,N'-diacetic acid] in aqueous alkaline solution. The complexes 1 and 2 are fully characterized both in solid and solution using different analytical techniques. A geometrical optimization was made of the ligand H(3)hpnbpda and the complexes 1 and 2 by molecular mechanics (MM+) method in order to establish the stable conformations. All carbohydrates bind to the metal complexes in a 1:1 molar ratio. The binding events have been investigated by a combined approach of FTIR, UV-vis and (13)C NMR spectroscopic techniques. UV-vis spectra indicate a significant blue shift of the absorption maximum of complex 1 during carbohydrate coordination highlighting the sugar binding ability of complex 1. The apparent binding constants of the substrate-bound copper(II) complexes have been determined from the UV-vis titration experiments. The binding ability and mode of binding of these sugar substrates with complex 2 are indicated by their characteristic coordination induced shift (CIS) values in (13)C NMR spectra for carbon atoms C1, C2, and C3 of sugar substrates.

  2. Enhancing the copper(II) complexes cytotoxicity to cancer cells through bound to human serum albumin.

    Science.gov (United States)

    Gou, Yi; Zhang, Yao; Qi, Jinxu; Zhou, Zuping; Yang, Feng; Liang, Hong

    2015-03-01

    We use Schiff-base salicylaldehyde benzoylhydrazone (HL) as the ligand for copper(II), resulting in the complexes [CuCl(L)]·H2O (C1), [CuNO3(L)]·H2O (C2) and [CuBr(L)]2 (C3). We characterize the Cu(II) compounds' interactions with human serum albumin (HSA) using fluorescence spectroscopy and molecular docking. These studies revealed that Cu(II) compounds propensity bound to IIA subdomain of HSA possible by hydrophobic interactions and hydrogen bond. Cu(II) compounds produce intracellular reactive oxygen species (ROS) in cancer cells. Complexes of HSA and copper(II) compounds enhance about 2-fold cytotoxicity in cancer cells but do not raise cytotoxicity levels in normal cells in vitro. Compared with C3 alone, HSA-C3 complex promotes HepG2 cell apoptosis and has a stronger capacity to promote cell cycle arrest at the G2/M phase of HepG2.

  3. 1D μ-glycine-briged copper (II) chain in complex [Cu(μ-Gly)Im(ClO4)]n and ferromagnetic interactions among copper (II)

    Science.gov (United States)

    Pan, Lu; Lv, Xue-Chuan; Luo, Guan-Hua; Gao, Xiao-Han; Tan, Zhi-Cheng

    2016-12-01

    Complex [Cu(μ-Gly)Im(ClO4)]n(Im = imidazole, and Gly = glycine) with μ-glycine-briged copper (II) chain, containing six-coordination distorted elongated octahedron, was synthesized and characterized. The complex belongs to space group P 21/c measured by X-ray single crystal diffraction. In the cluster, each Cu2+ ion are six-coordination by one nitrogen atom and two oxygen atoms of glycine, one nitrogen atoms of imidazole, and two of oxygen atoms of two perchlorate. Each Cu2+ ion has an N2O4 donor set, which forms the distorted elongated octahedron due to the Jahn-Teller (JT) effect. The magnetic and thermodynamic properties were researched. Magnetic susceptibilities of the complex showed that ferromagnetic interactions occurred between the Cu (II) atoms. The Curie-Weiss constant C = 0.565 cm3 K·mol-1 and the Weiss constant θ = 1.0585 K were given by the Curie-Weiss law The ferromagnetic nature of the interaction could be deduced as the exchange pathway of Cusbnd Osbnd Csbnd Osbnd Cu, which involved an equatorial position at one copper (II) ion and an axial position of the nearest copper (II). The complex decomposed from 511 to 538 K as two steps.

  4. Methylresorcinarene: a reaction vessel to control the coordination geometry of copper(II) in pyridine N-oxide copper(II) complexes.

    Science.gov (United States)

    Beyeh, Ngong Kodiah; Puttreddy, Rakesh

    2015-06-07

    Pyridine and 2-picolinic acid N-oxides form 2 : 2 and 2 : 1 ligand : metal (L : M) discrete L2M2 and polymeric complexes with CuCl2 and Cu(NO3)2, respectively, with copper(ii) salts. The N-oxides also form 1 : 1 host-guest complexes with methylresorcinarene. In combination, the three components form a unique 2 : 2 : 1 host-ligand-metal complex. The methylresorcinarene acts as a reaction vessel/protecting group to control the coordination of copper(ii) from cis-see-saw to trans-square planar, and from octahedral to square planar coordination geometry. These processes were studied in solution and in the solid state via(1)H NMR spectroscopy and single crystal X-ray diffraction.

  5. Control of size in losartan/copper(II) coordination complex hydrophobic precipitate.

    Science.gov (United States)

    Denadai, Ângelo M L; Da Silva, Jeferson G; Guimarães, Pedro P G; Gomes, Leonardo Bertolini S; Mangrich, Antonio S; de Rezende, Edivaltrys I P; Daniel, Izabela M P; Beraldo, Heloísa; Sinisterra, Rubén D

    2013-10-01

    Reaction of highly soluble orally active, non-peptide antihypertensive drug losartan with copper(II) leads to the spontaneous formation of a very insoluble 2:1 covalent complex, which self assembles in a hydrophobic supramolecular structure of nanometric dimensions. Thermal analysis showed that Los/Cu(II) complex presents intermediate stability in comparison with its precursors KLos and Cu(OAc)2·H2O. Isothermal titration calorimetry indicated complexation to be a stepwise process, driven by enthalpy and entropy. Zeta potential and DLS measurements showed that it is possible to control the size and charge of nanoprecipitates by adjusting the relative concentration of Los(-) and Cu(II). Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Modeling Dinuclear Copper Sites of Biological Relevance : Synthesis, Molecular Structure, Magnetic Properties, and 1H NMR Spectroscopy of a Nonsymmetric Dinuclear Copper(II) Complex. Microcalorimetric Determination of Stepwise Complexation of Copper(II) by

    NARCIS (Netherlands)

    Lubben, Marcel; Hage, Ronald; Meetsma, Auke; Bÿma, Koos; Feringa, Bernard

    1995-01-01

    The new nonsymmetric dinuclear copper(II) complex [Cu2L1(OAc)2](ClO4) (7) was synthesized by complexation of Cu(OAc)2·H2O with a new nonsymmetric dinucleating ligand (5) which is formed in situ by condensation of 2-formyl-6-((4-methylpiperazin-1-yl)methyl)phenol (3a) with 2-(aminoethyl)pyridine. Com

  7. Molecular Mechanics (MM) Force Fields for Modelling of Copper(II) Amino Acid Complexes in Different Environments

    Science.gov (United States)

    Sabolović, Jasmina

    2009-03-01

    New MM force field developed for modelling the properties of copper(II) complexes with aliphatic amino acid in vacuo, in crystal, and in aqueous solution was applied to study conformational properties of bis(N,N-diethylglycinato)copper(II). Two hypotheses are examined and confirmed as true: (i) the conformations which do not allow apical coordination to the copper(II) are the most stable in vacuo and in aqueous solution; (ii) MM calculations quantitatively support the supposition that the experimentally observed conformer is better suited for crystal packing than the in vacuo and in solution most stable conformers.

  8. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Tarlani, Aliakbar, E-mail: Tarlani@ccerci.ac.ir [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Narimani, Khashayar [Inorganic Nanostructures and Catalysts Research Lab., Chemistry & Chemical Engineering Research Center of Iran, Pajoohesh Blvd., km 17, Karaj Hwy, Tehran 14968-13151 (Iran, Islamic Republic of); Mohammadipanah, Fatemeh; Hamedi, Javad [Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 14155-6455 (Iran, Islamic Republic of); University of Tehran Biocompound Collection (UTBC), Microbial Technology and Products Research Center, University of Tehran, Tehran (Iran, Islamic Republic of); Tahermansouri, Hasan [Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol (Iran, Islamic Republic of); Amini, Mostafa M. [Department of Chemistry, Shahid Behshti University, 1983963113, Tehran (Iran, Islamic Republic of)

    2015-06-30

    Graphical abstract: In an antibacterial test, grafted copper(II) macrocyclic complex on the surface of MWCNT showed higher antibacterial activity against Bacillus subtilis compared to the individual MWCNT-COOH and the complex. - Highlights: • Copper(II) tetraaza macrocyclic complex covalently bonded to modified MWCNT. • Grafting of the complex carried out via an interaction between −C(=O)Cl group and NH of the ligand. • The samples were subjected in an antibacterial assessment to compare their activity. • Immobilized complex showed higher antibacterial activity against Bacillus subtilis ATCC 6633 compared to separately MWCNT-C(C=O)-OH and CuTAM. - Abstract: In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the I{sub D}/I{sub G} ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  9. Determination of copper(I) and copper(II) ions after complexation with bicinchoninic acid by CE.

    Science.gov (United States)

    Basheer, Chanbasha; Lee, Hian Kee

    2007-10-01

    A facile, sensitive, and selective method was developed for the simultaneous separation and determination of copper(I) [Cu(+)] and copper(II) [Cu(2+)] ions using CE with direct UV detection. The copper ions were complexed with a 1.5 mM bicinchoninic acid disodium salt solution at pH 8.7 prior to analysis. Acetate buffer (2 mM) was used as the CE running buffer. Parameters affecting CE separation such as sample pH, applied voltage, concentration of complexing agent, nature of the buffer solution, and interferences by other metal ions, were evaluated. The LODs for Cu(+) and Cu(2+) were 3.0 and 2.5 microg/mL (S/N = 3), respectively. The developed method allows the simultaneous determination of Cu(+) and Cu(2+) in less than 5 min with RSDs of between 5.3 and 9.5% for migration time and between 3.4 and 9.7% for peak areas, respectively. At optimum conditions, the percentage recoveries of Cu(+) and Cu(2+) were found to be 99.4 and 99.5%.

  10. Synthesis, characterization, and photoactivated DNA cleavage by copper (II)/cobalt (II) mediated macrocyclic complexes.

    Science.gov (United States)

    Naik, H R Prakash; Naik, H S Bhojya; Aravinda, T; Lamani, D S

    2010-01-01

    We report the synthesis of new photonuclease consisting of two Co(II)/Cu(II) complexes of macrocyclic fused quinoline. Metal complexes are [MLX(2)], type where M = Co(II) (5), Cu(II) (6), and X = Cl, and are well characterized by elemental analysis, Fourier transform infrared spectroscopy, (1)H-NMR and electronic spectra. We have shown that photocleavage of plasmid DNA is markedly enhanced when this ligand is irradiated in the presence of Cu(II), and more so than that of cobalt. The chemistry of ternary and binary Co(II) complexes showing efficient light induced (360 nm) DNA cleavage activity is summarized. The role of the metal in photoinduced DNA cleavage reactions is explored by designing complex molecules having macrocyclic structure. The mechanistic pathways are found to be concentration dependent on Co(II)/Cu(II) complexes and the photoexcitation energy photoredox chemistry. Highly effective DNA cleavage ability of 6 is attributed to the effective cooperation of the metal moiety.

  11. Copper (II) diamino acid complexes: Quantum chemical computations regarding diastereomeric effects on the energy of complexation

    NARCIS (Netherlands)

    Zuilhof, H.; Morokuma, K.

    2003-01-01

    Quantum chemical calculations were used to rationalize the observed enantiodifferentiation in the complexation of alpha-amino acids to chiral Cu(II) complexes. Apart from Cu(II)-pi interactions and steric repulsions between the anchoring cholesteryl-Glu moiety and an aromatic amino acid R group, hyd

  12. A tri-copper(II) complex displaying DNA-cleaving properties and antiproliferative activity against cancer cells.

    Science.gov (United States)

    Suntharalingam, Kogularamanan; Hunt, Douglas J; Duarte, Alexandra A; White, Andrew J P; Mann, David J; Vilar, Ramon

    2012-11-19

    A new disubstituted terpyridine ligand and the corresponding tri-copper(II) complex have been prepared and characterised. The binding affinity and binding mode of this tri-copper complex (as well as the previously reported mono- and di-copper analogues) towards duplex DNA were determined by using UV/Vis spectroscopic titrations and fluorescent indicator displacement (FID) assays. These studies showed the three complexes to bind moderately (in the order of 10(4)  M(-1)) to duplex DNA (ct-DNA and a 26-mer sequence). Furthermore, the number of copper centres and the nature of the substituents were found to play a significant role in defining the binding mode (intercalative or groove binding). The nuclease potential of the three complexes was investigated by using circular plasmid DNA as a substrate and analysing the products by agarose-gel electrophoresis. The cleaving activity was found to be dependent on the number of copper centres present (cleaving potency was in the order: tri-copper>di-copper>mono-copper). Interestingly, the tri-copper complex was able to cleave DNA without the need of external co-reductants. As this complex displayed the most promising nuclease properties, cell-based studies were carried out to establish if there was a direct link between DNA cleavage and cellular toxicity. The tri-copper complex displayed high cytotoxicity against four cancer cell lines. Of particular interest was that it displayed high cytotoxicity against the cisplatin-resistant MOLT-4 leukaemia cell line. Cellular uptake studies showed that the tri-copper complex was able to enter the cell and more importantly localise in the nucleus. Immunoblotting analysis (used to monitor changes in protein levels related to the DNA damage response pathway) and DNA-flow cytometric studies suggested that this tri-copper(II) complex is able to induce cellular DNA damage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dinuclear cobalt(II) and copper(II) complexes with a Py2N4S2 macrocyclic ligand.

    Science.gov (United States)

    Núñez, Cristina; Bastida, Rufina; Lezama, Luis; Macías, Alejandro; Pérez-Lourido, Paulo; Valencia, Laura

    2011-06-20

    The interaction between Co(II) and Cu(II) ions with a Py(2)N(4)S(2)-coordinating octadentate macrocyclic ligand (L) to afford dinuclear compounds has been investigated. The complexes were characterized by microanalysis, conductivity measurements, IR spectroscopy and liquid secondary ion mass spectrometry. The crystal structure of the compounds [H(4)L](NO(3))(4), [Cu(2)LCl(2)](NO(3))(2) (5), [Cu(2)L(NO(3))(2)](NO(3))(2) (6), and [Cu(2)L(μ-OH)](ClO(4))(3)·H(2)O (7) was also determined by single-crystal X-ray diffraction. The [H(4)L](4+) cation crystal structure presents two different conformations, planar and step, with intermolecular face-to-face π,π-stacking interactions between the pyridinic rings. Complexes 5 and 6 show the metal ions in a slightly distorted square-pyramidal coordination geometry. In the case of complex 7, the crystal structure presents the two metal ions joined by a μ-hydroxo bridge and the Cu(II) centers in a slightly distorted square plane or a tetragonally distorted octahedral geometry, taking into account weak interactions in axial positions. Electron paramagnetic resonance spectroscopy is in accordance with the dinuclear nature of the complexes, with an octahedral environment for the cobalt(II) compounds and square-pyramidal or tetragonally elongated octahedral geometries for the copper(II) compounds. The magnetic behavior is consistent with the existence of antiferromagnetic interactions between the ions for cobalt(II) and copper(II) complexes, while for the Co(II) ones, this behavior could also be explained by spin-orbit coupling.

  14. Spectroscopic, structural and theoretical studies of copper(II) complexes of tridentate NOS Schiff bases

    Science.gov (United States)

    Olalekan, Temitope E.; Ogunlaja, Adeniyi S.; VanBrecht, Bernardus; Watkins, Gareth M.

    2016-10-01

    Two newly synthesized Schiff bases (L4 and L5) were derived from the condensation reaction of 2-(methylthiomethyl)anilines and 4-methoxysalicylaldehyde. Coordination complexes of these and four previously reported NOS Schiff bases, Cu(L1)2-Cu(L6)2, were synthesized via the reflux reaction of the various Schiff base ligands with CuCl2·2H2O. The compounds were characterized by means of elemental analysis, FTIR and UV-Vis. The crystal structures of Cu(L1)2 and Cu(L2)2 were obtained by X-ray diffraction. The Schiff bases were coordinated to copper ion as monobasic tridentate ligands through the phenolic oxygen, azomethine nitrogen and thioether sulfur. The microanalyses of the coordination complexes were agreeable with bimolar binding of the ligands to the copper metal ion. The crystal structures of the copper complexes confirmed an octahedral geometry around the metal centre and showed they are mononuclear. The magnetic moment values indicated the presence of a lone electron in each copper(II) orbital and confirmed the mononuclearity of the complexes. The electronic spectra of the coordination compounds consist of the intraligand, charge transfer and d→d bands. Molecular modeling studies on the complexes (Cu(L1)2-Cu(L6)2) by employing DFT revealed that complex Cu(L5)2 possessed the smallest optimization energy as well as a small HOMO-LUMO energy gap which may best explain its higher polarizability as well as reactivity in comparison to the other complexes.

  15. Preparation of ethambutol-copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper.

    Science.gov (United States)

    Gupta, Vinod K; Prasad, Rajendra; Kumar, Azad

    2003-05-28

    Copper(II) complex of ethambutol (I) was prepared and used in the fabrication of Cu(2+) selective ISE membrane. The membrane having Cu(II)-ethambutol complex (I) as electroactive material, along with sodium tetraphenylborate (NaTPB) as anion discriminator, dioctylphthalate (DOP) as plasticizer in poly(vinyl chloride) (PVC) matrix in the percentage ratio 6:2:190:200 (I:NaTPB:DOP:PVC) (w/w) gave a linear response in the concentration range 7.94x10(-6) to 1.0x10(-1) M of Cu(2+) with a slope of 29.9+/-0.2 mV per decade of activity and a fast response time of 11+/-2 s. The sensor works well in the pH range 2.1-6.3 and could be satisfactorily used in presence of 40% (v/v) methanol, ethanol and acetone and is selective for copper over a large number of cations with slight interference from Na(+) and Co(2+) if present at a level 1.5x10(-5) and 6.5x10(-5) M, respectively. It works well over a period of 6 months and can also be used as indicator electrode for the end point determination in the potentiometric titration of Cu(2+) against EDTA as well as in the determination of Cu(2+) in real samples.

  16. Synthesis and structure of copper(II) complexes: Potential cyanide sensor and oxidase model'

    Indian Academy of Sciences (India)

    PALASH MONDAL; SANKAR PRASAD PARUA; POULAMI PATTANAYAK; UTTAM DAS; SURAJIT CHATTOPADHYAY

    2016-05-01

    The new complexes of compositions $[(L_{a})_{2}Cu]$ and $[(L_{b})_{2}Cu]$ were prepared by treating with2-hydroxy-5-methyl-3-(2-aryldiazenyl)phenylimino) methyl) benzaldehyde $(HL_{a})$ and ethyl-2-cyano-3-(2-hydroxy-5-methyl-3-(-(2-aryldiazenyl) phenylimino) methyl) phenyl) acrylate $(HL_{b})$ ligands [where aryl isphenyl for $HL_{a}^{1}$ and $HL_{b}^{1}$ ; p-methyl phenyl for $HL_{a}^{2}$ and $HL_{b}^{2}$ ; and p-chloro phenyl for $HL_{a}^{3}$ and $HL_{b}^{3}$ ] with $Cu(OAc)_{2}.H_{2}O$, respectively. Both the bis copper(II) complexes consist of tridentate (N,N,O) anionic ligands, $L^{-}_a$ or $L^{-}_b$ . X-ray structures of the representative complexes $[(L^{1}_{a})_{2}Cu]$ and $[(L^{2}_{b})_{2}Cu]$ were determined toconfirm the molecular species unequivocally. The molecular structure of copper complexes exhibited tetragonallydistorted (Jahn-Teller) geometry consistent with the $d^{9}$ configuration of Cu(II) metal ion. Oxidation ofbenzyl alcohols using the newly synthesized complexes as catalyst has been studied. Photoluminescence propertiesof $[(L^{2}_{a})_{2}Cu]$ and $[(L^{2}_{b})_{2}Cu]$ were exploited for selective cyanide recognition. The $[(L_{b})_{2}Cu], complexesdisplayed antibacterial activity toward gram positive and gram negative bacteria

  17. Sulfate-bridged dimeric trinuclear copper(II)-pyrazolate complex with three different terminal ligands.

    Science.gov (United States)

    Mezei, Gellert

    2016-08-01

    The reaction of CuSO4·5H2O, 4-chloro-pyrazole (4-Cl-pzH) and tri-ethyl-amine (Et3N) in di-methyl-formamide (DMF) produced crystals of di-aqua-hexa-kis-(μ-4-chloro-pyrazolato-κ(2) N:N')bis-(N,N-di-methyl-formamide)di-μ3-hydroxido-bis-(μ4-sulfato-κ(4) O:O':O'':O'')hexa-copper(II) N,N-di-methyl-formamide tetra-solvate dihydrate, [Cu3(OH)(SO4)(C3H2ClN2)3(C3H7NO)(H2O)]2·4C3H7NO·2H2O. The centrosymmetric dimeric molecule consists of two trinuclear copper-pyrazolate units bridged by two sulfate ions. The title compound provides the first example of a trinuclear copper-pyrazolate complex with three different terminal ligands on the Cu atoms, and also the first example of such complex with a strongly binding basal sulfate ion. Within each trinuclear unit, the Cu(II) atoms are bridged by μ-pyrazolate groups and a central μ3-OH group, and are coordinated by terminal sulfate, H2O and DMF ligands, respectively. Moreover, the sulfate O atoms coordinate at the apical position to the Cu atoms of the symmetry-related unit, providing square-pyramidal coordination geometry around each copper cation. The metal complex and solvent mol-ecules are involved in O-H⋯O hydrogen bonds, leading to a two-dimensional network parallel to (10-1).

  18. Copper (II)

    African Journals Online (AJOL)

    CLEMENT O BEWAJI

    field of coordination chemistry, these are either neutral or charged species possessing at ... Schiff bases and their complex compounds have been studied for their ... The Schiff base is soluble in water and most organic solvents except ether, ...

  19. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation-ultrafiltration process.

    Science.gov (United States)

    Molinari, Raffaele; Poerio, Teresa; Argurio, Pietro

    2008-01-01

    The polyethylenimine (PEI) as complexing agent was used to study the complexation-ultrafiltration (CP-UF) process in the selective removal of Cu(II) from Ni(II) contained in aqueous media. Preliminary tests showed that optimal chemical conditions for Cu(II) and Ni(II) complexation by the PEI polymer were pH>6.0 and 8.0, respectively, and polymer/metal weight ratio of 3.0 and 6.0, respectively. The effect of some important operating parameters on process selectivity was studied by performing UF tests at different parameters: pH, polymer/metal weight ratio, transmembrane pressure (TMP), and membrane cut-off in a batch experimental set-up. It was observed that process selectivity was achieved by choosing the pH value for obtaining a preferential copper complexation (pH 6.0), and the polymer/metal ratio needed to bound only the copper ion (3.0). The selective separation by UF tests was performed by using both a laboratory aqueous solution and a real aqueous effluent (water from Emoli torrent, Rende (CS)). The Iris 30 membrane at TMP of 200 kPa (2 bar) for both aqueous media gave the best results. A complete nickel recovery was reached, and copper recovery was the highest for this membrane (94% and 92%). Besides at this pressure, a lower water amount was needed to obtain total nickel recovery by diafiltration. A little higher membrane fouling was obtained by using the river effluent due to the presence of dissolved organic and inorganic matter.

  20. Synthetic, crystallographic, and computational study of copper(II) complexes of ethylenediaminetetracarboxylate ligands.

    Science.gov (United States)

    Matović, Zoran D; Miletić, Vesna D; Ćendić, Marina; Meetsma, Auke; van Koningsbruggen, Petra J; Deeth, Robert J

    2013-02-04

    Copper(II) complexes of hexadentate ethylenediaminetetracarboxylic acid type ligands H(4)eda3p and H(4)eddadp (H(4)eda3p = ethylenediamine-N-acetic-N,N',N'-tri-3-propionic acid; H(4)eddadp = ethylenediamine-N,N'-diacetic-N,N'-di-3-propionic acid) have been prepared. An octahedral trans(O(6)) geometry (two propionate ligands coordinated in axial positions) has been established crystallographically for the Ba[Cu(eda3p)]·8H(2)O compound, while Ba[Cu(eddadp)]·8H(2)O is proposed to adopt a trans(O(5)) geometry (two axial acetates) on the basis of density functional theory calculations and comparisons of IR and UV-vis spectral data. Experimental and computed structural data correlating similar copper(II) chelate complexes have been used to better understand the isomerism and departure from regular octahedral geometry within the series. The in-plane O-Cu-N chelate angles show the smallest deviation from the ideal octahedral value of 90°, and hence the lowest strain, for the eddadp complex with two equatorial β-propionate rings. A linear dependence between tetragonality and the number of five-membered rings has been established. A natural bonding orbital analysis of the series of complexes is also presented.

  1. Mixed-ligand mononuclear copper(II) complex: crystal structure and anticancer activity.

    Science.gov (United States)

    Qin, Xiu-Ying; Liu, Ya-Nan; Yu, Qian-Qian; Yang, Li-Cong; Liu, Ying; Zhou, Yan-Hui; Liu, Jie

    2014-08-01

    A novel copper(II) complex with mixed ligands including β-[(3-formyl-5-methyl-2-hydroxy-benzylidene)amino]propionic acid anion and 1,10'-phenanthroline was synthesized, and its crystal structure was thoroughly characterized. It exerted excellent inducing apoptosis, anti-angiogenesis and antiproliferative properties in vitro. The complex can bind human serum albumin (HSA) at physiological pH conditions. Remarkably, it can induce formation of the mixed parallel/antiparallel G-quadruplex structures in the G-rich sequence of the proximal vascular endothelial growth factor (VEGF) promoter, and stabilize these G-quadruplex structures, which provide an opportunity for anti-angiogenesis chemotherapeutics. Furthermore, the complex showed a strong uptake, and exhibited multiple anticancer functions by inhibiting the expression of p-Akt and p-Erk1/2 proteins and by upregulating the levels of reactive oxygen species (ROS). Because of the reported results, this new copper(II) complex qualifies itself as a potential anticancer drug candidate.

  2. Theoretical study, and infrared and Raman spectra of copper(II) chelated complex with dibenzoylmethane.

    Science.gov (United States)

    Nekoei, A-R; Vakili, M; Hakimi-Tabar, M; Tayyari, S F; Afzali, R; Kjaergaard, H G

    2014-07-15

    There are some discrepancies in both the vibrational assignments and in the metal-ligand (M-L) bond strengths predicted in the previous studies on the copper (II) chelated complex of dibenzoylmethane, Cu(dbm)2. Also, there is a lack of theoretical structure, Raman spectrum and full vibrational assignment for Cu(dbm)2 in the literatures. Density functional theory (DFT) at the B3LYP level and also MP2 calculations using different basis sets, besides Natural Bond Orbital (NBO) and Atoms-in-Molecules (AIM) analyses, have been employed to investigate the effect of methyl substitution with the phenyl group on the stabilities of bis(acetylacetonate) copper (II), Cu(acac)2, and Cu(dbm)2 complexes and the electron delocalization in their chelated rings. Measured solid phase infrared and Raman bands for Cu(dbm)2 complex have been interpreted in terms of the calculated vibrational modes and detailed assignment has been presented. We concluded that, theoretically, the results of charge transfer studies, and experimentally, in-phase symmetric O-Cu-O stretching mode of these complexes are very useful measures for M-L bond strength. The electron delocalization in the chelated rings and the M-L bond strength in Cu(dbm)2 are concluded to be higher than those in Cu(acac)2. The calculated geometries and vibrational results are in good agreement with the experimental data.

  3. Synthesis, Spectroscopy, Thermal Analysis, Electrochemistry and Superoxide Scavenging Activity of a New Bimetallic Copper(II Complex

    Directory of Open Access Journals (Sweden)

    Babita Sarma

    2013-01-01

    Full Text Available A new bimetallic copper(II complex has been synthesized with ligand obtained by the condensation of salicylaldehyde and the amine derived from reduction of nitration product of benzil. The ligand was characterized by 1H NMR and mass spectra, and the binuclear Copper(II complex was characterized by vibrational and electronic spectra, EPR spectra, and magnetic moment measurement. Thermogravimetric analysis study and electrochemical study of the complex were also done. The complex was found to show superoxide dismutase activity.

  4. Antiproliferative effects of copper(II)-polypyridyl complexes in breast cancer cells through inducing apoptosis.

    Science.gov (United States)

    Salimi, Mona; Abdi, Khatereh; Kandelous, Hirsa Mostafapour; Hadadzadeh, Hassan; Azadmanesh, Kayhan; Amanzadeh, Amir; Sanati, Hassan

    2015-04-01

    Although cisplatin has been used for decades to treat human cancer, some toxic side effects and resistance are observed. Previous investigations have suggested copper complexes as a novel class of tumor-cell apoptosis inducers. The present study aimed to evaluate the anti-breast cancer activities of two polypyridyl-based copper(II) complexes, [Cu(tpy)(dppz)](NO3)2 (1) and [Cu(tptz)2](NO3)2 (2) (tpy = 2,2':6',2″-terpyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine, tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine), using human breast adenocarcinoma cell line (MCF-7). The ability of the complexes to cleave supercoiled DNA in the presence and absence of external agents was also examined. The apoptotic activities of the complexes were assessed using flow cytometry, fluorescence microscope and western blotting analysis. Our results indicated the high DNA affinity and nuclease activity of complexes 1 and 2. The cleavage mechanisms between the complexes and plasmid DNA are likely to involve a singlet oxygen or singlet oxygen-like entity as the reactive oxygen species. Complexes 1 and 2 also significantly inhibited the proliferation of MCF-7 cells in a dose-dependent manner (IC50 values = 4.57 and 1.98 μM at 24 h, respectively). Complex 2 remarkably induced MCF-7 cells to undergo apoptosis, which was demonstrated by cell morphology, annexin-V and propidium iodide staining. The caspase cascade was activated as shown by the proteolytic cleavage of caspase-3 after treatment of MCF-7 cells with complex 2. Additionally, complex 2 significantly increased the expression of the Bax-to-Bcl-2 ratio to induce apoptosis. In conclusion, these results revealed that complex 2 may be a potential and promising chemotherapeutic agent to treat breast cancer.

  5. Joint toxicity of tetracycline with copper(II) and cadmium(II) to Vibrio fischeri: effect of complexation reaction.

    Science.gov (United States)

    Tong, Fei; Zhao, Yanping; Gu, Xueyuan; Gu, Cheng; Lee, Charles C C

    2015-03-01

    Co-contamination of antibiotic and heavy metals commonly occurs in the environment. Tetracycline (TC), a common antibiotic, can behave as an efficient organic ligand to complex with cations. In this paper, the joint toxicity of TC with two commonly existing metals, copper(II) and cadmium(II), towards a luminescent bacteria, Vibrio fischeri, are investigated. Results showed that coexistence of TC and Cu(II) showed a significant antagonistic effect, while TC and Cd(II) showed a synergistic effect. The aqueous speciation of TC with two metal cations was calculated using a chemical equilibrium software Visual MINTEQ and results indicated that a strong complexation exist between TC and Cu(II), while much weaker interaction between TC and Cd(II). Traditional joint toxicity prediction model based on independent action failed to predict the combined toxicity of TC with metals. A new method based on speciation calculation was used to evaluate the joint toxicity of ligands and cations. It is assumed that the metal-ligand complexes are non-toxic to V. fischeri and the joint toxicity is determined by the sum of toxic unit of free metal-ions and free organic ligands. It explained the joint toxicity of the mixed systems reasonably well. Meanwhile, citric acid (CA) and fulvic acid (FA) were also introduced in this study to provide a benchmark comparison with TC. Results showed it is also valid for mixed systems of CA and FA with metals except for the Cd-CA mixture.

  6. Magnetic Interactions in the Copper Complex (L-Aspartato)(1,10-phenanthroline)copper(II) Hydrate. An Exchange-Coupled Extended System with Two Dissimilar Copper Ions.

    Science.gov (United States)

    Brondino, Carlos D.; Calvo, Rafael; Atria, Ana María; Spodine, Evgenia; Nascimento, Otaciro R.; Peña, Octavio

    1997-07-02

    We report EPR measurements in single-crystal samples at the microwave frequencies 9.8 and 34.3 GHz and magnetic susceptibility measurements in polycrystalline samples for the ternary complex of copper with aspartic acid and phenanthroline, (L-aspartato)(1,10-phenanthroline)copper(II) hydrate. The crystal lattice of this compound is composed of two dissimilar copper ions identified as Cu(A) and Cu(B), which are in two types of copper chains called A and B, respectively, running parallel to the b crystal axis. The copper ions in the A chains are connected by the aspartic acid molecule, and those in the B chains by a chemical path that involves a carboxylate bridge and a hydrogen bond. Both chains are held together by a complex network of hydrogen bonds and by hydrophobic interactions between aromatic amines. Magnetic susceptibility data indicate a Curie-Weiss behavior in the studied temperature range (2-300 K). The EPR spectra at 9.8 GHz display a single exchange collapsed resonance for any magnetic field orientation, in the so-called strong exchange regime. Those at 34.3 GHz are within the so-called weak exchange regime and display two resonances which belong to each type of copper ion chain. The decoupling of the spectra at 34.3 GHz using a theory based on Anderson's model for the case of two weakly exchange coupled spins S = (1)/(2) allows one to obtain the angular variation of the squares of the g-factor and the peak-to-peak line width of each resonance. This model also allows one to evaluate the exchange parameter |J(AB)/k| = 2.7(6) mK associated with the chemical path connecting dissimilar copper ions. The line width data obtained for each component of the spectra at 34.3 GHz are analyzed in terms of a model based on Kubo and Tomita's theory, to obtain the exchange parameters |J(A)/k| = 0.77(2) K and |J(B)/k| = 1.44(2) K associated with the chemical paths connecting the similar copper ions of types A and B, respectively.

  7. Structural characterization of a high affinity mononuclear site in the copper(II)-α-synuclein complex.

    Science.gov (United States)

    Bortolus, Marco; Bisaglia, Marco; Zoleo, Alfonso; Fittipaldi, Maria; Benfatto, Maurizio; Bubacco, Luigi; Maniero, Anna Lisa

    2010-12-29

    Human α-Synuclein (aS), a 140 amino acid protein, is the main constituent of Lewy bodies, the cytoplasmatic deposits found in the brains of Parkinson's disease patients, where it is present in an aggregated, fibrillar form. Recent studies have shown that aS is a metal binding protein. Moreover, heavy metal ions, in particular divalent copper, accelerate the aggregation process of the protein. In this work, we investigated the high affinity binding mode of truncated aS (1-99) (aS99) with Cu(II), in a stoichiometric ratio, to elucidate the residues involved in the binding site and the role of copper ions in the protein oligomerization. We used Electron Paramagnetic Resonance spectroscopy on the Cu(II)-aS99 complex at pH 6.5, performing both multifrequency continuous wave experiments and pulsed experiments at X-band. The comparison of 9.5 and 95 GHz data showed that at this pH only one binding mode is present. To identify the nature of the ligands, we performed Electron Spin Echo Envelope Modulation, Hyperfine Sublevel Correlation Spectroscopy, and pulsed Davies Electron-Nuclear Double Resonance (Davies-ENDOR) experiments. We determined that the EPR parameters are typical of a type-II copper complex, in a slightly distorted square planar geometry. Combining the results from the different pulsed techniques, we obtained that the equatorial coordination is {N(Im), N(-), H(2)O, O}, where N(im) is the imino nitrogen of His50, N(-) a deprotonated amido backbone nitrogen that we attribute to His50, H(2)O an exchangeable water molecule, and O an unidentified oxygen ligand. Moreover, we propose that the free amino terminus (Met1) participates in the complex as an axial ligand. The MXAN analysis of the XAS k-edge absorption data allowed us to independently validate the structural features proposed on the basis of the magnetic parameters of the Cu(II)-aS99 complex and then to further refine the quality of the proposed structural model.

  8. Spectroscopic and molecular docking studies on the interaction of human serum albumin with copper(II) complexes

    Science.gov (United States)

    Guhathakurta, Bhargab; Pradhan, Ankur Bikash; Das, Suman; Bandyopadhyay, Nirmalya; Lu, Liping; Zhu, Miaoli; Naskar, Jnan Prakash

    2017-02-01

    Two osazone based ligands, butane-2,3-dione bis(2‧-pyridylhydrazone) (BDBPH) and hexane-3,4-dione bis(2‧-pyridylhydrazone) (HDBPH), were synthesized out of the 2:1 M Schiff base condensation of 2-hydrazino pyridine respectively with 2,3-butanedione and 3,4-hexanedione. The X-ray crystal structures of both the ligands have been determined. The copper(II) complex of HDBPH has also been synthesized and structurally characterized. HDBPH and its copper(II) complex have thoroughly been characterized through various spectroscopic and analytical techniques. The X-ray crystal structure of the copper complex of HDBPH shows that it is a monomeric Cu(II) complex having 'N4O2' co-ordination chromophore. Interaction of human serum albumin (HSA) with these ligands and their monomeric copper(II) complexes have been studied by various spectroscopic means. The experimental findings show that the ligands as well as their copper complexes are good HSA binders. Molecular docking investigations have also been done to unravel the mode of binding of the species with HSA.

  9. Antibacterial, antibiofilm and antioxidant screening of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid

    Science.gov (United States)

    Bukonjić, Andriana M.; Tomović, Dušan Lj.; Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Radojević, Ivana D.; Maksimović, Jovana Z.; Vasić, Sava M.; Čomić, Ljiljana R.; Trifunović, Srećko R.; Radić, Gordana P.

    2017-01-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-propyl derivative of thiosalicylic acid was confirmed by X-ray structural study. The binuclear copper(II)-complex with S-propyl derivative of thiosalicylic acid crystallized in two polymorphic forms with main structural difference in the orientation of phenyl rings relative to corresponding carboxylate groups. The antibacterial activity was tested determining the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) by using microdilution method. The influence on bacterial biofilm formation was determined by tissue culture plate method. In general, the copper(II)-complexes manifested a selective and moderate activity. The most sensitive bacteria to the effects of Cu(II)-complexes was a clinical isolate of Pseudomonas aeruginosa. For this bacteria MIC and biofilm inhibitory concentration (BIC) values for all tested complexes were in the range or better than the positive control, doxycycline. Also, for the established biofilm of clinical isolate Staphylococcus aureus, BIC values for the copper(II)-complex with S-ethyl derivative of thiosalicylic acid,[Cu2(S-et-thiosal)4(H2O)2] (C3) and copper(II)-complex with S-butyl derivative of thiosalicylic acid, [Cu2(S-bu-thiosal)4(H2O)2] (C5) were in range or better than the positive control. All the complexes acted better against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus aureus ATCC 25923) than Gram-negative bacteria (Proteus mirabilis ATCC 12453, Pseudomonas aeruginosa, and P. aeruginosa ATCC 27855). The complexes showed weak antioxidative properties tested by two methods (1,1-diphenyl-2-picrylhydrazyl (DPPH) and reducing power assay).

  10. Synthesis, Cytotoxic Activity, and DNA Binding Properties of Copper (II Complexes with Hesperetin, Naringenin, and Apigenin

    Directory of Open Access Journals (Sweden)

    Mingxiong Tan

    2009-01-01

    Full Text Available Complexes of copper (II with hesperetin, naringenin, and apigenin of general composition [CuL2(H2O2]⋅nH2O (1–3 have been synthesized and characterized by elemental analysis, UV-Vis, FT-IR, ESI-MS, and TG-DTG thermal analysis. The free ligands and the metal complexes have been tested in vitro against human cancer cell lines hepatocellular carcinoma (HepG-2, gastric carcinomas (SGC-7901, and cervical carcinoma (HeLa. Complexes 1 and 3 were found to exhibit growth inhibition of SGC-7901 and HepG2 cell lines with respect to the free ligands; the inhibitory rate of complex 1 is 43.2% and 43.8%, while complex 3 is 46% and 36%, respectively. The interactions of complex 1 and its ligand Hsp with calf thymus DNA were investigated by UV-Vis, fluorescence, and CD spectra. Both complex 1 and Hsp were found to bind DNA in intercalation modes, and the binding affinity of complex 1 was stronger than that of free ligand.

  11. Interaction of a copper (II) complex containing an artificial sweetener (aspartame) with calf thymus DNA.

    Science.gov (United States)

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh

    2014-01-01

    A copper (II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2⋅2H2O, was synthesized and characterized. In vitro binding interaction of this complex with native calf thymus DNA (CT-DNA) was studied at physiological pH. The interaction was studied using different methods: spectrophotometric, spectrofluorometric, competition experiment, circular dichroism (CD) and viscosimetric techniques. Hyperchromicity was observed in UV absorption band of Cu(APM)2Cl2⋅2H2O. A strong fluorescence quenching reaction of DNA to Cu(APM)2Cl2⋅2H2O was observed and the binding constants (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be+89.3 kJ mol(-1) and+379.3 J mol(-1) K(-1) according to Van't Hoff equation which indicated that reaction is predominantly entropically driven. Experimental results from spectroscopic methods were comparable and further supported by viscosity measurements. We suggest that Cu(APM)2Cl2⋅2H2O interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 8×10+4 M(-1). Binding of this copper complex to DNA was found to be stronger compared to aspartame which was studied recently.

  12. Structural and Spectroscopic Aspects of Schiff Base Metal Complexes of Cobalt(II, Nickel(II and Copper(II

    Directory of Open Access Journals (Sweden)

    B.K. Rai

    2014-09-01

    Full Text Available The complexes of Co(II, Ni(II and Cu(II with Schiff base 2-butyl thioquinazoline 4(3H thiosemicarbazone were synthesized. The general formulae of the complexes are of the type {M(L2X2], L=2 – butyl thioquinazoline 4(3H thiosemicarbazone; x = Cl-, Br-, I- and NO3-. Elemental analyses and spectral (IR, electronic studies of the synthesized complexes suggest the presence of octahedral, environment around the central metal ion. These complexes were also subjected to study their antimicrobial screening against, Gram positive bacteria Candida albicans and gram negative bacteria Escherichia coli by disc diffusion technique.

  13. Spectroscopic studies on Solvatochromism of mixed-chelate copper(II) complexes using MLR technique.

    Science.gov (United States)

    Golchoubian, Hamid; Moayyedi, Golasa; Fazilati, Hakimeh

    2012-01-01

    Mixed-chelate copper(II) complexes with a general formula [Cu(acac)(diamine)]X where acac=acetylacetonate ion, diamine=N,N-dimethyl,N'-benzyl-1,2-diaminoethane and X=BPh(4)(-), PF(6)(-), ClO(4)(-) and BF(4)(-) have been prepared. The complexes were characterized on the basis of elemental analysis, molar conductance, UV-vis and IR spectroscopies. The complexes are solvatochromic and their solvatochromism were investigated by visible spectroscopy. All complexes demonstrated the positive solvatochromism and among the complexes [Cu(acac)(diamine)]BPh(4)·H(2)O showed the highest Δν(max) value. To explore the mechanism of interaction between solvent molecules and the complexes, different solvent parameters such as DN, AN, α and β using multiple linear regression (MLR) method were employed. The statistical results suggested that the DN parameter of the solvent plays a dominate contribution to the shift of the d-d absorption band of the complexes.

  14. Selective anticancer copper(II)-mixed ligand complexes: targeting of ROS and proteasomes.

    Science.gov (United States)

    Ng, Chew Hee; Kong, Siew Ming; Tiong, Yee Lian; Maah, Mohd Jamil; Sukram, Nurhazwani; Ahmad, Munirah; Khoo, Alan Soo Beng

    2014-04-01

    Copper compounds can be alternatives to platinum-based anticancer drugs. This study investigated the effects of a series of ternary copper(II) complexes, [Cu(phen)(aa)(H2O)]NO3·xH2O 1-4 (phen = 1,10-phenanthroline; aa = gly (1), DL-ala (2), sar (3), C-dmg (4)), on metastatic and cisplatin-resistant MDA-MB-231 breast cancer cells and MCF10A non-cancerous breast cells, and some aspects of the mechanisms. These complexes were distinctively more antiproliferative towards and induced greater apoptotic cell death in MDA-MB-231 than in MCF10A cells. 2 and 4 could induce cell cycle arrest only in cancer cells. Further evidence from DCFH-DA assay showed higher induction of reactive oxygen species (ROS) in treated cancer cells but minimal ROS increase in normal cells. DNA double-strand breaks, via a γ-H2AX assay, were only detected in cancer cells treated with 5 μM of the complexes. These complexes poorly inhibited chymotrypsin-like activity in the 20S rabbit proteasome while they did not inhibit the three proteolytic sites of MDA-MB-231 cells at 10 μM. However, the complexes could inhibit degradation of ubiquinated proteins of MDA-MB-231 cells. In addition, compound 4 was found to be effective against cervical (Hela), ovarian (SKOV3), lung (A549, PC9), NPC (Hone1, HK1, C666-1), breast (MCF7, T47D), lymphoma and leukemia (Nalmawa, HL60) and colorectal (SW480, SW48, HCT118) cancer cell lines with IC50 values (24 h) in the 1.7-19.0 μM range. Single dose NCI60 screening of 4 showed the complex to be highly cytotoxic to most cancer cell types and more effective than cisplatin.

  15. Nanostructured lipid carriers for incorporation of copper(II complexes to be used against Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Sato MR

    2017-03-01

    Full Text Available Mariana R Sato,1 João A Oshiro Junior,1 Rachel TA Machado,1 Paula C de Souza,2 Débora L Campos,2 Fernando R Pavan,2 Patricia B da Silva,1,* Marlus Chorilli1,* 1Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP – Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil; 2Department of Biological Sciences, Faculdade de Ciências Farmacêuticas, UNESP – Univ Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil *These authors contributed equally to this work Abstract: Tuberculosis (TB is a disease caused by Mycobacterium tuberculosis. Cessation of treatment before the recommended conclusion may lead to the emergence of multidrug-resistant strains. The aim of this study was to develop nanostructured lipid carriers (NLCs for use in the treatment of M. tuberculosis. The NLCs comprised the following lipid phase: 2.07% polyoxyethylene 40 stearate, 2.05% caprylic/capric triglyceride, and 0.88% polyoxyl 40 hydrogenated castor oil; the following aqueous phase: 3.50% poloxamer 407 (F1–F6, and 0.50% cetyltrimethylammonium bromide (F7–F12; and incorporated the copper(II complexes [CuCl2(INH2]·H2O (1, [Cu(NCS2(INH2]·5H2O (2, and [Cu(NCO2(INH2]·4H2O (3 to form compounds F11.1, F11.2, and F11.3, respectively. The mean diameter of F11, F11.1, F11.2, and F11.3 ranged from 111.27±21.86 to 134.25±22.72 nm, 90.27±12.97 to 116.46±9.17 nm, 112.4±10.22 to 149.3±15.82 nm, and 78.65±6.00 to 122.00±8.70 nm, respectively. The polydispersity index values for the NLCs ranged from 0.13±0.01 to 0.30±0.09. The NLCs showed significant changes in zeta potential, except for F11.2, with F11, F11.1, F11.2, and F11.3 ranging from 18.87±4.04 to 23.25±1.13 mV, 17.03±1.77 to 21.42±1.87 mV, 20.51±1.88 to 22.60±3.44 mV, and 17.80±1.96 to 25.25±7.78 mV, respectively. Atomic force microscopy confirmed the formation of nanoscale spherical particle dispersions by the NLCs. Differential scanning calorimetry determined

  16. Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex

    Science.gov (United States)

    Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.

    2002-08-01

    Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.

  17. One-dimensional chiral copper (II) complexes with novel nano-structures and superior antitumor activity.

    Science.gov (United States)

    Zhang, Wei Chuan; Tang, Xue; Lu, Xiaoming

    2016-03-01

    Three novel copper(II) compounds of formulas {[Cu(Phen)(Ala)]·NO3·H2O}n (1), {[Cu(Phen)(Ala)]·NO3}n (2) and [Cu(Ala)2]n (3) have been synthesized and determined by X-ray diffraction. 1 and 2 are shown in one dimensional long-chain chiral structures, and 3 is a two dimensional checkerboard-type structure. Both 1 and 2 displayed a higher anticancer activity than 3 against various cancer cells, even higher than the similar mononuclear complexes and clinical anticancer drug 5-fluorouracil. The noncancerous cell lines (CCC-HEL-1) have showed that complexes 1-3 have hardly any cytotoxicity. Transmission electron microscopy was studied to show the nano-structure and π function of two complexes. The ligand 1,10-phenanthroline inserted into its enantiomer lead complex 1 stable, and the π-π interaction outside the chain made complex 2 active, which is easy to crack and pile up together. In addition, the energy gaps, UV-vis, luminescent and cyclic voltammetry were experimented to show the stable one dimensional long-chain chiral structure and the π function of two complexes.

  18. Potential-modulated DNA cleavage by (N-salicylideneglycinato)copper(II) complex.

    Science.gov (United States)

    Yang, Zhou-Sheng; Wang, Yan-Ling; Liu, Yun-Chun; Zhao, Guang-Chao

    2005-11-01

    The interaction of aqua (N-salicylideneglycinato)copper(II) (Cu(salgly)2+) complex with calf thymus DNA has been investigated by cyclic voltammetry. Potential-modulated DNA cleavage in the presence of Cu(salgly)2+ complex was performed at a gold electrode in a thin layer cell. DNA can be efficiently cleaved by electrochemically reducing Cu(salgly)2+ complex to Cu(salgly)+ complex at -0.7 V (vs. Ag/AgCl). When the solution was aerated with a small flow of O2 during electrolysis, the extent of DNA cleavage was dramatically enhanced, and hydroxyl radical scavengers inhibited DNA cleavage. These results suggested that O2 and hydroxyl radical were involved in potential-modulated DNA cleavage reaction. The percentage of DNA cleavage was enhanced as the working potential was shifted to more negative values and the electrolysis time was increased. It was also dependent on the ratio of Cu(salgly)2+ complex to DNA concentration. The cleaved DNA fragments were separated by high performance liquid chromatography (HPLC). The experimental results indicated that the method for potential-modulated DNA cleavage by Cu(salgly)2+ complex was simple and efficient.

  19. Synthesis, crystal structures and antitumor activities of copper(II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand

    Science.gov (United States)

    Xu, Jun; Zhou, Tao; Xu, Zhou-Qing; Gu, Xin-Nan; Wu, Wei-Na; Chen, Hong; Wang, Yuan; Jia, Lei; Zhu, Tao-Feng; Chen, Ru-Hua

    2017-01-01

    Five complexes, [Cu(L)2]·4.5H2O (1), [Cu(HL)2](NO3)2·CH3OH (2) {[Cu2(L)2(NO3)(H2O)2]·(NO3)}n (3), [Cu2(HL)2(SO4)2]·2CH3OH (4) and [Cu4(L)4Cl4]·5H2O (5) based on HL (where HL = 2-acetylpyrazine isonicotinoyl hydrazone) have been synthesized and characterized by X-ray diffraction analyses. The counter anion and organic base during the synthesis procedure influence the structures of the complexes efficiently, which generate five complexes as mono-, bi-, tetra-nuclear and one-dimensional structures. The antitumor activities of the complexes 1-5 (except for complex 3 with the poor solubility) against the Patu8988 human pancreatic cancer, ECA109 human esophagus cancer and SGC7901 human gastric cancer cell lines are screened by MTT assay. The results indicate that the chelation of Cu(II) with the ligand is responsible for the observed high cytotoxicity of the copper(II) complexes and the 1:2 copper species 1 and 2 demonstrate lower antitumor activities than that of the 1:1 copper species 4 and 5. In addition, the in vitro apoptosis inducing activity of the copper(II) complex 5 against SGC7901 cell line is determined. And the results show that the complex can bring about apoptosis of the cancerous cells in vitro.

  20. Reaction of a copper(II)-nitrosyl complex with hydrogen peroxide: phenol ring nitration through a putative peroxynitrite intermediate.

    Science.gov (United States)

    Kalita, Apurba; Deka, Ramesh C; Mondal, Biplab

    2013-10-07

    Copper(II) complex, 1, with the histidine-derived ligand L (L = methyl 2-(2-hydroxybenzylamino)-3-(1H-imidazol-5-yl)propanoate) has been synthesized and characterized. Single-crystal structure determination reveals a diphenolato-bridged dicopper(II) core in 1. Addition of (•)NO to an acetonitrile solution of 1 affords the corresponding mononuclear copper(II)-nitrosyl complex, 2. In the presence of H2O2, 2 results in formation of the corresponding copper(I)-peroxynitrite. Formation of peroxynitrite ((-)OONO) intermediate is evident from its characteristic phenol ring nitration reaction which resembles the tyrosine nitration in biological systems. Further, isolation of nitrate (NO3(-)) as the decomposition product from 2 at room temperature also supports the involvement of (-)OONO intermediate.

  1. Palladium(II) and copper(I) complexes of wide angle bisphosphine, 1,4-bis((diphenylphosphino)methyl)benzene

    Indian Academy of Sciences (India)

    SAURABH KUMAR; MARAVANJI S BALAKRISHNA

    2017-08-01

    Oxidation reactions and synthesis of copper(I) and palladium(II) complexes of 1,4-bis ((diphenylphosphino) methyl)benzene (1) have been described. Due to the larger separation of phosphorus atoms, bisphosphine exhibits only bridging mode of coordination. The ligand is also ideally suited to form binuclear complexes and 1-D coordination polymers. Reaction of 1 with [Pd(η³−allyl)Cl] ₂ results in dipalladium(II) complex [{Pd(η³−allyl)Cl}₂{μ−Ph₂PCH₂C₆H₄CH₂PPh₂}] (4), whereas with copper halides, dimeric complexes of the type [{CuX}{μ−Ph₂PCH₂C₆H₄CH₂PPh₂}] ₂ (5 X = Cl, 6 X = Br and 7 X = I) were isolated. All the compounds have been fully characterized by spectroscopic and analytical methods. The molecular structures of bisulfide (3), Pd(II) and Cu(I) complexes were confirmed by single crystal X-ray analyses.

  2. Dynamics of reactive oxygen species generation in the presence of copper(II)-histidine complex and cysteine.

    Science.gov (United States)

    Ząbek-Adamska, Anna; Drożdż, Ryszard; Naskalski, Jerzy W

    2013-01-01

    Histidine-copper(II) complex (Cu-His2) is a form of bound copper necessary for cellular copper uptake. Due to the high affinity of histidine to copper(II) ions, the binding of copper(II) by histidine is considered a substantial part of plasma antioxidative defense. Also cysteine plays a role in the antioxidative system. However, we show here that in the presence of oxygen the histidine-copper(II) complex plus cysteine produces reactive oxygen species (ROS). Cysteine concentration was assayed using a thiol specific silver-mercury electrode. Hydrogen peroxide was assayed amperometrically using platinum electrode. ROS formation was followed by chemiluminescence of luminol-fluoresceine-enhanced system. Addition of cysteine to Cu-His2 solution at pH 7.4 in the presence of atmospheric oxygen initiates the synthesis of H2O2 and generation of ROS, which manifests as a burst of chemiluminescence. The reaction has two stages; in the first stage, cysteine is utilized for the synthesis of an unstable intermediary product which becomes a substrate for ROS formation. Anaerobic conditions inhibit ROS formation. Increased cysteine concentration enhances the lag phase of the oxidative burst without influencing the amount of ROS. The synthesis of ROS (measured by chemiluminescence) is proportional to the concentration of Cu-His2 employed. ROS production can be repetitively initiated by further additions of cysteine to the reaction medium. The study suggests that Cu-His2 catalyzes cysteine-dependent reduction of oxygen to superoxide employing an intermediary cysteine-copper(I) complex and enabling Fenton reaction with copper and hydrogen peroxide produced as a secondary product. In effect, Cu-His2 with cysteine may be a source of ROS in biological media.

  3. [Molluscacide activity of a mixture of 6-n-alkyl salicylic acids (anacardic acid) and 2 of its complexes with copper (II) and lead (II)].

    Science.gov (United States)

    Mendes, N M; de Oliveira, A B; Guimarães, J E; Pereira, J P; Katz, N

    1990-01-01

    The molluscicide activity of hexanic extract from Anacardium occidentale L. (cashew) nut shell, of copper (II) complex, of lead (II) complex and anacardic acid has been compared in the laboratory in an attempt to obtain better stability than anacardic acid. This was obtained from the hexanic extract of the cashew nut shell by precipitation with lead (II) hydroxide or cupric sulfate plus sodium hydroxide or (II) cupric hydroxide followed by treatment of lead (II) complex with a diluted solution of sulfuric acid. Ten products of the mixture obtained were tested on adults snails of Biomphalaria glabrata at 1 to 10 ppm. The most active products were copper (II) complex, obtained by cupric sulfate plus sodium hydroxide, and anacardic acid (sodium hydroxide) which presented activity at 4 ppm. The anacardic acid's lead content was above the limits accepted by the United States standards.

  4. Magnetic properties of copper(II) complexes containing peptides. Crystal structure of [Cu(phe-leu)

    Science.gov (United States)

    Sanchiz, J.; Kremer, C.; Torre, M. H.; Facchin, G.; Kremer, E.; Castellano, E. E.; Ellena, J.

    2006-09-01

    A novel copper(II) complex containing the peptide phe-leu has been prepared and characterized. The crystal structure of [Cu(phe-leu)] ( 1) was determined by X-ray diffraction. The presence of carboxylate and amido bridges allows the formation of an extended 2D arrangement. This structure is similar to those found in [Cu(gly-val)] · 1/2H 2O ( 2), [Cu(val-gly)] ( 3), [Cu(val-phe)] ( 4), and [Cu(phe-phe)] ( 5). The magnetic properties of compounds 1- 5 were studied and analyzed comparatively. The experimental data show that the magnetic interactions are mainly transmitted through μ 2-COO - bridges, being ferromagnetic for 1 and 3, and antiferromagnetic for 2, 4 and 5.

  5. An experimental and theoretical approach of spectroscopic and structural properties of a new chelidamate copper (II) complex.

    Science.gov (United States)

    Vural, Hatice; Uçar, İbrahim; Soylu, M Serkan

    2014-03-25

    The crystal structure of new chelidamate complex of copper (II) ion, [Cu(chel)H2O(pym)]·H2O [chel: chelidamate or 4-hydroxypyridine-2,6-dicarboxylate; pym: 2-Pyridylmethanol] has been determined by single crystal X-ray crystallographic method. The complex was characterized by IR and UV-Vis spectroscopic techniques. The magnetic environment of copper (II) ion has been defined by electron paramagnetic technique (EPR). The central copper (II) ion is six-coordinate with a distorted octahedral geometry, which exhibits Jahn-Teller distortions along one of the O-Cu-O axes with tetragonality of 0.81. Chelidamate behaved as a tridentate ligand was bonded to Cu(II) ion through carboxyl oxygens with nitrogen. The crystal structure is stabilized by O-H⋯O hydrogen bond and π-π interactions. Theoretical calculations have been carried out by using the DFT method. The modeling of copper (II) complex was made by geometric optimization. The geometry optimization and EPR study were carried out using the following unrestricted hybrid density functionals: LSDA, BPV86, B3LYP, B3PW91, MPW1PW91 and HCTH. Frontier molecular orbital energies, absorption wavelengths and excitation energy were computed by time dependent DFT (TD-DFT) method with polarizable continuum model. IR spectra were discussed and compared to other relevant complexes together with theoretical results. The natural charges on the atoms and second-order interaction energies were derived from natural bond orbital analysis (NBO).

  6. Effect of Counterion on the Solvatochromic Properties of Heteroleptic Chelate Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Hamid Golchoubian

    2013-01-01

    Full Text Available A series of heteroleptic chelate copper(II complexes of the type [Cu(L(acac]X where acac = acetylacetonate; L = N,N′-1,6-bis(2-fluorophenyl-2,5-diazahexane; X=CIO4-, BPh4-, PF6-, and BF4- have been prepared and characterized by elemental analyses, IR and UV-Vis spectroscopies, and molar conductance measurements. The prepared complexes are fairly soluble in a large number of organic solvents and show positive solvatochromism. Among the complexes [Cu(L(acac]ClO4, it is demonstrated the most solvatochromism. A multiparametric equation has been utilized to explain the solvent effect on the d-d transition of the complexes using SPSS/PC software. To explore the mechanism of interaction between solvent molecules and the complexes, different solvent parameters such as DN, AN, α, ET(30, π*, and β using stepwise multiple linear regression (SMLR method were employed. The results demonstrated that the donor power of the solvent plays the most important role in the solvatochromism of the compounds.

  7. Synthesis, crystallographic characterization and electrochemical property of a copper(II) complex of the anticancer agent elesclomol.

    Science.gov (United States)

    Vo, Nha Huu; Xia, Zhiqiang; Hanko, Jason; Yun, Tong; Bloom, Steve; Shen, Jianhua; Koya, Keizo; Sun, Lijun; Chen, Shoujun

    2014-01-01

    Elesclomol is a novel anticancer agent that has been evaluated in a number of late stage clinical trials. A new and convenient synthesis of elesclomol and its copper complex is described. X-ray crystallographic characterization and the electrochemical properties of the elesclomol copper(II) complex are discussed. The copper(II) cation is coordinated in a highly distorted square-planar geometry to each of the sulphur and amide nitrogen atoms of elesclomol. Electrochemical measurements demonstrate that the complex undergoes a reversible one-electron reduction at biologically accessible potentials. In contrast the free elesclomol is found electrochemically inactive. This evidence is in strong support of the mechanism of action we proposed for the anticancer activity of elesclomol.

  8. Ligand effects on the structures and magnetic properties of tricyanomethanide-containing copper(II) complexes.

    Science.gov (United States)

    Yuste, Consuelo; Bentama, Abdeslem; Stiriba, Salah-Eddine; Armentano, Donatella; De Munno, Giovanni; Lloret, Francesc; Julve, Miguel

    2007-11-28

    The preparation, crystal structure and magnetic properties of four heteroleptic copper(II) complexes with the tricyanomethanide (tcm(-)) and the heterocyclic nitrogen donors 3,6-bis(2-pyridyl)pyridazine (dppn), 2,5-bis(2-pyridyl)pyrazine (2,5-dpp), 2,3-bis(2-pyridyl)pyrazine (2,3-dpp) and 2,3-bis(2-pyridyl)quinoxaline (2,3-dpq) are reported, {[Cu(2)(dppn)(OH)(tcm)(2)] x tcm}(n) (1), {[Cu(2,5-dpp)(tcm)] x tcm}(n) (2), {[Cu(2)(2,3-dpp)(2)(tcm)(3)(H(2)O)(0.5)] x tcm x 0.5H(2)O}(n) (3) and [Cu(2,3-dpq)(tcm)(2)](n) (4). 1 has a ladder-like structure with single mu-1,5-tcm ligands forming the sides and a bis-bidentate dppn and a single mu-hydroxo providing the rung. Each copper atom in 1 exhibits a distorted square pyramidal CuN(4)O surrounding: the basal plane is built by the hydroxo-oxygen, a nitrile-nitrogen atom from a tcm group and one pyrazine and a pyridyl nitrogen atoms from the dppn whereas the apical position is filled by a nitrile-nitrogen atom from a symmetry-related tcm ligand. The structures of 2-4 consists of zig-zag (2 and 3)/linear (4) chains of copper(II) ions which are bridged by either bis-bidentate 2,5-dpp (2) and 2,3-dpp (3) molecules or single mu-1,5-tcm (4) groups. The copper atoms in 2 and 4 are five coordinated with distorted trigonal bipyramidal (2) and square pyramidal (4) CuN(5) surroundings. The axial positions in 2 are occupied by two pyridyl-nitrogen atoms from two 2,5-dpp ligands whereas the trigonal plane is built by a nitrile-nitrogen from a terminally bound tcm group and two pyrazine nitrogen atoms from two 2,5-dpp molecules. The basal plane in 4 is defined by a pyridyl and a pyrazine nitrogen atoms from the bidentate 2,3-dpq ligand and two nitrile nitrogen atoms from two tcm groups (one terminal and the other bridging) whereas the apical position is filled by a nitrile nitrogen from another tcm ligand. The crystallographically independent copper atoms in 3 [Cu(1) and Cu(2)] exhibit elongated octahedral geometries being defined by four

  9. Electron spin relaxation of copper(II) complexes in glassy solution between 10 and 120 K.

    Science.gov (United States)

    Fielding, Alistair J; Fox, Stephen; Millhauser, Glenn L; Chattopadhyay, Madhuri; Kroneck, Peter M H; Fritz, Günter; Eaton, Gareth R; Eaton, Sandra S

    2006-03-01

    The temperature dependence, between 10 and 120 K, of electron spin-lattice relaxation at X-band was analyzed for a series of eight pyrrolate-imine complexes and for ten other copper(II) complexes with varying ligands and geometry including copper-containing prion octarepeat domain and S100 type proteins. The geometry of the CuN4 coordination sphere for pyrrolate-imine complexes with R=H, methyl, n-butyl, diphenylmethyl, benzyl, 2-adamantyl, 1-adamantyl, and tert-butyl has been shown to range from planar to pseudo-tetrahedral. The fit to the recovery curves was better for a distribution of values of T1 than for a single time constant. Distributions of relaxation times may be characteristic of Cu(II) in glassy solution. Long-pulse saturation recovery and inversion recovery measurements were performed. The temperature dependence of spin-lattice relaxation rates was analyzed in terms of contributions from the direct process, the Raman process, and local modes. It was necessary to include more than one process to fit the experimental data. There was a small contribution from the direct process at low temperature. The Raman process was the dominant contribution to relaxation between about 20 and 60 K. Debye temperatures were between 80 and 120 K. For samples with similar Debye temperatures the coefficient of the Raman process tended to increase as gz increased, as expected if modulation of spin-orbit coupling is a major factor in relaxation rates. Above about 60 K local modes with energies in the range of 260-360 K (180-250 cm-1) dominated the relaxation. For molecules with similar geometry, relaxation rates were faster for more flexible molecules than for more rigid ones. Relaxation rates for the copper protein samples were similar to rates for small molecules with comparable coordination spheres. At each temperature studied the range of relaxation rates was less than an order of magnitude. The spread was smaller between 20 and 60 K where the Raman process dominates

  10. Comparison of availability of copper(II) complexes with organic ligands to bacterial cells and to chitin

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, M.T.S.D.; Azenha, M.A.O. [Laquipai, Porto (Portugal). Faculdade de Ciencias do Porto; Cabral, J.P.S. [Inst. de Botanica e Centro de Citologia Experimental U.P., Porto (Portugal)

    1997-10-01

    Bacterial cells or chitin were exposed to solutions with 100 {micro}M total but only 5 {micro}M free copper, due to the presence of a proper concentration of proline, lysine, cysteine, or ethylenediamine tetraacetate (EDTA). The influence of the nature and concentration of the particles and soluble ligands, on the sorption and on the desorption of the copper, at pH 6.50 and 25.0 C, was investigated. The metal sorbed by the particles and that left in the solution were measured by atomic absorption spectrometry, after different periods of contact between particles and solution. The interpretation of the results was based on the copper(II) speciation calculated through equilibrium approaches applied to homogeneous or heterogeneous systems. A significant fraction of copper bound to the organic ligands was displaced to the bacteria or chitin, and the extent of chemical reaction depended on the nature of both the soluble (or leaving) ligands and sites on the particle surface (or entering ligands), as expected by the equilibrium theory. But with chitin, the uptake of copper in the presence of cysteine or EDTA was higher than expected, which may be due to the adsorption of the soluble copper complexes on the particle surface. In consequence of a competition between soluble and particulate ligands (cells or chitin), the free copper(II) concentration decreased in the solution, even in the presence of very strong chelators. The results indicate that copper availability is not a simple function of the initial free copper concentration in the solution. Desorption of the previously fixed copper, originated by free soluble ligands indicated that the sorption of copper was quasireversible for both particles, though a larger dismissal of the equilibrium position occurred for the cells, probably due to their biological activity.

  11. The tachykinin peptide neurokinin B binds copper forming an unusual [CuII(NKB)2] complex and inhibits copper uptake into 1321N1 astrocytoma cells.

    Science.gov (United States)

    Russino, Debora; McDonald, Elle; Hejazi, Leila; Hanson, Graeme R; Jones, Christopher E

    2013-10-16

    Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides that have neuroinflammatory, neuroimmunological, and neuroprotective functions. In a neuroprotective role, tachykinins can help protect cells against the neurotoxic processes observed in Alzheimer's disease. A change in copper homeostasis is a clear feature of Alzheimer's disease, and the dysregulation may be a contributory factor in toxicity. Copper has recently been shown to interact with neurokinin A and neuropeptide γ and can lead to generation of reactive oxygen species and peptide degradation, which suggests that copper may have a place in tachykinin function and potentially misfunction. To explore this, we have utilized a range of spectroscopic techniques to show that NKB, but not substance P, can bind Cu(II) in an unusual [Cu(II)(NKB)2] neutral complex that utilizes two N-terminal amine and two imidazole nitrogen ligands (from each molecule of NKB) and the binding substantially alters the structure of the peptide. Using 1321N1 astrocytoma cells, we show that copper can enter the cells and subsequently open plasma membrane calcium channels but when bound to neurokinin B copper ion uptake is inhibited. This data suggests a novel role for neurokinin B in protecting cells against copper-induced calcium changes and implicates the peptide in synaptic copper homeostasis.

  12. N-benzoylated 1,4,8,11-tetraazacyclotetradecane and their copper(II) and nickel(II) complexes: Spectral, magnetic, electrochemical, crystal structure, catalytic and antimicrobial studies

    Science.gov (United States)

    Nirmala, G.; Rahiman, A. Kalilur; Sreedaran, S.; Jegadeesh, R.; Raaman, N.; Narayanan, V.

    2010-09-01

    A series of N-benzoylated cyclam ligands incorporating three different benzoyl groups 1,4,8,11-tetra-(benzoyl)-1,4,8,11-tetraazacyclotetradecane (L 1), 1,4,8,11-tetra-(2-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 2) and 1,4,8,11-tetra-(4-nitrobenzoyl)-1,4,8,11-tetraazacyclotetradecane (L 3) and their nickel(II) and copper(II) complexes are described. Crystal structure of L 1 is also reported. The ligands and complexes were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectral studies. N-benzoylation causes red shift in the λmax values of the complexes. The cyclic voltammogram of the complexes of ligand L 1 show one-electron, quasi-reversible reduction wave in the region -1.00 to -1.04 V, whereas that of L 2 and L 3 show two quasi-reversible reduction peaks. Nickel complexes show one-electron quasi-reversible oxidation wave at a positive potential in the range +1.05 to +1.15 V. The ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry with nuclear hyperfine spin 3/2. All copper(II) complexes show a normal room temperature magnetic moment values μeff 1.70-1.73 BM which is close to the spin-only value of 1.73 BM. Kinetic studies on the oxidation of pyrocatechol to o-quinone using the copper(II) complexes as catalysts and hydrolysis of 4-nitrophenylphosphate using the copper(II) and nickel(II) complexes as catalysts were carried out. All the ligands and their complexes were also screened for antimicrobial activity against Gram-positive, Gram-negative bacteria and human pathogenic fungi.

  13. Copper(II) complex formation with a linear peptide encompassing the putative cell binding site of angiogenin.

    Science.gov (United States)

    La Mendola, Diego; Magrì, Antonio; Vagliasindi, Laura I; Hansson, Örjan; Bonomo, Raffaele P; Rizzarelli, Enrico

    2010-11-28

    Angiogenin is one of the more potent angiogenic factors known, whose activity may be affected by the presence of copper ions. Copper(II) complexes with the peptides encompassing the putative endothelial cell binding domain of angiogenin, Ac-KNGNPHREN-NH(2) and Ac-PHREN-NH(2), have been characterized by potentiometric, UV-vis, CD and EPR spectroscopic methods. The coordination features of all the copper complex species derived by both peptides are practically the same, as predictable because of the presence of a proline residue within their aminoacidic sequence. In particular, Ac-PHREN-NH(2) is really the aminoacidic sequence involved in the binding to copper(II). Thermodynamic and spectroscopic evidence are given that side chain oxygen donor atom of glutamyl residue is involved in the copper binding up to physiological pH. EPR parameters suggest that the carboxylate group is still involved also in the predominant species [Cu(L)H(-2)], the metal coordination environment being probably formed by N(Im), 2N(-), H(2)O in equatorial plane and an oxygen atom from COO(-) in apical position, or vice versa, with the carboxylate oxygen atom in the copper coordination plane and the water molecule confined to one of the apical positions. Moreover, the comparison with the thermodynamic and spectroscopic results in the case of the copper(ii) complex species formed by the single point mutated peptide, Ac-PHRQN-NH(2), provides further evidence of the presence of carboxylate oxygen atom in the copper coordination sphere.

  14. Synthesis, structure, spectroscopic and electrochemical properties of bis(histamine-saccharinate) copper(II) complex

    Science.gov (United States)

    Bulut, İclal; Uçar, İbrahim; Karabulut, Bünyamin; Bulut, Ahmet

    2007-05-01

    Crystal structure of [Cu(hsm) 2(sac) 2] (hsm is histamine and sac is saccharinate) complex has been determined by X-ray diffraction analyses and its magnetic environment has been identified by electron paramagnetic resonance (EPR) technique. The title complex crystallizes in the monoclinic system, space group P 21/ c with a = 7.4282(4), b = 22.5034(16), c = 8.3300(5) Å, β = 106.227(4)°, V = 1336.98(14) Å 3, and Z = 2. The structure consist of discrete [Cu(hsm) 2(sac) 2] molecules in which the copper ion is centrosymmetrically coordinated by two histamine ligands forming an equatorial plane [Cu-N hsm = 2.024(2) and Cu-N hsm = 2.0338(18) Å]. Two N atoms from the saccharinate ligands coordinate on the elongated axial positions with Cu-N sac being 2.609(5) Å. The complex is also characterized by spectroscopic (IR, UV/Vis) and thermal (TG, and TDA) methods. The cyclic voltammogram of the title complex investigated in DMSO (dimethylsulfoxide) solution exhibits only metal centred electroactivity in the potential range - 1.25-1.5 V versus Ag/AgCl reference electrode. The molecular orbital bond coefficients of Cu(II) ion in d 9 state is also calculated by using EPR and optical absorption parameters.

  15. Synthesis, characterization, DNA binding, cleavage activity and cytotoxicity of copper(II) complexes.

    Science.gov (United States)

    Li, Mei-Jin; Lan, Tao-Yu; Cao, Xiu-Hui; Yang, Huang-Hao; Shi, Yupeng; Yi, Changqing; Chen, Guo-Nan

    2014-02-21

    Three new mononuclear copper(II) complexes, [Cu(L2)](2+) (1), [Cu(acac)(L)](+) (2), and [Cu(acac-Cl)(L)](+) (3) (L = 2-(4-pyridine)oxazo[4,5-f]1,10-phenanthroline (4-PDOP); acac = acetylacetone; acac-Cl = 3-chloroacetylacetone), have been synthesized and characterized by elemental analysis, high resolution mass spectrometry (Q-TOF), and IR spectroscopy. Two of the complexes were structurally characterized by single-crystal X-ray diffraction techniques. Their interactions with DNA were studied by UV-vis absorption and emission spectra, viscosity, thermal melting, DNA unwinding assay and CD spectroscopy. The nucleolytic cleavage activity of the compounds was carried out on double stranded pBR322 circular plasmid DNA by using a gel electrophoresis experiment in the presence and absence of an oxidant (H2O2). Active oxygen intermediates such as hydroxyl radicals and hydrogen peroxide generated in the presence of L and complexes 1-3 may act as active species for the DNA scission. The cytotoxicity of the complexes against HepG2 cancer cells was also studied.

  16. Photocytotoxic ternary copper(II) complexes of histamine Schiff base and pyridyl ligands

    Indian Academy of Sciences (India)

    Samya Banerjee; Akanksha Dixit; K Sesha Maheswaramma; Basudev Maity; Sanjoy Mukherjee; Arun Kumar; Anjali A Karande; Akhil R Chakravarty

    2016-02-01

    Ternary copper(II) complexes of salicylaldehyde-histamine Schiff base (HL) and pyridyl ligands, viz. [Cu(bpy)(L)](ClO4) (1) and [Cu(dppz)(L)](ClO4) (2), where bpy is 2,2′-bipyridine (in 1) and dppz is dipyrido[3,2-a:2′,3′-c]phenazine (in 2), were synthesized, characterized and their DNA binding, photo-activated DNA cleavage activity and photocytotoxicity studied. The 1:1 electrolytic one-electron paramagnetic complexes showed a d-d band near 670 nm in aqueous DMF (1:1 v/v). The crystal structure of complex 1 showed the metal in CuN4O distorted square-pyramidal geometry. Complex 2 intercalatively binds to calf-thymus (ct) DNA with a binding constant (b) of ∼105 M−1. It exhibited moderate chemical nuclease activity but excellent DNA photocleavage activity in red light of 647 nm forming $^{\\bullet}\\text{OH}$ radicals. It showed remarkable photocytotoxicity in human cervical cancer cells (HeLa) giving IC50 of 1.6 M in visible light (400-700 nm) with low dark toxicity. The photo-induced cell death is via generation of oxidative stress by reactive oxygen species.

  17. Characterisation of the interactions between substrate, copper(II) complex and DNA and their role in rate acceleration in DNA-based asymmetric catalysis

    NARCIS (Netherlands)

    Draksharapu, Apparao; Boersma, Arnold J; Browne, Wesley R; Roelfes, Gerard

    2015-01-01

    Interactions of the azachalcone derived substrate Aza with copper(II) complexes in the presence and absence of st-DNA were studied in detail by UV/Vis absorption, EPR and Raman and (UV and vis) resonance Raman spectroscopies. The binding of Aza to the Lewis acidic copper(II) complexes, which results

  18. Characterisation of the interactions between substrate, copper(II) complex and DNA and their role in rate acceleration in DNA-based asymmetric catalysis

    NARCIS (Netherlands)

    Draksharapu, Apparao; Boersma, Arnold J; Browne, Wesley R; Roelfes, Gerard

    2015-01-01

    Interactions of the azachalcone derived substrate Aza with copper(II) complexes in the presence and absence of st-DNA were studied in detail by UV/Vis absorption, EPR and Raman and (UV and vis) resonance Raman spectroscopies. The binding of Aza to the Lewis acidic copper(II) complexes, which results

  19. Novel copper(II) complexes with hydrazides and heterocyclic bases: Synthesis, structure and biological studies.

    Science.gov (United States)

    Paixão, Drielly A; Marzano, Ivana M; Jaimes, Edgar H L; Pivatto, Marcos; Campos, Débora L; Pavan, Fernando R; Deflon, Victor M; Maia, Pedro Ivo da S; Da Costa Ferreira, Ana M; Uehara, Isadora A; Silva, Marcelo J B; Botelho, Françoise V; Pereira-Maia, Elene C; Guilardi, Silvana; Guerra, Wendell

    2017-07-01

    Five new copper(II) complexes of the type [Cu(NO)(NN)(ClO4)2], in which NO=4-fluorophenoxyacetic acid hydrazide (4-FH) or 4-nitrobenzoic hydrazide (4-NH) and NN=1,10-phenanthroline (phen), 4-4'-dimethoxy-2-2'-bipyridine (dmb) or 2,2-bipyridine (bipy) were synthesized and characterized using various spectroscopic methods. The X-ray structural analysis of one representative compound indicates that the geometry around the copper ion is distorted octahedron, in which the ion is coordinated to hydrazide via the terminal nitrogen and the carbonyl oxygen, and to heterocyclic bases via their two nitrogen atoms. Two perchlorate anions occupy the apical positions, completing the coordination sphere. The cytotoxic activity of compounds was investigated in three tumor cell lines (K562, MDA-MB-231 and MCF-7). Concerning K562 cell line, the complexes with 1,10-phenanthroline exhibit high cytotoxic activity and are more active than carboplatin, free ligands and [Cu(phen)2](2+). Considering the cytotoxicity results, further investigations for the compounds [Cu(4-FH)(phen)(ClO4)2] I and [Cu(4-NH)(phen)(ClO4)2]∙H2O III were performed. Flow cytometric analysis revealed that these complexes induce apoptotic cell death in MDA-MB-231 cell line and bind to DNA with K values of 4.38×10(4) and 2.62×10(4), respectively. These compounds were also evaluated against wild type Mycobacterium tuberculosis (ATCC 27294) and exhibited antimycobacterial activity, displayed MIC values lower than those of the corresponding free ligands. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Synthesis, characterisation of few N-substituted 1,8-naphthalimide derivatives and their copper(II) complexes

    Indian Academy of Sciences (India)

    Nilotpal Barooah; Chandan Tamuly; Jubaraj B Baruah

    2005-03-01

    A few 1,8-naphthalimide derivatives with phenyl (1), benzyl (2), 3,4-dimethoxyphenyl ethyl (3), 4-pyridyl (4), 2-hydroxy ethyl (5), 4-pyridylmethyl (6) groups attached to the nitrogen atom are synthesized and characterized. Cyclic voltammograms of all these compounds show one-electron reversible redox cycle (-1.24 V to -1.18 V) due to formation of anion radicals. However, in the case of (5), quenching of this redox process occurs when polyhydroxy-aromatic compounds such as 1,3-dihydroxy benzene and 1,3,5-trihydroxybenzene are added. Copper complexes, namely bis-{N-(4-pyridylmethyl)1,8-naphthalimide}copper (II) perchlorate (8), bis-{N-(4-pyridylmethyl)1,8-naphthalimide}copper (II) perchlorate (9) and bis-{N-(4-pyridylmethyl)phthalimide} copper (II) perchlorate (10) are synthesized and characterised. The complexes (8) and (9) show reversible redox couple of the ligand without any significant interaction with the redox active copper (II) centre.

  1. Femtomole level photoelectrochemical aptasensing for mercury ions using quercetin-copper(II) complex as the DNA intercalator.

    Science.gov (United States)

    Li, Hongbo; Xue, Yan; Wang, Wei

    2014-04-15

    An ultrasensitive and selective photoelectrochemical (PEC) aptasensor for mercury ions was first fabricated based on perylene-3, 4, 9, 10-tetracarboxylic acid/graphene oxide (PTCA/GO) heterojunction using quercetin-copper(II) complex intercalated into the poly(dT)-poly(dA) duplexes. Both the PTCA/GO heterojunction and the quercetin-copper(II) complex are in favor of the sensitivity for the fabricated PEC aptasensor due to band alignment and strong reduction capability, respectively. And they efficiently promote the separation of photoexcited carriers and enhance the photocurrent. The formation of thymine-Hg(2+)-thymine coordination chemistry resulted in the dehybridization of poly(dT)-poly(dA) duplexes and then the intercalator quercetin-copper(II) complex broke away from the surface of the PEC aptasensor. As the concentration of mercury ions increased, the photocurrent gradually decreased. The electrode response for mercury ions detection was in the linear range from 0.01 pmol L(-1) to 1.00 pmol L(-1) with the detection limit of 3.33 fmol L(-1). The label-free PEC aptasensor has excellent performances with ultrasensitivity and good selectivity besides the advantage of economic and facile fabrication. The strategy of quercetin-copper(II) complex as a novel DNA intercalator paves a new way to improve the performances for PEC sensors. © 2013 Published by Elsevier B.V.

  2. Synthesis and Crystal Structure of Copper(II) Complex with Mixed Bipyridine and 2-Hydroxy-1-naphthaldehyde Ligands

    Institute of Scientific and Technical Information of China (English)

    卜平宇; 程鹏; 赵斌; 阎世平; 瘳代正; 姜宗慧; 刘松岩; 姚心侃; 王宏根

    2002-01-01

    A mononuclear copper(II) complex, [Cu(bipy)(naph)(ClO4)] (where bipy is bipyridine and naph is 2-hydroxy-1-naphthaldehyde), was synthesized and characterized by X-ray single-crystal structure analysis. The crystal is triclinic, space group P ī with a = 9.245(4), b = 9.962(4), c = 10.809(7) A, α = 84.83(5), β =82.35(4), γ = 81.02(4)°, V = 972.1 >3, C21H15ClCuN2O6 Mr = 490.36, Z = 2, F(000) = 498, Dx = 1.68 g/cm3, μ = 13.05 cm-1, R = 0.078, Rw = 0.081 for 2295 observed reflections with I > 3σ(I). The copper(II) ion is coordinated by two nitrogen atoms of bipy and two oxygen atoms of naph in the equatorial plane, with an axial perchlorate oxygen-copper(II) bond to copper(II) ion to form square-pyramidal coordination geometry. The coordination environment of copper(II) is similar to the active site of galactose oxidase and this compound may also be considered as the structural model of galactose oxidase.

  3. 3-Pyridylmethanol vs. N,N‧-diethylnicotinamide in copper(II) complex formation - A comparative EPR study

    Science.gov (United States)

    Husáriková, L.; Repická, Z.; Valigura, D.; Valko, M.; Mazúr, M.

    2013-10-01

    Copper(II) complexes, formed from 4-chlorosalicylic acid anion A (A = 4-Clsal-), different copper(II) salts (Cu(ac)2 or CuSO4) and different N-donor ligands B (B = 3-pyridylmethanol (ron) or N,N'-diethylnicotinamide (denia)) with varying N-donor ligand-to-metal ratio (x), were studied by EPR spectroscopy in the frozen water/methanol (1:3 v/v) solutions. The number of ligand B molecules coordinated to Cu(II) central ion was determined from the nitrogen perpendicular and parallel superhyperfine splitting multiplets of Cu(II) EPR spectra. It was found for both N-donor ligands: (i) At lower ligand B concentrations (x = 1, 2), [CuB] and/or [CuB2] species having one and/or two molecules of ligands B in equatorial position were dominant. The dominant ternary complex particles were [CuA2B2] species. (ii) At higher ligand B concentrations (x ⩾ 4) the formation of [CuB3] and/or [CuB4] species having three and/or four molecules of ligands B in equatorial position was confirmed. Such information is not possible to get from Cu(II) EPR spectra of powdered samples of given copper(II) complexes.

  4. Synthesis, characterization, antibacterial activity, SOD mimic and interaction with DNA of drug based copper(II) complexes

    Science.gov (United States)

    Patel, Mohan N.; Dosi, Promise A.; Bhatt, Bhupesh S.; Thakkar, Vasudev R.

    2011-02-01

    Novel metal complexes of the second-generation quinolone antibacterial agent enrofloxacin with copper(II) and neutral bidentate ligands have been prepared and characterized with elemental analysis reflectance, IR and mass spectroscopy. Complexes have been screened for their in-vitro antibacterial activity against two Gram (+ve)Staphylococcus aureus, Bacillus subtilis, and three Gram (-ve)Serratia marcescens, Escherichia coli and Pseudomonas aeruginosa organisms using the double dilution technique. The binding of this complex with CT-DNA has been investigated by absorption titration, salt effect and viscosity measurements. Binding constant is ranging from 1.3 × 10 4-3.7 × 10 4. The cleavage ability of complexes has been assessed by gel electrophoresis using pUC19 DNA. The catalytic activity of the copper(II) complexes towards the superoxide anion (O 2rad -) dismutation was assayed by their ability to inhibit the reduction of nitroblue tetrazolium (NBT).

  5. Cytotoxicity of copper(II)-complexes with some S-alkyl derivatives of thiosalicylic acid. Crystal structure of the binuclear copper(II)-complex with S-ethyl derivative of thiosalicylic acid

    Science.gov (United States)

    Nikolić, Miloš V.; Mijajlović, Marina Ž.; Jevtić, Verica V.; Ratković, Zoran R.; Novaković, Slađana B.; Bogdanović, Goran A.; Milovanović, Jelena; Arsenijević, Aleksandar; Stojanović, Bojana; Trifunović, Srećko R.; Radić, Gordana P.

    2016-07-01

    The spectroscopically predicted structure of the obtained copper(II)-complex with S-ethyl derivative of thiosalicylic acid was confirmed by X-ray structural study and compared to previously reported crystal structure of the Cu complex with S-methyl derivative. Single crystals suitable for X-ray measurements were obtained by slow crystallization from a water solution. Cytotoxic effects of S-alkyl (R = benzyl (L1), methyl (L2), ethyl (L3), propyl (L4) and butyl (L5)) derivatives of thiosalicylic acid and the corresponding binuclear copper(II)-complexes on murine colon carcinoma cell lines, CT26 and CT26.CL25 and human colon carcinoma cell line HCT-116 were reported here. The analysis of cancer cell viability showed that all the tested complexes had low cytotoxic effect on murine colon carcinoma cell lines, but several times higher cytotoxicity on normal human colon carcinoma cells.

  6. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis

    Science.gov (United States)

    Sato, Mariana R; Oshiro Junior, João A; Machado, Rachel TA; de Souza, Paula C; Campos, Débora L; Pavan, Fernando R; da Silva, Patricia B; Chorilli, Marlus

    2017-01-01

    Tuberculosis (TB) is a disease caused by Mycobacterium tuberculosis. Cessation of treatment before the recommended conclusion may lead to the emergence of multidrug-resistant strains. The aim of this study was to develop nanostructured lipid carriers (NLCs) for use in the treatment of M. tuberculosis. The NLCs comprised the following lipid phase: 2.07% polyoxyethylene 40 stearate, 2.05% caprylic/capric triglyceride, and 0.88% polyoxyl 40 hydrogenated castor oil; the following aqueous phase: 3.50% poloxamer 407 (F1–F6), and 0.50% cetyltrimethylammonium bromide (F7–F12); and incorporated the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2), and [Cu(NCO)2(INH)2]·4H2O (3) to form compounds F11.1, F11.2, and F11.3, respectively. The mean diameter of F11, F11.1, F11.2, and F11.3 ranged from 111.27±21.86 to 134.25±22.72 nm, 90.27±12.97 to 116.46±9.17 nm, 112.4±10.22 to 149.3±15.82 nm, and 78.65±6.00 to 122.00±8.70 nm, respectively. The polydispersity index values for the NLCs ranged from 0.13±0.01 to 0.30±0.09. The NLCs showed significant changes in zeta potential, except for F11.2, with F11, F11.1, F11.2, and F11.3 ranging from 18.87±4.04 to 23.25±1.13 mV, 17.03±1.77 to 21.42±1.87 mV, 20.51±1.88 to 22.60±3.44 mV, and 17.80±1.96 to 25.25±7.78 mV, respectively. Atomic force microscopy confirmed the formation of nanoscale spherical particle dispersions by the NLCs. Differential scanning calorimetry determined the melting points of the constituents of the NLCs. The in vitro activity of copper(II) complex-loaded NLCs against M. tuberculosis H37Rv showed an improvement in the anti-TB activity of 55.4, 27.1, and 41.1 times the activity for complexes 1, 2, and 3, respectively. An in vivo acute toxicity study of complex-loaded NLCs demonstrated their reduced toxicity. The results suggest that NLCs may be a powerful tool to optimize the activity of copper(II) complexes against M. tuberculosis. PMID:28356717

  7. Pseudohalide copper(II) complexes derived from polypyridyl ligands: Synthesis and characterization

    Science.gov (United States)

    Mautner, Franz A.; Louka, Febee R.; LeGuet, Thibaut; Massoud, Salah S.

    2009-02-01

    A novel series of pseudohalide- ( N3- NCS -) and perchlorato-Cu(II) complexes possessing a series of ligands with pyridyl-containing donors have been investigated. These include [Cu(pmap)ClO 4)]ClO 4 ( 1), [Cu(pmap)(N 3)]ClO 4 ( 2), [Cu(pmea)(N 3)]ClO 4·H 2O ( 3), [Cu(dp-pa)(N 3)]ClO 4·½H 2O ( 4), [Cu(pzdepy)ClO 4]ClO 4 ( 5), [Cu(pzdepy)(NCS)]ClO 4 ( 6) and [Cu 2(L)(NCS) 4]·2CH 3CN ( 7) where pmap = bis[2-(2-pyridylethyl)]-(2-pyridylmethyl)amine, pmea = bis(2-pyridylmethyl)-2-(2-pyridylethyl)amine, dp-pa = N-propanamide- N, N-bis(2-pyridylmethyl)amine, pzdepy = N, N'-bis[2-(2-pyridylethyl)]piperazine and L = 3,5-bis[bis(2-pyridylmethyl)aminomethyl]-toluene. All complexes were characterized by elemental analyses, IR and UV-Visible spectroscopy. The visible spectra of all complexes reveal the square-pyramidal geometries (SP) around the central Cu 2+ ion. IR spectra confirmed the coordination of the ClO4- group in 1 and 5 and the N-donor thiocyanate group in complexes 6 and 7. The X-ray structure determination of the pseudohalide complexes 2, 6 and 7 confirmed the monodentate coordination nature of N3- and NCS - ions. The structure of 2 or 6 consists of isolated [Cu(pmap)(N 3)] + or [Cu(pzdepy)(NCS)] + cations and perchlorate counter anions. The copper centers are penta-coordinated by the four N atoms of the pmap or pzdepy and N(5) atom of the azide group in 2 and the thiocyanate group in 6. In the dinuclear unit [Cu 2(L)(NCS) 4] of 7, each copper atom forms bonds to three nitrogen atoms of the ligand L, [Cu sbnd N bonds from 2.013(2) to 2.054(2) Å], and to N(4) and N(5) atoms of the two terminal thiocyanato groups [Cu(1) sbnd N(4) = 1.954(2) Å; Cu(1) sbnd N(5) = 2.178(2) Å]. The intradimer Cu(1)...Cu(1A) distance is 5.7010(14) Å. An intramolecular π-π stacking with a ring-ring separation of 3.5991(14) Å is observed between the central benzene ring and the pyridyl rings. In the three complexes ( 2, 6 and 7), the CuN 5 chromophore may be described as an

  8. Novel copper-based therapeutic agent for anti-inflammatory: synthesis, characterization, and biochemical activities of copper(II) complexes of hydroxyflavone Schiff bases.

    Science.gov (United States)

    Joseph, J; Nagashri, K

    2012-07-01

    Four hydroxyflavone derivatives have been synthesized with the aim of obtaining a good model of superoxide dismutase. Better to mimic the natural metalloenzyme, copper complexes have been designed. The Cu(II) complexes of general formulae, [CuL] where L = 5-hydroxyflavone-o-phenylenediamine (L¹H₂)/m-phenylenediamine (L²H₂) and 3-hydroxyflavone-o-phenylenediamine (L³H₂)/m-phenylenediamine (L⁴H₂) have been synthesized. The structural features have been determined from their analytical and spectral data. All the Cu(II) complexes exhibit square planar geometry. Redox behavior of copper complexes was studied and the present ligand systems stabilize the unusual oxidation state of the copper ion during electrolysis. The in vitro antimicrobial activities of the investigated compounds were tested against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola, and Candida albicans. Superoxide dismutase and anti-inflammatory activities of the copper complexes have also been measured and discussed.

  9. Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate‒Neocuproine Ternary Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Lenka Kucková

    2015-01-01

    Full Text Available Mixed ligand copper(II complexes containing derivatives of salicylic acid and heterocyclic ligands with nitrogen donor atoms have been the subject of various studies and reviews. In this paper, synthesis and characterization of the ternary copper(II complexes of neocuproine (2,9-dimethyl-1,10-phenanthroline, Neo and salicylate ligands (Sal are reported. In addition, the crystal structures of ([Cu(H2O(5-Cl-Sal(Neo] (1, [Cu(μ-Sal(Neo]2 (2, Cu2(μ-5-Cl-Sal(5-Cl-HSal2(Neo2]·EtOH (3 were determined. In order to compare structural and biological properties of the prepared complexes, spectroscopic and biological studies were performed. Results of X-ray diffraction show that prepared complexes form three types of crystal structures in a given system: monomeric, dimeric and dinuclear complex. The preliminary study on the DNA cleavage activity has shown that the complexes under study behave as the chemical nucleases in the presence of added hydrogen peroxide with slight differences in the activity (1 > 2 > 3. The complexes 1 and 2 exhibited nuclease activity itself indicating the interaction of complexes with the DNA. It has been proposed that the enhanced destructive effect of the complexes 1 and 2 on the DNA is a result of two possible mechanisms of action: (i the conversion of closed circular DNA (form I to the nicked DNA (form II caused by the copper complex itself and (ii damage of DNA by Reactive Oxygen Species (ROS—products of the interaction of copper with hydrogen peroxide by means of Fenton reaction (hydroxyl radicals. Thus the biological activity of the prepared Cu(II complexes containing derivatives of salicylic acid and phenanthroline molecules is substantiated by two independent mechanisms. While derivatives of salicylic acids in the coordination sphere of copper complexes are responsible for radical-scavenging activity (predominantly towards superoxide radical anion, the presence of chelating ligand 2,9-dimethyl-1,10-phenanthroline

  10. Synthesis, crystal structures and properties of two novel macrocyclic nickel(II) and copper(II) complexes

    Science.gov (United States)

    Su, Yan-Hui; Liu, Jie; Li, Jia; Si, Xue-Zhi

    2007-06-01

    Two new 14-membered hexaaza macrocyclic complexes with the formulae [NiL](ClO 4) 2·CH 3COCH 3 ( 1) and [CuL](ClO 4) 2·CH 3COCH 3 ( 2), where L = 3,10-bis(2-thiophenemethyl)-1,3,5,8,10,12-hexaazacyclotetradecane, have been synthesized and characterized by elemental analyses, single-crystal X-ray diffraction analyses, electronic spectra, IR and TG-DTA. In 1, the nickel(II) ion is four-coordinated with four nitrogen atoms from the macrocycle and forms a square-planar coordination geometry. In 2, the copper(II) ion is six-coordinated with four nitrogen atoms from the macrocyclic ligand in the equatorial plane and two oxygen atoms from the perchlorate anions in the axial position exhibiting an elongated octahedron coordination geometry. The two complexes present two different molecular arrangements in which the [ML] 2+ (M = Ni, Cu) cation arrays in the manner of M(1)M(2)M(1)… in sequence. The pendant thiophene groups of the neighboring macrocycles have no π⋯π interactions. All the ClO4- anions and acetone molecules are involved in hydrogen-bonding interactions with the macrocyclic ligand.

  11. Interaction of a copper(II)-Schiff base complexes with calf thymus DNA and their antimicrobial activity.

    Science.gov (United States)

    Sabolová, D; Kožurková, M; Plichta, T; Ondrušová, Z; Hudecová, D; Simkovič, M; Paulíková, H; Valent, A

    2011-03-01

    The interaction of a copper complexes containing Schiff bases with calf thymus (CT) DNA was investigated by spectroscopic methods. UV-vis, fluorescence and CD spectroscopies were conducted to assess their binding ability with CT DNA. The binding constants K have been estimated from 0.8 to 9.1×10(4) M(-1). The percentage of hypochromism is found to be over 70% (from spectral titrations). The results showed that the copper(II) complexes could bind to DNA with an intercalative mode. Synergic action of Cu(II) complexes with ascorbic acid against Candida albicans induced the generation of free radicals and increased (more than 60 times) antimicrobial effect of these complexes.

  12. Syntheses, crystal structures, spectral and DFT studies of copper(II) and nickel(II) complexes with N‧-(pyridine-2-ylmethylene)acetohydrazide

    Science.gov (United States)

    Patel, Ram N.; Singh, Yogendra Pratap; Singh, Yogendra; Butcher, Ray J.; Zeller, Matthias; Singh, R. K. Bhubon; U-wang, Oinam

    2017-05-01

    Three new metal(II) complexes (copper(II)/nickel(II)) with N'-(pyridine-2-ylmethylene) acetohydrazide [Cu(HL)2]·(ClO4)21, [Ni(HL)2]·NO3·ClO4·0.5H2O 2 and [Cu(μ-CH3COO)(L)]2·4H2O 3 have been synthesized form N‧-(pyridine-2-ylmethylene) acetohydrazide (HL/L). The synthesized complexes were characterized by means of elemental analysis, spectroscopic, magnetic susceptibility and cyclic voltammetric measurements. Single crystal X-ray analysis of complexes has revealed the presence of a distorted octahedral geometry around mononuclear copper(II) and nickel(II) complex (1 and 2) and distorted square pyramidal geometry around copper(II) centers of complex 3. In the solid state Schiff base remains in its keto-tautomeric form. On complexation with Cu(II)/Ni(II) ions in natural or slightly acidic medium it coordinates through ketonic oxygen (keto form, HL) whereas in basic medium it acts as monoprotic (enol form, L) ligand. Variable-temperature magnetic susceptibility data of the compound 3 indicates the presence of weak antiferromagnetic interaction with J = -12.3 cm-1. The cyclic voltammograms of homobinuclear complex 3 in DMSO gave two irreversible waves which correspond to the Cu(II,II)/Cu(II,I) and Cu(II,I)/Cu(I,I) redox processes. On the other hand, the mononuclear complex 1 exhibited M(II)/M(I) quasireversible wave E1/2 = 0.06 V vs Ag/AgCl. X-band electron paramagnetic resonance (epr) data of copper(II) mononuclear and binuclear complexes 1 and 3 have been collected to investigate magnetic properties of the complexes in detail. The electronic structures, spectral properties of the ligands and the complexes have been explained by DFT and TD-DFT calculations. In addition, biological activity ranking of present complexes 1-3 are investigated theoretically. Complexes catalyzed the dismutation of superoxide (O2▪-) at biological pH in alkaline nitroblue tetrazolium chloride assay and IC50 values were evaluated.

  13. Immobilized copper(II) macrocyclic complex on MWCNTs with antibacterial activity

    Science.gov (United States)

    Tarlani, Aliakbar; Narimani, Khashayar; Mohammadipanah, Fatemeh; Hamedi, Javad; Tahermansouri, Hasan; Amini, Mostafa M.

    2015-06-01

    In a new approach, a copper(II) tetraaza macrocyclic complex (CuTAM) was covalently bonded on modified multi-walled carbon nanotubes (MWCNTs). To achieve this purpose, MWCNTs were converted to MWCNT-COCl and then reacted to NH groups of TAM ligand. The prepared material was characterized by Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), and FESEM (field emission scanning electron microscopy). FT-IR and TGA demonstrated the presence of the organic moieties, and XRD proved that the structure of MWCNTs remained intact during the three modification steps. An increase in the ID/IG ratio in Raman spectra confirmed the surface modifications. Finally, the samples were subjected to an antibacterial assessment to compare their biological activity. The antibacterial test showed that the grafted complex on the surface of the nanotube (MWCNT-CO-CuTAM) has higher antibacterial activity against Bacillus subtilis ATCC 6633 than the MWCNT-COOH and CuTAM with 1000 and 2000 μg/mL.

  14. Electrochemical Studies of Betti Base and Its Copper(II Complex by Cyclic and Elimination Voltammetry

    Directory of Open Access Journals (Sweden)

    Shardul Bhatt

    2013-01-01

    Full Text Available The electrochemical behavior of Betti base 1-(α-amino benzyl-2-naphthol (BB and its copper(II complex by cyclic and elimination voltammetry (EVLS is reported in the present study. The cyclic voltammetric studies carried out at a glassy carbon working electrode, Ag/Ag+ reference electrode (0.01 M AgNO3 in acetonitrile in DCM at 100 mV/sec, 200 mV/sec, and 400 mV/sec scan rates indicated a preceding chemical oxidation of the adsorbed BB species to form an iminium ion followed by formation of a carbanion via two-step quasireversible reduction. The suggested reaction mechanism has been supported by the elimination voltammetry. The CV and EVLS studies revealed Cu(IIBB complex to undergo a chemical or a surface reaction before electron transfer from the electrode at −0.49 V to form Cu(IBB species. The oxidation of Cu(IBB species has been observed to be CV silent.

  15. Monopicolinate cross-bridged cyclam combining very fast complexation with very high stability and inertness of its copper(II) complex.

    Science.gov (United States)

    Lima, Luís M P; Halime, Zakaria; Marion, Ronan; Camus, Nathalie; Delgado, Rita; Platas-Iglesias, Carlos; Tripier, Raphaël

    2014-05-19

    The synthesis of a new cross-bridged 1,4,8,11-tetraazacyclotetradecane (cb-cyclam) derivative bearing a picolinate arm (Hcb-te1pa) was achieved by taking advantage of the proton sponge properties of the starting constrained macrocycle. The structure of the reinforced ligand as well as its acid-base properties and coordination properties with Cu(2+) and Zn(2+) was investigated. The X-ray structure of the free ligand showed a completely preorganized conformation that lead to very fast copper(II) complexation under mild conditions (instantaneous at pH 7.4) or even in acidic pH (3 min at pH 5) at room temperature and that demonstrated high thermodynamic stability, which was measured by potentiometry (at 25 °C and 0.10 M in KNO3). The results also revealed that the complex exists as a monopositive copper(II) species in the intermediate pH range. A comparative study highlighted the important selectivity for Cu(2+) over Zn(2+). The copper(II) complex was synthesized and investigated in solution using different spectroscopic techniques and DFT calculations. The kinetic inertness of the copper(II) complex in acidic medium was evaluated by spectrophotometry, revealing the very slow dissociation of the complex. The half-life of 96 days, in 5 M HClO4, and 465 min, in 5 M HCl at 25 °C, show the high kinetic stability of the copper(II) chelate compared to that of the corresponding complexes of other macrocyclic ligands. Additionally, cyclic voltammetry experiments underlined the perfect electrochemical inertness of the complex as well as the quasi-reversible Cu(2+)/Cu(+) redox system. The coordination geometry of the copper center in the complex was established in aqueous solution from UV-vis and EPR spectroscopies.

  16. Synthesis, characterization and DNA interaction of new copper(II) complexes of Schiff base-aroylhydrazones bearing naphthalene ring.

    Science.gov (United States)

    Gökçe, Cansu; Gup, Ramazan

    2013-05-05

    Two new copper(II) complexes with the condensation products of methyl 2-naphthyl ketone with 4-hydroxybenzohydrazide, 4-hydroxy-N'-[(1Z)-1-(naphthalen-2-yl)ethylidene]benzohydrazide [HL(1)] and (Z)-ethyl 2-(4-(2-(1-(naphthalen-2-yl)ethylidene)hydrazinecarbonyl)phenoxy)acetate (HL(2)) were synthesized and characterized by elemental analysis, infrared spectra, UV-Vis electronic absorption spectra, magnetic susceptibility measurements, TGA, powder XRD and SEM-EDS. The binding properties of the copper(II) complexes with calf thymus DNA were studied by using the absorption titration method. DNA cleavage activities of the synthesized copper complexes were examined by using agarose gel electrophoresis. The effect of complex concentration on the DNA cleavage reactions in the absence and presence of H2O2 was also investigated. The experimental results suggest that the copper complexes bind significantly to calf thymus DNA by both groove binding and intercalation modes and cleavage effectively pBR322 DNA. The mechanistic studies demonstrate that a hydrogen peroxide-derived species and singlet oxygen ((1)O2) are the active oxidative species for DNA cleavage.

  17. Mechanism of Formation of Copper(II) Chloro Complexes Revealed by Transient Absorption Spectroscopy and DFT/TDDFT Calculations.

    Science.gov (United States)

    Mereshchenko, Andrey S; Olshin, Pavel K; Karabaeva, Kanykey E; Panov, Maxim S; Wilson, R Marshall; Kochemirovsky, Vladimir A; Skripkin, Mikhail Yu; Tveryanovich, Yury S; Tarnovsky, Alexander N

    2015-07-16

    Copper(II) complexes are extremely labile with typical ligand exchange rate constants on the order of 10(6)-10(9) M(-1) s(-1). As a result, it is often difficult to identify the actual formation mechanism of these complexes. In this work, using UV-vis transient absorption when probing in a broad time range (20 ps to 8 μs) in conjunction with DFT/TDDFT calculations, we studied the dynamics and underlying reaction mechanisms of the formation of extremely labile copper(II) CuCl4(2-) chloro complexes from copper(II) CuCl3(-) trichloro complexes and chloride ions. These two species, produced via photochemical dissociation of CuCl4(2-) upon 420 nm excitation into the ligand-to-metal-charge-transfer electronic state, are found to recombine into parent complexes with bimolecular rate constants of (9.0 ± 0.1) × 10(7) and (5.3 ± 0.4) × 10(8) M(-1) s(-1) in acetonitrile and dichloromethane, respectively. In dichloromethane, recombination occurs via a simple one-step addition. In acetonitrile, where [CuCl3](-) reacts with the solvent to form a [CuCl3CH3CN](-) complex in less than 20 ps, recombination takes place via ligand exchange described by the associative interchange mechanism that involves a [CuCl4CH3CN](2-) intermediate. In both solvents, the recombination reaction is potential energy controlled.

  18. Ternary complexes of copper(II) and cobalt(II) involving nitrite/pyrazole and tetradentate N4-coordinate ligand: Synthesis, characterization, structures and antimicrobial activity

    Science.gov (United States)

    Solanki, Ankita; Sadhu, Mehul H.; Kumar, Sujit Baran

    2015-12-01

    Five new mononuclear mixed ligand complexes of the type [Cu(NCCH3)(dbdmp)](ClO4)2, [M(ONO)(dbdmp)]ClO4, [M(pz) (dbdmp)](ClO4)2 where M = Cu(II) and Co(II), pz = 3,5-dimethylpyrazole and dbdmp = N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine have been synthesized and characterized by physico-chemical and spectroscopy studies. The crystal structures of three copper(II) complexes [Cu(NCCH3)(dbdmp)](ClO4)2, [Cu(ONO)(dbdmp)]ClO4 and [Cu(pz)(dbdmp)](ClO4)2 have been determined by single crystal X-ray diffraction studies. Structural analyses reveal the geometry of [Cu(pz)(dbdmp)](ClO4)2 is distorted square pyramidal and other two copper(II) complexes have distorted trigonal bipyramidal geometry. Molecular composition of cobalt(II) complexes have been determined by mass spectral data. The EPR spectra of copper(II) complexes in frozen acetonitrile solution exhibit axial spectra, characteristic of dx2-y2 ground state. Electrochemical studies of copper(II) complexes using glassy carbon as working electrode in acetonitrile solution show Cu(II)/Cu(I) couple with quasi reversible electron transfer versus Ag/Ag+ reference electrode. Antimicrobial activity of all the synthesized complexes were investigated against two Gram positive and two Gram negative bacterial strains.

  19. Peculiar reactivity of a di-imine copper(II) complex regarding its binding to albumin protein.

    Science.gov (United States)

    Silveira, Vivian C; Abbott, Mariana P; Cavicchioli, Maurício; Gonçalves, Marcos B; Petrilli, Helena M; de Rezende, Leandro; Amaral, Antonia T; Fonseca, David E P; Caramori, Giovanni F; Ferreira, Ana M da Costa

    2013-05-14

    A set of four di-imine copper(II) complexes containing pyridine, pyrazine and/or imidazole moieties, [Cu(apyhist)H2O](2+) 1 (apyhist = 2-(1H-imidazol-4-yl)-N-(1-(pyridin-2-yl)ethylidene)ethanamine), [Cu(apzhist)OH](+) 2 (apzhist = 2-(1H-imidazol-4-yl)-N-(1-(pyrazin-2-yl)ethylidene)ethanamine), [Cu(apyepy)OH](+) 3 (apyepy = 2-(pyridin-2-yl)-N-(1-(pyridin-2-yl)ethylidene)ethanamine), and [Cu(apzepy)H2O](2+) 4 (apzepy = N-(1-(pyrazin-2-yl)ethylidene)-2-(pyridin-2-yl)ethanamine), were investigated regarding their capability of interacting with serum albumin (human, HSA and bovine, BSA), by using spectroscopic techniques, CD, UV/Vis and EPR. Like other similar di-imine copper(II) complexes, most of them showed an expected preferential insertion of the metal ion at the primary N-terminal site of the protein, very selective for copper and characterized by a CD band at 560 nm. Further insertion of the copper ion at a secondary site is expected when using an excess of the metal. However, one of these studied complexes, [Cu(apyhist)H2O](2+) 1, exhibited anomalous behaviour interacting only at this secondary metal binding site of albumin, characterized by a CD band at 370 nm, and attributed to the coordination of copper at the Cys34 pocket. Analogous experiments with HSA previously treated with N-ethyl-maleimide (NEM), that oxidizes the protein Cys34 residue and obstructs the metal coordination, verified these results. Additional data obtained by EPR spectroscopy complemented those results. DFT calculations, considering some structural and electronic characteristics of such series of di-imine ligands and of the corresponding copper complexes, suggested molecular recognition of the apyhist ligand at the protein cavity as a feasible explanation for this unexpected and peculiar behaviour of complex 1.

  20. Synthesis, characterization, electrochemical studies and DFT calculations of amino acids ternary complexes of copper (II) with isonitrosoacetophenone. Biological activities

    Science.gov (United States)

    Tidjani-Rahmouni, Nabila; Bensiradj, Nour el Houda; Djebbar, Safia; Benali-Baitich, Ouassini

    2014-10-01

    Three mixed complexes having formula [Cu(INAP)L(H2O)2] where INAP = deprotonated isonitrosoacetophenone and L = deprotonated amino acid such as histidine, phenylalanine and tryptophan have been synthesized. They have also been characterized using elemental analyses, molar conductance, UV-Vis, IR and ESR spectra. The value of molar conductance indicates them to be non-electrolytes. The spectral studies support the binding of the ligands with two N and two O donor sites to the copper (II) ion, giving an arrangement of N2O2 donor groups. Density Functional Theory (DFT) calculations were applied to evaluate the cis and trans coordination modes of the two water molecules. The trans form was shown to be energetically more stable than the cis one. The ESR data indicate that the covalent character of the metal-ligand bonding in the copper (II) complexes increases on going from histidine to phenylalanine to tryptophan. The electrochemical behavior of the copper (II) complexes was determined by cyclic voltammetry which shows that the chelate structure and electron donating effects of the ligands substituent are among the factors influencing the redox potentials of the complexes. The antimicrobial activities of the complexes were evaluated against several pathogenic microorganisms to assess their antimicrobial potentials. The copper complexes were found to be more active against Gram-positive than Gram-negative bacteria. Furthermore, the antioxidant efficiencies of the metal complexes were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The antioxidant activity of the complexes indicates their moderate scavenging activity against the radical DPPH.

  1. In vitro DNA binding studies of the sweetening agent saccharin and its copper(II) and zinc(II) complexes.

    Science.gov (United States)

    Icsel, Ceyda; Yilmaz, Veysel T

    2014-01-05

    The interactions of fish sperm DNA (FS-DNA) with the sodium salt of sweetener saccharin (sacH) and its copper and zinc complexes, namely [M(sac)2(H2O)4]·2H2O (M=Cu(II) or Zn(II)) were studied by using UV-Vis titration, fluorometric competition, thermal denaturation, viscosity and gel electrophoresis measurements. The intrinsic binding constants (Kb) obtained from absorption titrations were estimated to be 2.86 (±0.06)×10(4)M(-1) for Na(sac), 6.67 (±0.12)×10(4)M(-1) for Cu-sac and 4.01 (±0.08)×10(4)M(-1) for Zn-sac. The Cu-sac complex binds to FS-DNA via intercalation with a KA value of 50.12 (±0.22)×10(4)M(-1) as evidenced by competitive binding studies with ethidium bromide. Moreover, competition experiments with Hoechst 33258 are indicative of a groove binding mode of Na(sac) and Zn-sac with binding constants of 3.13 (±0.16)×10(4)M(-1) and 5.25 (±0.22)×10(4)M(-1), respectively. The spectroscopic measurements indicate a moderate DNA binding affinity of Na(sac) and its metal complexes. The suggested binding modes are further confirmed by the thermal denaturation and viscosity measurements. In addition, Cu-sac and Zn-sac show weak ability to damage to pBR322 supercoiled plasmid DNA.

  2. Physico-chemical characterization and anti- microbial activity of copper(II complexes with 2-amino and 2-methylbenzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2004-01-01

    Full Text Available Copper(II chloride, in warm ethanolic solution, reacted with 2-amino and 2-methylbenzimidazole derivatives to give complexes of the formula CuL2Cl2·nH2O, where L=1-benzyl-2-aminobenzimidazole 1-(4-methylbenzyl-2-aminobenzimidazole, 1-benzyl-2-methylbenzimidazole and 1-(4-methylbenzyl-2-methylbenzimidazole( n=1 or 2. The complexes were characterized by elemental analysis of the metal, molar conductivity magnetic susceptibility measurements and IR spectra. The molar conductivities of copper(IIcomplexes in dimethyl formamide (DMF corresponding to a 1:1 type of electrolyte indicate that in all the complexes one of the coordinated chloride ions has been replaced by DMF molecule. The room temperature effective magnetic moments and IR data of the complexes suggest that all Cu(II complexes have a tetrahedral configuration, which is realized by participation of the pyridine nitrogen of two organic ligand molecules and two chloride anions. The antimicrobial activity of the ligands and their complexes against Pseudomonas aeruginosa, Bacillus sp. Staphylococcus aureus, Sarcina lutea and Saccharomyces cerevisiae was investigated. The effect of copper complexation on the ligand antimicrobial activity is discussed.

  3. Improving nuclease activity of copper(II)-terpyridine complex through solubilizing and charge effects of glycine.

    Science.gov (United States)

    Zhou, Wen; Wang, Xiaoyong; Hu, Ming; Guo, Zijian

    2013-04-01

    Copper complexes are potential metallonucleases that may find application in biotechnology and molecular biology. In this study, a ternary copper-terpyridine complex [Cu(ttpy)(Gly)(NO3)](NO3)·H2O (1) (ttpy=4'-p-tolyl-2,2':6,2″-terpyridine) is synthesized and characterized by X-ray crystallography and ESI-MS as an artificial nuclease. Glycine (Gly) is introduced into the complex to enhance the water-solubility and electrostatic affinity for the nucleic acid target. The interaction between complex 1 and DNA has been studied by spectroscopy and gel electrophoresis, using a structural analog [Cu(ttpy)(NO3)2] (2) as the reference. Complex 1 demonstrates an increased DNA binding ability and oxidative cleavage activity towards supercoiled pBR322 DNA as compared with complex 2. The enhanced water-solubility and positive charge of complex 1 may facilitate its access to DNA and formation of hydrogen bonds with the sugar-phosphate backbone. The results indicate that carefully positioned auxiliary groups in a copper complex can significantly affect the substrate binding or activation ability and consequently the nuclease efficiency of the complex.

  4. Multispectroscopic studies on the interaction of a copper(ii) complex of ibuprofen drug with calf thymus DNA.

    Science.gov (United States)

    Shahabadi, Nahid; Shiri, Farshad

    2017-02-01

    The interaction of copper(II)-ibuprofenato complex with calf thymus DNA (ct-DNA) has been explored following, UV-visible spectrophotometry, fluorescence measurement, dynamic viscosity measurements, and circular dichroism spectroscopy. In spectrophotometric studies of ct-DNA it was found that [Cu(ibp)2]2 can form a complex with double-helical DNA. The association constant of [Cu(ibp)2]2 with DNA from UV-Vis study was found to be 6.19 × 10(4) L mol(-1). The values of Kf from fluorescence measurement clearly underscore the high affinity of [Cu(ibp)2]2 to DNA. The experimental results showed that the conformational changes in DNA helix induced by [Cu(ibp)2]2 are the reason for the fluorescence quenching of the DNA-Hoechst system. In addition, the fluorescence emission spectra of intercalated methylene blue (MB) with increasing concentrations of [Cu(ibp)2]2 represented a significant increase of MB intensity as to release MB from MB-DNA system. The results of circular dichroism (CD) suggested that copper(II)-ibuprofenato complex can change the conformation of DNA. In addition, the results of viscosity measurements suggest that copper(II)-ibuprofenato complex may bind with non-classical intercalative mode. From spectroscopic and hydrodynamic studies, it has been found that [Cu(ibp)2]2 interacts with DNA by partial intercalation mode which contains intercalation and groove properties.

  5. Guanine-containing copper(II) complexes: synthesis, X-ray structures and magnetic properties.

    Science.gov (United States)

    Mastropietro, Teresa F; Armentano, Donatella; Grisolia, Ettore; Zanchini, Claudia; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni

    2008-01-28

    Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].

  6. Spectroscopic, solvent influence and thermal studies of ternary copper(II) complexes of diester and dinitrogen base ligands.

    Science.gov (United States)

    Emara, Adel A A; Abu-Hussein, Azza A A; Taha, Ahmed A; Mahmoud, Nelly H

    2010-10-15

    New mixed-ligand copper(II) complexes containing the bidentate dinitrogen ligands [N,N,N',N'-tetramethylethylenediamine (tmen), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen)] and the bidentate dioxygen ligands [diethylmalonate (DEM), ethylacetoacetate (EAA) and ethylbenzoylacetate (EBA)] were prepared. The complexes were characterized by elemental analysis, infrared, mass and ESR spectral data, magnetic and molar conductance measurements and thermal gravimetric analysis. From the investigation, the geometries of the complexes are square planar for perchlorate complexes and a square pyramid or octahedral for the nitrate complexes. Solvatochromic behavior of the Cu(II) complexes indicates strong solvatochromism of their solutions in polar and non-polar solvents. The observed solvatochromism is due to the solute-solvent interaction between the chelate cation and the solvent molecules.

  7. Copper(I)- and copper(0)-promoted homocoupling and homocoupling-hydrodehalogenation reactions of dihalogenoclathrochelate precursors for C-C conjugated iron(II) bis-cage complexes.

    Science.gov (United States)

    Varzatskii, Oleg A; Shul'ga, Sergey V; Belov, Alexander S; Novikov, Valentin V; Dolganov, Alexander V; Vologzhanina, Anna V; Voloshin, Yan Z

    2014-12-28

    Iron(II) dibromo- and diiodoclathrochelates undergo copper(I)-promoted reductive homocoupling in HMPA at 70-80 °C leading to C-C conjugated dibromo- and diiodo-bis-clathrochelates in high yields. Under the same conditions, their dichloroclathrochelate analog does not undergo the same homocoupling reaction, so the target dichloro-bis-cage product was obtained in high yield via dimerization of its heterodihalogenide iodochloromonomacrobicyclic precursor. The use of NMP as a solvent at 120-140 °C gave the mixture of bis-clathrochelates resulting from a tandem homocoupling-hydrodehalogenation reaction: the initial acetonitrile copper(I) solvato-complex at a high temperature underwent re-solvatation and disproportionation leading to Cu(II) ions and nano-copper, which promoted the hydrodehalogenation process even at room temperature. The most probable pathway of this reaction in situ includes hydrodehalogenation of the already formed dihalogeno-bis-clathrochelate via the formation of reduced anion radical intermediates. As a result, chemical transformations of the iron(II) dihalogenoclathrochelates in the presence of an acetonitrile copper(I) solvato-complex were found to depend both on the nature of halogen atoms in their ribbed chelate fragments and on reaction conditions (i.e. solvent and temperature). The C-C conjugated iron(II) dihalogeno-bis-clathrochelates easily undergo nucleophilic substitution with various N,S-nucleophiles giving ribbed-functionalized bis-cage species. These iron(II) complexes were characterized by elemental analysis, MALDI-TOF mass spectrometry, IR, UV-Vis, (1)H and (13)C NMR spectroscopy, and by X-ray diffraction; their electrochemical properties were studied by cyclic voltammetry. The isomeric shift values in (57)Fe Mössbauer spectra of such cage compounds allowed identifying them as low-spin iron(II) complexes, while those of the quadrupole splitting are the evidence for a significant TP distortion of their FeN6-coordination polyhedra

  8. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    Science.gov (United States)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  9. Thermodynamics of the complex formation of copper(II) with L-phenylalanine in aqueous ethanol solutions

    Science.gov (United States)

    Burov, D. M.; Ledenkov, S. F.; Vandyshev, V. N.

    2013-05-01

    Constants of the acid dissociation and complexation of L-phenylalanine (HPhe) with copper(II) ions are determined by potentiometry in aqueous ethanol solutions containing 0 to 0.7 molar fraction of alcohol. Changes in the Gibbs energy for the transfer from water to a binary solvent of L-phenylalanine, Phe- anion, and [CuPhe]+ complex are calculated. It is found that the weakening of solvation of the ligand donor groups in solvents with high ethanol contents is accompanied by an increase in the stability of [CuPhe]+ complex.

  10. Dinuclear cadmium(II), zinc(II), and manganese(II), trinuclear nickel(II), and pentanuclear copper(II) complexes with novel macrocyclic and acyclic Schiff-base ligands having enantiopure or racemic camphoric diamine components.

    Science.gov (United States)

    Jiang, Jue-Chao; Chu, Zhao-Lian; Huang, Wei; Wang, Gang; You, Xiao-Zeng

    2010-07-05

    Four novel [3 + 3] Schiff-base macrocyclic ligands I-IV condensed from 2,6-diformyl-4-substituted phenols (R = CH(3) or Cl) and enantiopure or racemic camphoric diamines have been synthesized and characterized. Metal-ion complexations of these enantiopure and racemic [3 + 3] macrocyclic ligands with different cadmium(II), zinc(II), manganese(II), nickel(II), and copper(II) salts lead to the cleavage of Schiff-base C horizontal lineN double bonds and subsequent ring contraction of the macrocyclic ligands due to the size effects and the spatial restrictions of the coordination geometry of the central metals, the steric hindrance of ligands, and the counterions used. As a result, five [2 + 2] and one [1 + 2] dinuclear cadmium(II) complexes (1-6), two [2 + 2] dinuclear zinc(II) (7 and 8), and two [2 + 2] dinuclear manganese(II) (9 and 10) complexes together with one [1 + 1] trinuclear nickel(II) complex (11) and one [1 + 2] pentanuclear copper(II) complex (12), bearing enantiopure or racemic ligands, different substituent groups in the phenyl rings, and different anionic ligands (Cl(-), Br(-), OAc(-), and SCN(-)), have been obtained in which the chiral carbon atoms in the camphoric backbones are arranged in different ways (RRSS for the enantiopure ligands in 1, 2, 4, 5, and 7-10 and RSRS for the racemic ligands in 3, 6, 11, and 12). The steric hindrance effects of the methyl group bonded to one of the chiral carbon atoms of camphoric diamine units are believed to play important roles in the formation of the acyclic [1 + 1] trinuclear complex 11 and [1 + 2] dinuclear and pentanuclear complexes 6 and 12. In dinuclear cadmium(II), zinc(II), and manganese(II) complexes 1-10, the sequence of separations between the metal centers is consistent with that of the ionic radii shortened from cadmium(II) to manganese(II) to zinc(II) ions. Furthermore, UV-vis, circular dichroism, (1)H NMR, and fluorescence spectra have been used to characterize and compare the structural

  11. Structures and Magnetic Properties of Monomeric Copper(II) Bromide Complexes with a Pyridine-Containing Tridentate Schiff Base

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Kwon [Chungnam National Univ., Daejeon (Korea, Republic of); Yong, Soon Jung; Song, Young Kwang; Kim, Young Inn [Pusan National Univ., Busan (Korea, Republic of)

    2013-12-15

    Two novel copper(II) bromide complexes with pyridine containing Schiff base ligands, Cu(pmed)Br{sub 2} and Cu(dpmed)Br{sub 2} where pmed = N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (pmed) and dpmed = N,N-diethyl-N'-((pyridin-2-yl)methylene)ethane-1,2-diamine (dpmed) were synthesized and characterized using Xray single crystal structure analysis, optical and magnetic susceptibility measurements. Crystal structural analysis of Cu(pmed)Br{sub 2} showed that the copper(II) ion has a distorted square-pyramidal geometry with the trigonality index of τ = 0.35 and two intermolecular hydrogen bonds, which result in the formation of two dimensional networks in the ab plane. On the other hand, Cu(dpmed)Br{sub 2} displayed a near square-pyramidal geometry with the value of τ = 0.06. In both compounds, the NNN Schiff base and one Br atom occupy the basal plane, whereas the fifth apical position is occupied by the other Br atom at a greater Cu-Br apical distance. The reported complexes show g{sub Π} > g{sub Τ} > 2.0023 with a d{sub x2-y2} ground state and a penta-coordinated square pyramidal geometry. Variable temperature magnetic susceptibility measurements showed that the developed copper(II) complexes follow the Curie-Weiss law, that is there are no magnetic interactions between the copper(II) ions since the Cu--Cu distance is too far for magnetic contact.

  12. Hydrolytic protein cleavage mediated by unusual mononuclear copper(II) complexes: X-ray structures and solution studies.

    Science.gov (United States)

    de Oliveira, Mauricio C B; Scarpellini, Marciela; Neves, Ademir; Terenzi, Hernán; Bortoluzzi, Adailton J; Szpoganics, Bruno; Greatti, Alessandra; Mangrich, Antônio S; de Souza, Emanuel M; Fernandez, Pablo M; Soares, Marcia R

    2005-02-21

    The crystal structures and redox and UV-vis/EPR spectroscopic properties of two new mononuclear copper(II) complexes, [Cu(HL1)Cl2] (1) and [Cu(L1)Cl] (2), prepared through the reaction between copper(II) chloride and the ligand 2-[(bis(pyridylmethyl)amino)methyl]-4-methyl-6-formylphenol (HL1) under distinct base conditions, are reported along with solution studies. Also, we demonstrate that these CuII complexes are able to cleave unactivated peptide bonds from bovine serum albumin (BSA) and the thermostable enzyme Taq DNA polymerase at micromolar concentration, under mild pH and temperature conditions. The cleavage activity seems to be specific with defined proteolytic fragments appearing after protein treatment. The location of the specific cleavage sites was tentatively assigned to solvent-accessible portions of the protein. These are two of the most active Cu(II) complexes described to date, since their cleavage activity is detected in minutes and evidence is here presented for a hydrolytic mechanism mediating protein cleavage by these complexes.

  13. Synthesis, Spectroscopy, and Magnetic Characterization of Copper(II) and Cobalt(II) Complexes with 2-Amino-5-bromopyridine as Ligand

    OpenAIRE

    Arab Ahmadi, Raziyeh; Hasanvand, Farshideh; Bruno, Giuseppe; Amiri Rudbari, Hadi; Amani,Saeid

    2013-01-01

    The synthesis, spectroscopic, and magnetic characterization of two new copper(II) and cobalt(II) complexes are described. Both two compounds have the general formula [M(L)2(Cl)2], in which L= 2-amino-5-bromopyridine. These complexes were prepared in one-step synthesis and characterized by elemental analysis, FTIR, UV-Vis, and EPR spectroscopy. Moreover, the single crystal structure of complex (1) was studied by the X-ray diffraction method. This compound consists of mononuclear units consisti...

  14. Reaction of a copper(II)-nitrosyl complex with hydrogen peroxide: putative formation of a copper(I)-peroxynitrite intermediate.

    Science.gov (United States)

    Kalita, Apurba; Kumar, Pankaj; Mondal, Biplab

    2012-05-14

    The reaction of a Cu(II)-nitrosyl complex (1) with hydrogen peroxide at -20 °C in acetonitrile results in the formation of the corresponding Cu(I)-peroxynitrite intermediate. The reduction of the Cu(II) center was monitored by UV-visible spectroscopic studies. Formation of the peroxynitrite intermediate has been confirmed by its characteristic phenol ring nitration reaction as well as isolation of corresponding Cu(I)-nitrate (2). On air oxidation, 2 resulted in the corresponding Cu(II)-nitrate (3). Thus, these results demonstrate a possible decomposition pathway for H(2)O(2) and NO through the formation of a peroxynitrite intermediate in biological systems.

  15. Copper complexes as chemical nucleases

    Indian Academy of Sciences (India)

    Akhil R Chakravarty; Pattubala A N Reddy; Bidyut K Santra; Anitha M Thomas

    2002-08-01

    Redox active mononuclear and binuclear copper(II) complexes have been prepared and structurally characterized. The complexes have planar N-donor heterocyclic bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) ligands that are suitable for intercalation to B-DNA. Complexes studied for nuclease activity have the formulations [Cu(dpq)2(H2O)] (ClO4)2.H2O (1), [{CuL(H2O)}2(-ox)](ClO4)2 (L = bpy, 2; phen, 3; dpq, 4; and dppz, 5) and [Cu(L)(salgly)] (L = bpy, 6; phen, 7; dpq, 8; and dppz, 9), where salgly is a tridentate Schiff base obtained from the condensation of glycine and salicylaldehyde. The dpq complexes are efficient DNA binding and cleavage active species. The dppz complexes show good binding ability but poor nuclease activity. The cleavage activity of the bis-dpq complex is significantly higher than the bis-phen complex of copper(II). The nuclease activity is found to be dependent on the intercalating nature of the complex and on the redox potential of the copper(II)/copper(I) couple. The ancillary ligand plays a significant role in binding and cleavage activity.

  16. Synthesis, Crystal Structure, and Characterization of Ternary Copper(II Complex Derived from N-(salicylidene-L-valine

    Directory of Open Access Journals (Sweden)

    Sundaramurthy Santha Lakshmi

    2016-01-01

    Full Text Available Ternary Schiff base copper(II complex [CuL(tmpda] (where H2L is N-(salicylidene-L-valine; tmpda is N,N,N′,N′-tetramethyl-1,3-propanediamine has been characterized by UV-Vis., FTIR, and single crystal XRD. The crystal structure displays a distorted square pyramidal geometry in which Schiff base is bonded to the Cu(II ion via phenolate oxygen, imine nitrogen, and an oxygen atom of the carboxylate group through the basal plane and the chelating diamine, N,N,N′,N′-tetramethyl-1,3-propanediamine, displays an axial and equatorial mode of binding via NN-donor atoms.

  17. Geometrical and optical benchmarking of copper(II) guanidine-quinoline complexes: insights from TD-DFT and many-body perturbation theory (part II).

    Science.gov (United States)

    Hoffmann, Alexander; Rohrmüller, Martin; Jesser, Anton; dos Santos Vieira, Ines; Schmidt, Wolf Gero; Herres-Pawlis, Sonja

    2014-11-05

    Ground- and excited-state properties of copper(II) charge-transfer systems have been investigated starting from density-functional calculations with particular emphasis on the role of (i) the exchange and correlation functional, (ii) the basis set, (iii) solvent effects, and (iv) the treatment of dispersive interactions. Furthermore (v), the applicability of TD-DFT to excitations of copper(II) bis(chelate) charge-transfer systems is explored by performing many-body perturbation theory (GW + BSE), independent-particle approximation and ΔSCF calculations for a small model system that contains simple guanidine and imine groups. These results show that DFT and TD-DFT in particular in combination with hybrid functionals are well suited for the description of the structural and optical properties, respectively, of copper(II) bis(chelate) complexes. Furthermore, it is found an accurate theoretical geometrical description requires the use of dispersion correction with Becke-Johnson damping and triple-zeta basis sets while solvent effects are small. The hybrid functionals B3LYP and TPSSh yielded best performance. The optical description is best with B3LYP, whereby heavily mixed molecular transitions of MLCT and LLCT character are obtained which can be more easily understood using natural transition orbitals. An natural bond orbital analysis sheds light on the donor properties of the different donor functions and the intraguanidine stabilization during coordination to copper(I) and (II).

  18. Hydrogen bonds as structural directive towards unusual polynuclear complexes: synthesis, structure, and magnetic properties of copper(II) and nickel(II) complexes with a 2-aminoglucose ligand.

    Science.gov (United States)

    Burkhardt, Anja; Spielberg, Eike T; Simon, Sascha; Görls, Helmar; Buchholz, Axel; Plass, Winfried

    2009-01-01

    The reaction of benzyl 2-amino-4,6-O-benzylidene-2-deoxy-alpha-D-glucopyranoside (HL) with the metal salts Cu(ClO(4))(2)6 H(2)O and Ni(NO(3))(2)6 H(2)O affords via self-assembly a tetranuclear mu(4)-hydroxido bridged copper(II) complex [(mu(4)-OH)Cu(4)(L)(4)(MeOH)(3)(H(2)O)](ClO(4))(3) (1) and a trinuclear alcoholate bridged nickel(II) complex [Ni(3)(L)(5)(HL)]NO(3) (2), respectively. Both complexes crystallize in the acentric space group P2(1). The X-ray crystal structure reveals the rare (mu(4)-OH)Cu(4)O(4) core for complex 1 which is mu(2)-alcoholate bridged. The copper(II) ions possess a distorted square-pyramidal geometry with an [NO(4)] donor set. The core is stabilized by hydrogen bonding between the coordinating amino group of the glucose backbone and the benzylidene protected oxygen atom O4 of a neighboring {Cu(L)} fragment as hydrogen-bond acceptor. For complex 2 an [N(4)O(2)] donor set is observed at the nickel(II) ions with a distorted octahedral geometry. The trinuclear isosceles Ni(3) core is bridged by mu(3)-alcoholate O3 oxygen atoms of two glucose ligands. The two short edges are capped by mu(2)-alcoholate O3 oxygen atoms of the two ligands coordinated at the nickel(II) ion at the vertex of these two edges. Along the elongated edge of the triangle a strong hydrogen bond (244 pm) between the O3 oxygen atoms of ligands coordinating at the two relevant nickel(II) ions is observed. The coordinating amino groups of the these two glucose ligands are involved in additional hydrogen bonds with O4 oxygen atoms of adjacent ligands further stabilizing the trinuclear core. The carbohydrate backbones in all cases adopt the stable (4)C(1) chair conformation and exhibit the rare chitosan-like trans-2,3-chelation. Temperature dependent magnetic measurements indicate an overall antiferromagnetic behavior for complex 1 with J(1)=-260 and J(2)=-205 cm(-1) (g=2.122). Compound 2 is the first ferromagnetically coupled trinuclear nickel(II) complex with J(A)=16.4 and J

  19. Synthesis, characterization, thermal behavior, and DNA-cleaving studies of cyano-bridged nickel(II)-copper(II) complexes of 4-(pyridin-2-ylazenyl)resorcinol.

    Science.gov (United States)

    Karipcin, Fatma; Ozmen, Ismail; Cülü, Burcin; Celikoğlu, Umut

    2011-10-01

    We present here the syntheses of a mononuclear Cu(II) complex and two polynuclear Cu(II)-Ni(II) complexes of the azenyl ligand, 4-(pyridin-2-ylazenyl)resorcinol (HL; 1). The reaction of HL (1) and copper(II) perchlorate with KCN gave a mononuclear complex [CuL(CN)] (4). Using 4, one pentanuclear complex, [{CuL(NC)}(4) Ni](ClO(4))(2) (5) and one trinuclear complex, [{CuL(CN)}(2) NiL]ClO(4) (6), were prepared and characterized by elemental analyses, magnetic susceptibility, molar conductance, IR, and thermal analysis. Stoichiometric and spectral results of the mononuclear Cu(II) complex indicated that the metal/ligand/CN ratio was 1 : 1 : 1, and the ligand behaved as a tridentate ligand forming neutral metal chelates through the pyridinyl and azenyl N-, and resorcinol O-atom. The interaction between the compounds (the ligand 1, its Ni(II) and Cu(II) complexes without CN, i.e., 2 and 3, and its complexes with CN, 4-6) and DNA has also been investigated by agarose gel electrophoresis. The pentanuclear Cu(4) Ni complex (5) with H(2) O(2) as a co-oxidant exhibited the strongest DNA-cleaving activity.

  20. Structural, spectroscopic, magnetic and electrochemical studies of monomer N-substituted-sulfanilamide copper (II) complex with 2,2'-bipyridine.

    Science.gov (United States)

    Öztürk, Filiz; Bulut, İclal; Bulut, Ahmet

    2015-03-05

    A novel copper (II) complex of sulfamethazine (4-amino-N-[4,6-dimethyl-2-pyrimidinyl] benzene sulfonamide, Hsmz) ([Cu(smz)2bipy]⋅0.8H2O; bipy: 2,2'-bipyridine) has been synthesized and characterized by single crystal X-ray diffraction, EPR, IR, UV-vis and electrochemical methods. The single crystal X-ray analysis indicated that the compound crystallizes in the monoclinic space group P21/c with Z=4. The central copper (II) ion is coordinated by two bidentate sulfamethazine anions through the nitrogen atoms together with one bidentate 2,2'-bipyridine ligand forming the octahedral geometry. The characteristic vibration bands support the X-ray analysis results. The EPR spectral analysis has led to that the ground state wave function of the unpaired electron of copper ion is [Formula: see text] ((2)B1g state) and also indicated that the metal ions are located in distorted octahedral sites (D4h) elongated along the z-axis. The electrochemical studies of the complex were also carried out to determine the active sites of the ligands. The cyclic and square wave voltammetric techniques have been used to determine the complex.

  1. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone Schiff base complexes in hepatocarcinoma cells.

    Science.gov (United States)

    Duff, Brian; Thangella, Venkat Reddy; Creaven, Bernadette S; Walsh, Maureen; Egan, Denise A

    2012-08-15

    This study determined the cytotoxic, cyto-selective and mutagenic potential of novel quinolinone Schiff base ligands and their corresponding copper(II) complexes in human-derived hepatic carcinoma cells (Hep-G2) and non-malignant human-derived hepatic cells (Chang). Results indicated that complexation of quinolinone Schiff bases with copper served to significantly enhance cytotoxicity. Here, the complex of (7E)-7-(3-ethoxy-2-hydroxybenzylideamino)-4-methylquinolin-2(1H)-one (TV117-FM) exhibited the lowest IC(50) value (17.9 μM) following 96 h continuous exposure, which was comparable to cisplatin (15.0 μM). However, results revealed that TV117-FM lacked cytoselectivity over non-malignant cells. Additionally, the complex was minimally effluxed from cells via Pglycoprotein (P-gp) and was shown to be non-mutagenic in the Standard Ames test. Furthermore, BrdU incorporation assays showed that it was capable of inhibiting DNA synthesis in a concentrationand time-dependent manner. However, inhibition was not as a consequence of DNA intercalation, as illustrated in electrophoretic mobility shift assays. Interestingly, it was shown that the ligand was capable of inhibiting the action of topoisomerase II, but this was lost following complexation. This indicated that the mechanism of action of the novel copper(II) complex was different from that of the parent ligand and suggests that TV117-FM may have a therapeutic role to play in the treatment of hepatocellular carcinoma. Studies are currently underway to elucidate the exact in vitro mechanism of action of this novel, metal-based anti-cancer agent.

  2. The coordination structure of the extracted copper(II) complex with a synergistic mixture containing dinonylnaphthalene sulfonic acid and n-hexyl 3-pyridinecarboxylate ester

    Science.gov (United States)

    Zhu, Shan; Hu, Huiping; Hu, Jiugang; Li, Jiyuan; Hu, Fang; Wang, Yongxi

    2017-09-01

    In continuation of our interest in the coordination structure of the nickel(II) complex with dinonylnaphthalene sulfonic acid (HDNNS) and 2-ethylhexyl 4-pyridinecarboxylate ester (4PC), it was observed that the coordination sphere was completed by the coordination of two N atoms of pyridine rings in ligands 4PC and four water molecules while no direct interaction between Ni(II) and deprotonated HDNNS was observed. To investigate whether the coordination structure of nickel(II) with the synergistic mixture containing HDNNS and 4PC predominates or not in the copper(II) complex with the synergistic mixtures containing HDNNS and pyridinecarboxylate esters, a copper(II) synergist complex with n-hexyl 3-pyridinecarboxylate ester (L) and naphthalene-2-sulfonic acid (HNS, the short chain analogue of HDNNS), was prepared and studied by X-ray single crystal diffraction, elemental analyses and thermo gravimetric analysis (TGA), respectively. It was shown that the composition of the copper(II) synergist complex was [Cu(H2O)2(L)2(NS)2] and formed a trans-form distorted octahedral coordination structure. Two oxygen atoms of the two coordinated water molecules and two N atoms of the pyridine rings in the ligands L defined the basal plane while two O atoms from two sulfonate anions of the deprotonated HNS ligands occupied the apical positions by direct coordination with Cu(II), which was distinguished from the coordination structure of the nickel(II) synergist complex as reported in our previous work. In the crystal lattice, neighboring molecules [Cu(H2O)2L2(NS)2] were linked through the intermolecular hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the oxygen atoms of the sulfonate anions in the copper(II) synergist complex to form a 2D plane. In order to bridge the gap between the solid state structure of the copper(II) synergist complex and the solution structure of the extracted copper(II) complex with the actual synergistic mixture containing

  3. Amine nitrosation via NO reduction of the polyamine copper(II) complex Cu(DAC)2+.

    Science.gov (United States)

    Khin, Chosu; Lim, Mark D; Tsuge, Kiyoshi; Iretskii, Alexei; Wu, Guang; Ford, Peter C

    2007-10-29

    The reaction of the fluorescent macrocyclic ligand 1,8-bis(anthracen-9-ylmethyl)-1,4,8,11-tetraazacyclotetradecane with copper(II) salts leads to formation of the Cu(DAC)2+ cation (I), which is not luminescent. However, when aqueous methanol solutions of I are allowed to react with NO, fluorescence again develops, owing to the formation of the strongly luminescent N-nitrosated ligand DAC-NO (II), which is released from the copper center. This reaction is relatively slow in neutral media, and kinetics studies show it to be first order in the concentrations of NO and base. In these contexts, it is proposed that the amine nitrosation occurs via NO attack at a coordinated amine that has been deprotonated and that this step occurs with concomitant reduction of the Cu(II) to Cu(I). DFT computations at the BP/LACVP* level support these mechanistic arguments. It is further proposed that such nitrosation of electron-rich ligands coordinated to redox-active metal centers is a mechanistic pathway that may find greater generality in the biochemical formation of nitrosothiols and nitrosoamines.

  4. Spectral studies of dimeric copper(II) complexes of acid amide derivatives as models for type III copper enzymes

    Science.gov (United States)

    Garg, Bhagwan S.; Nandan Kumar, Deo; Sarbhai, Meenu; Reddy, Malladi J.

    2003-10-01

    Dimeric (hydrated and anhydrated) complexes of Cu(II) with N, N'-bis(3-carboxy-1-oxo-2-prop-2-enyl)ethylenediamine(BCOPENH 2, A) and N, N'-bis(2-carboxy-1-oxo-phenylenyl)ethylenediamine(BCOPHENH 2, B) have been prepared and characterised by elemental analysis, magnetic susceptibility measurements, EPR, thermal and spectral (IR, UV/Vis) studies. EPR parameters and magnetic behaviour indicates that the complexes are antiferromagnetic in nature and most likely adopt the typical carboxylate cage structure. Interesting amide bonding patterns have been observed and various EPR parameters have been evaluated on the basis of these studies, tentative probable structures of the complexes have been proposed.

  5. Experimental and theoretical study on a new copper(II) complex derived from pyridoxal hydrochloride and 1,2-diaminocyclohexane

    Science.gov (United States)

    Mandal, Senjuti; Sikdar, Yeasin; Sanyal, Ria; Goswami, Sanchita

    2017-01-01

    In this work, guided by a pyridoxal derived Schiff base ligand, H2PydChda [5-Hydroxymethyl-4-({2-[5-hydroxymethyl-2-methylpyridin-3-hydroxy-4-ylethylene)-amino]-cyclohexylimino}-methyl)-2-methylpyridin-3-ol], a new copper(II) complex, [Cu(PydChda-2H+)]2·4ClO4·2H2O was constructed and structurally characterized by single crystal X-ray diffraction study. DFT calculations further substantiate the experimental features. Additionally, experiments were performed to demonstrate the accessibility to any enzymatic activity and the complex provides positive response for phosphatase activity towards 4-NPP substrate.

  6. Mixed-ligand copper(II) phenolate complexes: Synthesis, spectral characterization, phosphate-hydrolysis, antioxidant, DNA interaction and cytotoxic studies

    Science.gov (United States)

    Gurumoorthy, Perumal; Mahendiran, Dharmasivam; Prabhu, Durai; Arulvasu, Chinnasamy; Rahiman, Aziz Kalilur

    2015-01-01

    A series of phenol-based mixed-ligand copper(II) complexes of the type [CuL1-4(diimine)] (1-8), where L1-4 = N1,N2-bis(5-substituted-2-hydroxybenzylidene)-1,2-ethylene/phenylenediimine and diimine = 2,2‧-bipyridyl (bpy) or 1,10-phenanthroline (phen), have been isolated and fully characterized by analytical and spectral techniques. Electronic spectra of complexes suggest Cu(II) cation has a d9 electronic configuration, adopting distorted octahedral geometry with axial elongation, due to Jahn-Teller effect. Electrochemical studies of complexes evidenced one-electron irreversible reduction wave in the cathodic region. The observed rate constant (k) values for the hydrolysis of 4-nitrophenylphosphate (4-NPP) are in the range of 0.25-3.82 × 10-2 min-1. The obtained room temperature magnetic moment values (1.79-1.90 BM) lies within the range observed for octahedral copper(II) complexes. Antioxidant studies revealed that these complexes possess considerable radical scavenging potency against DPPH. The binding studies of complexes with calf thymus DNA (CT-DNA) revealed intercalation with minor-groove binding, and the complex 4 exhibits highest binding activity than the other complexes. The cleavage activity on supercoiled pBR322 DNA revealed the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species, and complexes encourage binding to minor-groove. Further, the cytotoxicity of complex 4 on human hepatocellular liver carcinoma HepG2 cell line implies the cell death through apoptosis.

  7. A photoreducible copper(II)-tren complex of practical value: generation of a highly reactive click catalyst.

    Science.gov (United States)

    Harmand, Lydie; Lambert, Romain; Scarpantonio, Luca; McClenaghan, Nathan D; Lastécouères, Dominique; Vincent, Jean-Marc

    2013-11-25

    A detailed study on the photoreduction of the copper(II) precatalyst 1 to generate a highly reactive cuprous species for the copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction is presented. For the photoactive catalyst described herein, the activation is driven by a photoinduced electron transfer (PET) process harnessing a benzophenone-like ketoprofenate chromophore as a photosensitizer, which is equally the counterion. The solvent is shown to play a major role in the Cu(II) to Cu(I) reduction process as the final electron source, and the influence of the solvent nature on the photoreduction efficiency has been studied. Particular attention was paid to the use of water as a potential solvent, aqueous media being particularly appealing for CuAAC processes. The ability to solubilize the copper-tren complexes in water through the formation of inclusion complexes with β-CDs is demonstrated. Data is also provided on the fate of the copper(I)-tren catalytic species when reacting with O2, O2 being used to switch off the catalysis. These data show that partial oxidation of the secondary benzylamine groups of the ligand to benzylimines occurs. Preliminary results show that when prolonged irradiation times are employed a Cu(I) to Cu(0) over-reduction process takes place, leading to the formation of copper nanoparticles (NPs). Finally, the main objective of this work being the development of photoactivable catalysts of practical value for the CuAAC, the catalytic, photolatent, and recycling properties of 1 in water and organic solvents are reported.

  8. Synthesis, characterization and catechol oxidase biomimetic catalytic activity of cobalt(II and copper(II complexes containing N2O2 donor sets of imine ligands

    Directory of Open Access Journals (Sweden)

    Mohamed I. Ayad

    2016-11-01

    Full Text Available New tetradentate imine ligands are derived from Schiff base condensation in a 1:2 molar ratio of the 1,2,4,5-tetra-amino benzene with 2-hydroxy benzaldehyde, (L1, 2,4-dihydroxy benzaldehyde (L2 and 2-hydroxy naphthaldehyde (L3. These ligands react with CoCl2 and CuCl2 in refluxing ethanol to yield a series of cobalt(II and copper(II complexes of the type [M2IILn] nH2O. The structure of the obtained ligands and their metal(II complexes were characterized by various physicochemical techniques, viz. elemental analysis, molar conductance, magnetic susceptibility measurements, thermal analysis (TGA & DTG, IR, electronic absorption and ESR spectral studies. Four-coordinate tetrahedral and square–planar structures were proposed for cobalt(II and copper(II complex species respectively. The ability of the synthesized complexes to catalyze the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC to the light absorbing 3,5-di-tert-butylquinone (3,5-DTBQ has been investigated. The results obtained show that all complexes catalyze this oxidation reaction and slight variations in the rate were observed. The probable mechanistic implications of the catalytic oxidation reactions are discussed.

  9. Halogen-bonded network of trinuclear copper(II 4-iodopyrazolate complexes formed by mutual breakdown of chloroform and nanojars

    Directory of Open Access Journals (Sweden)

    Stuart A. Surmann

    2016-11-01

    Full Text Available Crystals of bis(tetrabutylammonium di-μ3-chlorido-tris(μ2-4-iodopyrazolato-κ2N:N′tris[chloridocuprate(II] 1,4-dioxane hemisolvate, (C16H36N2[Cu3(C3H2IN23Cl5]·0.5C4H8O or (Bu4N2[CuII3(μ3-Cl2(μ-4-I-pz3Cl3]·0.5C4H8O, were obtained by evaporating a solution of (Bu4N2[{CuII(μ-OH(μ-4-I-pz}nCO3] (n = 27–31 nanojars in chloroform/1,4-dioxane. The decomposition of chloroform in the presence of oxygen and moisture provides HCl, which leads to the breakdown of nanojars to the title trinuclear copper(II pyrazolate complex, and possibly CuII ions and free 4-iodopyrazole. CuII ions, in turn, act as catalyst for the accelerated decomposition of chloroform, ultimately leading to the complete breakdown of nanojars. The crystal structure presented here provides the first structural description of a trinuclear copper(II pyrazolate complex with iodine-substituted pyrazoles. In contrast to related trinuclear complexes based on differently substituted 4-R-pyrazoles (R = H, Cl, Br, Me, the [Cu3(μ-4-I-pz3Cl3] core in the title complex is nearly planar. This difference is likely a result of the presence of the iodine substituent, which provides a unique, novel feature in copper pyrazolate chemistry. Thus, the iodine atoms form halogen bonds with the terminal chlorido ligands of the surrounding complexes [mean length of I...Cl contacts = 3.48 (1 Å], leading to an extended two-dimensional, halogen-bonded network along (-110. The cavities within this framework are filled by centrosymmetric 1,4-dioxane solvent molecules, which create further bridges via C—H...Cl hydrogen bonds with terminal chlorido ligands of the trinuclear complex not involved in halogen bonding.

  10. Microwave Synthesis, Basic Spectral and Biological Evaluation of Some Copper (II) Mesoporphyrinic Complexes

    OpenAIRE

    Rica Boscencu; Mihaela Ilie; Radu Socoteanu; Anabela Sousa Oliveira; Carolina Constantin; Monica Neagu; Gina Manda; Luis Filipe Vieira Ferreira

    2010-01-01

    Cu(II) complexes with asymmetrical and symmetrical porphyrinic ligands were synthesized with superior yields using microwave irradiation. The paper presents the synthesis of 5-(3-hydroxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl)-21,23-Cu(II)-porphine in comparison to its symmetrical complex 5,10,15,20-meso-tetrakis-(4-carboxy-methylphenyl)-21,23-Cu(II) porphine. The two compounds were characterized by FT-IR, UV–Vis and EPR spectroscopy, which fully confirmed the structures. The spectral mo...

  11. Anticancer activity and computational modeling of ternary copper (II) complexes with 3-indolecarboxylic acid and 1,10-phenanthroline.

    Science.gov (United States)

    Zhang, Zhen; Wang, Huiyun; Wang, Qibao; Yan, Maocai; Wang, Huannan; Bi, Caifeng; Sun, Shanshan; Fan, Yuhua

    2016-08-01

    Metal-containing compounds have been extensively studied for many years as potent proteasome inhibitors. The 20S proteasome, the main component of the ubiquitin proteasome pathway, is one of the excellent targets in anticancer drug development. We recently reported that several copper complexes were able to inhibit cancer-special proteasome and induce cell death in human cancer cells. However, the involved molecular mechanism is not known yet. We therefore synthesized three copper complexes and investigated their abilities on inhibiting proteasome activity and inducting apoptosis in human breast cancer cells. Furthermore, we employed molecular dockings to analyze the possible interaction between the synthetic copper complexes and the β5 subunit of proteasome which only reflects the chymotrypsin-like activity. Our results demonstrate that three Cu(II) complexes possess potent proteasome inhibition capability in a dose-dependent and time-dependent manner in MDA-MB-231 human breast cancer cells. They could bind to the β5 subunit of the 20S proteasome, which consequently cause deactivation of the proteasome and tumor cell death. The present study is significant for providing important theoretical basis for design and synthesis of anticancer drugs with low toxicity, high efficiency and high selectivity.

  12. New tridentate azo-azomethines and their copper(II) complexes: Synthesis, solvent effect on tautomerism, electrochemical and biological studies

    Science.gov (United States)

    Sarigul, Munire; Deveci, Pervin; Kose, Muhammet; Arslan, Ugur; Türk Dagi, Hatice; Kurtoglu, Mukerrem

    2015-09-01

    In this study, three azo-azomethines and their copper(II) complexes were prepared and characterized by analytical and spectroscopic methods. The complexes prepared were found to be mononuclear and the chelation of the ligands to the copper(II) ions occurs through two phenolic oxygens and a nitrogen atom of the azomethine group of the ligand. The tautomeric behaviors of the azo-azomethines in solution were studied by UV-Vis. spectra in three organic solvents with different polarity (CHCl3, DMSO and DMF) at room temperature. The redox behaviors of the azo-azomethines and their Cu(II) complexes were investigated by cyclic voltammetry (CV) in DMSO solution containing 0.1 M tetrabutylammonium tetrafluoroborate (TBATFB) as supporting electrolyte. Additionally, the antibacterial activity was also evaluated by the broth microdilution methods against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The compounds were found to be less effective against all bacteria tested than two reference antibiotics (ampicillin and gentamicin).

  13. Synthesis and characterization of mononuclear copper(II complex of tetradentate N2S2 donor set and the study of DNA and bovine serum albumin binding

    Directory of Open Access Journals (Sweden)

    Sandipan Sarkar

    2014-12-01

    Full Text Available One mononuclear copper(II complex, containing neutral tetradentate NSSN-type ligands, of formulation [Cu II(L 1Cl]ClO 4 (1, was synthesized and isolated in pure form [where L 1˭ 1,3-bis(3-pyridylmethylthiopropane]. Green-colored copper(II complex was characterized by physicochemical, spectroscopic methods and conductivity measurement. These experimental data matched well with the proposed structure of the complex. Biological activity of the complex (1 toward calf thymus DNA and bovine serum albumin has been examined systematically and groove-binding behavior of the Copper(II complex 1 with calf thymus DNA has been observed from the spectral study.

  14. Systematic coordination chemistry and cytotoxicity of copper(II) complexes with methyl substituted 4-nitropyridine N-oxides.

    Science.gov (United States)

    Puszko, Aniela; Brzuszkiewicz, Anna; Jezierska, Julia; Adach, Anna; Wietrzyk, Joanna; Filip, Beata; Pełczynska, Marzena; Cieslak-Golonka, Maria

    2011-08-01

    Three new nitrato copper(II) complexes of dimethyl substituted 4-nitropyridine N-oxide were synthesized and characterized by elemental analysis, magnetic, spectroscopic, thermal and X-ray methods, respectively. They were isolated as trans isomers, mononuclear (μ=1.70-1.88 BM), five (1-2) and four (3) coordinate species of general formula [Cu(NO3)2(H2O)L2] where L=2,3-dimethyl-, 2,5-dimethyl-4-nitropyridine N-oxide and [Cu (NO3)2L2], L=3,5-dimethyl-4-nitropyridine N-oxide, respectively. The X-ray crystal structure of (1) (L=2,3-dimethyl-4-nitropyridine N-oxide) was determined. The organic ligands, the complexes and copper hexaqua ion as a reference were tested in vitro on the cytotoxic activity against human cancer cell lines: MCF-7 (breast), SW-707 (colon) and P-388 (murine leukemia). The complexes are relatively strong cytotoxic agents towards P-388 cell line. Comparative analysis was performed for all known copper(II) complexes containing methyl derivatives of the 4-nitropyridine N-oxide on the basis of their composition, structure and cytotoxic activities. To obtain the typical structure for these species (i.e., 4-coordinate mononuclear of the type trans-[Cu(inorganic anion)2L2]), two methyl groups must be situated on both sides of nitrogen atom(s) (i.e., NO and NO2) in the ligand. The biological activity was found to be strongly dependent upon the number of the methyl groups and the type of cell line. The best cytotoxic results were found for the complexes without substituents or with one methyl group. Generally, for all cell lines, the complexation increased cytotoxicity when compared with the free ligands.

  15. Copper(II), cobalt(II), nickel(II) and zinc(II) complexes of Schiff base derived from benzil-2,4-dinitrophenylhydrazone with aniline

    Indian Academy of Sciences (India)

    N Raman; S Ravichandran; C Thangaraja

    2004-06-01

    New Schiff base chelates of Cu(II), Co(II), Ni(II) and Zn(II) derived from benzil-2,4-dinitrophenylhydrazone with aniline have been synthesised. Microanalytical data, molar conductance, and magnetic susceptibility values have been obtained, and IR, 1H NMR, 13C NMR, UV-Vis, CV and EPR spectral studies have been carried out to suggest tentative structures for the complexes.

  16. The Oxidative Coupling of 2,6-Xylenol Catalyzed by Polymeric Complexes of Copper, 1. Kinetic Study of the Catalysis by Copper(II)-Complexes of Partially Aminated Polystyrene

    NARCIS (Netherlands)

    Schouten, Arend Jan; Prak, Nanno; Challa, Ger

    1977-01-01

    The oxidative coupling reaction of 2,6-xylenol catalyzed by copper(II) complexes of chemically modified polystyrene was investigated. Under the applied reaction conditions the main reaction product was 2,6,2',6'-tetramethyl-1,1'-dioxo-4,4'-bicyclohexa-2,5-dienylidene. It was found that the polymeric

  17. EPR study of complex formation between copper (II) ions and sympathomimetic amines in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Preoteasa, E.A. [Inst. of Atomic Physics, IFIN, Bucharest (Romania); Duliu, O.G.; Grecu, V.V. [Bucharest, Univ. (Romania). Dept. of Atomic and Nuclear Physics

    1997-07-01

    The complex formation between sympathomimetic amines (SA): adrenaline (AD), noradrenaline (NA), dopamine (DA), ephedrine (ED) and p-tyramine (pTA), and Cu(II) ion in aqueous solution has been studied by X-band EPR at room temperature. Excepting pTA, all investigated SA yielded two types of complexes in different pH domains. All complexes consistent with a ligand fields having a distorted octahedral symmetry, i.e., hexacoordination of Cu(II). The covalence coefficient calculated from the isotropic g and A values has shown strong ionic sigma-type ligand bonds. A structural model with the Cu(II) ion bound by four catecholic O(hydroxy) atoms for the low pH complexes of AD, NA and DA is proposed. For the high pH complexes of the former compounds as well as for both Ed complexes, the authors suppose Cu(II) bound by two N (amino) and two O (hydroxy) atoms. The spectra are consistent to water binding on the longitudinal octahedron axis in all compounds excepting the high pH complex of Ed, where OH2- ions are bound. Possible implications for the SA-cell receptors interactions are discussed.

  18. Modeling the bioactive copper(II complex stability by the use of an experimental design

    Directory of Open Access Journals (Sweden)

    Canadi Janos

    2012-01-01

    Full Text Available A new organic-inorganic complex based on copper ions with pullulan polysaccharide can be used for the treatment of copper deficiency in human organism. Therefore, the aim of this paper was to carry out the stress stability study of this potential active substance by the use of mathematical modelling. A full factorial design was successfully applied for the stability studying. The electrical conductivity was taken as the response, while the degradation time, concentration of the oxidative agent, temperature, and pH value were used as the independent variables. All process variables were analyzed at the three levels. On the basis of statistical analysis of data for the thermal stability study, the temperature and degradation time had the main impact on the conductivity of the complex solution. The degradation time had the significant effect in the case of oxidative stability study. In addition to the degradation time, the pH value and the temperature had the significant effect on the complex stability for the hydrolytic stability study.

  19. Amphotericin B-copper(II) complex shows improved therapeutic index in vitro.

    Science.gov (United States)

    Chudzik, Barbara; Czernel, Grzegorz; Miaskowski, Arkadiusz; Gagoś, Mariusz

    2017-01-15

    The AmB-Cu(II) complex has recently been reported as an antifungal agent with reduced aggregation of AmB in aqueous solutions, increased anti C. albicans activity and lower toxicity against human cells in vitro. In the present work, investigations of the activity of the AmB-Cu (II) complex against fungal pathogens with varying susceptibility, including C. albicans and C. parapsilosis strains and intrinsically resistant A. niger, and cytotoxicity in normal human dermal fibroblasts (NHDF) in vitro were performed. For better understanding of the mechanism of reduced cytotoxicity and increased fungicidal activity, the influence of the AmB-Cu (II) complex on membrane integrity and accumulation of cellular reactive oxygen species (ROS) and mitochondrial superoxide was compared with that of conventional AmB. In the sensitive C. albicans and C. parapsilosis strains, the AmB-Cu(II) complex showed higher fungicidal activity (the MIC value was 0.35-0.7μg/ml for the AmB-Cu (II) complex, and 0.45-0.9μg/ml for Fungizone) due to increased induction of oxidative damage with rapid inhibition of the ability to reduce tetrazolium dye (MTT). In the NHDF cell line, the CC50 value was 30.13±1.53μg/ml for the AmB-Cu(II) complex and 17.46±1.24μg/ml for (Fungizone), therefore, the therapeutic index (CC50/MIC90) determined in vitro was 86.09-43.04 for the AmB-Cu(II) complex and 38.80-19.40 for Fungizone. The lower cytotoxicity of the AmB-Cu(II) complex in human cells resulted from lower accumulation of cellular and mitochondrial reactive oxygen species. This phenomenon was probably caused by the induction of successful antioxidant defense of the cells. The mechanism of the reduced cytotoxicity of the AmB-Cu(II) complex needs further investigation, but the preliminary results are very promising.

  20. Interaction with DNA and different effect on the nucleus of cancer cells for copper(II) complexes of N-benzyl di(pyridylmethyl)amine.

    Science.gov (United States)

    Chen, Qiu-Yun; Fu, Hai-Jian; Zhu, Wei-Hua; Qi, Yan; Ma, Zheng-Ping; Zhao, Kai-Di; Gao, Jing

    2011-05-01

    Three new copper(II) complexes of N-benzyl di(pyridylmethyl)amine (phdpa) were synthesized and characterized by spectroscopic methods. The interaction between CT-DNA and the complexes was studied by UV and fluorescence titration methods. It was found that the complex [(phdpa)Cu(H(2)O)Ac)](Ac), with the non-planar aromatic heterocyclic ring ligand (phdpa), showed good anticancer properties and could cause the fragmentation of the nucleus, although its interaction with CT-DNA was weaker than that of 1,10-phenanthroline (phen)-based copper(II) complexes. The anticancer activities of copper(II) complexes with phdpa and phen based ligands are correlated to their binding constants with DNA, but phen-based copper(II) complexes did not cause the nucleus fragmentation of HeLa cells. [(phdpa)Cu(H(2)O)Ac)](Ac) can noticeably decrease the oxygen content of a culture solution and of HeLa cells, which make it a new nucleus and oxygen related anticancer copper(II) complex. Information obtained here would be helpful in the design of new antitumor complexes in oxidative therapy.

  1. Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes derived from 3,4-disubstituted phenol

    Indian Academy of Sciences (India)

    R Kannappan; R Mahalakshmy; T M Rajendiran; R Venkatesan; P Sambasiva Rao

    2003-02-01

    New symmetrical compartmental binucleating ligands 2,6-bis[N-(2-{dimethylamino}ethyl)-N-methyl)aminomethyl]-3,4-dimethylphenol [HL1] and 2,6-bis[N-(2-{diethylamino}ethyl)-N-ethyl)aminomethyl]-3,4-dimethylphenol [HL2], and their copper(II) complexes [Cu2L1-2(X)]ClO4, (X = NO$_{2}^{-}$, OAc- and OH-) have been prepared. Spectral, catalytic, magnetic, EPR and electrochemical studies have been carried out. A catecholase activity study indicates that only HL1 complexes have efficient catalytic activity due to a less sterically hindered methyl group and enhanced planarity (larger -2 values) with respect to the oxidation of 3,5-di--butylcatechol to the corresponding quinone. Variable temperature magnetic susceptibility studies of the complexes show antiferromagnetic interaction between the copper atoms. X-band EPR signals could not be observed for polycrystalline samples both at room temperatures and liquid nitrogen, consistent with two antiferrromagnetically coupled copper centres in the solid state. EPR spectral studies in methanol solvent show welldefined four hyperfine signals at room temperature due to decomposition of the dimer into monomers. This however is not seen in frozen methanol glass, may be owing to restructuring of the monomers into dimers due to an increase in viscosity of the solvent. Electrochemical studies revealed chemically irreversible behaviour due to chemical or/and stereochemical changes subsequent to electron transfer.

  2. A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Patricia B. da Silva

    2015-12-01

    Full Text Available The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II complexes. New compounds with the general formulae [CuX2(INH2]·nH2O (X = Cl− and n = 1 (1; X = NCS− and n = 5 (2; X = NCO− and n = 4 (3; INH = isoniazid, a drug widely used to treat tuberculosis derived from the reaction between the copper(II chloride and isoniazid in the presence or absence of pseudohalide ions (NCS− or NCO− were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR spectroscopy, elemental analysis, melting points and complexometry with 2,2′,2′′,2′′′-(Ethane-1,2-diyldinitrilotetraacetic acid (EDTA. The characterization techniques allowed us to confirm the formation of the copper(II complexes. The Cu(II complexes were loaded into microemulsion (MEs composed of 10% phase oil (cholesterol, 10% surfactant [soy oleate and Brij® 58 (1:2] and 80% aqueous phase (phosphate buffer pH = 7.4 prepared by sonication. The Cu(II complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC® 25923 and Escherichia coli ATCC® 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50 against the Vero cell line (ATCC® CCL-81TM were used to calculate the selectivity index (SI. Among the free compounds, only compound 2 (MIC 500 μg/mL showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC’s 125, 125 and 500 μg/mL, respectively and S. aureus (MICs 250, 500 and 125 μg/mL, respectively. The loaded compounds were less toxic against the Vero

  3. A Nanostructured Lipid System as a Strategy to Improve the in Vitro Antibacterial Activity of Copper(II) Complexes.

    Science.gov (United States)

    Silva, Patricia B da; Bonifácio, Bruna V; Frem, Regina C G; Godoy Netto, Adelino V; Mauro, Antonio E; Ferreira, Ana M da Costa; Lopes, Erica de O; Raddi, Maria S G; Bauab, Tais M; Pavan, Fernando R; Chorilli, Marlus

    2015-12-16

    The aim of this study was to construct a nanostructured lipid system as a strategy to improve the in vitro antibacterial activity of copper(II) complexes. New compounds with the general formulae [CuX₂(INH)₂]·nH₂O (X = Cl(-) and n = 1 (1); X = NCS(-) and n = 5 (2); X = NCO(-) and n = 4 (3); INH = isoniazid, a drug widely used to treat tuberculosis) derived from the reaction between the copper(II) chloride and isoniazid in the presence or absence of pseudohalide ions (NCS(-) or NCO(-)) were synthesized and characterized by infrared spectrometry, electronic absorption spectroscopy, electron paramagnetic resonance (EPR) spectroscopy, elemental analysis, melting points and complexometry with 2,2',2'',2'''-(Ethane-1,2-diyldinitrilo)tetraacetic acid (EDTA). The characterization techniques allowed us to confirm the formation of the copper(II) complexes. The Cu(II) complexes were loaded into microemulsion (MEs) composed of 10% phase oil (cholesterol), 10% surfactant [soy oleate and Brij® 58 (1:2)] and 80% aqueous phase (phosphate buffer pH = 7.4) prepared by sonication. The Cu(II) complex-loaded MEs displayed sizes ranging from 158.0 ± 1.060 to 212.6 ± 1.539 nm, whereas the polydispersity index (PDI) ranged from 0.218 ± 0.007 to 0.284 ± 0.034. The antibacterial activity of the free compounds and those that were loaded into the MEs against Staphylococcus aureus ATCC® 25923 and Escherichia coli ATCC® 25922, as evaluated by a microdilution technique, and the cytotoxicity index (IC50) against the Vero cell line (ATCC® CCL-81(TM)) were used to calculate the selectivity index (SI). Among the free compounds, only compound 2 (MIC 500 μg/mL) showed activity for S. aureus. After loading the compounds into the MEs, the antibacterial activity of compounds 1, 2 and 3 was significantly increased against E. coli (MIC's 125, 125 and 500 μg/mL, respectively) and S. aureus (MICs 250, 500 and 125 μg/mL, respectively). The loaded compounds were less toxic against the Vero

  4. New unsymmetric dinuclear Cu(II)Cu(II) complexes and their relevance to copper(II) containing metalloenzymes and DNA cleavage.

    Science.gov (United States)

    Peralta, Rosely A; Neves, Ademir; Bortoluzzi, Adailton J; Dos Anjos, Ademir; Xavier, Fernando R; Szpoganicz, Bruno; Terenzi, Hernán; de Oliveira, Mauricio C B; Castellano, Eduardo; Friedermann, Geraldo R; Mangrich, Antonio S; Novak, Miguel A

    2006-05-01

    The new homodinuclear complexes, [Cu(2)(II)(HLdtb)(mu-OCH(3))](ClO(4))(2) (1) and [Cu(2)(II)(Ldtb)(mu-OCH(3))](BPh(4)) (2), with the unsymmetrical N(5)O(2) donor ligand (H(2)Ldtb) - {2-[N,N-Bis(2-pyridylmethyl)aminomethyl]-6-[N',N'-(3,5-di-tert-butylbenzyl-2-hydroxy)(2-pyridylmethyl)]aminomethyl}-4-methylphenol have been synthesized and characterized in the solid state by X-ray crystallography. In both cases the structure reveals that the complexes have a common {Cu(II)(mu-phenoxo)(mu-OCH(3))Cu(II)} structural unit. Magnetic susceptibility studies of 1 and 2 reveal J values of -38.3 cm(-1) and -2.02 cm(-1), respectively, and that the degree of antiferromagnetic coupling is strongly dependent on the coordination geometries of the copper centers within the dinuclear {Cu(II)(mu-OCH(3))(mu-phenolate)Cu(II)} structural unit. Solution studies in dichloromethane, using UV-Visible spectroscopy and electrochemistry, indicate that under these experimental conditions the first coordination spheres of the Cu(II) centers are maintained as observed in the solid state structures, and that both forms can be brought into equilibrium ([Cu(2)(HLdtb)(mu-OCH(3))](2+)=[Cu(2)(Ldtb)(mu-OCH(3))](+)+H(+)) by adjusting the pH with Et(3)N (Ldtb(2-) is the deprotonated form of the ligand). On the other hand, potentiometric titration studies of 1 in an ethanol/water mixture (70:30 V/V; I=0.1M KCl) show three titrable protons, indicating the dissociation of the bridging CH(3)O(-) group.The catecholase activity of 1 and 2 in methanol/water buffer (30:1 V/V) demonstrates that the deprotonated form is the active species in the oxidation of 3,5-di-tert-butylcatechol and that the reaction follows Michaelis-Menten behavior with k(cat)=5.33 x 10(-3)s(-1) and K(M)=3.96 x 10(-3)M. Interestingly, 2 can be electrochemically oxidized with E(1/2)=0.27 V vs.Fc(+)/Fc (Fc(+)/Fc is the redox pair ferrocinium/ferrocene), a redox potential which is believed to be related to the formation of a phenoxyl radical

  5. Mononuclear nickel (II) and copper (II) coordination complexes supported by bispicen ligand derivatives: Experimental and computational studies

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nirupama; Niklas, Jens; Poluektov, Oleg; Van Heuvelen, Katherine M.; Mukherjee, Anusree

    2017-01-01

    The synthesis, characterization and density functional theory calculations of mononuclear Ni and Cu complexes supported by the N,N’-Dimethyl-N,N’-bis-(pyridine-2-ylmethyl)-1,2-diaminoethane ligand and its derivatives are reported. The complexes were characterized by X-ray crystallography as well as by UV-visible absorption spectroscopy and EPR spectroscopy. The solid state structure of these coordination complexes revealed that the geometry of the complex depended on the identity of the metal center. Solution phase characterization data are in accord with the solid phase structure, indicating minimal structural changes in solution. Optical spectroscopy revealed that all of the complexes exhibit color owing to d-d transition bands in the visible region. Magnetic parameters obtained from EPR spectroscopy with other structural data suggest that the Ni(II) complexes are in pseudo-octahedral geometry and Cu(II) complexes are in a distorted square pyramidal geometry. In order to understand in detail how ligand sterics and electronics affect complex topology detailed computational studies were performed. The series of complexes reported in this article will add significant value in the field of coordination chemistry as Ni(II) and Cu(II) complexes supported by tetradentate pyridyl based ligands are rather scarce.

  6. Synthesis, micellization behavior, antimicrobial and intercalative DNA binding of some novel surfactant copper(II) complexes containing modified phenanthroline ligands.

    Science.gov (United States)

    Nagaraj, Karuppiah; Ambika, Subramanian; Rajasri, Shanmugasundaram; Sakthinathan, Subramanian; Arunachalam, Sankaralingam

    2014-10-01

    The novel surfactant copper(II) complexes, [Cu(ip)2DA](ClO4)21, [Cu(dpqc)2DA](ClO4)22, [Cu(dppn)2DA](ClO4)23, where ip=imidazo[4,5-f][1,10]phenanthroline, dpqc=dipyrido[3,2-a:2',4'-c](6,7,8,9-tetrahydro)phenazine, dppn=benzo[1]dipyrido[3,2-a':2',3'-c]phenazine and DA-dodecylamine, were synthesized and characterized by physico-chemical and spectroscopic methods. In these complexes 1-3, the geometry of copper metal ions was described as square pyramidal. The critical micelle concentration (CMC) value of these surfactant copper(II) complexes in aqueous solution was found out from conductance measurements. Specific conductivity data at different temperatures served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔGm°, ΔHm° and ΔSm°). The binding interaction of these complexes with DNA (calf thymus DNA) in Tris buffer was studied by physico-chemical techniques. In the presence of the DNA UV-vis spectrum of complexes showed red shift of the absorption band along with significant hypochromicity indicating intercalation of our complexes with nucleic acids. Competitive binding study with ethidium bromide (EB) shows that the complexes exhibit the ability to displace the nucleic acid-bound EB indicating that the complexes bind to nucleic acids in strong competition with EB for the intercalative binding site. Observed changes in the circular dichoric spectra of DNA in the presence of surfactant complexes support the strong binding of complexes with DNA. CV results also confirm this mode of binding. Some significant thermodynamic parameters of the binding of the titled complexes to DNA have also been determined. The results reveal that the extent of DNA binding of 3 was greater than that of 1 and 2. The antibacterial and antifungal screening tests of these complexes have shown good results compared to its precursor chloride complexes.

  7. Modeling dinuclear copper sites of biological relevance - synthesis, molecular-structure, magnetic-properties, and h-1- nmr spectroscopy of a nonsymmetric dinuclear copper(ii) complex - microcalorimetric determination of stepwise complexation of copper(ii) by a nonsymmetric dinucleating ligand

    NARCIS (Netherlands)

    Lubben, M; Hage, R.; Meetsma, A.; Bijma, Koos; Feringa, B.L.

    1995-01-01

    The new nonsymmetric dinuclear copper(II) complex [Cu(2)L(1)(OAcW(ClO4) (7) was synthesized by complexation of Cu(OAc). H2O with a new nonsymmetric dinucleating ligand (5) which' is formed in situ by condensation of 2-formyl-6-((4-methylpiperazin-1-yl)methyl)phenol (3a) with 2-(aminoethyl)pyridine.

  8. New copper(II) complexes with dopamine hydrochloride and vanillymandelic acid: Spectroscopic and thermal characterization

    Science.gov (United States)

    Mohamed, Gehad G.; Nour El-Dien, F. A.; El-Nahas, R. G.

    2011-10-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. The Cu(II) chelates with coupled products of dopamine hydrochloride (DO.HCl) and vanillymandelic acid (VMA) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical techniques namely IR, magnetic and UV-vis spectra are used to investigate the structure of these chelates. Cu(II) forms 1:1 (Cu:DO) and 1:2 (Cu:VMA) chelates. DO behave as a uninegative tridentate ligand in binding to the Cu(II) ion while VMA behaves as a uninegative bidentate ligand. IR spectra show that the DO is coordinated to the Cu(II) ion in a tridentate manner with ONO donor sites of the phenolic- OH, -NH and carbonyl- O, while VMA is coordinated with OO donor sites of the phenolic- OH and -NH. Magnetic moment measurements reveal the presence of Cu(II) chelates in octahedral and square planar geometries with DO and VMA, respectively. The thermal decomposition of Cu(II) complexes is studied using thermogravimetric (TG) and differential thermal analysis (DTA) techniques. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  9. Copper(II) complexes with 4-hydroxyacetophenone-derived acylhydrazones: Synthesis, characterization, DNA binding and cleavage properties

    Science.gov (United States)

    Gup, Ramazan; Gökçe, Cansu; Aktürk, Selçuk

    2015-01-01

    Two new Cu(II) complexes of Schiff base-hydrazone ligands, hydroxy-N‧-[(1Z)-1-(4-hydroxyphenyl)ethylidene]benzohydrazide [H3L1] and ethyl 2-(4-(1-(2-(4-(2-ethoxy-2-oxoethoxy)benzoyl)hydrazono)ethyl)phenoxy)acetate (HL2) have been synthesized and then characterized by microcopy and spectral studies. X-ray powder diffraction illustrates that [Cu(L2)2] complex is crystalline in nature whereas [Cu(H2L1)2]·2H2O has an amorphous structure. Binding of the copper complexes with Calf thymus DNA (CT-DNA) has been investigated by UV-visible spectra, exhibiting non-covalent binding to CT-DNA. DNA cleavage experiments have been also investigated by agarose gel electrophoresis in the presence and absence of an oxidative agent (H2O2). The effect of complex concentration on the DNA cleavage reaction has been also studied. Both copper complexes show nuclease activity, which significantly depends on concentrations of the complexes, in the presence of H2O2 through oxidative mechanism whereas they slightly cleavage DNA in the absence an oxidative agent.

  10. Structure of a copper-isoniazid complex.

    Science.gov (United States)

    Hanson, J C; Camerman, N; Camerman, A

    1981-11-01

    It is well-known that complex formation with copper ions increases the in vitro mycobactericidal action of the antituberculosis agent isoniazid. We report here the preparation and structure of a copper(II)-isoniazid complex. Unit cell parameters are a = 9.575, b = 14.855, and c = 7.056 A and space group P2(1)2(1)2(1). Copper bonding geometry is square planar with the isoniazid carbonyl oxygen and hydrazide amino nitrogen atoms and two chlorines occupying coordination positions. Complexing with copper(II) does not significantly alter the isoniazid molecular conformation.

  11. Copper(II) complexes of bis(amino amide) ligands: effect of changes in the amino acid residue.

    Science.gov (United States)

    Martí, Inés; Ferrer, Armando; Escorihuela, Jorge; Burguete, M Isabel; Luis, Santiago V

    2012-06-14

    A family of ligands derived from bis(amino amides) containing aliphatic spacers has been prepared, and their protonation and stability constants for the formation of Cu(2+) complexes have been determined potentiometrically. Important differences are associated to both the length of the aliphatic spacer and the nature of the side chains derived from the amino acid. In general, ligands containing aliphatic side chains display higher basicities as well as stability constants with Cu(2+). In the same way, basicities and stability constants tend to increase when decreasing the steric hindrance caused by the corresponding side-chain. FT-IR, UV-vis and ESI-MS were used for analyzing the complex species detected in the speciation diagram. UV-vis studies showed the presence of different coordination environments for the copper(II) complexes. Complexes with different stoichiometries can be formed in some instances. This was clearly highlighted with the help of ESI-MS experiments.

  12. Dissociations of copper(II)-containing complexes of aromatic amino acids: radical cations of tryptophan, tyrosine, and phenylalanine.

    Science.gov (United States)

    Siu, Chi-Kit; Ke, Yuyong; Guo, Yuzhu; Hopkinson, Alan C; Siu, K W Michael

    2008-10-14

    The dissociations of two types of copper(II)-containing complexes of tryptophan (Trp), tyrosine (Tyr), or phenylalanine (Phe) are described. The first type is the bis-amino acid complex, [Cu(II)(M)(2)].(2+), where M = Trp, Tyr, or Phe; the second [Cu(II)(4Cl-tpy)(M)].(2+), where 4Cl-tpy is the tridendate ligand 4'-chloro-2,2':6',2''-terpyridine. Dissociations of the Cu(ii) bis-amino acid complexes produce abundant radical cation of the amino acid, M.(+), and/or its secondary products. By contrast, dissociations of the 4Cl-tpy-bearing ternary complexes give abundant M.(+) only for Trp. Density functional theory (DFT) calculations show that for Tyr and Phe, amino-acid displacement reactions by H(2)O and CH(3)OH (giving [Cu(II)(4Cl-tpy)(H(2)O)].(2+) and [Cu(II)(4Cl-tpy)(CH(3)OH)].(2+)) are energetically more favorable than dissociative electron transfer (giving M.(+) and [Cu(I)(4Cl-tpy)](+)). The fragmentation pathway common to all these [Cu(II)(4Cl-tpy)(M)].(2+) ions is the loss of NH(3). DFT calculations show that the loss of NH(3) proceeds via a "phenonium-type" intermediate. Dissociative electron transfer in [Cu(II)(4Cl-tpy)(M-NH(3))].(2+) results in [M-NH(3)].(+). The [Phe-NH(3)] (+) ion dissociates facilely by eliminating CO(2) and giving a metastable phenonium-type ion that rearranges readily into the styrene radical cation.

  13. Copper(II) complexes with pyrazole derivatives - Synthesis, crystal structure, DFT calculations and cytotoxic activity

    Science.gov (United States)

    Kupcewicz, Bogumiła; Ciolkowski, Michal; Karwowski, Boleslaw T.; Rozalski, Marek; Krajewska, Urszula; Lorenz, Ingo-Peter; Mayer, Peter; Budzisz, Elzbieta

    2013-11-01

    The series of pyrazole derivatives (1a-4a) were used as bidentate N,N' ligands to obtain neutral Cu(II) complexes of ML2Cl2 type (1b-4b). The molecular structures of ligand 1a and Cu(II) complex 4b were determined by X-ray crystallography and theoretical DFT calculations. In this study, three functionals B3LYP, BP86 and mPW1PW91 with different basis sets and two effective core potentials Los Alamos and Stuttgart/Dresden were performed. The DFT study disclosed the usefulness of BP86 functional with SDD-ECP for Cu(II) ion and dedicated D95 basis set for other non-transition metal atoms, with the exclusion of Cl for which 6-31++G(2df,2pd) were used. The structural analysis shows that the presence of phenyl substituent in a pyrazole ring contributed to Cu-N bond elongation, which can result in different reactivity of complexes 1b and 3b. The cytotoxicity of the obtained compounds was evaluated on three cancer cells lines: HL-60, NALM-6 and WM-115. The complexes have exhibited similar moderate antiproliferative activity. All the complexes, except for 1b, were found to be more active against three cancer cell lines than uncomplexed pyrazoles. The lipophilicity and electrochemical properties of ligands and complexes was also studied. For complexes with ligand 1a and 3a only one reduction process at the metal centre occurs (Cu(II) → Cu(I)) with oxidization of Cu(I)-Cu(II) in the backward step.

  14. Synthesis and characterization of cobalt(II), nickel(II), copper(II) and zinc(II) complexes with Schiff base derived from 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine.

    Science.gov (United States)

    Singh, Kiran; Barwa, Manjeet Singh; Tyagi, Parikshit

    2007-03-01

    A few (1:1) and (1:2) metal complexes of cobalt(II), nickel(II), copper(II) and zinc(II) have been isolated with ligand derived from the condensation of 4-amino-3-mercapto-6-methyl-5-oxo-1,2,4-triazine with 2-acetylpyridine (L(1)) and characterized by elemental analysis, conductivity measurements, infrared, electronic, (1)H NMR spectral data, magnetic and thermogravimetric analyses. Due to insolubility in water and most of the common organic solvents and infusibility at higher temperatures, all the complexes are thought to be polymeric in nature. A square-planar geometry was suggested for copper(II) and octahedral proposed for cobalt(II), nickel(II) and zinc(II). Some of the chemically synthesized compounds have been screened in vitro against the three Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis and Bacillus subtilis) and two Gram-negative (Salmonella typhi and Escherichia coli) organisms. It is observed that the coordination of metal ion has pronounced effect on the microbial activities of the ligand. The metal complexes have higher antimicrobial effect than the free ligands.

  15. Characterisation of the interactions between substrate, copper(II) complex and DNA and their role in rate acceleration in DNA-based asymmetric catalysis.

    Science.gov (United States)

    Draksharapu, Apparao; Boersma, Arnold J; Browne, Wesley R; Roelfes, Gerard

    2015-02-28

    Interactions of the azachalcone derived substrate Aza with copper(II) complexes in the presence and absence of st-DNA were studied in detail by UV/Vis absorption, EPR and Raman and (UV and vis) resonance Raman spectroscopies. The binding of Aza to the Lewis acidic copper(II) complexes, which results in activation of the substrate, was established spectroscopically. It was shown that the binding of Aza differs between Cu(II)dmbpy and Cu(II)terpy, consistent with the observed differences in catalytic asymmetric Diels-Alder reactions with regard to both the rate and enantiomeric preference. Finally, it was shown that DNA has a major beneficial effect on the binding of Aza to the copper(II) complex due to the fact that both bind to the DNA. The result is a high effective molarity of both the copper complexes and the Aza substrate, which leads to a significant increase in binding of Aza to the copper(II) complex. This effect is a key reason for the observed rate acceleration in the catalyzed reactions brought about by the presence of DNA.

  16. The formation of copper sulphide semiconductors inside Langmuir–Blodgett films of Cu(II) ion complexes

    NARCIS (Netherlands)

    Werkman, P.J.; Wieringa, R.H.; Schouten, A.J.

    1998-01-01

    The fabrication of layers of copper sulphide within multilayers of copper complexes of the amphiphile 4-(10,12-pentacosadiynamido methyl pyridine, by diffusion of H2S into the multilayers, was studied by UV–VIS spectroscopy. XPS measurements revealed that copper sulphides can be synthesised which di

  17. Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of N'-(furan-3-ylmethylene)-2-(4-methoxyphenylamino)acetohydrazide.

    Science.gov (United States)

    Emam, Sanaa M; El-Saied, Fathy A; Abou El-Enein, Saeyda A; El-Shater, Heba A

    2009-03-01

    Cobalt(II), nickel(II), copper(II), zinc(II) and hafnium(IV) complexes of furan-2-carbaldehyde 4-methoxy-N-anilinoacetohydrazone were synthesized and characterized by elemental and thermal (TG and DTA) analyses, IR, UV-vis and (1)H NMR spectra as well as magnetic moment and molar conductivity. Mononuclear complexes are obtained with 1:1 molar ratio except complexes 3 and 9 which are obtained with 1:2 molar ratios. The IR spectra of ligand and metal complexes reveal various modes of chelation. The ligand behaves as a neutral bidentate one and coordination occurs via the carbonyl oxygen atom and azomethine nitrogen atom. The ligand behaves also as a monobasic tridentate one and coordination occurs through the enolic oxygen atom, azomethine nitrogen atom and the oxygen atom of furan ring. Moreover, the ligand behaves as a neutral tridentate and coordination occurs via the carbonyl oxygen, azomethine nitrogen and furan oxygen atoms as well as a monobasic bidentate and coordination occurs via the enolic oxygen atom and azomethine nitrogen atom. The electronic spectra and magnetic moment measurements reveal that all complexes possess octahedral geometry except the copper complex 10 possesses a square planar geometry. The thermal studies showed the type of water molecules involved in metal complexes as well as the thermal decomposition of some metal complexes.

  18. Bioelectrochemical recovery of ammonia-copper(II) complexes from wastewater using a dual chamber microbial fuel cell.

    Science.gov (United States)

    Zhang, Li-Juan; Tao, Hu-Chun; Wei, Xue-Yan; Lei, Tao; Li, Jin-Bo; Wang, Ai-Jie; Wu, Wei-Min

    2012-11-01

    The cathodic reduction of complex-state copper(II) was investigated in a dual chamber microbial fuel cell (MFC). The inner resistance of MFC system could be reduced in the presence of ionizing NH(4)(+), however, mass transfer was hindered at higher ammonia concentration. Thermodynamic and electrochemical analyses indicated that the processes of complex dissociation and copper reduction were governed by the ratio of T[Cu]:T[NH(3)] and the pH of solution. The reduction of Cu(NH(3))(4)(2+) could be achieved via two possible pathways: (1) releasing Cu(2+) from Cu(NH(3))(4)(2+), then reducing Cu(2+) to Cu or Cu(2)O and (2) Cu(NH(3))(4)(2+) accepting an electron and forming Cu(NH(3))(2)(+), and depositing as Cu or Cu(2)O consequently. At initial concentration of 350 mg T[Cu] L(-1), copper removal efficiency of 96% was obtained at pH=9.0 within 12 h (with △Cu/△COD=1.24), 84% was obtained at pH=3.0 within 8 h (with △Cu/△COD=1.72). Cu(NH(3))(4)(2+) was reduced as polyhedral deposits on the cathode. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Unsymmetrical Mesoporphyrinic Complexes of Copper (II) and Zinc (II). Microwave-Assisted Synthesis, Spectral Characterization and Cytotoxicity Evaluation

    OpenAIRE

    Rica Boscencu

    2011-01-01

    New unsymmetrical mesoporphyrinic complexes, namely 5-(4-hydroxyphenyl)-10,15,20–tris-(4-carboxymethylphenyl)–21,23-Zn(II)-porphine and 5-(4-hydroxyphenyl)-10,15,20–tris-(4-carboxymethylphenyl)–21,23-Cu(II)-porphine, were synthesized using a microwave irradiation method. The structures of the porphyrinic complexes were confirmed using FT-IR, UV–Vis, EPR and NMR spectral data. The spectral absorption and emission properties of the porphyrinic complexes were studied in organic solvents of diffe...

  20. Synthesis, spectroscopic characterization, crystallographic studies and antibacterial assays of new copper(II) complexes with sulfathiazole and nimesulide

    Science.gov (United States)

    Nunes, Julia Helena Bormio; de Paiva, Raphael Enoque Ferraz; Cuin, Alexandre; da Costa Ferreira, Ana Maria; Lustri, Wilton Rogério; Corbi, Pedro Paulo

    2016-05-01

    New ternary copper(II) complexes of sulfathiazole (SFT, C9H8N3O2S2) or nimesulide (NMS, C13H11N2O5S) and 2,2‧-bipyridine (bipy) were synthesized, and characterized by chemical and spectroscopic techniques. Elemental analyses indicated a 2:1:1 sulfonamide/copper/bipy composition for both complexes. Mass spectrometric measurements permitted identifying the molecular ions [Cu(SFT)2(bipy)+H]+ and [Cu(NMS)2(bipy)+H]+ at m/z 728 and 835, respectively, confirming the proposed compositions. Crystal structure of the [Cu(SFT)2(bipy)] complex was solved by powder X-ray diffraction analysis (PXRD), attesting that the Cu(II) ion is hexacoordinated in a distorted octahedral geometry. Each SFT molecule coordinates to the metal ion by the nitrogen atoms of the SO2-N group and of the heterocyclic ring. The coordination sphere is completed by a bipyridine. Electronic paramagnetic resonance (EPR) studies were carried out for the [Cu(NMS)2(bipy)] complex, indicating a tetragonal environment around the metal ion. It was suggested that NMS coordinates to Cu(II) by the nitrogen and oxygen atoms of the SO2-N group, which was confirmed by infrared spectroscopic studies. Biological studies showed the antibacterial activity of both Cu-SFT and Cu-NMS complexes, with the minimum inhibitory concentration (MIC) values ranging from 0.10 to 0.84 mmol L-1 against Gram-negative bacteria for [Cu(SFT)2(bipy)], and from 1.50 to 3.00 mmol L-1 against Gram-positive and -negative bacteria for [Cu(NMS)2(bipy)].

  1. Unusual conformation of a dinuclear paddle wheel copper(II) complex. Synthesis, structural characterization and EPR studies.

    Science.gov (United States)

    Paredes-García, Verónica; Santana, Ricardo C; Madrid, Rosa; Vega, Andrés; Spodine, Evgenia; Venegas-Yazigi, Diego

    2013-08-05

    An unusual and unique conformation of a paddle wheel type binuclear copper(II) complex containing acetate and acetamido ligands, {Cu2(μ2-O2CCH3)4}(OCNH2CH3) (1), was obtained by solvothermal synthesis. The structural characterization of this compound shows that the apical (acetamido) ligands are disposed at a 62° dihedral angle, generating a special conformation as a consequence of the synthetic method used. This conformation has not been reported in other paddle wheel copper(II) tetraacetate compounds. Electron paramagnetic resonance (EPR) spectra of powder samples of (1) were obtained at 9.5 and 33.8 GHz, while single crystal spectra were obtained at 33.8 GHz with a B0 applied in three orthogonal planes. The fit of the single crystal experimental data allowed gave g∥ = 2.345 ± 0.003, and g⊥ = 2.057 ± 0.005. The angular variation of the EPR line allows evaluation of the fine structure of (1), giving D = -0.337 ± 0.002 cm(-1) and E = -0.005 ± 0.001 cm(-1). The line width angular dependence, used together with the Anderson model and Kubo-Tomita theory, permitted the interdimer interaction to be evaluated as |J'| = (0.051 ± 0.002) cm(-1). Using the powder spectral temperature dependence it was possible to evaluate the intradinuclear exchange coupling constan J0 as -101 ± 2 cm(-1), which is considerably lower than that reported for other analogous copper(II) tetraacetate paddle wheel compounds (Cu(II)-PW), showing the remarkable effect of the conformation of the terminal ligands on the magnetic interaction.

  2. Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: synthesis, structural characterization, and antibacterial activity.

    Science.gov (United States)

    Geeta, B; Shravankumar, K; Reddy, P Muralidhar; Ravikrishna, E; Sarangapani, M; Reddy, K Krishna; Ravinder, V

    2010-11-01

    A binucleating new Schiff-base ligand with a phenylene spacer, afforded by the condensation of glycyl-glycine and o-phthalaldehyde has been served as an octadentate N₄O₄ ligand in designing some binuclear complexes of cobalt(II), nickel(II), copper(II), and palladium(II). The binding manner of the ligand to the metal and the composition and geometry of the metal complexes were examined by elemental analysis, conductivity measurements, magnetic moments, IR, ¹H, ¹³C NMR, ESR and electronic spectroscopies, and TGA measurements. There are two different coordination/chelation environments present around two metal centers of each binuclear complex. The composition of the complexes in the coordination sphere was found to be [M₂(L)(H(2)O)₄] (where M=Co(II) and Ni(II)) and [M₂(L)] (where M=Cu(II) and Pd(II)). In the case of Cu(II) complexes, ESR spectra provided further information to confirm the binuclear structure and the presence of magnetic interactions. All the above metal complexes have shown moderate to good antibacterial activity against Gram-positive and Gram-negative bacteria.

  3. Synthesis, characterization, cytotoxicity and antiangiogenic activity of copper(II) complexes with 1-adamantoyl hydrazone bearing pyridine rings.

    Science.gov (United States)

    Rodić, Marko V; Leovac, Vukadin M; Jovanović, Ljiljana S; Spasojević, Vojislav; Joksović, Milan D; Stanojković, Tatjana; Matić, Ivana Z; Vojinović-Ješić, Ljiljana S; Marković, Violeta

    2016-06-10

    Three novel copper complexes with tridentate N2O ligand di(2-pyridil) ketone 1-adamantoyl hydrazone (Addpy) of the formula [Cu(II)2Cu(I)2(Addpy)2Br2(μ-Br4)] (1), catena-poly[CuCl(μ-Addpy)(μ-Cl)CuCl2]n (2) and [Cu(Addpy)(NCS)2] (3) were synthesized. Complexes are characterized by X-ray crystallography, spectral (UV-Vis, FTIR), electrochemical (CV) analyses, and magnetochemical measurements. Investigation of anticancer potential of Cu(II) complexes, mode of cell death, apoptosis, and inhibition of angiogenesis were performed. All tested malignant cell lines (HeLa, LS174, A549, K562, and MDA-MB-231) showed high sensitivity to the examined Cu(II) complexes. It has been shown that the complexes induce apoptosis in the caspase 3-dependent manner, whereas the anti-angiogenic effects of 1, 2, and 3 have been confirmed in EA.hy926 cells using a tube formation assay.

  4. Antitumoral, antihypertensive, antimicrobial, and antioxidant effects of an octanuclear copper(II)-telmisartan complex with an hydrophobic nanometer hole.

    Science.gov (United States)

    Islas, María S; Martínez Medina, Juan J; López Tévez, Libertad L; Rojo, Teófilo; Lezama, Luis; Griera Merino, Mercedes; Calleros, Laura; Cortes, María A; Rodriguez Puyol, Manuel; Echeverría, Gustavo A; Piro, Oscar E; Ferrer, Evelina G; Williams, Patricia A M

    2014-06-02

    A new Cu(II) complex with the antihypertensive drug telmisartan, [Cu8Tlm16]·24H2O (CuTlm), was synthesized and characterized by elemental analysis and electronic, FTIR, Raman and electron paramagnetic resonance spectroscopy. The crystal structure (at 120 K) was solved by X-ray diffraction methods. The octanuclear complex is a hydrate of but otherwise isostructural to the previously reported [Cu8Tlm16] complex. [Cu8Tlm16]·24H2O crystallizes in the tetragonal P4/ncc space group with a = b = 47.335(1), c = 30.894(3) Å, Z = 4 molecules per unit cell giving a macrocyclic ring with a double helical structure. The Cu(II) ions are in a distorted bipyramidal environment with a somewhat twisted square basis, cis-coordinated at their core N2O2 basis to two carboxylate oxygen and two terminal benzimidazole nitrogen atoms. Cu8Tlm16 has a toroidal-like shape with a hydrophobic nanometer hole, and their crystal packing defines nanochannels that extend along the crystal c-axis. Several biological activities of the complex and the parent ligand were examined in vitro. The antioxidant measurements indicate that the complex behaves as a superoxide dismutase mimic with improved superoxide scavenger power as compared with native sartan. The capacity of telmisartan and its copper complex to expand human mesangial cells (previously contracted by angiotensin II treatment) is similar to each other. The antihypertensive effect of the compounds is attributed to the strongest binding affinity to angiotensin II type 1 receptor and not to the antioxidant effects. The cytotoxic activity of the complex and that of its components was determined against lung cancer cell line A549 and three prostate cancer cell lines (LNCaP, PC-3, and DU 145). The complex displays some inhibitory effect on the A549 line and a high viability decrease on the LNCaP (androgen-sensitive) line. From flow cytometric analysis, an apoptotic mechanism was established for the latter cell line. Telmisartan and CuTlm show

  5. Synthesis, crystal structures, spectroscopic characterization and in vitro antidiabetic studies of new Schiff base Copper(II) complexes

    Indian Academy of Sciences (India)

    SUNDARAMURTHY SANTHA LAKSHMI; KANNAPPAN GEETHA; M GAYATHRI; GANESH SHANMUGAM

    2016-07-01

    Two new Schiff base copper(II) complexes, [CuL¹(tmen)] (1) and [Cu₂L₂² (tmen)] (2) {where, H₂L¹ = N-(salicylidene)-L-valine, H₂L² = N-(3,5-dichlorosalicylidene)-L-valine and tmen = N,N,N',N'- tetramethylethylene-1,2-diamine} have been synthesized and characterized by molar conductance, elemental analyses, VSM-RT, UV-Vis, FTIR, EPR, and CD spectra. Both the complexes were structurally characterized by single crystal XRD. The crystal structure of complex 1 displays a distorted square pyramidal geometry in which Schiff base is coordinated to the Cu(II) ion via ONO-donor in the axial mode, whereas, the chelating diamine displays axial and equatorial mode of binding via NN-donor atoms. The crystal structure of the complex 2 reveals a syn-anti mode of carboxylate bridged dinuclear complex, in which, the coordination geometry around Cu(1) is square pyramid and distorted square planar around Cu(2). The target complexes were screened for in vitro antidiabetic activity. Both the complexes showed good inhibitory activity for α-amylase and α-glucosidase.

  6. Synthesis of mononuclear copper(II) complexes of acyclic Schiff's base ligands: Spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity

    Science.gov (United States)

    Jayamani, Arumugam; Thamilarasan, Vijayan; Sengottuvelan, Nallathambi; Manisankar, Paramasivam; Kang, Sung Kwon; Kim, Young-Inn; Ganesan, Vengatesan

    2014-03-01

    The mononuclear copper(II) complexes (1&2) of ligands L1 [N,N";-bis(2-hydroxy-5-methylbenzyl)-1,4-bis(3-iminopropyl)piperazine] or L2 [N,N";-bis(2-hydroxy-5-bromobenzyl)-1,4-bis(3-iminopropyl) piperazine] have been synthesized and characterised. The single crystal X-ray study had shown that ligands L1 and L2 crystallize in a monoclinic crystal system with P21/c space group. The mononuclear copper(II) complexes show one quasireversible cyclic voltammetric response near cathodic region (-0.77 to -0.85 V) in DMF assignable to the Cu(II)/Cu(I) couple. Binding interaction of the complexes with calf thymus DNA (CT DNA) investigated by absorption studies and fluorescence spectral studies show good binding affinity to CT DNA, which imply both the copper(II) complexes can strongly interact with DNA efficiently. The copper(II) complexes showed efficient oxidative cleavage of plasmid pBR322 DNA in the presence of 3-mercaptopropionic acid as reducing agent through a mechanistic pathway involving formation of singlet oxygen as the reactive species. The Schiff bases and their Cu(II) complexes have been screened for antibacterial activities which indicates that the complexes exhibited higher antimicrobial activity than the free ligands.

  7. Spectroscopic investigation into the interaction of a diazacyclam-based macrocyclic copper(ii) complex with bovine serum albumin.

    Science.gov (United States)

    Shahabadi, Nahid; Hakimi, Mohammad; Morovati, Teimoor; Hadidi, Saba; Moeini, Keyvan

    2017-02-01

    Cyclam-based ligands and their complexes are known to show antitumor activity. This study was undertaken to examine the interaction of a diazacyclam-based macrocyclic copper(II) complex with bovine serum albumin (BSA) under physiological conditions. The interactions of different metal-based drugs with blood proteins, especially those with serum albumin, may affect the concentration and deactivation of metal drugs, and thereby influence their availability and toxicity during chemotherapy. In this vein, several spectral methods including UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy techniques were used. Spectroscopic analysis of the fluorescence quenching confirmed that the Cu(II) complex quenched BSA fluorescence intensity by a dynamic mechanism. In order to further determine the quenching mechanism, an analysis of Stern-Volmer plots at various concentrations of BSA was carried out. It was found that the KSV value increased with the BSA concentration. It was suggested that the fluorescence quenching process was a dynamic quenching rather than a static quenching mechanism. Based on Förster's theory, the average binding distance between the Cu(II) complex and BSA (r) was found to be 4.98 nm; as the binding distance was less than 8 nm, energy transfer from BSA to the Cu(II) complex had a high possibility of occurrence. Thermodynamic parameters (positive ΔH and ΔS values) and measurement of competitive fluorescence with 1-anilinonaphthalene-8-sulphonic acid (1,8-ANS) indicated that hydrophobic interaction plays a major role in the Cu(II) complex interaction with BSA. A Job's plot of the results confirmed that there was one binding site in BSA for the Cu(II) complex (1:1 stoichiometry). The site marker competitive experiment confirmed that the Cu(II) complex was located in site I (subdomain IIA) of BSA. Finally, CD data indicated that interaction of the Cu(II) complex with BSA caused a small increase in the α-helical content. Copyright

  8. SOD mimetic activity and antiproliferative properties of a novel tetra nuclear copper (II) complex.

    Science.gov (United States)

    Weintraub, Sagiv; Moskovitz, Yoni; Fleker, Ohad; Levy, Ariel R; Meir, Aviv; Ruthstein, Sharon; Benisvy, Laurent; Gruzman, Arie

    2015-12-01

    The search for novel anticancer therapeutic agents is an urgent and important issue in medicinal chemistry. Here, we report on the biological activity of the copper-based bioinorganic complex Cu4 (2,4-di-tert-butyl-6-(1H-imidazo- [1, 10] phenanthrolin-2-yl)phenol)4]·10 CH3CN (2), which was tested in rat L6 myotubes, mouse NSC-34 motor neurone-like cells, and HepG-2 human liver carcinoma. Upon 96 h incubation, 2 exhibited a significant cytotoxic effect on all three types of cells via activation of two cell death mechanisms (apoptosis and necrosis). Complex 2 exhibited better potency and efficacy than the canonical cytotoxic drug cisplatin. Moreover, during shorter incubations, complex 2 demonstrated a significant SOD mimetic activity, and it was more effective and more potent than the well-known SOD mimetic TEMPOL. In addition, complex 2 was able to interact with DNA and, cleave DNA in the presence of sodium ascorbate. This study shows the potential of using polynuclear redox active compounds for developing novel anticancer drugs through SOD-mimetic redox pathways.

  9. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    Science.gov (United States)

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay.

  10. Effect of the Schiff base complex diaqua-(N-salicylidene-l-glutamato)copper(II) monohydrate on human tumor cells.

    Science.gov (United States)

    Konarikova, Katarina; Andrezalova, Lucia; Rapta, Peter; Slovakova, Marianna; Durackova, Zdenka; Laubertova, Lucia; Gbelcova, Helena; Danisovic, Lubomir; Bohmer, Daniel; Ruml, Tomas; Sveda, Martin; Zitnanova, Ingrid

    2013-12-05

    The aim of our study was to estimate cytostatic/cytotoxic activity of the copper(II) Schiff base complex of the composition [Cu(N-salicylidene-l-glutamato)(H2O)2]·H2O, further Cu(SG-L)H2O, against human colon carcinoma cell line HT-29, as well as to determine type of cell death and to find out the molecular mechanism of apoptosis induced by this complex. Two highest concentrations (50, 100 µmol/l) of the complex showed a strong cytotoxic activity against human colon carcinoma cells HT-29 after 72 h of influence. Other concentrations had a cytostatic activity. Unchelated copper(II) ions and free ligands had no effect on the cell growth. Cu(SG-L)H2O preferentially reduced cancer cell viability compared to healthy cells (NIH-3T3). Cu(SG-L)H2O induced apoptosis of cells HT-29 at all concentrations used (1-100 µmol/l) after 48 h of influence. Apoptosis was carried out by the mitochondrial pathway with active caspases 3 and 9. By the spin-trapping technique combined with electron paramagnetic resonance we found that our complex is photochemically stable in aqueous systems and does not exhibit radical-scavenging activity when 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) cation radical was used as an oxidant. The complex exhibits a strong prooxidant property in the initial stages of thermal decomposition of K2S2O8 in water solutions leading to the massive production of (·)OH radicals. Therefore, this complex could strongly participate in anticancer action via a free radical mechanism.

  11. Copper(II) complexes with 2-pyridineformamide-derived thiosemicarbazones: Spectral studies and toxicity against Artemia salina

    Science.gov (United States)

    Ferraz, Karina O.; Wardell, Solange M. S. V.; Wardell, James L.; Louro, Sonia R. W.; Beraldo, Heloisa

    2009-07-01

    The copper(II) complexes [Cu(H2Am4DH)Cl 2] ( 1), [Cu(H2Am4Me)Cl 2] ( 2), [Cu(H2Am4Et)Cl 2] ( 3) and [Cu(2Am4Ph)Cl] ( 4) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives were studied by means of infrared and EPR spectral techniques. The crystal structure of 4 was determined. The studied compounds proved to be toxic to Artemia salina, suggesting that they could present cytotoxic activity against solid tumors. Among the free thiosemicarbazones H2Am4Ph presented higher toxicity than all other compounds, which showed comparable effects. In the case of complexes 2 and 3 toxicity is probably attributable to the complex as an entity or to a synergistic effect involving the thiosemicarbazone and copper. H2Am4Ph and complexes 2 and 3 revealed to be the most promising compounds as potential antineoplasic agents.

  12. Mesogenic copper(II) complexes with [1,2,3]-triazole-based bidentate Schiff bases

    Indian Academy of Sciences (India)

    Guan-Yeow Yeap; Boon-Teck Heng

    2014-01-01

    The first mesogenic Cu(II) complex with [1,2,3]-triazole-based bidentate Schiff bases with flexible terminal alkyl chain, CnH2n+1 (even parity of n = 10-18) has been successfully synthesized. The heterocyclic triazole core was introduced into the target compound through the click reaction between azidoalkane and propargyl aldehyde. All the uncoordinated ligands and target complexes were characterized by elemental analysis, FT-IR, 1H-NMR and UV-visible spectroscopic techniques. The observation under the polarized light and differential scanning calometry (DSC) shows that the triazole-based ligands exhibit unstable SmA phase which are not reproducible upon subsequent heating and cooling. Interestingly, the whole homologues of Cu(II) complexes show exclusively stable focal conic fan-shaped texture characteristic of SmA phase. This can be ascribed to the presence of Cu-N and Cu-O coordination modes which enhance the collinearity and molecular anisotropy. On the other hand, the Cu(II) complexes are thermally more stable as compared to their corresponding ligands.

  13. Structural and spectropscopic studies of a three-dimensional hydrogen-bonded copper(II) complex: aqua[bis(pyridin-2-ylcarbonyl)amidato]cyanidocopper(II).

    Science.gov (United States)

    Wang, Jiang-Yun

    2015-02-01

    The preparation and X-ray and spectroscopic studies of the title copper(II) complex, [Cu(C12H8N3O2)(CN)(H2O)], are reported. The Cu(II) cation is five-coordinated, forming a distorted square-planar pyramid with an Addison τ parameter of 0.14. The UV-vis spectrum shows a d-d transition of the Cu(II) centre at 638 nm, and the electron paramagnetic resonance (EPR) spectrum confirms that the Cu(II) cation has an axial symmetry coordination and that the unpaired electrons occupy the d(x(2)-y(2)) orbital. Cyclic voltammetric studies show two irreversible oxidation and reduction peaks.

  14. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Ladislav Habala

    2016-12-01

    Full Text Available In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans. All copper(II complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.

  15. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II) Complexes.

    Science.gov (United States)

    Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand

    2016-12-17

    In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans. All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.

  16. Quantitative serine protease assays based on formation of copper(II)-oligopeptide complexes.

    Science.gov (United States)

    Ding, Xiaokang; Yang, Kun-Lin

    2015-01-07

    A quantitative protease assay based on the formation of a copper-oligopeptide complex is developed. In this assay, when a tripeptide GGH fragment is cleaved from an oligopeptide chain by serine proteases, the tripeptide quickly forms a pink GGH/Cu(2+) complex whose concentration can be determined quantitatively by using UV-Vis spectroscopy. Therefore, activities of serine proteases can be determined from the formation rate of the GGH/Cu(2+) complex. This principle can be used to detect the presence of serine protease in a real-time manner, or measure proteolytic activities of serine protease cleaving different oligopeptide substrates. For example, by using this assay, we demonstrate that trypsin, a model serine protease, is able to cleave two oligopeptides GGGGKGGH () and GGGGRGGH (). However, the specificity constant (kcat/Km) for is higher than that of (6.4 × 10(3) mM(-1) min(-1)vs. 1.3 × 10(3) mM(-1) min(-1)). This result shows that trypsin is more specific toward arginine (R) than lysine (K) in the oligopeptide sequence.

  17. Copper (II) and 2,2′-Bipyridine Complexation Improves Chemopreventive Effects of Naringenin against Breast Tumor Cells

    Science.gov (United States)

    Filho, Júlio César Conceição; Sarria, André Lúcio Franceschini; Becceneri, Amanda Blanque; Fuzer, Angelina Maria; Batalhão, Jaqueline Raquel; da Silva, Caio Marcio Paranhos; Carlos, Rose Maria; Vieira, Paulo Cezar; Fernandes, João Batista; Cominetti, Márcia Regina

    2014-01-01

    Cancer is the second leading cause of death worldwide and there is epidemiological evidence that demonstrates this tendency is emerging. Naringenin (NGEN) is a trihydroxyflavanone that shows various biological effects such as antioxidant, anticancer, anti-inflammatory, and antiviral activities. It belongs to flavanone class, which represents flavonoids with a C6-C3-C6 skeleton. Flavonoids do not exhibit sufficient activity to be used for chemotherapy, however they can be chemically modified by complexation with metals such as copper (Cu) (II) for instance, in order to be applied for adjuvant therapy. This study investigated the effects of Cu(II) and 2,2′-bipyridine complexation with naringenin on MDA-MB-231 cells. We demonstrated that naringenin complexed with Cu(II) and 2,2′-bipyridine (NGENCuB) was more efficient inhibiting colony formation, proliferation and migration of MDA-MB-231 tumor cells, than naringenin (NGEN) itself. Furthermore, we verified that NGENCuB was more effective than NGEN inhibiting pro-MMP9 activity by zymography assays. Finally, through flow cytometry, we showed that NGENCuB is more efficient than NGEN inducing apoptosis in MDA-MB-231 cells. These results were confirmed by gene expression analysis in real time PCR. We observed that NGENCuB upregulated the expression of pro-apoptotic gene caspase-9, but did not change the expression of caspase-8 or anti-apoptotic gene Bcl-2. There are only few works investigating the effects of Cu(II) complexation with naringenin on tumor cells. To the best of our knowledge, this is the first work describing the effects of Cu(II) complexation of a flavonoid on MDA-MB-231 breast tumor cells. PMID:25192075

  18. Copper (II and 2,2'-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells.

    Directory of Open Access Journals (Sweden)

    Júlio César Conceição Filho

    Full Text Available Cancer is the second leading cause of death worldwide and there is epidemiological evidence that demonstrates this tendency is emerging. Naringenin (NGEN is a trihydroxyflavanone that shows various biological effects such as antioxidant, anticancer, anti-inflammatory, and antiviral activities. It belongs to flavanone class, which represents flavonoids with a C6-C3-C6 skeleton. Flavonoids do not exhibit sufficient activity to be used for chemotherapy, however they can be chemically modified by complexation with metals such as copper (Cu (II for instance, in order to be applied for adjuvant therapy. This study investigated the effects of Cu(II and 2,2'-bipyridine complexation with naringenin on MDA-MB-231 cells. We demonstrated that naringenin complexed with Cu(II and 2,2'-bipyridine (NGENCuB was more efficient inhibiting colony formation, proliferation and migration of MDA-MB-231 tumor cells, than naringenin (NGEN itself. Furthermore, we verified that NGENCuB was more effective than NGEN inhibiting pro-MMP9 activity by zymography assays. Finally, through flow cytometry, we showed that NGENCuB is more efficient than NGEN inducing apoptosis in MDA-MB-231 cells. These results were confirmed by gene expression analysis in real time PCR. We observed that NGENCuB upregulated the expression of pro-apoptotic gene caspase-9, but did not change the expression of caspase-8 or anti-apoptotic gene Bcl-2. There are only few works investigating the effects of Cu(II complexation with naringenin on tumor cells. To the best of our knowledge, this is the first work describing the effects of Cu(II complexation of a flavonoid on MDA-MB-231 breast tumor cells.

  19. Syntheses, characterizations and structures of NO donor Schiff base ligands and nickel(II) and copper(II) complexes

    Science.gov (United States)

    Şenol, Cemal; Hayvali, Zeliha; Dal, Hakan; Hökelek, Tuncer

    2011-06-01

    New Schiff base derivatives ( L 1 and L 2) were prepared by the condensation of 2-hydroxy-3-methoxybenzaldehyde ( o-vanillin) and 3-hydroxy-4-methoxybenzaldehyde ( iso-vanillin) with 5-methylfurfurylamine. Two new complexes [Ni(L 1) 2] and [Cu(L 1) 2] have been synthesized with bidentate NO donor Schiff base ligand ( L 1). The Ni(II) and Cu(II) atoms in each complex are four coordinated in a square planar geometry. Schiff bases ( L 1 and L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] were characterized by elemental analyses, FT-IR, UV-vis, mass and 1H, 13C NMR spectroscopies. The crystal structures of the ligand ( L 2) and complexes [Ni(L 1) 2] and [Cu(L 1) 2] have also been determined by using X-ray crystallographic technique.

  20. Unsymmetrical Mesoporphyrinic Complexes of Copper (II and Zinc (II. Microwave-Assisted Synthesis, Spectral Characterization and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Rica Boscencu

    2011-06-01

    Full Text Available New unsymmetrical mesoporphyrinic complexes, namely 5-(4-hydroxyphenyl-10,15,20–tris-(4-carboxymethylphenyl–21,23-Zn(II-porphine and 5-(4-hydroxyphenyl-10,15,20–tris-(4-carboxymethylphenyl–21,23-Cu(II-porphine, were synthesized using a microwave irradiation method. The structures of the porphyrinic complexes were confirmed using FT-IR, UV–Vis, EPR and NMR spectral data. The spectral absorption and emission properties of the porphyrinic complexes were studied in organic solvents of different polarities and the influence of solvent polarity on the wavelengths of the absorbance and fluorescence band maxima is described. The cytotoxicity evaluation of the porphyrinic complexes was performed on human colon adenocarcinoma cell line HT29 for different doses and incubation times. The obtained result indicates a lack of or low toxicity for both compounds, thus recommending them for further testing in light activation protocols.

  1. Synthesis, Crystal Structure, Stacking Effect and Antibacterial Studies of a Novel Quaternary Copper (II Complex with Quinolone

    Directory of Open Access Journals (Sweden)

    Longguan Zhu

    2003-02-01

    Full Text Available The structural properties of a new copper (II complex [Cu2(cip2(bpy2(pip]·6H2O (bpy=2,2’-bipyridyl, cip=1-cyclopropyl-6-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, pip= piperazinyl anion, obtained during the synthesis of the copper complex with ciprofloxacin (cpf, has been investigated. The complex crystallizes in the triclinic system, space group P-1. The cell dimensions are: a=6.874(2 Å, b= 10.761(3 Å, c= 17.969(5 Å, α =80.071(6°, β= 85.253(6°, γ=79.109(6°,V=1284.5(6 Å3, and Z=2. The Cu (II ion displays a five-coordinate square pyramidal coordination with two nitrogen donors from bpy, the 4-keto and 3-carboxylate oxygen donors of cip, and the third nitrogen atom of the pip anion occupying the fifth site. There is a stack effect between cip ring and bpy ring from another molecule, where the stacking distance is about 3.5 Å. The results of elemental analysis and FT-IR measurement are also included. Both ligand and complex were assayed against gram-positive and gram-negative bacteria by the doubling dilutions method. The complex shows the same minimal inhibitory concentration (MIC against S. Aureus and E. Coli bacteria as the corresponding ligand.

  2. Copper(II) Schiff base complexes and their mixed thin layers with ZnO nanoparticles

    Indian Academy of Sciences (India)

    MAGDALENA BARWIOLEK; ROBERT SZCZĘSNY; EDWARD SZŁYK

    2016-07-01

    Cu(II) complexes with Schiff bases derived from ethylenediamine (en) and 2-pyridinecarboxaldehyde (pyca), 2,5-dimethoxybenzaldehyde (dmbaH) or 4-imidazolecarboxaldehyde (4Him) were obtained and studied by elemental analysis, UV-VIS and IR spectra. Zinc oxide was synthesized using a simple homogeneous precipitation method with zinc acetate as a starting material. Thin layers of the studied Cu(II) complexes were deposited on Si(111) or ZnO/Si(111) substrates by a spin coating method and characterized with a scanningelectron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectroscopy. For Cu(II) layers the most intensive fluorescence bands due to intra-ligand transitions were observed between 462 and 503 nm. The fluorescence intensity of thin layers was corelated to the rotation speed. In the case of the [Cu(II)(en(4Him)₂)Cl₂](2a)/ZnO/Si and [Cu(en(dmbaH)₂)Cl₂](3a)/ZnO/Si layers the quenching of the emission band from ZnO at 440 nm (λex = 330 nm) associated with various intrinsic or extrinsic lattice defects was noted.

  3. XAFS study of copper(II) complexes with square planar and square pyramidal coordination geometries

    Science.gov (United States)

    Gaur, A.; Klysubun, W.; Nitin Nair, N.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-08-01

    X-ray absorption fine structure of six Cu(II) complexes, Cu2(Clna)4 2H2O (1), Cu2(ac)4 2H2O (2), Cu2(phac)4 (pyz) (3), Cu2(bpy)2(na)2 H2O (ClO4) (4), Cu2(teen)4(OH)2(ClO4)2 (5) and Cu2(tmen)4(OH)2(ClO4)2 (6) (where ac, phac, pyz, bpy, na, teen, tmen = acetate, phenyl acetate, pyrazole, bipyridine, nicotinic acid, tetraethyethylenediamine, tetramethylethylenediamine, respectively), which were supposed to have square pyramidal and square planar coordination geometries have been investigated. The differences observed in the X-ray absorption near edge structure (XANES) features of the standard compounds having four, five and six coordination geometry points towards presence of square planar and square pyramidal geometry around Cu centre in the studied complexes. The presence of intense pre-edge feature in the spectra of four complexes, 1-4, indicates square pyramidal coordination. Another important XANES feature, present in complexes 5 and 6, is prominent shoulder in the rising part of edge whose intensity decreases in the presence of axial ligands and thus indicates four coordination in these complexes. Ab initio calculations were carried out for square planar and square pyramidal Cu centres to observe the variation of 4p density of states in the presence and absence of axial ligands. To determine the number and distance of scattering atoms around Cu centre in the complexes, EXAFS analysis has been done using the paths obtained from Cu(II) oxide model and an axial Cu-O path from model of a square pyramidal complex. The results obtained from EXAFS analysis have been reported which confirmed the inference drawn from XANES features. Thus, it has been shown that these paths from model of a standard compound can be used to determine the structural parameters for complexes having unknown structure.

  4. Microwave Synthesis, Basic Spectral and Biological Evaluation of Some Copper (II Mesoporphyrinic Complexes

    Directory of Open Access Journals (Sweden)

    Rica Boscencu

    2010-05-01

    Full Text Available Cu(II complexes with asymmetrical and symmetrical porphyrinic ligands were synthesized with superior yields using microwave irradiation. The paper presents the synthesis of 5-(3-hydroxyphenyl-10,15,20-tris-(4-carboxymethylphenyl-21,23-Cu(II-porphine in comparison to its symmetrical complex 5,10,15,20-meso-tetrakis-(4-carboxy-methylphenyl-21,23-Cu(II porphine. The two compounds were characterized by FT-IR, UV–Vis and EPR spectroscopy, which fully confirmed the structures. The spectral molecular absorption properties of the porphyrinic complexes were studied in organic solvents (methanol, ethanol, iso-propanol, dimethyl sulfoxide, dimethylformamide and methylene chloride, and the influence of the solvent polarity on the absorbance maxima is described. In order to establish their future potential in biomedical applications preliminary toxicological studies consisting of viability and proliferation of standard tumor cell lines (MCF7 and B16 testing was performed. The obtained results indicate a low toxicity for both compounds and further recommends them for testing in light activation protocols.

  5. Microwave synthesis, basic spectral and biological evaluation of some copper (II) mesoporphyrinic complexes.

    Science.gov (United States)

    Boscencu, Rica; Ilie, Mihaela; Socoteanu, Radu; Oliveira, Anabela Sousa; Constantin, Carolina; Neagu, Monica; Manda, Gina; Ferreira, Luis Filipe Vieira

    2010-05-25

    Cu(II) complexes with asymmetrical and symmetrical porphyrinic ligands were synthesized with superior yields using microwave irradiation. The paper presents the synthesis of 5-(3-hydroxyphenyl)-10,15,20-tris-(4-carboxymethylphenyl)-21,23-Cu(II)-porphine in comparison to its symmetrical complex 5,10,15,20-meso-tetrakis-(4-carboxy-methylphenyl)-21,23-Cu(II) porphine. The two compounds were characterized by FT-IR, UV-Vis and EPR spectroscopy, which fully confirmed the structures. The spectral molecular absorption properties of the porphyrinic complexes were studied in organic solvents (methanol, ethanol, iso-propanol, dimethyl sulfoxide, dimethylformamide and methylene chloride), and the influence of the solvent polarity on the absorbance maxima is described. In order to establish their future potential in biomedical applications preliminary toxicological studies consisting of viability and proliferation of standard tumor cell lines (MCF7 and B16) testing was performed. The obtained results indicate a low toxicity for both compounds and further recommends them for testing in light activation protocols.

  6. Synthesis, characterization, biological studies (DNA binding, cleavage, antibacterial and topoisomerase I) and molecular docking of copper(II) benzimidazole complexes.

    Science.gov (United States)

    Arjmand, Farukh; Parveen, Shazia; Afzal, Mohd; Shahid, Mohd

    2012-09-03

    To explore the therapeutic potential of copper-based benzimidazole complexes, tetranuclear Cu(II) complex 1 and dinuclear ternary amino acid complexes 2 and 3 {L-trp and L-val, respectively} were synthesized and thoroughly characterized. In vitro DNA binding studies of complexes 1-3 were carried out employing UV-vis titrations, fluorescence, circular dichroic and viscosity measurements which revealed that the complexes 1-3 bind to CT DNA preferably via groove binding. Complex 1 cleaved pBR322 DNA via hydrolytic pathway (validated by T4 DNA ligase assay), accessible to major groove while 2 followed oxidative mechanism, binding to minor groove of DNA double helix; binding events were further validated by molecular docking studies. Additionally, the complexes 1 and 2 exhibit high Topo-I inhibitory activity at different concentrations. The complexes 1-3 were evaluated for antibacterial activity against Escherichia coli and Staphylococcus aureus, and 2 was found to be most effective against Gram-positive bacteria.

  7. Studies of EXAFSSpectra using Copper (II) Schiff Base complexes and Determination of Bond lengths Using Synchrotron Radiation

    Science.gov (United States)

    Mishra, A.; Vibhute, V.; Ninama, S.; Parsai, N.; Jha, S. N.; Sharma, P.

    2016-10-01

    X-ray absorption fine structure (XAFS) at the K-edge of copper has been studied in some copper (II) complexes with substituted anilines like (2Cl, 4Br, 2NO2, 4NO2 and pure aniline) with o-PDA (orthophenylenediamine) as ligand. The X-ray absorption measurements have been performed at the recently developed BL-8 dispersive EXAFS beam line at 2.5 GeV Indus-2 Synchrotron Source at RRCAT, Indore, India. The data obtained has been processed using EXAFS data analysis program Athena.The graphical method gives the useful information about bond length and also the environment of the absorbing atom. The theoretical bond lengths of the complexes were calculated by using interactive fitting of EXAFS using fast Fourier inverse transformation (IFEFFIT) method. This method is also called as Fourier transform method. The Lytle, Sayers and Stern method and Levy's method have been used for determination of bond lengths experimentally of the studied complexes. The results of both methods have been compared with theoretical IFEFFIT method.

  8. Study of copper(II) ternary complexes with phosphocreatine and some polyamines in aqueous solution.

    Science.gov (United States)

    Szyfman, Natalie W; Loureiro, Nina P; Tenório, Thaís; Mercê, Ana L R; Mangrich, Antônio Sálvio; Rey, Nicolás A; Felcman, Judith

    2011-12-01

    Ternary systems of Cu(II) with phosphocreatine (PCr) and the polyamines (PAs), ethylenediamine (en), 1,3-diaminopropane (tn), putrescine (Put), spermidine (Spd), and spermine (Spm), were investigated in aqueous solution through potentiometry, ultraviolet-visible, EPR and Raman spectroscopy. The binary complex CuPCr was also studied by Raman spectroscopy, and the calculation of the minimum stabilization energy was done assuming this molecule in aqueous solution. The stability constants of the CuPCrPA ternary complexes were determined by potentiometry (T=25°C, I=0.1 mol L(-1), KNO(3)). The stability order determined was CuPCrSpm>CuPCrSpd>CuPCren>CuPCrtn>CuPCrPut, the same order of the corresponding binary complexes of Cu(II) with these polyamines. The evaluation of intramolecular PA-PCr interactions in protonated and deprotonated species of ternary complexes was carried out using the equation Δlog K=log β(CuPCrPAHq+p)-(log β(CuPAHq)+log β(CuPCrHp)). All of the CuPCrPA ternary complexes have a square planar structure and are bonded to PCr through the nitrogen atom of the guanidine group and the oxygen atom of the phosphate group, and to the PAs through two nitrogen atoms of the amine groups. The structure of the complex CuPCrSpm is planar with distortion towards tetrahedral. Calculation of the minimum stabilization energy for the CuPCr and CuPCrenH complexes confirmed the proposed coordination mode. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Halochromism, ionochromism, solvatochromism and density functional study of a synthesized copper(II) complex containing hemilabile amide derivative ligand

    Science.gov (United States)

    Golchoubian, Hamid; Moayyedi, Golasa; Reisi, Neda

    2015-03-01

    This study investigates chromotropism of newly synthesized 3,3‧-(ethane-1,2-diylbis(benzylazanediyl))dipropanamide copper(II) perchlorate complex. The compound was structurally characterized by physico-chemical and spectroscopic methods. X-ray crystallography of the complex showed that the copper atom achieved a distorted square pyramidal environment through coordination of two amine N atoms and two O atoms of the amide moieties. The pH effect on the visible absorption spectrum of the complex was studied which functions as pH-induced "off-on-off" switches through protonation and deprotonation of amide moieties along with the Cusbnd O to Cusbnd N bond rearrangement at room temperature. The complex was also observed to show solvatochromism and ionochromism. The distinct solution color changes mainly associated with hemilability of the amide groups. The solvatochromism of the complex was investigated with different solvent parameter models using stepwise multiple linear regression method. The results suggested that the basicity power of the solvent has a dominant contribution to the shift of the d-d absorption band of the complex. Density functional theory, DFT calculations were performed in order to study the electronic structure of the complex, the relative stabilities of the Cusbnd N/Cusbnd O isomers, and to understand the nature of the halochromism processes taking place. DFT computational results buttressed the experimental observations indicating that in the natural pH (5.8) the Cusbnd O isomer is more stable than its linkage isomer and conversely in alkaline aqueous solution.

  10. Halochromism, ionochromism, solvatochromism and density functional study of a synthesized copper(II) complex containing hemilabile amide derivative ligand.

    Science.gov (United States)

    Golchoubian, Hamid; Moayyedi, Golasa; Reisi, Neda

    2015-03-05

    This study investigates chromotropism of newly synthesized 3,3'-(ethane-1,2-diylbis(benzylazanediyl))dipropanamide copper(II) perchlorate complex. The compound was structurally characterized by physico-chemical and spectroscopic methods. X-ray crystallography of the complex showed that the copper atom achieved a distorted square pyramidal environment through coordination of two amine N atoms and two O atoms of the amide moieties. The pH effect on the visible absorption spectrum of the complex was studied which functions as pH-induced "off-on-off" switches through protonation and deprotonation of amide moieties along with the CuO to CuN bond rearrangement at room temperature. The complex was also observed to show solvatochromism and ionochromism. The distinct solution color changes mainly associated with hemilability of the amide groups. The solvatochromism of the complex was investigated with different solvent parameter models using stepwise multiple linear regression method. The results suggested that the basicity power of the solvent has a dominant contribution to the shift of the d-d absorption band of the complex. Density functional theory, DFT calculations were performed in order to study the electronic structure of the complex, the relative stabilities of the CuN/CuO isomers, and to understand the nature of the halochromism processes taking place. DFT computational results buttressed the experimental observations indicating that in the natural pH (5.8) the CuO isomer is more stable than its linkage isomer and conversely in alkaline aqueous solution.

  11. Crystal structure and photoluminescence properties of a new monomeric copper(II) complex: bis(3-{[(3-hydroxypropyl)imino]methyl}-4-nitrophenolato-κ(3)O,N,O')copper(II).

    Science.gov (United States)

    Kocak, Cagdas; Oylumluoglu, Gorkem; Donmez, Adem; Coban, M Burak; Erkarslan, Ugur; Aygun, Muhittin; Kara, Hulya

    2017-05-01

    Copper(II)-Schiff base complexes have attracted extensive interest due to their structural, electronic, magnetic and luminescence properties. The title novel monomeric Cu(II) complex, [Cu(C10H11N2O4)2], has been synthesized by the reaction of 3-{[(3-hydroxypropyl)imino]methyl}-4-nitrophenol (H2L) and copper(II) acetate monohydrate in methanol, and was characterized by elemental analysis, UV and IR spectroscopies, single-crystal X-ray diffraction analysis and a photoluminescence study. The Cu(II) atom is located on a centre of inversion and is coordinated by two imine N atoms, two phenoxy O atoms in a mutual trans disposition and two hydroxy O atoms in axial positions, forming an elongated octahedral geometry. In the crystal, intermolecular O-H...O hydrogen bonds link the molecules to form a one-dimensional chain structure and π-π contacts also connect the molecules to form a three-dimensional structure. The solid-state photoluminescence properties of the complex and free H2L have been investigated at room temperature in the visible region. When the complex and H2L are excited under UV light at 349 nm, the complex displays a strong green emission at 520 nm and H2L displays a blue emission at 480 nm.

  12. Copper(II) complexes of terminally free alloferon mutants containing two histidyl binding sites inside peptide chain structure and stability.

    Science.gov (United States)

    Kadej, Agnieszka; Kuczer, Mariola; Kowalik-Jankowska, Teresa

    2015-12-21

    Mononuclear and polynuclear copper(II) complexes of alloferon 1 with point mutations, H1A/H12A H2N-A(1)GVSGH(6)GQH(9)GVA(12)G-COOH, H1A/H9A H2N-A(1)GVSGH(6)GQA(9)GVH(12)G-COOH, and H1A/H6A H2N-A(1)GVSGA(6)GQH(9)GVH(12)G-COOH, have been studied by potentiometric, UV-visible, CD, and EPR spectroscopy, and mass spectrometry (MS) methods. Complete complex speciation at different metal-to-ligand molar ratios ranging from 1 : 1 to 3 : 1 was obtained. Over a wide 6-8 pH range, including physiological pH 7.4, and a 1 : 1 metal-to-ligand molar ratio, the peptides studied formed a CuH-1L complex with the 4N{NH2,N(-),2NIm} coordination mode. The presence of the 4N binding site for the CuH-1L complexes prevented the deprotonation and coordination of the second amide nitrogen atom to copper(II) ions (pK-1/-2 7.83-8.07) compared to that of pentaGly (6.81). The amine nitrogen donor and two imidazole nitrogen atoms (H(6)H(9), H(6)H(12) and H(9)H(12)) can be considered to be independent metal-binding sites in the species formed. As a consequence, di- and trinuclear complexes for the metal-to-ligand 2 : 1 and 3 : 1 molar ratios dominate in the solution, respectively. For the Cu(II)-H1A/H9A and Cu(II)-H1A/H12A systems, the Cu3H-9L complexes are likely formed by the coordination of amide nitrogen atoms towards C-termini with ring sizes (7,5,5).

  13. Dispersion-Force-Assisted Disproportionation: A Stable Two-Coordinate Copper(II) Complex.

    Science.gov (United States)

    Wagner, Clifton L; Tao, Lizhi; Thompson, Emily J; Stich, Troy A; Guo, Jingdong; Fettinger, James C; Berben, Louise A; Britt, R David; Nagase, Shigeru; Power, Philip P

    2016-08-22

    The synthesis of the first linear coordinated Cu(II) complex Cu{N(SiMe3 )Dipp}2 (1 Dipp=C6 H5 -2,6Pr(i) 2 ) and its Cu(I) counterpart [Cu{N(SiMe3 )Dipp}2 ](-) (2) is described. The formation of 1 proceeds through a dispersion force-driven disproportionation, and is the reaction product of a Cu(I) halide and LiN(SiMe3 )Dipp in a non-donor solvent. The synthesis of 2 is accomplished by preventing the disproportionation into 1 by using the complexing agent 15-crown-5. EPR spectroscopy of 1 provides the first detailed study of a two-coordinate transition-metal complex indicating strong covalency in the Cu-N bonds.

  14. Synthesis, Immobilization and Catalytic Activity of a Copper(II Complex with a Chiral Bis(oxazoline

    Directory of Open Access Journals (Sweden)

    Liliana Carneiro

    2014-08-01

    Full Text Available A chiral bis(oxazoline bearing CH2OH groups was synthesized from a commercial bis(oxazoline and characterized by 1H- and 13C-NMR, high resolution ESI-mass spectrometry and FTIR. The corresponding copper(II complex was immobilized onto the surface of a mesoporous carbonaceous material (Starbon® 700 in which the double bonds had been activated via conventional bromination. The materials were characterized by elemental analysis, ICP-OES, XPS, thermogravimetry and nitrogen adsorption at 77 K. The new copper(II bis(oxazoline was tested both in the homogeneous phase and once immobilized onto a carbonaceous support for the kinetic resolution of hydrobenzoin. Both were active, enantioselective and selective in the mono-benzoylation of hydrobenzoin, but better enantioselectivities were obtained in the homogeneous phase. The heterogeneous catalyst could be separated from the reaction media at the end of the reaction and reused in another catalytic cycle, but with loss of product yield and enantioselectivity.

  15. Copper(II) bromide, nitrate and perchlorate complexes with sterically demanding N-(6-methylpyridin-2-yl)acetamide ligands.

    Science.gov (United States)

    Smolentsev, Anton I

    2017-08-01

    Functionalized acid amides are widely used in biology, medicine, environmental chemistry and many other areas. Among them, pyridine-substituted amides, in particular N-(pyridin-2-yl)acetamide and its derivatives, play an important role due to their excellent chelating properties. The donor properties of these ligands can be effectively modified by introducing electron-donating substituents (e.g. alkyl groups) into the heterocycle. On the other hand, substituents in the α-position of the pyridine ring can create steric hindrance, which significantly influences the coordination number and geometry. To achieve a better understanding of these effects, copper(II) complexes with sterically demanding N-(6-methylpyridin-2-yl)acetamide ligands (L) and monoanions of different size, shape and coordination ability have been chosen as model compounds. The crystal structures of three new compounds, bromidobis[N-(6-methylpyridin-2-yl-κN)acetamide-κO]copper(II) bromide, [CuBr(C8H10N2O)]Br, (I), aquabis[N-(6-methylpyridin-2-yl-κN)acetamide-κO]copper(II) dinitrate, [Cu(C8H10N2O)(H2O)](NO3)2, (II), and aquabis[N-(6-methylpyridin-2-yl-κN)acetamide-κO]copper(II) bis(perchlorate), [Cu(C8H10N2O)(H2O)](ClO4)2, (III), have been determined by single-crystal X-ray diffraction analysis. It has been shown that the presence of the 6-methyl group results in either a distorted square-pyramidal or a distorted trigonal-bipyramidal coordination geometry around the Cu(II) centres instead of the typical octahedral geometry observed when the methyl substituent is absent or occupies any other position on the pyridine ring. Moreover, due to the steric hindrance provided by the L ligands, only the bromide ligand, the smallest of the series, enters into the first coordination sphere of the Cu(II) ion in (I). In (II) and (III), the vacant coordination site of the Cu(II) ion is occupied by a water molecule, while the nitrate and perchlorate anions are not involved in coordination to the metal centre

  16. Identification of different coordination geometries by XAFS in copper(II) complexes with trimesic acid

    Science.gov (United States)

    Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2016-10-01

    X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.

  17. H2O2-reactivity of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine ligands with 6-phenyl substituents.

    Science.gov (United States)

    Kunishita, Atsushi; Kubo, Minoru; Ishimaru, Hirohito; Ogura, Takashi; Sugimoto, Hideki; Itoh, Shinobu

    2008-12-15

    The structure and H(2)O(2)-reactivity of a series of copper(II) complexes supported by tris[(pyridin-2-yl)methyl]amine (TPA) derivatives having a phenyl group at the 6-position of pyridine donor group(s) [(6-phenylpyridin-2-yl)methyl]bis[(pyridin-2-yl)methyl]amine (Ph(1)TPA), bis[(6-phenylpyridin-2-yl)methyl][(pyridin-2-yl)methyl]amine (Ph(2)TPA), and tris[(6-phenylpyridin-2-yl)methyl]amine (Ph(3)TPA) have systematically been examined to get insights into the aromatic substituent (6-Ph) effects on the coordination chemistry of TPA ligand system. The X-ray crystallographic analyses have revealed that [Cu(II)(TPA)(CH(3)CN)](ClO(4))(2) (CuTPA) and [Cu(II)(Ph(3)TPA)(CH(3)CN)](ClO(4))(2) (3) exhibit a trigonal bipyramidal structure, whereas [Cu(II)(Ph(1)TPA)(CH(3)CN)](ClO(4))(2) (1) shows a slightly distorted square pyramidal structure and [Cu(II)(Ph(2)TPA)(CH(3)CN)](ClO(4))(2) (2) has an intermediate structure between trigonal bipyramidal and square pyramidal. On the other hand, the UV-vis and ESR data have suggested that all the copper(II) complexes have a similar trigonal bipyramidal structure in solution. The redox potentials of CuTPA, 1, 2, and 3 have been determined as E(1/2) = -0.34, -0.28, -0.16, and -0.04 mV vs Ag/AgNO(3), respectively, demonstrating that introduction of each 6-Ph group causes positive shift of E(1/2) about 0.1 V. Notable difference in H(2)O(2)-reactivity has been found among the copper(II) complexes. Namely, CuTPA and 1 afforded mononuclear copper(II)-hydroperoxo complexes CuTPA-OOH and 1-OOH, respectively, whereas complex 2 provided bis(mu-oxo)dicopper(III) complex 2-oxo. On the other hand, copper(II) complex 3 was reduced to the corresponding copper(I) complex 3(red). On the basis of the H(2)O(2)-reactivity together with the X-ray structures and the redox potentials of the copper(II) complexes, the substituent effects of 6-Ph are discussed in detail.

  18. Study on the interaction of a copper(II) complex containing the artificial sweetener aspartame with human serum albumin.

    Science.gov (United States)

    Shahabadi, Nahid; Khodaei, Mohammad Mehdi; Kashanian, Soheila; Kheirdoosh, Fahimeh; Filli, Soraya Moradi

    2014-05-01

    A copper(II) complex containing aspartame (APM) as ligand, Cu(APM)2Cl2·2H2O, was synthesized and characterized. In vitro binding interaction of this complex with human serum albumin (HSA) was studied at physiological pH. Binding studies of this complex with HSA are useful for understanding the Cu(APM)2Cl2·2H2O-HSA interaction mechanism and providing guidance for the application and design of new and more efficient artificial sweeteners drive. The interaction was investigated by spectrophotometric, spectrofluorometric, competition experiment and circular dichroism. Hyperchromicity observed in UV absorption band of Cu(APM)2Cl2·2H2O. A strong fluorescence quenching reaction of HSA to Cu(APM)2Cl2·2H2O was observed and the binding constant (Kf) and corresponding numbers of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy change (∆H) and entropy change (∆S) were calculated to be -458.67 kJ mol(-1) and -1,339 J mol(-1 )K(-1) respectively. According to the van't Hoff equation, the reaction is predominantly enthalpically driven. In conformity with experimental results, we suggest that Cu(APM)2Cl2·2H2O interacts with HSA. In comparison with previous study, it is found that the Cu(II) complex binds stronger than aspartame.

  19. Effect of copper-sulphur bond on the DNA photo-cleavage activity of 2-(methylthio)ethylpyridine-2-carbaldimine copper(II) complexes

    Indian Academy of Sciences (India)

    Tarkeshwar Gupta; Ashis K Patra; Shanta Dhar; Munirathinam Nethaji; Akhil R Chakravarty

    2005-03-01

    The binding and photo-induced DNA cleavage activity of a binary complex [CuL2](ClO4)2 (1) and the in situ generated ternary complexes [CuLB](ClO4)2 from 1 (B: 1,10-phenanthroline, phen, 2; dipyrido[3,2-: 2',3'-]quinoxaline, dpq, 3) are studied, where L is a N2S-donor tridentate Schiff base 2-(methylthio)ethylpyridine-2-carbaldimine. Complex 1, structurally characterized by X-ray diffraction study, has six-coordinate meridional geometry showing CuN4S2 coordination. The Cu-N bond lengths are in the range of 1.968(3) to 2.158(4) Å. The Cu-S bond lengths of 2.599(2) and 2.705(2) Å are significantly long indicating weak covalent interaction between copper and sulphur atoms. The thiomethyl groups are cis to each other giving S-Cu-S angle of 75.82(5)°. The Cu-N(pyridyl) bond distances are longer than the Cu-N(imine) bonds. The complexes are redox active and display a quasi-reversible cyclic voltammetric response assignable to the Cu(II)/Cu(I) couple near 0.0 V vs SCE in DMF-Tris buffer (1 : 4 /) using 0.1 M KCl as supporting electrolyte. Electronic spectra of the complexes show a - band in the range 630 to 700 nm in DMF along with higher energy charge transfer bands. While complex 1 is a poor binder to DNA, the ternary complexes show good DNA binding propensity. The photo-nuclease activity of 1-3 is studied using UV and visible wavelengths. The DNA cleavage activity at 365 nm follows the order: 3 > 2 > 1. The cleavage reaction involves the formation of singlet oxygen as the reactive species in a type-II process.

  20. Thermodynamics of the formation of complexes of copper(II) ions and glycylglycine in aqueous solutions at 298 K according to calorimetry data

    Science.gov (United States)

    Kochergina, L. A.; Emel'yanov, A. V.

    2015-04-01

    Heat effects of the interaction between glycylglycine and copper(II) nitrate solutions are measured by direct calorimetry at a [metal] : [ligand] ratio of 1 : 5 and at different pH values of the solution. The measurements are made at a temperature of 298.15 K and ionic strengths of 0.25, 0.50, and 0.75. KNO3 is used as a background electrolyte. The thermodynamic characteristics of complex formation by the peptide and copper(II) ions in aqueous solutions are determined. Standard enthalpies of the formation of complex particles in aqueous solutions are calculated.

  1. DNA binding, DNA cleavage, and cytotoxicity studies of two new copper (II) complexes.

    Science.gov (United States)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Roshanfekr, Hamideh; Shahabadi, Nahid; Rezvani, Alireza; Mansouri, Ghobad

    2011-05-01

    The DNA binding behavior of [Cu(phen)(phen-dione)Cl]Cl (1) and [Cu(bpy)(phen-dione)Cl]Cl (2) was studied with a series of techniques including UV-vis absorption, circular dichroism spectroscopy, and viscometric methods. Cytotoxicity effect and DNA unwinding properties were also investigated. The results indicate that the Cu(II) complexes interact with calf-thymus DNA by both partially intercalative and hydrogen binding. These findings have been further substantiated by the determination of intrinsic binding constants spectrophotometrically, 12.5 × 10(5) and 5 × 10(5) for 1 and 2, respectively. Our findings suggest that the type of ligands and structure of complexes have marked effect on the binding affinity of complexes involving CT-DNA. Circular dichroism results show that complex 1 causes considerable increase in base stacking of DNA, whereas 2 decreases the base stacking, which is related to more extended aromatic area of 1,10-phenanthroline in 1 rather than bipyridine in 2. Slow decrease in DNA viscosity indicates partially intercalative binding in addition to hydrogen binding on the surface of DNA. The second binding mode was also confirmed by additional tests: interaction in denaturation condition and acidic pH. Also, these new complexes induced cleavage in pUC18 plasmid DNA as indicated in gel electrophoresis and showed excellent antitumor activity against K562 (human chronic myeloid leukemia) cells.

  2. Crystal structures of bis- and hexakis[(6,6'-di-hydroxy-bipyridine)copper(II)] nitrate coordination complexes.

    Science.gov (United States)

    Gerlach, Deidra L; Nieto, Ismael; Herbst-Gervasoni, Corey J; Ferrence, Gregory M; Zeller, Matthias; Papish, Elizabeth T

    2015-12-01

    Two multinuclear complexes synthesized from Cu(NO3)2 and 6,6'-di-hydroxy-bipyridine (dhbp) exhibit bridging nitrate and hydroxide ligands. The dinuclear complex (6,6'-di-hydroxy-bipyridine-2κ(2) N,N')[μ-6-(6-hy-droxy-pyridin-2-yl)pyridin-2-olato-1:2κ(3) N,N':O (2)](μ-hydroxido-1:2κ(2) O:O')(μ-nitrato-1:2κ(2) O:O')(nitrato-1κO)dicopper(II), [Cu2(C10H7N2O2)(OH)(NO3)2(C10H8N2O2)] or [Cu(6-OH-6'-O-bpy)(NO3)(μ-OH)(μ-NO3)Cu(6,6'-dhbp)], (I), with a 2:1 ratio of nitrate to hydroxide anions and one partially deprotonated dhbp ligand, forms from a water-ethanol mixture at neutral pH. The hexa-nuclear complex bis-(μ3-bi-pyridine-2,2'-diolato-κ(3) O:N,N':O')tetra-kis-(6,6'-di-hydroxy-bipyridine-κ(2) N,N')tetra-kis-(μ-hydroxido-κ(2) O:O')bis-(methanol-κO)tetra-kis-(μ-nitrato-κ(2) O:O')hexa-copper(II), [Cu6(C10H6N2O2)2(CH4O)2(OH)4(NO3)4(C10H8N2O2)4] or [Cu(6,6'-dhbp)(μ-NO3)2(μ-OH)Cu(6,6'-O-bpy)(μ-OH)Cu(6,6'dhbp)(CH3OH)]2, (II), with a 1:1 NO3-OH ratio and two fully protonated and fully deprotonated dhbp ligands, was obtained by methanol recrystallization of material obtained at pH 3. Complex (II) lies across an inversion center. Complexes (I) and (II) both display intra-molecular O-H⋯O hydrogen bonding. Inter-molecular O-H⋯O hydrogen bonding links symmetry-related mol-ecules forming chains along [100] for complex (I) with π-stacking along [010] and [001]. Complex (II) forms inter-molecular O-H⋯O hydrogen-bonded chains along [010] with π-stacking along [100] and [001].

  3. DNA interaction, antimicrobial studies of newly synthesized copper (II) complexes with 2-amino-6-(trifluoromethoxy)benzothiazole Schiff base ligands.

    Science.gov (United States)

    Rambabu, Aveli; Pradeep Kumar, Marri; Tejaswi, Somapangu; Vamsikrishna, Narendrula; Shivaraj

    2016-12-01

    Four novel Schiff base ligands, L(1) (1-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)naphthalen-2-ol, C19H11F3N2O2S), L(2) (3-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)benzene-1,2-diol, C15H9F3N2O3S), L(3) (2-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)-5-methoxyphenol, C16H11F3N2O3S) and L(4) (2-((E)-(6-(trifluoromethoxy)benzo[d]thiazol-2-ylimino)methyl)-4-bromophenol, C15H8BrF3N2O2S) and their binary copper(II) complexes 1 [Cu(L(1))2], 2 [Cu(L(2))2], 3 [Cu(L(3))2] and 4 [Cu(L(4))2] have been synthesized and characterized by elemental analysis, (1)H NMR, (13)C NMR, ESI mass, FT-IR, ESR, UV-Visible, magnetic susceptibility, TGA, SEM and powder XRD studies. Based on spectral and analytical data, a square planar geometry is assigned for all Cu(II) complexes. The ligands and their Cu(II) complexes have been screened for antimicrobial activity against bacterial species E. coli, P. aeruginosa, B. amyloliquefaciens and S. aureus and fungal species S. rolfsii and M. phaseolina and it is observed that all Cu(II) complexes are more potent than corresponding ligands. DNA binding (UV absorption, fluorescence and viscosity titrations) and cleavage (oxidative and photo cleavage) studies of Cu(II) complexes have also been investigated against calf thymus DNA (CT-DNA) and supercoiled pBR322 DNA respectively. From the experimental results, it is found that the complexes bound effectively to CT-DNA through an intercalative mode and also cleaved pBR322 DNA in an efficient manner. The DNA binding and cleavage affinities of newly synthesized Cu(II) complexes are in the order of 2>1>3>4.

  4. Synthesis, physico-chemical characterization and biological activity of copper(ii and nickel(ii complexes with l-benzoyl-2-methylbenzimidazole derivatives

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2002-01-01

    Full Text Available Chlorides of copper(II and nickel(ll react with 1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole to give complexes of the type [M(LnCln(H20∙Cln (M = Cu or Ni; L = (1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole; n=O, 1 or 2. The complexes were synthesized and characterized by elemental analysis, molar conductivity magnetic susceptibility measurements and IR spectra. These studies suggest that all the complexes possess an octahedral stereochemistry. The antibacterial activity of (1-benzoyl-2-methylbenzimidazole or 1-(4-chlorobenzoyl-2-methylbenzimidazole and their complexes was evaluated against Escherichia coli and Bacillus sp.

  5. Cobalt(II), nickel(II) and copper(II) complexes of a hexadentate pyridine amide ligand. Effect of donor atom (ether vs. thioether) on coordination geometry, spin-state of cobalt and M(III)-M(II) redox potential.

    Science.gov (United States)

    Pandey, Sharmila; Das, Partha Pratim; Singh, Akhilesh Kumar; Mukherjee, Rabindranath

    2011-10-28

    Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.

  6. Mixed-ligand binuclear copper(II) complex of 5-methylsalicylaldehyde and 2,2'-bipyridyl: Synthesis, crystal structure, DNA binding and nuclease activity

    Indian Academy of Sciences (India)

    Perumal Gurumoorthy; Jayaram Ravichandran; Aziz Kalilur Rahiman

    2014-05-01

    A new mixed-ligand binuclear copper(II) complex [Cu(MS)(bpy)]2.(ClO4)2, built of 5-methylsalicylaldehyde and 2,2'-bipyridyl has been synthesized and characterized by using elemental analysis, IR and UV-Vis spectroscopy. Crystal structure of the complex shows that copper(II) ion lies in a square pyramidal coordination environment. The structure consists of two symmetrical half units in which the copper(II) ion of one half unit connected with the phenolate oxygen atom of other half unit along with one perchlorate anion in the crystal lattice as free molecule. Presence of uncoordinated perchlorate anion was also confirmed by IR spectroscopy. Absorption spectroscopy exhibits d-d transition at 628 nm, which further supports the square pyramidal geometry around the copper(II) ions. EPR spectrum of the copper(II) complex at room temperature shows a broad signal without any splitting pattern at ∥ = 2.26, ⊥ = 2.03 and the magnetic moment (eff = 1.31 BM) obtained at room temperature indicate an antiferromagnetic interaction between the two copper(II) ions through phenoxide-bridge. Binding studies reveal that the complex possesses good binding propensity (b = 5.2 ± 1.7 × 104 M-1) and bind to nitrogenous bases of DNA through intercalation. Nuclease activity of the complex with pBR322 DNA shows that the effect of hydrolytic cleavage is dose-dependent and the oxidative cleavage indicates the involvement of hydroxyl radical and singlet-oxygen as reactive oxygen species.

  7. Structural analysis and physico-chemical characterization of mononuclear manganese(II) and polynuclear copper(II) complexes with pyridine-based alcohol

    Science.gov (United States)

    Zienkiewicz-Machnik, Małgorzata; Masternak, Joanna; Kazimierczuk, Katarzyna; Barszcz, Barbara

    2016-12-01

    Two novel manganese(II) and copper(II) complexes, mononuclear [Mn(H2O)2(2-(CH2)2OHpy)2](NO3)2 (1) and polynuclear [Cu(SO4)(2-(CH2)2OHpy)2]n (2), based on 2-(hydroxyethyl)pyridine (2-(CH2)2OHpy) were synthesised and fully characterised using X-ray structure analysis as well as spectroscopic, magnetic and thermal methods. Both central metal ions Mn(1) and Cu(1) are coordinated by two N,O-donor 2-(CH2)2OHpy ligands and possess an almost perfect octahedral geometry (a chromophore of {MN2O4} type). The coordination sphere of Mn(II) is completed by two molecules of water, whereas, in polynuclear complex 2, Cu(II) atoms are linked along the a crystallographic direction by bridging sulfate ligands in a μ2-κ2 binding mode to form chains. The intermolecular interactions in 1 and 2 have been interpreted in view of the 3D Hirshfeld surface analysis and associated 2D fingerprint plots. Furthermore, the complexes have been tested with ABTSrad + assay in order to assess their antioxidant activity. In addition, the IC50 values calculated for 1 and 2 revealed that the complexes show a higher antioxidant activity than corresponding ligand.

  8. Synthesis and antibacterial activity of cephradine metal complexes : part II complexes with cobalt, copper, zinc and cadmium.

    Science.gov (United States)

    Sultana, Najma; Arayne, M Saeed; Afzal, M

    2005-01-01

    Cephradine, the first generation cephalosporin, is active against a wide range of Gram-positive and Gram-negative bacteria including penicillinase-producing Staphylococci. Since the presence of complexing ligand may affect the bioavailability of a metal in the blood or tissues, therefore, in order to study the probable interaction of cephradine with essential and trace elements present in human body, cephradine has been reacted with cobalt, copper, zinc and cadmium metal halides in L:M ratio of 2:1 in methanol and the products recrystallized from suitable solvents to pure crystals of consistent melting points. Infrared and ultraviolet studies of these complexes were carried out and compared with ligand. Magnetic susceptibility studies of these complexes were also carried out showing their paramagnetic behavior. From the infra red studies and elemental analysis of the complexes, it has been shown that the drug molecule serves as a bidentate ligand coordinating through both its carboxylate at C-3 and beta-lactam nitrogen and the metal having a square planar or octahedral geometry. To evaluate the changes in microbiological activity of cephradine after complexation, antibacterial studies were carried out by observing the changes in MIC (minimum inhibitory concentration) of the complexes and compared with the parent drug by measuring the zone of inhibition of complexes and compared with the parent cephalosporin against both Gram-positive and Gram-negative organisms. For MIC observation, serial dilution method was employed and zone series were determined by disk diffusion method. Our investigations reveal that formation of complexes results in decrease in antibacterial activity of cephradine and MIC values are increased.

  9. Metalloantibiotics: synthesis, characterization and in-vitro antibacterial studies on cobalt (II), copper (II), nickel (II) and zinc (II) complexes with cloxacillin.

    Science.gov (United States)

    Chohan, Zahid H; Supuran, Claudiu T

    2006-08-01

    The synthesis and characterization of cloxacillin (clox) complexes with divalent metal ions [Co (II), Cu (II), Ni (II) and Zn (II)] is described. The nature of bonding of the chelated cloxacillin and the structures of the metal complexes have been elucidated on the basis of their physical and spectroscopic data. In all the complexes, the cloxacillin acts as a uninegatively charged bidentate ligand with coordination involving the carboxylate-O and endocyclic-N of the beta-lactam ring. The new compounds have been screened for in-vitro antibacterial activity against Escherichia coli (a), Klebsiella pneumonae (b), Proteus mirabilis (c), Pseudomonas aeruginosa (d), Salmonella typhi (e), Shigella dysentriae (f), Bacillus cereus (g), Corynebacterium diphtheriae (h), Staphylococcus aureus (j) and Streptococcus pyogenes (k) bacterial strains. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties. All compounds, respectively, showed a promising activity (90%) against five bacterial species at 10 microg/ml concentration and a significant activity (52%) against the same test bacteria at 25 microg/ml concentration.

  10. Synthesis and characterization of iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes of salicylidene-N-anilinoacetohydrazone (H2L1) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H2L2).

    Science.gov (United States)

    AbouEl-Enein, S A; El-Saied, F A; Kasher, T I; El-Wardany, A H

    2007-07-01

    Salicylidene-N-anilinoacetohydrazone (H(2)L(1)) and 2-hydroxy-1-naphthylidene-N-anilinoacetohydrazone (H(2)L(2)) and their iron(III), manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes have been synthesized and characterized by IR, electronic spectra, molar conductivities, magnetic susceptibilities and ESR. Mononuclear complexes are formed with molar ratios of 1:1, 1:2 and 1:3 (M:L). The IR studies reveal various modes of chelation. The electronic absorption spectra and magnetic susceptibility measurements show that the iron(III), nickel(II) and cobalt(II) complexes of H(2)L(1) have octahedral geometry. While the cobalt(II) complexes of H(2)L(2) were separated as tetrahedral structure. The copper(II) complexes have square planar stereochemistry. The ESR parameters of the copper(II) complexes at room temperature were calculated. The g values for copper(II) complexes proved that the Cu-O and Cu-N bonds are of high covalency.

  11. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    Science.gov (United States)

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines.

  12. Anti-oxidant, in vitro, in vivo anti-inflammatory activity and antiproliferative activity of mefenamic acid and its metal complexes with manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II).

    Science.gov (United States)

    Kovala-Demertzi, Dimitra; Hadjipavlou-Litina, Dimitra; Staninska, Malgorzata; Primikiri, Alexandra; Kotoglou, Chronis; Demertzis, Mavroudis A

    2009-06-01

    Some new complexes of mefenamic acid with potentially interesting biological activity are described. The complexes of mefenamic acid [Mn(mef)(2)(H(2)O)(2)], 1, [Co(mef)(2)(H(2)O)(2)], 2, [Ni(mef)(2)(H(2)O)(2)], 3, [Cu(mef)(2)(H(2)O)](2), 4 and [Zn(mef)(2)], 5, were prepared by the reaction of mefenamic acid, a potent anti-inflammatory drug with metal salts. Optical and infrared spectral data of these new complexes are reported. Monomeric six-coordinated species were isolated in the solid state for Mn(II), Ni(II) and Co(II), dimeric five-coordinated for Cu(II) and monomeric four-coordinated for Zn(II). In DMF or CHCl(3) solution the coordination number is retained and the coordinated molecules of water are replaced by solvent molecules. The anti-oxidant properties of the complexes were evaluated using the 1,1-diphenyl-2-picrylhydrazyl, DPPH, free radical scavenging assay. The scavenging activities of the complexes were measured and compared with those of the free drug and vitamin C. We have explored their ability to inhibit soybean lipoxygenase, beta-glucuronidase and trypsin- induced proteolysis. The complex [Mn(mef)(2)(H(2)O)(2)] exhibits the highest antioxidant activity and the highest inhibitory effect against the soybean lipogygenase (LOX), properties that are not demonstrated by mefenamic acid. Their inhibitory effects on rat paw edema induced by Carrageenan was studied and compared with those of mefenamic acid. The complex [Zn(mef)(2)] exhibited a strong inhibitory effect at 0.1 mmol/Kg B.W. (81.5 +/- 1.3% inhibition), superior to the inhibition induced by mefenamic acid at the same dose (61.5 +/- 2.3% inhibition). Mefenamic acid and its metal complexes have been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines: MCF-7 (human breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma) and a mouse fibroblast L-929 cell line. The copper(II) complex displays against T24, MCF-7

  13. Copper(ii) mixed-ligand polypyridyl complexes with doxycycline - structures and biological evaluation.

    Science.gov (United States)

    Abosede, Olufunso O; Vyas, Nilima A; Singh, Sushma B; Kumbhar, Avinash S; Kate, Anup; Kumbhar, Anupa A; Khan, Ayesha; Erxleben, Andrea; Smith, Peter; de Kock, Carmen; Hoffmann, Frank; Obaleye, Joshua A

    2016-02-21

    Mixed-ligand Cu(ii) complexes of the type [Cu(doxycycline)(L)(H2O)2](NO3)2, where doxycycline = [4-(dimethylamino)-3,5,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide] and L = 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4) have been synthesised and characterised by structural, analytical, and spectral methods. The single-crystal X-ray structures of 1 and 2 exhibited two different geometries, distorted square-pyramidal and octahedral respectively as well as different coordination modes of doxycycline. Complexes 2-4 exhibit prominent plasmid DNA cleavage at significantly low concentrations probably by an oxidative mechanism. Matrix Metalloproteinase (MMP-2) inhibition studies revealed that all complexes inhibit MMP-2 similar to doxycycline which is a well-known MMP inhibitor with 3 being the most potent. IC50 values of doxycycline and 1-4 against MCF-7 (human breast cancer) and HeLa cell lines were almost equal in which 3 showed the highest efficiency (IC50 = 0.46 ± 0.05 μM), being consistent with its increased MMP inhibition potency. The antimalarial activities of these complexes against the chloroquine-sensitive Plasmodium falciparum NF54 and chloroquine-resistant Plasmodium falciparum Dd2 strains reveal that complex 3 exhibited a higher activity than artesunate drug against the chloroquine-resistant Dd2 strain.

  14. Syntheses and Crystal Structures of Mercury(II) and Copper(II) Complexes of an 18-Membered NS{sub 4}-Macrocycle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunji; Lee, Shim Sung [Gyeongsang National University, Jinju (Korea, Republic of)

    2015-01-15

    An 18-membered NS{sub 4}-macrocycle was employed, and its complexation behaviors with hard and soft metal ions were investigated. Reactions of L with mercury(II) nitrate and thiocyanate afforded endocyclic mononuclear complexes [Hg(L)(NO{sub 3}){sub 2}] (1) and [Hg(L)(SCN){sub 2}] (2), respectively, with anion coordinations. In the nitrato complex 1, the mercury(II) center is six-coordinate, being bound to three S donors and one pyridine N atom in L, and the coordination sphere is completed by two monodentate nitrate ions from both sides of the macrocyclic plane adopting a distorted octahedral geometry. The thiocyanato complex 2, which contains two crystallographically independent but almost isostructural complex units is five-coordinate, being bound to NS{sub 2} donors in L and two monodentate thiocyanate ions on the same side of the bound macrocycle unlike 1, adopting a distorted square pyramidal geometry. Reaction of L with CuCl{sub 2} 2H{sub 2}O yielded a dark-green bis(macrocycle) trinuclear complex, [Cu{sub 3}(L){sub 2}Cl{sub 6}] 0.5CH{sub 2}Cl{sub 2} (3), in which two endocyclic monocopper (II) complex units are linked by an exocyclic one Cu and two bridging Cl atoms. In 3, interestingly, the local coordination environments of the three copper(II) atoms are different, with four, five, or six coordination, adopting a distorted square pyramidal, tetrahedral, or octahedral geometry, respectively. From these results, it is found that the ditopic ligand L reacts with both soft and hard metal-ion species to give diverse types of endocyclic complexes whose structures are also dependent on the anions used.

  15. Synthesis, spectral characterization, DNA binding ability and antibacterial screening of copper(II) complexes of symmetrical NOON tetradentate Schiff bases bearing different bridges

    Science.gov (United States)

    Bahaffi, Saleh O.; Abdel Aziz, Ayman A.; El-Naggar, Maher M.

    2012-08-01

    A novel series of four copper(II) complexes were synthesized by thermal reaction of copper acetate salt with symmetrical tetradentate Schiff bases, N,N'bis(o-vanillin)4,5-dimethyl-l,2-phenylenediamine (H2L1), N,N'bis(salicylaldehyde)4,5-dimethyl-1,2-phenylenediamine (H2L2), N,N'bis(o-vanillin)4,5-dichloro-1,2-phenylenediamine (H2L3) and N,N'bis(salicylaldehyde)4,5-dichloro-1,2-phenylenediamine (H2L4), respectively. All the new synthesized complexes were characterized by using of microanalysis, FT-IR, UV-Vis, magnetic measurements, ESR, and conductance measurements, respectively. The data revealed that all the Schiff bases (H2L1-4) coordinate in their deprotonated forms and behave as tetradentate NOON coordinated ligands. Moreover, their copper(II) complexes have square planar geometry with general formula [CuL1-4]. The binding of the complexes with calf thymus DNA (CT-DNA) was investigated by UV-Vis spectrophotometry, fluorescence quenching and viscosity measurements. The results indicated that the complexes bind to CT-DNA through an intercalative mode. From the biological activity view, the copper(II) complexes and their parent ligands were screened for their in vitro antibacterial activity against the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosai by well diffusion method. The complexes showed an increased activity in comparison to some standard drugs.

  16. Novel homo- and hetero-nuclear copper(II) complexes of tetradentate Schiff bases: Synthesis, characterization, solvent-extraction and catalase-like activity studies

    Energy Technology Data Exchange (ETDEWEB)

    Dede, Buelent [Sueleyman Demirel University, Department of Chemistry, Isparta, 32260 (Turkey)], E-mail: dbulent@fef.sdu.edu.tr; Karipcin, Fatma; Cengiz, Mustafa [Sueleyman Demirel University, Department of Chemistry, Isparta, 32260 (Turkey)

    2009-04-30

    Twelve homo- and hetero-nuclear copper(II) complexes of tetradentate Schiff base ligands containing N{sub 4} donor sets have been prepared by employing several steps. The characterization and nature of bonding of the complexes have been deduced from elemental analysis, FT-IR, molar conductivity, magnetic moment measurements and thermal analysis. The three Schiff base ligands were further identified using {sup 1}H and {sup 13}C NMR spectra. All copper(II) complexes are 1:2 electrolytes as shown by their molar conductivities ({lambda}{sub M}) in DMF and paramagnetic. The subnormal magnetic moment values of the di- and tri-nuclear complexes explained by a very strong anti-ferromagnetic interaction. The extraction ability of the ligands has been examined by the liquid-liquid extraction of selected transition metal (Mn{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, Zn{sup 2+}, Pb{sup 2+}, Cd{sup 2+}, Hg{sup 2+}) cations. The ligands show strong binding ability toward copper(II) ion. Furthermore the homo- and hetero-nuclear copper(II) complexes were each tested for their ability to catalyse the disproportionation of hydrogen peroxide in the presence of the added base imidazole.

  17. Synthesis, magnetostructural correlation, and catalytic promiscuity of unsymmetric dinuclear copper(II) complexes: models for catechol oxidases and hydrolases.

    Science.gov (United States)

    Osório, Renata E H M B; Peralta, Rosely A; Bortoluzzi, Adailton J; de Almeida, Vicente R; Szpoganicz, Bruno; Fischer, Franciele L; Terenzi, Hernán; Mangrich, Antonio S; Mantovani, Karen Mary; Ferreira, Dalva E C; Rocha, Willian R; Haase, Wolfgang; Tomkowicz, Zbigniew; dos Anjos, Ademir; Neves, Ademir

    2012-02-06

    Herein, we report the synthesis and characterization, through elemental analysis, electronic spectroscopy, electrochemistry, potentiometric titration, electron paramagnetic resonance, and magnetochemistry, of two dinuclear copper(II) complexes, using the unsymmetrical ligands N',N',N-tris(2-pyridylmethyl)-N-(2-hydroxy-3,5-di-tert-butylbenzyl)-1,3-propanediamin-2-ol (L1) and N',N'-bis(2-pyridylmethyl)-N,N-(2-hydroxybenzyl)(2-hydroxy-3,5-di-tert-butylbenzyl)-1,3-propanediamin-2-ol (L2). The structures of the complexes [Cu(2)(L1)(μ-OAc)](ClO(4))(2)·(CH(3))(2)CHOH (1) and [Cu(2)(L2)(μ-OAc)](ClO(4))·H(2)O·(CH(3))(2)CHOH (2) were determined by X-ray crystallography. The complex [Cu(2)(L3)(μ-OAc)](2+) [3; L3 = N-(2-hydroxybenzyl)-N',N',N-tris(2-pyridylmethyl)-1,3-propanediamin-2-ol] was included in this study for comparison purposes only (Neves et al. Inorg. Chim. Acta2005, 358, 1807-1822). Magnetic data show that the Cu(II) centers in 1 and 2 are antiferromagnetically coupled and that the difference in the exchange coupling J found for these complexes (J = -4.3 cm(-1) for 1 and J = -40.0 cm(-1) for 2) is a function of the Cu-O-Cu bridging angle. In addition, 1 and 2 were tested as catalysts in the oxidation of the model substrate 3,5-di-tert-butylcatechol and can be considered as functional models for catechol oxidase. Because these complexes possess labile sites in their structures and in solution they have a potential nucleophile constituted by a terminal Cu(II)-bound hydroxo group, their activity toward hydrolysis of the model substrate 2,4-bis(dinitrophenyl)phosphate and DNA was also investigated. Double electrophilic activation of the phosphodiester by monodentate coordination to the Cu(II) center that contains the phenol group with tert-butyl substituents and hydrogen bonding of the protonated phenol with the phosphate O atom are proposed to increase the hydrolase activity (K(ass.) and k(cat.)) of 1 and 2 in comparison with that found for complex 3. In fact

  18. Synthesis, Spectral, Thermal Analysis, Biological Activity and Kinetic Studies of Copper(II)-Pyridine-2,5-dicarboxylate Complexes with 2-Aminomethylpyridine and 8-Hydroxyquinoline.

    Science.gov (United States)

    Colak, Alper Tolga; Colak, Ferdağ; Atar, Necip; Olgun, Asım

    2010-03-01

    In this work we report the synthesis of two novel square-planar copper(II) complexes, namely, (2-aminomethylpyridinium-pyridinedicarboxylato)copper(II) dihydrate, [Cu(pydc)(2-amp)] • 2H2O (1) and (8-hydroxyquinolinum-pyridinedicarboxylato)copper(II) hydrate, [Cu(pydc)(8-HQ)] • H2O (2) (2-amp = 2-aminomethylpyridine, 8-HQ = 8-hydroxyquinoline, H2pydc = pyridine-2,5-dicarboxylic acid or isocinchomeronic acid) and present the first preliminary study on kinetics and biological activities of copper complexes. The synthesized complexes have been characterized by elemental, spectroscopic (FT-IR, UV and mass spectra), thermal analysis, magnetic and conductivity measurements techniques. Kinetic parameters were obtained for each stage of thermal degradation of the complexes using Coats-Redfern and Horowitz-Metzger methods. Antimicrobial activities of two complexes and two ligands were evaluated using agar diffusion method. Antimicrobial activity of complex 2 was determined with the agar dilution methods. The results were compared with two well known antibiotics, namely, tetracycline and nystatin.

  19. Effect of substituents on prediction of TLC retention of tetra-dentate Schiff bases and their Copper(II) and Nickel(II) complexes.

    Science.gov (United States)

    Stevanović, Nikola R; Perušković, Danica S; Gašić, Uroš M; Antunović, Vesna R; Lolić, Aleksandar Đ; Baošić, Rada M

    2017-03-01

    The objectives of this study were to gain insights into structure-retention relationships and to propose the model to estimating their retention. Chromatographic investigation of series of 36 Schiff bases and their copper(II) and nickel(II) complexes was performed under both normal- and reverse-phase conditions. Chemical structures of the compounds were characterized by molecular descriptors which are calculated from the structure and related to the chromatographic retention parameters by multiple linear regression analysis. Effects of chelation on retention parameters of investigated compounds, under normal- and reverse-phase chromatographic conditions, were analyzed by principal component analysis, quantitative structure-retention relationship and quantitative structure-activity relationship models were developed on the basis of theoretical molecular descriptors, calculated exclusively from molecular structure, and parameters of retention and lipophilicity. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Copper(II) complexes with new fluoroquinolones: Synthesis, structure, spectroscopic and theoretical study, DNA damage, cytotoxicity and antiviral activity.

    Science.gov (United States)

    Dorotíková, Sandra; Kožíšková, Júlia; Malček, Michal; Jomová, Klaudia; Herich, Peter; Plevová, Kristína; Briestenská, Katarína; Chalupková, Anna; Mistríková, Jela; Milata, Viktor; Dvoranová, Dana; Bučinský, Lukáš

    2015-09-01

    Copper(II) complexes with fluoroquinolones in the presence of the nitrogen donor heterocyclic ligands 1,10-phenanthroline have been considered in detail. The phenanthroline moiety was introduced into the ligand environment with the aim to determine whether the nuclease activity is feasible. All suitable X-ray structures of the complexes under study reveal a distorted square pyramidal coordination geometry for Cu(II) atom. The conformational and spectroscopic (FT-IR and UV-visible) behavior has been analyzed and has been interpreted with respect to B3LYP/6-311G* calculations including molecular dynamics. The ability of the complexes to cleave DNA was studied by agarose gel electrophoresis with plasmid DNA pBSK+. The results have confirmed that the complexes under study behave as the chemical nucleases. Nuclease like activity in the absence of hydrogen peroxide allows us to deduce an interaction of the complexes with the DNA resulting in the conversion of supercoiled circular DNA to the nicked form. The DNA cleavage activity enhanced by the presence of hydrogen peroxide demonstrates the participation of reactive oxygen species, such as superoxide radical anions and hydroxyl radicals which presence was confirmed independently using the standard radical scavenging agents. It has been suggested that the radical formation through the Fenton/Haber-Weiss reaction is mediated by the redox cycling mechanisms with the participation of cupric/cuprous ions. Cytotoxic activity was evaluated as the 50% cytotoxic concentration (CC50). The potential effects of tested compounds on replication of murine gammaherpesvirus 68 (MHV-68) under in vitro conditions were also evaluated. However, no antiviral activity against MHV-68 was observed. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Copper(II) Complexes of Phenanthroline and Histidine Containing Ligands: Synthesis, Characterization and Evaluation of their DNA Cleavage and Cytotoxic Activity.

    Science.gov (United States)

    Leite, Sílvia M G; Lima, Luís M P; Gama, Sofia; Mendes, Filipa; Orio, Maylis; Bento, Isabel; Paulo, António; Delgado, Rita; Iranzo, Olga

    2016-11-21

    Copper(II) complexes have been intensely investigated in a variety of diseases and pathological conditions due to their therapeutic potential. The development of these complexes requires a good knowledge of metal coordination chemistry and ligand design to control species distribution in solution and tailor the copper(II) centers in the right environment for the desired biological activity. Herein we present the synthesis and characterization of two ligands HL1 and H2L2 containing a phenanthroline unit (phen) attached to the amino group of histidine (His). Their copper(II) coordination properties were studied using potentiometry, spectroscopy techniques (UV-vis and EPR), mass spectrometry (ESI-MS) and DFT calculations. The data showed the formation of single copper complexes, [CuL1](+) and [CuL2], with high stability within a large pH range (from 3.0 to 9.0 for [CuL1](+) and from 4.5 to 10.0 for [CuL2]). In both complexes the Cu(2+) ion is bound to the phen unit, the imidazole ring and the deprotonated amide group, and displays a distorted square pyramidal geometry as confirmed by single crystal X-ray crystallography. Interestingly, despite having similar structures, these copper complexes show different redox potentials, DNA cleavage properties and cytotoxic activity against different cancer cell lines (human ovarian (A2780), its cisplatin-resistant variant (A2780cisR) and human breast (MCF7) cancer cell lines). The [CuL2] complex has lower reduction potential (Epc= -0.722 V vs -0.452 V for [CuL1](+)) but higher biological activity. These results highlight the effect of different pendant functional groups (carboxylate vs amide), placed out of the coordination sphere, in the properties of these copper complexes.

  2. Synthesis, spectral and electrochemical studies of Cu(II) and Ni(II) complexes with new N2O2 ligands: a new precursor capable of depositing copper nanoparticles using thermal reduction.

    Science.gov (United States)

    Habibi, Mohammad Hossein; Mokhtari, Reza; Mikhak, Maryam; Amirnasr, Mehdi; Amiri, Ahmad

    2011-09-01

    Cu(II) and Ni(II) complexes of the general type [M(N2O2)] are described. The N2O2 ligands used are [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,3-diamine] (HOMeSalpn) and [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,2-diamine (HOMeSalpr). These complexes have been characterized by IR, UV-vis, CV, TG-DTA and 1H NMR spectroscopy. The electrochemical behavior of these complexes at a glassy carbon electrode in acetonitrile solution indicates that the first reduction process corresponding to Cu(II)-Cu(I) and Ni(II)-Ni(I) is electrochemically irreversible. The new copper complexes have been applied for the preparation of copper nanoparticles using non-ionic surfactant (Triton X-100) by thermal reduction. The copper nanoparticles with average size of 48nm were formed by thermal reduction of [N,N'-bis(2-hydroxy-6-methoxybenzylidene)propane-1,3-diamine]copper(II) in the presence of triphenylphosphine thus releasing the reduced copper and affording the high-purity copper nanoparticles.

  3. Design, synthesis, spectral characterization, DNA interaction and biological activity studies of copper(II), cobalt(II) and nickel(II) complexes of 6-amino benzothiazole derivatives

    Science.gov (United States)

    Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj

    2017-09-01

    Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.

  4. Synthesis and synergistic antifungal activities of a pyrazoline based ligand and its copper(II) and nickel(II) complexes with conventional antifungals.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Khan, Amber; Haque, Ashanul; Ahmad, Aijaz; Saleem, Kishwar; Manzoor, Nikhat

    2012-08-01

    A pyrazoline based ligand; (5-(4-chlorophenyl)-3-phenyl-4, 5-dihydro-1H-pyrazole-1-carbothioamide) has been synthesized by Claisen-Schmidt condensation of acetophenone with p-chlorobenzaldehyde, followed by sodium hydroxide assisted cyclization of the resulting chalcone with thiosemicarbazide. Metal ion complexes of the synthesized ligand were prepared with Cu(II) and Ni(II) metal ions, separately and respectively. Ligand and the metal complexes were characterized by elemental analysis, FT-IR, UV-Vis, (1)HNMR, ESI-MS and (13)CNMR spectroscopic techniques. Molar conductance measurements in DMSO suggested non-electrolytic nature of the complexes. Tetragonally distorted octahedral geometry for copper and octahedral geometry for the nickel complexes was proposed on the basis of UV-Vis spectroscopic studies and magnetic moment measurements. The complexes were investigated for their ability to kill human fungal pathogen Candida by determining MICs (Minimum inhibitory concentrations), inhibition in solid media and ability to produce a possible synergism with conventional most clinically practiced antifungals by disc diffusion assay and FICI (fractional inhibitory concentration index).

  5. Determination of formal redox potentials in aqueous solution of copper(II) complexes with ligands having nitrogen and oxygen donor atoms and comparison with their EPR and UV-Vis spectral features.

    Science.gov (United States)

    Tabbì, Giovanni; Giuffrida, Alessandro; Bonomo, Raffaele P

    2013-11-01

    Formal redox potentials in aqueous solution were determined for copper(II) complexes with ligands having oxygen and nitrogen as donor atoms. All the chosen copper(II) complexes have well-known stereochemistries (pseudo-octahedral, square planar, square-based pyramidal, trigonal bipyramidal or tetrahedral) as witnessed by their reported spectroscopic, EPR and UV-visible (UV-Vis) features, so that a rough correlation between the measured redox potential and the typical geometrical arrangement of the copper(II) complex could be established. Negative values have been obtained for copper(II) complexes in tetragonally elongated pseudo-octahedral geometries, when measured against Ag/AgCl reference electrode. Copper(II) complexes in tetrahedral environments (or flattened tetrahedral geometries) show positive redox potential values. There is a region, always in the field of negative redox potentials which groups the copper(II) complexes exhibiting square-based pyramidal arrangements. Therefore, it is suggested that a measurement of the formal redox potential could be of great help, when some ambiguities might appear in the interpretation of spectroscopic (EPR and UV-Vis) data. Unfortunately, when the comparison is made between copper(II) complexes in square-based pyramidal geometries and those in square planar environments (or a pseudo-octahedral) a little perturbed by an equatorial tetrahedral distortion, their redox potentials could fall in the same intermediate region. In this case spectroscopic data have to be handled with great care in order to have an answer about a copper complex geometrical characteristics.

  6. Formation of a dinuclear copper(II) complex through the cleavage of CN bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    Science.gov (United States)

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.; Kassim, Mohammad B.

    2014-09-01

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-{3-(pyridin-2-yl)-pyrazolato} and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the CbenzoylN bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the {3-(pyridin-2-yl)-pyrazolato}{3-(pyridin-2-yl)-1H-pyrazole}Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ɛ = 116 dm3 mol-1 cm-1) supports the presence of Cu(II) centres.

  7. Binding of copper(II) polypyridyl complexes to DNA and consequences for DNA-based asymmetric catalysis.

    Science.gov (United States)

    Draksharapu, Apparao; Boersma, Arnold J; Leising, Miriam; Meetsma, Auke; Browne, Wesley R; Roelfes, Gerard

    2015-02-28

    The interaction between salmon testes DNA (st-DNA) and a series of Cu(II) polypyridyl complexes, i.e. [Cu(dmbpy)(NO3)2] (1) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [Cu(bpy)(NO3)2] (2) (bpy = 2,2'-bipyridine), [Cu(phen)(NO3)2] (3) (phen = phenanthroline), [Cu(terpy)(NO3)2]·H2O (4) (terpy = 2,2':6',2″-terpyridine), [Cu(dpq)(NO3)2] (5) (dpq = dipyrido-[3,2-d:2',3'-f]-quinoxaline) and [Cu(dppz)(NO3)2] (6) (dppz = dipyrido[3,2-a:2',3'-c]phenazine) was studied by UV/Vis absorption, Circular Dichroism, Linear Dichroism, EPR, Raman and (UV and vis) resonance Raman spectroscopies and viscometry. These complexes catalyse enantioselective C-C bond forming reactions in water with DNA as the source of chirality. Complex 1 crystallizes as an inorganic polymer with nitrate ligands bridging the copper ions, which adopt essentially a distorted square pyramidal structure with a fifth bridging nitrate ligand at the axial position. Raman spectroscopy indicates that in solution the nitrate ligands in 1, 2, 3 and 4 are displaced by solvent (H2O). For complex 1, multiple supramolecular species are observed in the presence of st-DNA in contrast to the other complexes, which appear to interact relatively uniformly as a single species predominantly, when st-DNA is present. Overall the data suggest that complexes 1 and 2 engage primarily through groove binding with st-DNA while 5 and 6 undergo intercalation. For complexes 3 and 4 the data indicates that both groove binding and intercalation takes place, albeit primarily intercalation. Although it is tempting to conclude that the groove binders give highest ee and rate acceleration, it is proposed that the flexibility and dynamics in binding of Cu(II) complexes to DNA are key parameters that determine the outcome of the reaction. These findings provide insight into the complex supramolecular structure of these DNA-based catalysts.

  8. Cyclam Derivatives with a Bis(phosphinate) or a Phosphinato-Phosphonate Pendant Arm: Ligands for Fast and Efficient Copper(II) Complexation for Nuclear Medical Applications.

    Science.gov (United States)

    David, Tomáš; Kubíček, Vojtěch; Gutten, Ondrej; Lubal, Přemysl; Kotek, Jan; Pietzsch, Hans-Jürgen; Rulíšek, Lubomír; Hermann, Petr

    2015-12-21

    Cyclam derivatives bearing one geminal bis(phosphinic acid), -CH2PO2HCH2PO2H2 (H2L(1)), or phosphinic-phosphonic acid, -CH2PO2HCH2PO3H2 (H3L(2)), pendant arm were synthesized and studied as potential copper(II) chelators for nuclear medical applications. The ligands showed good selectivity for copper(II) over zinc(II) and nickel(II) ions (log KCuL = 25.8 and 27.7 for H2L(1) and H3L(2), respectively). Kinetic study revealed an unusual three-step complex formation mechanism. The initial equilibrium step leads to out-of-cage complexes with Cu(2+) bound by the phosphorus-containing pendant arm. These species quickly rearrange to an in-cage complex with cyclam conformation II, which isomerizes to another in-cage complex with cyclam conformation I. The first in-cage complex is quantitatively formed in seconds (pH ≈5, 25 °C, Cu:L = 1:1, cM ≈ 1 mM). At pH >12, I isomers undergo nitrogen atom inversion, leading to III isomers; the structure of the III-[Cu(HL(2))] complex in the solid state was confirmed by X-ray diffraction analysis. In an alkaline solution, interconversion of the I and III isomers is mutual, leading to the same equilibrium isomeric mixture; such behavior has been observed here for the first time for copper(II) complexes of cyclam derivatives. Quantum-chemical calculations showed small energetic differences between the isomeric complexes of H3L(2) compared with analogous data for isomeric complexes of cyclam derivatives with one or two methylphosphonic acid pendant arm(s). Acid-assisted dissociation proved the kinetic inertness of the complexes. Preliminary radiolabeling of H2L(1) and H3L(2) with (64)Cu was fast and efficient, even at room temperature, giving specific activities of around 70 GBq of (64)Cu per 1 μmol of the ligand (pH 6.2, 10 min, ca. 90 equiv of the ligand). These specific activities were much higher than those of H3nota and H4dota complexes prepared under identical conditions. The rare combination of simple ligand synthesis, very

  9. The first salen-type ligands derived from 3',5'-diamino-3',5'-dideoxythymidine and -dideoxyxylothymidine and their corresponding copper(II complexes

    Directory of Open Access Journals (Sweden)

    Koth Daniel

    2006-08-01

    Full Text Available Abstract Background There are many nucleoside metal complexes known. According to observations made, only very few of them reveal their central ion to be co-ordinated by the sugar part of their molecules. The regio- and stereospecific exchange of the hydroxyl groups at the sugar moiety by chelating units improves its complexation ability and should give access to a new class of chiral ligands. Results In this paper we present the synthesis of 3',5'-diamino substituted thymidines with ribo- as well as xylo-configuration and the preparation of copper(II complexes derived from their corresponding Schiff bases. Starting from thymidine, the amino derivatives were prepared in a three and four step reaction sequence respectively. The absolute configuration of the ligands was proved by the three-bond 1H-1H spin spin coupling constants 3J obtained by NMR-studies. Condensation of the amino derivatives with salicylic aldehydes resulted in the corresponding diimines, which represent a new class of chiral salen-type ligands. All ligands formed uncharged stable copper(II complexes. The structure of 3',5'-bis(3,5-di-tert-butylsalicylaldiminato-3',5'-dideoxyxylothymidine-copper(II could be determined by single crystal X-ray structure analysis. The copper centre in this complex has distorted tetrahedral coordination geometry. Conclusion For the synthesis of 3',5'-diamino-3',5'-dideoxy thymidines with xylo- as well as ribo-configuration an effective synthesis pathway has been developed. Their corresponding salicylidene imines form stable coordination compounds with copper(II ions. They represent the first salen type complexes of nucleosides with this substitution pattern.

  10. Insight into the gas-phase structure of a copper(II) L-histidine complex, the agent used to treat Menkes disease.

    Science.gov (United States)

    Ziegler, Blake E; Marta, Richard A; Burt, Michael B; McMahon, Terry B

    2014-03-03

    Copper(II) L-histidine is used in the treatment of a rare neurological disease called Menkes disease. An infrared multiple photon dissociation (IRMPD) vibrational spectrum of the gas-phase copper(II) L-histidine complex has been obtained. This spectrum was compared to lowest-energy computational spectra obtained at the B3LYP/6-311+G** level of theory. Two species, CuHis1 and CuHis2, are very close in Gibbs free energy, and both have computed vibrational spectra in good agreement with the experimentally observed IRMPD spectrum. The first structure exhibits four histidine-copper interactions in the same plane and a fifth out-of-plane interaction. The second structure exhibits four histidine-copper interactions in the same plane. The fact that the experimental and computational spectra are found to be in good agreement adds considerable insight into the gas-phase structure of the copper(II) L-histidine complex.

  11. A new copper(II) Schiff base complex containing asymmetrical tetradentate N2O2 Schiff base ligand: Synthesis, characterization, crystal structure and DFT study

    Science.gov (United States)

    Grivani, Gholamhossein; Baghan, Sara Husseinzadeh; Vakili, Mohammad; Khalaji, Aliakbar Dehno; Tahmasebi, Vida; Eigner, Václav; Dušek, Michal

    2015-02-01

    A new copper (II) Schiff base complex, CuL1, was prepared from the reaction of asymmetrical Schiff base ligand of L1 and Cu(OAC)2 (L1 = salicylidene imino-ethylimino-pentan-2-one). The Schiff base ligand, L1, and its copper (II) complex, CuL1, have been characterized by elemental analysis (CHN) and FT-IR and UV-vis spectroscopy. In addition, 1H NMR was employed for characterization of the ligand. Thermogrametric analysis of the CuL1 reveals its thermal stability and its decomposition pattern shows that it is finally decomposed to the copper oxide (CuO). The crystal structure of CuL1 was determined by the single crystal X-ray analysis. The CuL1 complex crystallizes in the monoclinic system, with space group P21/n and distorted square planar coordination around the metal ion. The Schiff base ligand of L1 acts as a chelating ligand and coordinates via two nitrogen and two oxygen atoms to the copper (II) ion with C1 symmetry. The structure of the CuL1 complex was also studied theoretically at different levels of DFT and basis sets. According to calculated results the Csbnd O bond length of the salicylate fragment is slightly higher than that in the acetylacetonate fragment of ligand, which could be interpreted by resonance increasing between phenyl and chelated rings in ligand in relative to the acetylacetonate fragment.

  12. Metal complexes derived from hydrazoneoxime ligands: V. Spectral and structural studies on diacetylmonoxime n-alkanoylhydrazones and their nickel(II) and copper(II) complexes

    Science.gov (United States)

    Salem, Nahed M. H.; El Sayed, Laila; Haase, Wolfgang; Iskander, Magdi F.

    2015-01-01

    A series of diacetylmonoxime n-alkanoylhydrazones (H2Ln, n = 4, 5, 6, 12 and 16) were prepared by the condensation of diacetylmonoxime with the corresponding n-alkanoylhydrazine in ethanol. The X-ray crystal structure of diacetylmonoxime octadecanoyl hydrazone has been solved and its molecular and supramolecular structures have been discussed. Both neutral dinuclear Cu(II) and Ni(II) complexes, [{M(Ln)}2] (M = Cu, Ni and n = 4, 5, 6, 12 and 16) as well as cationic dinuclear Cu(II) complexes, [Cu2(Ln)(HLn)]NO3 (n = 12 and 16) have been also prepared and characterized by elemental analyses, FD- and ESI-mass spectra as well as IR, UV-Vis, 1H NMR, 13C NMR spectra. Variable temperature magnetic susceptibility measurements for dinuclear Cu(II) complexes have been also discussed.

  13. Biomimetic sensor for certain phenols employing a copper(II) complex.

    Science.gov (United States)

    Mobin, Shaikh M; Sanghavi, Bankim J; Srivastava, Ashwini K; Mathur, Pradeep; Lahiri, Goutam K

    2010-07-15

    A new dimeric Cu(II) complex [Cu(mu(2)-hep)(hep-H)](2).2PF(6) (1) containing a bidentate (hep-H = 2-(2-hydroxyethyl)pyridine) ligand was synthesized and characterized by single crystal X-ray diffraction studies. Each Cu ion in 1 is in a distorted square pyramidal geometry. Further 1 is used as a modifier in the construction of a biomimetic sensor for determining phenols [phenol (Phe), resorcinol (Res), hydroquinone (HQ), and catechol (Cat)] in phosphate buffer by using cyclic voltammetry (CV), chronocoulometry, electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and square wave voltammetry (SWV). DPV has been proposed for trace determination of Phe and Res while SWV for HQ and Cat. The method has been applied for the selective and precise analysis of Phe in commercial injections, Res in hair coloring agents, HQ in photographic developers and cosmetics, and Cat in tea samples and guarana tablets. The calibration curves showed a linear response ranging between 10(-6) and 10(-8) M for all four of the analytes with detection limits (3sigma) of 1.04 x 10(-8), 2.31 x 10(-8), 1.54 x 10(-8), and 0.86 x 10(-8) M for Phe, Res, HQ, and Cat, respectively. The lifetime of the biomimetic sensor was 200 days at room temperature (at least 750 determinations). The catalytic properties of 1-CPE were characterized by chronoamperometry and were found to be in good agreement with Michaelis-Menten kinetics.

  14. A new copper(II) complex with 2-thenoyltrifluoroacetone and 2,2-bipyridine: Crystal structure, spectral properties and cytotoxic activity

    Science.gov (United States)

    Lopes, P. S.; Paixão, D. A.; de Paula, F. C. S.; Ferreira, A. M. D. C.; Ellena, J.; Guilardi, S.; Pereira-Maia, E. C.; Guerra, W.

    2013-02-01

    This work reports the synthesis and characterization of a new copper(II) complex with 2-thenoyltrifluoroacetone (HTTA) and 2,2-bipyridine (bipy). The complex was characterized by elemental analysis, UV-Vis, IR and EPR. The crystal structure was determined by single-crystal X-ray diffraction. The copper ion has a distorted square-pyramidal geometry and is coordinated to two bidentate ligands (HTTA and bipy) and a perchlorate ion weakly bonded in the apical position. The crystal packing is stabilized by non-classical hydrogen bonds and weak interactions π-π stacking. In the copper complex, the metal ion binds to HTTA via the oxygen atoms of the β-diketone group and to bipy via its two heterocyclic nitrogens. The title compound inhibits the growth of K562 cells with an IC50 value equal to 28.2 μmol L-1.

  15. Trapping of muscle relaxant methocarbamol degradation product by complexation with copper(II) ion: Spectroscopic and quantum chemical studies

    Science.gov (United States)

    Mansour, Ahmed M.; Shehab, Ola R.

    2014-07-01

    Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, 1H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80 °C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO-], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]ṡ4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional.

  16. Dinuclear Silver(I) and Copper(II) Complexes of Hexadentate Macrocyclic Ligands Containing p-Xylyl Spacers

    DEFF Research Database (Denmark)

    McKenzie, Christine J.; Nielsen, Lars Preuss; Søtofte, Inger

    1998-01-01

    The cyclocondensation of terephthalic aldehyde with N,N-bis(3-aminopropyl)-methylamine in the presence of silver(I) gives the dinuclear tetramine Schiff base macrocyclic complex, [Ag2L1](NO3)2 (L1=7,22-N,N'-dimethyl-3,7,11,18, 22,26-hexaazatricyclo[26.2.21.18.213.16]-tetratricosa-2,11,13,15,1 7......,26,28,30,31,33-decaene). [Ag2L1](NO3)2 crystallizes in the monoclinic space group P21/c, with a=14.153(6), b=12.263(4), c=9.220(2) Å, beta=97.52(3) Å and Z=2. The silver ions are strongly coordinated at each end of the macrocycle by the two imine nitrogen atoms [2.177(3) and 2.182(3) Å] with close interatomic......,7,11,18,22,26-hexaazatricyclo[26.2.21.18.213. 16]tetratricosa-13,15,28,30,31,33-decane, L2, was prepared by reduction of Ag2L1](NO3)2 with NaBH4. The copper(II) complexes of the reduced ligand, [Cu2Cl2L2]Cl2xCH3OH, [CU2Cl2L2](PF6)2 and [Cu2(CH3CO2)2L2](PF6)2x4H2O, have been prepared and characterized....

  17. One-Dimensional Hydrogen-bonded Double Chain Composed of a Copper(II) Complex with Chelidamic Acid

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guo-Wei; GUO Guo-Cong; CAI Li-Zhen; LIU Bing; HUANG Jin-Shun

    2006-01-01

    Complex [Cu(C7H3NO5)(DMF)(H2O)] was crystallized from the reaction of Cu(CH3COO)2·H2O with 2,6-dicarboxy-4-hydroxypyridine (chelidamic acid) in DMF solution and its structure was characterized by X-ray crystallography. The crystal is of triclinic, space group (P1)with a = 7.835(2), b = 8.594(2), c = 10.309(2)(A),α = 84.16(3), β= 77.94(3), γ= 69.22(3)°, V = 634.4(2) (A)3, Mr = 335.76, Z = 2, Dc = 1.758 g/cm3, λ = 0.71073(A), μ(MoKα) = 1.756 mm-1 and F(000) = 342. The structure was refined to R = 0.0367 and wR = 0.0805 for 2191 observed reflections with I > 2σ(I). The crystal structure shows a distorted square pyramidal geometry around the copper(II) ion, which is chelated by one nitrogen atom and two oxygen atoms of the chelidamic acid, one water molecule and one DMF molecule. The title complex displays 1-D hydrogen-bonded double chains.

  18. In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis

    Science.gov (United States)

    da Silva, Patricia B.; de Souza, Paula C.; Calixto, Giovana Maria Fioramonti; Lopes, Erica de O.; Frem, Regina C. G.; Netto, Adelino V. G.; Mauro, Antonio E.; Pavan, Fernando R.; Chorilli, Marlus

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2) and [Cu(NCO)2(INH)2]·4H2O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC® CCL-81), J774A.1 (ATCC® TIB-67), and MRC-5 (ATCC® CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB. PMID:27196901

  19. Synthesis, crystal structure and magnetic properties of terephthalate-isophthalete- and phthalate-bridged copper (II) dinuclear complexes

    Energy Technology Data Exchange (ETDEWEB)

    Cano, J.; De Munno, G.; Sanz, J.L.; Ruiz, R.; Lloret, F.; Faus, J.; Julve, M.

    1997-09-01

    The ability of the dianions of the terephthalic (H{sub 2}ta), isophthalic (H{sub 2} ita) and phthalic (H{sub 2} phta) acids both to act as bridges between copper (II) ions and to mediate intramolecular exchange interactions has been investigated by single crystal X-ray diffraction and variable-temperature magnetic susceptibility measurements. (Author) 31 refs.

  20. Simple Copper(II) Schiff Base Complex as Efficient Heterogeneous Photo-Fenton-like Catalyst

    National Research Council Canada - National Science Library

    Fei, Bao-Li; Wang, Jiang-Hong; Yan, Qing-Ling; Liu, Qing-Bo; Long, Jian-Ying; Li, Yang-Guang; Shao, Kui-Zhan; Su, Zhong-Min; Sun, Wei-Yin

    2014-01-01

    ...) as photo-Fenton-like catalysts. Both 1 and 2 exhibited excellent catalytic performance without an acidification process, and the mononuclear complex 2 functioned better than the dinuclear complex 1...

  1. Microwave Synthesis and Antimicrobial Activity of some Copper (II, Cobalt (II, Nickel (II and Chromium (III Complexes with Schiff Base 2, 6-Pyridinedi carboxaldehyde-Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Dr.Mohammed.Fakruddin Ali Ahmed

    2014-03-01

    Full Text Available Some novel Schiff base metal complexes of Cr(III, Co(II, Ni(II andCu(II derived from 2, 6-pyridinedicarboxaldehyde-Thiosemicarbazone(PDCTC was synthesized by conventional as well as microwavemethods. This compound wascharacterized by elemental analysis, FT-IR, Mass, molar conductanceand magneticsusceptibilitymeasurements analyses. Analytical data revealed that all the complexesexhibited 1:1 (metal: ligand ratio with a coordination number of six.The IR data showed that the ligand coordinates with the metal ions in ahexa-dentate manner. The solid state electricalconductivity of the metal complexes was also measured. Solid state electricalconductivity studies reflected a semi-conducting nature of the complexes. The Schiff base and metal complexes displayed good activity againstthe Gram-positive bacteria Staphylococcus aureus, the Gram-negative bacteriaEscherichia coli and the fungi AspergillusnigerandCandida albicans. The antimicrobialresults also indicated that the metal complexes displayed betterantimicrobial activity as compared to the Schiff bases.

  2. Mixed-ligand copper(II) complexes of dipicolylamine and 1,10-phenanthrolines: The role of diimines in the interaction of the complexes with DNA

    Indian Academy of Sciences (India)

    S Ramakrishnan; M Palaniandavar

    2005-03-01

    Mixed-ligand copper(II) complexes of the type [Cu(dipica)(diimine)](ClO4)2, where dipica is di(2-picolyl)amine and diimine is 1,10-phenanthroline (phen), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp), 2,9-dimethyl-1,10-phenanthroline (2,9-dmp) or dipyridoquinoxaline (dpq), have been isolated and characterized by analytical and spectral methods. The copper(II) complexes exhibit a broad band in the visible region around 675 nm and axial EPR spectra in acetonitrile glass (77 K) with ∥ and ∥ values of ~2.22 and 185 × 10-4 cm-1 respectively, suggesting the presence of a square-based coordination geometry for the CuN5 chromophore involving strong axial interaction. The interaction of the complexes with CT DNA has been studied using absorption, emission and circular dichroic spectral methods and viscosity measurements. Absorption spectral titrations reveal that the intrinsic DNA binding affinities are dependent upon the nature of the diimine ligand: dpq > 5,6-dmp > phen > 2,9-dmp. This suggests the involvement of the diimine rather than the dipica `face’ of the complexes in DNA binding. An intercalative mode of DNA interaction, which involves the insertion of dpq and to a lesser extent the phen ring of the complexes in between the DNA base pairs, is proposed. However, interestingly, the 5,6-dmp complex is involved in hydrophobic interaction of the 5,6-dmp ring in the grooves of DNA. The large enhancement in the relative viscosity of DNA on binding to the dpq and 5,6-dmp complexes supports the proposed DNA binding modes. Further, remarkably, the 5,6-dmp complex is selective in exhibiting a positive-induced CD band on binding to DNA suggesting the transition of the B form of CT DNA to A-like conformation. The variation in relative emission intensities of DNA-bound ethidium bromide observed upon treatment with the complexes parallels the trend in DNA binding affinities.

  3. Magnetic property, DFT calculation, and biological activity of bis[(μ(2)-chloro)chloro(1,10-phenanthroline)copper(II)] complex.

    Science.gov (United States)

    Mroueh, Mohammad; Daher, Costantine; Hariri, Essa; Demirdjian, Sally; Isber, Samih; Choi, Eun Sang; Mirtamizdoust, Babak; Hammud, Hassan H

    2015-04-25

    The dinuclear complex bis[(μ(2)-chloro)chloro(1,10-phenanthroline)copper(II)] (1) was synthesized, and characterized by X-ray, FTIR and thermal analysis. The fitting of magnetic susceptibility and magnetization curve of (1) indicates the occurrence of weak antiferromagnetic exchange interaction between copper(II) ions. The electronic structure has been also determined by density functional theory (DFT) method. Complex (1) displayed potent anticancer activity against B16 (Melanoma), MDA-MB-32 (Breast Adenocarcinoma), A549 (Lung Adenocarcinoma), HT-29 (Colon Adenocarcinoma) and SF (Astrocytoma) cell lines with an average IC50 value of 0.726 μg/ml compared to 4.88 μg/ml for cisplatin. Complex (1) has a better therapeutic index and toxicological profile than cisplatin, and has demonstrated a potential chemotherapeutic property.

  4. Synthesis and characterization of bis (acetylacetonato κ-O, O') [zinc(ii)/copper(ii)] hybrid organic-inorganic complexes as solid metal organic precursors.

    Science.gov (United States)

    Rooydell, Reza; Wang, Ruey-Chi; Brahma, Sanjaya; Ebrahimzadeh, Farzaneh; Liu, Chuan-Pu

    2015-05-07

    We have synthesized novel metal organic hybrid mixed compounds of bis (acetylacetonato κ-O, O') [zinc(ii)/copper(ii)]. Taking C10H14O4Zn0.7Cu0.3 (Z0.7C0.3AA) as an example, the crystals are composed of Z0.7C0.3AA units and uncoordinated water molecules. Single-crystal X-ray diffraction results show that the complex Z0.7C0.3AA crystallizes in the monoclinic system, space group P21/n. The unit cell dimensions are a = 10.329(4) Å, b = 4.6947(18) Å, and c = 11.369(4) Å; the angles are α = 90°, β = 91.881(6)°, and γ = 90°, the volume is 551.0(4) Å(3), and Z = 2. In this process, the M(ii) ions of Zn and Cu mix and occupy the centers of symmetrical structural units, which are coordinated to two ligands. The measured bond lengths and angles of O-M-O vary with the ratio of metal species over the entire series of the complexes synthesized. The chemistry of the as-synthesized compounds has been characterized using infrared spectroscopy, mass spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis, and the morphology of the products has been characterized using scanning electron microscopy. The thermal decomposition of the Z0.7C0.3AA composites measured by thermogravimetric analysis suggests that these complexes are volatile. The thermal characteristics of these complexes make them attractive precursors for metal organic chemical vapor deposition.

  5. A one-dimensional carboxylate-bridged helical copper(II) complex containing (quinolin-8-yloxy)acetate.

    Science.gov (United States)

    Wang, Yu-Hong; Lu, Fang

    2004-11-01

    The title compound, catena-poly[[bromocopper(II)]-mu-(quinolin-8-yloxy)acetato-kappa(4)N,O,O':O''], [CuBr(C(11)H(8)NO(3))](n), is a novel carboxylate-bridged one-dimensional helical copper(II) polymer. The metal ion exhibits an approximately square-pyramidal CuBrNO(3) coordination environment, with the three donor atoms of the ligand and the bromide ion occupying the basal positions, and an O atom belonging to the carboxylate group of an adjacent molecule in the apical site. Carboxylate groups are mutually cis oriented, and each anti-anti carboxylate group bridges two copper(II) ions via one apical and one basal position [Cu...Cu = 5.677 (1) A], resulting in the formation of a helical chain along the crystallographic b axis.

  6. Synthesis, characterization and electrochemical studies of copper(II complexes derived from succinoyl- and adipoyldihydrazones

    Directory of Open Access Journals (Sweden)

    Aziz Ahmed

    2017-02-01

    Full Text Available The complexes [Cu(H2L]SO4 in which H2L represents H4slsh and H4slah have been prepared and characterized by a variety of physico-chemical techniques. Magnetic and spectral evidences support a square-planar geometry for the complexes. These complexes have been characterized by micro analytical analyses, FT-IR, UV–Vis, CV, and ESR spectroscopy. The electrochemical behaviour of these complexes at a glassy carbon electrode in DMSO solution indicates one electron transfer reduction waves.

  7. Structural diversity of copper(II) complexes with N-(2-pyridyl)imidazolidin-2-ones(thiones) and their in vitro antitumor activity.

    Science.gov (United States)

    Balewski, Łukasz; Sączewski, Franciszek; Bednarski, Patrick J; Gdaniec, Maria; Borys, Ewa; Makowska, Anna

    2014-10-23

    Six series of structurally different mono- and binuclear copper(II) complexes 5-10 were obtained by reacting N-(2-pyridyl)imidazolidin-2-ones (1a-l), N,N'-bis(2-pyridyl)imidazolidin-2-ones (2a,b), N-acyl-N'(2-pyridyl)imidazolodin-2-ones (3a-j) and N-(2-pyridyl)imidazolidine-2-thiones (4a-g) with copper(II) chloride at an ambient temperature. The coordination modes of the complexes obtained were established by elemental analysis, IR spectroscopic data and single crystal X-ray diffraction studies. The in vitro cytotoxic activities of both the free ligands and copper(II) complexes were evaluated using a crystal violet microtiter plate assay on five human tumor cell lines: LCLC-103H, A-427, SISO, RT-4 and DAN-G. The free ligands 1-4 at concentration attainable in cancer cells of 20 μM showed no meaningful cytotoxic effect with cell viability in the range of 88%-100%. The most potent copper(II) complex of 1-(6-ethoxy-2-pyridyl)imidazolidin-2-one (6b) exhibited selective cytotoxicity against A-427 lung cancer cell line, while the complexes of 1-(5-methyl-2-pyridyl)imidazolidine-2-thione (5h) and 1-(4-tert-butyl-2-pyridyl)imidazolidine-2-thione (5j) showed cytostatic effect against a whole panel of five human tumor cell lines. In conclusion, the only complexes that showed remarkably increased activity in comparison to the free ligands were those obtained from N-(2-pyridyl)imidazolidine-2-thiones 4c and 4e substituted with alkyl group at position 4 or 5 of pyridine ring.

  8. Structural Diversity of Copper(II Complexes with N-(2-PyridylImidazolidin-2-Ones(Thiones and Their in Vitro Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Łukasz Balewski

    2014-10-01

    Full Text Available Six series of structurally different mono- and binuclear copper(II complexes 5–10 were obtained by reacting N-(2-pyridylimidazolidin-2-ones (1a–l, N,N'-bis(2-pyridylimidazolidin-2-ones (2a,b, N-acyl-N'(2-pyridylimidazolodin-2-ones (3a–j and N-(2-pyridylimidazolidine-2-thiones (4a–g with copper(II chloride at an ambient temperature. The coordination modes of the complexes obtained were established by elemental analysis, IR spectroscopic data and single crystal X-ray diffraction studies. The in vitro cytotoxic activities of both the free ligands and copper(II complexes were evaluated using a crystal violet microtiter plate assay on five human tumor cell lines: LCLC-103H, A-427, SISO, RT-4 and DAN-G. The free ligands 1–4 at concentration attainable in cancer cells of 20 μM showed no meaningful cytotoxic effect with cell viability in the range of 88%–100%. The most potent copper(II complex of 1-(6-ethoxy-2-pyridylimidazolidin-2-one (6b exhibited selective cytotoxicity against A-427 lung cancer cell line, while the complexes of 1-(5-methyl-2-pyridylimidazolidine-2-thione (5h and 1-(4-tert-butyl-2-pyridylimidazolidine-2-thione (5j showed cytostatic effect against a whole panel of five human tumor cell lines. In conclusion, the only complexes that showed remarkably increased activity in comparison to the free ligands were those obtained from N-(2-pyridylimidazolidine-2-thiones 4c and 4e substituted with alkyl group at position 4 or 5 of pyridine ring.

  9. Copper(II) and zinc(II) complexes of the peptides Ac-HisValHis-NH2 and Ac-HisValGlyAsp-NH2 related to the active site of the enzyme CuZnSOD.

    Science.gov (United States)

    Bóka, Beáta; Myari, Alexandra; Sóvágó, Imre; Hadjiliadis, Nick

    2004-01-01

    Copper(II) and zinc(II) complexes of the peptides Ac-HisValHis-NH2 and Ac-HisValGlyAsp-NH2 related to the active site of the enzyme CuZnSOD were studied by potentiometric and spectroscopic (UV-Vis, CD and EPR) techniques. The results reveal that both ligands have effective metal binding sites, but the tripeptide is a much stronger complexing agent than the tetrapeptide. The formation of a macrochelate via the coordination of the imidazolyl residues is suggested in the copper(II)-Ac-HisValHis-NH2 system in the acidic pH range, while a 4N complex predominates at physiological pH. The interaction of Ac-HisValHis-NH2 with zinc(II) results in the formation of a precipitate indicating polynuclear complex formation. Both copper(II)-Ac-HisValHis-NH2 and copper(II)-HisValHis systems exhibit catalytic activity toward the dismutation of superoxide anion at physiological pH, but the saturated coordination sphere of the metal ions in both systems results in low reactivity as compared to the native enzyme.

  10. Structural studies of copper(II) complexes with 2-(2-aminoethyl)pyridine derived Schiff bases and application as precursors of thin organic-inorganic layers.

    Science.gov (United States)

    Barwiolek, Magdalena; Szlyk, Edward; Berg, Andrzej; Wojtczak, Andrzej; Muziol, Tadeusz; Jezierska, Julia

    2014-07-14

    Cu(ii) complexes with Schiff bases derived from 2-pyridin-2-ylethanamine were obtained and characterized by UV-Vis, fluorescence, and IR spectra. The X-ray crystal structures determined for [Cu(ii)(epy(di-t-Buba))Cl] × 0.042H2O and [Cu(ii)(epy(di-t-Buba))O2CCH3] revealed tetrahedral distortion of the Cu(ii) coordination sphere in the solid phase. For both molecules the Cu(ii) ions were found in tetragonal environments, as was confirmed by the values of EPR g-matrix diagonal components. The thermal properties of the complexes and the gas phase composition were studied by TG/IR techniques. Thin layers of the studied copper(ii) complexes were deposited on Si(111) by a spin coating method and characterized by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectra. For copper(ii) layers the most intensive fluorescence band from intra-ligand transition was observed between 498 and 588 nm. The layers' fluorescence intensity was related to the rotation speed and deposition time.

  11. Electrochemicla Behavior of Ascorbic Acid on Hexaaza Macrocyclic Copper(II) Complex Modified Au Electrode and Its Analytical Application

    Institute of Scientific and Technical Information of China (English)

    WU,Hai-Xia; DONG,Shu-Qing; KANG,Jing-Wan; LU,Xiao-Quan

    2008-01-01

    A novel hexaaza macrocyclic copper(II) complex modified Au electrode was developed and used for the measurement of ascorbic acid. Its electrochemical behavior was investigated by cyclic voltammetry and scanning electrochemical microscopy. This modified electrode exhibited electrocatalytic response to the oxidation of ascorbic acid. Compared with a bare gold electrode, the modified electrode exhibited a 250 mV shift of the oxidation potential of ascorbic acid in the cathodic direction and a marked enhancement of the current response. The response current revealed a good linear relationship with the concentration of ascorbic acid in the range of 5.0×10-7 to 4.0× 10-5 mol/L and the detection limit of 4.8× 10-8 mol/L (S/N=3) in the pH 4.0 Tris-HCl buffer of ascorbic acid in fruits without any other pretreatment. The concentrations of ascorbic acid measured by this method were in good agreement with the literature values. It is very promising for the modified electrode to be used as an electrochemical sensor for the detection of ascorbic acid.

  12. 4-nitroacetophenone-derived thiosemicarbazones and their copper(II) complexes with significant in vitro anti-trypanosomal activity.

    Science.gov (United States)

    Pérez-Rebolledo, Anayive; Teixeira, Letícia R; Batista, Alzir A; Mangrich, Antonio S; Aguirre, Gabriela; Cerecetto, Hugo; González, Mercedes; Hernández, Paola; Ferreira, Ana M; Speziali, Nivaldo L; Beraldo, Heloisa

    2008-05-01

    N(4)-methyl-4-nitroacetophenone thiosemicarbazone (H4NO(2)Ac4M, 1), N(4),N(4)-dimethyl-4-nitroacetophenone thiosemicarbazone (H4NO(2)Ac4DM, 2) and N(4)-piperidyl-4-nitroacetophenone thiosemicarbazone (H4NO(2)Ac4Pip, 3) and their copper(II) complexes [Cu(4NO(2)Ac4M)(2)] (4), [Cu(4NO(2)Ac4DM)(2)] (5) and [Cu(4NO(2)Ac4Pip)(2)] (6) were tested for their in vitro ability to inhibit the growth of Trypanosoma cruzi epimastigote forms. H4NO(2)Ac4DM (2), [Cu(4NO(2)Ac4M)(2)] (4) and [Cu(4NO(2)Ac4DM)(2)] (5) proved to be as active as the clinical reference drugs nifurtimox and benznidazol. Taking into consideration the serious side effects and the poor efficacy of the reference drugs, as well as the appearance of resistance during treatment, the studied compounds could constitute a new class of anti-trypanosomal drug candidates.

  13. Oxidatively Robust Monophenolate-Copper(II) Complexes as Potential Models of Galactose Oxidation

    NARCIS (Netherlands)

    Koten, G. van; Klein Gebbink, R.J.M.; Watanabe, M.; Pratt, R.C.; Stack, D.P.

    2003-01-01

    Cupric complexes of a novel phenanthroline-phenolate ligand have strongly distorted coordination geometries and electrochemical properties conducive to modeling the spectroscopy and reactivity of the enzyme galactose oxidase.

  14. Zinc(II and copper(II complexes with pheophytin and mesoporphyrin and their stability to UV-B irradiation: Vis spectroscopy studies

    Directory of Open Access Journals (Sweden)

    Zvezdanović Jelena B.

    2012-01-01

    Full Text Available Stability of Zn(II and Cu(II complexes of porphyrin derivatives (pheophytin and mesoporphyrin to UV-B -irradiation has been studied by absorbance spectroscopy in 95% ethanol. The chosen porphyrins as well as their heavy metal complexes undergo photochemical decomposition obeying first-order kinetics. In general, pheophytin is more stable than mesoporphyrin to UV-B irradiation. On the other hand, stability of Zn(II-complex is smaller than Cu(II-complex both for pheophytin and mesoporphyrin; however while Cu(II-complex with pheophytin is more stable than the one with mesoporphyrin, with Zn(II-complex the situation is vice versa.

  15. Copper(II) complexes with highly water-soluble L- and D-proline-thiosemicarbazone conjugates as potential inhibitors of Topoisomerase IIα.

    Science.gov (United States)

    Bacher, Felix; Enyedy, Éva A; Nagy, Nóra V; Rockenbauer, Antal; Bognár, Gabriella M; Trondl, Robert; Novak, Maria S; Klapproth, Erik; Kiss, Tamás; Arion, Vladimir B

    2013-08-05

    Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay.

  16. H4octapa: highly stable complexation of lanthanide(III) ions and copper(II).

    Science.gov (United States)

    Kálmán, Ferenc Krisztián; Végh, Andrea; Regueiro-Figueroa, Martín; Tóth, Éva; Platas-Iglesias, Carlos; Tircsó, Gyula

    2015-03-02

    The acyclic ligand octapa(4-) (H4octapa = 6,6'-((ethane-1,2-diylbis((carboxymethyl)azanediyl))bis(methylene))dipicolinic acid) forms stable complexes with the Ln(3+) ions in aqueous solution. The stability constants determined for the complexes with La(3+), Gd(3+), and Lu(3+) using relaxometric methods are log KLaL = 20.13(7), log KGdL = 20.23(4), and log KLuL = 20.49(5) (I = 0.15 M NaCl). High stability constants were also determined for the complexes formed with divalent metal ions such as Zn(2+) and Cu(2+) (log KZnL = 18.91(3) and log KCuL = 22.08(2)). UV-visible and NMR spectroscopic studies and density functional theory (DFT) calculations point to hexadentate binding of the ligand to Zn(2+) and Cu(2+), the donor atoms of the acetate groups of the ligand remaining uncoordinated. The complexes formed with the Ln(3+) ions are nine-coordinated thanks to the octadentate binding of the ligand and the presence of a coordinated water molecule. The stability constants of the complexes formed with the Ln(3+) ions do not change significantly across the lanthanide series. A DFT investigation shows that this is the result of a subtle balance between the increased binding energies across the 4f period, which contribute to an increasing complex stability, and the parallel increase of the absolute values of the hydration free energies of the Ln(3+) ions. In the case of the [Ln(octapa)(H2O)](-) complexes the interaction between the amine nitrogen atoms of the ligand and the Ln(3+) ions is weakened along the lanthanide series, and therefore the increased electrostatic interaction does not overcome the increasing hydration energies. A detailed kinetic study of the dissociation of the [Gd(octapa)(H2O)](-) complex in the presence of Cu(2+) shows that the metal-assisted pathway is the main responsible for complex dissociation at pH 7.4 and physiological [Cu(2+)] concentration (1 μM).

  17. A novel Schiff base derived from the gabapentin drug and copper (II) complex: Synthesis, characterization, interaction with DNA/protein and cytotoxic activity.

    Science.gov (United States)

    Shokohi-Pour, Zahra; Chiniforoshan, Hossein; Momtazi-Borojeni, Amir Abbas; Notash, Behrouz

    2016-09-01

    A novel Schiff base [C20H23NO3], has been prepared and characterized using FT-IR, UV-vis, (1)H NMR spectroscopy, elemental analysis and X-ray crystallography. A copper (II) complex [Cu(C20H22NO3)2]·H2O has also been synthesized and characterized. The new ligand and complex thus obtained were investigated by their interaction with calf thymus DNA and BSA using electronic absorption spectroscopy, fluorescence spectroscopy, and thermal denaturation. The intrinsic binding constants Kb of the ligand and Cu (II) complex, with CT-DNA obtained from UV-vis absorption studies were 1.53×10(4)M(-1) and 3.71×10(5)M(-1), respectively. Moreover the addition of the two compounds to CT-DNA (1:2) led to an increase of the melting temperature of DNA up to around 2.61°C for the ligand and 3.99°C for the Cu (II) complex. The ligand and Cu (II) complex bind to CT-DNA via a partial intercalative, as shown by the experimental data. In addition, the albumin interactions of the two compounds were studied by fluorescence quenching spectra, the results indicating that the binding mechanism is a static quenching process. The in vitro cytotoxicity of the two compounds on three different cancer cell lines was evaluated by MTT assay. The results showed that the copper complex exerted enhanced cytotoxicity compared with the Schiff base ligand; thereby, this complex clearly implies a positive synergistic effect. Furthermore, the copper complex showed a high, selective, and dose-dependent cytotoxicity against cancer cell lines.

  18. Zeolite-Encapsulated Copper(II) Amino Acid Complexes: Synthesis, Spectroscopy, and Catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Verberckmoes, A.A.; Fu, L.; Schoonheydt, R.A.

    1995-01-01

    The spectroscopic properties and catalytic behavior of Cu(AA)n m+ complexes (AA ) amino acid (glycine, lysine, histidine, alanine, serine, proline, tyrosine, phenylalanine, glutamine, glutamic acid, cysteine, tryptophan, leucine, and arginine)) in faujasite-type zeolites have been investigated. Succ

  19. Zeolite-Encapsulated Copper(II) Amino Acid Complexes: Synthesis, Spectroscopy, and Catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Verberckmoes, A.A.; Fu, L.; Schoonheydt, R.A.

    2001-01-01

    The spectroscopic properties and catalytic behavior of Cu(AA)n m+ complexes (AA ) amino acid (glycine, lysine, histidine, alanine, serine, proline, tyrosine, phenylalanine, glutamine, glutamic acid, cysteine, tryptophan, leucine, and arginine)) in faujasite-type zeolites have been investigated. Succ

  20. Synthesis and characterization of some heteroleptic copper(II) complexes based on meso-substituted dipyrrins

    Indian Academy of Sciences (India)

    Rakesh Kumar Gupta; Mahendra Yadav; Rampal Pandey; Daya Shankar Pandey

    2011-11-01

    The syntheses and characterizations of meso-substituted dipyrrins, 5-(4-imidazol-1-yl-phenyl)-dipyrromethene (4-impdpm), 5-(4-nitro-imidazol-1-yl-phenyl)-dipyrromethene, (4-nimpdpm), 5-(4-benzimidazol-1-yl-phenyl)-dipyrromethene (4-bimp-dpm) and heteroleptic complexes [Cu3(4-impdpm)2(hfacac)4] 1, [Cu(4-nimpdpm)(acac)] 2, [Cu(4-nimpdpm)(hfacac)] 3, [{Cu(4-bimpdpm)(acac)}] 4 and [{Cu(4-bimpdpm)-(hfacac)}] 5, imparting acetylacetonato (acac) and hexafluoroacetylacetonato (hfacac) groups as co-ligand have been described. The dipyrrins and complexes 1-5 have been characterized by elemental analyses and spectral (IR ESI-MS, NMR, electronic absorption and emission) studies. Crystal structures of 1, 3 and 4 have been authenticated by X-ray single crystal analyses. The reaction between 4-impdpm and Cu(hfacac)2 gave a trimetallic complex, under analogous conditions 4-nimpdpm and 4-bimpdpm reacted with Cu(acac)2 and Cu(hfacac)2·2H2O to afford mononuclear (2, 3) and 1D polymeric (4, 5) complexes.

  1. Novel copper(II)-dien-imidazole/imidazolate-bridged copper(II) complexes. Crystal structure of [Cu(dien)(Him)](ClO4)2 and of [(dien)Cu(mu-im)Cu(dien)](ClO4)3, a homobinuclear model for the copper(II) site of the CuZn-superoxide dismutase.

    Science.gov (United States)

    Patel, R N; Singh, Nripendra; Shukla, K K; Chauhan, U K

    2005-01-01

    The imidazolate-bridged binuclear copper(II)-copper(II) complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) and related mononuclear complexes [Cu(dien)(H(2)O)](ClO(4))(2), [Cu(dien)(Him)](ClO(4))(2) were synthesized with diethylenetriamine (dien) as capping ligand. The crystal structure of mononuclear [Cu(dien)(Him)](ClO(4))(2) and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) have been determined by single crystal X-ray diffraction methods. The mononuclear complex [Cu(dien)(Him)](ClO(4))(2) crystallizes in the orthorhombic, Pca2(1) with a = 9.3420(9) A, b = 12.3750(9) A, c = 14.0830(9) A, beta = 90.000(7)(o) and Z = 4 and binuclear complex [(dien)Cu(mu-im)Cu(dien)](ClO(4))(3) crystallizes in the monoclinic space group P2(1)/a, with a = 15.017(7) A, b = 11.938(6) A, c = 15.386(6) A, beta = 110.30(4)(o) and Z = 4. The molecular structures show that copper(II) ions in an asymmetrically elongated octahedral coordination (type 4 + 1 + 1) and in binuclear complex Cu(1) atom has a asymmetrically elongated octahedral coordination (type type 4 + 1 + 1) and Cu(2) atom exhibits a square base pyramidal coordination (type 4 + 1). The bridging ligand (imidazolate ion, im) lies nearly on a straight line between two Cu(2+), which are separated by 5.812 A, slightly shorter than the value in copper-copper superoxide dismutase (Cu(2)-Cu(2)SOD). Magnetic measurements and electron spin resonance (ESR) spectroscopy of the binuclear complex have shown an antiferromagnetic exchange interaction. From pH-dependent cyclic voltametry (CV) and electronic spectroscopic studies the complex has been found to be stable over a wide pH range (7.75-12.50).

  2. Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges Ecotype).

    Science.gov (United States)

    Mijovilovich, Ana; Leitenmaier, Barbara; Meyer-Klaucke, Wolfram; Kroneck, Peter M H; Götz, Birgit; Küpper, Hendrik

    2009-10-01

    The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here.

  3. Synthesis, structural and magnetic characterisation of iron(II/III), cobalt(II) and copper(II) cluster complexes of the polytopic ligand: N-(2-pyridyl)-3-carboxypropanamide.

    Science.gov (United States)

    Russell, Mark E; Hawes, Chris S; Ferguson, Alan; Polson, Matthew I J; Chilton, Nicholas F; Moubaraki, Boujemaa; Murray, Keith S; Kruger, Paul E

    2013-10-07

    Herein we describe the synthesis, structural and magnetic characterisation of three transition metal cluster complexes that feature the polytopic ligand N-(2-pyridyl)-3-carboxypropanamide (H2L): [Fe3(III)Fe2(II)(HL)6(O)(H2O)3][ClO4]5·3MeCN·4H2O, 1, [Co8(HL)8(O)(OH)4(MeOH)3(H2O)]-[ClO4]3·5MeOH·2H2O, 2, and [Cu6(L(ox))4(MeOH)(H2O)3]·MeOH, 3. Complex 1 is a mixed valence penta-nuclear iron cluster containing the archetypal {Fe3(III)O} triangular basic carboxylate cluster at its core, with two Fe(II) ions above and below the core coordinated to three bidentate pyridyl-amide groups. The structure of the octanuclear Co(II) complex, 2, is based upon a central Co4 square with the remaining four Co(II) centres at the 'wing-tips' of the complex. The cluster core is replete with bridging oxide, hydroxide and carboxylate groups. Cluster 3 contains an oxidised derivative of the ligand, L(ox), generated in situ through hydroxylation of an α-carbon atom. This hexanuclear cluster has a 'barrel-like' core and contains Cu(II) ions in both square planar and square-based pyramidal geometries. Bridging between Cu(II) centres is furnished by alkoxide and carboxylate groups. Magnetic studies on 1-3 reveals dominant antiferro-magnetic interactions for 1 and 2, leading to small non-zero spin ground states, while 3 shows ferro-magnetic exchange between the Cu(II) centres to give an S = 3 spin ground state.

  4. Styrene Oxidation by Copper(II Complexes Salen-Type Encapsulated into Nay Zeolite

    Directory of Open Access Journals (Sweden)

    Kuźniarska-Biernacka I.

    2013-12-01

    Full Text Available Osadzenie kompleksu miedzi(II z zasadą Schitta typu salen na zeolicie typu NaY zostało prze powadzone za pomocą dwóch metod „flexible ligand" i „in situ”. Katalityczne właściwości otrzymanego kompleksu oraz jego heterogenizowanych analogów badano w reakcji utleniania styrenu w obecności TBHP. Jako rozpuszczalnik stosowano acetonitryl. Testowane katalizatory wykazują średnią aktywność katalityczną z tendencją wytwarzania aldehy du benzoesowego. Oba heterogenizowane katalizatory mogą być wykorzystywane ponownie bez utraty aktywności katalitycznych.

  5. The interaction of taurine-salicylaldehyde Schiff base copper(II) complex with DNA and the determination of DNA using the complex as a fluorescence probe

    Science.gov (United States)

    Zhang, Xiaoyan; Wang, Yong; Zhang, Qianru; Yang, Zhousheng

    2010-09-01

    The interaction of taurine-salicylaldehyde Schiff base copper(II) (Cu(TSSB) 22+) complex with DNA was explored by using UV-vis, fluorescence spectrophotometry, and voltammetry. In pH 7.4 Tris-HCl buffer solution, the binding constant of the Cu(TSSB) 22+ complex interaction with DNA was 3.49 × 10 4 L mol -1. Moreover, due to the fluorescence enhancing of Cu(TSSB) 22+ complex in the presence of DNA, a method for determination of DNA with Cu(TSSB) 22+ complex as a fluorescence probe was developed. The fluorescence spectra indicated that the maximum excitation and emission wavelength were 389 nm and 512 nm, respectively. Under optimal conditions, the calibration graphs are linear over the range of 0.03-9.03 μg mL -1 for calf thymus DNA (CT-DNA), 0.10-36 μg mL -1 for yeast DNA and 0.01-10.01 μg mL -1 for salmon DNA (SM-DNA), respectively. The corresponding detection limits are 7 ng mL -1 for CT-DNA, 3 ng mL -1 for yeast DNA and 3 ng mL -1 for SM-DNA. Using this method, DNA in synthetic samples was determined with satisfactory results.

  6. SYNTHESIS, CRYSTAL STRUCTURE, AND PROPERTIES OF COPPER(II COMPLEXES WITH 1,4,7-TRIS(2-AMINOETHYL-1,4,7-TRIAZACYCLONONANE

    Directory of Open Access Journals (Sweden)

    Masahiro Mikuriya

    2015-12-01

    Full Text Available Three kinds of copper(II complexes with 1,4,7-tris(2-aminoethyl-1,4,7-triazacyclononane (taetacn, [Cu(taetacn](ClO42 (1, [Cu(Htaetacn](ClO43 (2, and [Cu(Htaetacn](BF43 (3 were synthesized and characterized by elemental analyses, IR and UV-Vis spectroscopies. The spectral features are in harmony with an octahedral geometry for 1 and a square-pyramidal coordination for 2 and 3.

  7. Antimicrobial mechanism of copper (II 1,10-phenanthroline and 2,2′-bipyridyl complex on bacterial and fungal pathogens

    Directory of Open Access Journals (Sweden)

    S. Chandraleka

    2014-12-01

    Full Text Available Copper based metallo drugs were prepared and their antibacterial, antifungal, molecular mechanism of [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O complexes were investigated. The [Cu(SAlaPhen]·H2O and [Cu(SAlabpy]·H2O were derived from the Schiff base alanine salicylaldehyde. [Cu(SAlaPhen]·H2O showed noteworthy antibacterial and antifungal activity than the [Cu(SAlabpy]·H2O and ligand alanine, salicylaldehyde. The [Cu(SAlaPhen]·H2O complex showed significant antibacterial activity against Salmonella typhi, Staphylococcus aureus, Salmonella paratyphi and the antifungal activity against Candida albicans and Cryptococcus neoformans in well diffusion assay. The mode of action of copper (II complex was analyzed by DNA cleavage activity and in silico molecular docking. The present findings provide important insight into the molecular mechanism of copper (II complexes in susceptible bacterial and fungal pathogens. These results collectively support the use of [Cu(SAlaPhen]·H2O complex as a suitable drug to treat bacterial and fungal infections.

  8. Solvent effects of N-nitroso, N-(2-chloroethyl), N',N'-dibenzylsulfamid and its copper(II) and cobalt(II) complexes: fluorescence studies.

    Science.gov (United States)

    Bensouilah, Nadjia; Fisli, Hassina; Dhaoui, Nabila; Benali-Cherif, Nourredine; Abdaoui, Mohamed

    2013-01-01

    The structure of N-nitroso, N-(2-chloroethyl), N',N'-dibenzylsulfamid (CENS) was established by X-ray crystallography. The atomic coordinates, factors of isotropic thermal agitation, bond lengths and valence angles were determined. The solvent effects on the electronic absorption and fluorescence spectra of CENS were investigated at room temperature. The effects of solvent polarity and of hydrogen bonding were interpreted by means of linear solvation energy relationships (LSERs). Multiple linear regression analysis indicated that the hydrogen donation properties of the solvent play an important role in determining the position of the absorption maximum, while the classical polarity of the medium is the only dominating parameter in determining the emission maximum and the Stokes' shift. Complexation of the investigated compound by two different transition metal ions was studied. Fluorescence measurements show that fluorescence quenching by cobalt(II) is more important than that by copper(II). This phenomenon can be attributed to good stereo-structural matching between the electronic configuration of the Co(2+) ion and the active site distribution of CENS in aqueous solution.

  9. Synthesis of mononuclear copper(II) complexes of N3O2 and N4O2 donors containing Schiff base ligands: Theoretical and biological observations

    Science.gov (United States)

    Mancha Madha, K.; Gurumoorthy, P.; Arul Antony, S.; Ramalakshmi, N.

    2017-09-01

    A new series of six mononuclear copper(II) complexes were synthesized from N3O2 and N4O2 donors containing Schiff base ligands, and characterized by various spectral methods. The geometry of the complexes was determined using UV-Vis, EPR and DFT calculations. The complexes of N3O2 donors (1-3) adopted square pyramidal geometry and the remaining complexes of N4O2 donors (4-6) show distorted octahedral geometry around copper(II) nuclei. Redox properties of the complexes show a one-electron irreversible reduction process in the cathodic potential (Epc) region from -0.74 to -0.98 V. The complexes show potent antioxidant activity against DPPH radicals. Molecular docking studies of complexes showed σ-π interaction, hydrogen bonding, electrostatic and van der Waals interactions with VEGFR2 kinase receptor. In vitro cytotoxicity of the complexes was tested against human breast cancer (MDA-MB-231) cell lines and one normal human dermal fibroblasts (NHDF) cell line through MTT assay. The morphological assessment data obtained by Hoechst 33258 and AO/EB staining revealed that the complexes induce apoptosis pathway of cell death.

  10. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole

    Science.gov (United States)

    Li, Mei; kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-01

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  11. DNA binding, cytotoxicity and apoptosis induction activity of a mixed-ligand copper(II) complex with taurine Schiff base and imidazole.

    Science.gov (United States)

    Li, Mei; Kong, Lin Lin; Gou, Yi; Yang, Feng; Liang, Hong

    2014-07-15

    A novel binuclear copper(II) complex (complex 1) with taurine Schiff base and imidazole has been synthesized and structurally characterized by single crystal X-ray diffraction, elemental analysis, ESI-MS spectrometry, UV-vis and IR spectroscopy. Single-crystal analysis revealed that 1 displays the sulfonate-bridged dinuclear copper(II) centers. Both copper atoms are five-coordinated and exhibit slightly distorted square pyramidal geometries. Each of copper atom is surrounded by three oxygen atoms and one nitrogen atom from different taurine Schiff base ligands, and one nitrogen atom from one imidazole ligand. The interaction between 1 and calf thymus DNA (CT-DNA) was investigated by UV-vis, fluorescence, circular dichroism (CD) spectra and agarose gel electrophoresis. The experimental results indicated that 1 could bind to CT-DNA via an intercalative mode and show efficient cleavage activity. In addition, 1 showed an antitumor effect on cell cycle and apoptosis. Flow cytometric analysis revealed that MGC-803 cells were arrested in the S phase after treatment with 1. Fluorescence microscopic observation indicated that 1 could induce apoptosis of MGC-803 cells.

  12. The crucial role of chelate-chelate stacking interactions in the crystal structure of a square planar copper(II) complex

    Science.gov (United States)

    Jana, Subrata; Khan, Samim; Bauzá, Antonio; Frontera, Antonio; Chattopadhyay, Shouvik

    2017-01-01

    A square planar copper(II) complex has been synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction study. The X-ray structure of the complex is used to analyze the crucial role of the π-interactions in the solid state. The complex also shows significant hydrogen-bonding interactions. Moreover, we have evaluated energetically both interactions by means of high level DFT calculations (BP86-D3/def2-TZVP) and characterized them using the Bader's theory of "atoms-in-molecules".

  13. Synthesis, CMC Determination, Antimicrobial Activity and Nucleic Acid Binding of A Surfactant Copper(II) Complex Containing Phenanthroline and Alanine Schiff-Base.

    Science.gov (United States)

    Nagaraj, Karuppiah; Sakthinathan, Subramanian; Arunachalam, Sankaralingam

    2014-03-01

    A new water-soluble surfactant copper(II) complex [Cu(sal-ala)(phen)(DA)] (sal-ala = salicylalanine, phen = 1,10-phenanthroline, DA = dodecylamine), has been synthesized and characterized by physico-chemical and spectroscopic methods. The critical micelle concentration (CMC) values of this surfactant-copper(II) complex in aqueous solution were obtained from conductance measurements. Specific conductivity data (at 303, 308, 313. 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG(0)m, ΔH(0)m and ΔS(0)m). The interaction of this complex with nucleic acids (DNA and RNA) has been explored by using electronic absorption spectral titration, competitive binding experiment, cyclic voltammetry, circular dichroism (CD) spectra, and viscosity measurements. Electronic absorption studies have revealed that the complex can bind to nucleic acids by the intercalative binding mode which has been verified by viscosity measurements. The DNA binding constants have also been calculated (Kb = 1.2 × 10(5) M(-1) for DNA and Kb = 1.6 × 10(5) M(-1) for RNA). Competitive binding study with ethidium bromide (EB) showed that the complex exhibits the ability to displace the DNA-bound-EB indicating that the complex binds to DNA in strong competition with EB for the intercalative binding site. The presence of hydrophobic ligands, alanine Schiff-base, phenanthroline and long aliphatic chain amine in the complex were responsible for this strong intercalative binding. The surfactant-copper (II) complex was screened for its antibacterial and antifungal activities against various microorganisms. The results were compared with the standard drugs, amikacin(antibacterial) and ketokonazole(antifungal).

  14. Synthesis, Characterization, and Biological Studies of Binuclear Copper(II Complexes of (2E-2-(2-Hydroxy-3-Methoxybenzylidene-4N-Substituted Hydrazinecarbothioamides

    Directory of Open Access Journals (Sweden)

    P. Murali Krishna

    2013-01-01

    Full Text Available Four novel binuclear copper(II complexes [1–4] of (2E-2-(2-hydroxy-3-methoxybenzylidene-4N-substituted hydrazinecarbothioamides, (OH(OCH3C6H4CH=NNHC(SNHR, where R = H (L1, Me (L2, Et (L3, or Ph (L4, have been synthesized and characterized. The FT-IR spectral data suggested the attachment of copper(II ion to ligand moiety through the azomethine nitrogen, thioketonic sulphur, and phenolic-O. The spectroscopic characterization indicates the dissociation of dimeric complex into mononuclear [Cu(LCl] units in polar solvents like DMSO, where L is monoanionic thiosemicarbazone. The DNA binding properties of the complexes with calf thymus (CT DNA were studied by spectroscopic titration. The complexes show binding affinity to CT DNA with binding constant (Kb values in the order of 106 M−1. The ligands and their metal complexes were tested for antibacterial and antifungal activities by agar disc diffusion method. Except for complex 4, all complexes showed considerable activity almost equal to the activity of ciprofloxacin. These complexes did not show any effect on Gram-negative bacteria, whereas they showed moderate activity for Gram-positive strains.

  15. Crystal structures of a copper(II and the isotypic nickel(II and palladium(II complexes of the ligand (E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-ol

    Directory of Open Access Journals (Sweden)

    Souheyla Chetioui

    2016-08-01

    Full Text Available In the copper(II complex, bis{(E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olato}copper(II, [Cu(C16H8Br3N2O2], (I, the metal cation is coordinated by two N atoms and two O atoms from two bidentate (E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the ligands, the tribromobenzene ring is inclined to the naphthalene ring system by 37.4 (5°, creating a weak intramolecular Cu...Br interaction [3.134 (2 Å], while in the other ligand, the tribromobenzene ring is inclined to the naphthalene ring system by 72.1 (6°. In the isotypic nickel(II and palladium(II complexes, namely bis{(E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olato}nickel(II, [Ni(C16H8Br3N2O2], (II, and bis{(E-1-[(2,4,6-tribromophenyldiazenyl]naphthalen-2-olato}palladium(II, [Pd(C16H8Br3N2O2], (III, respectively, the metal atoms are located on centres of inversion, hence the metal coordination spheres have perfect square-planar geometries. The tribromobenzene rings are inclined to the naphthalene ring systems by 80.79 (18° in (II and by 80.8 (3° in (III. In the crystal of (I, molecules are linked by C—H...Br hydrogen bonds, forming chains along [010]. The chains are linked by C—H...π interactions, forming sheets parallel to (011. In the crystals of (II and (III, molecules are linked by C—H...π interactions, forming slabs parallel to (10-1. For the copper(II complex (I, a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015. Acta Cryst. C71, 9–18]. The formula mass and unit-cell characteristics of the disordered solvent molecules were not taken into account during refinement.

  16. Crystal structures of a copper(II) and the isotypic nickel(II) and palladium(II) complexes of the ligand (E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-ol.

    Science.gov (United States)

    Chetioui, Souheyla; Rouag, Djamil-Azzeddine; Djukic, Jean-Pierre; Bochet, Christian G; Touzani, Rachid; Bailly, Corinne; Crochet, Aurélien; Fromm, Katharina M

    2016-08-01

    In the copper(II) complex, bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naph-thalen-2-olato}copper(II), [Cu(C16H8Br3N2O)2], (I), the metal cation is coord-inated by two N atoms and two O atoms from two bidentate (E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the ligands, the tri-bromo-benzene ring is inclined to the naphthalene ring system by 37.4 (5)°, creating a weak intra-molecular Cu⋯Br inter-action [3.134 (2) Å], while in the other ligand, the tri-bromo-benzene ring is inclined to the naphthalene ring system by 72.1 (6)°. In the isotypic nickel(II) and palladium(II) complexes, namely bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olato}nickel(II), [Ni(C16H8Br3N2O)2], (II), and bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olato}palladium(II), [Pd(C16H8Br3N2O)2], (III), respectively, the metal atoms are located on centres of inversion, hence the metal coordination spheres have perfect square-planar geometries. The tri-bromo-benzene rings are inclined to the naphthalene ring systems by 80.79 (18)° in (II) and by 80.8 (3)° in (III). In the crystal of (I), mol-ecules are linked by C-H⋯Br hydrogen bonds, forming chains along [010]. The chains are linked by C-H⋯π inter-actions, forming sheets parallel to (011). In the crystals of (II) and (III), mol-ecules are linked by C-H⋯π inter-actions, forming slabs parallel to (10-1). For the copper(II) complex (I), a region of disordered electron density was corrected for using the SQUEEZE routine in PLATON [Spek (2015 ▸). Acta Cryst. C71, 9-18]. The formula mass and unit-cell characteristics of the disordered solvent mol-ecules were not taken into account during refinement.

  17. Synthesis, electrochemical, structural, spectroscopic and biological activities of mixed ligand copper (II) complexes with 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid and nitrogenous bases

    Science.gov (United States)

    Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.

    2014-02-01

    Three new copper (II) complexes viz. [Cu(L1)(bipy)]ṡ2H2O 1, [Cu(L1)(dmp)]ṡCH3CN 2, [Cu(L1)(phen)] 3 where L1H2 = 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid, bipy = 2,2‧-bipyridine; dmp = 2,9-dimethyl 1,10-phenanthroline, phen = 1,10-phenanthroline have been synthesized and characterized by physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography, which revealed distorted square pyramidal geometry. In solid-state structure, 1 is self-assembled via intermolecular π…π stacking and the distances between centroids of aromatic ring is 3.525 Å. L1H2 is a diprotic tridentate Schiff base ligand having ONO donor site. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The EPR spectra of these complexes in frozen DMSO solutions showed a single at g ca. 2. The trend in g-value (g|| > g⊥ > 2.0023) suggests that the unpaired electron on copper (II) has d character. Copper (II) complexes 1-3 yielded an irreversible couple corresponding to the Cu (II)/Cu (I) redox process. Superoxide dismutase activity of all these complexes has been revealed to catalyze the dismutation of superoxide (O2-) and IC50 values were evaluated and discussed. Antimicrobial and antifungal activities of these complexes were also investigated.

  18. Synthesis, characterization and catalytic activity of copper(II) complexes containing a redox-active benzoxazole iminosemiquinone ligand.

    Science.gov (United States)

    Balaghi, S Esmael; Safaei, Elham; Chiang, Linus; Wong, Edwin W Y; Savard, Didier; Clarke, Ryan M; Storr, Tim

    2013-05-21

    A tridentate benzoxazole-containing aminophenol ligand HL(BAP) was synthesized and complexed with Cu(II). The resulting Cu(II) complexes were characterized by X-ray, IR, UV-vis-NIR spectroscopies, and magnetic susceptibility studies, demonstrating that the ligand is oxidized to the o-iminosemiquinone form [L(BIS)](-) in the isolated complexes. L(BIS)Cu(II)Cl exhibits a distorted tetrahedral geometry, while L(BIS)Cu(II)OAc is square pyramidal. In both solid state structures the ligand is coordinated to Cu(II)via the benzoxazole, as well as the nitrogen and oxygen atoms from the o-iminosemiquinone moiety. The chloride, or acetate group occupies the fourth and/or fifth positions in L(BIS)Cu(II)Cl and L(BIS)Cu(II)OAc, respectively. Magnetic susceptibility measurements indicate that both complexes are diamagnetic due to antiferromagnetic coupling between the d(9) Cu(II) centre and iminosemiquinone ligand radical. Electrochemical studies of the complexes demonstrate both a quasi-reversible reduction and oxidation process for the Cu complexes. While L(BIS)Cu(II)X (X = Cl) is EPR-silent, chemical oxidation affords a species with an EPR signal consistent with ligand oxidation to form a d(9) Cu(II) iminoquinone species. In addition, chemical reduction results in a Cu(II) centre most likely bound to an amidophenoxide. Mild and efficient oxidation of alcohol substrates to the corresponding aldehydes was achieved with molecular oxygen as the oxidant and L(BIS)Cu(II)X-Cs2CO3 as the catalyst.

  19. Synthesis and antitumor mechanisms of a copper(II) complex of anthracene-9-imidazoline hydrazone (9-AIH).

    Science.gov (United States)

    Qin, Qi-Pin; Liu, Yan-Cheng; Wang, Hai-Lu; Qin, Jiao-Lan; Cheng, Feng-Jie; Tang, Shang-Feng; Liang, Hong

    2015-07-01

    A new anthracycline derivative, anthracene-9-imidazoline hydrazone (9-AIH), was synthesized and selected as an antitumor ligand to afford a copper(II) complex of 9-AIH, cis-[Cu(II)Cl2(9-AIH)] (1). Complex 1 was structurally characterized by IR, elemental analysis, ESI-MS and single crystal X-ray diffraction analysis. By MTT assay, it was revealed that 1 showed overall a higher in vitro cytotoxicity than 9-AIH towards a panel of human tumour cell lines, with IC50 values from 0.94–3.68 μM, in which the BEL-7404 cell line was the most sensitive to 1. By spectral analyses and gel electrophoresis, the DNA binding affinity of 9-AIH and 1 was determined. 9-AIH was suggested to bind with DNA in an intercalative mode, with a quenching constant of 1.04 × 10(4) M(−1) on the EB–DNA complex. While for 1, both intercalative and covalent binding modes were suggested. By flow cytometry, 1 was found to block the cell cycle of BEL-7404 cells in a dose-dependent mode, in which it induced the G2/M phase arrest at 0.5 μM and induced the S phase arrest at higher concentrations of 1.0 or 2.0 μM. From the cellular morphological observations under different fluorescence probe staining, a dose-dependent manner of 1 to induce cell apoptosis in the late stage was suggested. Comparatively, equivalent apoptotic cells, respectively, in the early and late stages were found when incubated with 2.0 μM of 9-AIH. The mitochondrial membrane potential measured by JC-1 staining and the ROS generation in cells detected using a DCFH-DA probe suggested that the cell apoptosis induced by 1 might undergo the ROS-related mitochondrial pathway. Accordingly, the mutant p53 expression was found to be suppressed and the caspase cascade (caspase-9/3) was consequently activated by 1. This action mechanism for 1 in the BEL-7404 cells was unique and was not found in the presence of 9-AIH under the same conditions, indicating their different antitumor mechanism. Furthermore, the in vivo acute toxicity of 1

  20. Synthesis and Characterisation of Copper(II Complexes with Tridentate NNO Functionalized Ligand: Density Function Theory Study, DNA Binding Mechanism, Optical Properties, and Biological Application

    Directory of Open Access Journals (Sweden)

    Madhumita Hazra

    2014-01-01

    Full Text Available The photo physical properties of two mononuclear pentacoordinated copper(II complexes formulated as [Cu(L(Cl(H2O] (1 and [Cu(L(Br(H2O] (2 HL = (1-[(3-methyl-pyridine-2-ylimino-methyl]-naphthalen-2-ol were synthesized and characterized by elemental, physicochemical, and spectroscopic methods. The density function theory calculations are used to investigate the electronic structures and the electronic properties of ligand and complex. The interactions of copper(II complexes towards calf thymus DNA were examined with the help of absorption, viscosity, and fluorescence spectroscopic techniques at pH 7.40. All spectroscopy's result indicates that complexes show good binding activity to calf thymus DNA through groove binding. The optical absorption and fluorescence emission properties of microwires were characterized by fluorescence microscope. From a spectroscopic viewpoint, all compounds strongly emit green light in the solid state. The microscopy investigation suggested that microwires exhibited optical waveguide behaviour which are applicable as fluorescent nanomaterials and can be used as building blocks for miniaturized photonic devices. Antibacterial study reveals that complexes are better antimicrobial agents than free Schiff base due to bacterial cell penetration by chelation. Moreover, the antioxidant study of the ligand and complexes is evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH free-radical assays, which demonstrate that the complexes are of higher antioxidant activity than free ligand.

  1. MECHANISM OF THE OXIDATION OF HEMOGLOBIN BY COPPER (II COMPLXES

    Directory of Open Access Journals (Sweden)

    M. BAYATI

    1994-07-01

    Full Text Available An outer sphere electron transfer mechanism by which human hemoglobin reduces the complexes of copper(II and, in turn, is oxidized to methemoglobin has been characterized. We have found that the rate of oxidation of hemoglobin is a function of pH, temperature, concentration of copper(II, and the environment of the hemoglobin. Prior to oxidation, copper(II complex binds to specific sites on the surface of the protein by losing one or more of its ligands, forming a ternary complex. This process is followed by electron transfer between the Cu(II and Fe(H with the Cu(II-deoxyhemoglobin being the active intermediate. The dominant factors which govern the rate of oxidation of hemoglobin by coppcr(I I complexes seem to be the stability constant of the Cu(II complexes and the overall redox potential of the ternary complex.

  2. Synthesis, physico-chemical studies of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes with some p-substituted acetophenone benzoylhydrazones and their antimicrobial activity.

    Science.gov (United States)

    Singh, Vinod P; Singh, Shweta; Katiyar, Anshu

    2009-04-01

    Complexes of the type [M(pabh)(H2O)Cl], [M(pcbh)(H2O)Cl] and [M(Hpabh)(H2O)2 (SO4)] where, M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpabh = p-amino acetophenone benzoyl hydrazone and Hpcbh = p-chloro acetophenone benzoyl hydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra, thermal (TGA & DTA) and X-ray diffraction studies. Co(II), Ni(II) and Cu(II) chloride complexes are square planar, whereas their sulfate complexes have spin-free octahedral geometry. ESR spectra of Cu(II) complexes with Hpabh are axial and suggest d(x(2)-y(2) as the ground state. The ligand is bidentate bonding through > C = N--and deprotonated enolate group in all the chloro complexes, whereas, >C = N and >C = O groups in all the sulfato complexes. Thermal studies (TGA & DTA) on [Cu(Hpabh)(H2O)2(SO4)] indicate a multistep decomposition pattern, which are both exothermic and endothermic in nature. X-ray powder diffraction parameters for [Co(pabh)(H2O)Cl] and [Ni(Hpabh)(H2O)2(SO4)] correspond to tetragonal and orthorhombic crystal lattices, respectively. The ligands as well as their complexes show a significant antifungal and antibacterial activity. The metal complexes are more active than the ligand.

  3. Copper complexes relevant to the catalytic cycle of copper nitrite reductase: electrochemical detection of NO(g) evolution and flipping of NO2 binding mode upon Cu(II) → Cu(I) reduction.

    Science.gov (United States)

    Maji, Ram Chandra; Barman, Suman Kumar; Roy, Suprakash; Chatterjee, Sudip K; Bowles, Faye L; Olmstead, Marilyn M; Patra, Apurba K

    2013-10-07

    Copper complexes of the deprotonated tridentate ligand, N-2-methylthiophenyl-2'-pyridinecarboxamide (HL1), were synthesized and characterized as part of our investigation into the reduction of copper(II) o-nitrito complexes into the related copper nitric oxide complexes and subsequent evolution of NO(g) such as occurs in the enzyme copper nitrite reductase. Our studies afforded the complexes [(L1)Cu(II)Cl]n (1), [(L1)Cu(II)(ONO)] (2), [(L1)Cu(II)(H2O)](ClO4)·H2O (3·H2O), [(L1)Cu(II)(CH3OH)](ClO4) (4), [(L1)Cu(II)(CH3CO2)]·H2O (5·H2O), and [Co(Cp)2][(L1)Cu(I)(NO2)(CH3CN)] (6). X-ray crystal structure determinations revealed distorted square-pyramidal coordination geometry around Cu(II) ion in 1-5. Substitution of the H2O of 3 by nitrite quantitatively forms 2, featuring the κ(2)-O,O binding mode of NO2(-) to Cu(II). Reduction of 2 generates two Cu(I) species, one with κ(1)-O and other with the κ(1)-N bonded NO2(-) group. The Cu(I) analogue of 2, compound 6, was synthesized. The FTIR spectrum of 6 reveals the presence of κ(1)-N bonded NO2(-). Constant potential electrolysis corresponding to Cu(II) → Cu(I) reduction of a CH3CN solution of 2 followed by reaction with acids, CH3CO2H or HClO4 generates 5 or 3, and NO(g), identified electrochemically. The isolated Cu(I) complex 6 independently evolves one equivalent of NO(g) upon reaction with acids. Production of NO(g) was confirmed by forming [Co(TPP)NO] in CH2Cl2 (λ(max) in CH2Cl2: 414 and 536 nm, ν(NO) = 1693 cm(-1)).

  4. Potentiometric and spectrometric study: Copper(II), nickel(II) and zinc(II) complexes with potentially tridentate and monodentate ligands

    Indian Academy of Sciences (India)

    R N Patel; Nripendra Singh; R P Shrivastava; K K Shukla; P K Singh

    2002-04-01

    Equilibrium and solution structural study of mixed-metal-mixed-ligand complexes of Cu(II), Ni(II) and Zn(II) with L-cysteine, L-threonine and imidazole are conducted in aqueous solution by potentiometry and spectrophotometry. Stability constants of the binary, ternary and quaternary complexes are determined at 25 ± 1 ° C and in = 0.1 M NaClO4. The results of these two methods are made selfconsistent, then rationalized assuming an equilibrium model including the species H3A, H2A, A, BH, B, M(OH), M(OH)2, M(A), MA(OH), M(B), M(A)(B), M2(A)2(B), M2(A)2(B-H), M1M2(A)2(B) and M1M2(A)2(B-H) (where the charges of the species have been ignored for the sake of simplicity) (A = L-cysteine, L-threonine, salicylglycine, salicylvaline and BH = imidazole). Evidence of the deprotonation of BH ligand is available at alkaline H. N1H deprotonation of the bidentate coordinated imidazole ligand in the binuclear species at H > 7.0 is evident from spectral measurements. Stability constants of binary M(A), M(B) and ternary M(A)(B), complexes follow the Irving-Williams order.

  5. Structural, spectroscopic, magnetic and electrochemical studies of monomer N-substituted-sulfanilamide copper (II) complex with 2,2‧-bipyridine

    Science.gov (United States)

    Öztürk, Filiz; Bulut, İclal; Bulut, Ahmet

    2015-03-01

    A novel copper (II) complex of sulfamethazine (4-amino-N-[4,6-dimethyl-2-pyrimidinyl] benzene sulfonamide, Hsmz) ([Cu(smz)2bipy]ṡ0.8H2O; bipy: 2,2‧-bipyridine) has been synthesized and characterized by single crystal X-ray diffraction, EPR, IR, UV-vis and electrochemical methods. The single crystal X-ray analysis indicated that the compound crystallizes in the monoclinic space group P21/c with Z = 4. The central copper (II) ion is coordinated by two bidentate sulfamethazine anions through the nitrogen atoms together with one bidentate 2,2‧-bipyridine ligand forming the octahedral geometry. The characteristic vibration bands support the X-ray analysis results. The EPR spectral analysis has led to that the ground state wave function of the unpaired electron of copper ion is dx2-y2 (2B1g state) and also indicated that the metal ions are located in distorted octahedral sites (D4h) elongated along the z-axis. The electrochemical studies of the complex were also carried out to determine the active sites of the ligands. The cyclic and square wave voltammetric techniques have been used to determine the complex.

  6. Biologically active Schiff bases containing thiophene/furan ring and their copper(II) complexes: Synthesis, spectral, nonlinear optical and density functional studies

    Science.gov (United States)

    Gündüzalp, Ayla Balaban; Özsen, İffet; Alyar, Hamit; Alyar, Saliha; Özbek, Neslihan

    2016-09-01

    Schiff bases; 1,8-bis(thiophene-2-carboxaldimine)-p-menthane (L1) and 1,8-bis(furan-2-carboxaldimine)-p-menthane (L2) have been synthesized and characterized by elemental analysis, 1Hsbnd 13C NMR, UV-vis, FT-IR and LC-MS methods. 1H and 13C shielding tensors for L1 and L2 were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments, nonlinear optical (NLO) activities, frontier molecular orbitals (FMOs) and absorption spectrum have been investigated by the same basis set. Schiff base-copper(II) complexes have been synthesized and structurally characterized with spectroscopic methods, magnetic and conductivity measurements. The spectroscopic data suggest that Schiff base ligands coordinate through azomethine-N and thiophene-S/furan-O donors (as SNNS and ONNO chelating systems) to give a tetragonal geometry around the copper(II) ions. Schiff bases and Cu(II) complexes have been screened for their biological activities on different species of pathogenic bacteria, those are, Gram positive bacteria: Bacillus subtitilus, Yersinia enterotica, Bacillus cereus, Listeria monocytogenes, Micrococcus luteus and Gram negative bacteria: Escherichia coli, Pseudomonas aeroginosa, Shigella dysenteriae, Salmonella typhi, Klebsiella pseudomonas by using microdilution technique (MIC values in mM). Biological activity results show that Cu(II) complexes have higher activities than parent ligands and metal chelation may affect significantly the antibacterial behavior of the organic ligands.

  7. Air oxygenation chemistry of 4-TBC catalyzed by chloro bridged dinuclear copper(II) complexes of pyrazole based tridentate ligands: synthesis, structure, magnetic and computational studies.

    Science.gov (United States)

    Banerjee, Ishita; Samanta, Pabitra Narayan; Das, Kalyan Kumar; Ababei, Rodica; Kalisz, Marguerite; Girard, Adrien; Mathonière, Corine; Nethaji, M; Clérac, Rodolphe; Ali, Mahammad

    2013-02-07

    Four dinuclear bis(μ-Cl) bridged copper(II) complexes, [Cu(2)(μ-Cl)(2)(L(X))(2)](ClO(4))(2) (L(X) = N,N-bis[(3,5-dimethylpyrazole-1-yl)-methyl]benzylamine with X = H(1), OMe(2), Me(3) and Cl(4)), have been synthesized and characterized by the single crystal X-ray diffraction method. In these complexes, each copper(II) center is penta-coordinated with square-pyramidal geometry. In addition to the tridentate L(X) ligand, a chloride ion occupies the last position of the square plane. This chloride ion is also bonded to the neighboring Cu(II) site in its axial position forming an SP-I dinuclear Cu(II) unit that exhibits small intramolecular ferromagnetic interactions and supported by DFT calculations. The complexes 1-3 exhibit methylmonooxygenase (pMMO) behaviour and oxidise 4-tert-butylcatechol (4-TBCH(2)) with molecular oxygen in MeOH or MeCN to 4-tert-butyl-benzoquinone (4-TBQ), 5-methoxy-4-tert-butyl-benzoquinone (5-MeO-4-TBQ) as the major products along with 6,6'-Bu(t)-biphenyl-3,4,3',4'-tetraol and others as minor products. These are further confirmed by ESI- and FAB-mass analyses. A tentative catalytic cycle has been framed based on the mass spectral analysis of the products and DFT calculations on individual intermediates that are energetically feasible.

  8. New cyclic tetranuclear copper(II) complexes containing quadrilateral cores: Synthesis, structure, spectroscopy and their interactions with DNA in aqueous solution

    Science.gov (United States)

    Giri, Gopal C.; Haldar, Shobhraj; Ghosh, Aloke Kumar; Chowdhury, Priyanka; Carrella, Luca; Ghosh, Utpal; Bera, Manindranath

    2017-08-01

    Three new cyclic tetranuclear copper(II) complexes, Tetrakis{3-[(2-pyridylmethyl)-amino]-propionato}(tetrachloro)tetracopper(II)methanolhydrate (1·CH3OH·H2O), Tetrakis{3-[(2-pyridylmethyl)-amino]-propionato}(tetrathiocyanato)tetracopper(II) (2) and Tetrakis{3-[(2-pyridylmethyl)-amino]-propionato}(tetraazido)tetracopper(II) (3) have been synthesized by exploiting the chelating ability and bridging potential of a carboxyamine functionalized tridentate ligand, HL (HL = 3-[(2-Pyridylmethyl)-amino]-propionic acid). Complexes 1, 2 and 3 have been synthesized by carrying out reaction of the ligand HL with stoichiometric amounts of CuCl2·2H2O, CuCl2·2H2O/NH4SCN, and CuCl2·2H2O/NaN3, respectively, in the presence of NMe4OH at ambient temperature. Various analytical techniques have been employed to characterize the complexes, including single crystal X-ray diffraction study of 1. Structures of complexes 2 and 3 have been optimized by DFT calculation at B3LYP/6-311G level. Analysis of X-ray crystal structure reveals that the metallic core of complex 1 contains four distorted square pyramidal Cu(II) ions. The Cu(II) ions in each complex are arranged at the corners of a quadrilateral showing a μ2:η1:η1syn-anti bidentate bridging mode of four carboxylate groups of L- ligands with each bridging between two Cu(II) ions. These complexes represent a new family of 16-MCCuII-4 metallocoronates with repeating -[CuIIsbnd Osbnd Csbnd O]- units. In aqueous solution (pH∼7.5), the interactions of complexes with DNA have been investigated by UV-Vis and fluorescence titration spectroscopy, and viscosity measurements.

  9. Synthesis, physicochemical and spectroscopic characterization of copper(II)-polysaccharide pullulan complexes by UV-vis, ATR-FTIR, and EPR.

    Science.gov (United States)

    Mitić, Zarko; Cakić, Milorad; Nikolić, Goran M; Nikolić, Ružica; Nikolić, Goran S; Pavlović, Radmila; Santaniello, Enzo

    2011-02-15

    Bioactive copper(II) complexes with polysaccharides, like pullulan and dextran, are important in both veterinary and human medicine for the treatment of hypochromic microcitary anemia and hypocupremia. In aqueous alkaline solutions, Cu(II) ion forms complexes with the exopolysaccharide pullulan and its reduced low-molecular derivative. The metal content and the solution composition depend on pH, temperature, and time of the reaction. The complexing process begins in a weak alkali solution (pH >7) and involves OH groups of pullulan monomer (glucopyranose) units. Complexes of Cu(II) ion with reduced low-molecular pullulan (RLMP, M(w) 6000 g mol(-1)) were synthesized in water solutions, at the boiling temperature and at different pH values ranging from 7.5 to 12. The Cu(II) complex formation with RLMP was analyzed by UV-vis spectrophotometry and other physicochemical methods. Spectroscopic characterizations (ATR-FTIR, FT-IRIS, and EPR) and spectra-structure correlation of Cu(II)-RLMP complexes were also carried out.

  10. Structures and magnetic properties of an antiferromagnetically coupled polymeric copper(II) complex and ferromagnetically coupled hexanuclear nickel(II) clusters.

    Science.gov (United States)

    Tandon, Santokh S; Bunge, Scott D; Sanchiz, Joaquin; Thompson, Laurence K

    2012-03-05

    Reactions between 2,6-diformyl-4-methylphenol (DFMF) and tris(hydroxymethyl) aminomethane (THMAM = H(3)L2) in the presence of copper(II) salts, CuX(2) (X = CH(3)CO(2)(-), BF(4)(-), ClO(4)(-), Cl(-), NO(3)(-)) and Ni(CH(3)CO(2))(2) or Ni(ClO(4))(2)/NaC(6)H(5)CO(2), sodium azide (NaN(3)), and triethylamine (TEA), in one pot self-assemble giving a coordination polymer consisting of repeating pentanuclear copper(II) clusters {[Cu(2)(H(5)L(2-))(μ-N(3))](2)[Cu(N(3))(4)]·2CH(3)OH}(n) (1) and hexanuclear Ni(II) complexes [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(CH(3)CO(2))(2)]·6C(3)H(7)NO·C(2)H(5)OH (2) and [Ni(6)(H(3)L1(-))(2)(HL2(2-))(2)(μ-N(3))(4)(C(6)H(5)CO(2))(2)]·3C(3)H(7)NO·3H(2)O·CH(3)OH (3). In 1, H(5)L(2-) and in 2 and 3 H(3)L1(-) and HL2(2-) represent doubly deprotonated, singly deprotonated, and doubly deprotonated Schiff-base ligands H(7)L and H(4)L1 and a tripodal ligand H(3)L2, respectively. 1 has a novel double-stranded ladder-like structure in which [Cu(N(3))(4)](2-) anions link single chains comprised of dinuclear cationic subunits [Cu(2)(H(5)L(2-))(μ-N(3))](+), forming a 3D structure of interconnected ladders through H bonding. Nickel(II) clusters 2 and 3 have very similar neutral hexanuclear cores in which six nickel(II) ions are bonded to two H(4)L1, two H(3)L2, four μ-azido, and two μ-CH(3)CO(2)(-)/μ-C(6)H(5)CO(2)(-) ligands. In each structure two terminal dinickel (Ni(2)) units are connected to the central dinickel unit through four doubly bridging end-on (EO) μ-azido and four triply bridging μ(3)-methoxy bridges organizing into hexanuclear units. In each terminal dinuclear unit two nickel centers are bridged through one μ-phenolate oxygen from H(3)L1(-), one μ(3)-methoxy oxygen from HL2(2-), and one μ-CH(3)CO(2)(-) (2)/μ-C(6)H(5)CO(2)(-) (3) ion. Bulk magnetization measurements on 1 show moderately strong antiferromagnetic coupling within the [Cu(2)] building block (J(1) = -113.5 cm(-1)). Bulk magnetization measurements on 2

  11. Iron(III and copper(II complexes bearing 8-quinolinol with amino-acids mixed ligands: Synthesis, characterization and antibacterial investigation

    Directory of Open Access Journals (Sweden)

    Saliu A. Amolegbe

    2015-09-01

    Full Text Available Four d-orbital metal complexes with mixed ligands derived from 8-hydroxyquinoline (HQ and amino acids (AA: l-alanine and methionine have been synthesized through a mild reflux in alkaline solution and characterized by elemental analyses, infrared, electronic transition, and temperature dependant magnetic susceptibility. The IR spectroscopy revealed that iron and copper ions coordinated through carbonyl (CO, hydroxyl group (OH of the amino acids, N-pyridine ring of hydroxyquinoline. The elemental analysis measurement with other obtained data suggested an octahedral geometry for the iron(III complexes and tetrahedral geometry for the copper(II complexes. From the molar magnetic susceptibility measurement, the iron(III system (S = 5/2 d5 (non-degenerate 6A1 with χmT = 0.38 cm3 Kmol−1 showed an antiferromagnetic while Cu2+ ions system (S = ½ (2T2g has χmT = 4.77 cm3 Kmol−1 described as paramagnetic behaviour. In vitro antimicrobial investigations of the metal complexes against standard bacteria species gave significant inhibition with, copper complex showing highest inhibitions against Pseudomonas aeruginosa (ATCC27853 of 43 mm at 10 μg/ml signalling its potential as pharmaceutical or chemotherapeutic agents.

  12. Thermal, spectroscopic, and solvent influence studies on mixed-ligand copper(II) complexes containing the bulky ligand: Bis[ N-( p-tolyl)imino]acenaphthene

    Science.gov (United States)

    El-Ayaan, Usama; Gabr, I. M.

    2007-05-01

    Four mixed-ligand copper(II) complexes containing the rigid bidentate nitrogen ligand bis[ N-( p-tolyl)imino]acenaphthene (abb. p-Tol-BIAN) ligand are reported. These complexes, namely [Cu( p-Tol-BIAN) 2](ClO 4) 21, [Cu( p-Tol-BIAN)(acac)](ClO 4) 2, [Cu( p-Tol-BIAN)Cl 2] 3 and [Cu( p-Tol-BIAN)(AcOH) 2](ClO 4) 24 (where acac, acetylacetonate and AcOH, acetic acid) have been prepared and characterized by elemental analysis, spectroscopic, magnetic and molar conductance measurements. ESR spectra suggest a square planar geometry for complexes 1 and 2. In complexes 3 and 4, a distorted tetrahedral arrangement around copper(II) centre was suggested. Solvatochromic behavior of all studied complexes indicates strong solvatochromism of their solutions. The observed solvatochromism is mainly due to the solute-solvent interaction between the chelate cation and the solvent molecules. Thermal properties and decomposition kinetics of all complexes are investigated. The kinetic parameters ( E, A, Δ H, Δ S and Δ G) of all thermal decomposition stages have been calculated using the Coats-Redfern and other standard equations.

  13. Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites?

    Science.gov (United States)

    Göltl, Florian; Sautet, Philippe; Hermans, Ive

    2015-06-26

    Copper-exchanged SSZ-13 is a very efficient material in the selective catalytic reduction of NO(x) using ammonia (deNO(x)-SCR) and characterizing the underlying distribution of copper sites in the material is of prime importance to understand its activity. The IR spectrum of NO adsorbed to divalent copper sites are modeled using ab initio molecular dynamics simulations. For most sites, complex multi-peak spectra induced by the thermal motion of the cation as well as the adsorbate are found. A finite temperature spectrum for a specific catalyst was constructed, which shows excellent agreement with previously reported data. Additionally these findings allow active and inactive species in deNO(x)-SCR to be identified. To the best of our knowledge, this is the first time such complex spectra for single molecules adsorbed to single active centers have been reported in heterogeneous catalysis, and we expect similar effects to be important in a large number of systems with mobile active centers.

  14. Synthesis, characterization, plasmid cleavage and cytotoxicity of cancer cells by a copper(II) complex of anthracenyl-terpyridine.

    Science.gov (United States)

    Kumar, Amit; Chinta, Jugun Prakash; Ajay, Amrendra Kumar; Bhat, Manoj Kumar; Rao, Chebrolu P

    2011-11-01

    Metallo-organic compounds are interesting to study for their antitumor activity and related applications. This paper deals with the syntheses, characterization, structure determination of a copper complex of anthracenyl terpyridine (1) and its plasmid cleavage and cytotoxicity towards different cancer cell lines. The complex binds CT-DNA through partial intercalation mode. The plasmid cleavage studies carried out using pBR322 and pUC18 resulted in the formation of all the three forms of the plasmid DNA. Plasmid cleavage studies carried out with a non-redoxable Zn(2+) complex (2) supported the role of the redox activity of copper in 1. The complex 1 showed remarkable antiproliferative activity against cancer cell lines, viz., cervical (HeLa, SiHa, CaSki), breast (MCF-7), liver (HepG2) and lung (H1299). A considerable lowering was observed in the IC(50) values of HPV-infected (viz., HeLa, SiHa, CaSki) vs. non-HPV-infected cell lines (MCF-7, HepG2, H1299). Antiproliferative activity of 1 was found to be much higher than the carboplatin when treated with the same cell lines. Incubation of the cells with 1 results in granular structures only with the HPV-infected cells and not with others as studied by phase contrast and fluorescence microscopy. The lower IC(50) value observed in case of 1 with HPV-infected cell lines may be correlated with the involvement of HPV oncoprotein. The role of HPV has been further augmented by transfecting the MCF-7 cells (originally not possessing HPV copy) with e6 oncoprotein cDNA. To our knowledge this is the first copper complex that causes cell death by interacting with HPV oncoprotein followed by exhibition of remarkable antiproliferative activity.

  15. Synthesis, structural characterization and cytotoxic activity of ternary copper(II)-dipeptide-phenanthroline complexes. A step towards the development of new copper compounds for the treatment of cancer.

    Science.gov (United States)

    Iglesias, Sebastián; Alvarez, Natalia; Torre, María H; Kremer, Eduardo; Ellena, Javier; Ribeiro, Ronny R; Barroso, Rafael P; Costa-Filho, Antonio J; Kramer, M Gabriela; Facchin, Gianella

    2014-10-01

    In the search for new compounds with antitumor activity, coordination complexes with different metals are being studied by our group. This work presents the synthesis and characterization of six copper complexes with general stoichiometry [Cu(L-dipeptide)(phen)]·nH2O (were phen=1,10-phenanthroline) and their cytotoxic activities against tumor cell lines. To characterize these systems, analytical and spectroscopic studies were performed in solid state (by UV-visible, IR, X-ray diffraction) including the crystal structure of four new complexes (of the six complexes studied): [Cu(Ala-Phe)(phen)]·4H2O, [Cu(Phe-Ala)(phen)]·4H2O, [Cu(Phe-Val)(phen)]·4.5H2O and [Cu(Phe-Phe)(phen)]·3H2O. In all of them, the copper ion is situated in a distorted squared pyramidal environment. The phen ligand is perpendicular to the dipeptide, therefore exposed and potentially available for interaction with biological molecules. In addition, for all the studied complexes, structural information in solution using EPR and UV-visible spectroscopies were obtained, showing that the coordination observed in solid state is maintained. The lipophilicity, DNA binding and albumin interaction were also studied. Biological experiments showed that all the complexes induce cell death in the cell lines: HeLa (human cervical adenocarcinoma), MCF-7 (human metastatic breast adenocarcinoma) and A549 (human lung epithelial carcinoma). Among the six complexes, [Cu(Ala-Phe)(phen)] presents the lowest IC50 values. Taken together all these data we hypothesize that [Cu(Ala-Phe)(phen)] may be a good candidate for further studies in vivo.

  16. Structural, MALDI-TOF-MS, magnetic and spectroscopic studies of new dinuclear copper(II), cobalt(II) and zinc(II) complexes containing a biomimicking μ-OH bridge.

    Science.gov (United States)

    Núñez, Cristina; Bastida, Rufina; Macías, Alejandro; Valencia, Laura; Neuman, Nicolás I; Rizzi, Alberto C; Brondino, Carlos D; González, Pablo J; Capelo, José Luis; Lodeiro, Carlos

    2010-12-28

    The Py(2)N(4)S(2) octadentate coordinating ligand afforded dinuclear cobalt, copper and zinc complexes and the corresponding mixed metal compounds. The overall geometry and bonding modes have been deduced on the basis of elemental analysis data, MALDI-TOF-MS, IR, UV-vis and EPR spectroscopies, single-crystal X-Ray diffraction, conductivity and magnetic susceptibility measurements. In the copper and zinc complexes, a μ-hydroxo bridge links the two metal ions. In both cases, the coordination geometry is distorted octahedral. Magnetic and EPR data reveal weakly antiferromagnetic high spin Co(II) ions, compatible with a dinuclear structure. The magnetic characterization of the dinuclear Cu(II) compound indicates a ferromagnetically coupled dimer with weak antiferromagnetic intermolecular interactions. The intra-dimer ferromagnetic behaviour was unexpected for a Cu(II) dimer with such μ-hydroxo bridging topology. We discuss the influence on the magnetic properties of non-covalent interactions between the bridging moiety and the lattice free water molecules.

  17. Complexação da tetraciclina, da oxitetraciclina e da clortetraciclina com o catião cobre (II. Estudo potenciométrico Tetracycline, oxytetracycline and chlortetracycline complexation with copper (II. Potentiometric study

    Directory of Open Access Journals (Sweden)

    Cristina M. C. M. Couto

    2000-08-01

    Full Text Available Stability constants of complexes formed by copper (II with three different tetracyclines (tetracycline, oxytetracycline and chlortetracycline have been determined potentiometrically with an automatic system in aqueous medium at 25,0 ± 0,2 ºC and I = 0,1 mol L-1 NaNO3. The protonation constants of the three tetracyclines were also determined under the same conditions. The distribution of the complexes was then simulated at therapeutic levels of the drugs.

  18. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    Science.gov (United States)

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-02

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread.

  19. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells.

    Science.gov (United States)

    Jagadeesh, M; Kalangi, Suresh K; Sivarama Krishna, L; Reddy, A Varada

    2014-01-24

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1=2.1228, g2=2.0706 and g3=2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  20. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells

    Science.gov (United States)

    Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada

    2014-01-01

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  1. Synthesis, characterization, crystal structure determination and computational study of a new Cu(II) complex of bis [2-{(E)-[2-chloroethyl)imino]methyl}phenolato)] copper(II) Schiff base complex

    Science.gov (United States)

    Grivani, Gholamhossein; Vakili, Mohammad; Khalaji, Aliakbar Dehno; Bruno, Giuseppe; Rudbari, Hadi Amiri; Taghavi, Maedeh

    2016-07-01

    The copper (II) Schiff base complex of [CuL2] (1), HL = 2-{(E)-[2-chloroethyl) imino]methyl}phenol, has been synthesized and characterized by elemental (CHN) analysis, UV-Vis and FT-IR spectroscopy. The molecular structure of 1 was determined by single crystal X-ray diffraction technique. The conformational analysis and molecular structures of CuL2 were investigated by means of density functional theory (DFT) calculations at B3LYP/6-311G* level. An excellent agreement was observed between theoretical and experimental results. The Schiff base ligand of HL acts as a chelating ligand and coordinates via one nitrogen atom and one oxygen atom to the metal center. The copper (II) center is coordinated by two nitrogen atoms and two oxygen atoms from two Schiff base ligands in an approximately square planar trans-[MN2O2] coordination geometry. Thermogravimetric analysis of CuL2 showed that it was decomposed in five stages. In addition, the CuL2 complex thermally decomposed in air at 660 °C and the XRD pattern of the obtained solid showed the formation of CuO nanoparticles with an average size of 34 nm.

  2. In vitro DNA and BSA-binding, cell imaging and anticancer activity against human carcinoma cell lines of mixed ligand copper(II) complexes.

    Science.gov (United States)

    Anjomshoa, Marzieh; Torkzadeh-Mahani, Masoud

    2015-01-01

    Binding studies of two water soluble copper(II) complexes of the type [Cu(phen-dion)(diimine)Cl]Cl, where phen-dione is 1,10-phenanthroline-5,6-dione and diimine is 1,10-phenanthroline (1) and 2,2'-bipyridine (2), with fish sperm DNA (FS-DNA) and bovine serum albumin (BSA) have been examined under physiological conditions by a series of experimental methods (UV-Vis absorption, fluorescence, viscosity, cyclic voltammetry (CV) and circular dichroism (CD) spectroscopic techniques). The experimental results indicate that the complexes interact with FS-DNA by electrostatic and partial insertion of pyridyl rings between the base stacks of double-stranded DNA. The complexes could quench the intrinsic fluorescence of BSA with the binding constants (Kbin) of 32×10(5) M(-1) (1) and 1.7×10(5) M(-1) (2) at 290 K. The quenching mechanism, thermodynamic parameters, the number of binding sites and the effect of the Cu(II) complexes on the secondary structure of BSA have been explored. The in vitro anticancer chemotherapeutic potential of two copper(II) complexes against the three human carcinoma cell lines (MCF-7, A-549, and HT-29) and one normal cell line (DPSC) were evaluated by MTT assay. The results of in vitro cytotoxicity indicate that the complex (1) has greater cytotoxicity activity against all of the cell lines, especially HT-29 with IC50 values of 1.8 μM. Based on the IC50 values, these complexes did not display an apparent cyto-selective profile, because it would appear that two complexes are toxic to all four model cell lines. The microscopic analyses of the cancer cells confirm results of cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Copper(ii) complexes of macrocyclic and open-chain pseudopeptidic ligands: synthesis, characterization and interaction with dicarboxylates.

    Science.gov (United States)

    Faggi, Enrico; Gavara, Raquel; Bolte, Michael; Fajarí, Lluís; Juliá, Luís; Rodríguez, Laura; Alfonso, Ignacio

    2015-07-28

    Mono- and dinuclear Cu(ii) complexes were prepared with pseudopeptidic open chain and macrocyclic ligands, respectively. They were characterized by UV-vis spectroscopy, EPR, HRMS and X-ray diffraction. The Cu(ii) cation is coordinated by two amines and two deprotonated amides, in a slightly distorted square planar coordination geometry. The complexes interact with several substituted dicarboxylates, as shown by UV-vis titrations and EPR experiments. The interaction of both mono- and dinuclear complexes with very similar dicarboxylates of biological interest (malate and aspartate) resulted in strikingly different outcomes: in the first case a ternary complex [ligand...metal...dicarboxylate] was obtained almost quantitatively, while in the latter, the Cu(ii) displacement to form Cu(Asp)2 was predominant.

  4. Syntheses, electronic structures, and EPR/UV-vis-NIR spectroelectrochemistry of nickel(II), copper(II), and zinc(II) complexes with a tetradentate ligand based on S-methylisothiosemicarbazide.

    Science.gov (United States)

    Arion, Vladimir B; Rapta, Peter; Telser, Joshua; Shova, Sergiu S; Breza, Martin; Luspai, Karol; Kozisek, Jozef

    2011-04-04

    Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperatures resulted in metal complexes of the type M(II)L, where M = Ni and Cu and H(2)L = a novel tetradentate ligand. These complexes are relevant to the active site of the copper enzymes galactose oxidase and glyoxal oxidase. Demetalation of Ni(II)L with gaseous hydrogen chloride in chloroform afforded the metal-free ligand H(2)L. Then by the reaction of H(2)L with Zn(CH(3)COO)(2)·2H(2)O in a 1:1 molar ratio in 1:2 chloroform/methanol, the complex Zn(II)L(CH(3)OH) was prepared. The three metal complexes and the prepared ligand were characterized by spectroscopic methods (IR, UV-vis, and NMR spectroscopy), X-ray crystallography, and DFT calculations. Electrochemically generated one-electron oxidized metal complexes [NiL](+), [CuL](+), and [ZnL(CH(3)OH)](+) and the metal-free ligand cation radical [H(2)L](+•) were studied by EPR/UV-vis-NIR and DFT calculations. These studies demonstrated the interaction between the metal ion and the phenoxyl radical.

  5. Copper(II) complexes of alloferon 1 with point mutations (H1A) and (H9A) stability structure and biological activity.

    Science.gov (United States)

    Matusiak, Agnieszka; Kuczer, Mariola; Czarniewska, Elżbieta; Rosiński, Grzegorz; Kowalik-Jankowska, Teresa

    2014-09-01

    Mono- and polynuclear copper(II) complexes of the alloferon 1 with point mutations (H1A) A(1)GVSGH(6)GQH(9)GVH(12)G (Allo1A) and (H9A) H(1)GVSGH(6)GQA(9)GVH(12)G (Allo9A) have been studied by potentiometric, UV-visible, CD, EPR spectroscopic and mass spectrometry (MS) methods. To obtain a complete complex speciation different metal-to-ligand molar ratios ranging from 1:1 to 4:1 for Allo1A and to 3:1 for Allo9A were studied. The presence of the His residue in first position of the peptide chain changes the coordination abilities of the Allo9A peptide in comparison to that of the Allo1A. Imidazole-N3 atom of N-terminal His residue of the Allo9A peptide forms stable 6-membered chelate with the terminal amino group. Furthermore, the presence of two additional histidine residues in the Allo9A peptide (H(6),H(12)) leads to the formation of the CuL complex with 4N {NH2,NIm-H(1),NIm-H(6),NIm-H(12)} binding site in wide pH range (5-8). For the Cu(II)-Allo1A system, the results demonstrated that at physiological pH7.4 the predominant complex the CuH-1L consists of the 3N {NH2,N(-),CO,NIm} coordination mode. The inductions of phenoloxidase activity and apoptosis in vivo in Tenebrio molitor cells by the ligands and their copper(II) complexes at pH7.4 were studied. The Allo1A, Allo1K peptides and their copper(II) complexes displayed the lowest hemocytotoxic activity while the most active was the Cu(II)-Allo9A complex formed at pH7.4. The results may suggest that the N-terminal-His(1) and His(6) residues may be more important for their proapoptotic properties in insects than those at positions 9 and 12 in the peptide chain.

  6. Synthesis of New Azo Dyes and Copper(II) Complexes Derived from Barbituric Acid and 4-Aminobenzoylhydrazone

    OpenAIRE

    GUP, Bülent KIRKAN and Ramazan

    2008-01-01

    Four new azo dyes, L1, L2, L3, and L4, were prepared by linking benzaldehyde p-aminobenzoylhydrazone (3) and p-hydroxybenzaldehyede p--aminobenzoylhydrazone (4) to barbituric acid and 1,3-dimethylbarbituric acid through diazo-coupling reactions. Reactions of the azo-dyes with copper chloride and bidentate ligand, 1,10-phenanthroline, produced mixed-ligand dinuclear complexes with general stoichiometry [Cu2L(phen)2]Cl2 (7, 8, 9, and 10). The structures of both azo dyes and their compl...

  7. Synthesis, Spectroscopic, and Electrochemical Studies on Some New Copper(II Complexes Containing 2-{[(Z-Phenyl (Pyridine-2-yl Methylidene] Amino}Benzenethiol and Monodentate Ligands

    Directory of Open Access Journals (Sweden)

    S. P. Rawat

    2014-01-01

    Full Text Available Five new mononuclear copper(II complexes, namely, [Cu(L(ImH]·ClO41; [Cu(L(Me-ImH]·ClO42; [Cu(L(Et-ImH]·ClO43; [Cu(L(2-benz-ImH]·ClO44; [Cu(L(benz-ImH]·ClO45, where HL = 2-{[(Z-phenyl (pyridine-2-yl methylidene] amino} benzenethiol; ImH = Imidazole; Me-ImH = Methy-limidazole; Et-ImH = Ethyl-imidazole; 2-benz-ImH = 2-methyl-benzimidazole; benz-ImH = benz-imidazole, have been synthesized and characterized by various physicochemical and spectroscopic techniques. Magnetic moments, electronic spectra, and EPR spectra of the complexes suggested a square planar geometry around Cu(II ion. The synthesized HL ligand behaves as monobasic tridentate Schiff base bound with the metal ion in a tridentate manner, with N2S donor sites of the pyridine-N, azomethine-N, and benzenethiol-S atoms. The redox behaviour of the copper complexes has been studied by cyclic voltammetry. Superoxide dismutase activity of these complexes has been revealed to catalyse the dismutation of superoxide (O2- and IC50 values were evaluated and discussed.

  8. Di- and tetra-nuclear copper(II), nickel(II), and cobalt(II) complexes of four bis-tetradentate triazole-based ligands: synthesis, structure, and magnetic properties.

    Science.gov (United States)

    Olguín, Juan; Kalisz, Marguerite; Clérac, Rodolphe; Brooker, Sally

    2012-05-07

    Four bis-tetradentate N(4)-substituted-3,5-{bis[bis-N-(2-pyridinemethyl)]aminomethyl}-4H-1,2,4-triazole ligands, L(Tz1)-L(Tz4), differing only in the triazole N(4) substituent R (where R is amino, pyrrolyl, phenyl, or 4-tertbutylphenyl, respectively) have been synthesized, characterized, and reacted with M(II)(BF(4))(2)·6H(2)O (M(II) = Cu, Ni or Co) and Co(SCN)(2). Experiments using all 16 possible combinations of metal salt and L(TzR) were carried out: 14 pure complexes were obtained, 11 of which are dinuclear, while the other three are tetranuclear. The dinuclear complexes include two copper(II) complexes, [Cu(II)(2)(L(Tz2))(H(2)O)(4)](BF(4))(4) (2), [Cu(II)(2)(L(Tz4))(BF(4))(2)](BF(4))(2) (4); two nickel(II) complexes, [Ni(II)(2)(L(Tz1))(H(2)O)(3)(CH(3)CN)](BF(4))(4)·0.5(CH(3)CN) (5) and [Ni(II)(2)(L(Tz4))(H(2)O)(4)](BF(4))(4)·H(2)O (8); and seven cobalt(II) complexes, [Co(II)(2)(L(Tz1))(μ-BF(4))](BF(4))(3)·H(2)O (9), [Co(II)(2)(L(Tz2))(μ-BF(4))](BF(4))(3)·2H(2)O (10), [Co(II)(2)(L(Tz3))(H(2)O)(2)](BF(4))(4) (11), [Co(II)(2)(L(Tz4))(μ-BF(4))](BF(4))(3)·3H(2)O (12), [Co(II)(2)(L(Tz1))(SCN)(4)]·3H(2)O (13), [Co(II)(2)(L(Tz2))(SCN)(4)]·2H(2)O (14), and [Co(II)(2)(L(Tz3))(SCN)(4)]·H(2)O (15). The tetranuclear complexes are [Cu(II)(4)(L(Tz1))(2)(H(2)O)(2)(BF(4))(2)](BF(4))(6) (1), [Cu(II)(4)(L(Tz3))(2)(H(2)O)(2)(μ-F)(2)](BF(4))(6)·0.5H(2)O (3), and [Ni(II)(4)(L(Tz3))(2)(H(2)O)(4)(μ-F(2))](BF(4))(6)·6.5H(2)O (7). Single crystal X-ray structure determinations revealed different solvent content from that found by microanalysis of the bulk sample after drying under a vacuum and confirmed that 5', 8', 9', 11', 12', and 15' are dinuclear while 1' and 7' are tetranuclear. As expected, magnetic measurements showed that weak antiferromagnetic intracomplex interactions are present in 1, 2, 4, 7, and 8, stabilizing a singlet spin ground state. All seven of the dinuclear cobalt(II) complexes, 9-15, have similar magnetic behavior and remain in the [HS-HS] state

  9. SPECTROSCOPIC AND BIOLOGICAL STUDIES ON NEWLY SYNTHESIZED COPPER (II AND NICKEL (II COMPLEXES WITH p -DIMETHYLAMINOBANZALDEHYDE SEMICARBAZONE AND p -DIMETHYLAMINOBANZALDEHYDE THIOSEMICARBAZONE

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2012-08-01

    Full Text Available Cu (II and Ni (II complexes of general composition [ML2]X2(M = Cu(II, Ni(II; X = Cl-, NO3- weresynthesized by the condensation of metal salts with semicarbazone / thiosemicarbazone derived from p-dimethylaminobanzaldehyde. The metal complexes were characterized by elemental analysis, molar conductance, magneticsusceptibility measurements, IR and atomic absorption spectral studies. On the basis of electronic and infrared spectralstudies, the metal complexes were found to have tetrahedral geometry. The Schiff bases and their metal complexeswere tested for their antibacterial and antioxidant activities

  10. Cinnamaldehyde and cuminaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes: a study to understand their biological activity.

    Science.gov (United States)

    Bisceglie, Franco; Pinelli, Silvana; Alinovi, Rossella; Goldoni, Matteo; Mutti, Antonio; Camerini, Alessandro; Piola, Lorenzo; Tarasconi, Pieralberto; Pelosi, Giorgio

    2014-11-01

    This paper reports the synthesis and characterization of trans-cinnamaldehyde thiosemicarbazone (Htcin), cuminaldehyde thiosemicarbazone (Htcum) and their copper and nickel complexes. All the compounds, which on healthy cells (human fibroblasts) show a neglectable cytotoxicity, were screened in vitro in cell line U937 for their antileukemic activity. These compounds, in spite of their molecular similarity, present variegated behaviors. Htcin shows no inhibition activity in U935 cells, while both its metal complexes inhibit proliferation with IC50 at μM concentrations. The other ligand, Htcum, and its metal complexes, besides inhibiting proliferation, induce apoptosis. The cell cycle analysis highlights a G2/M checkpoint stop suggesting a possible direct action on DNA or on topoisomerase IIa. From CD and UV spectroscopy experiments, the DNA results to be not the main target of all these molecules, while both copper complexes are effective topoisomerase IIa inhibitors. All of these molecules activate caspase-9 and caspase-3, while caspase-8 activity is significantly induced by both cinnamaldehyde metal complexes. Tests on PgP and intracellular metal concentrations (determined by mean of atomic absorption spectrometry) show that the compounds tend to accumulate in the cytoplasm and that the cells do not manage to pump out copper and nickel ions.

  11. Synthesis, CMC determination, and intercalative binding interaction with nucleic acid of a surfactant-copper(II) complex with modified phenanthroline ligand (dpq).

    Science.gov (United States)

    Nagaraj, Karuppiah; Ambika, Subramanian; Arunachalam, Sankaralingam

    2015-01-01

    A surfactant-copper(II) complex, [Cu(dpq)2DA](ClO4)2 (dpq = dipyrido[3,2-d:2'-3'-f]quinoxaline; DA-dodecylamine), was synthesized and characterized on the basis of elemental analyses, UV-vis, IR, and EPR spectra. The critical micelle concentration (CMC) value of this surfactant-copper(II) complex in aqueous solution was found out from conductance measurements. Specific conductivity data at different temperature served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG°(m), ΔH°(m) and ΔS°(m)). In addition, the complex has been examined by its ability to bind to nucleic acids (DNA and RNA) in tris-HCl buffer by UV-vis absorption, emission spectroscopy techniques, and viscosity measurements. The complex has been found to bind strongly to nucleic acids with apparent binding constants at DNA and RNA is 4.3 × 10(5), 9.0 × 10(5) M(-1), respectively. UV-vis studies of the interaction of the complex with DNA/RNA have revealed that the complex can bind to both DNA and RNA by the intercalative binding mode via ligand dpq into the base pairs of DNA and RNA which has been verified by viscosity measurements. The presence of long aliphatic chain in the surfactant complex increases this hydrophobic interaction. The binding constants have been calculated. The cytotoxic activity of this complex on human liver carcinoma cancer cells was determined by adopting 3-(4, 5-dimethylthiazol-2-yl)-2, 5- diphenyl tetrazolium bromide assay and specific staining techniques. The antimicrobial and antifungal screening tests of this complex have shown good results.

  12. The standard molar enthalpy of formation of a new copper(II) Schiff-base complex and its interaction with bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jin-Qi [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan (China); Li, Chuan-Hua, E-mail: lichuanhua0526@126.com [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan (China); Dong, Jia-Xin [School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004 (China); Qu, Wei; Pan, Lan; Peng, Meng-La; Xie, Ming-An; Tao, Xu; Yu, Cheng-Mao; Zhu, Yi; Zhang, Ping-Hua; Tang, Chun-Guang [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan (China); Li, Qiang-Guo, E-mail: liqiangguo@163.com [Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, Department of Chemistry and Life Science, Xiangnan University, Chenzhou 423000, Hunan (China)

    2014-12-20

    Highlights: • A new copper(II) Valen Schiff-base complex was synthesized and characterized. • The standard molar enthalpy of formation of the title complex was obtained. • The interaction between the complex and bovine serum albumin was investigated. - Abstract: A new copper(II) Schiff-base complex [Cu(HL)·NO{sub 3}·MeOH] was prepared by using equivalent molar of Valen Schiff-base ligand [H{sub 2}L=N,N′-ethylene-bis(3-methoxysalicylideneimine)] and Cu(NO{sub 3}){sub 2}·3H{sub 2}O. The structure of the complex was confirmed by single-crystal X-ray diffraction. Based on an ideal and feasible thermochemical cycle, the standard molar enthalpy of formation of the complex was estimated to be: Δ{sub f}H{sub m}{sup θ} [Cu(HL)·NO{sub 3}·MeOH(s), 298.15 K] = –(945.40 ± 2.44) kJ mol{sup −1} by an advanced solution-reaction isoperibol calorimeter. In particular, the interaction between the complex and bovine serum albumin (BSA) was investigated using the fluorescence quenching method. Fluorescence quenching data showed that the quenching mechanism of BSA treated by the complex was static quenching, which was highly accord with the non-radioactive energy transfer theory. And some relevant parameters such as binding sites, binding distance and intermolecular forces between the complex and BSA were also obtained by analyzing the fluorescence spectral data.

  13. Synthesis and Characterization of Heteronuclear Copper(II-Lanthanide(III Complexes of N,N′-1,3-Propylenebis(Salicylaldiminato Where Lanthanide(III = Gd or Eu

    Directory of Open Access Journals (Sweden)

    Longjam Jaideva Singh

    2013-01-01

    Full Text Available Three complexes, namely, [Cu(salbn] (1, [Cu(salbnGd(NO33·H2O] (2, and [Cu(salbnEu(NO33·H2O] (3 where salbn = N,N′-1,3-propylenebis (salicylaldiminato have been synthesized and characterized by elemental analyses, ICP-AES, IR, UV, NMR, MS, EDX, powder XRD, and EPR spectroscopies. The EDX results suggest the presence of two different metal ions in heteronuclear complexes (2 and (3. The ligand(salbn, complex (1, and complex (3 crystallize in triclinic system while complex (2 crystallizes in monoclinic system. The EPR studies suggest that [Cu(salbn] complex is tetragonally coordinated monomeric copper(II complex with unpaired electron in the dx2-y2 orbital and spectral features that are the characteristics of axial symmetry while complex (2 in DMF solution at liquid nitrogen temperature exhibits an anisotropic broad signal around g ~ 2.03 which may suggest a weak magnetic spin-exchange interaction between Gd(III and Cu(II ions. The fluorescence intensity of Eu(III decreased markedly in the complex (3.

  14. Synthesis and Characterization of the Adducts of Morpholinedithioccarbamate Complexes of Oxovanadium (IV, Nickel(II, and Copper(II with Piperidine and Morpholine

    Directory of Open Access Journals (Sweden)

    Mousami Sharma

    2012-01-01

    Full Text Available A series of 1:1 adducts of bis(morpholinedithiocarbamato complex of VO(IV, 1:1 and 1:2 adducts of bis(morpholinedithiocarbamato complexes of Ni(II and Cu(II with piperidine and morpholine have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibility, IR, UV-Vis, and TGA/DTA techniques. Analytical data reveals that VO(IV complex forms only 1:1 adducts with the formula [VO(morphdtc2L].H2O while Ni(II and Cu(II complexes form both 1:1 and 1:2 adducts with 1:1 adducts having general formula Ni(morphdtc2.L and Cu(morphdtc2.L and 1:2 adducts having general formula Ni(morphdtc2.L2 and Cu(morphdtc2.L2 (morphdtc = morpholinedithiocarbamate, L = morpholine and piperidine. Antifungal activity of some complexes has been carried out against the fungal strain Fusarium oxysporium. Thermal studies indicate a continuous weight loss. A square pyramidal geometry has been proposed for the 1:1 adducts of Ni(II and Cu(II complexes while an octahedral geometry has been proposed for the 1:1 adducts of VO(IV and for the 1:2 adducts of Ni(II and Cu(II complexes.

  15. Acute toxicity and gastroprotection studies of a new schiff base derived copper (II complex against ethanol-induced acute gastric lesions in rats.

    Directory of Open Access Journals (Sweden)

    Maryam Hajrezaie

    Full Text Available BACKGROUND: Copper is an essential element in various metabolisms. The investigation was carried out to evaluate acute gastroprotective effects of the Copper (II complex against ethanol-induced superficial hemorrhagic mucosal lesions in rats. METHODOLOGY/PRINCIPAL FINDINGS: Rats were divided into 7 groups. Groups 1 and 2 were orally administered with Tween 20 (10% v/v. Group 3 was orally administered with 20 mg/kg omeprazole (10% Tween 20. Groups 4-7 received 10, 20, 40, and 80 mg/kg of the complex (10% Tween 20, respectively. Tween 20 (10% v/v was given orally to group 1 and absolute ethanol was given orally to groups 2-7, respectively. Rats were sacrificed after 1 h. Group 2 exhibited severe superficial hemorrhagic mucosal lesions. Gastric wall mucus was significantly preserved by the pre-treatment complex. The results showed a significant increase in glutathione (GSH, superoxide dismutase (SOD, nitric oxide (NO, and Prostaglandin E2 (PGE(2 activities and a decrease in malondialdehyde (MDA level. Histology showed marked reduction of hemorrhagic mucosal lesions in groups 4-7. Immunohistochemical staining showed up-regulation of Hsp70 and down-regulation of Bax proteins. PAS staining of groups 4-7 showed intense stain uptake of gastric mucosa. The acute toxicity revealed the non-toxic nature of the compound. CONCLUSIONS/SIGNIFICANCE: The gastroprotective effect of the Copper (II complex may possibly be due to preservation of gastric wall mucus; increase in PGE(2 synthesis; GSH, SOD, and NO up-regulation of Hsp70 protein; decrease in MDA level; and down-regulation of Bax protein.

  16. Synergistic interaction between a novel mixed ligand copper(II) chelate complex and a panel of anticancer agents in T47D human breast cancer cells in vitro.

    Science.gov (United States)

    Geromichalos, G D; Katsoulos, G A; Trafalis, D T; Hadjikostas, C C; Papageorgiou, A

    2005-01-01

    We have developed a novel copper(II) chelate complex with a tridentate ONN-Schiff base ligand and the anion of salicylate, which presented a potent cytotoxic activity against a panel of human and murine cancer cell lines. In this experiment we explored the combined effect between Cu(SalNEt(2))salicylate (Cu-Sal) complex and the widely used anticancer drugs carboplatin (CBDCA), cyclophosphamide (CTX) and paclitaxel (TXL) against T47D human breast cancer cells. Theoretical (quantum-chemical) study of this complex and its adducts with biological molecules were carried out, aiming at the elucidation of the underlying mechanism of action. Cells grown in adherence in 96-well microplates were exposed simultaneously to both agents for 48 h. Drug cytotoxicity was assessed via the XTT colorimetric assay. The combined drug interaction was assessed with the median-effect analysis and the combination index (CI). Copper(II) salicylate complex was proved active against T47D human breast cancer cells. Concurrent treatment of cells with Cu-Sal complex and the chemotherapeutic drugs CBDCA, CTX and TXL, mainly showed a synergistic interaction in most concentration ratios. Cu-Sal complex interacts synergistically with tested chemotherapeutic drugs for most schedules of administration, and only occasionally an additive or antagonistic effect was apparent. With the aid of quantum-chemical calculations it was demonstrated that the mechanism of action of this complex involves binding to DNA and RNA. These findings prompt to search for possible interaction of this complex with other cellular elements of fundamental importance in cell proliferation.

  17. Synthesis and characterization of mononuclear copper(II) complexes of pyridine 2-carboxamide: Their application as catalyst in peroxidative oxidation and antimicrobial agents

    Indian Academy of Sciences (India)

    Suvendu Samanta; Shounak Ray; Sutapa Joardar; Supriya Dutta

    2015-08-01

    Four water soluble copper(II) complexes, [Cu(HL)2 (H2O)2]Cl2 (1), [Cu(HL) 2 (ClO4)2 ] (2), [Cu(HL)2 (SCN)2] (3) and [CuL 2 ]·8H 2 O (4), where HL is pyridine 2–carboxamide, have been synthesized and characterized by various spectroscopic techniques. Structures have been determined by single crystal X-ray crystallography. The pH induced inter-conversion of Cu(HL)2 (H2O)2 ]Cl2 (1) and [CuL2]·8H2O (4) through co-ordination mode switching was investigated thoroughly with the help of absorption spectroscopy. Complexes 1–3 were found to be active catalysts for the oxidation of toluene, ethyl benzene and cyclohexane in the presence of hydrogen peroxide as the oxidant under mild conditions. Toluene was oxidized to benzyl alcohol and benzaldehyde, ethyl benzene was oxidized to 1-phenylethanol and acetophenone and cyclohexane was oxidized to yield cyclohexanol and cyclohexanone Antimicrobial activities have been investigated with these copper(II) complexes against gram + ve bacteria, gram − ve bacterial and fungal species.

  18. Antitumor effect of a copper (II) complex of a coumarin derivative and phenanthroline on lung adenocarcinoma cells and the mechanism of action.

    Science.gov (United States)

    Zhu, Taofeng; Chen, Ruhua; Yu, Hao; Feng, Yan; Chen, Jianqiang; Lu, Qin; Xie, Jing; Ding, Weiliang; Ma, Tieliang

    2014-11-01

    In order to investigate the effect of a copper (II) complexes of a coumarin derivative and phenanthroline (hereinafter referred to as the coumarin-copper drug) on lung adenocarcinoma cells in vivo and in vitro, along with the mechanism of action, LA795 lung adenocarcinoma cells were treated with different concentrations of coumarin-copper drug. An MTT assay was performed to determine the cell proliferation ratio, cell apoptosis was detected by Annexin V/propidium iodide staining with flow cytometric analysis and western blot analysis was employed to evaluate the expression levels of apoptosis-associated proteins. In addition, an LA795 cell xenograft tumor model was established in nude mice, with mice receiving intraperitoneal injection once a week for three weeks of either 2 or 4 mg/kg in three divided doses coumarin‑copper drug, or phosphate‑buffered saline. The tumor growth curves were drawn and the tumor growth inhibition rates were calculated. The apoptotic index of subcutaneously transplanted tumor cells was determined by terminal deoxynucleotidyl‑transferase‑mediated dUTP nick end‑labeling assay. The coumarin-copper drug effectively inhibited the proliferation of LA795 cells in a dose‑ and time‑dependent manner, with the half maximal inhibitory concentration equaling 2.0 µmol/l. The coumarin-copper drug also significantly induced LA795 cell apoptosis in a time-dependent manner (P<0.05), which was accompanied by upregulation p35 and B-cell lymphoma-2 (Bcl-2)-associated X protein (Bax), and downregulation of Bcl-2. Furthermore, the coumarin‑copper drug significantly inhibited the growth of LA795 tumors in a dose dependent manner (P<0.05), in accordance with the apoptotic index. In conclusion, the coumarin-copper drug may inhibit the proliferation of LA795 cells through the induction of cell apoptosis, which may be associated with the upregulation of p53 and Bax, with concurrent downregulation of Bcl-2.

  19. Calix[6]tren and copper(II): A third generation of funnel complexes on the way to redox calix-zymes

    Science.gov (United States)

    Izzet, Guillaume; Douziech, Bénédicte; Prangé, Thierry; Tomas, Alain; Jabin, Ivan; Le Mest, Yves; Reinaud, Olivia

    2005-01-01

    Mono-copper enzymes play an important role in biology and their functionality is based on Cu(II)/Cu(I) redox processes. Modeling a mono-nuclear site remains a challenge for a better understanding of its intrinsic reactivity. The first member of a third generation of calixarene-based mono-copper “funnel” complexes is described. The ligand is a calix[6]arene capped by a tren unit, hence presenting a N4 coordination site confined in a cavity. Its Cu(II) complexes were characterized by electronic and EPR spectroscopies. The x-ray structure of one of them shows a five-coordinated metal ion in a slightly distorted trigonal bipyramidal geometry thanks to its coordination to a guest ligand L (ethanol). The latter sits in the heart of the hydrophobic calixarene cone that mimics the active site chamber and the hydrophobic access channel of enzymes. Competitive binding experiments showed a preference order dimethylformamide > ethanol > MeCN for L binding at the single exchangeable metal site. Cyclic voltammetry studies showed irreversible redox processes in CH2Cl2 when L is an oxygen donor caused by the redox-driven ejection of the guest at the Cu(I) level. In the presence of MeCN, a pseudoreversible process was obtained, owing to a fast equilibrium between a fourand a five-coordinate Cu(I) species. Finally, a redox-driven ligand interchange of dimethylformamide for MeCN at the Cu(I) state allowed the trapping of the thermodynamically less stable Cu(II)-MeCN adduct. Hence, this work represents an important step toward the elaboration of a functional supramolecular model for redox mono-copper enzymes, named redox calix-zymes. PMID:15867151

  20. Calix[6]tren and copper(II): a third generation of funnel complexes on the way to redox calix-zymes.

    Science.gov (United States)

    Izzet, Guillaume; Douziech, Bénédicte; Prangé, Thierry; Tomas, Alain; Jabin, Ivan; Le Mest, Yves; Reinaud, Olivia

    2005-05-10

    Mono-copper enzymes play an important role in biology and their functionality is based on Cu(II)/Cu(I) redox processes. Modeling a mono-nuclear site remains a challenge for a better understanding of its intrinsic reactivity. The first member of a third generation of calixarene-based mono-copper "funnel" complexes is described. The ligand is a calix[6]arene capped by a tren unit, hence presenting a N(4) coordination site confined in a cavity. Its Cu(II) complexes were characterized by electronic and EPR spectroscopies. The x-ray structure of one of them shows a five-coordinated metal ion in a slightly distorted trigonal bipyramidal geometry thanks to its coordination to a guest ligand L (ethanol). The latter sits in the heart of the hydrophobic calixarene cone that mimics the active site chamber and the hydrophobic access channel of enzymes. Competitive binding experiments showed a preference order dimethylformamide > ethanol > MeCN for L binding at the single exchangeable metal site. Cyclic voltammetry studies showed irreversible redox processes in CH(2)Cl(2) when L is an oxygen donor caused by the redox-driven ejection of the guest at the Cu(I) level. In the presence of MeCN, a pseudoreversible process was obtained, owing to a fast equilibrium between a four and a five-coordinate Cu(I) species. Finally, a redox-driven ligand interchange of dimethylformamide for MeCN at the Cu(I) state allowed the trapping of the thermodynamically less stable Cu(II)-MeCN adduct. Hence, this work represents an important step toward the elaboration of a functional supramolecular model for redox mono-copper enzymes, named redox calix-zymes.

  1. Synthesis, Characterization and DNA Cleavage of Copper(II ...

    African Journals Online (AJOL)

    (UV) light. Results: ATR-FTIR confirmed the formation of copper(II) complex with DTT by binding through thiol group based on the .... DNA cleavage detection ... The infrared spectra of pure DTT and its Cu(II) .... and iron complexes. J Phys Conf ...

  2. Copper(II) complexes of N-(2-{[(2E)-2-(2-Hydroxy-(5-substituted)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide ligands and heterocyclic coligands

    Science.gov (United States)

    Chavan, S. S.; Sawant, V. A.; Jadhav, A. N.

    2014-01-01

    Some copper(II) complexes of the type [Cu(L1-3)(phen]ṡCH2Cl2 (1a-3a) and [Cu(L1-3) (bipy)]ṡCH2Cl2 (1b-3b) (where L1 = N-(2-{[(2E)-2-(2-Hydroxy-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L2 = N-(2-{[(2E)-2-(2-Hydroxy-(5-bromo)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L3 = N-(2-{[(2E)-2-(2-Hydroxy-(5-methoxy)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide; phen = 1,10-phenanthroline, bipy = 2,2‧-bipyridine) have been prepared and characterized on the basis of elemental analyses, IR, UV-Vis and EPR spectral studies. IR spectra indicate that the ligand L1-3 exists in the keto form in the solid state, while at the time of complexation, it tautomerises into enol form. The single crystal X-ray diffraction study of the representative complex [Cu(L1) (phen)]ṡCH2Cl2 (1a) reveals the distorted square pyramidal geometry around copper(II). Crystal data of (1a): space group = P21/n, a = 11.5691(16) Å, b = 11.0885(15) Å, c = 24.890(4) Å, V = 3166.2(8) Å3, Z = 4. The electrochemical behavior of all the complexes indicate that the phen complexes appears at more positive potential as compared to those for bipy complexes, as a consequence of its stronger π acidic character. All the complexes exhibit blue-green emission as a result of the fluorescence from the intra-ligand (π → π∗) emission excited state.

  3. Copper(II) complexes of N-(2-{[(2E)-2-(2-Hydroxy-(5-substituted)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide ligands and heterocyclic coligands.

    Science.gov (United States)

    Chavan, S S; Sawant, V A; Jadhav, A N

    2014-01-03

    Some copper(II) complexes of the type [Cu(L1-3)(phen]·CH2Cl2 (1a-3a) and [Cu(L1-3) (bipy)]·CH2Cl2 (1b-3b) (where L1=N-(2-{[(2E)-2-(2-Hydroxy-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L2=N-(2-{[(2E)-2-(2-Hydroxy-(5-bromo)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide, L3=N-(2-{[(2E)-2-(2-Hydroxy-(5-methoxy)-benzylidene)-hydrazino]carbonyl}phenyl)benzamide; phen=1,10-phenanthroline, bipy=2,2'-bipyridine) have been prepared and characterized on the basis of elemental analyses, IR, UV-Vis and EPR spectral studies. IR spectra indicate that the ligand L1-3 exists in the keto form in the solid state, while at the time of complexation, it tautomerises into enol form. The single crystal X-ray diffraction study of the representative complex [Cu(L1) (phen)]·CH2Cl2 (1a) reveals the distorted square pyramidal geometry around copper(II). Crystal data of (1a): space group=P21/n, a=11.5691(16) Å, b=11.0885(15) Å, c=24.890(4) Å, V=3166.2(8) Å(3), Z=4. The electrochemical behavior of all the complexes indicate that the phen complexes appears at more positive potential as compared to those for bipy complexes, as a consequence of its stronger π acidic character. All the complexes exhibit blue-green emission as a result of the fluorescence from the intra-ligand (π→π(*)) emission excited state.

  4. Copper(II) complexes of neuropeptide gamma with point mutations (S8,16A) products of metal-catalyzed oxidation.

    Science.gov (United States)

    Błaszak, Marta; Jankowska, Elżbieta; Kowalik-Jankowska, Teresa

    2013-12-01

    To obtain the information about the influence of the serine residues (S8,S16) on the acid-base properties of the neuropeptide gamma, the peptide with point mutations (S8,16A) and its N-acetyl derivative were synthesized. Any additional deprotonations were not observed. It means that the presence of serine residues is necessary in the amino acid sequence of the neuropeptide gamma to have its acid-base properties. The stability constants, stoichiometry and solution structures of copper(II) complexes of the neuropeptide gamma mutants D(1)AGH(4)GQIA(8)H(9)KRH(12)KTDA(16)FVGLM(21)-NH2 (S8,16A) 2ANPG and its N-acetyl derivative Ac-2ANPG were determined in aqueous solution. The equilibrium and structural properties of copper(II) complexes have been characterized by pH-metric, spectroscopic (UV-visible, CD, EPR) and mass spectrometric (MS) methods. At physiological pH7.4 the 2ANPG forms the CuH2L and CuHL complexes in equilibrium with 3N {NH2,βCOO(-)-D(1),2NIm} and 4N {NH2,N(-),2NIm} binding sites, respectively. The exchange Ser on Ala residues does not alter the coordination mode of the peptide. To elucidate the products of the copper(II)-catalyzed oxidation of 2ANPG and Ac-2ANPG the liquid chromatography-mass spectrometry method (LC-MS) and the Cu(II)/H2O2 as a model oxidizing system were employed. For solutions containing a 1:4 peptide-hydrogen peroxide molar ratio oxidation of the methionine residue to methionine sulphoxide was observed. For the 1:1:4 Cu(II)-2ANPG-H2O2 system oxidation of two His residues and cleavage of the G(3)H(4) peptide bond was observed, while for the 1:1:4 Cu(II)-Ac-2ANPG-H2O2 system oxidation of three histidine residues to 2-oxohistidines was also observed.

  5. On the interaction of copper(II) with disulfiram.

    Science.gov (United States)

    Lewis, David J; Deshmukh, Parikshit; Tedstone, Aleksander A; Tuna, Floriana; O'Brien, Paul

    2014-11-11

    In combination with copper(II) ions, disulfiram (DSF) has been reported to be a potentially potent anticancer agent based on in vitro results. The interaction of DSF with copper(II) chloride in solution has been studied using a range of spectroscopic techniques. There is strong evidence for the rapid formation of the bis(N,N-diethyl dithiocarbamato)copper(II) complex in situ. Kinetic experiments were used to determine rate laws for the reaction that give insight into the mechanism of the process which may help to explain the observed in vitro cytotoxicity.

  6. Structural, molecular orbital and optical characterizations of binuclear mixed ligand copper (II) complex of phthalate with N,N,N‧,N‧-tetramethylethylenediamine and its applications

    Science.gov (United States)

    Taha, A.; Farag, A. A. M.; Ammar, A. H.; Ahmed, H. M.

    2014-09-01

    A new binuclear mixed ligand complex, [Cu2(Phth)(Me4en)2(H2O)2(NO3)2]·H2O (where, Phth = phthalate, and (Me4en) = N,N,N‧,N‧tetramethylethylenediamine) was synthesized and characterized using analytical, spectral, magnetic, molar conductance, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The XRD data of Cu(II)-complex was analyzed on the basis of Williamson-Hall (W-H) and compared with TEM results. The results indicate that the complex is well crystalline and correspond to hexagonal crystal structure. Analysis of the absorption coefficient near the absorption edge reveals that the optical band gaps are indirect allowed transition with values of 1.17 and 1.78 eV. The d-d absorption bands of the complex (dissolved in various solvents) exhibit a color changes (solvatochromic). Specific and non-specific interactions of solvent molecules with the complex were investigated using Multiple Linear Regression Analysis (MLRA). Transient photocurrent characteristics of Cu(II)-complex/n-Si heterojunctions indicate that photocurrent under illumination increase with increasing of light intensity and explained by continuous distribution of traps. Structural parameters of the free ligands and their Cu(II) - complex were calculated on the basis of semi-empirical PM3 level and compared with the experimental data. The present copper (II) complex was screened for its antimicrobial activity against some Gram-positive and Gram-negative bacteria and fungus strain.

  7. Structural, molecular orbital and optical characterizations of binuclear mixed ligand copper (II) complex of phthalate with N,N,N',N'-tetramethylethylenediamine and its applications.

    Science.gov (United States)

    Taha, A; Farag, A A M; Ammar, A H; Ahmed, H M

    2014-09-15

    A new binuclear mixed ligand complex, [Cu2(Phth)(Me4en)2(H2O)2(NO3)2]·H2O (where, Phth=phthalate, and (Me4en)=N,N,N',N'tetramethylethylenediamine) was synthesized and characterized using analytical, spectral, magnetic, molar conductance, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The XRD data of Cu(II)-complex was analyzed on the basis of Williamson-Hall (W-H) and compared with TEM results. The results indicate that the complex is well crystalline and correspond to hexagonal crystal structure. Analysis of the absorption coefficient near the absorption edge reveals that the optical band gaps are indirect allowed transition with values of 1.17 and 1.78 eV. The d-d absorption bands of the complex (dissolved in various solvents) exhibit a color changes (solvatochromic). Specific and non-specific interactions of solvent molecules with the complex were investigated using Multiple Linear Regression Analysis (MLRA). Transient photocurrent characteristics of Cu(II)-complex/n-Si heterojunctions indicate that photocurrent under illumination increase with increasing of light intensity and explained by continuous distribution of traps. Structural parameters of the free ligands and their Cu(II)-complex were calculated on the basis of semi-empirical PM3 level and compared with the experimental data. The present copper (II) complex was screened for its antimicrobial activity against some Gram-positive and Gram-negative bacteria and fungus strain.

  8. SYNTHESIS AND CHARACTERIZATION OF SALICYLALDAZINE AND ITS METAL (II) COMPLEXES DERIVED FROM METAL (II) CHLORIDES

    OpenAIRE

    Jamila wazir

    2016-01-01

    The salicylaldazine (ligand) and its metal (II) complexes like copper (II), nickel (II), zinc (II), cobalt (II) and manganese (II) complexes has been synthesized and characterized by different techniques using FTIR, UV-VIS spectroscopy. The ligand (salicylaldazine) is synthesized by the condensation reaction of salicylaldehyde and hydrazine sulfate. The salicylaldazine metal (II) complexes like Cu (II) , Ni(II), Zn (II), Co(II), Mn(II) were prepared by using metal (II) chloride in dioxane. Th...

  9. DFT calculations and experimental FT-IR, dispersive-Raman and EPR spectral studies of Copper (II) chloride complex with 3-amino-1-methylbenzene.

    Science.gov (United States)

    Kumru, Mustafa; Bardakçı, Tayyibe; Güner, Sadik

    2014-04-05

    In this study, we present the synthesis and the characterization of Copper (II) chloride complex with 3-amino-1-methylbenzene (3A1MB). This complex was characterized by vibrational and EPR spectroscopic techniques and elemental analysis. The molecular structure and spectrometry of this complex: Cu(3A1MB)2Cl2 and its ligand: 3A1MB have been investigated theoretically by performing DFT/B3LYP calculations. Cu(3A1MB)2Cl2 has been optimized as two conformers and the more stable conformer is determined. The optimized geometries and calculated vibrational frequencies have been evaluated via comparison with experimental values, and the normal modes were assigned on the basis of the percent potential energy distribution (PED). A good agreement between calculated and experimental data is observed.

  10. Amphotericin B-copper(II) complex as a potential agent with higher antifungal activity against Candida albicans.

    Science.gov (United States)

    Chudzik, Barbara; Tracz, Izabela B; Czernel, Grzegorz; Fiołka, Marta J; Borsuk, Grzegorz; Gagoś, Mariusz

    2013-08-16

    Amphotericin B (AmB) is a polyene antibiotic produced by Streptomyces nodosus used for more than 50 years in the treatment of acute systemic fungal infections. It exhibits a broad spectrum of activity against fungal and protozoan pathogens with relatively rare resistance. The aim of this study was to prepare and evaluate the utility of the AmB-Cu(2+) complex as a potential compound with a high fungicidal activity at lower concentrations, compared with conventional AmB. It was hypothesized that insertion of copper ions into fungal cell membranes, together with the AmB-Cu(2+) complex bypassing the natural homeostatic mechanisms of this element, may contribute to the increased fungicidal activity of AmB. The analysis of results indicates the increased antifungal activity of the AmB-Cu(2+) complex against Candida albicans in comparison with the pure AmB and Fungizone. Additionally, it was stated that the increased antifungal activity of the AmB-Cu(2+) complex is not the sum of the toxic effects of AmB and Cu(2+) ions, but is a result of the unique structure of this compound.

  11. Synthesis, characterization of new copper (ii) Schiff base and 1,10 phenanthroline complexes and study of their bioproperties.

    Science.gov (United States)

    Reddy, Pulimamidi Rabindra; Rajeshwar, Suryam; Satyanarayana, Battu

    2016-07-01

    Three mononuclear Cu(II) complexes [Cu(naph-phe)phen] (1), [Cu(naph-tyr)(phen)] (2) and [Cu(naph-trp)(phen)] (3) were synthesized, characterized and their biological properties were studied. Complexes 1, 2, 3 exhibit square pyramidal geometry where Schiff base acts as a binegative tridentate ONO donor ligand and phen acts as NN donor ligand. CT-DNA binding studies revealed that the complexes bind through intercalative mode and show good binding propensity. The hydrolytic DNA cleavage activity of these complexes has been studied using gel electrophoresis. The DNA binding and cleavage affinities decrease in the order of 3>2>1. The in-vitro antimicrobial activities of the complexes were also studied.

  12. Models for the active site in galactose oxidase: Structure, spectra and redox of copper(II) complexes of certain phenolate ligands

    Indian Academy of Sciences (India)

    Mathrubootham Vaidyanathan; Mallayan Palaniandavar

    2000-06-01

    Galactose oxidase (GOase) is a fungal enzyme which is unusual among metalloenzymes in appearing to catalyse the two electron oxidation of primary alcohols to aldehydes and H2O2. The crystal structure of the enzyme reveals that the coordination geometry of mononuclear copper(II) ion is square pyramidal, with two histidine imidazoles, a tyrosinate, and either H2O (H 7.0) or acetate (from buffer, H 4.5) in the equatorial sites and a tyrosinate ligand weakly bound in the axial position. This paper summarizes the results of our studies on the structure, spectral and redox properties of certain novel models for the active site of the inactive form of GOase. The monophenolato Cu(II) complexes of the type [Cu(L1)X][H(L1) = 2-(bis(pyrid-2-ylmethyl)aminomethyl)-4-nitrophenol and X-= Cl-1, NCS-2, CH3COO-3, ClO$_{4}^{-}$ 4] reveal a distorted square pyramidal geometry around Cu(II) with an unusual axial coordination of phenolate moiety. The coordination geometry of 3 is reminiscent of the active site of GOase with an axial phenolate and equatorial CH3COO- ligands. All the present complexes exhibit several electronic and EPR spectral features which are also similar to the enzyme. Further, to establish the structural and spectroscopic consequences of the coordination of two tyrosinates in GOase enzyme, we studied the monomeric copper(II) complexes containing two phenolates and imidazole/pyridine donors as closer structural models for GOase. N,Ndimethylethylenediamine and N,N -dimethylethylenediamine have been used as starting materials to obtain a variety of 2,4-disubstituted phenolate ligands. The X-ray crystal structures of the complexes [Cu(L5)(py)], (8) [H2 (L5) = N,N-dimethyl-N ,N -bis(2-hydroxy-4-nitrobenzyl) ethylenediamine, py = pyridine] and [Cu(L8)(H2O)] (11), [H2(L8) = N,N -dimethyl-N,N -bis(2-hydroxy-4-nitrobenzyl)ethylenediamine] reveal distorted square pyramidal geometries around Cu(II) with the axial tertiary amine nitrogen and water coordination respectively

  13. Novel aminonaphthoquinone mannich bases derived from lawsone and their copper(II) complexes: synthesis, characterization and antibacterial activity

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Amanda P.; Barbosa, Claudia C.; Greco, Sandro J.; Vargas, Maria D. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica; Visentin, Lorenzo C. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Quimica; Pinheiro, Carlos B. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisica; Mangrich, Antonio S. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Centro Politecnico. Dept. de Quimica; Barbosa, Jussara P.; Costa, Gisela L. da [Instituto Oswaldo Cruz, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    A series of novel Mannich bases (HL1-HL13) derived from 2-hydroxy-1,4-naphthoquinone (lawsone), substituted benzaldehydes [C{sub 6}H{sub 2}R{sup 1}R{sup 2}R{sup 3}C(O)H] and various primary amines (NH{sub 2}R{sup 4}, R{sup 4} = n-butyl, benzyl, allyl, 2-furfuryl), and their Cu{sup 2+} complexes, [Cu(L1){sub 2}]-[Cu(L13){sub 2}], have been synthesized and fully characterized by analytical and spectroscopic methods. The structures of complexes 1 (R{sup 1} R{sup 2} = R{sup 3} = H; R{sup 4} = Bu), 2 (R{sup 1} = R{sup 3} = H; R{sup 2} = NO{sub 2}; R{sup 4}= Bu) and 7 (R{sup 1} OH; R{sup 2} = R{sup 3} = H; R{sup 4}= Bu) were determined by single crystal X-ray diffraction studies. All complexes crystallize in centrosymmetric space groups, with a copper atom in the inversion centre. Two L. coordinate through the naphthalen-2-olate oxygen and secondary amine-N atoms, forming six membered chelate rings around the copper atom in a trans-N{sub 2}O{sub 2} environment; spectroscopic data confirm that the other complexes exhibit similar molecular arrangement. The antimicrobial activity of all compounds has been tested on seven different strains of bacteria: Bacillus cereus, Bacillus subtilis, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. In general, Mannich bases were more active than complexes, HL11 (R{sup 1} = OH; R{sup 2} =H; R{sup 3} = Me; R{sup 4}= Bn) and HL13 (R{sup 1} = OH; R{sup 2} = H; R{sup 3} = Br; R{sup 4}= Bn) being the most potent inhibitors. The MIC for the most active compound HL11 against S. Coli was 20 {mu}mol L{sup -1} (8 {mu}g mL{sup -1}), better than Chloramphenicol (90 {mu}mol L{sup -1}) and well below most values reported for other naphthoquinones. (author)

  14. Synthesis and Spectral Investigations of Manganese(II, Cobalt(II, Nickel(II, Copper(II and Zinc(II Complexes of New Polydentate Ligands Containing a 1,8-Naphthyridine Moiety

    Directory of Open Access Journals (Sweden)

    Sunkari Jyothi

    2006-12-01

    Full Text Available 2-(o-Hydroxyphenyl-1,8-naphthyridine (HN, 2-(4-hydroxy-6-methylpyran-2-one-3-yl-1,8-naphthyridine (HMPN and 2-(benzimidazol-2-yl-1,8-naphthyridine(BN react with acetates of Mn(II, Co(II, Ni(II, Cu(II and Zn(II to yield metal ioncomplexes of definite composition. These compounds were characterized by elementalanalyses, molar conductivity, magnetic susceptibility measurements, thermal studies, IR,UV-visible, NMR and mass spectral investigations. The complexes are found to have theformulae [M(HN2(H2O2], [M(HMPN2(H2O2] and [M(BN2(OAc2], respectively.

  15. A Schiff base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway.

    Science.gov (United States)

    Hajrezaie, Maryam; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Hassandarvish, Pouya; Gwaram, Nura Suleiman; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Looi, Chung Yeng; Ali, Hapipah Mohd; Abdul Majid, Nazia; Abdulla, Mahmood Ameen

    2014-01-01

    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

  16. A Schiff Base-Derived Copper (II Complex Is a Potent Inducer of Apoptosis in Colon Cancer Cells by Activating the Intrinsic Pathway

    Directory of Open Access Journals (Sweden)

    Maryam Hajrezaie

    2014-01-01

    Full Text Available Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II complex on HT-29 colon cancer cells. The Cu(BrHAP2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87 μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25 μg/ml, the Cu(BrHAP2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.

  17. Synthesis of Two Potentially Heptadentate (N4O3 Schiff-base Ligands Derived from Condensation of Tris(3-aminopropyl-amine and Salicylaldehyde or 4-Hydroxysalicylaldehyde. Nickel(II and Copper(II Complexes of the Former Ligand

    Directory of Open Access Journals (Sweden)

    R. V. Parish

    2002-02-01

    Full Text Available Two potentially heptadentate (N4O3 tripodal Schiff-base ligands: tris(3-(salicylideneiminopropylamine (H3L1 and tris(3-(4’-hydroxysalicylideneimino-propylamine (H3L2 have been prepared and characterized by various spectroscopic methods (IR, FAB-MS, NMR. They are derived from the condensation reactions of tris(3-aminopropylamine (tpt, with 3 equivalents of either salicylaldehyde or the ringsubstituted salicylaldehyde, 4-hydroxysalicylaldehyde. The nickel(II and copper(II complexes of H3L1 were obtained from the its reactions Ni(II and Cu(II salts in absolute methanol. These complexes were studied by IR and FAB-Mass spectrometry.

  18. Copper(II) complexes with cyanoguanidine and o-phenanthroline: Theoretical studies, in vitro antimicrobial activity and alkaline phosphatase inhibitory effect

    Science.gov (United States)

    Martínez Medina, Juan J.; Islas, María S.; López Tévez, Libertad L.; Ferrer, Evelina G.; Okulik, Nora B.; Williams, Patricia A. M.

    2014-01-01

    Calculations based on density functional methods are carried out for two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline (o-phen): [Cu(o-phen)2(cnge)](NO3)2ṡ2H2O (1) and [Cu(o-phen)(cnge)(H2O)(NO3)2] (2). The calculated geometrical parameters are in agreement with the experimental values. The results of Atoms in Molecules (AIM) topological analysis of the electron density indicate that the Cu-N(phen) bonds in complex (1) have lower electron density, suggesting that those bonds are stronger in complex (2). Moreover, the ionic character of the Cu-N bond in the complex (1) is slightly stronger than that in the complex (2) and this situation would explain the fact that only complex (2) was stable in water solution. For this reason, the antimicrobial and enzymatic assays were performed using complex (2). It is well known that the increased use of antibiotics has resulted in the development of resistant bacterial and fungal strains. In this context, the study of novel antimicrobial agents has an enormous importance and metal complexes represent an interesting alternative for the treatment of infectious diseases. The aim of this work is to prove the modification of some biological properties like antimicrobial activity or alkaline phosphatase inhibitory activity upon copper complexation.

  19. Copper(II) complexes of a nonsteroidal anti-inflammatory drug niflumic acid. Synthesis, crystal structure of tetrakis-mu-(2-[3-(trifluoromethyl) phenyl]aminonicotinato)bis(dimethylsulfoxide)-dicopper(II) complex at 190 K. Anti-inflammatory properties.

    Science.gov (United States)

    Greenaway, F T; Riviere, E; Girerd, J J; Labouze, X; Morgant, G; Viossat, B; Daran, J C; Roch Arveiller, M; Dung, N H

    1999-07-30

    The synthesis and characterization of three complexes with a potent nonsteroidal anti-inflammatory drug niflumic acid {2-[3-(trifluoromethyl)phenyl]aminonicotinic acid} with formula [Cu(niflumato)2L] (L = H2O, DMSO = dimethylsulfoxide, DMF = N,N-dimethylformamide) were investigated. The crystal and molecular structure of the {Cu(niflumato)2(DMSO)}2 was reported. Crystallographic data are as follows: monoclinic system, space group P2(1)/n, Z = 2, a = 11.1318(8), b = 17.513(2), c = 15.336(1) A, beta = 103.316(8) degrees, V = 2909.4(4) A3. The structure was refined to R = 0.030 and wR = 0.037 for 3702 reflections with I > sigma (I). It consists of centrosymmetric binuclear units with the Cu-Cui (symmetry code i: 1-x, -y, 1-z) distance between two centrosymmetrically related ions of 2.6272(5) A. Each Cu(II) ion in [Cu2(DMSO)2(mu-niflumato)4] is coordinated to an apical dimethylsulfoxide O atom on the one hand and to the equatorial carbonyl and carboxylic O atoms of two crystallographically independent niflumate moieties and their centrosymmetric counterparts on the other hand. In spite of the low-temperature (190 K) crystal measurements, one L-CF3 grouping exhibits some disorder. The biological activities of these complexes were compared to that of niflumic acid. Niflumic acid and its various copper complexes significantly inhibited polymorphonuclear leukocyte (PMNL) oxidative metabolism, as assessed by chemiluminescence and O2- generation measurement. This effect was dose-dependent. All copper complexes exerted a similar inhibiting effect which was always significantly higher than that exerted by the parent drug.

  20. The precursor form of Hansenula polymorpha copper amine oxidase 1 in complex with Cu[superscript I] and Co[superscript II

    Energy Technology Data Exchange (ETDEWEB)

    Klema, Valerie J.; Johnson, Bryan J.; Klinman, Judith P.; Wilmot, Carrie M. (UMM); (UCB)

    2015-11-30

    Copper amine oxidases (CAOs) catalyze the oxidative deamination of primary amines to their corresponding aldehydes, with the concomitant reduction of O{sub 2} to H{sub 2}O{sub 2}. Catalysis requires two cofactors: a mononuclear copper center and the cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ). TPQ is synthesized through the post-translational modification of an endogenous tyrosine residue and requires only oxygen and copper to proceed. TPQ biogenesis in CAO can be supported by alternate metals, albeit at decreased rates. A variety of factors are thought to contribute to the degree to which a metal can support TPQ biogenesis, including Lewis acidity, redox potential and electrostatic stabilization capability. The crystal structure has been solved of one of two characterized CAOs from the yeast Hansenula polymorpha (HPAO-1) in its metal-free (apo) form, which contains an unmodified precursor tyrosine residue instead of fully processed TPQ (HPAO-1 was denoted HPAO in the literature prior to 2010). Structures of apoHPAO-1 in complex with Cu{sup I} and Co{sup II} have also been solved, providing structural insight into metal binding prior to biogenesis.

  1. A THIOLATO-BRIDGED OCTANUCLEAR COPPER(I,II MIXED- VALENCE COMPLEX WITH N,N,S-TRIDENTATE LIGAND

    Directory of Open Access Journals (Sweden)

    Takanori Kotera

    2007-06-01

    Full Text Available Thiolato-bridged complex [CuI4CuII4(peampt4Cl8]·2H2O (Hpeampt = 1-(2-pyridylethylamino methylpropane-2-thiol has been synthesized and characterized by the elemental analysis, IR and UV-vis spectroscopies and magnetic susceptibility measurement. The X-ray crystal structure analysis of this complex shows a localized mixed-valence octanuclear cage structure made up of four trigonal-bipyramidal CuIIN2SCl2, two trigonal CuIS2Cl, and two tetrahedral CuIS2Cl2 coordination sites. Temperature dependence of magnetic susceptibility (4.5— 300 K shows that a fairly strong antiferromagnetic interaction is operating between the four CuII ions.

  2. Unprecedented hetero-geometric discrete copper(II) complexes: Crystal structure and bio-mimicking of Catecholase activity

    Indian Academy of Sciences (India)

    ABHRANIL DE; DHANANJAY DEY; HARE RAM YADAV; MILAN MAJI; VINAYAK RANE; R M KADAM; ANGSHUMAN ROY CHOUDHURY; BHASKAR BISWAS

    2016-11-01

    An unprecedented solid of coper(II) complexes [Cu(dpa)₂NCS]₂[Cu(dpa)₂(NCS)₂](ClO₄)₂ (1) [dpa = 2,2'-dipyridylamine; SCN = thiocyanate], has been synthesized and crystallographically characterized with the aim to study the catecholase activity. The Cu(II) complex mimics the full catalytic cycle of the active site of catechol oxidase enzyme in acetonitrile medium with a turnover number of 4.788 × 10³ h⁻¹ along with the production of semiquinone radical and hydrogen peroxide. In situ generation of Cu(I) species in the catalytic pathway of catechol oxidation was established by electrochemical study and further confirmed by electron paramagnetic resonance (EPR) spectroscopy.

  3. HOMO- AND HETERONUCLEAR COMPLEXES OF COPPER (II WITH SCHIFF BASE OBTAINED ON THE BASE OF 2-HYDROXY-3-CARBOXYNAPHTALDEHYDE

    Directory of Open Access Journals (Sweden)

    A.G. Lazarescu

    2006-06-01

    Full Text Available The complexes of general formula Cu(H2L (II; [CuLn(L(NO3(H2On] (where H4L=N,NI-bis[2- hydroxy(3-carboxynaphtalidene]ethylenediamine; Ln: Nd, n=6 (III; Eu, n=4 (IV; Gd, n=6 (V have been synthesized and investigated by different methods (IR spectroscopy, TG analysis and magnetochemistry. The coordination set of complex generators are Cu(N2O2 and Ln(O8-9. The effective magnetic moment values, μeff, at 300 K are: 1.78 (II, 3.22 (III, 6.44 (V B.M. The temperature dependence (300-2 K of magnetic susceptibility of [CuNd(L(NO3(H2O6] indicates the antiferromagnetic interaction between metal ions.

  4. Binding of copper(II) polypyridyl complexes to DNA and consequences for DNA-based asymmetric catalysis

    NARCIS (Netherlands)

    Draksharapu, Apparao; Boersma, Arnold J; Leising, Miriam; Meetsma, Auke; Browne, Wesley R; Roelfes, Gerard

    2015-01-01

    The interaction between salmon testes DNA (st-DNA) and a series of Cu-II polypyridyl complexes, i.e. [Cu(dmbpy)(NO3)(2)] (1) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), [Cu(bpy)(NO3)(2)] (2) (bpy = 2,2'-bipyridine), [Cu(phen)(NO3)(2)] (3) (phen = phenanthroline), [Cu(terpy)(NO3)(2)]center dot H2O (4) (

  5. Synthesis, crystal structure and antitumor effect of a novel copper(II) complex bearing zoledronic acid derivative.

    Science.gov (United States)

    Qiu, Ling; Lv, Gaochao; Guo, Liubin; Chen, Liping; Luo, Shineng; Zou, Meifen; Lin, Jianguo

    2015-01-07

    A great majority of Cu(II) complexes currently studied in the anticancer research field exert their antiproliferative activities through ligand exchange. In this work, we present the synthesis and structural characterization of two novel Cu(II) complexes, {[Cu3(ZL)2(H2O)6]·6H2O}n (1) (ZL = 1-hydroxy-2-(1H-imidazol-1-yl)ethane-1,1-diyldiphosphonic acid) and [Cu(IPrDP)2]·3H2O (2) (IPrDP = 1-hydroxy-3-(1H-imidazol-1-yl)propane-1,1-diyldiphosphonic acid). Due to the insolubility of polymer 1 in common solvents, only the biological activities of complex 2 were investigated. The antitumor activity of complex 2 was evaluated against a panel of human cancer cell lines, including U2OS, A549, HCT116, MDA-MB-231 and HepG2. Complex 2 exhibited comparable cytotoxic effect to cisplatin (CDDP) against the human colon carcinoma cells HCT116, and superior selectivity for inhibiting human hepatocarcinoma cells rather than normal liver cells. The cell cycle distribution analysis indicates that complex 2 inhibits human carcinoma cells by inducing the cell cycle arrest at the G2/M phase, showing a similar mechanism of action to that of CDDP. The binding interaction of complex 2 with calf thymus DNA (CT-DNA) has been explored by UV-vis absorption and circular dichroism (CD), demonstrating complex 2 has a moderate binding affinity for DNA through intercalation.

  6. Phosphate diester hydrolysis and DNA damage promoted by new cis-aqua/hydroxy copper(II) complexes containing tridentate imidazole-rich ligands.

    Science.gov (United States)

    Scarpellini, Marciela; Neves, Ademir; Hörner, Rosmari; Bortoluzzi, Adailton J; Szpoganics, Bruno; Zucco, César; Nome Silva, René A; Drago, Valderes; Mangrich, Antônio S; Ortiz, Wilson A; Passos, Wagner A C; de Oliveira, Maurício C B; Terenzi, Hernán

    2003-12-15

    The tridentate Schiff base [(2-(imidazol-4-yl)ethyl)(1-methylimidazol-2-yl)methyl)imine (HISMIMI) and its reduced form HISMIMA were synthesized and characterized, as well their mononuclear cis-dihalo copper(II) complexes 1 and 2, respectively. In addition, the dinuclear [CuII(mu-OH)2CuII](2+) complexes (3) and (4) obtained from complexes 1 and 2, respectively, were also isolated and characterized by several physicochemical techniques, including magnetochemistry, electrochemistry, and EPR and UV-vis spectroscopies. The crystal structures of 1 and 2 were determined by X-ray crystallography and revealed two neutral complexes with their tridentate chelate ligands meridionally coordinated. Completing the coordination spheres of the square-pyramidal structures, a chloride ion occupies the apical position and another is bonded in the basal plane. In addition, complexes 1 and 2 were investigated by infrared, electronic, and EPR spectroscopies, cyclic voltammetry, and potentiometric equilibrium studies. The hydrolytic activity on phosphate diester cleavage of 1 and 2 was investigated utilizing 2,4-BDNPP as substrate. These experiments were carried out at 50 degrees C, and the data treatment was based on the Michaelis-Menten approach, giving the following kinetic parameters (complex 1/complex 2): vmax (mol L(-1) s(-1))=16.4x10(-9)/7.02x10(-9); KM (mol L(-1))=17.3x10(-3)/3.03x10(-3); kcat (s(-1))=3.28x10(-4)/1.40x10(-4). Complex 1 effectively promoted the hydrolytic cleavage of double-strand plasmid DNA under anaerobic and aerobic conditions, with a rate constant of 0.28 h(-1) for the decrease of form I, which represents about a 10(7) rate increase compared with the estimated uncatalyzed rate of hydrolysis.

  7. Copper(II) complexation by humic and fulvic acids from pig slurry and amended and non-amended soils.

    Science.gov (United States)

    Plaza, C; Senesi, N; García-Gil, J C; Polo, A

    2005-11-01

    The effect of the consecutive annual additions of pig slurry at rates of 0 (control), 90 and 150 m3 ha(-1) y(-1) over a 4-year period on the binding affinity for Cu(II) of soil humic acids (HAs) and fulvic acids (FAs) was investigated in a field plot experiment under semiarid conditions. A ligand potentiometric titration method and a single site model were used for determining the Cu(II) complexing capacities and the stability constants of Cu(II) complexes of HAs and FAs isolated from pig slurry and control and amended soils. The HAs complexing capacities and stability constants were larger than those of the corresponding FA fractions. With respect to the control soil HA, pig-slurry HA was characterized by a much smaller binding capacity and stability constant. Amendment with pig slurry decreased the binding affinity of soil HAs. Similar to the corresponding HAs, the binding affinity of pig-slurry FA was much smaller while that of amended-soil FAs were slightly smaller when compared to the control soil FA. The latter effect was, however, more evident with increasing the amount of pig slurry applied to soil per year and the number of years of pig slurry application.

  8. EPR spectroscopy of a clinically active (1:2) copper(II)-histidine complex used in the treatment of Menkes disease: a Fourier transform analysis of a fluid CW-EPR spectrum.

    Science.gov (United States)

    Gala, Lukas; Lawson, Michael; Jomova, Klaudia; Zelenicky, Lubomir; Congradyova, Andrea; Mazur, Milan; Valko, Marian

    2014-01-15

    Redox active transition metal ions (e.g., iron and copper) have been implicated in the etiology of many oxidative stress-related diseases including also neurodegenerative disorders. Unbound copper can catalyze formation of reactive oxygen species (hydroxyl radicals) via Fenton reaction/Haber-Weiss chemistry and therefore, under physiological conditions, free copper is potentially toxic and very rarely exists inside cells. Copper(II) bound to the aminoacid L-histidine represents a species discovered in blood in the mid 60s and since then extensive research on this complex was carried out. Copper bound to L-histidine represents an exchangeable pool of copper(II) in equilibrium with the most abundant blood plasma protein, human serum albumin. The structure of this complex, in aqueous solution, has been a subject of many studies and reviews, however without convincing success. The significance of the (1:2) copper(II)-L-histidine complex at physiological pH documents its therapeutic applications in the treatment of Menkes disease and more recently in the treatment of infantile hypertrophic cardioencephalomyopathy. While recently the (1:2) Cu(II)-L-His complex has been successfully crystallized and the crystal structure was solved by X-ray diffraction, the structure of the complex in fluid solution at physiological pH is not satisfactorily known. The aim of this paper is to study the (1:2) Cu(II)-L-histidine complex at low temperatures by X-band and S-band EPR spectroscopy and at physiological pH at room temperature by Fourier transform CW-EPR spectroscopy.

  9. EPR Spectroscopy of a Clinically Active (1:2 Copper(II-Histidine Complex Used in the Treatment of Menkes Disease: A Fourier Transform Analysis of a Fluid CW-EPR Spectrum

    Directory of Open Access Journals (Sweden)

    Lukas Gala

    2014-01-01

    Full Text Available Redox active transition metal ions (e.g., iron and copper have been implicated in the etiology of many oxidative stress-related diseases including also neurodegenerative disorders. Unbound copper can catalyze formation of reactive oxygen species (hydroxyl radicals via Fenton reaction/Haber–Weiss chemistry and therefore, under physiological conditions, free copper is potentially toxic and very rarely exists inside cells. Copper(II bound to the aminoacid L-histidine represents a species discovered in blood in the mid 60s and since then extensive research on this complex was carried out. Copper bound to L-histidine represents an exchangeable pool of copper(II in equilibrium with the most abundant blood plasma protein, human serum albumin. The structure of this complex, in aqueous solution, has been a subject of many studies and reviews, however without convincing success. The significance of the (1:2 copper(II-L-histidine complex at physiological pH documents its therapeutic applications in the treatment of Menkes disease and more recently in the treatment of infantile hypertrophic cardioencephalomyopathy. While recently the (1:2 Cu(II-L-His complex has been successfully crystallized and the crystal structure was solved by X-ray diffraction, the structure of the complex in fluid solution at physiological pH is not satisfactorily known. The aim of this paper is to study the (1:2 Cu(II-L-histidine complex at low temperatures by X-band and S-band EPR spectroscopy and at physiological pH at room temperature by Fourier transform CW-EPR spectroscopy.

  10. Binary and ternary copper(II) complexes of a tridentate ONS ligand derived from 2-aminochromone-3 carboxaldehyde and thiosemicarbazide: Synthesis, spectral studies and antimicrobial activity

    Science.gov (United States)

    Shebl, Magdy; Ibrahim, M. A.; Khalil, Saied M. E.; Stefan, S. L.; Habib, H.

    2013-11-01

    A tridentate ONS donor ligand, HL, was synthesized by the condensation of 2-aminochromone-3-carboxaldehyde with thiosemicarbazide. The structure of the ligand was elucidated by elemental analyses, IR, 1H and 13C NMR, electronic and mass spectra. Reaction of the ligand with several copper(II) salts, including AcO-, NO3-, SO42-, Cl-, Br- and ClO4- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO4- and Br- anions as compared to the strongly coordinating power of AcO-, SO42-, Cl- and NO3- anions. Also, the ligand was allowed to react with Cu(II) ion in the presence of a secondary ligand (L‧) [N,O-donor; 8-hydroxyquinoline or N,N-donor; 1,10-phenanthroline]. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, electronic, mass and EPR spectra as well as conductivity and magnetic susceptibility measurements. The EPR spin Hamiltonian parameters of some complexes were calculated. The metal complexes exhibited octahedral and square planar geometrical arrangements depending on the nature of the anion. The ligand and most of its metal complexes showed antibacterial activity towards Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  11. Cobalt(II), nickel(II), copper(II), and zinc(II) complexes with [3(5)]adamanzane, 1,5,9,13-tetraazabicyclo[7.7.3]nonadecane and [(2.3)(2).2(1)]adamanzane, 1,5,9,12-tetraazabicyclo[7.5.2]hexadecane

    DEFF Research Database (Denmark)

    Broge, Louise; Pretzmann, Ulla; Jensen, Nicolai

    2001-01-01

    Isolation of the free bicyclic tetraamine, [3(5)]adamanzane .H2O (1,5,9,13-tetraazabicyclo[7.7.3]nonadecane .H2O), is reported along with the synthesis and characterization of a copper(II) complex of the smaller macrocycle [(2.3)(2).2(1)]-adamanzane (1,5,9,12-tetraazabicyclo[7.5.2]hexadecane) and...

  12. Polyurethane with Tethered Copper(II)-Cyclen Complex: Preparation, Characterization and Catalytic Generation of Nitric Oxide from S-Nitrosothiols

    Science.gov (United States)

    Hwang, Sangyeul

    2008-01-01

    The preparation and characterization of a commercial biomedical grade polyurethane (Tecophilic, SP-93A-100) material possessing covalently linked copper(II)-cyclen moieties as a nitric oxide (NO) generating polymer are described. Chemiluminescence NO measurements demonstrate that the prepared polymer can decompose endogenous S-nitrosothiols (RSNOs) such as S-nitrosoglutathione and S-nitrosocysteine to NO in the presence of thiol reducing agents (RSHs; e.g., glutathione and cysteine) at physiological pH. Since such RSNO and RSH already exist in blood, the proposed polymer is capable of spontaneously generating NO when in contact with fresh blood. This is demonstrated by utilizing the polymer as an outer coating at the distal end of an amperometric NO sensor to create a device that generates response toward the RSNO species in the blood. This polymer possesses the combined benefits of a commercial biomedical grade polyurethane with the ability to generate biologically active NO when on contact with blood, and thus may serve as a useful coating to improve the hemocompatibility of various medical devices. PMID:18314189

  13. Cytotoxic, pro-apoptotic, pro-oxidant, and non-genotoxic activities of a novel copper(II) complex against human cervical cancer.

    Science.gov (United States)

    Frías González, Susana E; Angeles Anguiano, Enrique; Mendoza Herrera, Alberto; Escutia Calzada, Daniel; Ordaz Pichardo, Cynthia

    2013-12-06

    Cisplatin remains one of the most effective current chemotherapeutic agents; however, metal complexes synthesis has increased in order to produce new anti-neoplastic drugs with DNA binding and apoptotic activities in tumor cells and less toxicity for patients. In this study, we evaluated the cytotoxic activity of a novel copper(II) complex (LQM402) against cervical cancer cell lines and found that LQM402 exhibited selective cytotoxicity against HeLa and Ca Ski cells. FITC-annexin assay and DNA fragmentation indicated that apoptosis could be involved in HeLa cell death. Caspase 3/7 and cytochrome c analysis by immunoblotting suggest the intrinsic pathway. LQM402 is a lipid peroxidation inductor according to TBARS production. Additionally, the Ames and micronucleus tests demonstrated non-genotoxic activity for this compound in Salmonella typhimurium and CD1 mice, respectively. Therefore, LQM402 may be a promising and safe anti-cervical cancer compound.

  14. Synthesis, Characterization and DFT-Based Investigation of a Novel Trinuclear Singly-Chloro-Bridged Copper(II)-1-Vinylimidazole Complex.

    Science.gov (United States)

    Yolcu, Zuhal; Demir, Serkan; Andaç, Ömer; Büyükgüngör, Orhan

    2016-01-01

    A novel trinuclear copper(II) complex [Cu3(μ-Cl)2Cl4(1-Vim)6] with monodentate 1-vinylimidazole (1-Vim) and chloro ligands has been prepared and experimentally characterized by elemental analysis, thermogravimetry (TGA, DTG, DTA), X-ray single crystal diffractometry, TOF-MS and FT-IR spectroscopies. The electronic and structural properties of the complex were further investigated by DFT/TD-DFT methods. Density functional hybrid method (B3LYP) was applied throughout the calculations. The calculated UV-Vis results based on TD-DFT approach were simulated and compared with experimental spectrum. Based on the data obtained, DFT calculations have been found in reasonable accordance with experimental data.

  15. The piroxicam complex of copper(II), trans-[Cu(Pir)2(THF)2], and its interaction with DNA

    Science.gov (United States)

    Hadadzadeh, Hassan; Salimi, Mona; Weil, Matthias; Jannesari, Zahra; Darabi, Farivash; Abdi, Khatereh; Khalaji, Aliakbar Dehno; Sardari, Soroush; Ahangari, Reza

    2012-08-01

    The mononuclear Cu(II) complex, trans-[Cu(Pir)2(THF)2], where Pir is 4-hydroxy-2-methyl-N-2-pyridyl-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (piroxicam), has been prepared and characterized by elemental analysis, spectroscopic methods (UV-Vis, IR, and 1H NMR) and single crystal X-ray structure analysis. The molecular structure of the centrosymmetric complex is made up of two monoanionic bidentate Pir ligands coordinated to the Cu(II) atom through the pyridyl N atom and the carbonyl O atom of the amide group in equatorial positions. The elongated rhombic octahedral (ERO) coordination of the CuNONOO2″ chromophore is completed by the O atoms of two THF molecules in axial positions. A strong intramolecular hydrogen bond between the amide N-H function and the enolate O atom confirms the ZZZ conformation of piroxicam. In addition, CD spectroscopy and gel electrophoresis assays have been used to investigate the interaction of the complex with DNA. The results revealed that the binding of the complex with DNA led to DNA backbone distortion.

  16. Mixed-valence copper(I,II) complexes with 4-(1H-pyrazol-1-yl)-6-R-pyrimidines: from ionic structures to coordination polymers.

    Science.gov (United States)

    Vinogradova, Katerina A; Krivopalov, Viktor P; Nikolaenkova, Elena B; Pervukhina, Natalia V; Naumov, Dmitrii Yu; Boguslavsky, Evgenii G; Bushuev, Mark B

    2016-01-14

    Two pyrimidine-based ligands, 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(morpholino)pyrimidine () and 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-phenoxypyrimidine (), and a series of mixed-valence copper(i,ii) halide complexes, [Cu(L(2))2Br]2[Cu2Br4] (), [Cu(L(2))2Cl][CuCl2] (), and [Cu2L(3)Br3]n (), have been synthesized. The complex [Cu(L(2))2Br]2[Cu2Br4] was prepared by the reaction of with CuBr2 in a 1 : 1 molar ratio in MeCN. Its chlorido-analogue, the complex [Cu(L(2))2Cl][CuCl2], was synthesized by the reaction between , CuCl2 and CuCl in a 2 : 1 : 1 molar ratio in MeCN. The ligand acts as a chelating one. In the structures of the complexes [Cu(L(2))2Br]2[Cu2Br4] and [Cu(L(2))2Cl][CuCl2] the Cu(2+) ion is in the cationic part of the complex whereas the Cu(+) ion is located in the anionic part. The best way to synthesize the mixed-valence 1D coordination polymer [Cu2L(3)Br3]n is to react CuBr2 with in a 2 : 1 molar ratio in the MeCN/CHCl3 mixture on heating. In the structure of [Cu2L(3)Br3]n the ligand shows chelating/bridging tridentate coordination. This is the first example of the tridentate coordination of 4-(1H-pyrazol-1-yl)-6-R-pyrimidines. The striking difference between the coordination behavior of and (chelating bidentate vs. chelating/bridging coordination) is related with the possibility of rotation of the 6-phenoxy group around the C-O bond which makes the N(1) pyrimidine atom less sterically hindered, enabling it to participate in metal ion binding. Importantly, all copper ions in [Cu2L(3)Br3]n show similar tetrahedral environments, CuNBr3 and CuN2Br2, which is extremely rare for mixed-valence copper(i,ii) compounds. The ligands and show blue emission which is quenched upon their coordination to copper ions. The 1D coordination polymer [Cu2L(3)Br3]n shows high thermal stability and unusual solvent-occlusion properties. The role of the substituents favoring the formation of the mixed-valence copper(i,ii) complexes with 4-(1H-pyrazol-1-yl)-6-R

  17. Role of the Copper(II) Complex Cu[15]pyN5 in Intracellular ROS and Breast Cancer Cell Motility and Invasion.

    Science.gov (United States)

    Fernandes, Ana S; Flórido, Ana; Saraiva, Nuno; Cerqueira, Sara; Ramalhete, Sérgio; Cipriano, Madalena; Cabral, Maria Fátima; Miranda, Joana P; Castro, Matilde; Costa, Judite; Oliveira, Nuno G

    2015-10-01

    Multiple mechanisms related to metastases undergo redox regulation. Cu[15]pyN5 is a redox-active copper(II) complex previously studied as a chemotherapy sensitizer in mammary cells. The effects of a cotreatment with Cu[15]pyN5 and doxorubicin (dox) were evaluated in two human breast cancer cell lines: MCF7 (low aggressiveness) and MDA-MB-231 (highly aggressive). Cu[15]pyN5 decreased MCF7-directed cell migration. In addition, a cotreatment with dox and Cu[15]pyN5 reduced the proteolytic invasion of MDA-MB-231 cells. Cell detachment was not affected by exposure to these agents. Cu[15]pyN5 and dox significantly increased intracellular ROS in both cell lines. This increase could be at least partially due to H2 O2 accumulation. The combination of Cu[15]pyN5 with dox may be beneficial in breast cancer treatment as it could help reduce cancer cell migration and invasion. Moreover, the ligand [15]pyN5 has a high affinity for copper(II) and displays potential anti-angiogenic properties. Overall, we present a potential drug that might arrest the progression of breast cancer by different and complementary mechanisms.

  18. Cobalt (II, nickel (II, copper (II and zinc (II complexes of 1-(phenyl(phenylamino methylpyrrolidine-2,5-dione and 2-((phenylaminomethyl isoindoline-1,3-dione and their biological activity

    Directory of Open Access Journals (Sweden)

    D. Tamil Vendan

    2010-12-01

    Full Text Available The new Mannich bases 1-(phenyl(phenylaminomethylpyrrolidine-2,5-dione (SBA was synthesized from the condensation of succinimide, benzaldehyde and aniline. 2-((phenylaminomethylisoindoline-1,3-dione (PFA was derived from pthalimide, formaldehyde and aniline. The general formula of the Co (II, Ni (II, Cu (II and Zn (II chloro complexes, ML2X2 are reported. The ligands and the complexes have been characterized by various physical-chemical techniques such as elemental analysis, molar conductance, magnetic susceptibility measurements, infrared and electronic spectra. The spectral analysis to ascertain mode of bonding and overall geometry of the complexes revealed octahedral geometries.

  19. Synthesis and characterization of copper(ii) complexes with multidentate ligands as catalysts for the direct hydroxylation of benzene to phenol.

    Science.gov (United States)

    Wu, Li; Zhong, Wei; Xu, Beibei; Wei, Zhenhong; Liu, Xiaoming

    2015-05-07

    Four copper(ii) complexes with multidentate ligands, ([CuL1Cl2]), ([Cu(HL2)Cl2]), ([Cu2(L2)2](ClO4)2) and ([CuL3(HOCH3)ClO4]) {L1 = N,N-bis((pyridin-2-yl)methyl) prop-2-yn-1-amine, HL2 = 2-((((1-methyl-1H-imidazol-2-yl)methyl)(pyridin-2-ylmethyl)amino)methyl)phenol and HL3 = 2-((((1-methyl-1H-imidazol-2-yl)methyl)(pyridin-2-ylmethyl)amino)methyl)-2-t-butyl-phenol} are reported. The complexes were characterized by UV-vis spectroscopy, elemental analysis and electrochemical analysis. Complexes and were further characterized by X-ray single crystal diffraction analysis. The catalytic performances of these complexes were evaluated in the direct hydroxylation of benzene to phenol with hydrogen peroxide as an oxidant in aqueous acetonitrile media. Under optimized reaction conditions, complex with the most negative reduction potential exhibited the highest conversion without considering the dinuclear complex . A correlation between the catalytic efficiency and the reduction potentials of these complexes was observed, that is the more negative the reduction potential, the higher the benzene conversion. A radical mechanism for the catalysis was confirmed by the fact that addition of radical scavengers such as TEMPO into the reaction mixture could severely suppress the catalysis.

  20. Synergistic interaction between a mixed ligand copper (II) chelate complex and two anticancer agents in T47D human breast cancer cells in vitro.

    Science.gov (United States)

    Geromichalos, G D; Trafalis, D T; Katsoulos, G A; Papageorgiou, A; Dalezis, P; Triandafillidis, E B; Hadjikostas, C C; Athanassiou, A

    2006-01-01

    We have developed a copper(II) chelate complex with a tridentate ONN-Schiff ligand and the anion of salicylate, showing a potent cytotoxic activity against a panel of human and murine cancer cell lines. In this experiment we have explored the combination effect between Cu(SalNEt(2))salicylate (Cu-Sal) complex and two widely used drugs in cancer chemotherapy, bleomycin (BLM) and 5-fluorouracil (5-FU), against T47D human breast cancer cells. Previous theoretical quantum-chemical studies of this complex and ass adducts with biological molecules elucidated the underlying mechanism of action of this complex. Cells grown in adherence in 96-well microplates were exposed simultaneously to both agents for 48 h. During cytotoxicity was assessed via the XTT colorimetric assay. The combined drug interaction was assessed with the median-effect analysis and the combination index (CI). Concurrent treatment of cells with Cu-Sal complex and the chemotherapeutic drugs BLM and 5-FU and the antioxidant agent ascorbic acid (AsA) resulted mainly in synergistic interaction for most concentration ratios. Cu-Sal complex interacts synergistically with the chemotherapeutic drugs for most schedules of administration. These findings call for prompting to search for possible interaction of this complex with other cellular elements of fundamental importance in cell proliferation.

  1. A new ternary copper(II) complex derived from 2-(2'-pyridyl)benzimidazole and glycylglycine: synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction.

    Science.gov (United States)

    Fu, Xia-Bing; Lin, Zi-Hua; Liu, Hai-Feng; Le, Xue-Yi

    2014-03-25

    A new ternary copper(II)-dipeptide complex [Cu(glygly)(HPB)(Cl)]⋅2H2O (glygly=glycylglycine anion, HPB=2-(2'-pyridyl)benzimidazole) has been synthesized and characterized. The DNA interaction of the complex was studied by spectroscopic methods, viscosity, and electrophoresis measurements. The antioxidant activity was also investigated using the pyrogallol autoxidation assay. Besides, the interaction of the complex with human serum albumin (HSA) in vitro was examined by multispectroscopic techniques. The complex partially intercalated to CT-DNA with a high binding constant (Kb=7.28×10(5) M(-1)), and cleaved pBR322 DNA efficiently via an oxidative mechanism in the presence of Vc, with the HO· and O2(-) as the active species, and the SOD as a promoter. Furthermore, the complex shows a considerable SOD-like activity with the IC50 value of 3.8386 μM. The complex exhibits desired binding affinity to HSA, in which hydrogen bond or vander Waals force played a major role. The alterations of HSA secondary structure induced by the complex were confirmed by UV-visible, CD, synchronous fluorescence and 3D fluorescence spectroscopy.

  2. Rhenium(IV)-copper(II) heterobimetallic complexes with a bridge malonato ligand. Synthesis, crystal structure, and magnetic properties.

    Science.gov (United States)

    Cuevas, Alicia; Chiozzone, Raúl; Kremer, Carlos; Suescun, Leopoldo; Mombrú, Alvaro; Armentano, Donatella; De Munno, Giovanni; Lloret, Francesc; Cano, Juan; Faus, Juan

    2004-11-29

    The Re(IV) complex [ReCl4(mal)]2-, in the form of two slightly different salts, (AsPh4)1.5(HNEt3)0.5[ReCl4(mal)] (1a) and (AsPh4)(HNEt3)[ReCl4(mal)] (1b), and the Re(IV)-Cu(II) bimetallic complexes [ReCl4(mu-mal)Cu(phen)2].CH3CN (2), [ReCl4(mu-mal)Cu(bpy)2] (3), and [ReCl4(mu-mal)Cu(terpy)] (4) (mal=malonate dianion, AsPh4=tetraphenylarsonium cation, HNEt3=triethylammonium cation, phen=1,10-phenanthroline, bpy=2,2'-bipyridine and terpy=2,2':6',2' '-terpyridine) have been synthesized and the structures of 1a, 1b, 2, and 3 determined by single-crystal X-ray diffraction. The structures of 1a and 1b are made up of discrete [ReCl4(mal)]2- anions and AsPh4+ and HNEt3+ cations, held together by electrostatic forces and hydrogen bonds. The Re(IV) atom is surrounded by four chloride anions and a bidentate malonate group, in a distorted octahedral environment. The structure of 2 consist of neutral dinuclear units [ReCl4(mu-mal)Cu(phen)2], with the metal ions united through a bridge carboxilato. The environment of Re(IV) is nearly identical to that in the mononuclear complex, and Cu(II) is five coordinate, being surrounded by four nitrogen atoms of two bidentate phen ligands and one oxygen atom of the malonato ligand. In 3, there are also dinuclear units, [ReCl4(mu-mal)Cu(bpy)2], but the Cu(II) ions complete a distorted octahedral coordination by binding with the free malonato oxygen atom of a neighbor unit, resulting in an infinite chain. The magnetic properties of 1-4 were also investigated in the temperature range 2.0-300 K. The magnetic behavior of 1a and 1b is as expected for a Re(IV) complex with a large value of the zero-field splitting (2D ca. 110 cm(-1)). For the bimetallic complexes, the magnetic coupling between Re(IV) and Cu(II) is antiferromagnetic in 2 (J=-0.39 cm(-1)), ferromagnetic in 4 (J=+1.51 cm(-1)), and nearly negligible in 3 (J=-0.09 cm(-1)).

  3. Efficient Synthesis and Characterization of Some Novel Nitro-Schiff Bases and Their Complexes of Nickel(II and Copper(II

    Directory of Open Access Journals (Sweden)

    Hossein Naeimi

    2013-01-01

    Full Text Available Synthesis and characterization of some new Schiff base ligands derived from various diamines and nitrosalicylaldehyde and their complexes of Ni(II and Cu(II are reported. Several spectral techniques such as UV-Vis, FT-IR, and NMR spectra were used to identify the chemical structures of the reported ligands and their complexes. The ligands are found to be bound to the metal atom through the oxygen atoms of the hydroxyl groups and nitrogen atoms of imine groups, which is also supported by spectroscopic techniques. The results obtained by FT-IR and NMR showed that the Schiff base complexes of transition metal (II have square-planar geometry.

  4. New insights into the coordination chemistry and molecular structure of copper(II) histidine complexes in aqueous solutions.

    Science.gov (United States)

    Mesu, J Gerbrand; Visser, Tom; Soulimani, Fouad; van Faassen, Ernst E; de Peinder, Peter; Beale, Andrew M; Weckhuysen, Bert M

    2006-03-06

    Aqueous solutions of Cu2+/histidine (his) (1:2) have been analyzed in parallel with infrared, Raman, ultraviolet/visible/near-infrared, electron spin resonance, and X-ray absorption spectroscopy in the pH range from 0 to 10. Comprehensive interpretation of the data has been used to extract complementary structural information in order to determine the relative abundance of the different complexes. The formation of six different, partly coexisting species is proposed. Structural proposals from literature have been unambiguously confirmed, refined, or, in several cases, corrected. At highly acidic conditions, Cu2+ and his are present as free ions, but around pH = 2, coordination starts via the deprotonated carboxylic acid group. This results in the intermediate species Cu2+[H3his+(Oc)] and Cu2+[H3his+(Oc)]2. The coordination via Oc is attended with a drop in the pKa value of the other receptor groups resulting in a concomitant conversion to the bidentates Cu2+[H2his0(Oc,Nam)] and Cu2+[H2his0(Oc,Nam)]2, with the latter being dominant at pH = 3.5. Coordination of the imidazole ring begins around pH = 3 and leads to the formation of the mixed ligand complexes Cu2+[H2his0(Oc,Nam)][Hhis-(Oc,Nam,Nim)] and Cu2+[Hhis-(Nam,Nim)][Hhis-(Oc,Nam,Nim)] around pH = 5. It is demonstrated that coordination of the imidazole ring occurs predominantly via the N(pi) atom. At pH > 7, the double-tridentate ligand complex Cu2+[Hhis-(Oc,Nam,Nim)]2 is the major species with the N atoms in the equatorial plane and the O atoms in the axial position. This complex decomposes at pH > 10 into a copper oxide/hydroxide precipitate. The overall results provide a consistent picture of the mechanism that drives the coordination and complex formation of the Cu2+/his system.

  5. Mononuclear copper(II) nitrato complexes with methyl-substituted 4-nitropyridine N-oxide. Physicochemical and cytotoxic characteristics.

    Science.gov (United States)

    Puszko, Aniela; Krojcer, Anna; Pełczynska, Marzena; Wietrzyk, Joanna; Cieślak-Golonka, Maria; Jezierska, Julia; Adach, Anna; Kubiak, Maria

    2010-02-01

    Three new complexes, products of the interaction of Cu(NO(3))(2) and methyl-substituted 4-nitropyridine N-oxides were synthesized and characterized by elemental analysis, magnetic, spectroscopic (IR, FIR and EPR), thermal and X-ray methods. The complexes (magnetic moments 1.70-1.81 BM at 300K) of general formula [Cu(H(2)O)(NO(3))(2)L(2)], L=2-methyl-4-nitropyridine N-oxide and [Cu(NO(3))(2) L'(2)], where L'=2,6-dimethyl- and 2,3,6-trimethyl-4-nitropyridine N-oxide were obtained. The compounds were unstable upon dissolution. The X-ray single crystal structure of Cu(II) complex with 2,6-dimethyl-4-nitropyridine N-oxide was determined and analysed. The compounds and free ligands were tested in vitro on the cytotoxic activity against MCF-7 and SW-707 human cancer cell lines. The complexes with 4-nitropyridine N-oxide (a reference) and 2-methyl-4-nitropyridine N-oxide show a significant anti-proliferative activity against studied cell lines. A reciprocal relationship between the activity and the number of methyl groups was observed. Both ligands and complexes are cytotoxic active but to the different cell lines.

  6. Synthesis and Structure of a New Copper(II)Complex Cu(C13H9N3O2Br)2·H2O

    Institute of Scientific and Technical Information of China (English)

    张修堂; 詹晓平; 吴鼎铭; 杨文斌; 卢灿忠

    2002-01-01

    The new copper(II) complex Cu(C13H9N3O2Br)2@H2O (N-(2-hydroxy-5-bromo- benzoyl)-N?-(picolinylidene)hydrazine is abbreviated as HL ) was obtained from the refluxing solution of Cu(CH3COO)2H2O and HL in the ethanol-N, N-dimethylformamide mix solvent. Crystal data: triclinic, space group P ī, a = 10.8620(3), b = 11.7453 (3), c = 12.4417(2) ?, α = 62.255(0), β = 79.097(2), γ = 86.764(2)°, V = 1378.52(6) ?3, Z = 2, Mr = 719.835, Dc = 1.734 g/cm3, F(000) = 714, μ(MoKα) = 3.739 mm-1, T = 293(2) K, final R = 0.0594 and wR = 0.1416 for 2943 observed reflections with I > 2.0σ(I). The structure of Cu(C13H9N3O2Br)2@H2O has been determined by X-ray analysis and revealed that two L-1 ligands coordinate to the copper(Ⅱ) ion through two oxygen and two nitrogen atoms from the hydrazine groups and two pyridine nitrogen atoms to form an elongated and distorted square-bipyramidal environment for Cu(Ⅱ). The complex is also characterized by 1H NMR spectroscopies

  7. Roles of phenol groups and auxiliary ligand of copper(ii) complexes with tetradentate ligands in the aerobic oxidation of benzyl alcohol.

    Science.gov (United States)

    Zhan, Guangli; Zhong, Wei; Wei, Zhenhong; Liu, Zhenzhen; Liu, Xiaoming

    2017-06-27

    Herein, six copper(ii) complexes with multidentate ligands, [Cu(HL1)(OAc)(HOAc)] (1), [Cu(HL2)(OAc)] (2), [Cu(HL3)(OAc)] (3), [CuL4(OAc)] (4), [Cu(HL2)Cl] (5), and [Cu(HL3)Cl] (6) {H2L1 = [bis(3-tert-butyl-2-hydroxybenzyl)](2-pyridylmethyl)amine, H2L2 = [(3-tert-butyl-2-hydoxybenzyl)(3-trifluoromethyl-2-hydroxybenzyl) (2-pyridylmethyl)]amine, H2L3 = [bis(3-trifluoromethyl-2-hydroxybenzyl)] (2-pyridylmethyl)amine, and HL4 = [bis(2-pyridylmethyl)] (3-tert-butyl-2-hydroxybenzyl)amine}, are reported. The complexes were characterized by UV-vis spectroscopy, high-resolution mass spectrometry, X-ray single-crystal diffraction analysis and electrochemistry. These copper(ii) complexes have been investigated as catalysts for the aerobic oxidation of benzyl alcohol to benzaldehyde mediated by TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) radical in water at ambient temperature. Mechanistic investigations have revealed that the phenolate/phenol is involved in the intramolecular proton transfer with a bound substrate in catalysis. Hence, the presence of the trifluoromethyl group on the phenol ring significantly affects the catalysis process since the substituent affects the acidity of phenol, and subsequently, the intramolecular proton transfer from the bound substrate. During catalysis, the dissociation of the auxiliary ligand (Cl(-) or OAc(-)) occurred in the SN1 pathway, and it is necessary for the substrate to bind. To complete the catalytic cycle, the cleaved auxiliary ligand rebinds to the metal center to regenerate the catalyst.

  8. Biological evaluation of a cytotoxic 2-substituted benzimidazole copper(II) complex: DNA damage, antiproliferation and apoptotic induction activity in human cervical cancer cells.

    Science.gov (United States)

    Qiao, Xin; Ma, Zhong-Ying; Shao, Jia; Bao, Wei-Guo; Xu, Jing-Yuan; Qiang, Zhao-Yan; Lou, Jian-Shi

    2014-02-01

    Exploring novel chemotherapeutic agents is a great challenge in cancer medicine. To that end, 2-substituted benzimidazole copper(II) complex, [Cu(BMA)Cl2]·(CH3OH) (1) [BMA = N,N'-bis(benzimidazol-2-yl-methyl)amine], was synthesized and its cytotoxicity was characterized. The interaction between complex 1 and calf thymus DNA was detected by spectroscopy methods. The binding constant (K b = 1.24 × 10(4 )M(-1)) and the apparent binding constant (K app = 6.67 × 10(6 )M(-1)) of 1 indicated its moderate DNA affinity. Complex 1 induced single strand breaks of pUC19 plasmid DNA in the presence of H2O2 through an oxidative pathway. Cytotoxicity studies proved that complex 1 could inhibit the proliferation of human cervical carcinoma cell line HeLa in both time- and dose-dependent manners. The results of nuclei staining by Hoechst 33342 and alkaline single-cell gel electrophoresis proved that complex 1 caused cellular DNA damage in HeLa cells. Furthermore, treatment of HeLa cells with 1 resulted in S-phase arrest, loss of mitochondrial potential, and up-regulation of caspase-3 and -9 in HeLa cells, suggesting that complex 1 was capable of inducing apoptosis in cancer cells through the intrinsic mitochondrial pathway.

  9. A novel copper (II) complex containing a tetradentate Schiff base: Synthesis, spectroscopy, crystal structure, DFT study, biological activity and preparation of its nano-sized metal oxide

    Science.gov (United States)

    Tohidiyan, Zeinab; Sheikhshoaie, Iran; Khaleghi, Mouj; Mague, Joel T.

    2017-04-01

    A new nano-sized copper (II) complex, [Cu(L)] with a tetra dentate Schiff base ligand, 2-((E)-(2-(E-5- bromo-2-hydroxybezenylideneamino) methyl)-4-bromophenol [H2L] was prepared by the reaction between of Cu (CH3COO)2·2H2O and (H2L) ligand with the ratio of 1:1, at the present of triethylamine by sonochemical method. The structure of [Cu (L)] complex was determined by FT-IR, UV-Vis, FESEM and molar conductivity. The structure of [Cu (L)] complex was characterized by single crystal X-ray diffraction. The geometry of [Cu (L)] complex was optimized using density functional theory (DFT) method with the B3LYP/6-31(d) level of theory. The calculated bond lengths and bond angles are in good agreement with the X-ray data. This complex was used as a novel precursor for preparing of CuO nano particles by the thermal decomposition method. The antibacterial activities of [H2L] ligand, nano-sized [Cu (L)] complex and nano-sized CuO have been screened against various strains of bacteria. According to the results, nano-sized CuO can be considered as an appropriate antibiotic agent.

  10. Syntheses, DNA binding and anticancer profiles of L-glutamic acid ligand and its copper(II) and ruthenium(III) complexes.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Saleem, Kishwar; Wesselinova, Diana

    2013-02-01

    A new multidentate ligand (L) has been synthesized by the controlled condensation of L-glutamic acid with formaldehyde and ethylenediamine. Cu(II) and Ru(III) metal ion complexes of the synthesized ligand have also been prepared. The ligand and the metal complexes were purified by chromatography and characterized by spectroscopy and other techniques. Molar conductance measurements suggested ionic nature of the complexes. The ligand and the complexes are soluble in water with quite good stabilities; essential requirements for effective anticancer drugs. DNA binding constants (Kbs) for copper and ruthenium complexes were 1.8 x 103 and 2.6 x 103 M-1 while their Ksv values were 7.9 x 103, and 7.3 x 103; revealing strong binding of these complexes with DNA. Hemolytic assays of the reported compounds indicated their significantly less toxicity to RBCs than the standard anticancer drug letrazole. Anticancer profiles of all the compounds were determined on HepG2, HT-29, MDA-MB-231 and HeLa human cancer cell lines. All the compounds have quite good activities on HeLa cell lines but the best results were of CuL on HepG2, HT-29 and MDA-MB-231 cell lines.

  11. Oxidative DNA damage of mixed copper(II) complexes with sulfonamides and 1,10-phenanthroline. Crystal structure of [Cu(N-quinolin-8-yl-p-toluenesulfonamidate)2(1,10-phenanthroline)].

    Science.gov (United States)

    Macías, Benigno; García, Isabel; Villa, María V; Borrás, Joaquín; González-Alvarez, Marta; Castiñeiras, Alfonso

    2003-08-01

    Mixed coordination compounds of Cu(II) with sulfonamides and 1,10-phenanthroline as ligands have been prepared and characterised. Single crystal structural determination of the complex [Cu(N-quinolin-8-yl-p-toluenesulfonamidate)(2)(phen)] shows Cu(II) ions are located in a highly distorted octahedral environment, probably as a consequence of the Jahn-Teller effect. The FT-IR and electronic paramagnetic resonance (EPR) spectra are also discussed. The mixed complexes prepared undergo an extensive DNA cleavage in the presence of ascorbate and hydrogen peroxide. Two of the complexes have higher nucleolytic efficiency than the bis(o-phenanthroline)copper(II) complex.

  12. In vitro antiproliferative and apoptosis-inducing properties of a mononuclear copper(II) complex with dppz ligand, in two genotypically different breast cancer cell lines.

    Science.gov (United States)

    Dhivya, Rajakumar; Jaividhya, Paramasivam; Riyasdeen, Anvarbatcha; Palaniandavar, Mallayan; Mathan, Ganeshan; Akbarsha, Mohammad Abdulkader

    2015-10-01

    In the background that there is concerted effort to discover newer metal-based cancer chemotherapeutic agents that could overcome the limitations in cisplatin and that copper, a biocompatible and redox-active metal, offers potential as alternative to cisplatin, the present study was undertaken to investigate the in vitro anti-proliferative properties of the mononuclear copper(II)complex [Cu(L)(diimine)] + where LH = 2-[(2-dimethylaminoethylimino)methyl]phenol and diimine = dipyrido[3,2-a:2',3'-c]phenazine (dppz) using breast cancer cell lines MCF-7 (ER(+ve) and p53(WT)) and MDA-MB-231(ER(-ve) and p53(mutant)) when cisplatin was used as positive control. The complex affected the viability of both the cell lines in dose-as well as duration-dependent manner as revealed in the MTT assay. The 24 and 48 h IC50 of the complex were several times lesser than those of cisplatin, and within this huge difference the efficacy of the complex was much superior with MCF-7 cell compared to MDA-MB-231 cell. The cell death was preferentially apoptosis, though necrosis also occurred to a certain extent. These inferences were substantiated by AO/EB fluorescent staining, Hoechst staining, assessment of mitochondrial transmembrane potential, comet assay for DNA damage, DCFH assay for reactive oxygen species (ROS) generation and Western blot of apoptosis-related proteins. Thus, the copper(II) dppz complex under investigation is much more efficient than cisplatin in affecting viability of the breast cancer cells. The underlying mechanism appears to be DNA damage-primed (in view of the known intercalation mode of binding of the complex with DNA) and ROS-associated mitochondria-mediated intrinsic apoptosis to a great extent but necrosis also has a role to a certain extent, which may also be a PARP-mediated cell death independent of apoptosis. Within the purview of this conclusion, the results indicate that the ER and/or p53 genotypes have a bearing on the efficacy of the complex as a

  13. Novel zinc(II) and copper(II) complexes of a Mannich base derived from lawsone: Synthesis, single crystal X-ray analysis, ab initio density functional theory calculations and vibrational analysis.

    Science.gov (United States)

    Neves, Amanda P; Vargas, Maria D; Téllez Soto, Claudio A; Ramos, Joanna M; Visentin, Lorenzo do C; Pinheiro, Carlos B; Mangrich, Antônio S; de Rezende, Edivaltrys I P

    2012-08-01

    Zinc(II) and copper(II) complexes of a tridentate Mannich base L1 derived from 2-hydroxy-1,4-naphthoquinone, pyridinecarboxyaldehyde and 2-aminomethylpyridine, [ZnL1Cl(2)]·H(2)O 1 and [CuL1Cl(2)]·2H(2)O 2, have been synthesized and fully characterized. The structure of complex 1 has been elucidated by a single crystal X-ray diffraction study: the zinc atom is pentacoordinate and the coordination geometry is a distorted square base pyramid, with a geometric structural parameter τ equal to 0.149. Vibrational spectroscopy and ab initio DFT calculations of both compounds have confirmed that the two complexes exhibit similar structures. Full assignment of the vibrational spectra was also supported by careful analysis of the distorted geometries generated by the normal modes. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Surface enhanced Raman scattering, electronic spectrum, natural bond orbital, and Mulliken charge distribution in the normal modes of diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2].

    Science.gov (United States)

    Téllez Soto, C A; Costa, A C; Ramos, J M; Vieira, L S; Rost, N C V; Versiane, O; Rangel, J L; Mondragón, M A; Raniero, L; Martin, A A

    2013-12-01

    Surface-enhanced Raman scattering (SERS) was used to study the interactions of the normal modes of the diethyldithiocarbamate copper (II) complex, [Cu(DDTC)2] on nano-structured mixture silver-gold surfaces and on silver surfaces. The electronic spectrum of this complex was measured and the charge transfer bands were assigned through the TD-PBE1PBE procedure. Natural bond orbital (NBO) were also carried out to study the Cu(II) hybridation leading to the square planar geometry of the framework of the [Cu(DDTC)2] complex, and to study which are the donor NBO and the acceptor NBO in meaningful charge transfer through the Second Order Perturbation Theory Analysis of the Fox Matrix in NBO basis. To see the electronic dispersion, the Mulliken electronic charges (MAC) were calculated for each normal mode and correlated with the SERS effect. Full assignment of the SERS spectra was also supported by carefully analysis of the distorted geometries generated by the normal modes.

  15. Synthesis and crystal structure of the dinuclear copper(II) Schiff base complex μ-hydroxido-μ-chlorido-bis{[bis(trans-2-nitrocinnamaldehyde)ethylenediamine]chloridocopper(II)} dichloromethane sesquisolvate.

    Science.gov (United States)

    Barati, Kazem; Clegg, William; Habibi, Mohammad Hossein; Harrington, Ross W; Lalegani, Arash; Montazerozohori, Morteza

    2016-03-01

    Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N'-bis(trans-2-nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1'E,2E,2'E)-N,N'-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ-chlorido-μ-hydroxido-bis(chlorido{(1E,1'E,2E,2'E)-N,N'-(ethane-1,2-diyl)bis[3-(2-nitrophenyl)prop-2-en-1-imine]-κ(2)N,N'}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four-membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two Cu(II) atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five-coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring-stacking interactions supported by C-H...Cl interactions with solvent molecules; a further ring-stacking interaction exists between the two Schiff base ligands of each molecule.

  16. Non-ionic surfactant modified ligand exchange chromatography using copper (II) complex of N,N-dimethyl-L-phenylalanine as the chiral additive for enantioselective amino acids separation

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrova, Pepa [TU Kaiserslautern, Institut fuer Thermische Verfahrenstechnik, P.O. Box 3049, Gottlieb-Daimler-Str. 44, 67653 Kaiserslautern (Germany); Bart, Hans-Joerg, E-mail: bart@mv.uni-kl.de [TU Kaiserslautern, Institut fuer Thermische Verfahrenstechnik, P.O. Box 3049, Gottlieb-Daimler-Str. 44, 67653 Kaiserslautern (Germany)

    2010-03-17

    The influence of non-ionic surfactants on the selectivity and retention in the ligand exchange chromatography for the enantioselective separation of racemic mixtures of the amino acids DL-methionine, DL-leucine, DL-valine and DL-tyrosine applying chiral mobile phases was investigated, whereas five different surfactants were tested as modifiers. The experiments were carried out using a commercially available non-chiral RP-C8 column and the copper (II) complex of N,N-dimethyl-L-phenylalanine as the chiral additive. Varying the surfactant concentrations the retention factors and the selectivity could be controlled and in general no negative influence on the separation (due to surfactant adsorption on the non-chiral stationary phase) occurred. Changing the temperature the van't Hoff plots were obtained and the thermodynamic parameters calculated. Temperature had influence on the selectivity for each surfactant and lowered the retention times as expected.

  17. Non-ionic surfactant modified ligand exchange chromatography using copper (II) complex of N,N-dimethyl-L-phenylalanine as the chiral additive for enantioselective amino acids separation.

    Science.gov (United States)

    Dimitrova, Pepa; Bart, Hans-Jörg

    2010-03-17

    The influence of non-ionic surfactants on the selectivity and retention in the ligand exchange chromatography for the enantioselective separation of racemic mixtures of the amino acids dl-methionine, dl-leucine, dl-valine and dl-tyrosine applying chiral mobile phases was investigated, whereas five different surfactants were tested as modifiers. The experiments were carried out using a commercially available non-chiral RP-C8 column and the copper (II) complex of N,N-dimethyl-l-phenylalanine as the chiral additive. Varying the surfactant concentrations the retention factors and the selectivity could be controlled and in general no negative influence on the separation (due to surfactant adsorption on the non-chiral stationary phase) occurred. Changing the temperature the van't Hoff plots were obtained and the thermodynamic parameters calculated. Temperature had influence on the selectivity for each surfactant and lowered the retention times as expected.

  18. A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(II) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations.

    Science.gov (United States)

    Mutti, Francesco G; Gullotti, Michele; Casella, Luigi; Santagostini, Laura; Pagliarin, Roberto; Andersson, K Kristoffer; Iozzi, Maria Francesca; Zoppellaro, Giorgio

    2011-05-28

    The new poly-imidazole N(8) ligand (S)-2-piperazinemethanamine-1,4-bis[2-((N-(1-acetoxy-3-(1-methyl-1H-imidazol-4-yl))-2-(S)-propyl)-(N-(1-methyl-1H-imidazol-2-ylmethyl)))ethyl]-N-(phenylmethyl)-N-(acetoxy), also named (S)-Pz-(C2-(HisIm))(2) (L), containing three chiral (S) centers, was obtained by a multi-step synthesis and used to prepare dinuclear [Cu(2)(L)](4+) and trinuclear [Cu(3)(L)](6+) copper(II) complexes. Low-temperature EPR experiments performed on [Cu(2)(L)](4+) demonstrated that the two S = ½ centers behaved as independent paramagnetic units, while the EPR spectra used to study the trinuclear copper complex, [Cu(3)(L)](6+), were consistent with a weakly coupled three-spin ½ system. Theoretical models for the two complexes were obtained by DFT/RI-BP86/TZVP geometry optimization, where the structural and electronic characteristics nicely supported the EPR experimental findings. In addition, the theoretical analysis unveiled that the conformational flexibility encoded in both [Cu(2)(L)](4+) and [Cu(3)(L)](6+) arises not only from the presence of several σ-bonds and the bulky residues attached to the (S)-Pz-(C2-(HisIm))(2) ligand scaffold, but also from the poor coordination ability of the tertiary amino groups located in the ligand side-chains containing the imidazole units towards the copper(II) ions. Both the dinuclear and trinuclear complexes are efficient catalysts in the stereoselective oxidation of several catechols and flavonoid compounds, yielding the corresponding quinones. The structural features of the substrate-catalyst adduct intermediates were assessed by searching the conformational space of the molecule through MMFF94/Monte Carlo (MMFF94/MC) methods. The conformational flexibility of the bound ligand in the complexes proves to be beneficial for substrate binding and recognition. For the dinuclear complex, chiral recognition of the optically active substrates derives from weak electrostatic interactions between bound substrates and

  19. Potentiometric and spectroscopic studies on the copper(II) complexes of rat amylin fragments. The anchoring ability of specific non-coordinating side chains.

    Science.gov (United States)

    Dávid, Ágnes; Kállay, Csilla; Sanna, Daniele; Lihi, Norbert; Sóvágó, Imre; Várnagy, Katalin

    2015-10-21

    Copper(ii) complexes of peptides modelling the sequence of the 17-22 residues of rat amylin have been studied by potentiometric, UV-Vis, CD and ESR spectroscopic methods. The peptides were synthesized in N-terminally free forms, NH2-VRSSNN-NH2, NH2-VRSSAA-NH2, NH2-VRAANN-NH2, NH2-VRSS-NH2, NH2-SSNN-NH2, NH2-SSNA-NH2 and NH2-AANN-NH2, providing a possibility for the comparison of the metal binding abilities of the amino terminus and the -SSNN- domain. The amino terminus was the primary ligating site in all cases and the formation of only mononuclear complexes was obtained for the tetrapeptides. The thermodynamic stability of the (NH2, N(-), N(-)) coordinated complexes was, however, enhanced by the asparaginyl moiety in the case of NH2-SSNN-NH2, NH2-SSNA-NH2 and NH2-AANN-NH2. Among the hexapeptides the formation of dinuclear complexes was characteristic for NH2-VRSSNN-NH2 demonstrating the anchoring ability of the -SSNN- (SerSerAsnAsn) domain. The complexes of the heptapeptide NH2-GGHSSNN-NH2 were also studied and the data supported the above mentioned anchoring ability of the -SSNN- site.

  20. Mixed ligand copper(II) dicarboxylate complexes: the role of co-ligand hydrophobicity in DNA binding, double-strand DNA cleavage, protein binding and cytotoxicity.

    Science.gov (United States)

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Ganeshpandian, Mani; Bhuvanesh, Nattamai S P; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2015-06-14

    A few water soluble mixed ligand copper(ii) complexes of the type [Cu(bimda)(diimine)] , where bimda is N-benzyliminodiacetic acid and diimine is 2,2'-bipyridine (bpy, ) or 1,10-phenanthroline (phen, ) or 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, ) or 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, ) and dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq, ), have been successfully isolated and characterized by elemental analysis and other spectral techniques. The coordination geometry around copper(ii) in is described as distorted square based pyramidal while that in is described as square pyramidal. Absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand, dpq () > 3,4,7,8-tmp () > 5,6-dmp () > phen () > bpy (). The phen and dpq co-ligands are involved in the π-stacking interaction with DNA base pairs while the 3,4,7,8-tmp/5,6-dmp and bpy co-ligands are involved in respectively hydrophobic and surface mode of binding with DNA. The small enhancement in the relative viscosity of DNA upon binding to supports the DNA binding modes proposed. Interestingly, and are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce B to A conformational change. In contrast, and show CD responses which reveal their involvement in strong DNA binding. The complexes are unique in displaying prominent double-strand DNA cleavage while effects only single-strand DNA cleavage, and their ability to cleave DNA in the absence of an activator varies as > > > > . Also, all the complexes exhibit oxidative double-strand DNA cleavage activity in the presence of ascorbic acid, which varies as > > > > . The ability of the complexes to bind and cleave the protein BSA varies in the order > > > > . Interestingly, and cleave the protein non-specifically in the presence of H2O2 as an activator suggesting that they can act also as chemical proteases

  1. Synthesis of a new N-substituted bis-benzimidazolyl diamide ligand and its trinuclear copper(II) complex: structural and fluorescence studies.

    Science.gov (United States)

    Mahiya, Kuldeep; Mathur, Pavan

    2013-09-01

    The synthesis of a new N-substituted fluorescent probe based on a bis-benzimidazole diamide N(2),N(2')-bis[(1-(4-methylbenzyl)-benzimidazol-2-yl)methyl]biphenyl-2,2'-dicarboxamide (L1) with a biphenyl spacer group and its trinuclear copper(II) complex [Cu3(L1)3Cl3]·3Cl·3H2O] has been described. X-ray studies shows that the trinuclear complex crystallizes as [{Cu3(L1)3Cl3}2·6Cl·13CH3CN·2H2O] in triclinic space group P-1 with two independent molecules in the asymmetric unit. Each copper(II) adopts a distorted penta-coordinated geometry in each unit. The fluorescence spectra of L1 in methanol show an emission band centered at 300 nm. This band arises due to benzimidazolyl moiety in the ligating system. The diamide L1 in the presence of Fe(3+) show the simultaneous 'quenching' of (300nm) and 'enhancement' of (375 nm) emission band. The new emission band at 375 nm is attributed to intra ligand π-π(*) transition of the biphenyl moiety. While Cu(2+) and Ag(+) show only the quenching of the 300 nm band. No such behavior was observed with other metal ions like Ni(2+), Co(2+), Mn(2+), Mg(2+), Zn(2+) and Pb(2+). The quenching constant with Fe(3+), Ag(+) and Cu(2+) are calculated by the Stern-Volmer plots.

  2. Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes.

    Science.gov (United States)

    Shebl, Magdy

    2014-01-03

    The 1:1 condensation of o-acetoacetylphenol and 1,2-diaminopropane under condition of high dilution gives the mono-condensed Schiff base, (E)-3-(1-aminopropan-2-ylimino)-1-(2-hydroxyphenyl)butan-1-one. The mono-condensed Schiff base has been used for further condensation with isatin to obtain the new asymmetrical dicompartmental Schiff base ligand, (E)-3-(2-((E)-4-(2-hydroxyphenyl)-4-oxobutan-2-ylideneamino) propylimino)indolin-2-one (H3L) with a N2O3 donor set. Reactions of the ligand with metal salts give a series of new binuclear complexes. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H and (13)C NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The analytical and spectroscopic tools showed that the complexes can be formulated as: [(HL)(VO)2(SO4)(H2O)]·4H2O, [(HL)Fe2Cl4(H2O)3]·EtOH, [(HL)Fe2(ox)Cl2(H2O)3]·2H2O, [(L)M2(OAc)(H2O)m]·nH2O; M=Co, Ni or Cu, m=4, 0 and n=2, 3, [(HL)Cu2Cl]Cl·6H2O and [(L)(UO2)2(OAc)(H2O)3]·6H2O. The metal complexes exhibited octahedral geometrical arrangements except copper complexes that exhibited tetrahedral geometries and uranyl complex in which the metal ion is octa-coordinated. The Schiff base and its metal complexes were evaluated for antimicrobial activity against Gram positive bacteria (Staphylococcus aureus), Gram negative bacteria (Escherichia coli) and fungi (Candida albicans and Aspergillus flavus). The ligand and some of its complexes were found to be biologically active. The DNA-binding properties of the copper complexes (6 and 7) have been investigated by electronic absorption, fluorescence and viscosity measurements. The results obtained indicate that these complexes bind to DNA via an intercalation binding mode with an intrinsic binding constant, Kb of 1.34×10(4) and 2.5×10(4) M(-1), respectively.

  3. Temperature dependence of the crystal structure and g-values of trans-diaquabis(methoxyacetato)copper(II): evidence for a thermal equilibrium between complexes with tetragonally elongated and compressed geometries.

    Science.gov (United States)

    Simmons, Charles J; Stratemeier, Horst; Hitchman, Michael A; Reinen, Dirk; Masters, Vanessa M; Riley, Mark J

    2011-06-06

    The crystal structures of trans-diaquabis(methoxyacetato)copper(II) and the isostructural nickel(II) complex have been determined over a wide temperature range. In conjunction with the reported behavior of the g-values, the structural data suggest that the copper(II) compound exhibits a thermal equilibrium between three structural forms, two having orthorhombically distorted, tetragonally elongated geometries but with the long and intermediate bonds to different atoms, and the third with a tetragonally compressed geometry. This is apparently the first reported example of a copper(II) complex undergoing an equilibrium between tetragonally elongated and compressed forms. The optical spectrum of single crystals of the copper(II) compound is used to obtain metal-ligand bonding parameters which yield the g-values of the compressed form of the complex and hence the proportions of the complex in each structural form at every temperature. When combined with estimates of the Jahn-Teller distortions of the different forms, the latter produce excellent agreement with the observed temperature dependence of the bond lengths. The behavior of an infrared combination band is consistent with such a thermal equilibrium, as is the temperature dependence of the thermal ellipsoid parameters and the XAFS. The potential surfaces of the different forms of the copper(II) complex have been calculated by a model based upon Jahn-Teller coupling. It is suggested that cooperative effects may cause the development of the population of tetragonally compressed complexes, and the crystal packing is consistent with this hypothesis, though the present model may oversimplify the diversity of structural forms present at high temperature. © 2011 American Chemical Society

  4. Copper(II/I) complexes of 5-pyridin-2-yl-[1,3]dioxolo[4,5-g]isoquinoline: synthesis, crystal structure, antitumor activity and DNA interaction.

    Science.gov (United States)

    Huang, Ke-Bin; Chen, Zhen-Feng; Liu, Yan-Cheng; Wang, Meng; Wei, Jian-Hua; Xie, Xiao-Li; Zhang, Jian-Lian; Hu, Kun; Liang, Hong

    2013-01-01

    Three new copper(II) complexes of 5-pyridin-2-yl-[1,3]dioxolo[4,5-g]isoquinoline (PYP), i.e. [Cu₂(PYP)₂Cl₄] (1), [Cu₄(PYP)₄(ClO₄)₂(H₂O)₂](ClO₄)₂·2H₂O (2), and [Cu₂(PYP)2Cl4]n (3), were synthesized and fully characterized. In comparison to free PYP, complexes 1-3 exhibited enhanced cytotoxicity against tested human tumor cell lines BEL-7404, SK-OV-3, A549, A375, MGC-803 and NCI-H460, with IC₅₀ values ranging from 0.31 to 30.76 μM. Complexes 1-3 exhibited lower cytotoxicity to HL-7702 than them to cancer cells. Complex 1 induced apoptotic death of BEL-7404, which involved mitochondria in the process. Caspase-3 activation assay indicated that 1 could be an efficient activator of caspase-3. DNA binding studies by UV-vis, DNA-melting, competitive binding, CD, viscosity measurement and agarose gel electrophoresis, revealed that intercalation might be the most likely binding mode of 1 with DNA.

  5. Cocrystallization of photosensitive energetic copper(II) perchlorate complexes with the nitrogen-rich ligand 1,2-Di(1H-tetrazol-5-yl)ethane.

    Science.gov (United States)

    Evers, Jürgen; Gospodinov, Ivan; Joas, Manuel; Klapötke, Thomas M; Stierstorfer, Jörg

    2014-11-01

    Two recently introduced concepts in the design of new energetic materials, namely complexation and cocrystallization, have been applied in the synthesis and characterization of the energetic copper(II) compound "[Cu(dt-5-e)2(H2O)](ClO4)2," which consists of two different complex cations and can be described as a model energetic ionic cocrystal. The presence of both the N-rich 1,2-di(1H-tetrazol-5-yl)ethane ligand and oxidizing perchlorate counterion results in a new type of energetic material. The ionic complex cocrystal consists of a mononuclear and a trinuclear complex unit. It can be obtained by precipitation from perchloric acid or by dehydration of the related mononuclear coordination compound [Cu(dt-5-e)2(H2O)2](ClO4)2·2H2O at 70 °C in the solid state. The transformation starting at 60 °C was monitored by X-ray powder diffraction and thermal analysis. The energetic ionic cocrystal was shown to be a new primary explosive suitable for laser ignition. The different coordination spheres within the ionic cocrystal (octahedral and square pyramidal) were shown by UV/vis/NIR spectroscopy to result in excellent light absorption.

  6. Synthesis, characterization, crystal structure and antimicrobial activity of copper(II) complexes with the Schiff base derived from 2-hydroxy-4-methoxybenzaldehyde.

    Science.gov (United States)

    Pahonțu, Elena; Ilieș, Diana-Carolina; Shova, Sergiu; Paraschivescu, Codruța; Badea, Mihaela; Gulea, Aurelian; Roșu, Tudor

    2015-04-02

    A novel Schiff base, ethyl 4-[(E)-(2-hydroxy-4-methoxyphenyl)methylene-amino]benzoate (HL), was prepared and structurally characterized on the basis of elemental analyses, (1)H NMR, (13)C NMR, UV-Vis and IR spectral data. Six new copper(II) complexes, [Cu(L)(NO3)(H2O)2] (1), [Cu(L)2] (2), [Cu(L)(OAc)] (3), [Cu2 (L)2Cl2(H2O)4] (4), [Cu(L)(ClO4)(H2O)] (5) and [Cu2(L2S)(ClO4)(H2O)]ClO4·H2O (6) have been synthesized. The characterization of the newly formed compounds was done by IR, UV-Vis, EPR, FAB mass spectroscopy, elemental and thermal analysis, magnetic susceptibility measurements and molar electric conductivity. The crystal structures of Schiff base and the complex [Cu2(L2S)(ClO4)(H2O)]ClO4·H2O (6) have been determined by single crystal X-ray diffraction studies. Both copper atoms display a distorted octahedral coordination type [O4NS]. This coordination is ensured by three phenol oxygen, two of which being related to the µ-oxo-bridge, the nitrogen atoms of the azomethine group and the sulfur atoms that come from the polydentate ligand. The in vitro antimicrobial activity against Escherichia coli ATCC 25922, Salmonella enteritidis, Staphylococcus aureus ATCC 25923, Enterococcus and Candida albicans strains was studied and compared with that of free ligand. The complexes 1, 2, 5 showed a better antimicrobial activity than the Schiff base against the tested microorganisms.

  7. Synthesis, Characterization, Crystal Structure and Antimicrobial Activity of Copper(II Complexes with the Schiff Base Derived from 2-Hydroxy-4-Methoxybenzaldehyde

    Directory of Open Access Journals (Sweden)

    Elena Pahonțu

    2015-04-01

    Full Text Available A novel Schiff base, ethyl 4-[(E-(2-hydroxy-4-methoxyphenylmethylene-amino]benzoate (HL, was prepared and structurally characterized on the basis of elemental analyses, 1H NMR, 13C NMR, UV-Vis and IR spectral data. Six new copper(II complexes, [Cu(L(NO3(H2O2] (1, [Cu(L2] (2, [Cu(L(OAc] (3, [Cu2 (L2Cl2(H2O4] (4, [Cu(L(ClO4(H2O] (5 and [Cu2(L2S(ClO4(H2O]ClO4·H2O (6 have been synthesized. The characterization of the newly formed compounds was done by IR, UV-Vis, EPR, FAB mass spectroscopy, elemental and thermal analysis, magnetic susceptibility measurements and molar electric conductivity. The crystal structures of Schiff base and the complex [Cu2(L2S(ClO4(H2O]ClO4·H2O (6 have been determined by single crystal X-ray diffraction studies. Both copper atoms display a distorted octahedral coordination type [O4NS]. This coordination is ensured by three phenol oxygen, two of which being related to the µ-oxo-bridge, the nitrogen atoms of the azomethine group and the sulfur atoms that come from the polydentate ligand. The in vitro antimicrobial activity against Escherichia coli ATCC 25922, Salmonella enteritidis, Staphylococcus aureus ATCC 25923, Enterococcus and Candida albicans strains was studied and compared with that of free ligand. The complexes 1, 2, 5 showed a better antimicrobial activity than the Schiff base against the tested microorganisms.

  8. A New Polynuclear Coordination Type for (Salicylaldoxime)copper(II) Complexes: Structure and Magnetic Properties of an (Oxime)Cu6 Cluster

    DEFF Research Database (Denmark)

    Wenzel, Marco; Forgan, Ross S.; Faure, Anaëlle;

    2009-01-01

    A previously unseen coordination mode is reported for (salicylaldoxime)copper complexes utilising a linked zwitterionic NO22- donor set. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)......A previously unseen coordination mode is reported for (salicylaldoxime)copper complexes utilising a linked zwitterionic NO22- donor set. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)...

  9. Solvent-free microwave-assisted peroxidative oxidation of secondary alcohols to the corresponding ketones catalyzed by copper(ii) 2,4-alkoxy-1,3,5-triazapentadienato complexes.

    Science.gov (United States)

    Figiel, Paweł J; Kopylovich, Maximilian N; Lasri, Jamal; da Silva, M Fátima C Guedes; da Silva, João J R Fraústo; Pombeiro, Armando J L

    2010-04-28

    A facile, efficient and selective solvent-free synthesis of ketones from secondary alcohols with tert-butylhydroperoxide (TBHP) as the oxidant under microwave irradiation is achieved, where the copper(ii) 2,4-alkoxy-1,3,5-triazapentadienato complexes are efficient catalysts providing high yields (up to 100%), TONs (up to 890) and TOFs (up to 1780 h(-1)).

  10. SYNTHESIS AND STUDY OF COMPLEXES OF COPPER(II, ZINC, COBALT(II AND NICKEL(II WITH NITROFLUORENYLIDENE-9-AMINO(IMINO DERIVATIVES

    Directory of Open Access Journals (Sweden)

    S.B. Strashnova

    2009-12-01

    Full Text Available The complexes of general formula MCl2∙L1-4∙nH2O (where L1 - N-(2,4,7-trinitrofluorenilidene-9-p-dimethyl-aminoanilin, L2 - N-(2,4,5,7-tetranitrofluorenilidene-9-p-dimethylaminoaniline, L3 - N-(2,4,7-trinitrofluorenilidene-N-(p-dimethylaminophenylhydroxylamine, L4 - N-(2,4,5,7-tetranitrofluorenilidene-9-N-(p-dimethylaminophenyl-hydroxylamine; M=Cu, Co, Ni, Zn; n= 1-3 have been synthesized and investigated by different methods. Spectral criteria of co-ordination of the molecules L1 –L4 in electronic adsorption spectra were detected.

  11. DNA cleavage, structural elucidation and anti-microbial studies of three novel mixed ligand Schiff base complexes of copper(II

    Directory of Open Access Journals (Sweden)

    N. RAMAN

    2007-10-01

    Full Text Available Three new copper complexes of mixed ligands derived from Schiff bases (condensation of p-aminoacetanilide and substituted benzaldehydes with 1,10-phenanthroline have been synthesized and characterized by elemental analysis, IR, UV–Vis, magnetic moments, conductivity and electrochemical measurements. The spectral techniques suggest that all the copper complexes exhibit octahedral geometry. The low electrical conductance of the complexes supports their neutral nature. The monomeric nature of the complexes was assessed from their magnetic susceptibility values. The in vitro biological screening effects of the investigated compounds were tested against the bacteria Escherichia coli, Staphylococcus aureus, and Salmonella typhi and the fungi Rhizopus stolonifer and Candida albicans by the serial dilution method. A comparative study of the MIC values of the Schiff bases and their copper complexes indicates that the metal complexes exhibited higher antibacterial activity than the free ligands. The DNA cleavage ability of the complexes was monitored by the gel electrophoresis technique. It was found that electron withdrawing group substituted copper complex had higher DNA cleavage activity than the other copper complexes.

  12. The Copper-nicotinamide complex: sustainable applications in coupling and cycloaddition reactions

    Science.gov (United States)

    Crystalline copper (II)-nicotinamide complex, synthesized via simple mixing of copper chloride and nicotinamide solution at room temperature, catalyzes the C-S, C-N bond forming and cycloaddition reactions under a variety of sustainable reaction conditions.

  13. Synthesis, Characterization, and Crystal Structure of a Novel Copper(II) Complex with an Asymmetric Coordinated 2,2'-Bipyridine Derivative: A Model for the Associative Complex in the Ligand-Substitution Reactions of [Cu(tren)L](2+)?

    Science.gov (United States)

    Lu Zl, Zhong-lin; Duan Cy, Chun-ying; Tian Yp, Yu-peng; You Xz, Xiao-zeng; Huang Xy, Xiao-ying

    1996-04-10

    The titled compound, (tris(2-aminoethyl)amine)(4,5-diazafluoren-9-one) copper(II) perchlorate, [Cu(C(6)H(18)N(4))(C(11)H(6)N(2)O)(ClO(4))(2)], 1, has been designed, synthesized, and characterized. The electronic and ESR spectra are very different from those of [Cu(tren)L](2+) complexes where L is monodentate ligand. The X-ray analysis revealed that the complex crystallizes in the monoclinic space group P2(1)/c, with a = 10.726(6) Å, b = 14.921(7) Å, c = 14.649(4) Å, beta = 95.13(3) degrees, and Z = 4. The copper(II) ion is coordinated by four nitrogen atoms from tris(2-aminoethyl)amine (tren) and two nitrogen atoms from 4,5-diazafluoren-9-one (dzf) to form an unusual six-coordinate (4 + 1 + 1') geometry. The structure is very rare, and to our knowledge, it is the first example of an asymmetric bidentate phenanthroline derivative metal complex. The structure could be used as a model of the associative complex in the ligand-exchange and ligand-substitution reactions of [Cu(tren)L](2+) and the catalytic mechanisms of enzymes involving copper sites. From the electronic and variable-temperature ESR spectra in solution, the possible mechanism of these reactions has also been proposed. As a comparison, the complex [Cu(tren)(ImH)(ClO(4))(2)], 2, was also synthesized and characterized, where ImH is imidazole.

  14. Copper(II) and nickel(II) binding sites of peptide containing adjacent histidyl residues.

    Science.gov (United States)

    Grenács, Ágnes; Sanna, Daniele; Sóvágó, Imre

    2015-10-01

    Copper(II) and nickel(II) complexes of the terminally protected nonapeptide Ac-SGAEGHHQK-NH2 modeling the metal binding sites of the (8-16) domain of amyloid-β have been studied by potentiometric, UV-vis, CD and ESR spectroscopic methods. The studies on the mutants containing only one of the histidyl residues (Ac-SGAEGAHQK-NH2, Ac-SGAEGHAQK-NH2) have also been performed. The formation of imidazole and amide coordinated mononuclear complexes is characteristic of all systems with a preference of nickel(II) binding to the His14 site, while the involvement of both histidines in metal binding is suggested in the corresponding copper(II) complexes. The formation of bis(ligand) and dinuclear complexes has also been observed in the copper(II)-Ac-SGAEGHHQK-NH2 system. The results provide further support for the copper(II) binding ability of the (8-16) domain of amyloid-β and support the previous assumptions that via the bis(ligand) complex formation copper(II) ions may promote the formation of the oligomers of amyloid-β.

  15. Syntheses, electronic structures and EPR/UV–vis–NIR spectroelectrochemistry of nickel(II), copper(II) and zinc(II) complexes with a tetradentate ligand based on S-methylisothiosemicarbazide

    OpenAIRE

    Arion, Vladimir B.; Rapta, Peter; Telser, Joshua; Shova, Sergiu S.; Breza, Martin; Lušpai, Karol; Kožišek, Jozef

    2011-01-01

    Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperature resulted in metal complexes of the type MIIL, where M = Ni, Cu and H2L = novel tetradentate organic ligand. These complexes are relevant to the active site of the copper enzymes galactose oxid...

  16. Transition metal complexes with thiosemicarbazide-based ligands. Part 60. Reactions of copper(II bromide with pyridoxal S-methylisothiosemicarbazone (PLITSC. Crystal structure of [Cu(PLITSC−HH2O]Br•H2O

    Directory of Open Access Journals (Sweden)

    Leovac Vukadin M.

    2014-01-01

    Full Text Available The synthesis and structural characterization of a square-planar copper(II complex with pyridoxal S-methylisothiosemicarbazone (PLITSC of the formula [Cu(PLITSC−HH2O]Br•H2O (1 as the first Cu(II complex with monoanionic form of this ligand were described. Complex 1 together with two previously synthesized complexes [Cu(PLITSCBr2] (2 and [Cu(PLITSCBr(MeOH]Br (3 were characterized by elemental analysis, IR and electronic spectra and also by the methods of thermal analysis, conductometry and magnetochemistry. [Projekat Pokrajisnkog sekretarijata za nauku i tehnoloski razvoj Vojvodine i Ministarstva nauke Republike Srbije, br. 172014

  17. Spectroscopic and potentiometric study of copper(II) complexes with L-histidyl-glycyl- L-histidyl-glycine in aqueous solution

    Science.gov (United States)

    Casolaro, Mario; Chelli, Mario; Ginanneschi, Mauro; Laschi, Franco; Muniz-Miranda, Maurizio; Papini, Anna M.; Sbrana, Giuseppe

    1999-07-01

    The complex formation between copper(II) and the tetrapeptide L-histidyl-glycyl- L-histidyl-glycine (HL) has been studied in aqueous solution in the pH range 2-10.5, by potentiometric and spectroscopic methods (visible, CD, EPR, 1H NMR and Raman scattering). Between pH 3 and 6 the species [CuHL] 2+ and [CuH -1L] have been detected. The former complex co-ordinates through two nitrogen and two oxygen atoms in the equatorial plane while, for the latter, the spectroscopic data (particularly Raman spectra) suggests an unusual structure with the two imidazole rings and two peptide NH in the plane. The species at pH 7, [CuH -2L] -, is involved in the co-ordination by the amino group, the His 1 imidazole and two peptide nitrogens, while, for the complex [CuH -3L] 2-, which seems to be predominant in alkaline medium, a third deprotonated backbone NH, replaces the imidazole nucleus.

  18. Synthesis, spectroscopic and X-ray characterization of a copper(II) complex with the Schiff base derived from pyridoxal and aminoguanidine: NMR spectral studies of the ligand.

    Science.gov (United States)

    Leovac, Vukadin M; Joksović, Milan D; Divjaković, Vladimir; Jovanović, Ljiljana S; Saranović, Zana; Pevec, Andrej

    2007-07-01

    A copper(II) complex with the pyridoxal-aminoguanidine (PL-AG) Schiff base adduct, as an organic compound of the very potent biological activity and promising pharmacological importance in the treatment of diabetic complications, has been prepared and characterized. The X-ray structural analysis of the [CuCl2(PL-AG)] complex showed that it has a distorted pseudo-square-pyramidal (4+1) structure with the tridentate ONN Schiff base in the equatorial plane, with the Cu-O(1), Cu-N(1) and Cu-N(3) bond lengths of 1.917(2)A, 1.930(2)A and 1.984(2)A, respectively. The bond length of the equatorial Cu-Cl(1) is 2.279(1)A, while that of the apical Cu-Cl(2) is 2.792(1)A. Pyridoxal fragment is coordinated in its zwitterionic form. In addition to the X-ray structural analysis, the complex was characterized by IR spectrometric, conductometric and magnetic techniques, and the ligand itself by IR, 1H and 13C NMR spectra.

  19. Copper(II) complexes with peptides based on the second cell binding site of fibronectin: metal coordination and ligand exchange kinetics.

    Science.gov (United States)

    Pizzanelli, Silvia; Forte, Claudia; Pinzino, Calogero; Magrì, Antonio; La Mendola, Diego

    2016-02-07

    Copper(ii) complexes with short peptides based on the second cell binding site of fibronectin, PHSFN and PHSEN, have been characterized by potentiometric, UV-vis, CD, EPR and NMR spectroscopic methods. The histidine imidazole nitrogen is the anchoring site for the metal ion binding. Thermodynamic and spectroscopic evidence is given that the side chain oxygen donor atom of glutamyl residue in Ac-PHSEN-NH2 is also involved in the binding up to physiological pH. To determine ligand exchange kinetic parameters after the imidazole nitrogen anchoring, proton relaxation enhancement NMR data have been collected for the two hydrogen atoms of the imidazole ring in the temperature range 293-315 K at pH 5.2 and globally treated within different kinetic models for ligand exchange. The best fitting model involves two steps. In the first one, which is slow, a water molecule disengages a carbonyl or a carboxylate group coordinated to the metal ion in the complex formed by PHSFN or PHSEN, respectively. This stage is one order of magnitude slower for PHSEN, due to entropic effects. In the second step, which is fast, the complex just formed exchanges with the ligand. In this step, no appreciable differences are found for the two cases examined.

  20. Synthesis, structure and magnetic properties of two complexes based on bis(maleonitriledithiolate)nickel(III)/copper(II) anion and 1-(4‧-bromobenzyl)triphenylphosphinium

    Science.gov (United States)

    Chen, Xing; Chen, Wei-Qiang; Yu, Lin-Liang; Lin, Jing-Hua; Zhou, Dong-Dong; Yin, Wen-Tao; Zuo, Hong-Rong; Zhou, Jia-Rong; Yang, Le-Min; Ni, Chun-Lin

    2011-12-01

    The preparation, crystal structures and magnetic properties of two complexes containing bis(maleonitriledithiolate)nickel(III)/copper(II) anion, [4BrBzTPP][Ni(mnt) 2] ( 1) and [4BrBzTPP] 2[Cu(mnt) 2] ( 2) ([4BrBzTPP] + = 1-(4'-bromobenzyl)triphenylphosphinium) are report here. The crystals of two complexes belong to the triclinic system with space group P-1. The [Ni(mnt) 2] - anions form a stepwise stack for 1 through weak π···π stacking interactions, short C···S interactions between the neighboring anions, while the [Cu(mnt) 2] 2- anions and the [4BrBzTPP] + cations in 2 are linked through C sbnd H pdbond S, C sbnd H pdbond N and C sbnd H pdbond Cu hydrogen bonds. The difference of the stacking mode and the weak interactions in 1 and 2 results in the difference of the magnetic properties: complex 1 exhibits an activated magnetic behavior in the high-temperature range together with a Curie tail at lower temperature range, while 2 shows a ferromagnetic exchange interaction with θ = 25.65 K.

  1. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    Science.gov (United States)

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex

  2. Copper(II) and nickel(II) complexes of tetradentate Schiff base ligand: UV-Vis and FT-IR spectra and DFT calculation of electronic, vibrational and nonlinear optical properties

    Science.gov (United States)

    Zarei, Seyed Amir; Khaledian, Donya; Akhtari, Keivan; Hassanzadeh, Keyumars

    2015-11-01

    The experimental fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectra of copper(II) and nickel(II) complexes of the deprotonated tetradentate Schiff base ligand N,N‧-bis(2-hydroxybenzylidene)-2,2-dimethyl-1,3-propanediamine (H2L) are compared with their corresponding theoretical ones. The applied theoretical method is based on the density functional theory and time-dependent density functional theory at the UPBE0/PBE0 levels using Def2-TZVP basis set. The computational optimised geometric parameters of the complexes are in good agreement with their corresponding experimental data. The FT-IR and UV-Vis spectra of the complexes were reproduced on the basis of their optimised structures. The vibrational assignments of some fundamental modes of the complexes are performed. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies are calculated. The analyses of the calculated electronic absorption spectra of the complexes are carried out to elucidate the electronic transitions assignments and their characters. Second-order nonlinear optical property of the complexes is evaluated by the above-mentioned theoretical method that implies much greater values for the complexes in comparison with the corresponding value of urea.

  3. Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(II) complexes.

    Science.gov (United States)

    Paul, Anup; Anbu, Sellamuthu; Sharma, Gunjan; Kuznetsov, Maxim L; Koch, Biplob; Guedes da Silva, M Fátima C; Pombeiro, Armando J L

    2015-12-14

    A series of new benzimidazole containing compounds 2-((1-R-1-H-benzimidazol-2-yl)phenyl-imino)naphthol HL(1-3) (R = methyl, ethyl or propyl, respectively) have been synthesized by Schiff base condensation of 2-(1-R-1-H-benzo[d]imidazol-2-yl)aniline and 2-hydroxy-1-naphthaldehyde. The reactions of HL(1-3) with Cu(NO3)2·2.5H2O led to the corresponding copper(II) complexes [Cu(L)(NO3)] 1-3. All the compounds were characterized by conventional analytical techniques and, for 1 and 3, also by single-crystal X-ray analysis. The interactions of complexes 1-3 with calf thymus DNA were studied by absorption and fluorescence spectroscopic techniques and the calculated binding constants (K(b)) are in the range of 3.5 × 10(5) M(-1)-3.2 × 10(5) M(-1). Complexes 1-3 effectively bind DNA through an intercalative mode, as proved by molecular docking studies. The binding affinity of the complexes decreases with the size increase of the N-alkyl substituent, in the order of 1 > 2 > 3, which is also in accord with the calculated LUMO(complex) energies. They show substantial in vitro cytotoxic effect against human lung (A-549), breast (MDA-MB-231) and cervical (HeLa) cancer cell lines. Complex 1 exhibits a significant inhibitory effect on the proliferation of the A-549 cancer cells. The antiproliferative efficacy of 1 has also been analysed by a DNA fragmentation assay, fluorescence activated cell sorting (FACS) and nuclear morphology using a fluorescence microscope. The possible mode for the apoptosis pathway of 1 has also been evaluated by a reactive oxygen species (ROS) generation study.

  4. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    Science.gov (United States)

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology.

  5. Synthesis, characterization, and spectroscopic investigation of new iron(III) and copper(II) complexes of a carboxylate rich ligand and their interaction with carbohydrates in aqueous solution.

    Science.gov (United States)

    Stewart, Christopher D; Arman, Hadi; Bawazir, Huda; Musie, Ghezai T

    2014-10-20

    New tetra-iron(III) (K4[1]·25H2O·(CH3)2CO and K3[2]·3H2O·(OH)) and di-copper(II) (Na3[3]·5H2O) complexes as carbohydrate binding models have been synthesized and fully characterized used several techniques including single crystal X-ray crystallography. Whereas K4[1]·25H2O·(CH3)2CO and Na3[3]·5H2O are completely water-soluble, K3[2]·3H2O·(OH) is less soluble in all common solvents including water. The binding of substrates, such as d-mannose, d-glucose, d-xylose, and xylitol with the water-soluble complexes in different reaction conditions were investigated. In aqueous alkaline media, complexes K4[1]·25H2O·(CH3)2CO and Na3[3]·5H2O showed coordination ability toward the applied substrates. Even in the presence of stoichiometric excess of the substrates, the complexes form only 1:1 (complex/substrate) molar ratio species in solution. Apparent binding constants, pKapp, values between the complexes and the substrates were determined and specific mode of substrate binding is proposed. The pKapp values showed that d-mannose coordinates strongest to K4[1]·25H2O·(CH3)2CO and Na3[3]·5H2O. Syntheses, characterizations and detailed substrate binding study using spectroscopic techniques and single crystal X-ray diffraction are reported.

  6. In-vitro antibacterial, antifungal and cytotoxic activity of cobalt (II), copper (II), nickel (II) and zinc (II) complexes with furanylmethyl- and thienylmethyl-dithiolenes: [1, 3-dithiole- 2-one and 1,3-dithiole-2-thione].

    Science.gov (United States)

    Chohan, Zahid H; Shaikh, Ali U; Supuran, Claudiu T

    2006-12-01

    Some antibacterial and antifungal furanylmethyl-and thienylmethyl dithiolenes and, their Co(II), Cu(II), Ni (II) and Zn (II) complexes have been synthesized, characterized and screened for their in vitro antibacterial activity against four Gram-negative; Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexeneri, and two Gram-positive; Bacillus subtilis and Staphylococcus aureus bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. All compounds showed significant antibacterial and antifungal activity. The metal complexes, however, were shown to possess better activity as compared to the simple ligands. The brine shrimp bioassay was also carried out to study their in-vitro cytotoxic properties.

  7. Synthesis and structural studies of copper(II) complex supported by -ONNO- tetradentate ligand:Efficient catalyst for the ring-opening polymerization of lactide

    Institute of Scientific and Technical Information of China (English)

    Anita Routaray; Nibedita Nath; Somanath Mantri; Tungabidya Maharan; Alekha Kumar Sutar

    2015-01-01

    The –ONNO– tetradentate Schiff base ligandN,N’-bis(2-hydroxy-3-methoxybenzaldehyde)benzene-1,2-diamine (HMBBD) has been synthesized. The ligand was attached to copper (Cu-HMBBD) in methanol under N2 atmosphere to give a mononuclear complex. The reactivity of this complex in the ring-opening polymerization (ROP) of lactide has been studied. The complex has a square planner geometry, as determined by X-ray diffraction studies. The copper complex is highly active towards the ring-opening polymerization of lactide, and the rate of polymerization is heavily dependent on the initiator used. The copper complex allows controlled ring-opening polymerization, as shown by the linear relationship between the percentage conversion and the number average molecular weight. Based on the literature, a mechanism for the ROP of lactide has been proposed.

  8. Mixed ligand μ-phenoxo-bridged dinuclear copper(II) complexes with diimine co-ligands: efficient chemical nuclease and protease activities and cytotoxicity.

    Science.gov (United States)

    Loganathan, Rangasamy; Ramakrishnan, Sethu; Suresh, Eringathodi; Palaniandavar, Mallayan; Riyasdeen, Anvarbatcha; Akbarsha, Mohamad Abdulkadhar

    2014-04-28

    The water soluble mixed ligand copper(II) complexes of the type [Cu(sal)(diimine)(ClO4)]21-5, where sal is salicylaldehyde and diimine is 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), 5,6-dimethyl-1,10-phenanthroline (5,6-dmp, 3), 3,4,7,8-tetramethyl-1,10-phenanthroline (3,4,7,8-tmp, 4) or dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 5), and [Cu(sal)(phen)(NO3)]2 (2a) have been successfully isolated and characterized by elemental analysis and other spectral techniques. The DNA binding and cleavage properties of 1-5 have been explored by using various physical and biochemical methods. The coordination geometry around copper(II) in the X-ray structures of 1, 2, 2a and 4 is described as an elongated octahedron. The UV-Vis and EPR spectral and ESI-MS studies reveal that in solution the dinuclear complexes dissociate into essentially mononuclear [Cu(sal)(diimine)]+ species with square-based geometry. The absorption spectral titrations and competitive DNA binding studies reveal that the intrinsic DNA binding affinity of the complexes depends upon the diimine co-ligand and is of the order of dpq (5) > 3,4,7,8-tmp (4) > 5,6-dmp (3) > phen (2) > bpy (1). The complexes 2 and 5 are involved in a partial intercalative interaction with DNA base pairs, while 3 and 4 are involved in a hydrophobic interaction with DNA and 1 is involved in an electrostatic interaction with DNA, which is supported by viscosity studies. Interestingly, only 3 and 4 are selective in exhibiting a positive induced CD band (ICD) upon binding to DNA suggesting that they induce a B to A conformational change in DNA. All the complexes exhibit an oxidative DNA cleavage ability, which varies as 5 > 4 > 3 > 2 > 1. While 4 and 5 are unique in displaying prominent double-strand DNA cleavage even in the absence of an activator, 2 and 3 display only single-strand DNA cleavage. Interestingly, all the complexes exhibit oxidative double-strand DNA cleavage in the presence of ascorbic acid, with 4 and 5 showing

  9. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    C L Aravinda; S M Mayanna; V R Muralidharan

    2000-10-01

    A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the deposition of copper involves the slow formation of a monovalent species. Adsorption of this species obeys Langmuir isotherm. In TEA solutions the deposition involves the formation of monovalent ions obeying the non-activated Temkin isotherm. Conversion of divalent to monovalent copper is also slow. In TEA and TSC alkaline copper solutions, the predominant species that undergo stepwise reduction contain only TEA ligands

  10. New water-soluble copper (II) complexes including 4,7-dimethyl-1,10-phenanthroline and L-tyrosine: synthesis, characterization, DNA interactions and cytotoxicities.

    Science.gov (United States)

    İnci, Duygu; Aydın, Rahmiye; Yılmaz, Dilek; Gençkal, Hasene Mutlu; Vatan, Özgür; Çinkılıç, Nilüfer; Zorlu, Yunus

    2015-02-05

    Two new water-soluble copper(II) complexes, [Cu(dmphen)2(NO3)]NO3 (1), [Cu(dmphen)(tyr)(H2O)]NO3·H2O (2) and the diquarternary salt of dmphen (dmphen = 4,7-dimethyl-1,10-phenanthroline and tyr = L-tyrosine), have been synthesized and characterized by elemental analysis, (1)H NMR, (13)C NMR and IR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. The CT-DNA binding properties of these compounds have been investigated by absorption, emission spectroscopy and thermal denaturation measurements. The supercoiled pBR322 plasmid DNA cleavage activity of these compounds has been explored by agarose gel electrophoresis. The cytotoxicity of these compounds against MCF-7, Caco-2, A549 cancer cells and BEAS-2B healthy cells was also studied by the XTT method. Complexes 1 and 2 exhibit significant cytotoxicity, with lower IC50 values than those of cisplatin.

  11. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.

    Science.gov (United States)

    Park, Kyung Chan; Fouani, Leyla; Jansson, Patric J; Wooi, Danson; Sahni, Sumit; Lane, Darius J R; Palanimuthu, Duraippandi; Lok, Hiu Chuen; Kovačević, Zaklina; Huang, Michael L H; Kalinowski, Danuta S; Richardson, Des R

    2016-09-01

    Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.

  12. Copper(II) complexes of neurokinin A with point mutation (S5A) and products of copper-catalyzed oxidation; role of serine residue in peptides containing neurokinin A sequence.

    Science.gov (United States)

    Jankowska, Elżbieta; Błaszak, Marta; Kowalik-Jankowska, Teresa

    2013-04-01

    A potentiometric, spectroscopic (UV-visible, CD and EPR) and electrospray ionization mass spectrometric (ESI-MS) study of Cu(II) binding to the neurokinin A with point mutation (S5A) (ANKA), His-Lys-Thr-Asp-Ala(5)-Phe-Val-Gly-Leu-Met-NH2 and its N-acethyl derivative (Ac-ANKA), Ac-His-Lys-Thr-Asp-Ala(5)-Phe-Val-Gly-Leu-Met-NH2 were carried out. For the ANKA and Ac-ANKA the additional deprotonation was not observed. It suggests that for the tachykinin peptides with C-terminal sequence of neurokinin A for the additional deprotonation the presence of the serine residue is necessary. For the Cu(II)-ANKA 1:2 system at physiological pH 7.4 the CuH2L2 species is present with histamine-like 4N, 2×{NH2,NIm} coordination mode. With increasing pH the deprotonation and coordination of amide nitrogen atoms occur and the CuH-2L, CuH-3L complexes are formed. In pH range 4.5 - 9.5 the dimeric Cu2HL2, Cu2L2 and Cu2H-1L2 species in solution are also present. To elucidate the products of the copper(II)- catalyzed oxidation of the ANKA and Ac-ANKA, the liquid chromatography-mass spectrometry (LC-MS) method and Cu(II)/hydrogen peroxide as a model oxidizing system were employed. In the presence of hydrogen peroxide with 1:1 peptide-H2O2 molar ratio for both peptides the oxidation of the methionine residue to methionine sulfoxide was observed. For the Cu(II)-peptide-hydrogen peroxide in 1:2:2 molar ratio systems oxidations of the histidine residues to 2-oxo-histidines and methionine sulfoxide to methionine sulfone were detected.

  13. Self-assembly of a chiral carbonate- and cytidine-containing dodecanuclear copper(II) complex: a multiarm-supplied globular capsule.

    Science.gov (United States)

    Armentano, Donatella; Marino, Nadia; Mastropietro, Teresa F; Martínez-Lillo, José; Cano, Joan; Julve, Miguel; Lloret, Francesc; De Munno, Giovanni

    2008-11-17

    A dodecanuclear copper(II) globular-shaped structure has been obtained with the cytidine nucleoside and the templating carbonate anion. It shows receptor properties through anion-cation and multiple anion-pi interactions toward ClO 4 (-) as well as an overall antiferromagnetic coupling.

  14. The Preparation and Characterization of the Geometric Isomers of a Coordination Complex: cis- and trans-bis Glycinato Copper (II) Monohydrates.

    Science.gov (United States)

    O'Brien, Paul

    1982-01-01

    Preparation of cis and trans isomers of the kinetically labile bis glycinato copper (II) has a number of advantages including its facility, economy, ready theoretical interpretation, and biological relevance. Background information, laboratory procedures, results/discussion are provided for this experiment which can be completed in a single,…

  15. Optically active red-emitting Cu nanoclusters originating from complexation and redox reaction between copper(ii) and d/l-penicillamine

    Science.gov (United States)

    Long, Tengfei; Guo, Yanjia; Lin, Min; Yuan, Mengke; Liu, Zhongde; Huang, Chengzhi

    2016-05-01

    Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of brightly emissive CuNCs, attributed to the conformation of racemic Pen being unfavorable for the electrostatic interaction, and thus suppressing the formation of cluster aggregates. In addition, the clusters display potential toward cytoplasmic staining and labelling due to the high photoluminescence (PL) quantum yields (QYs) and remarkable cellular uptake, in spite that no chirality-dependent effects in autophagy and subcellular localization are observed in the application of chiral cluster enantiomer-based cell imaging.Despite a significant surge in the number of investigations into both optically active Au and Ag nanostructures, there is currently only limited knowledge about optically active Cu nanoclusters (CuNCs) and their potential applications. Here, we have succeeded in preparing a pair of optically active red-emitting CuNCs on the basis of complexation and redox reaction between copper(ii) and penicillamine (Pen) enantiomers, in which Pen serves as both a reducing agent and a stabilizing ligand. Significantly, the CuNCs feature unique aggregation induced emission (AIE) characteristics and therefore can serve as pH stimuli-responsive functional materials. Impressively, the ligand chirality plays a dramatic role for the creation of

  16. Bis[2-(cyclopentyliminomethyl-5-methoxyphenolato]copper(II

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Ji

    2010-08-01

    Full Text Available The title compound, [Cu(C13H16NO22], is a mononuclear copper(II complex derived from the Schiff base ligand 2-(cyclopentyliminomethyl-5-methoxyphenol and copper acetate. The CuII atom is four-coordinated by the phenolate O atoms and imine N atoms from two Schiff base ligands, in a highly distorted square-planar geometry. The O- and N-donor atoms are mutually trans and the dihedral angle between the two benzene rings is 55.8 (3°.

  17. Copper complexes as therapeutic agents.

    Science.gov (United States)

    Duncan, Clare; White, Anthony R

    2012-02-01

    The importance of transition metals in biological processes has been well established. Copper (Cu) is a transition metal that can exist in oxidised and reduced states. This allows it to participate in redox and catalytic chemistry, making it a suitable cofactor for a diverse range of enzymes and molecules. Cu deficiency or toxicity is implicated in a variety of pathological conditions; therefore inorganic complexes of Cu have been investigated for their therapeutic and diagnostic potential. These Cu complexes have been shown to be effective in cancer treatment due to their cytotoxic action on tumour cells. Alternatively, Cu complexes can also modulate Cu homeostasis in the brain, resulting in protective effects in several models of neurodegeneration. In other diseases such as coronary heart disease and skin disease, the success of Cu complexes as potential therapeutics will most likely be due to their ability to increase SOD activity, leading to relief of oxidative stress. This review seeks to provide a broad insight into some of the diverse actions of Cu complexes and demonstrate the strong future for these compounds as potential therapeutic agents.

  18. Isomeric trimethylene and ethylene pendant-armed cross-bridged tetraazamacrocycles and in vitro/in vivo comparisions of their copper(II) complexes.

    Science.gov (United States)

    Odendaal, Antoinette Y; Fiamengo, Ashley L; Ferdani, Riccardo; Wadas, Thaddeus J; Hill, Daniel C; Peng, Yijie; Heroux, Katie J; Golen, James A; Rheingold, Arnold L; Anderson, Carolyn J; Weisman, Gary R; Wong, Edward H

    2011-04-04

    Ethylene cross-bridged tetraamine macrocycles are useful chelators in coordination, catalytic, medicinal, and radiopharmaceutical chemistry. Springborg and co-workers developed trimethylene cross-bridged analogues, although their pendant-armed derivatives received little attention. We report here the synthesis of a bis-carboxymethyl pendant-armed cyclen with a trimethylene cross-bridge (C3B-DO2A) and its isomeric ethylene-cross-bridged homocyclen ligand (CB-TR2A) as well as their copper(II) complexes. The in vitro and in vivo properties of these complexes are compared with respect to their potential application as (64)Cu-radiopharmaceuticals in positron emission tomography (PET imaging). The inertness of Cu-C3B-DO2A to decomplexation is remarkable, exceeding that of Cu-CB-TE2A. Electrochemical reduction of Cu-CB-TR2A is quasi-reversible, whereas that of Cu-C3B-DO2A is irreversible. The reaction conditions for preparing (64)Cu-C3B-DO2A (microwaving at high temperature) are relatively harsh compared to (64)Cu-CB-TR2A (basic ethanol). The in vivo behavior of the (64)Cu complexes was evaluated in normal rats. Rapid and continual clearance of (64)Cu-CB-TR2A through the blood, liver, and kidneys suggests relatively good in vivo stability, albeit inferior to (64)Cu-CB-TE2A. Although (64)Cu-C3B-DO2A clears continually, the initial uptake is high and only about half is excreted within 22 h, suggesting poor stability and transchelation of (64)Cu to proteins in the blood and/or liver. These data suggest that in vitro inertness of a chelator complex may not always be a good indicator of in vivo stability.

  19. Synthesis, characterization and extraction studies of N,N"-bis[1-biphenyl-2-hydroxyimino-2-(4-acetylanilino)-1-ethylidene]-diamines and their homo-and heteronuclear copper(II) complexes

    Indian Academy of Sciences (India)

    Bülent Dede; Fatma Kari̇pci̇n; Mustafa Cengi̇z

    2009-03-01

    A new series of homo- and heteropolynuclear copper(II) complexes of N,N"-bis[1-biphenyl-2-hydroxyimino-2-(4-acetylanilino)-1-ethylidene]-diamines have been prepared and characterized by different physical techniques. The starting point of the research was the reaction of chloroacetyl chloride with biphenyl in the presence of aluminum chloride. 4-Biphenylhydroximoyl chloride was obtained by reacting synthesized 4-(chloroacetyl)biphenyl with alkyl nitrite. Substituted 4-(alkylaminoisonitrosoacetyl) biphenyl (ketooxime) was prepared by reacting 4-biphenylhydroximoyl chloride with 4-aminoacetophenone in EtOH. Homodi-, homotrinuclear and heterodinuclear copper(II) perchlorate complexes of tetradentate Schiff bases which possess N4 donor sets derived from the condensation of 4-(arylaminoisonitrosoacetyl)biphenyl and diamine derivatives were synthesized and characterized. Elemental analysis, FT-IR, ESR, molar conductivity, magnetic moment measurements and thermal analyses studies were utilized for the investigation of the complexes. The free ligands were also characterized by 1H- and 13C-NMR spectra. Elemental analyses, stoichiometric and spectroscopic data of the metal compl