WorldWideScience

Sample records for copper deficient rats

  1. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  2. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  3. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  4. Induction of ceruloplasmin synthesis by interleukin-1 in copper deficient and copper sufficient rats

    International Nuclear Information System (INIS)

    Barber, E.F.; Cousins, R.J.

    1986-01-01

    Ceruloplasmin (Cp) is a copper-containing plasma protein important in the body's acute phase defense system. In copper sufficient rats given two injections of interleukin-1 (IL-1) at 0 and 8 h, ceruloplasmin activity began to significantly increase within 6 h, but did not peak until at least 24 h. The 24 h stimulated activity was 84 +/- 2 umole p-phenylene diamine (pPD) oxidized x min -1 x L -1 compared to a control of 43 +/- 5. These rats were injected with 100uCi 3 H-leucine (ip) 2 h before sacrifice to label newly synthesized proteins. When the 3 H immunoprecipitated by rabbit anti-rat Cp serum is expressed as a percent of the 3 H precipitated by trichloroacetic acid (TCA), the basal Cp synthesis rate was 3% of the total serum protein synthesis. The rate of Cp synthesis peaked 12 h after IL-1 injection at 7% of total serum protein synthesis and by 24 h was back to the basal rate. In copper deficient rats, IL-1 given with copper induced pPD oxidase activity, while IL-1 given alone did not stimulate activity. The basal Cp synthesis rate in these rats was 3%, the same as in the copper sufficient rats. In copper deficient rats, the Cp synthesis rate was induced by IL-1 with or without an injection of copper. Therefore, if dietary copper is in short supply, then although Cp synthesis is induced by this mediator of host defense mechanisms, Cp cannot carry out its functions

  5. Tissue levels of iron, copper, zinc and magnesium in iron deficient rats

    African Journals Online (AJOL)

    The effects of iron deficiency on the levels of iron, copper, zinc and magnesium in the brain, liver, kidney, heart and lungs of albino rats (Rattus novergicus) was investigated. Forty rats were divided into two groups and the first group was fed a control diet containing 1.09g iron/kg diet while the test group was fed diet ...

  6. Beer improves copper metabolism and increases longevity in Cu-deficient rats

    International Nuclear Information System (INIS)

    Moore, R.J.; Klevay, L.M.

    1989-01-01

    Moderate consumption of alcoholic beverages decreases risk of death from ischemic heart disease (IHD). Evidence suggests that Cu-deficiency is important in the etiology and pathophysiology of IHD. The effect of beer (25 ng Cu/ml) drinking on the severity of Cu-deficiency was examined in weanling, male Sprague-Dawley rats fed a low Cu diet (0.84 μg Cu/g). Beer drinking increased median longevity to 204 or 299 d from 62 or 42 d respectively in rats drinking water in two experiments (15 rats/group). In experiment 3, a single dose of 67 Cu (3.3 μCi as chloride) was added to 1 g of feed and given to 12-h fasted rats 30 d after the start of the experiment. Whole body counting over 13 d showed apparent Cu absorption and t 1/2 (biological) were greater in Cu-deficient rats drinking beer than in similar rats drinking water. Plasma cholesterol was lower but hematocrit and liver Cu were higher in surviving rats drinking beer than in rats drinking water. Body weight was not affected by beer in any experiment. In experiment 4, a 4% aqueous ethanol solution had no effect on longevity of copper deficient rats. A non-alcohol component of beer alters Cu metabolism and mitigates the severity of nutritional Cu-deficiency in rats

  7. Response of copper deficient rats to inhibitors of renal sodium reabsorption

    Energy Technology Data Exchange (ETDEWEB)

    Noordewier, B.; Saari, J.T. (Northwestern College, Orange City, IA (United States) USDA/ARS, Grand Forks, ND (United States))

    1991-03-11

    This study examined the effects of furosemide (Furo), a Loop diuretic, and amiloride (Am), a potassium (K)-sparing diuretic, on the excretion of sodium (Na) and K in copper-adequate (CuAdeq) and copper-deficient (CuDef) rats. Weanling male Sprague Dawley rats were fed a CuDef or CuAdeq diet ad libitum and given deionized water to drink. After 5 weeks on the diets, rats were assigned to one of four treatment regimens: Furo, Am or Furo + Am. Rats were anesthetized and electrolyte excretion was measured in 2 {times} 15 min control periods followed by 3 {times} 15 min treatment periods. Furo increased Na excretion in a dose dependent manner in both the CuAdeq and the CuDef rats. The response of the CuAdeq rats was slightly greater than that of the CuDef rats in each of the 3 treatment groups in which Furo was given. K excretion following Furo increased to the same extent in the CuAdeq and CuDef rats. The natriuretic response to Am alone was slightly greater in the CuDef than the CuAdeq rats. The antikaliuretic response of the CuDef rats was similar to that of the CuAdeq rats whether Am was given alone or in combination with Furo. These data show that CuDef rats respond to Furo and Am in a manner which is similar to that of CuAdeq rats, this indicates that the sensitivity of the Na reabsorption mechanisms to inhibition by diuretics is not markedly affected by copper deficiency.

  8. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    Science.gov (United States)

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  9. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Shoshani-Dror, Dana [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Weksler-Zangen, Sarah [Diabetes Research Unit, Hebrew University Hadassah Medical School and Hospital, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester, MN (United States); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  10. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Shoshani-Dror, Dana; Guillemin, Claire; Neeman-azulay, Meytal; Fudim, Liza; Weksler-Zangen, Sarah; Stodgell, Christopher J.; Miller, Richard K.; Ornoy, Asher

    2012-01-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  11. Lipoprotein receptors in copper-deficient rats: in vitro binding of high-density lipoprotein subfractions to liver membranes

    International Nuclear Information System (INIS)

    Hassel, C.A.

    1986-01-01

    Three studies were conducted to determine whether the elevated plasma and HDL cholesterol levels observed in copper-deficient rats could be explained by the interaction of 125 I-HDL subfractions with liver membrane preparations in vitro. Rats from all studies were randomly divided into two dietary treatments, copper-deficient and adequate (0.7 mg and 8.0 mg Cukg diet, respectively). Total binding data and computer derived estimates (K/sub d/ and B/sub max/) were used to compare differences between treatments. Binding data from all experiments conformed to a one-site model. In all cases, binding was saturable and EDTA and pronase insensitive. Treatment differences were observed in Study I ( 125 I-apo E-free HDL binding to crude liver membranes). Significantly lower total binding and B/sub max/ were observed when lipoproteins and membranes from copper-deficient animals were used in the assay. Competition experiments from Studies II and III demonstrate that the different HDL subfractions competed effectively with one another for binding sites, indicating that apo E is not a determinant in binding of rat 125 I-HDL subfractions to purified liver plasma membranes

  12. High fructose feeding induces copper deficiency in Sprague-Dawley rats: A novel mechanism for obesity related fatty liver

    Science.gov (United States)

    Dietary copper deficiency is associated with a variety of manifestations of the metabolic syndrome, including hyperlipidemia and fatty liver. Fructose feeding has been reported to exacerbate complications of copper deficiency. In this study, we investigated whether copper deficiency plays a role in ...

  13. The role of subcutaneous adipose tissue in supporting the copper balance in rats with a chronic deficiency in holo-ceruloplasmin.

    Directory of Open Access Journals (Sweden)

    Ekaterina Y Ilyechova

    Full Text Available We have previously shown that (1 an acute deficiency in blood serum holo-ceruloplasmin (Cp developed in rats that were fed fodder containing silver ions (Ag-fodder for one month and (2 the deficiency in holo-Cp was compensated by non-hepatic holo-Cp synthesis in rats that were chronically fed Ag-fodder for 6 months (Ag-rats. The purpose of the present study is to identify the organ(s that compensate for the hepatic holo-Cp deficiency in the circulation. This study was performed on rats that were fed Ag-fodder (40 mg Ag·kg-1 body mass daily for 6 months. The relative expression levels of the genes responsible for copper status were measured by RT-PCR. The in vitro synthesis and secretion of [14C]Cp were analyzed using a metabolic labeling approach. Oxidase activity was determined using a gel assay with o-dianisidine. Copper status and some hematological indexes were measured. Differential centrifugation, immunoblotting, immunoelectrophoresis, and atomic absorption spectrometry were included in the investigation. In the Ag-rats, silver accumulation was tissue-specific. Skeletal muscles and internal (IAT and subcutaneous (SAT adipose tissues did not accumulate silver significantly. In SAT, the mRNAs for the soluble and glycosylphosphatidylinositol-anchored ceruloplasmin isoforms were expressed, and their relative levels were increased two-fold in the Ag-rats. In parallel, the levels of the genes responsible for Cp metallation (Ctr1 and Atp7a/b increased correspondingly. In the SAT of the Ag-rats, Cp oxidase activity was observed in the Golgi complex and plasma membrane. Moreover, full-length [14C]Cp polypeptides were released into the medium by slices of SAT. The possibilities that SAT is part of a system that controls the copper balance in mammals, and it plays a significant role in supporting copper homeostasis throughout the body are discussed.

  14. Metallochaperone for Cu,Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats.

    Science.gov (United States)

    Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce

    2003-09-15

    Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.

  15. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  16. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    Science.gov (United States)

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  17. Case of sensory ataxic ganglionopathy-myelopathy in copper deficiency.

    Science.gov (United States)

    Zara, Gabriella; Grassivaro, Francesca; Brocadello, Filippo; Manara, Renzo; Pesenti, Francesco Francini

    2009-02-15

    Spinal cord involvement associated with severe copper deficiency has been reported in the last 8 years. Copper deficiency may produce an ataxic myelopathy. Clinical and neuroimaging findings are similar to the subacute combined degeneration seen in patients with vitamin B12 deficiency. Macrocytic, normocytic and microcytic anemia, leukopenia and, in severe cases, pancytopenia are well known hematologic manifestations. The most patients with copper deficiency myelopathy had unrecognized carency. Some authors suggested that early recognition and copper supplementation may prevent neurologic deterioration but clinical findings do not improve. We present a patient with copper deficiency, dorsal root ganglions and cervical dorsal columns involvement. Clinical status and neuroimaging improved after copper replacement therapy. Sensory neurons of dorsal root ganglia may be the most sensitive nervous pathway. In this case the early copper treatment allowed to improve neurologic lesions and to prevent further involvements.

  18. An iron-deficient diet stimulates the onset of the hepatitis due to hepatic copper deposition in the Long-Evans Cinnamon (LEC) rat

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Naoki; Sugawara, Chieko [Sapporo Medical Univ. (Japan). Dept. of Public Health

    1999-09-01

    To study effects of dietary Cu and Fe levels on the onset of hepatitis in Long-Evans Cinnamon (LEC) rats, female rats (40 days old) were fed a semipurified diet containing 0.1 or 10 mg Cu/kg and 1.5 or 150 mg Fe/kg in a 2 x 2 factorial arrangement for 35 days. At 75 days after birth, LEC rats (+Cu-Fe) fed a Cu-sufficient but Fe-deficient diet (Cu, 10 mg/kg; Fe, 1.5 mg/kg) showed jaundice, with lethargy, anorexia, and malaise. The biochemical variables relating to liver function were significantly increased compared to three other groups, a Cu- and Fe-deficient (-Cu-Fe) group, a Cu-deficient but Fe-sufficient (-Cu+Fe) group, and a Cu and Fe sufficient (+Cu+Fe) group. Furthermore, the +Cu-Fe rat liver showed massive necrosis with huge nuclei. The other three groups presented no biochemical and histological findings of hepatitis. Hepatic Cu and metallothionein concentrations were 289 {+-} 87 (mean {+-} SD) {mu}g/g liver and 8.7 {+-} 1.8 mg/g liver, respectively, in the +Cu-Fe rats. However, in the +Cu+Fe group the values were 196 {+-} 28 {mu}g Cu/g liver and 10.8 {+-} 1.0 mg/g liver. Hepatic Fe deposition was not influenced significantly by the dietary Cu level. The +Cu-Fe group with jaundice showed the highest free Cu concentration in the liver among the four groups, but the hepatic free Fe concentration was similar to those in the -Cu+Fe and +Cu+Fe groups. Our results indicate that an Fe-deficient diet enhances the deposition of hepatic Cu due to increased absorption of Cu from the gastrointestinal tract. This deposition stimulated the onset of hepatitis. (orig.)

  19. Tissue distribution and excretion of copper-67 intraperitoneally administered to rats fed fructose or starch

    International Nuclear Information System (INIS)

    Holbrook, J.; Fields, M.; Smith, J.C. Jr.; Reiser, S.

    1986-01-01

    It has been suggested that impaired gut absorption of copper is the cause of the exacerbated copper deficiency signs in rats fed fructose when compared to rats fed starch. The present study was designed to examine how rats fed fructose or starch diets, either copper-deficient or supplemented, distributed and excreted 67 Cu when the isotope was administered i.p. Intraperitoneal administration was chosen in an effort to circumvent primary gut absorption as a factor in the metabolism of 67 Cu. After 7 wk of dietary treatment, rats received an i.p. injection of 67 Cu and were placed in metabolic cages for 4 d. Regardless of dietary carbohydrate, copper-deficient rats retained similar levels of radioactivity in various tissues and excreted similar amounts of 67 Cu in feces and urine. This similarity in copper metabolism in copper-deficient rats fed either fructose or starch when the gut was circumvented for isotope administration suggests that the gut could be responsible, at least in part, for the exacerbated signs associated with the copper deficiency in rats fed fructose. The possibility is discussed that alterations in metabolism may increase the requirement for copper when fructose is the main dietary carbohydrate

  20. Effect of fructose or starch on copper-67 absorption and excretion by the rat

    International Nuclear Information System (INIS)

    Fields, M.; Holbrook, J.; Scholfield, D.; Smith, J.C. Jr.; Reiser, S.

    1986-01-01

    Studies with 67 Cu were conducted with copper-deficient or supplemented rats fed fructose or starch in an effort to investigate the effects of different dietary carbohydrates and inadequate copper intake on the absorption, tissue distribution and excretion of copper. After being fed their diets for 5 wk, they were killed at 8, 24, 48 and 96 h following the intubation of their respective copper-supplemented diets extrinsically labeled with 67 Cu. Only at 48 and 96 h following the intubation of 67 Cu, the gastrointestinal (GI) contents of rats fed the copper-deficient fructose diet exhibited higher radioactivity than rats fed the copper-deficient starch diet. Although not always significant, this apparent retention of copper in GI contents was accompanied by decreased whole-body radioactivity and depressed urinary excretion. The cumulative excretion of 67 Cu via feces over the 96-h period of collection was similar for both groups of copper-deficient rats, regardless of whether the dietary carbohydrate was fructose or starch. The data suggest that the more severe copper deficiency is related to the sustained higher level of radioactivity in the GI contents. This increased retention of 67 Cu in GI contents suggests impaired absorption of copper

  1. Copper deficiency induced emphysema is associated with focal adhesion kinase inactivation.

    Directory of Open Access Journals (Sweden)

    Shiro Mizuno

    Full Text Available Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1α dependent vascular endothelial growth factor (VEGF expression, and is also required for the activity of lysyl oxidase (LOX to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis via inactivation of focal adhesion kinase (FAK.To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveolar architecture via anoikis, Male Sprague-Dawley rats were fed a copper deficient diet for 6 weeks while being treated with the copper chelator, tetrathiomolybdate. Other groups of rats were treated with the inhibitor of auto-phosphorylation of FAK, 1,2,4,5-benzenetetraamine tetrahydrochloride (1,2,4,5-BT or FAK small interfering RNA (siRNA.Copper depletion caused emphysematous changes, decreased HIF-1α activity, and downregulated VEGF expression in the rat lungs. Cleaved caspase-3, caspase-8 and Bcl-2 interacting mediator of cell death (Bim expression was increased, and the phosphorylation of FAK was decreased in copper depleted rat lungs. Administration of 1,2,4,5-BT and FAK siRNA caused emphysematous lung destruction associated with increased expression of cleaved capase-3, caspase-8 and Bim.These data indicate that copper-dependent mechanisms contribute to the pathogenesis of emphysema, which may be associated with decreased HIF-1α and FAK activity in the lung.

  2. The effects of silver ions on copper metabolism in rats.

    Science.gov (United States)

    Ilyechova, E Yu; Saveliev, A N; Skvortsov, A N; Babich, P S; Zatulovskaia, Yu A; Pliss, M G; Korzhevskii, D E; Tsymbalenko, N V; Puchkova, L V

    2014-10-01

    The influence of short and prolonged diet containing silver ions (Ag-diet) on copper metabolism was studied. Two groups of animals were used: one group of adult rats received a Ag-diet for one month (Ag-A1) and another group received a Ag-diet for 6 months from birth (Ag-N6). In Ag-A1 rats, the Ag-diet caused a dramatic decrease of copper status indexes that was manifested as ceruloplasmin-associated copper deficiency. In Ag-N6 rats, copper status indexes decreased only 2-fold as compared to control rats. In rats of both groups, silver entered the bloodstream and accumulated in the liver. Silver was incorporated into ceruloplasmin (Cp), but not SOD1. In the liver, a prolonged Ag-diet caused a decrease of the expression level of genes, associated with copper metabolism. Comparative spectrophotometric analysis of partially purified Cp fractions has shown that Cp from Ag-N6 rats was closer to holo-Cp by specific enzymatic activities and tertiary structure than Cp from Ag-A1 rats. However, Cp of Ag-N6 differs from control holo-Cp and Cp of Ag-A1 in its affinity to DEAE-Sepharose and in its binding properties to lectins. In the bloodstream of Ag-N6, two Cp forms are present as shown in pulse-experiments on rats with the liver isolated from circulation. One of the Cp isoforms is of hepatic origin, and the other is of extrahepatic origin; the latter is characterized by a faster rate of secretion than hepatic Cp. These data allowed us to suggest that the disturbance of holo-Cp formation in the liver was compensated by induction of extrahepatic Cp synthesis. The possible biological importance of these effects is discussed.

  3. Contrasting effects of the stomach and small intestine of rats on copper absorption

    International Nuclear Information System (INIS)

    Fields, M.; Craft, N.; Lewis, C.; Holbrook, J.; Rose, A.; Reiser, S.; Smith, J.C.

    1986-01-01

    Since the severity of copper deficiency has been shown to be enhanced by feeding diets containing fructose but ameliorated by diets containing starch, we decided to investigate the effect of fructose or starch on copper absorption. As copper transport has been reported to occur also from the stomach, it was possible that copper absorption is inhibited by fructose already from that tissue. Under anesthesia, stomachs of 72 rats fed copper-deficient or supplemented diets containing fructose or starch were ligated prior to the oral administration of 64 Cu. Gastric absorption of 64 Cu was studied when the isotope was administered by gastric tube either in diet containing fructose or starch or in water. 64 Cu was not absorbed from the stomach regardless of the type of dietary treatment, copper status or whether the copper was administered either in diet or in water. In addition, the absorption of 64 Cu from a diet containing either fructose or starch or from a saline solution was studied using the isolated ligated duodenal loop. When 64 Cu was administered with dietary fructose 64 Cu retention and absorption were impaired when compared to starch. When 64 Cu was administered in saline solution, differences in retention and absorption between the four dietary groups disappeared. It is suggested that the requirements for copper rather than the decreased absorption of copper are responsible at least in part for the more pronounced severity of copper deficiency in rats fed fructose compared to those fed starch

  4. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, M.; Thomsen, Pernille Sjølin

    2001-01-01

    , and this response was significantly blunted by zinc deficiency. The MT-III isoform was moderately increased by both TBI and zinc deficiency. TBI strongly increased oxidative stress levels, as demonstrated by malondialdehyde (MDA), protein tyrosine nitration (NITT), and nuclear factor kappaB (NF-kappaB) levels irs......, all of which were potentiated by zinc deficiency. Further analysis revealed unbalanced expression of prooxidant and antioxidant proteins besides MT, since the levels of inducible nitric oxide synthase (iNOS) and Cu,Zn-SOD were increased and decreased, respectively, by zinc deficiency. All......The role of zinc- and copper-deficient diets on the inflammatory response to traumatic brain injury (TBI) has been evaluated in adult rats. As expected, zinc deficiency decreased food intake and body weight gain, and the latter effect was higher than that observed in pair-fed rats. In noninjured...

  5. Refractory cytopenias secondary to copper deficiency in children receiving exclusive jejunal nutrition.

    Science.gov (United States)

    Jacobson, Amanda E; Kahwash, Samir B; Chawla, Anjulika

    2017-11-01

    Copper deficiency is a known cause of anemia and neutropenia that is easily remedied with copper supplementation. Copper is primarily absorbed in the stomach and proximal duodenum, so patients receiving enteral nutrition via methods that bypass this critical region may be at increased risk for copper deficiency. In pediatrics, postpyloric enteral feeding is increasingly utilized to overcome problems related to aspiration, severe reflux, poor gastric motility, and gastric outlet obstruction. However, little is known about the prevalence of copper deficiency in this population. We describe three pediatric patients receiving exclusive jejunal feeds who developed cytopenias secondary to copper deficiency. © 2017 Wiley Periodicals, Inc.

  6. Laryngeal Neuropathy in Adult Goats With Copper Deficiency.

    Science.gov (United States)

    Sousa, R F A; Almeida, V M; Neto, J E; Nascimento, C W A; Medeiros, G X; Medeiros, R M T; Riet-Correa, F; Mendonça, F S

    2017-07-01

    The aim of this study was to elucidate the cause of a neurological syndrome characterized by stridor in adult goats with clinical signs of copper deficiency. The main clinical signs consisted of apathy, emaciation, pale mucous membranes, mucous nasal discharge, dyspnea, severe achromotrichia, diffuse alopecia, torpor, ataxia, and stridor. When the goats were forced to move, the stridor increased. In a herd of 194 Toggenburg goats, 10 adult goats with clinical signs of copper deficiency were removed from the herd and divided into 2 groups: group 1, which consisted of 4 nannies and 1 buck with stridor, and group 2, which consisted of 4 nannies and 1 buck without stridor. Group 3, used as a control, consisted of 5 adult goats from another flock without any clinical signs of disease. The mean serum copper concentrations were 1.3 ± 0.3 μmol/L in group 1, 8.1 ± 1.1 μmol/L in group 2, and 11.3 ± 2.2 μmol/L in group 3. The mean serum iron concentrations were 42.3 ± 14.2 μmol/L in group 1, 39.1 ± 8.2 μmol/L in group 2, and 20.6 ± 6.1 μmol/L in group 3. The main histological lesions in goats from group 1 were axonal degeneration of the recurrent laryngeal nerves and atrophy of the muscles of vocal folds and of the dorsal cricoarytenoid and right and left cricothyroid muscles. Goats with ataxia had neuronal degeneration and necrosis of cerebellar Purkinje cells and of the cranial cervical ganglion. We concluded that the stridor was caused by axonal degeneration of the recurrent laryngeal nerves due to the severe copper deficiency.

  7. Absorption of plutonium in the iron-deficient rat

    International Nuclear Information System (INIS)

    Ragan, H.A.

    1977-01-01

    Iron deficiency did not enhance absorption of plutonium following intragastric gavage of rats. Absorption of plutonium citrate in both control and iron-deficient rats was about 0.03% of the administered dose

  8. Peripheral neuropathy in a copper-deficient goat

    Directory of Open Access Journals (Sweden)

    Valdir Morais de Almeida

    2017-09-01

    Full Text Available ABSTRACT: This report aimed to describe a case of peripheral neuropathy in a copper-deficient goat, and highlights the clinical, and pathological features of the disease. The goat had low body score, hyporexia, alopecia, achromotrichia, left hindlimb protraction, paralysis with dragging of digit and difficulty to stand up and microcytic normochromic anemia. Copper concentration in serum was markedly lower (2.0µmol L-1 whereas the iron serum content was significantly increased (51.0µmol L-1. The main gross alteration was the reduction of the quadriceps vastus laterallis muscle volume. Histologically, there was atrophy of the quadriceps vastus laterallis muscle and presence of satellite cells, infiltration of lymphocytes, macrophages and replacement of the fibers by connective tissue. In the femoral nerve, there was axonal degeneration with myelin sheath expansion and presence of vacuoles, usually in chains and containing axonal debris or macrophages. Clinical, laboratorial and pathologic findings are consistent with peripheral neuropathy due to a severy copper deficiency.

  9. The effect of an induced copper deficiency on the total plasma ...

    African Journals Online (AJOL)

    The effect of a copper deficiency on certain aspects of reproduction in ewes was ... induced by using the copper antagonists cadmium, calcium and sulphate. .... sodium (Na), magnesium (MG), potassium (K), blood urea nitrogen (BUN) and ...

  10. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  11. Copper absorption from human milk, cow's milk, and infant formulas using a suckling rat model

    International Nuclear Information System (INIS)

    Loennerdal, B.B.; Bell, J.G.; Keen, C.L.

    1985-01-01

    Since copper deficiency is known to occur during infancy, it becomes important to assess copper uptake from various infant diets. The authors have investigated the uptake of copper from human milk, cow's milk, cow's milk formulas, cereal/milk formula and soy formula, compensating for the decay of 64 Cu and using the suckling rat as a model. Radiocopper was added to the diet in trace amounts. Ultracentrifugation, ultrafiltration, and gel filtration were used to show that the added 64 Cu bound to milk fractions and individual binding compounds in a manner analogous to the distribution of native copper, thus validating the use of extrinsically labeled diets. Labeled diets were intubated into 14-day-old suckling rats. Animals were killed after 6 h and tissues removed and counted. Liver copper uptake was 25% from human milk, 23% from cow's milk formula, 18% from cow's milk, 17% from premature (cow's milk based) infant formula, 17% from cereal/milk formula and 10% from soy formula. These results show that the rat pup model may provide a rapid, inexpensive, and sensitive method to assay bioavailability of copper from infant foods

  12. Copper absorption and copper balance during consecutive periods for rats fed varying levels of dietary copper

    International Nuclear Information System (INIS)

    Stuart, M.A.; Johnson, P.E.

    1986-01-01

    Copper (Cu) balance and absorption were studied to determine the extent to which absorption is dependent on dietary Cu. Over 12 consecutive 5-d metabolic periods, Cu balance was determined for four groups of young growing rats (n = 8) fed modified AIN-76 diets having different levels of added Cu (2.5, 5.0, 10 or 20 micrograms/g). Among groups, mean body weights did not differ over time (P greater than 0.05). There were no significant differences among groups for liver, heart or plasma Cu. Rats in all groups were in positive Cu balance throughout the study. After consuming the experimental diets for 10 d, rats eating 10 or 20 micrograms Cu/g diet showed a more positive Cu balance than did rats in the other groups. This trend continued until d 60. For rats eating 20 micrograms Cu/g diet, balance varied significantly over time. Three test meals labeled with stable 65Cu were fed at d 10, 40 and 50, respectively. Apparent Cu absorption, as determined by fecal monitoring of 65Cu, did not change appreciably over time for rats eating 2.5 or 5.0 micrograms Cu/g diet. A test meal labeled with radioactive 67Cu was fed at d 40. For rats eating 2.5 micrograms Cu/g diet, apparent absorption was higher (31%) than that for all other groups (5.0, 23%; 10, 19%; 20, 16%; P less than 0.05). Absorption values determined by whole-body retention of 67Cu were similar to those determined by fecal monitoring of 65Cu

  13. Sulfur amino acids metabolism in magnesium deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Kosokawa, Y.; Yamaguchi, K.

    1984-01-01

    Effect of magnesium (Mg) deficiency on sulfur amino acid metabolism was investigated in rats. Young male rats were fed on the diet containing either 2.26 (deficient rats) or 63.18 mg Mg/100g diet (control and low protein rats) for 2 weeks. A remarkable decrease of body weight gain, serum Mg contents and a slight decreases in the hematological parameters such as Hb, Ht and RBC was observed, while the hepatic Mg and Ca was not significantly changed. Erythema and cramps were observed 5 days after feeding on the Mg-depleted diet. The hepatic glutathione and cysteine contents increased in Mg-deficient rats. However, no significant change of cysteine dioxygenase (CDO) activity and taurine content in Mg-deficient rat liver was observed. These results suggest that Mg deficiency affects the utilization and biosynthesis of hepatic glutathione but not the cysteine catabolism.

  14. Toxicity and deficiency of copper in Elsholtzia splendens affect photosynthesis biophysics, pigments and metal accumulation.

    Science.gov (United States)

    Peng, Hongyun; Kroneck, Peter M H; Küpper, Hendrik

    2013-06-18

    Elsholtzia splendens is a copper-tolerant plant species growing on copper deposits in China. Spatially and spectrally resolved kinetics of in vivo absorbance and chlorophyll fluorescence in mesophyll of E. splendens were used to investigate the copper-induced stress from deficiency and toxicity as well as the acclimation to excess copper stress. The plants were cultivated in nutrient solutions containing either Fe(III)-EDTA or Fe(III)-EDDHA. Copper toxicity affected light-acclimated electron flow much stronger than nonphotochemical quenching (NPQ) or dark-acclimated photochemical efficiency of PSIIRC (Fv/Fm). It also changed spectrally resolved Chl fluorescence kinetics, in particular by strengthening the short-wavelength (<700 nm) part of NPQ altering light harvesting complex II (LHCII) aggregation. Copper toxicity reduced iron accumulation, decreased Chls and carotenoids in leaves. During acclimation to copper toxicity, leaf copper decreased but leaf iron increased, with photosynthetic activity and pigments recovering to normal levels. Copper tolerance in E. splendens was inducible; acclimation seems be related to homeostasis of copper and iron in E. splendens. Copper deficiency appeared at 10 mg copper per kg leaf DW, leading to reduced growth and decreased photosynthetic parameters (F0, Fv/Fm, ΦPSII). The importance of these results for evaluating responses of phytoremediation plants to stress in their environment is discussed.

  15. Subacute copper-deficiency myelopathy in a patient with occult celiac disease.

    Science.gov (United States)

    Cavallieri, Francesco; Fini, Nicola; Contardi, Sara; Fiorini, Massimo; Corradini, Elena; Valzania, Franco

    2017-07-01

    Acquired copper deficiency represents a rare cause of progressive myelopathy presenting with sensory ataxia and spastic gait. The time interval from neurological symptoms onset to diagnosis of myelopathy ranges from 2 months to several years in almost all cases, mimicking the clinical course of subacute combined degeneration due to vitamin B12 deficiency. A 60-year-old man, without any gastrointestinal symptoms, developed over the course of one week rapidly progressive gait imbalance, tingling and numbness in his feet and ascending lower limb weakness. Spine magnetic resonance imaging revealed hyperintensity involving cervical and dorsal posterior columns of spinal cord. Blood analysis revealed undetectable serum copper levels, low serum ceruloplasmin and positive serum Immunoglobulin A anti-tissue transglutaminase. Upper gastrointestinal endoscopy was performed revealing duodenal villous atrophy consistent with a malabsorption pattern. A gluten-free diet in association with intravenous then oral copper supplementation prompted sustained normalization of serum copper levels and progressive clinical improvement. We report a rare case of myelopathy induced by copper deficiency secondary to undiagnosed celiac disease, peculiarly presenting with a subacute onset. This case expands the neurological presentation and clinical course of myelopathy due to acquired copper deficiency. We suggest investigation of copper deficiency in patients presenting with subacute or even acute sensory ataxia and spastic gait. Detection of hypocupremia in patients without a previous history of gastric surgery should lead to diagnostic testing for celiac disease even in the absence of any obvious gastrointestinal symptoms.

  16. Decreased erythrocyte CCS content is a biomarker of copper overload in rats.

    Science.gov (United States)

    Bertinato, Jesse; Sherrard, Lindsey; Plouffe, Louise J

    2010-07-02

    Copper (Cu) is an essential trace metal that is toxic in excess. It is therefore important to be able to accurately assess Cu deficiency or overload. Cu chaperone for Cu/Zn superoxide dismutase (CCS) protein expression is elevated in tissues of Cu-deficient animals. Increased CCS content in erythrocytes is particularly sensitive to decreased Cu status. Given the lack of a non-invasive, sensitive and specific biomarker for the assessment of Cu excess, we investigated whether CCS expression in erythrocytes reflects Cu overload. Rats were fed diets containing normal or high levels of Cu for 13 weeks. Diets contained 6.3 +/- 0.6 (Cu-N), 985 +/- 14 (Cu-1000) or 1944 +/- 19 (Cu-2000) mg Cu/kg diet. Rats showed a variable response to the high Cu diets. Some rats showed severe Cu toxicity, while other rats showed no visible signs of toxicity and grew normally. Also, some rats had high levels of Cu in liver, whereas others had liver Cu concentrations within the normal range. Erythrocyte CCS protein expression was 30% lower in Cu-2000 rats compared to Cu-N rats (P CCS (47% reduction, P CCS content is associated with Cu overload in rats and should be evaluated further as a potential biomarker for assessing Cu excess in humans.

  17. In long-term bedridden elderly patients with dietary copper deficiency, biochemical markers of bone resorption are increased with copper supplementation during 12 weeks.

    Science.gov (United States)

    Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho

    2006-01-01

    Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.

  18. Urea utilization in protein deficient rats

    International Nuclear Information System (INIS)

    Tanaka, Noriko

    1982-01-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The 15 N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of 15 N-urea (10 mg/100gB.W.) and higher level of 15 N concentration in plasma protein in LPD group was maintained thereafter. The 15 N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The 15 N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of 15 N-urea (10mg/100gB.W.). However, the 15 N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis. (J.P.N.)

  19. Urea utilization in protein deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N [Hyogo College of Medicine, Nishinomiya, Hyogo (Japan)

    1982-06-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The /sup 15/N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of /sup 15/N-urea (10 mg/100gB.W.) and higher level of /sup 15/N concentration in plasma protein in LPD group was maintained thereafter. The /sup 15/N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The /sup 15/N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of /sup 15/N-urea (10mg/100gB.W.). However, the /sup 15/N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis.

  20. Increased uracil misincorporation in lymphocytes from folate-deficient rats

    OpenAIRE

    Duthie, S J; Grant, G; Narayanan, S

    2000-01-01

    The development of certain human cancers has been linked with inadequate intake of folates. The effects of folate deficiency in vivo on DNA stability (strand breakage, misincorporated uracil and oxidative base damage) in lymphocytes isolated from rats fed a diet deficient in folic acid was determined. Because the metabolic pathways of folate and other methyl donors are closely coupled, the effects of methionine and choline deficiency alone or in combination with folate deficiency were determi...

  1. Colloidal silver ingestion with copper and caeruloplasmin deficiency.

    Science.gov (United States)

    Stepien, Karolina M; Taylor, Andrew

    2012-05-01

    The copper concentration in serum can be affected by the presence of other trace elements such as silver. Low serum copper may result in decreased caeruloplasmin synthesis. We report the case of a 59-year-old woman, who was admitted to hospital with acute psychosis and who had been ingesting chronically, colloidal silver.

  2. Increased glucose dependence in resting, iron-deficient rats

    International Nuclear Information System (INIS)

    Brooks, G.A.; Henderson, S.A.; Dallman, P.R.

    1987-01-01

    Rates of blood glucose and lactate turnover were assessed in resting iron-deficient and iron-sufficient (control) rats to test the hypothesis that dependence on glucose metabolism is increased in iron deficiency. Male Sprague-Dawley rats, 21 days old, were fed a diet containing either 6 mg iron/kg feed (iron-deficient group) or 50 mg iron/kg feed (iron-sufficient group) for 3-4 wk. The iron-deficient group became anemic, with hemoglobin levels of 6.4 ± 0.2 compared with 13.8 ± 0.3 g/dl for controls. Rats received a 90-min primed continuous infusion of D-[6- 3 H]glucose and sodium L-[U- 14 C]lactate via a jugular catheter. Serial samples were taken from a carotid catheter for concentration and specific activity determinations. Iron-deficient rats had significantly higher blood glucose and lactate concentrations than controls. The iron-deficient group had a significantly higher glucose turnover rate than the control group. Significantly more metabolite recycling in iron-deficient rats was indicated by greater incorporation of 14 C into blood glucose. Assuming a carbon crossover correction factor of 2, half of blood glucose arose from lactate in deficient animals. By comparison, only 25% of glucose arose from lactate in controls. Lack of a difference in lactate turnover rates between deficient rats and controls was attributed to 14 C recycling. The results indicate a greater dependence on glucose metabolism in iron-deficient rats

  3. Copper metabolism: a multicompartmental model of copper kinetics in the rat

    International Nuclear Information System (INIS)

    Dunn, M.A.

    1985-01-01

    A qualitative multicompartmental model was developed that describes the whole-body kinetics of copper metabolism in the adult rat. The model was developed from radiocopper percent dose vs. time data measured over a three day period in plasma, liver, skin, skeletal muscle, bile and feces after the intravenous injection of 10 μg copper labeled with 64 Cu. Plasma radiocopper was separated into ceruloplasmin (Cp) and nonceruloplasmin (NCp) fractions. Liver cytosolic radiocopper was fractionated into void volume superoxide dismutase (SOD) containing and metallothionein fractions by gel filtration. Liver particulate fractions were isolated by differential centrifugation. The SAAM and CONSAM modeling programs were used to develop the model. The sizes of compartments, fractional rate constants and mass transfer rates between compartments were evaluated. The intracellular metabolism of copper was similar in hepatic and extrahepatic tissues being comprised of a faster turning over compartment (FTC) exchanging copper with NCp and a slower turning over compartment (STC) with input from Cp. Output from the STC was into the FTC. In the liver the STC was postulated to represent SOD copper which unlike the extrahepatic tissues received much of its input from the FTC. A small amount of biliary copper (9%) was postulated to return to plasma NCp by enterohepatic recycling. The model developed was contrasted and compared with two previous models of copper metabolism

  4. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper.

    Science.gov (United States)

    Sandusky-Beltran, Leslie A; Manchester, Bryce L; McNay, Ewan C

    2017-08-30

    Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Clinical, physiological and pathological characterisation of the sensory predominant peripheral neuropathy in copper deficiency.

    Science.gov (United States)

    Taylor, Sean W; Laughlin, Ruple S; Kumar, Neeraj; Goodman, Brent; Klein, Christopher J; Dyck, Peter J; Dyck, P James B

    2017-10-01

    Myelopathy is considered the most common neurological complication of copper deficiency. Concurrent peripheral neuropathy has been recognised in association with copper deficiency but has not been well characterised. To characterise the clinical, physiological and pathological features of copper-deficient peripheral neuropathy. Patients with simultaneous copper deficiency (peripheral neuropathy seen at the Mayo Clinic from 1985 to 2005 were identified. 34 patients were identified (median age 55 years, range 36-78) including 24 women and 10 men. Myelopathy was found in 21 patients. Median serum copper level was 0.11 μg/mL (range 0-0.58). The most frequent clinical and electrophysiological pattern of neuropathy was a sensory predominant length-dependent peripheral neuropathy (71%). Somatosensory evoked potentials demonstrated central slowing supporting myelopathy (96%). Quantitative sensory testing demonstrated both small and large fibre involvement (100%). Autonomic reflex screens (77%) and thermoregulatory sweat test (67%) confirmed sudomotor dysfunction. 14 cutaneous nerve biopsies revealed loss of myelinated nerve fibres (86%), increased regenerative clusters (50%), increased rates of axonal degeneration (91%) and increased numbers of empty nerve strands (73%). 71% of biopsies demonstrated epineurial perivascular inflammation. An axonal, length-dependent sensory predominant peripheral neuropathy causing sensory ataxia is characteristic of copper deficiency usually co-occurring with myelopathy. Neurophysiological testing confirms involvement of large, greater than small fibres. The pathological findings suggest axonal degeneration and repair. Inflammatory infiltrates are common but are small and of doubtful pathological significance. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Oxidative Stress in Cardiac Mitochondria Caused by Copper Deficiency May Be Insufficient to Damage Mitochondrial Proteins

    Science.gov (United States)

    Copper (Cu) deficiency may promote the generation of reactive oxygen species (ROS) by the mitochondrial electron transport chain through inhibition of cytochrome c oxidase (CCO) and increased reduction of respiratory complexes upstream from CCO. In the present study, respiration, H2O2 production and...

  7. [Use of copper oxide wire particles (Copinox) for the prevention of congenital copper deficiency in a herd of German Improved Fawn breed of goat].

    Science.gov (United States)

    Winter, P; Hochsteiner, W; Chizzola, R

    2004-10-01

    In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.

  8. Zinc deficient diet consequences for pregnancy andoffsprings of Wistar rats

    OpenAIRE

    Solé, Dirceu; Rieckmann, Brigitte; Lippelt, Raquel Mattos Costa; Lippelt, Ronaldo Tadeu Tucci; Amâncio, Olga Maria Silverio; Queiroz, Suzana de Souza; Naspitz, Charles Kirov

    1995-01-01

    Adult female Wistar rats (90 days old; weight 180 to 220 grams) were submitted to different zinc deficient diets (Zn; severe = 2.6 ppm; mild = 9.0 ppm and normal diet = 81.6 ppm), during 6 weeks. After this time they were coupled with normal male Wistar rats. No differences regarding fecundity and sterility were observed between the groups. During pregnancy, part of the animals from severe and mild Zn deficient groups received the same diet and the others received normal diet. The animals fro...

  9. Effects of betaine supplementation and choline deficiency on folate deficiency-induced hyperhomocysteinemia in rats.

    Science.gov (United States)

    Liu, Ying; Liu, Yi-qun; Morita, Tatsuya; Sugiyama, Kimio

    2012-01-01

    The effect of betaine status on folate deficiency-induced hyperhomocysteinemia was investigated to determine whether folate deficiency impairs homocysteine removal not only by the methionine synthase (MS) pathway but also by the betaine-homocysteine S-methyltransferase (BHMT) pathway. For this purpose, we investigated the effect of dietary supplementation with betaine at a high level (1%) in rats fed a folate-deprived 10% casein diet (10C) and 20% casein diet (20C). We also investigated the effect of choline deprivation on folate deficiency-induced hyperhomocysteinemia in rats fed 20C. Supplementation of folate-deprived 10C and 20C with 1% betaine significantly suppressed folate deprivation-induced hyperhomocysteinemia, but the extent of suppression was partial or limited, especially in rats fed 10C, the suppression of plasma homocysteine increment being 48.5% in rats fed 10C and 69.7% in rats fed 20C. Although betaine supplementation greatly increased hepatic betaine concentration and BHMT activity, these increases did not fully explain why the effect of betaine supplementation was partial or limited. Folate deprivation markedly increased the hepatic concentration of N,N-dimethylglycine (DMG), a known inhibitor of BHMT, and there was a significant positive correlation between hepatic DMG concentration and plasma homocysteine concentration, suggesting that folate deficiency increases hepatic DMG concentration and thereby depresses BHMT reaction, leading to interference with the effect of betaine supplementation. Choline deprivation did not increase plasma homocysteine concentration in rats fed 20C, but it markedly enhanced plasma homocysteine concentration when rats were fed folate-deprived 20C. This indicates that choline deprivation reinforced folate deprivation-induced hyperhomocysteinemia. Increased hepatic DMG concentration was also associated with such an effect. These results support the concept that folate deficiency impairs homocysteine metabolism not only

  10. Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling.

    Science.gov (United States)

    Perea-García, Ana; Garcia-Molina, Antoni; Andrés-Colás, Nuria; Vera-Sirera, Francisco; Pérez-Amador, Miguel A; Puig, Sergi; Peñarrubia, Lola

    2013-05-01

    Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, that leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under iron deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, global expression analyses of copt2-1 versus wild-type Arabidopsis plants indicate that low-phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.

  11. Clinically distinct presentations of copper deficiency myeloneuropathy and cytopenias in a patient using excessive zinc-containing denture adhesive.

    Science.gov (United States)

    Cathcart, Sahara J; Sofronescu, Alina G

    2017-08-01

    While copper deficiency has long been known to cause cytopenias, copper deficiency myeloneuropathy is a more recently described entity. Here, we present the case of two clinically distinct presentations of acquired copper deficiency syndromes secondary to excessive use of zinc-containing denture adhesive over five years: myeloneuropathy and severe macrocytic anemia and neutropenia. Extensive laboratory testing and histologic evaluation of the liver and bone marrow, were necessary to rule out other disease processes and establish the diagnosis of copper deficiency. The initial presentation consisted of a myelopathy involving the posterior columns. Serum and urine copper were significantly decreased, and serum zinc was elevated. On second presentation (five years later), multiple hematological abnormalities were detected. Serum copper was again decreased, while serum zinc was elevated. Zinc overload is a preventable cause of copper deficiency syndromes. This rare entity presented herein highlights the importance of patient, as well as provider, education. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. [The effect of copper on the metabolism of iodine, carbohydrates and proteins in rats].

    Science.gov (United States)

    Esipenko, B E; Marsakova, N V

    1990-01-01

    Experiments on 156 rats maintained at ration with copper deficiency have demonstrated a decrease in the values of iodine metabolism in organs and tissues excluding the liver where a sharp increase in the concentration and content of inorganic iodine was observed. A disturbance in indices of carbohydrate and proteins metabolism in the organism of animals is marked. A direct relationship with a correlation coefficient equaling 0.87-1.00 is determined between changes in the concentration of protein-bound iodine in blood and concentration of glycogen in the liver, skeletal muscles, albumins, alpha 1-, alpha 2-globulins, urea concentration; an inverse relationship with glucose, activity of blood lipo-dehydrogenase and liver mitochondria, aldolase, concentration of pyruvic and lactic acids is established as well. It is concluded that copper deficiency can exert both a direct effect on metabolic processes (as data from literature testify) and an indirect one disturbing iodine metabolism, i. e. sharply decreasing protein-bound iodine production by the thyroid gland.

  13. Copper Induces Vasorelaxation and Antagonizes Noradrenaline -Induced Vasoconstriction in Rat Mesenteric Artery

    Directory of Open Access Journals (Sweden)

    Yu-Chun Wang

    2013-11-01

    Full Text Available Background/Aims: Copper is an essential trace element for normal cellular function and contributes to critical physiological or pathological processes. The aim of the study was to investigate the effects of copper on vascular tone of rat mesenteric artery and compare the effects of copper on noradrenaline (NA and high K+ induced vasoconstriction. Methods: The rat mesenteric arteries were isolated and the vessel tone was measured by using multi wire myograph system in vitro. Blood pressure of carotid artery in rabbits was measured by using physiological data acquisition and analysis system in vivo. Results: Copper dose-dependently blunted NA-induced vasoconstriction of rat mesenteric artery. Copper-induced vasorelaxation was inhibited when the vessels were pretreated with NG-nitro-L-arginine methyl ester (L-NAME. Copper did not blunt high K+-induced vasoconstriction. Copper preincubation inhibited NA-evoked vasoconstriction and the inhibition was not affected by the presence of L-NAME. Copper preincubation showed no effect on high K+-evoked vasoconstriction. Copper chelator diethyldithiocarbamate trihydrate (DTC antagonized the vasoactivity induced by copper in rat mesenteric artery. In vivo experiments showed that copper injection (iv significantly decreased blood pressure of rabbits and NA or DTC injection (iv did not rescue the copper-induced hypotension and animal death. Conclusion: Copper blunted NA but not high K+-induced vasoconstriction of rat mesenteric artery. The acute effect of copper on NA-induced vasoconstriction was depended on nitric oxide (NO, but the effect of copper pretreatment on NA-induced vasoconstriction was independed on NO, suggesting that copper affected NA-induced vasoconstriction by two distinct mechanisms.

  14. Thiamine absorption is not compromised in folate-deficient rats

    International Nuclear Information System (INIS)

    Walzem, R.L.; Clifford, A.J.

    1988-01-01

    Thiamine absorption and excretion were assessed in rats with severe folate deficiency (FD) by determining the fate of oral 3 H-labeled and intravenous 14 C-labeled thiamine over a 6-h test period. Thiamine status was evaluated in these same rats by measuring transketolase activity levels of blood before (TKA) and after (TPPE) addition of thiamine pyrophosphate to the incubation mixture of the assay procedure. Two additional experiments assessed active transport of thiamine and the effect of dietary succinylsulfathiazole (SST) on TKA and TPPE in rats with moderate FD. Intestinal absorption in general and thiamine absorption in particular and thiamine status were unaltered in rats with severe FD. Inanition associated with severe FD may impair thiamine status. Thiamine absorption by active transport was not compromised in FD, and dietary succinylsulfathiazole did not affect thiamine status

  15. Copper metabolism and its interactions with dietary iron, zinc, tin and selenium in rats

    NARCIS (Netherlands)

    Yu, S.

    1993-01-01

    This thesis describes various studies on copper metabolism and its interactions with selected dietary trace elements in rats. The rats were fed purified diets throughout. High intakes of iron or tin reduced copper concentrations in plasma, liver and kidneys. The dietary treatments also

  16. Metabolism of 25-hydroxyvitamin D in copper-laden rat: A model of Wilson's disease

    International Nuclear Information System (INIS)

    Carpenter, T.O.; Pendrak, M.L.; Anast, C.S.

    1988-01-01

    Wilson's disease results in excess tissue accumulation of copper and is often complicated by skeletal and mineral abnormalities. The authors investigated vitamin D metabolism in rats fed a copper-laden diet rendering hepatic copper content comparable with that found in Wilson's disease. Injection of 25-hydroxyvitamin D 3 [25(OH)D 3 ] resulted in reduced 1,25--dihydroxyvitamin D [1,25(OH) 2 D] levels in copper-intoxicated rats. In vitro 25(OH)D-1α-hydroxylase activity was impaired in renal mitochondria from copper-intoxicated animals. Activity was also inhibited in mitochondrial from controls when copper was added to incubation media. Impaired conversion of 25(OH)D to 1,25(OH) 2 D occurs in copper intoxication and suggests that altered vitamin D metabolism is a potential factor in the development of bone and mineral abnormalities in Wilson's disease

  17. Molecular basis for the effects of zinc deficiency on spermatogenesis: An experimental study in the Sprague-dawley rat model

    Directory of Open Access Journals (Sweden)

    Alexander E Omu

    2015-01-01

    Full Text Available Introduction: The objective of this study is to investigate the molecular mechanisms underlying the effects of zinc deficiency on spermatogenesis in the Sprague-Dawley (SD rat. Materials and Methods: Three groups of eight adult male SD rats were maintained for 4 weeks on a normal diet as control, zinc deficient diet and zinc deficient diet with zinc supplementation of 28 mg zinc/kg body weight respectively. Using standard techniques, the following parameters were compared between the three groups of experimental animals at the end of 4 weeks: (a Serum zinc, magnesium (Mg, copper (Cu, selenium (Se and cadmium (Cd, (b serum sex hormones, malondialdehyde (MDA, superoxide dismutase (SOD and glutathione peroxidase (GPX, (c interleukin-4 (IL-4, tumor necrosis factor-alpha (TNF-α, Bcl-2, Bax and caspase-3 expression in the testes, (d assessment of apoptosis of testicular cells using electron microscopy and (e testicular volume and histology using the orchidometer and Johnsen score, respectively. Results: The zinc deficient group showed a reduction of testicular volume, serum concentrations of Zn, Cu, Se, Mg, SOD, GPX, IL-4, Bcl-2 and testosterone (P < 0.05, as well as increased levels of serum Cd, MDA and tissue TNF-α, Bax, caspase-3 and apoptosis of the germ cells (P < 0.05 compared with control and zinc supplementation groups. Conclusion: Zinc deficiency is associated with impaired spermatogenesis because of reduced testosterone production, increased oxidative stress and apoptosis. These findings suggest that zinc has a role in male reproduction.

  18. Copper Deficiency Leads to Anemia, Duodenal Hypoxia, Upregulation of HIF-2α and Altered Expression of Iron Absorption Genes in Mice

    Science.gov (United States)

    Matak, Pavle; Zumerle, Sara; Mastrogiannaki, Maria; El Balkhi, Souleiman; Delga, Stephanie; Mathieu, Jacques R. R.; Canonne-Hergaux, François; Poupon, Joel; Sharp, Paul A.; Vaulont, Sophie; Peyssonnaux, Carole

    2013-01-01

    Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter – Dmt1) and ferric reductase – Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency. PMID:23555700

  19. Proximal Limb Weakness in a Patient with Celiac Disease: Copper Deficiency, Gluten Sensitivity, or Both as the Underlying Cause?

    Directory of Open Access Journals (Sweden)

    J. David Avila

    2016-01-01

    Full Text Available Celiac disease has been associated with several neurologic disorders which may result from micronutrient deficiencies, coexisting autoimmune conditions, or gluten sensitivity. Copper deficiency can produce multiple neurologic manifestations. Myeloneuropathy is the most common neurologic syndrome and it is often irreversible, despite copper replacement. We report the case of a 55-year-old man who presented with progressive proximal limb weakness and weight loss in the setting of untreated celiac disease without gastrointestinal symptoms. He had anemia, neutropenia, and severe hypocupremia. The pattern of weakness raised the suspicion that there was an underlying myopathy, although this was not confirmed by electrodiagnostic studies. Weakness and hematologic abnormalities resolved completely within 1 month of total parenteral nutrition with copper supplementation and a gluten-free diet. Myopathy can rarely occur in patients with celiac disease, but the mechanism is unclear. Pure proximal limb weakness has not been previously reported in copper deficiency. We propose that this may represent a novel manifestation of hypocupremia and recommend considering copper deficiency and gluten sensitivity in patients presenting with proximal limb weakness.

  20. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006.

    Science.gov (United States)

    De la Cruz-Góngora, Vanessa; Gaona, Berenice; Villalpando, Salvador; Shamah-Levy, Teresa; Robledo, Ricardo

    2012-01-01

    To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were 14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.

  1. Ascorbic acid deficiency aggravates stress-induced gastric mucosal lesions in genetically scorbutic ODS rats.

    Science.gov (United States)

    Ohta, Y; Chiba, S; Imai, Y; Kamiya, Y; Arisawa, T; Kitagawa, A

    2006-12-01

    We examined whether ascorbic acid (AA) deficiency aggravates water immersion restraint stress (WIRS)-induced gastric mucosal lesions in genetically scorbutic ODS rats. ODS rats received scorbutic diet with either distilled water containing AA (1 g/l) or distilled water for 2 weeks. AA-deficient rats had 12% of gastric mucosal AA content in AA-sufficient rats. AA-deficient rats showed more severe gastric mucosal lesions than AA-sufficient rats at 1, 3 or 6 h after the onset of WIRS, although AA-deficient rats had a slight decrease in gastric mucosal AA content, while AA-sufficient rats had a large decrease in that content. AA-deficient rats had more decreased gastric mucosal nonprotein SH and vitamin E contents and increased gastric mucosal lipid peroxide content than AA-sufficient rats at 1, 3 or 6 h of WIRS. These results indicate that AA deficiency aggravates WIRS-induced gastric mucosal lesions in ODS rats by enhancing oxidative damage in the gastric mucosa.

  2. Thyroid function and deiodinase activities in rats with marginal iodine deficiency

    NARCIS (Netherlands)

    K.P.L.T.M.K. Janssen (Karin); D. van der Heide (Daan); T.J. Visser (Theo); E. Kaptein (Ellen); A.C. Beynen (Anton)

    1994-01-01

    textabstractThe hypothesis tested was whether marginal iodine deficiency for a period of 6 wk affects iodothyronine deiodinase activities in liver and brain of rats. Male rats were fed purified diets either deficient or sufficient in iodine; the diets were fed on a restricted basis (60% of ad

  3. Effect of pyridoxine deficiency on cholesterogenesis in rats fed different levels of protein

    International Nuclear Information System (INIS)

    Okada, Mitsuko; Iwami, Tamako

    1977-01-01

    Hepatic cholesterol contents in rats fed a 70% or 20% casein diet with or without pyridoxine was determined. In the case of the 70% casein group, pyridoxine-deficient rats showed a higher content than the control. The increment was mainly due to the accumulation of an ester form of the cholesterol. On the other hand, pyridoxine-deficient rats in the 20% casein group showed a slightly lower content. The cholesterol content in liver microsomal fractions was lower in the 20%-casein pyridoxine-deficient group and serum cholesterol level was lower in the 70%-casein pyridoxine-deficient group than those in respective control groups. Incorporation of [ 14 C] acetate into cholesterol was studied using liver slices, and significant stimulation was observed in pyridoxine-deficient rat fed a 20% or 70% casein diet. There was no difference in intestinal cholesterogenesis between the control and the deficient groups. (auth.)

  4. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems.

    NARCIS (Netherlands)

    Havinga, R; Vonk, RJ; Kuipers, F

    1996-01-01

    In the present study we compared, in vivo in rats, the hepatobiliary transport of monovalent (silver:Ag) and divalent metals (zinc:Zn; cadmium:Cd) with that of copper (Cu). Cu can have two oxidation states in vivo, i.e. Cu(I) and Cu(II). Studies were performed in normal Wistar (NW) rats and mutant

  5. A pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: synthesis, optical and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Gopinath; Santra, Ananyakumari; Bera, Pradip; Acharjya, Moumita [Vidyasagar University, Post Graduate Department of Chemistry, Panskura Banamali College (India); Jana, Sumanta [Indian Institute of Engineering Science and Technology (IIEST), Department of Chemistry (India); Chattopadhyay, Dipankar [University of Calcutta, Department of Polymer Science and Technology (India); Mondal, Anup [Indian Institute of Engineering Science and Technology (IIEST), Department of Chemistry (India); Seok, Sang Il [Korea Research Institute of Chemical Technology, KRICT-EPFL Global Research Laboratory, Division of Advanced Materials (Korea, Republic of); Bera, Pulakesh, E-mail: pbera.pbc.chem@gmail.com [Vidyasagar University, Post Graduate Department of Chemistry, Panskura Banamali College (India)

    2016-10-15

    Hexagonal copper-deficient copper(I) sulfide (Cu{sub 2-x}S, x = 0.03, 0.2) nanocrystals (NCs) are synthesized from a newly prepared single-source precursor (SP), [Cu(bdpa){sub 2}][CuCl{sub 2}], where bdpa is benzyl 3,5-dimethyl-pyrazole-1-carbodithioate. The SP is crystallized with space group Pī and possesses a distorted tetrahedron structure with a CuN{sub 2}S{sub 2} chromophore where the central copper is in +1 oxidation state. Distortion in copper(I) structure and the low decomposition temperature of SP make it favorable for the low-temperature solvent-assisted selective growth of high-copper content sulfides. The nucleation and growth of Cu{sub 2-x}S (x = 0.03, 0.2) are effectively controlled by the SP and the solvent in the solvothermal decomposition process. During decomposition, fragment benzyl thiol (PhCH{sub 2}SH) from SP effectively passivates the nucleus leading to spherical nanocrystals. Further, solvent plays an important role in the selective thermochemical transformation of Cu{sup I}-complex to Cu{sub 2-x}S (x = 0.03, 0.2) NCs. The chelating binders (solvent) like ethylene diamine (EN) and ethylene glycol (EG) prefer to form spherical Cu{sub 1.97}S nanoparticles (djurleite), whereas nonchelating hydrazine hydrate (HH) shows the tendency to furnish hexagonal platelets of copper-deficient Cu{sub 1.8}S. The optical band gap values (2.25–2.50 eV) show quantum confinement effect in the structure. The synthesized NCs display excellent catalytic activity (~87 %) toward photodegradation of organic dyes like Congo Red (CR) and Methylene Blue (MB).Graphical abstractA pyrazolyl-based thiolato single-source precursor for the selective synthesis of isotropic copper-deficient copper(I) sulfide nanocrystals: Synthesis, optical and photocatalytic activity.Gopinath Mondal, Ananyakumari Santra, Pradip Bera, Moumita Acharjya, Sumanta Jana, Dipankar Chattopadhyay, Anup Mondal, Sang Il Seok, Pulakesh Bera.

  6. Vitamin C deficiency exerts paradoxical cardiovascular effects in osteogenic disorder Shionogi (ODS) rats.

    Science.gov (United States)

    Vergely, Catherine; Goirand, Françoise; Ecarnot-Laubriet, Aline; Renard, Céline; Moreau, Daniel; Guilland, Jean-Claude; Dumas, Monique; Rochette, Luc

    2004-04-01

    Vitamin C is considered to be a very efficient water-soluble antioxidant, for which several new cardiovascular properties were recently described. The aim of this study was to determine in vivo the effects of a severe depletion of vitamin C on cardiac and vascular variables and reperfusion arrhythmias. For this purpose, we used a mutant strain of Wistar rats, osteogenic disorder Shionogi (ODS). After 15 d of consuming a vitamin C-deficient diet, ODS rats had a 90% decrease in plasma and tissue levels of ascorbate compared with ODS vitamin C-supplemented rats and normal Wistar rats. However, plasma antioxidant capacity, proteins, alpha-tocopherol, urate, catecholamines, lipids, and nitrate were not influenced by the vitamin C deficiency in ODS rats. Moreover, there was no difference between ODS vitamin C-deficient and -supplemented rats in heart rate and arterial pressure. After 5 min of an in vivo regional myocardial ischemia, various severe arrhythmias were observed, but their intensities were not modified by vitamin C in vitamin C-deficient ODS rats. The vascular reactivity, measured in vitro on thoracic arteries, was not altered by ascorbate deficiency in ODS rats. These unexpected results suggest that unidentified compensatory mechanisms play a role in maintaining normal cardiac function and vascular reactivity in vitamin C-deficient rats.

  7. The effects of acute and chronic estrogen deficiency on glucose and lipid profile in ovariectomized rats

    OpenAIRE

    Rabie P; Namjoo AR

    2017-01-01

    Background and aims: Ovariectomy is a standard experimental model of menopause in rodent to investigate postmenopausal women. The aim of this study was to evaluate effects acute and chronic estrogen deficiency on lipid profile and glucose serum in ovariectomized (OVX) rats. Methods: In this experimental study, Twenty-four adult female Wistar rats were divided into three groups of eight rats. The first group: sham-control, Second group: ovariectomized rats (for five weeks), Third group: Ova...

  8. The BiCu{sub 1−x}OS oxysulfide: Copper deficiency and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Berthebaud, D.; Guilmeau, E.; Lebedev, O.I. [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UCBN, 6 bd du Maréchal Juin, F-14050 CAEN Cedex 4 (France); Maignan, A., E-mail: antoine.maignan@ensicaen.fr [Laboratoire CRISMAT, UMR 6508 CNRS/ENSICAEN/UCBN, 6 bd du Maréchal Juin, F-14050 CAEN Cedex 4 (France); Gamon, J.; Barboux, P. [Institut de Recherche de Chimie de Paris, Ecole Nationale Supérieure de Chimie de Paris, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 09 France (France)

    2016-05-15

    An oxysulfide series of nominal compositions BiCu{sub 1−x}OS with x<0.20 has been prepared and its structural properties characterized by combining powder X-ray diffraction and transmission electron microscopy techniques. It is found that this oxysulfide, crystallizing in the P4/nmm space group, tends to adopt a constant amount of copper vacancy corresponding to x=0.05 in the BiCu{sub 1−x}OS formula. The presence of Cu vacancies is confirmed by HAADF-STEM analysis showing, in the Cu atomic columns, alternating peaks of different intensities in some very localized regions. For larger Cu deficiencies (x>0.05 in the nominal composition), other types of structural nanodefects are evidenced such as bismuth oxysulfides of the “BiOS” ternary system which might explain the report of superconductivity for the BiCu{sub 1−x}OS oxysulfide. Local epitaxial growth of the BiCuOS oxysulfide on top of CuO is also observed. In marked contrast to the BiCu{sub 1−x}OSe oxyselenide, these results give an explanation to the limited impact of Cu deficiency on the Seebeck coefficient in BiCu{sub 1−x}OS compounds. - Graphical abstract: High resolution TEM image showing a Bi(Cu)OS/Bi{sub 2}O{sub 2}S interface and corresponding dislocation region. The Bi(Cu)OS structure adopts a rather constant Cu content (near 0.95); starting from BiCuOS leads to the formation of defects such as the Bi{sub 2}O{sub 2}S oxysulfide.

  9. Bioavailability of copper to rats from various foodstuffs and in the presence of different carbohydrates

    International Nuclear Information System (INIS)

    Johnson, P.E.; Stuart, M.A.; Bowman, T.D.

    1988-01-01

    Copper bioavailability was studied in rats using an extrinsic Cu label. Copper absorption from sunflower seeds (46%), peanuts (41%), cooked shrimp (50%), and cooked beef (40%) was as good or better than copper sulfate (46%). Copper from plant foods (sunflower seeds, garbanzo beans, peanuts) was absorbed equally as well as copper from animal foods (beef, shrimp, chicken liver), 39 +/- 7% vs 43 +/- 7%, P greater than 0.05. There was no significant difference in percentage Cu absorption between intrinsically labeled chicken liver and extrinsically labeled chicken liver. In a second experiment, Cu absorption was measured in the presence of glucose, fructose, sucrose, or cornstarch. There were no significant differences in Cu absorption due to different carbohydrates in a single meal

  10. Effect of dietary zinc deficiency on the endogenous phosphorylation and dephosphorylation of rat erythrocyte membrane

    International Nuclear Information System (INIS)

    Paterson, P.G.; Allen, O.B.; Bettger, W.J.

    1987-01-01

    The effect of dietary zinc deficiency on patterns of phosphorylation and dephosphorylation of rat erythrocyte membrane proteins and erythrocyte filterability was examined. Weanling male Wistar rats were fed an egg white-based diet containing less than 1.1 mg zinc/kg diet ad libitum for 3 wk. Control rats were either pair-fed or ad libitum-fed the basal diet supplemented with 100 mg zinc/kg diet. Net phosphorylation and dephosphorylation of erythrocyte membrane proteins were carried out by an in vitro assay utilizing [gamma- 32 P]ATP. The membrane proteins were subsequently separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the 32 P content of gel slices was counted by Cerenkov counting. Erythrocyte filterability was measured as the filtration time of suspensions of erythrocytes, both untreated and preincubated with diamide, under constant pressure. Erythrocyte ghosts from zinc-deficient rats demonstrated greater dephosphorylation of protein bands R1 plus R2 and R7 than pair-fed rats and greater net phosphorylation of band R2.2 than pair-fed or ad libitum-fed control rats (P less than 0.05). Erythrocytes from ad libitum-fed control rats showed significantly longer filtration times than those from zinc-deficient or pair-fed control rats. In conclusion, dietary zinc deficiency alters in vitro patterns of erythrocyte membrane protein phosphorylation and dephosphorylation, whereas the depression in food intake associated with the zinc deficiency increases erythrocyte filterability. 71 references

  11. Effects of iron deficiency on the absorption and distribution of lead and cadmium in rats

    International Nuclear Information System (INIS)

    Ragan, H.A.

    1977-01-01

    In order to evaluate the effects of iron deficiency on the absorption of pollutant metals, an iron-deficient diet was fed to young rats until their tissue-iron stores were depleted. Prior to the development of anemia, the iron-deficient rats and littermate controls were administered an intragastric gavage of lead-210 or cadmium-109 and were killed 48 hr later. The body burden of lead was approximately 6 times greater, and that of cadmium approximately 7 times greater, in iron-deficient rats than in the controls. No consistent effects were observed on concentrations of serum total lipids or serum proteins nor on protein electrophoretic patterns in rats with a deficit in iron stores

  12. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat.

    OpenAIRE

    Carney, S L; Wong, N L; Quamme, G A; Dirks, J H

    1980-01-01

    Recollection of micropuncture experiments were performed on acutely thyroparathyroidectomized rats rendered magnesium deficient by dietary deprivation. Urinary magnesium excretion fell from a control of 15 to 3% of the filtered load after magnesium restriction. The loop of Henle, presumably the thick ascending limb, was the major modulator for renal magnesium homeostasis. The transport capacity for magnesium, however, was less in deficient rats than control animals. Absolute magnesium reabsor...

  13. A β Damages Learning and Memory in Alzheimer's Disease Rats with Kidney-Yang Deficiency

    OpenAIRE

    Qi, Dongmei; Qiao, Yongfa; Zhang, Xin; Yu, Huijuan; Cheng, Bin; Qiao, Haifa

    2012-01-01

    Previous studies demonstrated that Alzheimer's disease was considered as the consequence produced by deficiency of Kidney essence. However, the mechanism underlying the symptoms also remains elusive. Here we report that spatial learning and memory, escape, and swimming capacities were damaged significantly in Kidney-yang deficiency rats. Indeed, both hippocampal A β 40 and 42 increases in Kidney-yang deficiency contribute to the learning and memory impairments. Specifically, damage of synapti...

  14. Essential fatty acid supplemented diet increases renal excretion of prostaglandin E and water in essential fatty acid deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1981-01-01

    Weanling male rats were fed an essential fatty acid (EFA)-deficient diet for 25 weeks and then switched to an EFA-supplemented diet for 3 weeks. Control rats received the EFA-supplemented diet for 25 weeks and then the EFA-deficient diet for 3 weeks. Throughout the last 19 weeks, the rats were...

  15. Efficacy of integrative medicine in deficiency of both qi and yin in the rat model of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2015-10-01

    Conclusions: A rat model of T2DM with both qi and yin deficiency was successfully replicated. CHF appeared to be more efficacious than IM and PIO in the rat model of qi and yin deficiency pattern of T2DM, though IM and PIO were each found to have their merits and drawbacks in attenuating T2DM indicators in the rat model.

  16. Consequences of Mrp2 deficiency for diclofenac toxicity in the rat intestine ex vivo

    NARCIS (Netherlands)

    Niu, Xiaoyu; de Graaf, Inge A. M.; van de Vegte, Dennis; Langelaar-Makkinje, Miriam; Sekine, Shuichi; Groothuis, Geny M. M.

    The non-steroidal anti-inflammatory drug diclofenac (DCF) has a high prevalence of intestinal side effects in humans and rats. It has been reported that Mrp2 transporter deficient rats (Mrp2) are more resistant to DCF induced intestinal toxicity. This was explained in vivo by impaired Mrp2-dependent

  17. Developmental vitamin D deficiency alters multiple neurotransmitter systems in the neonatal rat brain.

    Science.gov (United States)

    Kesby, James P; Turner, Karly M; Alexander, Suzanne; Eyles, Darryl W; McGrath, John J; Burne, Thomas H J

    2017-11-01

    Epidemiological evidence suggests that developmental vitamin D (DVD) deficiency is a risk factor for neuropsychiatric disorders, such as schizophrenia. DVD deficiency in rats is associated with altered brain structure and adult behaviours indicating alterations in dopamine and glutamate signalling. Developmental alterations in dopamine neurotransmission have also been observed in DVD-deficient rats but a comprehensive assessment of brain neurochemistry has not been undertaken. Thus, the current study determined the regional concentrations of dopamine, noradrenaline, serotonin, glutamine, glutamate and γ-aminobutyric acid (GABA), and associated metabolites, in DVD-deficient neonates. Sprague-Dawley rats were fed a vitamin D deficient diet or control diet six weeks prior to mating until birth and housed under UVB-free lighting conditions. Neurotransmitter concentration was assessed by high-performance liquid chromatography on post-mortem neonatal brain tissue. Ubiquitous reductions in the levels of glutamine (12-24%) were observed in DVD-deficient neonates compared with control neonates. Similarly, in multiple brain regions DVD-deficient neonates had increased levels of noradrenaline and serine compared with control neonates. In contrast, increased levels of dopamine and decreased levels of serotonin in DVD-deficient neonates were limited to striatal subregions compared with controls. Our results confirm that DVD deficiency leads to changes in multiple neurotransmitter systems in the neonate brain. Importantly, this regionally-based assessment in DVD-deficient neonates identified both widespread neurotransmitter changes (glutamine/noradrenaline) and regionally selective neurotransmitter changes (dopamine/serotonin). Thus, vitamin D may have both general and local actions depending on the neurotransmitter system being investigated. Taken together, these data suggest that DVD deficiency alters neurotransmitter systems relevant to schizophrenia in the developing rat

  18. Voluntary wheel running is beneficial to the amino acid profile of lysine-deficient rats.

    Science.gov (United States)

    Nagao, Kenji; Bannai, Makoto; Seki, Shinobu; Kawai, Nobuhiro; Mori, Masato; Takahashi, Michio

    2010-06-01

    Rats voluntarily run up to a dozen kilometers per night when their cages are equipped with a running wheel. Daily voluntary running is generally thought to enhance protein turnover. Thus, we sought to determine whether running worsens or improves protein degradation caused by a lysine-deficient diet and whether it changes the utilization of free amino acids released by proteolysis. Rats were fed a lysine-deficient diet and were given free access to a running wheel or remained sedentary (control) for 4 wk. Amino acid levels in plasma, muscle, and liver were measured together with plasma insulin levels and tissue weight. The lysine-deficient diet induced anorexia, skeletal muscle loss, and serine and threonine aminoacidemia, and it depleted plasma insulin and essential amino acids in skeletal muscle. Allowing rats to run voluntarily improved these symptoms; thus, voluntary wheel running made the rats less susceptible to dietary lysine deficiency. Amelioration of the declines in muscular leucine and plasma insulin observed in running rats could contribute to protein synthesis together with the enhanced availability of lysine and other essential amino acids in skeletal muscle. These results indicate that voluntary wheel running under lysine-deficient conditions does not enhance protein catabolism; on the contrary, it accelerates protein synthesis and contributes to the maintenance of muscle mass. The intense nocturnal voluntary running that characterizes rodents might be an adaptation of lysine-deficient grain eaters that allows them to maximize opportunities for food acquisition.

  19. Changes in Serum Zinc, Copper and Ceruloplasmin Levels of Whole Body Gamma Irradiated Rats

    International Nuclear Information System (INIS)

    Abdou, M.I.; Shaban, H.A.; El Gohary, M.I.

    2011-01-01

    Rats are whole body irradiated with different Gamma radiation doses. Zinc and Copper, two important trace elements in the biological processes and Ceruloplasmin, a protein which carries more than 95% of serum Cu and has important roles in many vital processes are followed up in the irradiated rat sera. This work aimed to determine the changes in the serum levels of the three parameters (Zinc, Copper and Ceruloplasmin) through eight weeks follow up period (1st, 2nd, 3rd, 4th, 6th, and 8th week) post whole body gamma irradiation with three sub-lethal doses (2, 3.5 and 5 Gy) of rats. All the experimental animals did not receive any medical treatment. Zinc and Copper were measured using discrete nebulization flame atomic absorption spectrometry. Ceruloplasmin was measured using a colorimetric method. The statistical analyses of the results show that the Zinc levels of the irradiated groups decreased significantly post irradiation and then were recovered at the 6th week post irradiation. The Copper levels of the irradiated groups increased significantly and then were recovered at 6th week post irradiation. The levels of Ceruloplasmin in the same groups increased significantly throughout the whole follow up period. The conclusion is that, Zinc, Copper and Ceruloplasmin levels changed significantly in the irradiated groups compared to the control group with a maximum effect noted in the groups irradiated with the higher doses and that the lower dose irradiated groups recover earlier than the higher ones. Also the correlation between Copper and Zinc is reversible at different doses and that between Copper and Ceruloplasmin is direct

  20. Vitamin K deficiency in SPF-rats fed a semisynthetic irradiated diet

    International Nuclear Information System (INIS)

    Juhr, N.C.; Dietzel, L.; Horn, J.

    1975-01-01

    A case of vitamin K deficiency in male SPF-rats fed an irradiated semisynthetic diet (24% Soyprotein, 0.25% DL-Methionin, 48% Cornstarch, 10% Sucrose, 5% Soyoil and 7% Cellulose and a vitamin- and mineralmixture) with a vitamin K content of 0.63 mg/kg diet is reported including clinical symptoms, pathological findings, coagulation parameters and investigations of intestinal flora. The deficiency could be reproduced experimentally in SPF- and germfree male rats and prevented by vitamin K supplementation (K 3 in the water or K 1 parenterally). Monoassoziation with an E. coli strain as well as conventionalization of SPF-rats were effective to prevent deficiency symptoms. The significance of a stable intestinal flora for intestinal vitamin K synthesis is emphasized. Nutrients and their influence on the intestinal flora are discussed with special reference to the mechanism of coprophagy, which makes intestinal vitamin K synthesis available to the rat

  1. Vitamin K deficiency in SPF-rats fed a semisynthetic irradiated diet

    Energy Technology Data Exchange (ETDEWEB)

    Juhr, N C; Dietzel, L; Horn, J [Freie Universitaet, Berlin(West). Fachbereich Veterinaermedizin

    1975-01-01

    A case of vitamin K deficiency in male SPF-rats fed an irradiated semisynthetic diet (24% Soyprotein, 0.25% DL-Methionin, 48% Cornstarch, 10% Sucrose, 5% Soyoil and 7% Cellulose and a vitamin- and mineral mixture) with a vitamin K content of 0.63 mg/kg diet is reported including clinical symptoms, pathological findings, coagulation parameters and investigations of intestinal flora. The deficiency could be reproduced experimentally in SPF- and germfree male rats and prevented by vitamin K supplementation (K/sub 3/ in the water or K/sub 1/ parenterally). Monoassoziation with an E. coli strain as well as conventionalization of SPF-rats were effective to prevent deficiency symptoms. The significance of a stable intestinal flora for intestinal vitamin K synthesis is emphasized. Nutrients and their influence on the intestinal flora are discussed with special reference to the mechanism of coprophagy, which makes intestinal vitamin K synthesis available to the rat.

  2. The influence of magnesium deficiency on calcium metabolism in the rat

    International Nuclear Information System (INIS)

    Larvor, P.; Labat, M.-L.

    1978-01-01

    Calcium metabolism was studied in magnesium-deficient rats with an isotopic technique. 45 Ca was injected intravenously and the blood calcium radioactivity curve was analyzed mathematically to compute the kinetics of calcium exchange in the whole body. No important change was noticed after a 10-day magnesium deficiency; there was a significant reduction of the ratio calcium pool/total calcium output from the pool (P/Vsub(T)). After a 20-day deficiency, a dramatic decrease in the two compartments of exchangeable calcium (-40%), and a less important decrease of Vsub(T)(-15%) was noted. Blood plasma urea level increased during magnesium deficiency, while urea urinary clearance remained

  3. Decreased autophosphorylation of EGF receptor in insulin-deficient diabetic rats

    International Nuclear Information System (INIS)

    Okamoto, M.; Kahn, C.R.; Maron, R.; White, M.F.

    1988-01-01

    The authors have previously reported that despite an increase in receptor concentration, there is a decrease in autophosphorylation and tyrosine kinase activity of the insulin receptor in insulin-deficient diabetic rats. To determine if other tyrosine kinases might be altered, they have studied the epidermal growth factor (EGF) receptor kinase in wheat germ agglutinin-purified, Triton X-100-solubilized liver membranes from streptozotocin (STZ)-induced diabetic rats and the insulin-deficient BB rat. They find that autophosphorylation of EGF receptor is decreased in proportion to the severity of the diabetic state in STZ rats with a maximal decrease of 67%. A similar decrease in autophosphorylation was observed in diabetic BB rats that was partially normalized by insulin treatment. Separation of tryptic phosphopeptides by reverse-phase high-performance liquid chromatography revealed a decrease in labeling at all sites of autophosphorylation. A parallel decrease in EGF receptor phosphorylation was also found by immunoblotting with an antiphosphotyrosine antibody. EGF receptor concentration, determined by Scatchard analysis of 125 I-labeled EGF binding, was decreased by 39% in the STZ rat and 27% in the diabetic BB rat. Thus autophosphorylation of EGF receptor, like that of the insulin receptor, is decreased in insulin-deficient rat liver. In the case of EGF receptor, this is due in part to a decrease in receptor number and in part to a decrease in the specific activity of the kinase

  4. Physical activity prevents augmented body fat accretion in moderately iron-deficient rats.

    Science.gov (United States)

    McClung, James P; Andersen, Nancy E; Tarr, Tyson N; Stahl, Chad H; Young, Andrew J

    2008-07-01

    Recent studies describe an association between poor iron status and obesity in humans, although the mechanism explaining this relationship is unclear. The present study aimed to determine the effect of moderate iron deficiency and physical activity (PA) on body composition in an animal model. Male Sprague-Dawley rats consumed iron-adequate (IA; 40 mg/kg) or moderately iron-deficient (ID; 9 mg/kg) diets ad libitum for 12 wk. Rats were assigned to 4 treatment groups (n = 10 per group): IA, sedentary (IAS); IA, PA (IAPA); ID, sedentary (IDS); or ID, PA (IDPA). Activity involved running on motorized running wheels at 4 m/min for 1 h/d for 5 d/wk. After 12 wk, ID rats were not anemic, but body iron stores were reduced as indicated by diminished (P IA rats. Treatment group did not affect body weight or feed consumption. However, fat mass was greater (P IAS (31.8 +/- 2.9%), IAPA (31.8 +/- 2.0%), and IDPA (32.8 +/- 4.5%) rats. Furthermore, lean body mass was diminished in IDS rats (58.7 +/- 6.8%) compared with IAS (65.6 +/- 3.0%), IAPA (65.6 +/- 2.1%), and IDPA (64.7 +/- 4.5%) rats. Thus, moderate iron deficiency may cause increased body fat accretion in rats and PA attenuates that effect.

  5. Maternal micronutrient deficiency leads to alteration in the kidney proteome in rat pups.

    Science.gov (United States)

    Ahmad, Shadab; Basak, Trayambak; Anand Kumar, K; Bhardwaj, Gourav; Lalitha, A; Yadav, Dilip K; Chandak, Giriraj Ratan; Raghunath, Manchala; Sengupta, Shantanu

    2015-09-08

    Maternal nutritional deficiency significantly perturbs the offspring's physiology predisposing them to metabolic diseases during adulthood. Vitamin B12 and folate are two such micronutrients, whose deficiency leads to elevated homocysteine levels. We earlier generated B12 and/or folate deficient rat models and using high-throughput proteomic approach, showed that maternal vitamin B12 deficiency modulates carbohydrate and lipid metabolism in the liver of pups through regulation of PPAR signaling pathway. In this study, using similar approach, we identified 26 differentially expressed proteins in the kidney of pups born to mothers fed with vitamin B12 deficient diet while only four proteins were identified in the folate deficient group. Importantly, proteins like calreticulin, cofilin 1 and nucleoside diphosphate kinase B that are involved in the functioning of the kidney were upregulated in B12 deficient group. Our results hint towards a larger effect of vitamin B12 deficiency compared to that of folate presumably due to greater elevation of homocysteine in vitamin B12 deficient group. In view of widespread vitamin B12 and folate deficiency and its association with several diseases like anemia, cardiovascular and renal diseases, our results may have large implications for kidney diseases in populations deficient in vitamin B12 especially in vegetarians and the elderly people.This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The daidzein- and estradiol- induced anorectic action in CCK or leptin receptor deficiency rats.

    Science.gov (United States)

    Fujitani, Mina; Mizushige, Takafumi; Bhattarai, Keshab; Iwahara, Asami; Aida, Ryojiro; Kishida, Taro

    2015-01-01

    We investigated the effect of daidzein feeding and estradiol treatment on food intake in cholecystokinin-1 receptor (CCK1R) deficiency, leptin receptor (ObRb) deficiency rats and their wild-type rats. These rats underwent an ovariectomy or a sham operation. For the 5 week experiment, each rat was divided in three groups: control, daidzein (150 mg/kg diet), and estradiol (4.2 μg/rat/day) groups. In both CCK1R+ and CCK1R- rats, daidzein feeding and estradiol treatment significantly decreased food intake. Daidzein feeding significantly reduced food intake in ovariectomized ObRb- rats, although not in ObRb+ rats. Estradiol treatment significantly lowered food intake in ovariectomized ObRb+ and ObRb- rats. In the ovariectomized rats, estradiol treatment significantly increases uterine weight, while daidzein feeding did not change it, suggesting that daidzein might have no or weak estrogenic effect in our experiment. These results suggest that CCK1R and ObRb signalings were not essential for the daidzein- and estradiol-induced anorectic action.

  7. Induction of respiratory deficiency in yeast by manganese, copper, cobalt and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Lindegren, C C; Nagai, S; Nagai, H

    1958-08-16

    Among the chemical agents which induce respiratory deficiency in yeasts, acriflavine, triphenyl tetrazolium chloride, p-nitrophenol, and propamidine isethionate are especially effective in producing the deficiency in a large fraction of the surviving population. The present work is a survey of the efficacy of various metallic salts in inducing respiratory deficiency.

  8. Time course and pattern of compensatory ingestive behavioral adjustments to lysine deficiency in rats.

    Science.gov (United States)

    Markison, S; Thompson, B L; Smith, J C; Spector, A C

    2000-05-01

    We and others have demonstrated that rats deficient in an essential amino acid (EAA) will consume sufficient quantities of the lacking nutrient to produce repletion when it is made available in solution. In the current series of experiments, we made rats deficient in lysine (LYS) by limiting the level of this EAA in the diet. We then examined licking behavior during approximately 23-h two-bottle intake tests over 4 consecutive days. In three separate experiments, rats were presented with the following: 1) 0.1 mol/L LYS and water, 2) 0.2 mol/L threonine (THR) and water and 3) 0.1 mol/L LYS and 0.2 mol/L THR. Lysine-deficient (LYS-DEF) rats drink significantly more LYS than did nondepleted controls (CON) when this amino acid was available. Meal pattern analysis revealed that the enhanced intake of LYS occurred as a function of a greater number of ingestive bouts, not changes in bout size. A cumulative analysis of LYS intake between CON and LYS-DEF rats revealed that a potentiation of intake developed within 30 min of sampling the solution when LYS and water were available and within 90 min when LYS and THR were the contrasting choices. In conclusion, increased LYS intake in the deficient rats occurs relatively rapidly and appears to be at least somewhat specific. Moreover, LYS deficiency does not seem to enhance the palatability of the limiting amino acid as judged by behaviors such as lick rate and bout size. Instead, LYS-DEF rats relieve the deficiency by increasing the number of drinking episodes initiated.

  9. Protein expression in the nucleus accumbens of rats exposed to developmental vitamin D deficiency.

    Directory of Open Access Journals (Sweden)

    John McGrath

    Full Text Available INTRODUCTION: Developmental vitamin D (DVD deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficiency METHODS: Female Sprague Dawley rats were maintained on a vitamin D deficient diet for 6 weeks, mated and allowed to give birth, after which a diet containing vitamin D was reintroduced. Male adult offspring (n = 8 were compared to control male (n = 8. 2-D gel electrophoresis-based proteomics and mass spectroscopy were used to investigate differential protein expression. RESULTS: There were 35 spots, mapped to 33 unique proteins, which were significantly different between the two groups. Of these, 22 were down-regulated and 13 up-regulated. The fold changes were uniformly small, with the largest FC being -1.67. Within the significantly different spots, three calcium binding proteins (calbindin1, calbindin2 and hippocalcin were altered. Other proteins associated with DVD deficiency related to mitochondrial function, and the dynamin-like proteins. CONCLUSIONS: Developmental vitamin D deficiency was associated with subtle changes in protein expression in the nucleus accumbens. Disruptions in pathways related to calcium-binding proteins and mitochondrial function may underlie some of the behavioural features associated with animal models of developmental vitamin D deficiency.

  10. Improving Effect Of Vitamin E Supplementation In Rats Suffering From Zinc Deficiency

    International Nuclear Information System (INIS)

    Matta, T.F.

    2009-01-01

    Vitamin E is a membrane-bound soluble lipid and naturally occurring antioxidant which protects animal tissues against oxidative damage. Several studies have suggested a possible interaction between zinc status and vitamin E in animals. The current investigation was conduced to elucidate the improving effect of vitamin E supplementation on some selected biochemical variables in the blood and tissues of albino rats suffering from zinc deficiency.Zinc deficiency was induced in rats by feeding male rats a low zinc diet for 6 weeks. Dietary vitamin E and zinc, separated or combined, were used to ameliorate the impacts of zinc deficiency in the last two weeks of the experiment. Fifty male albino rats weighing 70-80g in 5 equal groups were given for 6 weeks five semi purified diets different in their contents of vitamin E and zinc / kg diet as follows: Zn adequate diet (Zn =35 ppm) for group (I) served as control, Zn deficient diet (Zn = 3 ppm) for group (II), Zn deficient diet plus supplemental zinc (Zn = 84 ppm) for group (III), Zn deficient diet plus supplemental vitamin E (50 IU) for group (IV) and Zn deficient diet plus supplemental zinc and vitamin E (Zn = 84 ppm + i.p. 50 IU vitamin E) for group (V). Supplemental zinc and vitamin E were only given on the last two weeks of the experiment.The obtained results revealed that Zn deficiency led to a significant (P 4 , T 3 and testosterone levels were declined significantly in Zn deficient rats as well as a significant (P < 0.05) rise in TSH level as compared with their levels in the Zn deficient rats supplemented with Zn and vitamin E.In contrast, the concentration of serum total cholesterol (T.Chol) and triglycerides (TG) in Zn deficient rats were significantly increased than those recorded in control group. On the other hand, the activities of cytochrome P450 reductase and microsomal NADPH reductase were significantly decreased (P<0.05) in liver homogenates while significant increase was recorded in their corresponding

  11. Maternal dietary tryptophan deficiency alters cardiorespiratory control in rat pups.

    Science.gov (United States)

    Penatti, Eliana M; Barina, Alexis E; Raju, Sharat; Li, Aihua; Kinney, Hannah C; Commons, Kathryn G; Nattie, Eugene E

    2011-02-01

    Malnutrition during pregnancy adversely affects postnatal forebrain development; its effect upon brain stem development is less certain. To evaluate the role of tryptophan [critical for serotonin (5-HT) synthesis] on brain stem 5-HT and the development of cardiorespiratory function, we fed dams a diet ∼45% deficient in tryptophan during gestation and early postnatal life and studied cardiorespiratory variables in the developing pups. Deficient pups were of normal weight at postnatal day (P)5 but weighed less than control pups at P15 and P25 (P interactions between nutrition, brain stem physiology, and age that are potentially relevant to understanding 5-HT deficiency in the sudden infant death syndrome.

  12. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt; Nielsen, Peter Borch; Boe-Hansen, Rasmus

    2016-01-01

    Incomplete nitrification in biological filters during drinking water treatment is problematic, as it compromises drinking water quality. Nitrification problems can be caused by a lack of nutrients for the nitrifying microorganisms. Since copper is an important element in one of the essential...... enzymes in nitrification, we investigated the effect of copper dosing on nitrification in different biological rapid sand filters treating groundwater. A lab-scale column assay with filter material from a water works demonstrated that addition of a trace metal mixture, including copper, increased ammonium...... to the bulk phase. Overall, copper dosing to poorly performing biological rapid sand filters increased ammonium removal rates significantly, achieving effluent concentrations of below 0.01 mg NH4-N L-1, and had a long-term effect on nitrification performance....

  13. The impact of adult vitamin D deficiency on behaviour and brain function in male Sprague-Dawley rats.

    Directory of Open Access Journals (Sweden)

    Jacqueline H Byrne

    Full Text Available BACKGROUND: Vitamin D deficiency is common in the adult population, and this has been linked to depression and cognitive outcomes in clinical populations. The aim of this study was to investigate the effects of adult vitamin D (AVD deficiency on behavioural tasks of relevance to neuropsychiatric disorders in male Sprague-Dawley rats. METHODS: Ten-week old male Sprague-Dawley rats were fed a control or vitamin D deficient diet for 6 weeks prior to, and during behavioural testing. We first examined a range of behavioural domains including locomotion, exploration, anxiety, social behaviour, learned helplessness, sensorimotor gating, and nociception. We then assessed locomotor response to the psychomimetic drugs, amphetamine and MK-801. Attention and vigilance were assessed using the 5 choice serial reaction time task (5C-SRT and the 5 choice continuous performance task (5C-CPT and, in a separate cohort, working memory was assessed using the delay match to sample (DMTS task. We also examined excitatory and inhibitory neurotransmitters in prefrontal cortex and striatum. RESULTS: AVD-deficient rats were deficient in vitamin D3 (<10 nM and had normal calcium and phosphate levels after 8-10 weeks on the diet. Overall, AVD deficiency was not associated with an altered phenotype across the range of behavioural domains tested. On the 5C-SRT AVD-deficient rats made more premature responses and more head entries during longer inter-trial intervals (ITI than control rats. On the 5C-CPT AVD-deficient rats took longer to make false alarm (FA responses than control rats. AVD-deficient rats had increases in baseline GABA levels and the ratio of DOPAC/HVA within the striatum. CONCLUSIONS: AVD-deficient rats exhibited no major impairments in any of the behavioural domains tested. Impairments in premature responses in AVD-deficient rats may indicate that these animals have specific alterations in striatal systems governing compulsive or reward-seeking behaviour.

  14. Mitogen response of B cells, but not T cells, is impaired in adult vitamin A-deficient rats

    NARCIS (Netherlands)

    van Bennekum, A. M.; Wong Yen Kong, L. R.; Gijbels, M. J.; Tielen, F. J.; Roholl, P. J.; Brouwer, A.; Hendriks, H. F.

    1991-01-01

    The effect of vitamin A deficiency on the mitogen response of splenic B and T lymphocytes was determined in adult vitamin A-deficient rats. Female weanling Brown Norway/Billingham-Rijswijk (BN/BiRij) and Sprague-Dawley rats were fed a semipurified, essentially vitamin A-free diet, which resulted in

  15. Zinc deficiency leads to lipofuscin accumulation in the retinal pigment epithelium of pigmented rats.

    Directory of Open Access Journals (Sweden)

    Sylvie Julien

    Full Text Available BACKGROUND: Age-related macular degeneration (AMD is associated with lipofuscin accumulation whereas the content of melanosomes decreases. Melanosomes are the main storage of zinc in the pigmented tissues. Since the elderly population, as the most affected group for AMD, is prone to zinc deficit, we investigated the chemical and ultrastructural effects of zinc deficiency in pigmented rat eyes after a six-month zinc penury diet. METHODOLOGY/PRINCIPAL FINDINGS: Adult Long Evans (LE rats were investigated. The control animals were fed with a normal alimentation whereas the zinc-deficiency rats (ZD-LE were fed with a zinc deficient diet for six months. Quantitative Energy Dispersive X-ray (EDX microanalysis yielded the zinc mole fractions of melanosomes in the retinal pigment epithelium (RPE. The lateral resolution of the analysis was 100 nm. The zinc mole fractions of melanosomes were significantly smaller in the RPE of ZD-LE rats as compared to the LE control rats. Light, fluorescence and electron microscopy, as well as immunohistochemistry were performed. The numbers of lipofuscin granules in the RPE and of infiltrated cells (Ø>3 µm found in the choroid were quantified. The number of lipofuscin granules significantly increased in ZD-LE as compared to control rats. Infiltrated cells bigger than 3 µm were only detected in the choroid of ZD-LE animals. Moreover, the thickness of the Bruch's membrane of ZD-LE rats varied between 0.4-3 µm and thin, rangy ED1 positive macrophages were found attached at these sites of Bruch's membrane or even inside it. CONCLUSIONS/SIGNIFICANCE: In pigmented rats, zinc deficiency yielded an accumulation of lipofuscin in the RPE and of large pigmented macrophages in the choroids as well as the appearance of thin, rangy macrophages at Bruch's membrane. Moreover, we showed that a zinc diet reduced the zinc mole fraction of melanosomes in the RPE and modulated the thickness of the Bruch's membrane.

  16. OXIDATIVE STRESS IN HUMAN THYROID GLAND UNDER IODINE DEFICIENCY NODULAR GOITER: FROM HARMLESSNESS TO HAZARD DEPENDING ON COPPER AND IODINE SUBCELLULAR DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    H. Falfushynska

    2014-12-01

    Conclusions. Excess of copper unbound to metallothionein in goitrous-changed tissue and high level of inorganic iodine could be the reason for elevated DNA fragmentation and increased lysosomal membrane permeability and activation of antioxidant defense. The main criterions of goiter formation were represented by low level of organificated iodine and high level of DNA damage in thyroid gland. KEY WORDS: iodine deficiency nodular colloidal goiter, iodine, copper, metallothioneins, oxidative stress, cytotoxicity

  17. [Learning and Memory Capacity and NMDA Receptor Expression in Shen Deficiency Constitution Rats].

    Science.gov (United States)

    Sun, Yu-ru; Sun, Yao-guang; Zhang, Qi; Wang, Xiao-di; Wang, Xing; Sun, Li-jun

    2016-05-01

    To explore material bases and neurobiological mechanisms of "Shen storing will" by observing learning and memory capacities and N-methyl-D-aspartic acid (NMDA) receptor expressions in Shen deficiency constitution (SDC) rats. Totally 40 SD rats were randomly divided into the model group, the Zuogui Pill (ZP) group, the Yougui Pill (YP) group, the blank control group (consisting of normal pregnant rats), 10 in each group. SDC young rat model (inherent deficiency and postnatal malnutrition) was prepared by the classic way of "cat scaring rat". Medication started when they were scared by cat. Rats in the ZP group and the YP group were administered by gastrogavage with ZP suspension 0.1875 g/mL and YP suspension 0.0938 g/mL respectively. Equal volume of normal saline was administered to rats in the blank control group and the model group by gastrogavage. All medication was given once per day, 5 days in a week for 2 consecutive months. Learning and memory capacities were detected by Morris water maze test. Expressions of NMDA receptor subunits NR2A and NR2B in hippocamus were detected by immunohistochemical method. Compared with the blank control group, the latency period, total distance in Morris water maze test were longer in the model group (P learning and memory capacities and lowered NMDA receptor expressions. ZP and YP could up-regulate learning and memory capacities and NMDA receptor expressions, thereby improving deterioration of brain functions in SDC rats.

  18. "Changes in cartilage of rats after treatment with Quinolone and in Magnesium-deficient diet "

    Directory of Open Access Journals (Sweden)

    Shakibaei M

    2002-07-01

    Full Text Available Ultrastructural changes in immature articular carilage were studied after treatment of 5-weeks-old rats with ofloxacin, a fluoroquinolone, and in magnesium deficiency.We concluded that quinolone-induced arthropathy is probably due to chelation of functionally available magnesium in joint cartilage as magnesium deficiency in joint cartilage could impair chondrocyte-matrix- interaction which is mediated by cation-dependent integrin-receptors of the β1-subfamily. With immuno-histochemical methods using monoclonal and polyclonal antibodies we showed that B1 integrins were expressed in rat joint cartilage. Joint cartilage lesions were detected in ofloxacin-treated and magnesium-deficient rats. Lesions were more pronounced in the quinolone-treated group. Expression of several integrins was reduced in the vicinity of lesions after oral treatment with 2×600 mg ofloxacin/kg body wt for one day. Gross-structural lesions (e.g. cleft formation, unmasked collagen fibres in magnesium deficient rats were very similar but changes in intergrin expression were less pronounced. Alterations observed on the ultrastructural level showed striking similarities in magnesium-deficient rats and in rats treated with single doses of 600 mg ofloxacin per kg body wt.Typical observation were: bundle shaped, electron-dense aggregates on the surface and in the cytoplasm of chondrocytes, detachement of the cell membrance from the matrix and necrotic chondrocytes, reduced synthesis and/or reduced of extracellular matrix and swelling of cell organelles such as mitochondria.The results of this study confirm our previously reported finding that quinolone-induced arthropathy probably is caued by a reduction of functionally available magnesium (ionized Mg2+ in cartilage. Furthermore, they provide a basis for aimed studies with human cartilage samples from quinolone-treated patients which might be available postmortal or after hip replacement surgery

  19. Depression of calcium pump activity in renal cortex of vitamin D-deficient rats with secondary hyperparathyroidism

    International Nuclear Information System (INIS)

    Tsukamoto, Yusuke; Saitoh, Michiyo; Takita, Yumiko; Nakano, Toshiaki; Tamura, Teiichi

    1990-01-01

    To examine the hormonal regulation of the ATP-dependent Ca 2+ pump in the kidneys, the ATP-dependent Ca 2+ uptake by the basolateral membrane vesicles in the renal cortex was measured using radioactive calcium ( 45 Ca 2+ ) in rats with vitamin D deficiency or rats undergoing thyroparathyroidectomy. The V max of the Ca 2+ pump activity was increased not only by administering calcitriol, but also by normalizing the serum calcium level in vitamin D-deficient rats. PTH suppressed the Ca 2+ pump activity in normocalcemic vitamin D-deficient rats. Thyroparathyroidectomy did not affect the Ca 2+ pump activity in the kidneys of normal rats. It was concluded that the ATP-dependent Ca 2+ pump activity was depressed by secondary hyperparathyroidism in vitamin D-deficient rats. (author)

  20. Effect of high dietary zinc on plasma ceruloplasmin and erythrocyte superoxide dismutase activities in copper-depleted and repleted rats.

    Science.gov (United States)

    Panemangalore, M; Bebe, F N

    1996-01-01

    The effect of moderately high dietary zinc (Zn) on the activities of plasma (PL) ceruloplasmin (CP), and PL and erythrocyte (RBC) copper (Cu), Zn superoxide dismutase (SOD) was determined in weanling rats fed Cu-deficient (DEF; CON; 5 mg Cu/kg) copper diets containing normal or high Zn (HZn; 60 mg/kg) for 4 wk and supplemented with oral Cu (CuS; 5 mg/L) in drinking water for 0, 1, 3, or 7 d. PL Cu decreased (67% compared to CON; p DEF and increased to control level after 3 d of CuS; increased in the MAR group after 1 d of CuS. HZn reduced overall PL Cu by 27% in all groups, but did not alter the linear increase in PL Cu between 0 and 3 d of Cu S. PL CP activity altered concomitantly with PL Cu levels: The time course of increase in CP activity after 0-3 d of CuS was not influenced by HZn in the diet and CP declined in the DEF group by 92%. There was no correlation between dietary Cu level and PL CP. PL SOD activity decreased by 46% (p DEF group, increased to control activity after 1 d of CuS and declined slightly after 7 d; MAR diet did not alter PL SOD. HZn diet increased PL SOD activity in all groups by 150%, reduced activity in the DEF and MAR groups by 65 and 37% and delayed the recovery of PL SOD after CuS. RBC SOD declined in the DEF and MAR groups by 56 and 33% (p < or = 0.05) and did not respond to CuS; HZn diet did not influence RBC SOD activity. These data indicate that moderately high Zn in the diet reduces PL Cu, but not PL CP activity or the recovery of PL Cu or CP activity after oral CuS of Cu-deficient rats, modifies the response of PL SOD to dietary Cu, but does not influence RBC SOD activity.

  1. Attenuation of acoustic and tactile startle responses of vitamin B-6 deficient rats.

    Science.gov (United States)

    Schaeffer, M C

    1987-01-01

    Vitamin B-6 deficient rats exhibit changes in behavior, sensory function, and other nervous system abnormalities such as convulsive seizures and motor disturbances. Sensorimotor reactivity was evaluated quantitatively by measuring auditory and tactile startle responses in 12 week old female Long-Evans rats fed a diet devoid of added vitamin B-6 (DEF) or a control diet, either ad lib (AL-CON) or pair-fed to deficient rats (PF-CON). Deficiency was confirmed with a tryptophan-load test administered to a separate group of rats fed simultaneously according to the same protocol. At week 18, body weight and feed efficiency were different among groups (p less than 0.001), and were lowest in DEF. Amplitude of response to both acoustic and tactile stimuli was depressed in DEF compared to both control groups, which generally did not differ in response. This effect was seen most dramatically in responses to the acoustic stimulus (p = 0.034), and especially to the first presentation (p = 0.017). Latency to maximum response was not affected by diet. Possible mechanisms for this nervous system abnormality, not previously reported in vitamin B-6 deficiency, are discussed.

  2. Copper and Zinc Deficiency in a Patient Receiving Long-Term Parenteral Nutrition During a Shortage of Parenteral Trace Element Products.

    Science.gov (United States)

    Palm, Eric; Dotson, Bryan

    2015-11-01

    Drug shortages in the United States, including parenteral nutrition (PN) components, have been common in recent years and can adversely affect patient care. Here we report a case of copper and zinc deficiency in a patient receiving PN during a shortage of parenteral trace element products. The management of the patient's deficiencies, including the use of an imported parenteral multi-trace element product, is described. © 2014 American Society for Parenteral and Enteral Nutrition.

  3. Increased concentration of vasopressin in plasma of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.; Warberg, J.

    1985-01-01

    The effect of essential fatty acid deficiency (EFA-D) on the plasma concentration of arginine-vasopressin (AVP) and the urinary AVP excretion was investigated. Weanling rats were fed a fat-free diet (FF-rats). Control rats received the same diet in which 6% by wt. of sucrose was replaced by arachis...... oil. After 4-6 weeks of feeding, urine and plasma were analysed for AVP, osmolality, sodium and potassium. When compared to control rats FF-rats had decreased urine volume (6.0 ± 1.6 ml/24 hr versus 11.7 ± 3.2 ml/24 hr), increased urine osmolality (2409 ± 691 mOsm/kg versus 1260 ± 434 m...

  4. Increased periodontal bone loss in temporarily B lymphocyte-deficient rats

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P; Fiehn, N E

    1989-01-01

    In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T-lym......-lymphocyte deficiency did not interfere with the development of periodontal disease in this model, whereas a temporary and moderate reduction in B-lymphocyte numbers seemed to predispose for aggravation of periodontal bone loss.......In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T...... had significantly less periodontal bone support than controls. Anti-mu treated inoculated rats had significantly less periodontal bone support than nude and normal rats, whereas no difference was found between normal, nude, and thymus-grafted rats. It is concluded that permanent T...

  5. Copper deficiency in Guizhou semi-fine wool sheep on pasture in ...

    African Journals Online (AJOL)

    use

    2011-11-23

    Nov 23, 2011 ... The Guizhou semi-fine sheep in the Weining County, Guizhou province, south west China karst mountain area were affected by an ailment characterized by pica, emaciation, dyskinesia, depressed appetites, unsteady gait and anemia. We found that concentrations of copper (Cu) in soil and forage.

  6. Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.

    Science.gov (United States)

    Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh

    2017-06-01

    The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.

  7. Developmental programming of vascular dysfunction by prenatal and postnatal zinc deficiency in male and female rats.

    Science.gov (United States)

    Mendes Garrido Abregú, Facundo; Gobetto, María Natalia; Juriol, Lorena Vanesa; Caniffi, Carolina; Elesgaray, Rosana; Tomat, Analía Lorena; Arranz, Cristina

    2018-06-01

    Micronutrient malnutrition during intrauterine and postnatal growth may program cardiovascular diseases in adulthood. We examined whether moderate zinc restriction in male and female rats throughout fetal life, lactation and/or postweaning growth induces alterations that can predispose to the onset of vascular dysfunction in adulthood. Female Wistar rats were fed low- or control zinc diets from pregnancy to offspring weaning. After weaning, offspring were fed either a low- or a control zinc diet until 81 days. We evaluated systolic blood pressure (SBP), thoracic aorta morphology, nitric oxide (NO) system and vascular reactivity in 6- and/or 81-day-old offspring. At day 6, zinc-deficient male and female offspring showed a decrease in aortic NO synthase (NOS) activity accompanied by an increase in oxidative stress. Zinc-deficient 81-day-old male rats exhibited an increase in collagen deposition in tunica media, as well as lower activity of endothelial NOS (eNOS) that could not be reversed with an adequate zinc diet during postweaning life. Zinc deficiency programmed a reduction in eNOS protein expression and higher SBP only in males. Adult zinc-deficient rats of both sexes showed reduced vasodilator response dependent on eNOS activity and impaired aortic vasoconstrictor response to angiotensin-II associated with alterations in intracellular calcium mobilization. Female rats were less sensitive to the effects of zinc deficiency and exhibited higher eNOS activity and/or expression than males, without alterations in SBP or aortic histology. This work strengthens the importance of a balanced intake of micronutrients during perinatal growth to ensure adequate vascular function in adult life. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. [Correction of isoproterenol-induced myocardial injury with magnesium salts in magnesium-deficient rats].

    Science.gov (United States)

    Kharitonova, M V; Zheltova, A A; Spasov, A A; Smirnov, A V; Pan'shin, N G; Iezhitsa, I N

    2013-01-01

    The effect of Mg L-asparaginate (Mg-L-Asp), Mg chloride (MgCl2) and Mg sulfate (MgSO4) on the severity of isoproterenol-induced myocardial injury in Mg-deficient rats has been evaluated. To induce Mg deficiency, twenty-eight rats were placed on a low Mg diet (Mg content water for 10 weeks. Twelve control rats were fed a basal control diet (Mg content = 500 mg/kg) and water (with Mg content 20 mg/l) for equal duration. On day 49 of low Mg diet, Mg-deficient rats were randomly divided into four groups: 1) group that continued to receive low Mg diet; 2) low Mg diet plus oral MgSO4; 3) low Mg diet plus oral Mg-L-Asp and 4) low Mg diet plus oral MgCl2 (50 mg of Mg per kg of body weight). Isoproterenol was injected subcutaneously (30 mg/kg BW, twice, at an interval of 24 hours) on the day 70 of the study, when plasma and erythrocyte Mg level in rats fed a low Mg diet were significantly decreased by 47% and 45% compared to intact animals. Twenty-four hours after second injection of isoproterenol, tests for activities of creatine kinase (CK), lactate dehydrogenase (LDH) and aspartate aminotransferase (AST) were run and histopathological study was carried out. Administration of isoproterenol to rats resulted in significantly elevated plasma CK, LDH and AST, however analyses in Mg deficient group demonstrated more dramatically increased activity of CK and AST compared to control rats (3,06 and 4,67 fold in Mg-deficient group vs. 1,91 and 3,92 fold in intact group). Increased leakage of cardiac injury markers was concomitant to increased volume of fuchsinophilic cardiomyocytes (54.2 +/- 1.7% in Mg-deficient group and 38.9 +/- 1.9% in intact group, p < 0.05). However, pretreatment with of MgCl2, MgSO4 and Mg-L-Asp during 21 days favorably decreased sensitivity of myocardium to isoproterenol-induced ischemic injury. All evaluated salts significantly decreased myocyte marker enzymes as well as protected myocardium against isoproterenol-induced histopathological perturbations.

  9. Optimal copper supply is required for normal plant iron deficiency responses

    OpenAIRE

    Waters, Brian M; Armbrust, Laura C

    2013-01-01

    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferr...

  10. Lung, aorta, and platelet metabolism of 14C-arachidonic acid in vitamin E deficient rats

    International Nuclear Information System (INIS)

    Valentovic, M.A.; Gairola, C.; Lubawy, W.C.

    1982-01-01

    14 C-arachidonic acid metabolism was determined in aortas, platelets, and perfused lungs from rats pair fed a basal diet supplemented with 0 or 100 ppm vitamin E for 11 weeks. Spontaneous erythrocyte hemolysis tests showed 92% and 8% hemolysis for the 0 and 100 ppm vitamin E groups, respectively. Elevated lung homogenate levels of malonaldehyde in the 0 ppm group confirmed its deficient vitamin E status. Aortas from the vitamin E deficient group synthesized 54% less prostacyclin than aortas from the supplemented group (p less than 0.05). Although thromboxane generation by platelets from the vitamin E deficient group exhibited a 37% increase, this difference was not statistically significant compared to the supplemented animals. Greater amounts of PGE2, PGF2 alpha, TXB2, and 6-keto-PGF1 alpha were obtained in albumin buffer perfusates from lungs of vitamin E deficient rats than in those from supplemented rats. Significant differences (p less than 0.05) were noticed, however, only for PGE2 and PGF2 alpha. These studies indicate that vitamin E quantitatively alters arachidonic acid metabolism in aortic and lung tissue but its effect on thromboxane synthesis by platelets is less marked

  11. Effects of Biotin Deficiency on Biotinylated Proteins and Biotin-Related Genes in the Rat Brain.

    Science.gov (United States)

    Yuasa, Masahiro; Aoyama, Yuki; Shimada, Ryoko; Sawamura, Hiromi; Ebara, Shuhei; Negoro, Munetaka; Fukui, Toru; Watanabe, Toshiaki

    2016-01-01

    Biotin is a water-soluble vitamin that functions as a cofactor for biotin-dependent carboxylases. The biochemical and physiological roles of biotin in brain regions have not yet been investigated sufficiently in vivo. Thus, in order to clarify the function of biotin in the brain, we herein examined biotin contents, biotinylated protein expression (e.g. holocarboxylases), and biotin-related gene expression in the brain of biotin-deficient rats. Three-week-old male Wistar rats were divided into a control group, biotin-deficient group, and pair-fed group. Rats were fed experimental diets from 3 wk old for 8 wk, and the cortex, hippocampus, striatum, hypothalamus, and cerebellum were then collected. In the biotin-deficient group, the maintenance of total biotin and holocarboxylases, increases in the bound form of biotin and biotinidase activity, and the expression of an unknown biotinylated protein were observed in the cortex. In other regions, total and free biotin contents decreased, holocarboxylase expression was maintained, and bound biotin and biotinidase activity remained unchanged. Biotin-related gene (pyruvate carboxylase, sodium-dependent multivitamin transporter, holocarboxylase synthetase, and biotinidase) expression in the cortex and hippocampus also remained unchanged among the dietary groups. These results suggest that biotin may be related to cortex functions by binding protein, and the effects of a biotin deficiency and the importance of biotin differ among the different brain regions.

  12. Influence of protein deficiency on cadmium toxicity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, P C; Jain, V K; Ashquin, M; Tandon, S K

    1986-07-01

    The effects of a low protein diet on the body uptake and retention of cadmium, levels of essential trace elements, and cadmium-induced biochemical alterations in liver and kidneys of the rat were investigated. Low dietary protein disturbs cadmium induced alterations in carbohydrate metabolism, essential trace elements metabolism and offsets the hepatic and renal process of cadmium detoxification. Protein malnutrition enhances the susceptibility to cadmium intoxication.

  13. Effect of thiamine deficiency, pyrithiamine and oxythiamine on pyruvate metabolism in rat liver and brain in vivo

    International Nuclear Information System (INIS)

    Meghal, S.K.; O'Neal, R.M.; Koeppe, R.E.

    1977-01-01

    Rats were fed either a thiamine-deficient diet or diets containing pyrithiamine or oxythiamine. When symptoms of thiamine deficiency appeared, the animals were injected intraperitoneally with [2- 14 C] pyruvate six to twelve minutes prior to sacrifice. Free glutamic and aspartic acids were isolated from liver and brain and degraded. The results indicate that, in thiamine-deficient or oxythiamine-treated rats, pyruvate metabolism in liver and brain is similar to that in normal animals. In contrast, pyrithinamine drastically decreases the oxidative decarboxylation of pyruvate by rat liver. (auth.)

  14. Zinc content of selected tissues and taste perception in rats fed zinc deficient and zinc adequate rations

    International Nuclear Information System (INIS)

    Boeckner, L.S.; Kies, C.

    1986-01-01

    The objective of the study was to determine the effects of feeding zinc sufficient and zinc deficient rations on taste sensitivity and zinc contents of selected organs in rats. The 36 Sprague-Dawley male weanling rats were divided into 2 groups and fed zinc deficient or zinc adequate rations. The animals were subjected to 4 trial periods in which a choice of deionized distilled water or a solution of quinine sulfate at 1.28 x 10 -6 was given. A randomized schedule for rat sacrifice was used. No differences were found between zinc deficient and zinc adequate rats in taste preference aversion scores for quinine sulfate in the first three trial periods; however, in the last trial period rats in the zinc sufficient group drank somewhat less water containing quinine sulfate as a percentage of total water consumption than did rats fed the zinc deficient ration. Significantly higher zinc contents of kidney, brain and parotid salivary glands were seen in zinc adequate rats compared to zinc deficient rats at the end of the study. However, liver and tongue zinc levels were lower for both groups at the close of the study than were those of rats sacrificed at the beginning of the study

  15. Effects of an induced adenosine deaminase deficiency on T-cell differentiation in the rat

    International Nuclear Information System (INIS)

    Barton, R.W.

    1985-01-01

    Inherited deficiency of the enzyme adenosine deaminase (ADA) has been found in a significant proportion of patients with severe combined immunodeficiency disease and inherited defect generally characterized by a deficiency of both B and T cells. Two questions are central to understanding the pathophysiology of this disease: (1) at what stage or stages in lymphocyte development are the effects of the enzyme deficiency manifested; (2) what are the biochemical mechanisms responsible for the selective pathogenicity of the lymphoid system. We have examined the stage or stages of rat T-cell development in vivo which are affected by an induced adenosine deaminase deficiency using the ADA inhibitors, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and 2'-deoxycoformycin (DCF). In normal rats given daily administration of an ADA inhibitor, cortical thymocytes were markedly depleted; peripheral lymphocytes and pluripotent hemopoietic stem cells (CFU-S) all were relatively unaffected. Since a deficiency of ADA affects lymphocyte development, the regeneration of cortical and medullary thymocytes and their precursors after sublethal irradiation was used as a model of lymphoid development. By Day 5 after irradiation the thymus was reduced to 0.10-0.5% of its normal size; whereas at Days 9 and 14 the thymus was 20-40% and 60-80% regenerated, respectively. When irradiated rats were given daily parenteral injections of the ADA inhibitor plus adenosine or deoxyadenosine, thymus regeneration at Days 9 and 14 was markedly inhibited, whereas the regeneration of thymocyte precursors was essentially unaffected. Thymus regeneration was at least 40-fold lower than in rats given adenosine or deoxyadenosine alone. Virtually identical results were obtained with both ADA inhibitors, EHNA and DCF

  16. Interactions of cadmium with copper, zinc, and iron in different organs and tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Julshamn, K.; Utne, F.; Brackkan, O.R.

    1977-01-01

    The effect of cadmium on tissue concentrations of iron, zinc and copper was studied in male rats. Two littermate groups were fed a stock diet with or without a supplement of 100 ..mu..g cadmium per g. Every three weeks ten animals from each group were sampled and the liver, kidneys, heart, lungs, spleen, testes, muscle, fur, feces and urine were individually analyzed. Except for the fur, all the other organs showed highly significantly increased levels of cadmium when compared with the control group. The iron levels were significantly depressed in all organs. As the content in the feces remained unchanged and the urinary excretion showed an increase, it could be concluded that the cadmium supplementation resulted in a depletion of the body stores of iron. The zinc levels showed a significant increase in the liver and testes and a correspondingly significant decrease in the spleen. The levels of copper generally showed no significant changes.

  17. Processes underlying the nutritional programming of embryonic development by iron deficiency in the rat.

    Directory of Open Access Journals (Sweden)

    Angelina Swali

    Full Text Available Poor iron status is a global health issue, affecting two thirds of the world population to some degree. It is a particular problem among pregnant women, in both developed and developing countries. Feeding pregnant rats a diet deficient in iron is associated with both hypertension and reduced nephron endowment in adult male offspring. However, the mechanistic pathway leading from iron deficiency to fetal kidney development remains elusive. This study aimed to establish the underlying processes associated with iron deficiency by assessing gene and protein expression changes in the rat embryo, focussing on the responses occurring at the time of the nutritional insult. Analysis of microarray data showed that iron deficiency in utero resulted in the significant up-regulation of 979 genes and down-regulation of 1545 genes in male rat embryos (d13. Affected processes associated with these genes included the initiation of mitosis, BAD-mediated apoptosis, the assembly of RNA polymerase II preinitiation complexes and WNT signalling. Proteomic analyses highlighted 7 proteins demonstrating significant up-regulation with iron deficiency and the down-regulation of 11 proteins. The main functions of these key proteins included cell proliferation, protein transport and folding, cytoskeletal remodelling and the proteasome complex. In line with our recent work, which identified the perturbation of the proteasome complex as a generalised response to in utero malnutrition, we propose that iron deficiency alone leads to a more specific failure in correct protein folding and transport. Such an imbalance in this delicate quality-control system can lead to cellular dysfunction and apoptosis. Therefore these findings offer an insight into the underlying mechanisms associated with the development of the embryo during conditions of poor iron status, and its health in adult life.

  18. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Directory of Open Access Journals (Sweden)

    Thaqif El Khassawna

    Full Text Available Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus. 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8 were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs

  19. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat.

    Science.gov (United States)

    El Khassawna, Thaqif; Böcker, Wolfgang; Govindarajan, Parameswari; Schliefke, Nathalie; Hürter, Britta; Kampschulte, Marian; Schlewitz, Gudrun; Alt, Volker; Lips, Katrin Susanne; Faulenbach, Miriam; Möllmann, Henriette; Zahner, Daniel; Dürselen, Lutz; Ignatius, Anita; Bauer, Natali; Wenisch, Sabine; Langheinrich, Alexander Claus; Schnettler, Reinhard; Heiss, Christian

    2013-01-01

    Many postmenopausal women have vitamin D and calcium deficiency. Therefore, vitamin D and calcium supplementation is recommended for all patients with osteopenia and osteoporosis. We used an experimental rat model to test the hypothesis that induction of osteoporosis is more efficiently achieved in peripheral bone through combining ovariectomy with a unique multi-deficiencies diet (vitamin D depletion and deficient calcium, vitamin K and phosphorus). 14-week-old Sprague-Dawley rats served as controls to examine the initial bone status. 11 rats were bilaterally ovariectomized (OVX) and fed with multi-deficiencies diet. Three months later the treated group and the Sham group (n = 8) were euthanized. Bone biomechanical competence of the diaphyseal bone was examined on both, tibia and femur. Image analysis was performed on tibia via µCT, and on femur via histological analysis. Lower torsional stiffness indicated inferior mechanical competence of the tibia in 3 month OVX+Diet. Proximal metaphyseal region of the tibia showed a diminished bone tissue portion to total tissue in the µCT despite the increased total area as evaluated in both µCT and histology. Cortical bone showed higher porosity and smaller cross sectional thickness of the tibial diaphysis in the OVX+Diet rats. A lower ALP positive area and elevated serum level of RANKL exhibited the unbalanced cellular interaction in bone remodeling in the OVX+Diet rat after 3 month of treatment. Interestingly, more adipose tissue area in bone marrow indicated an effect of bone loss similar to that observed in osteoporotic patients. Nonetheless, the presence of osteoid and elevated serum level of PTH, BGP and Opn suggest the development of osteomalacia rather than an osteoporosis. As the treatment and fracture management of both osteoporotic and osteomalacia patients are clinically overlapping, this study provides a preclinical animal model to be utilized in local supplementation of minerals, drugs and growth factors

  20. Metabolism of fatty acids and the levels of ketone bodies in the livers of pyridoxine-deficient rats

    International Nuclear Information System (INIS)

    Gomikawa, Shuzo; Okada, Mitsuko

    1978-01-01

    Lipid metabolism was examined in rats fed a high-protein pyridoxine-deficient diet, and their livers were found to contain large amounts of lipids, mainly in the forms of triglycerides and cholesteryl ester. The contents of ketone bodies in the livers of pyridoxine-deficient and the control rats were similar. Their NAD + /NADH ratios, calculated from the amounts of ketone bodies, were also similar in pyridoxine-deficient and control groups when the animals were fed, but the ratio in pyridoxine-deficient rats was lower than that of control rats when the animals were starved. After injection of 14 C-linoleic acid, the amounts of expired 14 CO 2 in pyridoxine-deficient and control rats were similar. The pattern of incorporations of 14 C-linoleic acid into various lipid components of the livers were examined; incorporation into the phospholipid fraction was similar in control and deficient rats, but the incorporation into the triglyceride fraction was slower, and the incorporation into cholesterol was faster in deficient animals than in controls. (auth.)

  1. Behavioral responses and fluid regulation in male rats after combined dietary sodium deficiency and water deprivation.

    Science.gov (United States)

    Lucia, Kimberly J; Curtis, Kathleen S

    2018-02-01

    Most investigators use a single treatment such as water deprivation or dietary sodium deficiency to evaluate thirst or sodium appetite, which underlie behavioral responses to body fluid challenges. The goal of the present experiments was to assess the effects of combined treatments in driving behaviors. Therefore, we evaluated the effect of combined overnight water deprivation and dietary sodium deficiency on water intake and salt intake by adult male rats in 2-bottle (0.5M NaCl and water) tests. Overnight water deprivation alone increased water intake, and 10days of dietary sodium deficiency increased 0.5M NaCl intake, with a secondary increase in water intake. During combined water deprivation and dietary sodium deficiency, water intake was enhanced and 0.5M NaCl was reduced, but not eliminated, suggesting that physiologically relevant behavioral responses persist. Nonetheless, the pattern of fluid intake was altered by the combined treatments. We also assessed the effect of these behaviors on induced deficits in body sodium and fluid volume during combined treatments and found that, regardless of treatment, fluid ingestion partially repleted the induced deficits. Finally, we examined urine volume and sodium excretion during dietary sodium deficiency with or without overnight water deprivation and found that, whether or not rats were water deprived, and regardless of water consumption, sodium excretion was minimal. Thus, the combination of water deprivation and dietary sodium deficiency appears to arouse drives that stimulate compensatory behavioral responses. These behaviors, in conjunction with physiological adaptations to the treatments, underlie body sodium and volume repletion in the face of combined water deprivation and dietary sodium deficiency. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Influence of injected caffeine on the metabolism of calcium and the retention and excretion of sodium, potassium, phosphorus, magnesium, zinc and copper in rats.

    Science.gov (United States)

    Yeh, J K; Aloia, J F; Semla, H M; Chen, S Y

    1986-02-01

    Mineral metabolism was studied by the metabolic balance technique in rats with and without administration of caffeine. Caffeine was injected subcutaneously each day at either 2.5 mg or 10 mg/100 g body weight for 2 wk before the balance studies. Urinary volume excretion was higher in the group given caffeine than in the control group, but the creatinine clearance was not different. Urinary excretion of potassium, sodium, inorganic phosphate, magnesium and calcium, but not of zinc and copper, was also higher in the rats given caffeine. The rank order of the difference was the same as the percent of ingested mineral excreted in urine in the absence of caffeine. Caffeine caused a negative balance of potassium, sodium and inorganic phosphate. There was no significant difference from the control levels and in the apparent metabolic balance of calcium and magnesium. The urinary and fecal excretion of zinc and copper were found to be unaffected by caffeine. It is suggested that chronic administration of caffeine may lead to a tendency toward deficiency of those minerals that are excreted primarily in urine.

  3. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    International Nuclear Information System (INIS)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián; Simon, Felipe; Riedel, Claudia; Ferrick, David; Elorza, Alvaro A.

    2013-01-01

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive

  4. Copper deficiency alters cell bioenergetics and induces mitochondrial fusion through up-regulation of MFN2 and OPA1 in erythropoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Bustos, Rodrigo I.; Jensen, Erik L.; Ruiz, Lina M.; Rivera, Salvador; Ruiz, Sebastián [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Simon, Felipe; Riedel, Claudia [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile); Ferrick, David [Seahorse Bioscience, Billerica, MA (United States); Elorza, Alvaro A., E-mail: aelorza@unab.cl [Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago (Chile); Millennium Institute of Immunology and Immunotherapy, Santiago (Chile)

    2013-08-02

    Highlights: •In copper deficiency, cell proliferation is not affected. In turn, cell differentiation is impaired. •Enlarged mitochondria are due to up-regulation of MNF2 and OPA1. •Mitochondria turn off respiratory chain and ROS production. •Energy metabolism switch from mitochondria to glycolysis. -- Abstract: Copper is essential in cell physiology, participating in numerous enzyme reactions. In mitochondria, copper is a cofactor for respiratory complex IV, the cytochrome c oxidase. Low copper content is associated with anemia and the appearance of enlarged mitochondria in erythropoietic cells. These findings suggest a connection between copper metabolism and bioenergetics, mitochondrial dynamics and erythropoiesis, which has not been explored so far. Here, we describe that bathocuproine disulfonate-induced copper deficiency does not alter erythropoietic cell proliferation nor induce apoptosis. However it does impair erythroid differentiation, which is associated with a metabolic switch between the two main energy-generating pathways. That is, from mitochondrial function to glycolysis. Switching off mitochondria implies a reduction in oxygen consumption and ROS generation along with an increase in mitochondrial membrane potential. Mitochondrial fusion proteins MFN2 and OPA1 were up-regulated along with the ability of mitochondria to fuse. Morphometric analysis of mitochondria did not show changes in total mitochondrial biomass but rather bigger mitochondria because of increased fusion. Similar results were also obtained with human CD34+, which were induced to differentiate into red blood cells. In all, we have shown that adequate copper levels are important for maintaining proper mitochondrial function and for erythroid differentiation where the energy metabolic switch plus the up-regulation of fusion proteins define an adaptive response to copper deprivation to keep cells alive.

  5. Optimal copper supply is required for normal plant iron deficiency responses.

    Science.gov (United States)

    Waters, Brian M; Armbrust, Laura C

    2013-01-01

    Iron (Fe) and copper (Cu) homeostasis are tightly linked across biology. Understanding crosstalk between Fe and Cu nutrition could lead to strategies for improved growth on soils with low or excess metals, with implications for agriculture and phytoremediation. Here, we show that Cu and Fe nutrition interact to increase or decrease Fe and/or Cu accumulation in leaves and Fe uptake processes. Leaf Cu concentration increased under low Fe supply, while high Cu lowered leaf Fe concentration. Ferric reductase activity, an indicator of Fe demand, was inhibited at insufficient or high Cu supply. Surprisingly, plants grown without Fe were more susceptible to Cu toxicity.

  6. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were......V and showed a similar tendency to form agglomerates with a size of ∼200 nm in cell culture environment. The cytotoxicity of CuO NPs to MSCs at various concentrations and incubation periods were firstly evaluated. The CuO NPs showed dose-dependent and time-dependent toxicity to MSCs, and their surface...

  7. The effect of X-irradiation on vitamin E deficient rat liver mitochondrial ATPase and cytochrome c oxidase

    International Nuclear Information System (INIS)

    Korkut, S.

    1978-01-01

    Male albino rats were fed for 3 weeks on standard diets or on diets either deficient in or supplemented by vitamin E, whole-body X-irradiated and then immediately decapitated. Liver mitochondrial ATPase activity was stimulated and cytochrome c oxidase inhibited in the irradiated vitamin E deficient group. These activities were not influenced by irradiation in the rats fed on vitamin E supplemented and standard diets. The live mitochondrial vitamin E level was decreased in rats fed on the deficient diet. No differences in liver mitochondrial vitamin E levels were observed after X-irradiation of rats fed on any of the diets. The results suggest that the liver mitochondrial inner-membrane structure may be altered by a diet deficient in vitamin E. (U.K.)

  8. Corrosion of copper in oxygen-deficient groundwater with and without deep bedrock micro-organisms: Characterisation of microbial communities and surface processes

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen-Saarivirta, E., E-mail: elina.huttunen-saarivirta@vtt.fi [VTT Technical Research Centre of Finland, Materials Performance, Kemistintie 3, FI-02044 VTT (Finland); Rajala, P. [VTT Technical Research Centre of Finland, Materials Performance, Kemistintie 3, FI-02044 VTT (Finland); Bomberg, M. [VTT Technical Research Centre of Finland, Geobiotechnology, Tietotie 2, FI-02044 VTT (Finland); Carpén, L. [VTT Technical Research Centre of Finland, Materials Performance, Kemistintie 3, FI-02044 VTT (Finland)

    2017-02-28

    Highlights: • Copper was exposed to groundwater with and without deep bedrock micro-organisms. • Biofilm composition was determined and correlated with the behaviour of copper. • Under biotic conditions, the film of Cu{sub 2}S formed on copper surfaces. • Bacterial pool was in a key role for the morphology and properties of Cu{sub 2}S film. • Under abiotic conditions, Cu{sub 2}O systematically developed on copper surfaces. - Abstract: Copper specimens were exposed to oxygen-deficient artificial groundwater in the presence and absence of micro-organisms enriched from the deep bedrock of the planned nuclear waste repository site at Olkiluoto island on the western coast of Finland. During the exposure periods of 4 and 10 months, the copper specimens were subjected to electrochemical measurements. The biofilm developed on the specimens and the water used in the exposures were subjected to microbiological analyses. Changes in the water chemistry were also determined and surfaces of the copper specimens were characterized with respect to the morphology and composition of the formed corrosion products. The results showed that under biotic conditions, redox of the water and open circuit potential (OCP) of the copper specimens were generally negative and resulted in the build-up of a copper sulphide, Cu{sub 2}S, layer due to the activity of sulphate-reducing bacteria (SRB) that were included in the system. In the 4-month test, the electrochemical behaviour of the specimens changed during the exposure and alphaproteobactria Rhizobiales were the dominant bacterial group in the biofilm where the highest corrosion rate was observed. In the 10-month test, however, deltaproteobacteria SRB flourished and the initial electrochemical behaviour and the low corrosion rate of the copper were retained until the end of the test period. Under abiotic conditions, the positive water redox potential and specimen OCP correlated with the formation of copper oxide, Cu{sub 2}O

  9. Corrosion of copper in oxygen-deficient groundwater with and without deep bedrock micro-organisms: Characterisation of microbial communities and surface processes

    International Nuclear Information System (INIS)

    Huttunen-Saarivirta, E.; Rajala, P.; Bomberg, M.; Carpén, L.

    2017-01-01

    Highlights: • Copper was exposed to groundwater with and without deep bedrock micro-organisms. • Biofilm composition was determined and correlated with the behaviour of copper. • Under biotic conditions, the film of Cu_2S formed on copper surfaces. • Bacterial pool was in a key role for the morphology and properties of Cu_2S film. • Under abiotic conditions, Cu_2O systematically developed on copper surfaces. - Abstract: Copper specimens were exposed to oxygen-deficient artificial groundwater in the presence and absence of micro-organisms enriched from the deep bedrock of the planned nuclear waste repository site at Olkiluoto island on the western coast of Finland. During the exposure periods of 4 and 10 months, the copper specimens were subjected to electrochemical measurements. The biofilm developed on the specimens and the water used in the exposures were subjected to microbiological analyses. Changes in the water chemistry were also determined and surfaces of the copper specimens were characterized with respect to the morphology and composition of the formed corrosion products. The results showed that under biotic conditions, redox of the water and open circuit potential (OCP) of the copper specimens were generally negative and resulted in the build-up of a copper sulphide, Cu_2S, layer due to the activity of sulphate-reducing bacteria (SRB) that were included in the system. In the 4-month test, the electrochemical behaviour of the specimens changed during the exposure and alphaproteobactria Rhizobiales were the dominant bacterial group in the biofilm where the highest corrosion rate was observed. In the 10-month test, however, deltaproteobacteria SRB flourished and the initial electrochemical behaviour and the low corrosion rate of the copper were retained until the end of the test period. Under abiotic conditions, the positive water redox potential and specimen OCP correlated with the formation of copper oxide, Cu_2O. Furthermore, in the absence of

  10. Effect of zinc gluconate, sage oil on inflammatory patterns and hyperglycemia in zinc deficient diabetic rats.

    Science.gov (United States)

    Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M

    2017-11-01

    The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Release of Zn from maternal tissues in pregnant rats deficient in Zn or Zn and Ca

    International Nuclear Information System (INIS)

    Hurley, L.S.; Masters, D.G.; Lonnerdal, B.; Keen, C.L.

    1986-01-01

    Earlier studies have shown that diets that increase tissue catabolism reduce the teratogenic effects of Zn deficiency. The hypothesis that Zn may be released from body tissues when the metabolic state is altered was further tested. Nonpregnant Sprague Dawley females were injected with Zn-65; after equilibration, the two major pools of Zn, bone and muscle, had different specific activities (SA), muscle being much higher. Females were mated and fed diets adequate in Zn and Ca (C) or deficient in Zn (ZnD) or deficient in both Zn and Ca (ZnCaD). Calculations using weight loss in ZnD and ZnCaD rats, Zn content of maternal bone and muscle, and total fetal Zn at term indicated that in ZnCaD rats a relatively small amount of Zn from bone early in pregnancy was sufficient to prevent abnormal organogenesis, but most fetal Zn came from breakdown of maternal muscle in the last 3 days of pregnancy. Isotope data supported this conclusion. SA of Zn in ZnD fetuses was equal and high, indicating that most Zn came from the same maternal tissue. High muscle SA prior to mating, and increased SA in tibia and liver during pregnancy suggest that muscle provided Zn for other maternal tissues as well as fetuses. In contrast, SA in C fetuses was less than 30% of that of the D groups, consistent with the earlier hypothesis that most fetal Zn in C rats is accrued directly from the diet

  12. Nippostronglylus brasiliensis infection in the rat: effect of iron and protein deficiency and dexamethasone on the efficacy of benzimidazole anthelmintics.

    Science.gov (United States)

    Duncombe, V M; Bolin, T D; Davis, A E; Kelly, J D

    1977-01-01

    Malnutrition, anaemia, and gut parasites are commonly interrelated. Using the Nippostrongylus brasiliensis-rat model, the effect of iron and protein deficiency on the efficacy of benzimidazole anthelmintics was studied. It was demonstrated that the anthelmintics mebendazole and fenbendazole were significantly less effective in eradicating parasites when animals were deficient in iron and protein. This decreased efficacy of anthelmintics in iron and protein deficiency could not be overcome by intraperitoneal administration of the drug. Since nutritional deficiencies may act via impairment of the immune response, anthelmintic efficacy was determined in adequately nourished rats treated with the immunosuppressive drug dexamethasone. A similar decrease in efficacy of mebendazole was shown when these animals were treated with dexamethasone. Thus it is possible that lowered anthelmintic efficacy in iron and protein deficient animals is mediated by immune deficiency. These findings may be relevant to anthelmintic programmes in malnourished communities. PMID:590849

  13. Strain differences among rats in response to Remington iodine-deficient diets

    International Nuclear Information System (INIS)

    Okamura, K.; Taurog, A.; Krulich, L.

    1981-01-01

    Male rats of five different strains (Simonsen albino, Wistar, Long-Evans, Holtzman Sprague-Dawley, and Charles River Sprague-Dawley) were tested for their response to the U.S. Biochemical Corp. Remington low iodine diet containing 15-18 microgram I/kg. Measurements made after the diet had been fed for 28-30 days indicated that Simonsen albino and Wistar strains consistently showed the greatest response, based on degree of thyroid enlargement, depletion of thyroidal iodine, reduction in serum T4, and elevation of serum TSH. Long-Evans and Holtzman Sprague-Dawley rats responded relatively poorly to the low iodine diet. One experiment included female rats, and the limited data suggested that within a given strain there was no significant sex difference. With more prolonged feeding (84 days), the difference between a rapidly responding strain (Simonsen albino) and a more slowly responding strain (Holtzman Sprague-Dawley) was not so marked. Our results indicate that given sufficient time and a diet sufficiently low in iodine, even a more slowly responding strain will ultimately develop signs of extreme iodine deficiency. However, it is inconvenient and expensive to maintain rats on a Remington low iodine diet for 3 months, and studies on the effect of severe iodine deficiency are much more rapidly performed using a rapidly responding strain such as the Simonsen albino. Our observation that rats of different strains differ markedly in their responses to an iodine-deficient diet suggests that hereditary factors play an important role in this response

  14. Dietary Deficiency of Essential Amino Acids Rapidly Induces Cessation of the Rat Estrous Cycle

    Science.gov (United States)

    Bannai, Makoto; Ichimaru, Toru; Nakano, Sayako; Murata, Takuya; Higuchi, Takashi; Takahashi, Michio

    2011-01-01

    Reproductive functions are regulated by the sophisticated coordination between the neuronal and endocrine systems and are sustained by a proper nutritional environment. Female reproductive function is vulnerable to effects from dietary restrictions, suggesting a transient adaptation that prioritizes individual survival over reproduction until a possible future opportunity for satiation. This adaptation could also partially explain the existence of amenorrhea in women with anorexia nervosa. Because amino acid nutritional conditions other than caloric restriction uniquely alters amino acid metabolism and affect the hormonal levels of organisms, we hypothesized that the supply of essential amino acids in the diet plays a pivotal role in the maintenance of the female reproductive system. To test this hypothesis, we examined ovulatory cyclicity in female rats under diets that were deficient in threonine, lysine, tryptophan, methionine or valine. Ovulatory cyclicity was monitored by daily cytological evaluations of vaginal smears. After continuous feeding of the deficient diet, a persistent diestrus or anovulatory state was induced most quickly by the valine-deficient diet and most slowly by the lysine-deficient diet. A decline in the systemic insulin-like growth factor 1 level was associated with a dietary amino acid deficiency. Furthermore, a paired group of rats that were fed an isocaloric diet with balanced amino acids maintained normal estrous cyclicity. These disturbances of the estrous cycle by amino acid deficiency were quickly reversed by the consumption of a normal diet. The continuous anovulatory state in this study is not attributable to a decrease in caloric intake but to an imbalance in the dietary amino acid composition. With a shortage of well-balanced amino acid sources, reproduction becomes risky for both the mother and the fetus. It could be viewed as an adaptation to the diet, diverting resources away from reproduction and reallocating them to

  15. Induction of passive Heymann nephritis in complement component 6-deficient PVG rats.

    Science.gov (United States)

    Spicer, S Timothy; Tran, Giang T; Killingsworth, Murray C; Carter, Nicole; Power, David A; Paizis, Kathy; Boyd, Rochelle; Hodgkinson, Suzanne J; Hall, Bruce M

    2007-07-01

    Passive Heymann nephritis (PHN), a model of human membranous nephritis, is induced in susceptible rat strains by injection of heterologous antisera to rat renal tubular Ag extract. PHN is currently considered the archetypal complement-dependent form of nephritis, with the proteinuria resulting from sublytic glomerular epithelial cell injury induced by the complement membrane attack complex (MAC) of C5b-9. This study examined whether C6 and MAC are essential to the development of proteinuria in PHN by comparing the effect of injection of anti-Fx1A antisera into PVG rats deficient in C6 (PVG/C6(-)) and normal PVG rats (PVG/c). PVG/c and PVG/C6(-) rats developed similar levels of proteinuria at 3, 7, 14, and 28 days following injection of antisera. Isolated whole glomeruli showed similar deposition of rat Ig and C3 staining in PVG/c and PVG/C6(-) rats. C9 deposition was abundant in PVG/c but was not detected in PVG/C6(-) glomeruli, indicating C5b-9/MAC had not formed in PVG/C6(-) rats. There was also no difference in the glomerular cellular infiltrate of T cells and macrophages nor the size of glomerular basement membrane deposits measured on electron micrographs. To examine whether T cells effect injury, rats were depleted of CD8+ T cells which did not affect proteinuria in the early heterologous phase but prevented the increase in proteinuria associated with the later autologous phase. These studies showed proteinuria in PHN occurs without MAC and that other mechanisms, such as immune complex size, early complement components, CD4+ and CD8+ T cells, disrupt glomerular integrity and lead to proteinuria.

  16. Metabolic cooperation of ascorbic acid and glutathione in normal and vitamin C-deficient ODS rats.

    Science.gov (United States)

    Wang, Y; Kashiba, M; Kasahara, E; Tsuchiya, M; Sato, E F; Utsumi, K; Inoue, M

    2001-01-01

    Although the coordination of various antioxidants is important for the protection of organisms from oxidative stress, dynamic aspects of the interaction of endogenous antioxidants in vivo remain to be elucidated. We studied the metabolic coordination of two naturally occurring water-soluble antioxidants, ascorbic acid (AA) and reduced glutathione (GSH), in liver, kidney and plasma of control and scurvy-prone osteogenic disorder Shionogi (ODS) rats that hereditarily lack the ability to synthesize AA. When supplemented with AA, its levels in liver and kidney of ODS rats increased to similar levels of those in control rats. Hepato-renal levels of glutathione were similar with the two animal groups except for the slight increase in its hepatic levels in AA-supplemented ODS rats. Administration of L-buthionine sulfoximine (BSO), a specific inhibitor of GSH synthesis, rapidly decreased the hepato-renal levels of glutathione in a biphasic manner, a rapid phase followed by a slower phase. Kinetic analysis revealed that glutathione turnover was enhanced significantly in liver mitochondria and renal cytosol of ODS rats. Administration of BSO significantly increased AA levels in the liver and kidney of control rats but decreased them in AA-supplemented ODS rats. Kinetic analysis revealed that AA is synthesized by control rat liver by some BSO-enhanced mechanism and the de novo synthesized AA is transferred to the kidney. Such a coordination of the metabolism of GSH and AA in liver and kidney is suppressed in AA-deficient ODS rats. These and other results suggest that the metabolism of AA and GSH forms a compensatory network by which oxidative stress can be decreased.

  17. Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats.

    Science.gov (United States)

    Hasegawa, Tomoka; Li, Minqi; Hara, Kuniko; Sasaki, Muneteru; Tabata, Chihiro; de Freitas, Paulo Henrique Luiz; Hongo, Hiromi; Suzuki, Reiko; Kobayashi, Masatoshi; Inoue, Kiichiro; Yamamoto, Tsuneyuki; Oohata, Noboru; Oda, Kimimitsu; Akiyama, Yasuhiro; Amizuka, Norio

    2011-08-01

    Osteogenic disorder shionogi (ODS) rats carry a hereditary defect in ascorbic acid synthesis, mimicking human scurvy when fed with an ascorbic acid-deficient (aa-def) diet. As aa-def ODS rats were shown to feature disordered bone formation, we have examined the bone mineralization in this rat model. A fibrous tissue layer surrounding the trabeculae of tibial metaphyses was found in aa-def ODS rats, and this layer showed intense alkaline phosphatase activity and proliferating cell nuclear antigen-immunopositivity. Many osteoblasts detached from the bone surfaces and were characterized by round-shaped rough endoplasmic reticulum (rER), suggesting accumulation of malformed collagen inside the rER. Accordingly, fine, fragile fibrillar collagenous structures without evident striation were found in aa-def bones, which may result from misassembling of the triple helices of collagenous α-chains. Despite a marked reduction in bone formation, ascorbic acid deprivation seemed to have no effect on mineralization: while reduced in number, normal matrix vesicles and mineralized nodules could be seen in aa-def bones. Fine needle-like mineral crystals extended from these mineralized nodules, and were apparently bound to collagenous fibrillar structures. In summary, collagen mineralization seems unaffected by ascorbic acid deficiency in spite of the fine, fragile collagenous fibrils identified in the bones of our animal model.

  18. Lysosomal acid lipase deficiency in rats: Lipid analyses and lipase activities in liver and spleen

    International Nuclear Information System (INIS)

    Kuriyama, M.; Yoshida, H.; Suzuki, M.; Fujiyama, J.; Igata, A.

    1990-01-01

    We report the biological characterization of an animal model of a genetic lipid storage disease analogous to human Wolman's disease. Affected rats accumulated cholesteryl esters (13.3-fold), free cholesterol (2.8-fold), and triglycerides (5.4-fold) in the liver, as well as cholesteryl esters (2.5-fold) and free cholesterol (1.33-fold) in the spleen. Triglycerides did not accumulate, and the levels actually decreased in the spleen. Analysis of the fatty acid composition of the cholesteryl esters and triglycerides showed high percentages of linoleic acid (18:2) and arachidonic acid (20:4) in both organs, especially in the liver. No accumulation of phospholipids, neutral glycosphingolipids, or gangliosides was found in the affected rats. Acid lipase activity for [14C]triolein, [14C]cholesteryl oleate, and 4-methyl-umbelliferyl oleate was deficient in both the liver and spleen of affected rats. Lipase activity at neutral pH was normal in both liver and spleen. Heterozygous rats showed intermediate utilization of these substrates in both organs at levels between those for affected rats and those for normal controls, although they did not accumulate any lipids. These data suggest that these rats represent an animal counterpart of Wolman's disease in humans

  19. Biliary excretion of essential trace elements in rats under oxidative stress caused by selenium deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Kosuke; Tsukada, Masamichi [Meiji University, School of Agriculture, Kawasaki, Kanagawa (Japan); Sakuma, Yasunobu; Sasaki, Junya; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo [Showa Pharmaceutical University, Department of Physical Chemistry, Machida, Tokyo (Japan); Matsumoto, Ken-ichiro; Anzai, Kazunori [National Institute of Radiological Science, Research Center for Charged Particle Therapy, Chiba (Japan); Enomoto, Shuichi [The Institute of Physical and Chemical Research (RIKEN), Radioisotope Technology Division, Cyclotron Center, Wako, Saitama (Japan); Okayama University, Department of Analytical Chemistry, School of Pharmacy, Okayama (Japan)

    2011-11-15

    The excretion of essential trace elements, namely, Se, Sr, As, Mn, Co, V, Fe, and Zn into the bile of Se-deficient (SeD) Wistar male rats was studied using the multitracer (MT) technique, and instrumental neutron activation analysis (INAA). Normal and Se-control (SeC) rat groups were used as reference groups to compare the effects of Se levels on the behaviors of the essential trace elements. The excretion (% dose) of Se, Sr, As, Mn, Co, and V increased with Se levels in the liver. The biliary excretion of Mn and As dramatically enhanced for SeC rats compared with SeD rats, while that of V accelerated a little for SeC rats. The radioactivity levels of {sup 59}Fe and {sup 65}Zn in the MT tracer solution were insufficient to measure their excretion into bile. The role of glutathione and bilirubin for biliary excretion of the metals was discussed in relation to Se levels in rat liver. (orig.)

  20. Resistance of essential fatty acid-deficient rats to endotoxin-induced increases in vascular permeability

    International Nuclear Information System (INIS)

    Li, E.J.; Cook, J.A.; Spicer, K.M.; Wise, W.C.; Rokach, J.; Halushka, P.V.

    1990-01-01

    Resistance to endotoxin in essential fatty acid-deficient (EFAD) rats is associated with reduced synthesis of certain arachidonic acid metabolites. It was hypothesized that EFAD rats would manifest decreased vascular permeability changes during endotoxemia as a consequence of reduced arachidonic acid metabolism. To test this hypothesis, changes in hematocrit (HCT) and mesenteric localization rate of technetium-labeled human serum albumin (99mTc-HSA) and red blood cells (99mTc-RBC) were assessed in EFAD and normal rats using gamma-camera imaging. Thirty minutes after Salmonella enteritidis endotoxin, EFAD rats exhibited less hemoconcentration as determined by % HCT than normal rats. Endotoxin caused a less severe change in permeability index in the splanchnic region in EFAD rats than in normal rats (1.2 +/- 0.6 x 10(-3)min-1 vs. 4.9 +/- 1.7 x 10(-3)min-1 respectively, P less than 0.05). In contrast to 99mTc-HSA, mesenteric localization of 99mTc-RBC was not changed by endotoxin in control or EFAD rats. Supplementation with ethyl-arachidonic acid did not enhance susceptibility of EFAD rats to endotoxin-induced splanchnic permeability to 99mTc-HSA. Leukotrienes have been implicated as mediators of increased vascular permeability in endotoxin shock. Since LTC3 formation has been reported to be increased in EFA deficiency, we hypothesized that LTC3 may be less potent than LTC4. Thus the effect of LTC3 on mean arterial pressure and permeability was compared to LTC4 in normal rats. LTC3-induced increases in peak mean arterial pressure were less than LTC4 at 10 micrograms/kg (39 +/- 5 mm Hg vs. 58 +/- 4 mm Hg respectively, P less than 0.05) and at 20 micrograms/kg (56 +/- 4 mm Hg vs. 75 +/- 2 mm Hg respectively, P less than 0.05). LY171883 (30 mg/kg), an LTD4/E4 receptor antagonist, attenuated the pressor effect of LTC4, LTD4, and LTC3

  1. Microarray analysis of pancreatic gene expression during biotin repletion in biotin-deficient rats.

    Science.gov (United States)

    Dakshinamurti, Krishnamurti; Bagchi, Rushita A; Abrenica, Bernard; Czubryt, Michael P

    2015-12-01

    Biotin is a B vitamin involved in multiple metabolic pathways. In humans, biotin deficiency is relatively rare but can cause dermatitis, alopecia, and perosis. Low biotin levels occur in individuals with type-2 diabetes, and supplementation with biotin plus chromium may improve blood sugar control. The acute effect on pancreatic gene expression of biotin repletion following chronic deficiency is unclear, therefore we induced biotin deficiency in adult male rats by feeding them a 20% raw egg white diet for 6 weeks. Animals were then randomized into 2 groups: one group received a single biotin supplement and returned to normal chow lacking egg white, while the second group remained on the depletion diet. After 1 week, pancreata were removed from biotin-deficient (BD) and biotin-repleted (BR) animals and RNA was isolated for microarray analysis. Biotin depletion altered gene expression in a manner indicative of inflammation, fibrosis, and defective pancreatic function. Conversely, biotin repletion activated numerous repair and anti-inflammatory pathways, reduced fibrotic gene expression, and induced multiple genes involved in pancreatic endocrine and exocrine function. A subset of the results was confirmed by quantitative real-time PCR analysis, as well as by treatment of pancreatic AR42J cells with biotin. The results indicate that biotin repletion, even after lengthy deficiency, results in the rapid induction of repair processes in the pancreas.

  2. Impaired exercise performance and skeletal muscle mitochondrial function in rats with secondary carnitine deficiency

    Directory of Open Access Journals (Sweden)

    Jamal BOUITBIR

    2016-08-01

    Full Text Available Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP, a carnitine analogue inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats.Methods: Male Sprague Dawley rats were treated daily with water (control rats; n=12 or with 20 mg/100 g body weight THP (n=12 via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion.Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (-24% and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected.Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.

  3. Long-term Western diet fed apolipoprotein E-deficient rats exhibit only modest early atherosclerotic characteristics

    DEFF Research Database (Denmark)

    Rune, Ida; Rolin, Bidda; Lykkesfeldt, Jens

    2018-01-01

    In the apolipoprotein E-deficient mouse, the gut microbiota has an impact on the development of atherosclerosis, but whether such correlations are also present in rats requires investigation. Therefore, we studied female SD-Apoe tm1sage (Apoe -/-) rats fed either a Western diet or a low-fat control...

  4. Alterations in the molecular species of rat liver lecithin by corn-oil feeding to essential fatty acid-deficient rats as a function of time

    NARCIS (Netherlands)

    Golde, L.M.G. van; Pieterson, W.A.; Deenen, L.L.M. van

    1968-01-01

    The present paper describes, as a function of time, the qualitative and quantitative alterations in the molecular species pattern of rat liver lecithin which are observed when corn oil is fed to essential fatty acid-deficient rats. One of the most important changes observed was a very rapid

  5. Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats.

    Science.gov (United States)

    Cui, Xiang; Liu, Kun; Xu, Dandan; Zhang, Youyou; He, Xun; Liu, Hao; Gao, Xinyan; Zhu, Bing

    2018-01-01

    Acupuncture therapy plays a pivotal role in pain relief, and increasing evidence demonstrates that mast cells (MCs) may mediate acupuncture analgesia. The present study aims to investigate the role of MCs in acupuncture analgesia using c-kit gene mutant-induced MC-deficient rats. WsRC-Ws/Ws rats and their wild-type (WT) littermates (WsRC-+/+) were used. The number of MCs in skin of ST36 area was compared in two rats after immunofluorescence labeling. Mechanical withdrawal latency (MWL), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL) were measured on bilateral plantar for pain threshold evaluation before and after each stimulus. Acupuncture- and moxibustion-like stimuli (43°C, 46°C heat, 1 mA electroacupuncture [EA], 3 mA EA, and manual acupuncture [MA]) were applied randomly on different days. Fewer MCs were observed in the skin of ST36 in mutant rats compared to WT rats ( P 0.05). Bilateral MWL and MWT in WsRC-+/+ rats increased significantly after each stimulus compared to baseline ( P <0.01, P <0.001). In WsRC-Ws/Ws rats, only noxious stimuli could produce anti-nociceptive effects for mechanical pain (46°C, 3 mA EA, MA) ( P <0.01, P <0.001). Additionally, the net increases in MWL and MWT induced by most stimuli were greater in WT than in mutant rats ( P <0.05). For thermal nociception, either high- or low-intensity stimuli could significantly augment TWL in two rats ( P <0.001), and the net increases of TWL evoked by most stimuli were to the same extent in two genetic variants. MCs influence the basic mechanical but not thermal pain threshold. MCs participate in acupuncture analgesia in mechanical but not in thermal nociception, in that MC deficiency may attenuate the mechanical analgesia evoked by high-intensity stimuli and eliminate analgesia provoked by low-intensity stimuli.

  6. The effect of insulin deficiency on the plasma clearance and exchange of high-density-lipoprotein phosphatidylcholine in rats.

    Science.gov (United States)

    Martins, I J; Redgrave, T G

    1992-01-01

    Triolein/cholesteryl oleate/cholesterol/phosphatidylcholine emulsions designed to model the lipid composition of chylomicrons were injected intravenously into control and streptozotocin-treated insulin-deficient rats. As previously described for lymph chylomicrons, the emulsion triolein was hydrolysed and phosphatidylcholine was transferred to the plasma high-density lipoproteins (HDL). This mechanism was used to introduce a phospholipid label into HDL in vivo. The subsequent clearance of phospholipid radioactivity from the plasma of insulin-deficient rats was significantly slower than in controls (P less than 0.025). Plasma clearance was similarly slower in insulin-deficient rats after injection of HDL that was previously labelled with radioactive phospholipids. After injection, the phospholipid label redistributed rapidly between the large-particle fraction of plasma lipoproteins (very-low- and low-density lipoproteins), and the lighter and heavier fractions of HDL. Compared with control rats, in insulin-deficient rats less of the phospholipid label was distributed to the lighter HDL fraction and more to the heavier HDL fraction, and this difference was not due to changes in activity of lecithin: cholesterol acyltransferase or in the apparent activity of phospholipid transfer protein. In insulin-deficient rats the changes in HDL phospholipid clearance and exchange appeared to be secondary to the associated hypertriglyceridaemia and the related changes in distribution of phospholipids between classes of plasma lipoproteins. PMID:1536661

  7. [Effect of selenium deficiency on the F344 inbred line offspring rats' neuro-behavior, ability of learning and memory].

    Science.gov (United States)

    Hong, Liang-Li; Tian, Dong-Ping; Su, Min; Shen, Xiu-Na; Gao, Yuxia

    2006-01-01

    To establish the selenium (Se) deficient animal model on F344 inbred line rats and observe the effects of a long-term Se-deficiency on the offspring's neuro-behavior, abilities of learning and memory. Feeding F344 inbred line rats on Se-deficient diet to establish Se-deficient animal model. For the offspring, the body weight, physiological indexes nervous reflections for growth and development were monitored during the early postnatal period. The Se-deficient diet contained less than 0.01 mg/kg and the glutathione peroxidase (GSH-Px) activity in blood of the Se-deficient group rats is lower than the Se-normal group after feeding on Se-deficient diet for 4 weeks. For the offspring, the birth weight and the body weight of Se-deficient group were obviously lower than the Se-normal group before weaning. Se-deficient offspring rats differed from Se-normal controls in lower scores in surface righting reflex (RR) test at postnatal 4th day after delivery, cliff avoidance test at postnatal 7th day and auditory acuity trial at postnatal 10th day respectively. But these differences disappear after a few days in the same tests. In addition, no significant differences between two groups in suspending test and walking ability test at postnatal 12th and 14th day. In open field test, Se-deficient male offspring stayed less time in the middle grid and moved less. In Morris water maze test, the Se-deficient offspring spent more time to find the hidden platform at the 6th and 9th training tests in the place navigation trial. Furthermore, the Se-deficient group spent less time in target quadrant when giving the spatial probe trial. A Se-deficient animal model have been established on F344 inbred line rats successfully. A long-term Se deficiency could retard the development of the offspring in uterus and after delivery. Se deficiency also decreased the offspring's abilities of spatial learning and memory in Morris water maze test and resulted in the male offspring's nervousness to new

  8. Tyrosinase inhibition due to interaction of homocyst(e)ine with copper: the mechanism for reversible hypopigmentation in homocystinuria due to cystathionine beta-synthase deficiency.

    Science.gov (United States)

    Reish, O; Townsend, D; Berry, S A; Tsai, M Y; King, R A

    1995-01-01

    Deficiency of cystathionine beta-synthase (CBS) is a genetic disorder of transsulfuration resulting in elevated plasma homocyst(e)ine and methionine and decreased cysteine. Affected patients have multisystem involvement, which may include light skin and hair. Reversible hypopigmentation in treated homocystinuric patients has been infrequently reported, and the mechanism is undefined. Two CBS-deficient homocystinuric patients manifested darkening of their hypopigmented hair following treatment that decreased plasma homocyst(e)ine. We hypothesized that homocyst(e)ine inhibits tyrosinase, the major pigment enzyme. The activity of tyrosinase extracted from pigmented human melanoma cells (MNT-1) that were grown in the presence of homocysteine was reduced in comparison to that extracted from cells grown without homocysteine. Copper sulfate restored homocyst(e)ine-inhibited tyrosinase activity when added to the culture cell media at a proportion of 1.25 mol of copper sulfate per 1 mol of DL-homocysteine. Holo-tyrosinase activity was inhibited by adding DL-homocysteine to the assay reaction mixture, and the addition of copper sulfate to the reaction mixture prevented this inhibition. Other tested compounds, L-cystine and betaine did not affect tyrosinase activity. Our data suggest that reversible hypopigmentation in homocystinuria is the result of tyrosinase inhibition by homocyst(e)ine and that the probable mechanism of this inhibition is the interaction of homocyst(e)ine with copper at the active site of tyrosinase. Images Figure 1 PMID:7611281

  9. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei, E-mail: wzheng@purdue.edu

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  10. Estimation of gluconeogenesis and glucose utilization in carbohydate deficient growing rats

    International Nuclear Information System (INIS)

    Hill, F.W.; Egtesadi, S.; Rucker, R.B.

    1986-01-01

    A carbohydrate deficient diet based on food grade oleic acid and soybean oil and a minimally adequate level of casein protein was supplemented with graded levels of glucose (0, 4, 10, 65%), and casein protein (12% basal level plus 4, 6, 20%). Weanling rats were fed the respective diets for 28 days. Under anesthesia in fed state, the right jugular vein and left carotid artery were cannulated. NaH 14 CO 3 and 3 H-glucose labelled on C 6 were injected into aorta via carotid and blood samples taken from vena cava via jugular over a period of 30 minutes. Rate of increase of blood 14 C-glucose was the indicator of gluconeogenesis (GLNG). Disappearance of blood 3 H-glucose was the measure of glucose flux. Relative rate of GLNG was very high in basal unsupplemented rats, and glucose flux was very low. Rats growing rapidly with minimum supplementation (4% glucose or 6% casein) showed the lowest relative rate of GLNG and maximum glucose flux, of the order of 10 mg min -1 kg -1 . GLNG increased with higher levels of glucose and casein, but flux did not increase. The fed state glucose flux extrapolated to 24 hour basis was approximately 2X greater than the dietary intake of glucose and its equivalent of glucogenic precursors in rats fed the basal diet and low levels of supplements. Adjustment for lower flux in post absorptive state, based on flux in fasted rats, reduced the differences between observed flux and intake

  11. Effects of nanomolar copper on water plants—Comparison of biochemical and biophysical mechanisms of deficiency and sublethal toxicity under environmentally relevant conditions

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George, E-mail: george.thomas@uni.kn [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); Stärk, Hans-Joachim, E-mail: ha-jo.staerk@ufz.de [UFZ – Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Wellenreuther, Gerd, E-mail: Gerd.wellenreuther@desy.de [HASYLAB at DESY, Notkestr. 85, 22603 Hamburg (Germany); Dickinson, Bryan C., E-mail: bryan.dickinson@gmail.com [Harvard University, Department of Chemistry and Chemical Biology, 12 Oxford Street, Cambridge, MA 02138 (United States); Küpper, Hendrik, E-mail: hendrik.kuepper@uni-konstanz.de [Universität Konstanz, Mathematisch-Naturwissenschaftliche Sektion, Fachbereich Biologie, D-78457 Konstanz (Germany); University of South Bohemia, Faculty of Biological Sciences and Institute of Physical Biology, Branišovská 31, CZ-370 05 České Budejovice (Czech Republic)

    2013-09-15

    Highlights: •We found different optimal Cu requirement for different physiological mechanisms. •Kinetics and concentration thresholds of damage mechanisms were established. •Cu toxicity caused internal Cu re-distribution and inhibition of Zn uptake. •Cu deficient plants released Cu, indicating lack of high-affinity Cu transporters. •Cu deficiency caused re-distribution of zinc in the plant. -- Abstract: Toxicity and deficiency of essential trace elements like Cu are major global problems. Here, environmentally relevant sub-micromolar concentrations of Cu (supplied as CuSO{sub 4}) and simulations of natural light- and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum. Growth was optimal at 10 nM Cu, while PSII activity (F{sub v}/F{sub m}) was maximal around 2 nM Cu. Damage to the PSII reaction centre was the first target of Cu toxicity, followed by disturbed regulation of heat dissipation (NPQ). Only after that, electron transport through PSII (Φ{sub PSII}) was inhibited, and finally chlorophylls decreased. Copper accumulation in the plants was stable until 10 nM Cu in solution, but strongly increased at higher concentrations. The vein was the main storage site for Cu up to physiological concentrations (10 nM). At toxic levels it was also sequestered to the epidermis and mesophyll until export from the vein became inhibited, accompanied by inhibition of Zn uptake. Copper deficiency led to a complete stop of growth at “0” nM Cu after 6 weeks. This was accompanied by high starch accumulation although electron flow through PSII (Φ{sub PSII}) decreased from 2 weeks, followed by decrease in pigments and increase of non photochemical quenching (NPQ). Release of Cu from the plants below 10 nM Cu supply in the nutrient solution indicated lack of high-affinity Cu transporters, and on the tissue level copper deficiency led to a re-distribution of zinc.

  12. Iron and zinc concentrations and 59Fe retention in developing fetuses of zinc-deficient rats

    International Nuclear Information System (INIS)

    Rogers, J.M.; Loennerdal, B.H.; Hurley, L.S.; Keen, C.L.

    1987-01-01

    Because disturbances in iron metabolism might contribute to the teratogenicity of zinc deficiency, we examined the effect of zinc deficiency on fetal iron accumulation and maternal and fetal retention of 59 Fe. Pregnant rats were fed from mating a purified diet containing 0.5, 4.5 or 100 micrograms Zn/g. Laparotomies were performed on d 12, 16, 19 and 21 of gestation. Maternal blood and concepti were analyzed for zinc and iron. Additional groups of dams fed 0.5 or 100 micrograms Zn/g diet were gavaged on d 19 with a diet containing 59 Fe. Six hours later maternal blood and tissues, fetuses and placentas were counted for 59 Fe. Maternal plasma zinc, but not iron, concentration was affected by zinc deficiency on d 12. Embryo zinc concentration on d 12 increased with increasing maternal dietary zinc, whereas iron concentration was not different among groups. On d 16-21 plasma iron was higher in dams fed 0.5 micrograms Zn/g diet than in those fed 4.5 or 100 micrograms/g, whereas plasma zinc was lower in dams fed 0.5 or 4.5 micrograms Zn/g than in those fed 100 micrograms Zn/g diet. On d 19 zinc concentration in fetuses from dams fed 0.5 micrograms/g zinc was not different from that of those fed 4.5 micrograms/g zinc, and iron concentration was higher in the 0.5 microgram Zn/g diet group. The increase in iron concentration in zinc-deficient fetuses thus occurs too late to be involved in major structural teratogenesis. Although whole blood concentration of 59 Fe was not different in zinc-deficient and control dams, zinc-deficient dams had more 59 Fe in the plasma fraction

  13. DIETARY AND BIOCHEMICAL PARAMETERS OF THE NIACIN DEFICIENCY IM YOUNG RATS

    Directory of Open Access Journals (Sweden)

    CARLOS ROBERTO VICTORIA

    2009-07-01

    Full Text Available

    ABSTRACT: Using a defined laboratory diet composed by gelatin (6% and casein (10% as protein sources, without tryptophan and nicotinic acid supplementation, it should be possible to reproduce, in young rats, after 28 dais feeding with this deficient diet, a clinical and laboratory model of niacin deficiency. The deficient group, when compared against control, showed poor growth (63.3 g x 163.3 g; p<0.05, lower urinary excretion of N’-methylnicotinamide (0.005 mg/24 h x 0.259 mg/24 h; p<0.05, lower plasma free-tryptophan (2.1 uM/dl x 5.4 uM/dl; p<0.05, lower plasma albumin level (1.8 g/dl; p<0.05, smaller erythrocytes (48.9 u3 x 54.8 u3; p<0.05 and lower corpuscular hemoglobin (23.2 pg x 26.6 pg; p<0.05. All these changes were normalized by niacin replacement. We conclude that this dietetics model is easy and practical to be used for niacin deficiency purposes. KEYWORDS: Niacin; nicotinicacid; tryptophan; N’-methylnicotinamide; Pellagra.

  14. Ascorbic acid deficiency increases endotoxin influx to portal blood and liver inflammatory gene expressions in ODS rats.

    Science.gov (United States)

    Tokuda, Yuki; Miura, Natsuko; Kobayashi, Misato; Hoshinaga, Yukiko; Murai, Atsushi; Aoyama, Hiroaki; Ito, Hiroyuki; Morita, Tatsuya; Horio, Fumihiko

    2015-02-01

    The aim of this study was to determine whether ascorbic acid (AsA) deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. The mechanisms by which AsA deficiency provokes inflammatory changes in the liver were investigated in Osteogenic Disorder Shionogi (ODS) rats (which are unable to synthesize AsA). Male ODS rats (6-wk-old) were fed a diet containing sufficient (300 mg/kg) AsA (control group) or a diet without AsA (AsA-deficient group) for 14 or 18 d. On day 14, the hepatic mRNA levels of acute-phase proteins and inflammation-related genes were significantly higher in the AsA-deficient group than the control group, and these elevations by AsA deficiency were exacerbated on day 18. The serum concentrations of interleukin (IL)-1β and IL-6, which induce acute-phase proteins in the liver, were also significantly elevated on day 14 in the AsA-deficient group compared with the respective values in the control group. IL-1β mRNA levels in the liver, spleen, and lung were increased by AsA deficiency. Moreover, on both days 14 and 18, the portal blood endotoxin concentration was significantly higher in the AsA-deficient group than in the control group, and a significant correlation between serum IL-1β concentrations and portal endotoxin concentrations was found in AsA-deficient rats. In the histologic analysis of the ileum tissues, the number of goblet cells per villi was increased by AsA deficiency. These results suggest that AsA deficiency-induced endotoxin influx into portal blood from the gastrointestinal tract contributes to the inflammatory changes in the liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Piper betle-mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles.

    Science.gov (United States)

    Praburaman, Loganathan; Jang, Jum-Suk; Muthusamy, Govarthanan; Arumugam, Sengottaiyan; Manoharan, Koildhasan; Cho, Kwang-Min; Min, Cho; Kamala-Kannan, Seralathan; Byung-Taek, Oh

    2016-09-01

    The study reports a simple, inexpensive, and eco-friendly synthesis of copper oxide nanoparticles (CuONPs) using Piper betle leaf extract. Formation of CuONPs was confirmed by UV-visible spectroscopy at 280 nm. Transmission electron microscopy (TEM) images showed that the CuONPs were spherical, with an average size of 50-100 nm. The scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) peak was observed approximately at 1 and 8 keV. The X-ray diffraction (XRD) studies indicated that the particles were crystalline in nature. CuONPs effectively inhibited the growth of phytopathogens Ralstonia solanacearum and Xanthomonas axonopodis. The cytotoxic effect of the synthesized CuONPs was analyzed using rat splenocytes. The cell viability was decreased to 94% at 300 μg/mL.

  16. Energy and glucose pathways in thiamine deficient primary rat brain microvascular endothelial cells.

    Science.gov (United States)

    Ham, D; Karska-Wysocki, B

    2005-12-01

    Thiamine deficiency (TD) results in lactate acidosis, which is associated with neurodegeneration. The aim of this study was to investigate this alteration in primary rat brain endothelia. Spectrophotometric analysis of culture media revealed that only a higher concentration of pyrithiamine, which accelerates the intracellular blocking of thiamine, significantly elevated the lactate level and lactate dehydrogenase activity within 7 days. The medium without pyrithiamine and with a thiamine concentration comparable to pathophysiological plasma levels mildly reduced only the activity of transketolase. This suggests that significant metabolic changes may not occur at the early phase of TD in cerebral capillary cells, while anaerobic glycolysis in capillaries may be mediated during late stage/chronic TD.

  17. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Weinstein-Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester (United States); Szyf, Moshe [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2014-05-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  18. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Guillemin, Claire; Neeman-azulay, Meytal; Weinstein-Fudim, Liza; Stodgell, Christopher J.; Miller, Richard K.; Szyf, Moshe; Ornoy, Asher

    2014-01-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  19. Choline or methionine reverses impaired secretion of VLDL by hepatocytes from choline-deficient rats

    International Nuclear Information System (INIS)

    Yao, Z.; Vance, D.E.

    1987-01-01

    Male rats fed a choline-deficient (CD) diet for three days accumulated triacylglycerol (TG) in the liver. Hepatocytes from these rats were cultured and maintained in a medium + choline. The rate of secretion of TG was reduced by 50% in the CD cells. Correspondingly, [ 3 H]oleate and [ 3 H]glycerol were incorporated at a 2-fold higher rate into TG secreted by choline-supplemented cells compared to CD cells. Isolation of lipoprotein fractions by ultracentrifugation showed that the reduced secretion of TG by CD hepatocytes was mainly due to an impaired secretion of very low density lipoprotein (VLDL). Incorporation of [ 3 H]leucine into secreted apoB/sub H/, apoB/sub L/ and apoE was markedly reduced in CD cells compared to choline-supplemented cells. Secretion of high density lipoprotein was not reduced in the CD hepatocytes. Normal secretion of VLDL was resumed upon addition of methionine to the CD cells

  20. Magnesium deficiency improves glucose homeostasis in the rat: studies in vivo and in isolated islets in vitro.

    Science.gov (United States)

    Reis, M A; Latorraca, M Q; Carneiro, E M; Boschero, A C; Saad, M J; Velloso, L A; Reyes, F G

    2001-05-01

    The serum mineral levels, glucose disappearance rate (kg), total area under the glucose (DeltaG) and insulin (DeltaI) curves, and static insulin secretion were compared among rats fed a Mg-deficient diet for 6 (DF-6) or 11 (DF-11) weeks, and rats fed a control diet for the same periods (CO-6 and CO-11 groups). No change in glucose homeostasis was observed among DF-6, CO-6 and CO-11 rats. DF-11 rats showed an elevated kg and a reduced DeltaG and DeltaI. For evaluating the effect of supplementation, rats fed a control or Mg-deficient diet for 6 weeks were then fed a Mg- supplemented diet for 5 weeks (SCO and SDF groups respectively). The serum Mg levels in SDF rats were similar to those in CO-11 and SCO rats, but higher than in the DF-11 group. SDF rats showed similar kg, DeltaG and DeltaI compared with the CO-11 and SCO groups. However, a significantly lower kg and higher DeltaG and DeltaI were observed in SDF compared with DF-11 rats. Basal and 8.3 mmol glucose/l-stimulated insulin secretion by islets from DF-11 rats were higher than by islets from CO-11 rats. These results indicate that moderate Mg depletion for a long period may increase the secretion and sensitivity to insulin, while Mg supplementation in formerly Mg-deficient rats may prevent the increase in sensitivity and secretion of insulin.

  1. Vitamin A deficiency alters the pulmonary parenchymal elastic modulus and elastic fiber concentration in rats

    Directory of Open Access Journals (Sweden)

    Holmes Amey J

    2005-07-01

    Full Text Available Abstract Background Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA or remained unsupplemented. Methods Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion. Results VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment. Conclusion Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.

  2. Ascorbic acid deficiency stimulates hepatic expression of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1, in scurvy-prone ODS rats.

    Science.gov (United States)

    Horio, Fumihiko; Kiyama, Keiichiro; Kobayashi, Misato; Kawai, Kaori; Tsuda, Takanori

    2006-02-01

    ODS rat has a hereditary defect in ascorbic acid biosynthesis and is a useful animal model for elucidating the physiological role of ascorbic acid. We previously demonstrated by using ODS rats that ascorbic acid deficiency changes the hepatic gene expression of acute phase proteins, as seen in acute inflammation. In this study, we investigated the effects of ascorbic acid deficiency on the production of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1 (CINC-1), in ODS rats. Male ODS rats (6 wk of age) were fed a basal diet containing ascorbic acid (300 mg/kg diet) or a diet without ascorbic acid for 14 d. Obvious symptoms of scurvy were not observed in the ascorbic acid-deficient rats. Ascorbic acid deficiency significantly elevated the serum concentration of CINC-1 on d 14. The liver and spleen CINC-1 concentrations in the ascorbic acid-deficient rats were significantly elevated to 600% and 180% of the respective values in the control rats. However, the lung concentration of CINC-1 was not affected by ascorbic acid deficiency. Ascorbic acid deficiency significantly elevated the hepatic mRNA level of CINC-1 (to 480% of the value in the control rats), but not the lung mRNA level. These results demonstrate that ascorbic acid deficiency elevates the serum, liver and spleen concentrations of CINC-1 as seen in acute inflammation, and suggest that ascorbic acid deficiency stimulate the hepatic CINC-1 gene expression.

  3. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    International Nuclear Information System (INIS)

    Seppen, Jurgen

    2012-01-01

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed diets with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.

  4. A diet containing the soy phytoestrogen genistein causes infertility in female rats partially deficient in UDP glucuronyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Seppen, Jurgen, E-mail: j.seppen@amc.uva.nl

    2012-11-01

    Soy beans contain genistein, a natural compound that has estrogenic effects because it binds the estrogen receptor with relatively high affinity. Genistein is therefore the most important environmental estrogen in the human diet. Detoxification of genistein is mediated through conjugation by UDP-glucuronyltransferase 1 and 2 (UGT1 and UGT2) isoenzymes. Gunn rats have a genetic deficiency in UGT1 activity, UGT2 activities are not affected. Because our Gunn rats stopped breeding after the animal chow was changed to a type with much higher soy content, we examined the mechanism behind this soy diet induced infertility. Gunn and control rats were fed diets with and without genistein. In these rats, plasma levels of genistein and metabolites, fertility and reproductive parameters were determined. Enzyme assays showed reduced genistein UGT activity in Gunn rats, as compared to wild type rats. Female Gunn rats were completely infertile on a genistein diet, wild type rats were fertile. Genistein diet caused a persistent estrus, lowered serum progesterone and inhibited development of corpora lutea in Gunn rats. Concentrations of total genistein in Gunn and control rat plasma were identical and within the range observed in humans after soy consumption. However, Gunn rat plasma contained 25% unconjugated genistein, compared to 3.6% in control rats. This study shows that, under conditions of reduced glucuronidation, dietary genistein exhibits a strongly increased estrogenic effect. Because polymorphisms that reduce UGT1 expression are prevalent in the human population, these results suggest a cautionary attitude towards the consumption of large amounts of soy or soy supplements. -- Highlights: ► Gunn rats are partially deficient in detoxification by UDP glucuronyltransferases. ► Female Gunn rats are infertile on a soy containing diet. ► Soy contains genistein, a potent phytoestrogen. ► Inefficient glucuronidation of genistein causes female infertility.

  5. Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats

    Directory of Open Access Journals (Sweden)

    Cui X

    2018-03-01

    Full Text Available Xiang Cui,1,2,* Kun Liu,1,* Dandan Xu,1,3 Youyou Zhang,1,4 Xun He,1 Hao Liu,1,5 Xinyan Gao,1 Bing Zhu1 1Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China; 2College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China; 3Classic TCM Department, The Affiliated Hospital of Shandong University of TCM, Jinan, China; 4Acupuncture and Massage Department, Hangzhou Qihuang Traditional Chinese Medicine Clinic, Hangzhou, China; 5TCM and Rehabilitation Department, The Third Hospital of Ulanchap, Ulanchap, China *These authors contributed equally to this work Background: Acupuncture therapy plays a pivotal role in pain relief, and increasing evidence demonstrates that mast cells (MCs may mediate acupuncture analgesia. The present study aims to investigate the role of MCs in acupuncture analgesia using c-kit gene mutant–induced MC-deficient rats. Materials and methods: WsRC-Ws/Ws rats and their wild-type (WT littermates (WsRC-+/+ were used. The number of MCs in skin of ST36 area was compared in two rats after immunofluorescence labeling. Mechanical withdrawal latency (MWL, mechanical withdrawal threshold (MWT, and thermal withdrawal latency (TWL were measured on bilateral plantar for pain threshold evaluation before and after each stimulus. Acupuncture- and moxibustion-like stimuli (43°C, 46°C heat, 1 mA electroacupuncture [EA], 3 mA EA, and manual acupuncture [MA] were applied randomly on different days. Results: Fewer MCs were observed in the skin of ST36 in mutant rats compared to WT rats (P<0.001. For pain thresholds, MWL and MWT were higher in WsRC-Ws/Ws compared to WsRC-+/+ on bilateral paws (P<0.05, but TWL was not different between the two rats (P>0.05. Bilateral MWL and MWT in WsRC-+/+ rats increased significantly after each stimulus compared to baseline (P<0.01, P<0.001. In WsRC-Ws/Ws rats, only noxious stimuli could produce antinociceptive

  6. Distribution and reuse of 76Se-selenosugar in selenium-deficient rats

    International Nuclear Information System (INIS)

    Suzuki, Kazuo T.; Somekawa, Layla; Suzuki, Noriyuki

    2006-01-01

    Nutritional selenium compounds are transformed to the common intermediate selenide and then utilized for selenoprotein synthesis or excreted in urine mostly as 1β-methylseleno-N-acetyl-DD-galactosamine (selenosugar). Since the biological significance of selenosugar formation is unknown, we investigated their role in the formation of selenoenzymes in selenium deficiency. Rats were depleted of endogenous natural abundance selenium with a single stable isotope ( 82 Se) and then made Se-deficient. 76 Se-Selenosugar was administered intravenously to the rats and their urine, serum, liver, kidneys and testes were subjected to speciation analysis with HPLC inductively coupled argon plasma mass spectrometry. Most 76 Se was recovered in its intact form (approximately 80% of dose) in urine within 1 h. Speciation analysis revealed that residual endogenous natural abundance selenium estimated by 77 Se and 78 Se was negligible and distinct distributions of the labeled 76 Se were detected in the body fluids and organs without interference from the endogenous natural abundance stable isotope. Namely, intact 76 Se-selenosugar was distributed to organs after the injection, and 76 Se was used for selenoprotein synthesis. Oxidation to methylseleninic acid and/or hydrolysis of the selenoacetal group to methylselenol were proposed to the transformation of selenosugar for the reuse. Effective use of an enriched stable isotope as an absolute label in hosts depleted of natural abundance isotopes was discussed for application in tracer experiments

  7. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    International Nuclear Information System (INIS)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei

    2011-01-01

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (− 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (− 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  8. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats

    Directory of Open Access Journals (Sweden)

    Lee IC

    2016-06-01

    Full Text Available In-Chul Lee,1 Je-Won Ko,1 Sung-Hyeuk Park,1 Je-Oh Lim,1 In-Sik Shin,1 Changjong Moon,1 Sung-Hwan Kim,2 Jeong-Doo Heo,3 Jong-Choon Kim1 1College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 2Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, 3Gyeongnam Department of Environment and Toxicology, Korea Institute of Toxicology, Gyeongnam, Republic of Korea Abstract: Despite widespread use and prospective biomedical applications of copper nanoparticles (Cu NPs, their biosafety issues and kinetics remain unclear. Thus, the aim of this study was to compare the detailed in vivo toxicity of Cu NPs and cupric ions (CuCl2; Cu ions after a single oral dose. We determined the physicochemical characteristics of Cu NPs, including morphology, hydrodynamic size, zeta potential, and dissolution in gastric (pH 1.5, vehicle (pH 6.5, and intestinal (pH 7.8 conditions. We also evaluated the kinetics of Cu following a single equivalent dose (500 mg/kg of Cu NPs and Cu ions. Cu NPs had highest dissolution (84.5% only in gastric conditions when compared with complete dissolution of Cu ions under various physiological milieus. Kinetic analysis revealed that highest Cu levels in blood and tested organs of Cu NP-treated rats were 15%–25% lower than that of Cu ions. Similar to the case of Cu ions, Cu levels in the tested organs (especially liver, kidney, and spleen of Cu NP-treated rats increased significantly when compared with the vehicle control. However, delay in reaching the highest level and biopersistence of Cu were observed in the blood and tested organs of Cu NP-treated rats compared with Cu ions. Extremely high levels of Cu in feces indicated that unabsorbed Cu NPs or absorbed Cu ions were predominantly eliminated through liver/feces. Cu NPs exerted apparent toxicological effects at higher dose levels compared with Cu ions and showed sex-dependent differences in mortality, biochemistry, and

  9. 15-hydroxyprostaglandin dehydrogenase activity in vitro in lung and kidney of essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Toft, B.S.

    1978-01-01

    Weanling rats were fed for 6 months on a diet deficient in essential fatty acids: either fat-free, or with 28% (w/w) partially hydrogenated fish oil. Control rats were fed a diet with 28% (w/w) arachis oil for 6 months. 15-Hydroxyprostaglandin dehydrogenase activity was determined as initial rates...... of the two groups on diets deficient in essential fatty acids as compared to the control group. No difference was observed in dehydrogenase activity in the kidneys. The dehydrogenase may be of importance for the regulation of the level of endogenous prostaglandins and, thus, a decrease in activity could...

  10. Red mold rice promoted antioxidase activity against oxidative injury and improved the memory ability of zinc-deficient rats.

    Science.gov (United States)

    Lee, Bao-Hong; Ho, Bing-Ying; Wang, Chin-Thin; Pan, Tzu-Ming

    2009-11-25

    Zn deficiency is a common disease leading to memory impairment with increasing age. This study evaluated the protection effects of red mold rice (RMR) administration and Zn supplementation against memory and learning ability impairments from oxidative stress caused by Zn deficiency. Rats (4 weeks old) were induced to be Zn deficiency by a Zn-deficient diet for 12 weeks. After that, rats were administered Zn, 1xRMR, 5xRMR, and various dosages of RMR plus Zn, respectively. Decreases of antioxidant enzyme activities in the hippocampus and cortex were observed, and the levels of Ca, Fe, and Mg were increased in the hippocampus and cortex of Zn-deficient rats, leading to memory and learning ability injury. However, the administration of RMR (1- or 5-fold dosage) and with or without Zn significantly improved the antioxidase and neural activity to maintain cortex and hippocampus functions. This study demonstrates that RMR is a possible functional food for the prevention or cure of neural injury associated with Zn deficiency.

  11. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia.

    Science.gov (United States)

    Kesby, James P; Cui, Xiaoying; Burne, Thomas H J; Eyles, Darryl W

    2013-01-01

    Schizophrenia is a heterogeneous group of disorders with unknown etiology. Although abnormalities in multiple neurotransmitter systems have been linked to schizophrenia, alterations in dopamine (DA) neurotransmission remain central to the treatment of this disorder. Given that schizophrenia is considered a neurodevelopmental disorder we have hypothesized that abnormal DA signaling in the adult patient may result from altered DA signaling during fetal brain development. Environmental and genetic risk factors can be modeled in rodents to allow for the investigation of early neurodevelopmental pathogenesis that may lead to clues into the etiology of schizophrenia. To address this we created an animal model of one such risk factor, developmental vitamin D (DVD) deficiency. DVD-deficient adult rats display an altered behavioral profile in response to DA releasing and blocking agents that are reminiscent of that seen in schizophrenia patients. Furthermore, developmental studies revealed that DVD deficiency also altered cell proliferation, apoptosis, and neurotransmission across the embryonic brain. In particular, DVD deficiency reduces the expression of crucial dopaminergic specification factors and alters DA metabolism in the developing brain. We speculate such alterations in fetal brain development may change the trajectory of DA neuron ontogeny to induce the behavioral abnormalities observed in adult offspring. The widespread evidence that both dopaminergic and structural changes are present in people who develop schizophrenia prior to onset also suggest that early alterations in development are central to the disease. Taken together, early alterations in DA ontogeny may represent a core feature in the pathology of schizophrenia. Such a mechanism could bring together evidence from multiple risk factors and genetic vulnerabilities to form a convergent pathway in disease pathophysiology.

  12. Altered dopamine ontogeny in the developmentally vitamin D deficient rat and its relevance to schizophrenia

    Directory of Open Access Journals (Sweden)

    James P. Kesby

    2013-07-01

    Full Text Available Schizophrenia is a heterogeneous group of disorders with unknown aetiology. Although abnormalities in multiple neurotransmitter systems have been linked to schizophrenia, alterations in dopamine neurotransmission remain central to the treatment of this disorder. Given that schizophrenia is considered a neurodevelopmental disorder we have hypothesised that abnormal dopamine signalling in the adult patient may result from altered dopamine signalling during foetal brain development. Environmental and genetic risk factors can be modelled in rodents to allow for the investigation of early neurodevelopmental pathogenesis that may lead to clues into the aetiology of schizophrenia. To address this we created an animal model of one such risk factor, developmental vitamin D (DVD deficiency. DVD-deficient adult rats display an altered behavioural profile in response to dopamine releasing and blocking agents that are reminiscent of that seen in schizophrenia patients. Furthermore, developmental studies revealed that DVD deficiency also altered cell proliferation, apoptosis and neurotransmission across the embryonic brain. In particular, DVD deficiency reduces the expression of crucial dopaminergic specification factors and alters dopamine metabolism in the developing brain. We speculate such alterations in foetal brain development may change the trajectory of dopamine neuron ontogeny to induce the behavioural abnormalities observed in adult offspring. The widespread evidence that both dopaminergic and structural changes are present in people who develop schizophrenia prior to onset also suggest that early alterations in development are central to the disease. Taken together, early alterations in dopamine ontogeny may represent a core feature in the pathology of schizophrenia. Such a mechanism could bring together evidence from multiple risk factors and genetic vulnerabilities to form a convergent pathway in disease pathophysiology.

  13. Marginal zinc deficiency in pregnant rats impairs bone matrix formation and bone mineralization in their neonates.

    Science.gov (United States)

    Nagata, Masashi; Kayanoma, Megumu; Takahashi, Takeshi; Kaneko, Tetsuo; Hara, Hiroshi

    2011-08-01

    Zinc (Zn) deficiency during pregnancy may result in a variety of defects in the offspring. We evaluated the influence of marginal Zn deficiency during pregnancy on neonatal bone status. Nine-week-old male Sprague-Dawley rats were divided into two groups and fed AIN-93G-based experimental diets containing 35 mg Zn/kg (Zn adequately supplied, N) or 7 mg Zn/kg (low level of Zn, L) from 14-day preconception to 20 days of gestation, that is, 1 day before normal delivery. Neonates were delivered by cesarean section. Litter size and neonate weight were not different between the two groups. However, in the L-diet-fed dam group, bone matrix formation in isolated neonatal calvaria culture was clearly impaired and was not recovered by the addition of Zn into the culture media. Additionally, serum concentration of osteocalcin, as a bone formation parameter, was lower in neonates from the L-diet-fed dam group. Impaired bone mineralization was observed with a significantly lower content of phosphorus in neonate femurs from L-diet-fed dams compared with those from N-diet-fed dams. Moreover, Zn content in the femur and calvaria of neonates from the L-diet group was lower than that of the N-diet-fed group. In the marginally Zn-deficient dams, femoral Zn content, serum concentrations of Zn, and osteocalcin were reduced when compared with control dams. We conclude that maternal Zn deficiency causes impairment of bone matrix formation and bone mineralization in neonates, implying the importance of Zn intake during pregnancy for proper bone development of offspring.

  14. Studies on absorption, distribution, excretion and metabolism of 3H-1α-hydroxycholecalciferol in vitamin D deficient rats

    International Nuclear Information System (INIS)

    Tohira, Yasuo; Hinohara, Yoshikazu; Kamiyama, Hiroshi; Ogawa, Machiko; Nakano, Hideki

    1978-01-01

    The absorption, distribution, excretion and metabolism of 2- 3 H-1α-OH-D 3 (4.2 Ci/mmol) were studied in vitamin D deficient rats in comparison with the normal rats after oral or intravenous dosing. (1) Maximum blood level of administered radioactivity was observed at 8 hours after oral administration with apparent half life of 3.8 days. This blood level was higher than that in normal rat. (2) As in the normal rat, administered radioactivity was distributed relatively high in the liver, while any other specific distribution or accumulation was not observed in the another tissues, which was consistent to the finding in the normal rat. The tissue levels of the radioactivity were higher than these in the normal rat. (3) Urinary excretion of administered radioactivity was significantly higher, fecal and biliary excretion was significantly lower than that in the normal rat after intravenous dosing. (4) Relative percentage of 3 H-1α, 25-(OH) 2 -D 3 content to 3 H-1α-OH-D 3 content in tissues and blood was higher than that in the normal one. Above results suggest that in the vitamin D deficient state, the tissue accumulation of 1α-OH-D 3 was significantly augmented than in the normal rat, thus resulting increased bioavailability of its active metabolite, 1α, 25-(OH) 2 -D 3 . (author)

  15. Hematotoxicity response in rats by the novel copper-based anticancer agent: casiopeina II

    International Nuclear Information System (INIS)

    Vizcaya-Ruiz, A. de; Rivero-Mueller, A.; Ruiz-Ramirez, L.; Howarth, J.A.; Dobrota, M.

    2003-01-01

    The in vivo toxicity of the novel copper-based anticancer agent, casiopeina II (Cu(4,7-dimethyl-1,10-phenanthroline)(glycine)NO 3 ) (CII), was investigated. Casiopeinas are a family of copper-coordinated complexes that have shown promising anticancer activity. The major toxic effect attributed to a single i.v. administration of CII (5 mg/kg dose) in the rat was an hemolytic anemia (reduced hemoglobin concentration (HB), red blood cell (RBC) count and packed cell volume (PCV) accompanied by a marked neutrophilic leukocytosis) 12 h and 5 days after administration, attributed to a direct erythrocyte damage. Increased reticulocyte levels and presence of normoblasts in peripheral blood 5 days post-administration indicated an effective erythropoietic response with recovery at 15 days. Increase in spleen weight and the morphological evidence of congestion of the red pulp (RP) with erythrocytes (E) resulting in a higher ratio of red to white pulp (WP) was consistent with increased uptake of damaged erythrocytes by the reticuloendothelial system observed by histopathology and electron microscopy. Extramedullary hemopoiesis was markedly increased at 5 days giving further evidence of a regenerative erythropoietic response that had an effective recovery by 15 days. Morphological changes in spleen cellularity were consistent with hematotoxicity, mainly a reduction of the red pulp/white pulp ratio, increase in erythrocyte content at 12 h, and an infiltration of nucleated cells in the red pulp at 5 days, with a tendency towards recovery 15 days after administration. The erythrocyte damage is attributed to generation of free radicals and oxidative damage on the membrane and within cells resulting from the reduction of Cu(II) and the probable dissociation of the CII complex

  16. An experimental study of extraction wound healing in the calcium deficient rat and maxillofacial

    Energy Technology Data Exchange (ETDEWEB)

    You, Young Sun; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Kyung Hee University, (Korea, Republic of)

    1996-08-15

    The purpose of this study was to investigate effects of osteoporosis on extraction wound healing in the calcium deficient rat. In order to carry out this study, ten-week old Wistar strain rats weighing about 300 gms were selected. When the ras reached thirteen-week old, rat's mandibular first molar were removed. The rats were then divided into three groups : Group 1(rats given a normal diet both before and after tooth extraction), Group 2(rats given a low calcium diet for three weeks before tooth extraction and a normal diet after tooth extraction), and Group 3(rats given a low calcium diet for three weeks before and after tooth extraction). The healing of extraction wounds, as assessed by microradiography, autoradiography, and histopathologic examination, were compared among these three groups. The obtained results were as follows : 1. In Group 1, newly formed bone and active uptake of 45 Ca around extraction wound were noted on the 3rd and the 7th day. On the 14th and the 21st day, the extraction wounds of this group showed the bone trabecular formation and active 45 Ca uptake in the extraction wound and alveolar crest. The more prominent bone trabuculae with a less uptake of 45 Ca were noted on the 42nd day. 2. In Group 2, newly formed bone and thinning of alveolar bone trabeculae with more extensive uptake of 45 Ca than that in Group 1 were noted on the 3rd and the 7th day. On the 14th day, bone trabeculae were less thicker than that in Group 1. the prominent bone trabeculae in the extraction wounds and alveolar crest were noted on the 21st and the 42nd days. 3. In Group 3, newly formed bone was noted on the 3rd and the 7th day, Alveolar bone trabeculae and uptake of 45 Ca were similar to that in Group 2. On the 14th and 21st day, bone trabeculae were less thicker than that in Group 2 and group 3. the osteoporotic change with active uptake of 45 Ca was markedly noted on the 42nd day.

  17. An experimental study of extraction wound healing in the calcium deficient rat and maxillofacial

    International Nuclear Information System (INIS)

    You, Young Sun; Hwang, Eui Hwan; Lee, Sang Rae

    1996-01-01

    The purpose of this study was to investigate effects of osteoporosis on extraction wound healing in the calcium deficient rat. In order to carry out this study, ten-week old Wistar strain rats weighing about 300 gms were selected. When the ras reached thirteen-week old, rat's mandibular first molar were removed. The rats were then divided into three groups : Group 1(rats given a normal diet both before and after tooth extraction), Group 2(rats given a low calcium diet for three weeks before tooth extraction and a normal diet after tooth extraction), and Group 3(rats given a low calcium diet for three weeks before and after tooth extraction). The healing of extraction wounds, as assessed by microradiography, autoradiography, and histopathologic examination, were compared among these three groups. The obtained results were as follows : 1. In Group 1, newly formed bone and active uptake of 45 Ca around extraction wound were noted on the 3rd and the 7th day. On the 14th and the 21st day, the extraction wounds of this group showed the bone trabecular formation and active 45 Ca uptake in the extraction wound and alveolar crest. The more prominent bone trabuculae with a less uptake of 45 Ca were noted on the 42nd day. 2. In Group 2, newly formed bone and thinning of alveolar bone trabeculae with more extensive uptake of 45 Ca than that in Group 1 were noted on the 3rd and the 7th day. On the 14th day, bone trabeculae were less thicker than that in Group 1. the prominent bone trabeculae in the extraction wounds and alveolar crest were noted on the 21st and the 42nd days. 3. In Group 3, newly formed bone was noted on the 3rd and the 7th day, Alveolar bone trabeculae and uptake of 45 Ca were similar to that in Group 2. On the 14th and 21st day, bone trabeculae were less thicker than that in Group 2 and group 3. the osteoporotic change with active uptake of 45 Ca was markedly noted on the 42nd day.

  18. Cobalamin Deficiency Results in Increased Production of Formate Secondary to Decreased Mitochondrial Oxidation of One-Carbon Units in Rats.

    Science.gov (United States)

    MacMillan, Luke; Tingley, Garrett; Young, Sara K; Clow, Kathy A; Randell, Edward W; Brosnan, Margaret E; Brosnan, John T

    2018-03-01

    Formate is produced in mitochondria via the catabolism of serine, glycine, dimethylglycine, and sarcosine. Formate produced by mitochondria may be incorporated into the cytosolic folate pool where it can be used for important biosynthetic reactions. Previous studies from our lab have shown that cobalamin deficiency results in increased plasma formate concentrations. Our goal was to determine the basis for elevated formate in vitamin B-12 deficiency. Male Sprague Dawley rats were randomly assigned to consume either a cobalamin-replete (50 μg cobalamin/kg diet) or -deficient (no added cobalamin) diet for 6 wk. Formate production was measured in vivo and in isolated liver mitochondria from a variety of one-carbon precursors. We also measured the oxidation of [3-14C]-l-serine to 14CO2 in isolated rat liver mitochondria and the expression of hepatic genes involved in one-carbon unit and formate metabolism. Cobalamin-deficient rats produce formate at a rate 55% higher than that of replete rats. Formate production from serine was increased by 60% and from dimethylglycine and sarcosine by ∼200% in liver mitochondria isolated from cobalamin-deficient rats compared with cobalamin-replete rats. There was a 26% decrease in the 14CO2 produced by mitochondria from cobalamin-deficient rats. Gene expression analysis showed that 10-formyltetrahydrofolate dehydrogenase-cytosolic (Aldh1l1) and mitochondrial (Aldh1l2) expression were decreased by 40% and 60%, respectively, compared to control, while 10-formyltetrahydrofolate synthetase, mitochondrial, monofunctional (Mthfd1l) expression was unchanged. We propose that a bifurcation in mitochondrial one-carbon metabolism is a key control mechanism in determining the fate of one-carbon units, to formate or CO2. During cobalamin deficiency in rats the disposition of 10-formyl-tetrahydrofolate carbon is shifted in favor of formate production. This may represent a mechanism to generate more one-carbon units for the replenishment of the S

  19. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    Science.gov (United States)

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  20. Effect of dietary zinc deficiency on the accumulation of cadmium and metallothionein in selected tissues of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, M.P.

    1986-01-01

    The effect of continuous dietary zinc deficiency on the metabolism of the toxic heavy metal cadmium has not been widely studied. This investigation was designed to assess the effects of subadequate dietary zinc intake on the accumulation of dietary cadmium and on metallothionein (MT) and zinc concentrations in target organs of cadmium toxicity. Adult male Wistar rats (180-200 g) were allowed, ad libitum, diets either adequate (60 ppm) or deficient (7 ppm) in zinc for a total of 9 wk. The zinc-deficient diet resulted in an approximately 40% reduction in plasma zinc (assessed at 3, 6, and 9 wk) in the absence of overt signs of zinc deficiency (i.e., reduced weight gain, alopecia, etc.). Separate groups of rats were also maintained on zinc-defined diets for a total of 9 wk, but cadmium was added to the diet (0, 12.5, 25, 50, 100, and 200 ppm) a the end of wk 3 and maintained at that level throughout the remaining 6 wk of the study, when the rats were killed. The feeding of the zinc-deficient diet markedly enhanced the accumulation of cadmium in the liver, kidney, and testes. Hepatic, renal, and testicular zinc concentrations were not affected by suboptimal zinc intake alone. However, marked reductions in renal and testicular zinc concentrations were caused by zinc deficiency in concert with cadmium exposure. MT levels, when related to tissue cadmium concentrations, were elevated to a significantly lesser extent in the kidneys of zinc-deficient animals. These results indicate that marginal zinc deficiency markedly increases cadmium accumulation in various organs and reduces zinc content and MT induction in some organs.

  1. STUDY OF CLINICO- EPIDEMIOLOGICAL PROFILE OF PATIENTS ADMITTED WITH INFANTILE TREMOR SYNDROME (ITS AND STATUS OF TRACE ELEMENTS (ZINC, COPPER DEFICIENCY IN THEM

    Directory of Open Access Journals (Sweden)

    Mohan Makwana

    2017-03-01

    Full Text Available BACKGROUND Under nutrition is one of the major problems in the field of Paediatrics. The greatest risk of malnutrition is in the first two years of life. The effects of this early damage on health, brain development, intelligence, educability and productivity are potentially reversible. The current study was an attempt to find out the clinico epidemiological profile, evaluate them for trace elements deficiency and most appropriate management options in those who are admitted with infantile tremor syndrome. MATERIALS AND METHODS The current study was a hospital based cross sectional study that was conducted in the Department of Paediatrics, Dr. S. N. Medical College Jodhpur. Duration of study was One Year. Any child up to the age of three years of age admitted in the paediatric wards with typical features of infantile tremor syndrome. RESULTS Maximum numbers of patients were found between 6 months to 12 months of age, there was slight male predominance. The majority of infants in our study (85% were exclusively breast fed, 66% of cases were having low serum Copper level. 9% of cases were having low serum zinc level. 8% of cases were having low serum copper level with tremors. CONCLUSION In our study the fact that NTS is mainly seen in children who are exclusively breast feed for a longer period with delayed introduction of weaning foods. The main presenting features remain developmental delay, hyper pigmentation and anemia. Among nutritional factors, deficiency of copper and zinc in children plays a big role in development of disease. Thus to prevent the development of nutritional tremor syndrome stress should be on early timely introduction of weaning foods, especially rich in copper and zinc. What is already known about this Study- low levels of trace elements like copper and zinc may be responsible for typical clinical manifestations in patients of infantile tremor syndrome. Pronged and Exclusive breast feeding further aggravate these features

  2. [Effect of protein intervention on amino acid metabolism spectrum of Qi and Yin deficiency type 2 diabetic rats].

    Science.gov (United States)

    Ma, Li-Na; Mao, Xin-Min; Ma, Xiao-Li; Li, Lin-Lin; Wang, Ye; Tao, Yi-Cun; Wang, Jing-Wei; Guo, Jia-Jia; Lan, Yi

    2016-11-01

    To study the effect of plant protein and animal protein on amino acid metabolism spectrum of Qi and Yin deficiency type 2 diabetic rats. 110 male SD rats were randomly divided into blank group (n=10), diabetic model group (n=20), disease-symptoms group (n=80). The rats of blank group received ordinary feeding, while other groups were fed with high sugar and fat diets. During the whole process of feeding, rats of disease-symptoms group were given with Qingpi-Fuzi (15.75 g•kg⁻¹) once a day through oral administration. Five weeks later, the rats were given with a low dose of STZ (40 mg•kg⁻¹) by intraperitoneal injection to establish experimental diabetic models. Then the models were randomly divided into disease-symptoms group 1 (Qi and Yin deficiency diabetic group, 15.75 g•kg⁻¹), disease-symptoms group 2 (plant protein group, 0.5 g•kg⁻¹), disease-symptoms group 3 (animal protein group, 0.5 g•kg⁻¹), disease-symptoms group 4 (berberine group, 0.1 g•kg⁻¹). The drugs were given for 4 weeks by gavage administration. After 4 weeks of protein intervention, the abdominal aortic blood was collected and serum was isolated to analyze its free amino acid by using AQC pre-column derivatization HPLC and fluorescence detector. Four weeks after the protein intervention, plant protein, animal protein and berberine had no obvious effect on body weight and blood sugar in type 2 diabetic rats. As compared with animal protein group, histidine and proline(PYin deficiency type 2 diabetic SD rats. Symbolic differential compounds could be found through metabonomics technology, providing experimental basis for early warning of type 2 diabetes and diagnosis of Qi and Yin deficiency syndrome. Copyright© by the Chinese Pharmaceutical Association.

  3. Is brain copper deficiency in Alzheimer's, Lewy body, and Creutzfeldt Jakob diseases the common key for a free radical mechanism and oxidative stress-induced damage?

    Science.gov (United States)

    Deloncle, Roger; Guillard, Olivier

    2015-01-01

    In Alzheimer's (AD), Lewy body (LBD), and Creutzfeldt Jakob (CJD) diseases, similar pathological hallmarks have been described, one of which is brain deposition of abnormal protease-resistant proteins. For these pathologies, copper bound to proteins is able to protect against free radicals by reduction from cupric Cu++ to cupreous Cu+. We have previously demonstrated in bovine brain homogenate that free radicals produce proteinase K-resistant prion after manganese is substituted for copper. Since low brain copper levels have been described in transmissible spongiform encephalopathies, in substantia nigra in Parkinson's disease, and in various brain regions in AD, LBD, and CJD, a mechanism has been proposed that may underlie the neurodegenerative processes that occur when copper protection against free radicals is impaired. In peptide sequences, the alpha acid proton near the peptide bond is highly mobile and can be pulled out by free radicals. It will produce a trivalent α-carbon radical and induce a free radical chain process that will generate a D-amino acid configuration in the peptide sequence. Since only L-amino acids are physiologically present in mammalian (human) proteins, it may be supposed that only physiological L-peptides can be recycled by physiological enzymes such as proteases. If a D-amino acid is found in the peptide sequence subsequent to deficient copper protection against free radicals, it will not be recognized and might alter the proteasome L-amino acid recycling from brain peptides. In the brain, there will result an accumulation of abnormal protease-resistant proteins such as those observed in AD, LBD, and CJD.

  4. Effect of selenium and vitamin E deficiencies on the fate of arachidonic acid in rat isolated lungs

    International Nuclear Information System (INIS)

    Uotila, P.; Puustinen, T.

    1985-01-01

    The fate of exogenous 14 C-arachidonic acid ( 14 C-AA) was investigated in the isolated lungs of rats fed selenium and vitamin E deficient diet or diets supplemented with selenium and/or vitamin E. When 80 nmol of 14 C-AA was infused into the pulmonary circulation most of the infused 14 C-AA was found in different phospholipid and neutral lipid fractions of the perfused lungs. Only less than ten percent of the infused radioactivity was recovered in the perfusion effluent. The amount of arachidonate metabolites in the perfusion effluent was negligible, and most of the radioactivity in the perfusion effluent consisted of unmetabolized arachidonate. Selenium deficiency had no significant effect on the distribution of 14 C-AA in different lung lipid fractions. However, in the lungs of vitamin E deficient rats the amount of radioactivity was slightly increased in the neutral lipid fraction, which was due to the increased amount of 14 C-AA in the diacylglycerols. The amount of radioactivity was increased especially in the 1,3-diacylglycerols. The amount of radioactivity was increased especially in the 1,3-diacylglycerols. The amount of 14 C-AA in the triacylglycerols and in different phospholipids was not significantly changed. The present study might indicate that selenium deficiency has no significant effect on the fate of exogenous arachidonic acid in isolated rat lungs, and that vitamin E deficiency would slightly increase the amount of arachidonic acid in the diacylglycerols

  5. Effects of protein-deficient nutrition during rat pregnancy and development on developmental hindlimb crossing due to methylmercury intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, S.K.; Bai, Chengjiang [Montreal Univ., Quebec (Canada). Dept. de Medecine du Travail et Hygiene du Milieu

    2000-07-01

    Pregnant rats were fed either a control (20% protein) or low (3.5%) protein diet during gestation and lactation. The pups were separated from their mothers on postnatal day 21, and were given the same dient as their corresponding mothers. The groups of pups from each diet group were treated on either postnatal day 21 or postnatal day 60 with 7.5 mg methylmercury chloride (MeHgCl) per kg b.w. once daily by gavage for 10 consecutive days, and the development of ataxia (hind-limb corossing) was monitored. The offspring from mothers on the protein-deficient diet were found to be more sensitive to MeHg-induced ataxia than those on the protein-sufficient diet. The former accumulated more mercury in different brain regions than the latter. The rates of protein synthesis in different brain regions of the offspring fed the protein-deficient diet were significantly reduced compared with the rates in those fed the protein-sufficient diet. However, MeHg treatment did not significantly modify the rates of such protein synthesis further in protein-deficient rats. Thus, a significantly much higher inhibition of the intrinsic rates of protein synthesis in different brain regions due to severe protein deficiency, as observed in this study, may be partly responsible for the increased susceptibility of developing rats fed a protein-deficient diet to MeHg-induced ataxia, or hindlimb crossing, although other factor(s) might also be involved. (orig.)

  6. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose response (BBDR) Model***

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (HPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the 1-IPT axis. Model calibrations, carried out by adjusting key model...

  7. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model

    Science.gov (United States)

    A biologically-based dose response (BBDR) model for the hypothalamic-pituitary thyroid (BPT) axis in the lactating rat and nursing pup was developed to describe the perturbations caused by iodide deficiency on the HPT axis. Model calibrations, carried out by adjusting key model p...

  8. Impaired renal secretion of substrates for the multidrug resistance protein 2 in mutant transport-deficient (TR-) rats.

    NARCIS (Netherlands)

    Masereeuw, R.; Notenboom, S.; Smeets, P.H.E.; Wouterse, A.C.; Russel, F.G.M.

    2003-01-01

    Previous studies with mutant transport-deficient rats (TR(-)), in which the multidrug resistance protein 2 (Mrp2) is lacking, have emphasized the importance of this transport protein in the biliary excretion of a wide variety of glutathione conjugates, glucuronides, and other organic anions. Mrp2 is

  9. The vasopressin deficient Brattleboro rats: A natural knockout model used in the search for CNS effects of vasopressin

    NARCIS (Netherlands)

    Bohus, B; de Wied, David; Urban, I.J.A.; Burbach, J.P.H.; De Wied, D.

    1999-01-01

    Behavioral neuroscience is using mon and more gene knockout techniques to produce animals with a specific deletion. These studies have their precedent in nature. A mutation may result in a limited genetic defect, as seen in the vasopressin (VP) deficiency in the Brattleboro rat. The mutation is in a

  10. Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: An animal model of schizophrenia.

    Science.gov (United States)

    Kesby, James P; Burne, Thomas H J; McGrath, John J; Eyles, Darryl W

    2006-09-15

    Developmental vitamin D (DVD) deficiency has been proposed as a risk factor for schizophrenia. The behavioral phenotype of adult rats subjected to transient low prenatal vitamin D is characterized by spontaneous hyperlocomotion but normal prepulse inhibition of acoustic startle (PPI). The aim of this study was to examine the impact of selected psychotropic agents and one well-known antipsychotic agent on the behavioral phenotype of DVD deplete rats. Control versus DVD deplete adult rats were assessed on holeboard, open field and PPI. In the open field, animals were given MK-801 and/or haloperidol. For PPI, the animals were given apomorphine or MK-801. DVD deplete rats had increased baseline locomotion on the holeboard task and increased locomotion in response to MK-801 compared to control rats. At low doses, haloperidol antagonized the MK-801 hyperactivity of DVD deplete rats preferentially and, at a high dose, resulted in a more pronounced reduction in spontaneous locomotion in DVD deplete rats. DVD depletion did not affect either baseline or drug-mediated PPI response. These results suggest that DVD deficiency is associated with a persistent alteration in neuronal systems associated with motor function but not those associated with sensory motor gating. In light of the putative association between low prenatal vitamin D and schizophrenia, the discrete behavioral differences associated with the DVD model may help elucidate the neurobiological correlates of schizophrenia.

  11. DHT deficiency perturbs the integrity of the rat seminiferous epithelium by disrupting tight and adherens junctions.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Wenda-Różewicka, Lidia; Wiszniewska, Barbara

    2011-01-01

    In rats with a DHT deficiency induced by finasteride, morphological changes in the seminiferous epithelium were observed. The structural alterations were manifested by the premature germ cells sloughing into the lumen of seminiferous tubules. The etiology of this disorder could be connected with intercellular junctions disintegration. We showed in the immunohistochemical study the changes in expression of some proteins building tight and adherens junctions. The depression of N-cadherin, β-catenin and occludin immunoexpressions could be the reason for the release of immature germ cells from the seminiferous epithelium. However, the observed increase of the immunohistochemical reaction intensity of vinculin, one of the cadherin/catenin complex regulators, could be insufficient to maintain the proper function of adherens junctions. The hormonal imbalance appears to influence the pattern of expression of junctional proteins in the seminiferous epithelium. It could lead to untimely germ cells sloughing, and ultimately could impair fertility.

  12. Effect of intradermal human recombinant copper-zinc superoxide dismutase on random pattern flaps in rats.

    Science.gov (United States)

    Schein, Ophir; Westreich, Melvyn; Shalom, Avshalom

    2013-09-01

    Studies have focused on enhancing flap viability using superoxide dismutase (SOD), but only a few used SOD from human origin, and most gave the compound systemically. We evaluated the ability of SOD to improve random skin flap survival using human recombinant copper-zinc superoxide dismutase (Hr-CuZnSOD) in variable doses, injected intradermally into the flap. Seventy male Sprague Dawley rats were randomly assigned into 4 groups. Cephalic random pattern flaps were elevated on their backs and intradermal injections of different dosages of Hr-CuZnSOD were given 15 minutes before surgery. Flap survival was evaluated by fluorescein fluorescence. Analysis of variance (ANOVA) and t test statistical analyses were performed. Flap survival in all treated groups was significantly better than in the controls. The beneficial effect of HR-CuZnSOD on flap survival is attained when it is given intradermally into the flap tissue. Theoretically, Hr-CuZnSOD delivered with local anesthetics used in flap elevation may be a valuable clinical tool. Copyright © 2012 Wiley Periodicals, Inc.

  13. The effects of ionizing radiation in the rat's mandibular bone freeding the hypernomic calcium-deficient diet

    International Nuclear Information System (INIS)

    Hasegawa, Gen; Kurita, Akihiko; Nasu, Masanori; Furumoto, Keiichi

    1994-01-01

    The mandibles of rats in a group maintained on the Ca-deficient diet for a long period were irradiated with 30 Gy. To study the effects of radiation, serum Ca and inorganic phosphorus levels were determined for 3 weeks, and the data were compared with findings obtained from rats maintained on a standard diet by autoradiography using 45 Ca and microradiography. The serum Ca level tended to decrease with time after irradiation in the irradiated group maintained on the Ca-deficient diet, but there was no significant difference between the group maintained on the Ca-deficient diet and the group maintained on the standard diet. The serum inorganic phosphorus levels were almost constant throughout the observation period in both the non-irradiated and radiated groups regardless of diet. Uptake of 45 Ca was examined by autoradiography. Both the non-irradiated and irradiated groups maintained on the Ca-deficient diet showed intense 45 Ca uptake, there was almost no difference between these groups in photographic density or in weekly changes after irradiation. The microradiographic study of bone trabeculae revealed only slight changes in the bone cortex after irradiation in the group maintained on the standard diet. On day 3 after irradiation both thinning and roughness of the trabeculae were observed in the interradicular septa and incisal inferior margin and on day 7 in cancellous bone. In the groups maintained on the Ca-deficient diet, marked thinning and roughness of the trabeculae were observed mainly in the cancellous bone. (author)

  14. [Long-term effect of iodine deficiency on growth and food utilization rate in second filial generation rats].

    Science.gov (United States)

    Muyeseer, Ainiwaer; Zhang, G X; Wang, J; Liu, Y; Meng, X H; Liu, Q

    2017-02-06

    Objective: To study the effect of iodine deficiency on body weight, food consumption, and food utilization rate of second filial generation Wistar rats. Methods: According to the food pattern of a high-iodine deficient population, two types of low-iodine food have been produced using the main crops grown in this area (iodine levels of 50 and 20 μg/kg, respectively). Wistar rats were randomly divided into three groups, normal iodine group (NI group), low-iodine group one (LI group) and low-iodine group two (LII group), using the random number table method and fed diets containing 300, 50, and 20 μg/kg of iodine, respectively. Parental generation rats were fed until they reached reproductive age; first filial generation rats were allocated to the same diet as their mothers. After 3 months of feeding, first filial generation rats gave birth to second filial generation rats; second filial generation rats were allocated to the same diet as their mothers. After feeding for 90, 180, and 270 days, rats were sacrificed. One-way analysis of variance was used to analyze body weight, food intake, and food utilization rate data collected during the time of feeding and blood iodine hormone level, which was determined after sacrifice. Results: The LI and LII groups generally demonstrated decreased activity, slow reaction, and growth retardation compared with the NI group. After 270 days, the urine iodine levels of the LI and LII groups were 1.7 and 0.2 μg/L, respectively, which were significantly lower than the NI group (255.2 μg/L) ( Pfood intake of female and male rats after 270 days were (465.0±27.7), (658.4±28.6) and (423.0±13.2), (548.0±18.8) g, respectively, which were significantly lower than that of the NI group ((499.5±21.8), (760.8±33.0) g) ( Pfood utilization rate of female rats in the LI and LII groups was (8.7±0.4)% and (6.0±0.58)%, which was lower than that of the NI group ((11.7±3.5)%) ( Pfood intake, and food utilization rate among second filial

  15. Stage-specific and age-dependent profiles of zinc, copper, manganese, and selenium in rat seminiferous tubules

    International Nuclear Information System (INIS)

    Homma-Takeda, S.; Nishimura, Y.; Watanabe, Y.; Imaseki, H.; Yukawa, M.

    2004-01-01

    Stage-specific and age-dependent profiles of zinc, copper, manganese, and selenium in testis were examined in Wistar rats by both inductively coupled argon plasma-mass spectrometry (ICP-MS) with a microdissection technique and in situ elemental imaging of micro-PIXE analysis. The young adult animals (10 weeks old) contained higher levels of zinc and manganese in the seminiferous tubules at stages VII-VIII than stages XI through VI and IX-X and the levels were higher than those of the immature and old animals. Copper and selenium levels at stages VII-VIII of the young adult animals were also higher than those of the immature and old animals. In stages VII and VIII, zinc was higher in the central area of the seminiferous epithelium, where spermatozoa were localized, demonstrating a cell-specific property. (author)

  16. An experimental study of mandibular fracture wound healing in the calcium deficient rat

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Wang, Eui Hwan; Lee, Sang Rae

    1997-01-01

    The purpose of this study was to investigate effects of osteoporosis on fracture wound healing in the calcium deficient rat. To research the experiment some ten-week old Wistar strain rats with approximately 300 gms weight were selected. Then, the rats were divided into two groups : Normal diet group (rats given a normal diet before and after bone fracture) and Low calcium diet group (rats given a low calcium diet before and after bone fracture). Both groups had been provided with each diet for three weeks. When the rats became thirteen weeks old, the mandibular angle of rats in both groups was artificially fractured for test. The healing of fracture wounds was reviewed by using soft x-ray radiography and 99m Tc-MDP bone scan and also histopathologic examination. The obtained results were as follows : 1. The radiolucency of the fracture site for the Normal diet group started to decrease from the 14th day since the experiment was made, while the Low calcium diet group began decrease in the radiolucency from the 21st day of the experiment . The radiolucency for the normal diet group disappeared at the 42nd day, but one for the Low calcium diet group disappeared at the 56th day of the experiment. 2. The highest uptake rate of 99m Tc-MDP stood at the 14th day of the experiment in the Normal diet group and the Low calcium diet group's maximum rate was recorded at the 21st day of the experiment. These both groups were gradually experiencing decrease in the uptake rate as the experiment time was going on. However, the uptake rate in the Low calcium diet group was lower than one in the Normal diet group. 3. For the Normal diet group, the newly formed trabecular, which were similar to one of the surrounding bone, were seen at the 42nd day of the experiment. On the other hand, the Low claium diet group showed at the 56th day of the experiment that the osteoporotic findings looked weak, irregular trabecular, and also large bone marrow space were observed clearly. As a result

  17. Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats

    Directory of Open Access Journals (Sweden)

    Yang J

    2017-08-01

    Full Text Available Jing Yang,1,* Shifu Hu,1,* Meng Rao,1 Lixia Hu,2 Hui Lei,1 Yanqing Wu,1 Yingying Wang,1 Dandan Ke,1 Wei Xia,1,3 Chang-hong Zhu1,3 1Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 2Department of Histology and Embryology, Preclinical Medicine College, Xinxiang Medical University, Henan Province, Xinxiang, 3Reproductive Medicine Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China *These authors contributed equally to this work Abstract: Numerous studies have reported the accumulation of copper nanoparticles (Cu NPs in organs and the corresponding damage, although whether Cu NPs can be translocated to the ovaries and their ovarian toxicity are still unknown. In this study, three groups of female rats were injected with 3.12, 6.25, or 12.5 mg/kg Cu NPs for 14 consecutive days. The pathological changes, hormone levels, apoptosis and apoptotic proteins, oxidative stress, and gene expression characteristics in the ovaries were then investigated. The results demonstrated that the Cu NPs exhibited obvious accumulation in the rat ovaries, leading to ovarian injury, an imbalance of sex hormones, and ovarian cell apoptosis. Cu NP exposure activated caspase 3, caspase 8, caspase 9, and tBid, decreased the protein levels of Bcl-2, increased the expression levels of the proteins Bax and cytochrome c, and promoted malondialdehyde (MDA accumulation and superoxide dismutase (SOD reduction. Furthermore, gene microarray analysis showed that Cu NPs (12.5 mg/kg/d caused 321 differentially expressed genes. Of these, 180 and 141 genes were upregulated and downregulated, respectively. Hsd17b1, Hsd3b1, Hsd3b6, and Hsd3b were involved in steroid and hormone metabolism, whereas Mt3 and Cebpb were associated with apoptosis. Overall, these findings provide strong evidence that Cu NPs trigger both intrinsic and extrinsic

  18. Exercise prevented the lansoprazole-induced reduction of anti-osteoporotic efficacy of alendronate in androgen deficiency rats.

    Science.gov (United States)

    Cegieła, Urszula; Pytlik, Maria; Folwarczna, Joanna; Miozga, Rafał; Piskorz, Szymon; Nowak, Dorota

    2014-01-01

    Clinical studies indicate that proton pump inhibitors (PPIs), used long-term in elderly patients, increase the risk of osteoporotic fractures, and decrease the anti-fracture efficacy of alendronate. The aim of the present study was to examine the effect of physical exercise on the anti-osteoporotic efficacy of alendronate administered concurrently with lansoprazole, a PPI, in male rats with androgen deficiency induced by orchidectomy. Male Wistar rats at 3 months of age were divided into: sham-operated control rats, orchidectomized (ORX) control rats, ORX rats receiving alendronate, ORX rats receiving alendronate and lansoprazole, ORX rats receiving alendronate and subjected to exercise, and ORX rats receiving alendronate and lansoprazole and subjected to exercise. The orchidectomy or sham-operation was performed 7-8 days before the start of drug administration. The rats were subjected to the exercise on the treadmill 1 hour/day for 7 weeks (6 days a week). Alendronate sodium (3 mg/kg p.o.) and lansoprazole (4 mg/kg p.o.) were administered once daily for 7 weeks (6 days a week). Mechanical properties of the tibial metaphysis and femoral neck were assessed. Bone turnover markers, histomorphometric parameters, bone mass and mass of bone mineral were also studied. Lansoprazole weakened the anti-osteoporotic efficacy of alendronate. The exercise increased the alendronate effect. Similar changes were observed in the rats treated with lansoprazole and alendronate, subjected to exercise; no deleterious effects of lansoprazole were observed. In conclusion, the exercise prevented the lansoprazole-induced reduction the anti-osteoporotic efficacy of alendronate in orchidectomized rats.

  19. The effect of ingested sulfite on visual evoked potentials, lipid peroxidation, and antioxidant status of brain in normal and sulfite oxidase-deficient aged rats.

    Science.gov (United States)

    Ozsoy, Ozlem; Aras, Sinem; Ozkan, Ayse; Parlak, Hande; Aslan, Mutay; Yargicoglu, Piraye; Agar, Aysel

    2016-07-01

    Sulfite, commonly used as a preservative in foods, beverages, and pharmaceuticals, is a very reactive and potentially toxic molecule which is detoxified by sulfite oxidase (SOX). Changes induced by aging may be exacerbated by exogenous chemicals like sulfite. The aim of this study was to investigate the effects of ingested sulfite on visual evoked potentials (VEPs) and brain antioxidant statuses by measuring superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. Brain lipid oxidation status was also determined via thiobarbituric acid reactive substances (TBARS) in normal- and SOX-deficient aged rats. Rats do not mimic the sulfite responses seen in humans because of their relatively high SOX activity level. Therefore this study used SOX-deficient rats since they are more appropriate models for studying sulfite toxicity. Forty male Wistar rats aged 24 months were randomly assigned to four groups: control (C), sulfite (S), SOX-deficient (D) and SOX-deficient + sulfite (DS). SOX deficiency was established by feeding rats with low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg kg(-1) day(-1)) was given by gavage. Treatment continued for 6 weeks. At the end of the experimental period, flash VEPs were recorded. Hepatic SOX activity was measured to confirm SOX deficiency. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with the normal rats. The activity of SOX in deficient rats was thus in the range of humans. There was no significant difference between control and treated groups in either latence or amplitude of VEP components. Brain SOD, CAT, and GPx activities and brain TBARS levels were similar in all experimental groups compared with the control group. Our results indicate that exogenous administration of sulfite does not affect VEP components and the antioxidant/oxidant status of aged rat brains. © The Author

  20. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon.

    Science.gov (United States)

    Luan, Wei; Hammond, Luke Alexander; Cotter, Edmund; Osborne, Geoffrey William; Alexander, Suzanne Adele; Nink, Virginia; Cui, Xiaoying; Eyles, Darryl Walter

    2018-03-01

    Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.

  1. The Effects of Sinapic Acid on the Development of Metabolic Disorders Induced by Estrogen Deficiency in Rats

    Directory of Open Access Journals (Sweden)

    Maria Zych

    2018-01-01

    Full Text Available Sinapic acid is a natural phenolic acid found in fruits, vegetables, and cereals, exerting numerous pharmacological effects. The aim of the study was to investigate the influence of sinapic acid on biochemical parameters related to glucose and lipid metabolism, as well as markers of antioxidant abilities and parameters of oxidative damage in the blood serum in estrogen-deficient rats. The study was performed on 3-month-old female Wistar rats, divided into 5 groups, including sham-operated control rats, ovariectomized control rats, and ovariectomized rats administered orally with estradiol (0.2 mg/kg or sinapic acid (5 and 25 mg/kg for 28 days. The levels of estradiol, progesterone, interleukin 18, insulin, glucose, fructosamine, lipids, and enzymatic and nonenzymatic antioxidants (superoxide dismutase, catalase, and glutathione; total antioxidant capacity; and oxidative damage parameters (thiobarbituric acid-reactive substances, protein carbonyl groups, and advanced oxidation protein products were determined in the serum. Estradiol counteracted the carbohydrate and cholesterol metabolism disorders induced by estrogen deficiency. Sinapic acid increased the serum estradiol concentration; decreased insulin resistance and the triglyceride and total cholesterol concentrations; and favorably affected the parameters of antioxidant abilities (reduced glutathione, superoxide dismutase and oxidative damage (advanced oxidation protein products.

  2. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    Science.gov (United States)

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Dietary zinc deficiency effects dorso-lateral and ventral prostate of Wistar rats: histological, biochemical and trace element study.

    Science.gov (United States)

    Joshi, Sangeeta; Nair, Neena; Bedwal, R S

    2014-10-01

    Zinc deficiency has become a global problem affecting the developed and developing countries due to inhibitors in the diet which prevents its absorption or due to a very low concentration of bioavailable zinc in the diet. Being present in high concentration in the prostate and having diverse biological function, we investigated the effects of dietary zinc deficiency for 2 and 4 weeks on dorso-lateral and ventral prostate. Sixty prepubertal rats were divided into three groups: zinc control (ZC), pair fed (PF) and zinc deficient (ZD) and fed on 100 μg/g (zinc control and pair fed groups) and 1 μg/g (zinc deficient) diet. Zinc deficiency was associated with degenerative changes in dorso-lateral and ventral prostate as made evident by karyolysis, karyorhexis, cytoplasmolysis, loss of cellularisation, decreased intraluminar secretion and degeneration of fibromuscular stroma. In response, protein carbonyl, nitric oxide, acid phosphatase, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase increased, exhibiting variable level of significance. Total protein and total zinc concentration in dorso-lateral and ventral prostate as well as in serum decreased (P dorso-lateral and ventral prostate after dietary zinc deficiency as well as impairment of metabolic and secretory activity, reduced gonadotropin levels by hypothalamus -hypophysial system which is indicative of a critical role of zinc in maintaining the prostate integrity.

  4. The effect of insulin deficiency on the plasma clearance and exchange of high-density-lipoprotein phosphatidylcholine in rats.

    OpenAIRE

    Martins, I J; Redgrave, T G

    1992-01-01

    Triolein/cholesteryl oleate/cholesterol/phosphatidylcholine emulsions designed to model the lipid composition of chylomicrons were injected intravenously into control and streptozotocin-treated insulin-deficient rats. As previously described for lymph chylomicrons, the emulsion triolein was hydrolysed and phosphatidylcholine was transferred to the plasma high-density lipoproteins (HDL). This mechanism was used to introduce a phospholipid label into HDL in vivo. The subsequent clearance of pho...

  5. Folate Deficiency Is Associated With Oxidative Stress, Increased Blood Pressure, and Insulin Resistance in Spontaneously Hypertensive Rats

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kožich, V.; Krijt, J.; Sokolová, J.; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Mlejnek, Petr; Šilhavý, Jan; Oliyarnyk, O.; Kazdová, L.; Kurtz, T. W.

    2013-01-01

    Roč. 26, č. 1 (2013), s. 135-140 ISSN 0895-7061 R&D Projects: GA MZd(CZ) NS10036; GA MŠk(CZ) ME10019; GA ČR(CZ) GAP303/10/0505; GA MŠk(CZ) 7E10067 Institutional support: RVO:67985823 Keywords : blood pressure * ectopic fat accumulation * folate deficiency * homocysteine * hypertension * oxidative stress * spontaneously hypertensive rat Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.402, year: 2013

  6. Delayed plasma clearance and hepatic uptake of lymph chylomicron 14C-cholesterol in marginally zinc-deficient rats

    International Nuclear Information System (INIS)

    Koo, S.I.; Algilani, K.; Norvell, J.E.; Henderson, D.A.

    1986-01-01

    Previously, chylomicrons from marginally zinc-deficient rats were shown to be abnormally large, with markedly reduced levels of apoproteins C and E. In the present study, effects of such changes on the plasma clearance and hepatic uptake of chylomicron cholesterol were investigated in rats fed 3 ppm of zinc (ZD), as compared with those fed 30 ppm of zinc (CT). The rate of plasma clearance was determined by plasma 14C-radioactivity at different intervals after intravenous injection of lymph chylomicrons labeled in vivo with 14C-cholesterol. The 14C-clearance curves were nonlinear, consisting of an initial rapid phase followed by a slow phase of clearance. The initial 14C-clearance was significantly (p less than 0.05) delayed whether the labeled chylomicrons from ZD donors were injected into ZD or CT recipients. The hepatic 14C-recovery in extracted lipids was also significantly lower in ZD rats. The present data provide first evidence that a marginal level of zinc deficiency produces a significant delay in the plasma clearance and hepatic uptake of chylomicron cholesterol. This may be attributable in part to the molecular alterations of chylomicrons induced by zinc deficiency

  7. Endothelin-1-induced focal cerebral ischemia in the growth hormone/IGF-1 deficient Lewis Dwarf rat.

    Science.gov (United States)

    Yan, Han; Mitschelen, Matthew; Toth, Peter; Ashpole, Nicole M; Farley, Julie A; Hodges, Erik L; Warrington, Junie P; Han, Song; Fung, Kar-Ming; Csiszar, Anna; Ungvari, Zoltan; Sonntag, William E

    2014-11-01

    Aging is a major risk factor for cerebrovascular disease. Growth hormone (GH) and its anabolic mediator, insulin-like growth factor (IGF)-1, decrease with advancing age and this decline has been shown to promote vascular dysfunction. In addition, lower GH/IGF-1 levels are associated with higher stroke mortality in humans. These results suggest that decreased GH/IGF-1 level is an important factor in increased risk of cerebrovascular diseases. This study was designed to assess whether GH/IGF-1-deficiency influences the outcome of cerebral ischemia. We found that endothelin-1-induced middle cerebral artery occlusion resulted in a modest but nonsignificant decrease in cerebral infarct size in GH/IGF-1 deficient dw/dw rats compared with control heterozygous littermates and dw/dw rats with early-life GH treatment. Expression of endothelin receptors and endothelin-1-induced constriction of the middle cerebral arteries were similar in the three experimental groups. Interestingly, dw/dw rats exhibited reduced brain edema and less astrocytic infiltration compared with their heterozygous littermates and this effect was reversed by GH-treatment. Because reactive astrocytes are critical for the regulation of poststroke inflammatory processes, maintenance of the blood-brain barrier and neural repair, further studies are warranted to determine the long-term functional consequences of decreased astrocytic activation in GH/IGF-1 deficient animals after cerebral ischemia. Published by Oxford University Press on behalf of the Gerontological Society of America 2014.

  8. The bisphosphonate zoledronate prevents vertebral bone loss in mature estrogen-deficient rats as assessed by micro-computed tomography

    Directory of Open Access Journals (Sweden)

    Glatt M.

    2001-01-01

    Full Text Available The effect of long-term treatment with the bisphosphonate zoledronate on vertebral bone architecture was investigated in estrogen-deficient mature rats. 4-month-old rats were ovariectomized and development of cancellous osteopenia was assessed after 1 year. The change of bone architectural parameters was determined with a microtomographic instrument of high resolution. After 1 year of estrogen-deficiency, animals lost 55% of vertebral trabecular bone in comparison to sham operated control animals. Trabecular number (Tb.N and trabecular thickness (Tb.Th were significantly reduced in ovariectomized animals, whereas trabecular separation (Tb.Sp, bone surface to volume fraction (BS/BV and trabecular bone pattern factor (TBPf were significantly increased, indicating a loss of architectural integrity throughout the vertebral body. 3 groups of animals were treated subcutaneously with zoledronate for 1 year with 0.3, 1.5 and 7.5 microgram/kg/week to inhibit osteoclastic bone degradation. Administration started immediately after ovariectomy and treatment dose-dependently prevented the architectural bone deterioration and completely suppressed the effects of estrogen deficiency at the higher doses. The results show that microtomographic determination of static morphometric parameters can be used to quantitate the effects of drugs on vertebral bone architecture in small laboratory animals and that zoledronate is highly effective in this rat model.

  9. [Reparative regeneration of rat skin under influence of hollow cathode lamp (HCL) with manganese and copper line spectrum emission].

    Science.gov (United States)

    Mel'nikova, V I; Izvol'skaia, M S; Voronova, S N; Sharipova, M M; Rukin, E M; Zakharova, L A

    2010-01-01

    Influence of local light exposure by hollow cathode lamp with typical manganese and copper (HCL-Mn, Cu) line emission spectrum on posttraumatic regeneration rate of rat skin has been investigated. We performed the comparative analysis of the morphology and the differentiation ability of rat skin on the 15th and 24th days after full-thickness skin wound had been inflicted on rat dorsums. On the 15th day after injury, the experimental group (daily 30 s exposure for two weeks) showed scab loss, re-epithelialization, and hair regrowth, in contrast to the control rats, where scabs were still observed on the 24th day. Histological analysis revealed that in contrast to the control group the treatment with HCL-Mn, Cu resulted in the increased number of hair follicles and sebaceous glands, the decreased number of blood vessels and horizontal orientation of collagen fibers. The immunohistochemistry for OX-62 revealed that the number of dermal dendritic cells in the experimental groups was maximal on the 15th day, and then decreased to the 24th day after injury. The number of dermal dendritic cells was significantly lower in the control group. The immunohistochemistry for pan-keratins in the control animals revealed a high number of cells expressing different types of keratins, distributed in the main part of the epidermis on the 15th day after surgery, whereas in the experimental group the number of such cells was significantly lower and the cells were concentrated more close to the external part of the epidermis. The number of cells stained for keratin 19 was higher in the experimental group on the 15th day after surgery, whereas this number decreased in this group on the 24th day after surgery as compared to the control group. Thus, typical manganese and copper line spectrum emission emitted by hollow cathode lamp stimulates innate immunity, accelerates restoration of derma, skin epithelium and other skin derivates, and stimulates wound healing in general.

  10. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma.

    Science.gov (United States)

    Herken, Emine Nur; Kocamaz, Erdogan; Erel, Ozcan; Celik, Hakim; Kucukatay, Vural

    2009-08-01

    Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.

  11. Testing the hypothesis that vitamin C deficiency is a risk factor for clozapine-induced agranulocytosis using guinea pigs and ODS rats.

    Science.gov (United States)

    Ip, Julia; Wilson, John X; Uetrecht, Jack P

    2008-04-01

    The use of clozapine is limited by a relatively high incidence of drug-induced agranulocytosis. Clozapine is oxidized by bone marrow cells to a reactive nitrenium ion. Although many idiosyncratic drug reactions are immune-mediated, the fact that patients with a history of clozapine-induced agranulocytosis do not immediately develop agranulocytosis on rechallenge suggests that some other factor may be responsible for the idiosyncratic nature of this reaction. The reactive nitrenium ion is very rapidly reduced back to clozapine by vitamin C, and many schizophrenic patients are vitamin C deficient. We set out to test the hypothesis that vitamin C deficiency is a major risk factor for clozapine-induced agranulocytosis using a vitamin C deficient guinea pig model. Although the vitamin C deficient guinea pigs did not develop agranulocytosis, the amount of clozapine covalent binding in these animals was less than we had previously observed in samples from rats and humans. Therefore, we studied ODS rats that also cannot synthesize vitamin C. Vitamin C deficient ODS rats also did not develop agranulocytosis, and furthermore, although covalent binding in the bone marrow was greater than that in the guinea pig, it was not increased in the vitamin C deficient ODS rats relative to ODS rats that had adequate vitamin C in their diet. Therefore, it is very unlikely that vitamin C deficiency is a major risk factor for clozapine-induced agranulocytosis.

  12. Micronutrient problems of crops in Pakistan with special reference to zinc and copper deficiency in rice production

    International Nuclear Information System (INIS)

    Chaudhry, F.M.; Sharif, M.

    1975-01-01

    Studies on the mechanisms of zinc-65 adsorption by various types of soil are being conducted. The soils of the Hyderabad region of the Sind province appear to de deficient in Zn for maize and in B for cotton, sweet clover, wheat and millets. Zinc, Cu and B deficiency seems to be widespread for wheat on many non-rice growing soils of the Punjab. In the North Frontier Province, sugarbeet and citrus orchards respond markedly to the application of Zn, Cu and Fe. Lowland rice responds to the addition of Zn in all the provinces of Pakistan. In rice tracts of the Punjab, Zn and Cu deficiency is quite prevalent for rice. The scope of necessary future research is discussed

  13. [Correction of the combined vitamin deficiency in growing rats fed fiber enriched diets with different doses of vitamins].

    Science.gov (United States)

    Beketova, N A; Kodentsova, V M; Vrzhesinskaia, O A; Kosheleva, O V; Pereverzeva, O G; Sokol'nikov, A A; Aksenov, I V

    2014-01-01

    The effect of 5% dietary wheat bran (WB) on the correction of combined vitamin deficiency by two doses of vitamins (physiological and enhanced) has been analyzed using a rat model (8 groups, n = 8/group). Vitamin deficiency in male weanling Wistar rats (58.1 ± 0.5 g) was induced by 5-fold reduction of vitamin mixture amount in the feed and complete vitamin E, B1 and B2 exclusion from the mixture for 30 days, then deficit was corrected within 5 days. Rats from control group were fed a complete semisynthetic diet containing microcrystalline cellulose 2%. Vitamin deficient diet for 35 days resulted in reduced (p vitamin A in the liver by 25 fold, vitamin E and B1--2.0-2.3 fold, vitamin B2--by 40%, 25(OH)D blood plasma concentration--by 21% compared with the control. Feed consumption of the animals treated with vitamin deficient diet and WB was higher by 43% than in rats with vitamin deficit. Their rate of weight occupied the intermediate position between the rates of weight in deficit and in control animals, and they could not serve a full control to evaluate the WB impact on vitamin sufficiency. After filling the vitamin diet content to an adequate level vitamin E liver content was fully restored. To restore vitamins B1 and B2 liver level higher doses of vitamins (120-160% of adequate content) were required, and to restore the reduced levels of vitamin A in rat liver even 2-fold increased dose of vitamin A was insufficient. The diet enrichment with WB had no effect on vitamin B1 and B2 liver content, regardless of the amount of vitamins in the diet. Adding fiber to the diet of animals adequately provided with vitamins resulted in significantly 1,3-fold increase of 25(OH)D blood plasma concentration and a slight but significant decrease of α-tocopherol liver level by 16% as compared to rats not receiving WB. The enrichment of rat diet with dietary fibers worsened restoration of the reduced vitamin E status not only by filling vitamin content in the diet to an

  14. Effect of prolonged incubation with copper on endothelium-dependent relaxation in rat isolated aorta

    Science.gov (United States)

    Chiarugi, Alberto; Pitari, Giovanni Mario; Costa, Rosa; Ferrante, Margherita; Villari, Loredana; Amico-Roxas, Matilde; Godfraind, Théophile; Bianchi, Alfredo; Salomone, Salvatore

    2002-01-01

    We investigated the effects of prolonged exposure to copper (Cu2+) on vascular functioning of isolated rat aorta. Aortic rings were exposed to CuSO4 (3–24 h) in Dulbecco's modified Eagle medium with or without 10% foetal bovine serum (FBS) and then challenged with vasoconstrictors or vasodilators in the absence of Cu2+. Exposure to 2 μM Cu2+ in the absence of FBS did not modify the response to phenylephrine (PE) or acetylcholine (ACh) in aortic rings incubated for 24 h. Identical exposure in the presence of FBS increased the contractile response to 1 μM PE by 30% (P<0.05) and impaired the relaxant response to 3 μM ACh or 1 μM A23187 (ACh, from 65.7±7.1 to 6.2±1.1%, n=8; A23187, from 74.6±8.2 to 12.0±0.8%, n=6; P<0.01 for both). Cu2+ exposure did not affect the relaxant response to NO-donors. Impairment of vasorelaxation appeared 3 h after incubation with 2 μM Cu2+ and required 12 h to attain a steady state. Vasorelaxation to ACh was partially restored by 1 mM tiron (intracellular scavenger of superoxide ions; maximum relaxation 34.2±6.4%, n=10, P<0.01 vs Cu2+ alone), whereas catalase, superoxide dismutase or cycloheximide were ineffective. Twenty-four hour-exposure to 2 μM Cu2+ did not affect endothelium integrity or eNOS expression, and increased the Cu content in arterial rings from 6.8±1.1 to 18.9±2.9 ng mg−1 wet weight, n=8; P<0.01. Our results show that, in the presence of FBS, prolonged exposure to submicromolar concentrations of Cu2+ impaired endothelium-dependent vasorelaxation in aortic rings, probably through an intracellular generation of superoxide ions. PMID:12163352

  15. The Effect of Iron Deficiency on Osmotic Sensitivity of Red Blood Cells from Neonatal Rats and Their Mothers.

    Science.gov (United States)

    Al-Hashimi, L Mossa; Gambling, Lorraine; McArdle, H J

    2015-12-01

    Iron deficiency during pregnancy has many effects on both the mother and her developing foetus. These can be both short and long term. One effect is an alteration in fatty acid metabolism and we hypothesised that these changes may result in alterations in membrane function and structure. In order to test this hypothesis, we measured osmotic sensitivity in red blood cells isolated from neonates and their mothers at different times following birth. We fed female rats control or iron-deficient diets for 4 weeks prior to mating and kept them on the same diet until term. At that time, we returned one group of deficient dams to the control diet. The others were kept on the same diet. We showed that iron deficiency results in a decrease in osmotic sensitivity in the mothers but not in their neonates. Returning the dams to the control diet resulted in a return of their red cell osmotic sensitivity to control levels. In the neonates, there was no recovery in haematocrit or in any other parameter, though they did not get any worse, in contrast to the pups being suckled by deficient mothers. The data show two things. The first is that following birth, the mother restores her own iron stores at the expense of the pups, and secondly, there are differences in properties and sensitivities between red cells from mothers and their neonates. This latter observation cannot be explained by differences in the membrane fatty acid profiles, which were not significantly different.

  16. Concomitants of alcoholism: differential effects of thiamine deficiency, liver damage, and food deprivation on the rat brain in vivo.

    Science.gov (United States)

    Zahr, Natalie M; Sullivan, Edith V; Rohlfing, Torsten; Mayer, Dirk; Collins, Amy M; Luong, Richard; Pfefferbaum, Adolf

    2016-07-01

    Serious neurological concomitants of alcoholism include Wernicke's encephalopathy (WE), Korsakoff's syndrome (KS), and hepatic encephalopathy (HE). This study was conducted in animal models to determine neuroradiological signatures associated with liver damage caused by carbon tetrachloride (CCl4), thiamine deficiency caused by pyrithiamine treatment, and nonspecific nutritional deficiency caused by food deprivation. Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to evaluate brains of wild-type Wistar rats at baseline and following treatment. Similar to observations in ethanol (EtOH) exposure models, thiamine deficiency caused enlargement of the lateral ventricles. Liver damage was not associated with effects on cerebrospinal fluid volumes, whereas food deprivation caused modest enlargement of the cisterns. In contrast to what has repeatedly been shown in EtOH exposure models, in which levels of choline-containing compounds (Cho) measured by MRS are elevated, Cho levels in treated animals in all three experiments (i.e., liver damage, thiamine deficiency, and food deprivation) were lower than those in baseline or controls. These results add to the growing body of literature suggesting that MRS-detectable Cho is labile and can depend on a number of variables that are not often considered in human experiments. These results also suggest that reductions in Cho observed in humans with alcohol use disorder (AUD) may well be due to mild manifestations of concomitants of AUD such as liver damage or nutritional deficiencies and not necessarily to alcohol consumption per se.

  17. Niacin deficiency delays DNA excision repair and increases spontaneous and nitrosourea-induced chromosomal instability in rat bone marrow.

    Science.gov (United States)

    Kostecki, Lisa M; Thomas, Megan; Linford, Geordie; Lizotte, Matthew; Toxopeus, Lori; Bartleman, Anne-Pascale; Kirkland, James B

    2007-12-01

    We have shown that niacin deficiency impairs poly(ADP-ribose) formation and enhances sister chromatid exchanges and micronuclei formation in rat bone marrow. We designed the current study to investigate the effects of niacin deficiency on the kinetics of DNA repair following ethylation, and the accumulation of double strand breaks, micronuclei (MN) and chromosomal aberrations (CA). Weanling male Long-Evans rats were fed niacin deficient (ND), or pair fed (PF) control diets for 3 weeks. We examined repair kinetics by comet assay in the 36h following a single dose of ethylnitrosourea (ENU) (30mg/kg bw). There was no effect of ND on mean tail moment (MTM) before ENU treatment, or on the development of strand breaks between 0 and 8h after ENU. Repair kinetics between 12 and 30h were significantly delayed by ND, with a doubling of area under the MTM curve during this period. O(6)-ethylation of guanine peaked by 1.5h, was largely repaired by 15h, and was also delayed in bone marrow cells from ND rats. ND significantly enhanced double strand break accumulation at 24h after ENU. ND alone increased chromosome and chromatid breaks (four- and two-fold). ND alone caused a large increase in MN, and this was amplified by ENU treatment. While repair kinetics suggest that ND may be acting by creating catalytically inactive PARP molecules with a dominant-negative effect on repair processes, the effect of ND alone on O(6)-ethylation, MN and CA, in the absence of altered comet results, suggests additional mechanisms are also leading to chromosomal instability. These data support the idea that the bone marrow cells of niacin deficient cancer patients may be more sensitive to the side effects of genotoxic chemotherapy, resulting in acute bone marrow suppression and chronic development of secondary leukemias.

  18. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  19. Change of cholinergic transmission and memory deficiency induced by injection of b-amyloid protein into NBM of rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The change of cholinergic transmission of b-amyloid protein (b-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. b-AP1-40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of b-AP1-40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of b-AP1-40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh- release during behavioral performance was 57%, while in b-AP1-40 - treated rats it was 34%. The temporary in-crease of the ACh-release of the rat put into a new place was also significantly diminished in b-AP1-40 -treated rats. The results show that the injection of b-AP1-40 into NBM impairs the cholinergic transmission in frontal cortex, and the impairment of cholinergic transmission may be the main cause of the deficit of working memory.

  20. The effect of developmental vitamin D deficiency in male and female Sprague-Dawley rats on decision-making using a rodent gambling task.

    Science.gov (United States)

    Peak, J N; Turner, K M; Burne, T H J

    2015-01-01

    Developmental vitamin D (DVD) deficiency is a plausible risk factor for schizophrenia that has been associated with behavioural alterations including disruptions in latent inhibition and response inhibition. The rodent gambling task (rGT) assesses risk-based decision-making, which is a key cognitive deficit observed in schizophrenia patients. The primary aim of this study was to examine risk-based decision-making in DVD-deficient and control rats on the rGT. We also evaluated the performance of female Sprague-Dawley rats on the rGT for the first time. Adult male and female Sprague-Dawley rats from control and vitamin D deficient dams were trained to perform the rGT in standard operant chambers and their performance and choice-preferences were assessed. Female rats were significantly faster to reach rGT training criteria compared with male rats and DVD-deficient rats were faster to reach training criteria than control animals. After reaching stable performance on the rGT DVD-deficient and control rats showed a significant preference for the optimal choice-option in the rGT, but there were no significant effects of sex or diet on these responses. DVD deficiency did not alter the decision-making processes on the rGT because no significant changes in choice-preferences were evident. This is the first study to demonstrate that once established, the performance of females is comparable to male Sprague-Dawley rats on the rGT. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  1. Delayed erythropoiesis in irradiated rats grafted with syngeneic marrow: effects of cytotoxic drugs and iron-deficiency anemia

    International Nuclear Information System (INIS)

    Rodday, P.; Bennett, M.; Vitalle, J.J.

    1976-01-01

    Erythropoiesis in spleens of lethally irradiated Lewis rats grafted with 4-35 x 10 6 syngeneic marrow cells was inhibited or delayed during the test period of 5 days; this was in marked contrast to observations in irradiated mice. The mechanism of this inhibition was the subject of this study. Pretreatment of recipients 9 days prior to irradiation with the cytotoxic drugs cyclophosphamide (CY), busulfan (BUS), or dimethylmyleran (DMM), or the induction of iron deficiency with anemia in recipients reversed this delayed erythropoiesis. However, neither iron-deficiency anemia nor pretreatment with BUS or DMM affected the ability of irradiated recipients to reject 20 to 50 x 10 6 allogeneic marrow cells. The administration of commercial preparations of erythropoietin to hosts stimulated erythropoiesis moderately. However, proliferation of syngeneic marrow cells was not enhanced when infused into lethally irradiated spontaneous hypertensive (SH) inbred-strain rats which have high levels of endogenous erythropoietin. Finally, plasma from irradiated rats treated with phenylhydrazine to produce severe anemia was rich in erythropoietin but failed to stimulate erythropoiesis in the cell transfer system. Two hypotheses are considered

  2. Effect of an estrogen-deficient state and alendronate therapy on bone loss resulting from experimental periapical lesions in rats.

    Science.gov (United States)

    Xiong, Haofei; Peng, Bin; Wei, Lili; Zhang, Xiaolei; Wang, Li

    2007-11-01

    The aim of the research was to evaluate the impact of an estrogen-deficient state and alendronate (ALD) therapy on bone loss resulting from experimental periapical lesions in rats. Periapical lesions were induced on ovariectomized (OVX) and sham-ovariectomized (Sham) rats. After sample preparation, histologic and radiographic examination for periapical bone loss area and an enzyme histochemical test for tartrate-resistant acid phosphatase (TRAP) were performed. The results showed that OVX significantly increased bone loss resulting from periradicular lesions. After daily subcutaneous injection of ALD, the bone loss area and the number of TRAP-positive cells (osteoclasts) were reduced. These findings suggested that alendronate may protect against increased bone loss from experimental periapical lesions in estrogen-deficient rats. Given recent recognition of adverse effects of bisphosphonates, including an increased risk for osteonecrosis, the findings from this study should not be interpreted as a new indication for ALD treatment. However, they may offer insight into understanding and predicting outcomes in female postmenopausal patients already on ALD therapy for medical indications.

  3. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    collagen morphology and bone mineralisation in cortical bone as well as bone strength in GHD rats to try to clarify the explanation for the increased fracture rate. The Dw-4 rat was used as a model for GHD. This strain of rats has an autosomal recessive disorder, reducing GH synthesis to approximately 10...

  4. Subtle abnormalities of gait detected early in vitamin B6 deficiency in aged and weanling rats with hind leg gait analysis.

    Science.gov (United States)

    Schaeffer, M C; Cochary, E F; Sadowski, J A

    1990-04-01

    Motor abnormalities have been observed in every species made vitamin B6 deficient, and have been detected and quantified early in vitamin B6 deficiency in young adult female Long-Evans rats with hind leg gait analysis. Our objective was to determine if hind leg gait analysis could be used to detect vitamin B6 deficiency in weanling (3 weeks) and aged (23 months) Fischer 344 male rats. Rats (n = 10 per group) were fed: the control diet ad libitum (AL-CON); the control diet devoid of added pyridoxine hydrochloride (DEF); or the control diet pair-fed to DEF (PF-CON). At 10 weeks, plasma pyridoxal phosphate concentration confirmed deficiency in both age groups. Gait abnormalities were detected in the absence of gross motor disturbances in both aged and weanling DEF rats at 2-3 weeks. Width of step was significantly reduced (16%, p less than 0.003) in DEF aged rats compared to AL- and PF-CON. This pattern of response was similar to that reported previously in young adult rats. In weanling rats, pair feeding alone reduced mean width of step (+/- SEM) by 25% compared to ad libitum feeding (2.7 +/- 0.1 vs 3.6 +/- 0.1 cm for PF- vs AL-CON, respectively, p less than 0.05). In DEF weanling rats, width (3.0 +/- 0.1 cm) was increased compared to PF-CON (11%, p less than 0.05) but decreased compared to AL-CON (16%, p less than 0.05). Width of step was significantly altered early in B6 deficiency in rats of different ages and strains and in both sexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Intrauterine Zn Deficiency Favors Thyrotropin-Releasing Hormone-Increasing Effects on Thyrotropin Serum Levels and Induces Subclinical Hypothyroidism in Weaned Rats

    Directory of Open Access Journals (Sweden)

    Viridiana Alcántara-Alonso

    2017-10-01

    Full Text Available Individuals who consume a diet deficient in zinc (Zn-deficient develop alterations in hypothalamic-pituitary-thyroid axis function, i.e., a low metabolic rate and cold insensitivity. Although those disturbances are related to primary hypothyroidism, intrauterine or postnatal Zn-deficient adults have an increased thyrotropin (TSH concentration, but unchanged thyroid hormone (TH levels and decreased body weight. This does not support the view that the hypothyroidism develops due to a low Zn intake. In addition, intrauterine or postnatal Zn-deficiency in weaned and adult rats reduces the activity of pyroglutamyl aminopeptidase II (PPII in the medial-basal hypothalamus (MBH. PPII is an enzyme that degrades thyrotropin-releasing hormone (TRH. This hypothalamic peptide stimulates its receptor in adenohypophysis, thereby increasing TSH release. We analyzed whether earlier low TH is responsible for the high TSH levels reported in adults, or if TRH release is enhanced by Zn deficiency at weaning. Dams were fed a 2 ppm Zn-deficient diet in the period from one week prior to gestation and up to three weeks after delivery. We found a high release of hypothalamic TRH, which along with reduced MBH PPII activity, increased TSH levels in Zn-deficient pups independently of changes in TH concentration. We found that primary hypothyroidism did not develop in intrauterine Zn-deficient weaned rats and we confirmed that metal deficiency enhances TSH levels since early-life, favoring subclinical hypothyroidism development which remains into adulthood.

  6. Trace element deficiency and its diagnosis by biochemical criteria

    International Nuclear Information System (INIS)

    Kirchgessner, M.; Grassmann, E.; Roth, H.P.; Spoerl, R.; Schnegg, A.

    1976-01-01

    The effect of trace element deficiency on growth of rats and dairy cows is demonstrated using zinc and nickel. The effect of copper deficiency on reproductive performance is shown to be associated with increased death rates of pregnant animals and their foetuses. For the diagnosis of suboptimum states of trace element supply, biochemical criteria are needed. The mere analysis of the trace element content of various body tissues may lead to falase diagnoses because of the often slow response to varying intake and because of interactions with other dietary ingredients affecting absorption and metabolic efficiency of utilization. Thus copper deficiency is associated with a decrease in the serum level of both copper and iron, despite adequate iron intake, and simultaneously with an accumulation of iron in the liver of the animal. Enzymes and hormones containing the essential trace element as an integral constituent may serve as biochemical criteria. A sensitive response to zinc intake is exhibited by the activity of the alkaline phosphatase of serum or bones, and by the activity of the pancreatic carboxypeptidase A, all of which show a significant reaction to deficient intake within two to four days, and perhaps by the biopotency of insulin. Ceruloplasmin responds to the supply of copper. Its biosynthesis in the liver is possible only from copper available for this purpose. Thus, the determination of ceruloplasmin may take account of at least part of the copper available to the body for metabolic functions. Among various criteria, the catalase activity in blood may provide additional information on the state of iron supply. Malate dehydrogenase and glucose-6-phosphate dehydrogenase respond to nickel-deficient intake. Nickel deficiency also involves anaemia due to disorders in iron absorption

  7. Early-in-life dietary zinc deficiency and supplementation and mammary tumor development in adulthood female rats.

    Science.gov (United States)

    da Silva, Flávia R M; Grassi, Tony F; Zapaterini, Joyce R; Bidinotto, Lucas T; Barbisan, Luis F

    2017-06-01

    Zinc deficiency during pregnancy and postnatal life can adversely increase risk of developing human diseases at adulthood. The present study was designed to evaluate whether dietary zinc deficiency or supplementation during the pregnancy, lactation and juvenile stages interferes in the development of mammary tumors induced by 7,12-dimethylbenzanthracene (DMBA) in female Sprague-Dawley (SD) rats. Pregnant female SD rats were allocated into three groups: zinc-adequate diet (ZnA - 35-mg/kg chow), zinc-deficient diet (ZnD - 3-mg/kg chow) or zinc-supplemented diet (ZnS - 180-mg/kg chow) during gestational day 10 (GD 10) until the litters' weaning. Female offspring received the same diets as their dams until postnatal day (PND) 51. At PND 51, the animals received a single dose of DMBA (50 mg/kg, ig) and zinc-adequate diets. At PND 180, female were euthanized, and tumor samples were processed for histological evaluation and gene expression microarray analysis. The ZnD induced a significant reduction in female offspring body weight evolution and in mammary gland development. At late in life, the ZnD or ZnS did not alter the latency, incidence, multiplicity, volume or histological types of mammary tumors in relation to the ZnA group. However, the total tumor number in ZnS group was higher than in ZnA group, accompanied by distinct expression of 4 genes up- and 15 genes down-regulated. The present findings indicate that early-in-life dietary zinc supplementation, differently to zinc deficiency, has a potential to modify the susceptibility to the development of mammary tumors induced by DMBA. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Alterations in the Expression and Function of P-Glycoprotein in Vitamin A-Deficient Rats as well as the Effect of Drug Disposition in Vivo

    Directory of Open Access Journals (Sweden)

    Yubang Wang

    2015-12-01

    Full Text Available This study was aimed to investigate whether vitamin A deficiency could alter P-GP expression and function in tissues of rats and whether such effects affected the drug distribution in vivo of vitamin A-deficient rats. We induced vitamin A-deficient rats by giving them a vitamin A-free diet for 12 weeks. Then, Abcb1/P-GP expression was evaluated by qRT-PCR and Western blot. qRT-PCR analysis revealed that Abcb1a mRNA levels were increased in hippocampus and liver. In kidney, it only showed an upward trend. Abcb1b mRNA levels were increased in hippocampus, but decreased in cerebral cortex, liver and kidney. Western blot results were in good accordance with the alterations of Abcb1b mRNA levels. P-GP function was investigated through tissue distribution and body fluid excretion of rhodamine 123 (Rho123, and the results proclaimed that P-GP activities were also in good accordance with P-GP expression in cerebral cortex, liver and kidney. The change of drug distribution was also investigated through the tissue distribution of vincristine, and the results showed a significantly upward trend in all indicated tissues of vitamin A-deficient rats. In conclusion, vitamin A deficiency may alter Abcb1/P-GP expression and function in rat tissues, and the alterations may increase drug activity/toxicity through the increase of tissue accumulation.

  9. Effect of vitamin A deficiency on permeability of the small intestinal mucosa for macromolecules in adult rats

    International Nuclear Information System (INIS)

    Gmoshinskii, I.V.; Khvylya, S.I.; Kon', I.Ya.

    1987-01-01

    The authors study the effect of experimental vitamin A deficiency on absorption of macromolecules of hen's ovalbumin in the intestine. An electron-microscopic study of permeability of small intestine enterocytes for particles of colloidal lanthanum hydroxide La(OH) 3 was carried out at the same time. The concentration of unsplit hen's ovalbumin in the blood of the rats used in the experiment was determined by competitive radioimmunoassay. Samples of serum were incubated with indicator doses of 125 I-OA. Radioactivity of the precipitates was measured

  10. Differences in hepatic processing of dietary and intravenously administered copper in rats

    NARCIS (Netherlands)

    Kuipers, F; vandenBerg, GJ; Havinga, R; Vonk, RJ

    1997-01-01

    The biliary pathway represents the major excretory route for copper (Cu), It has been su red that glutathione (GSH) plays a role in this process, However, biliary secretion of endogenous Cu is unaffected in canalicular multispecific organic anion transporter (cmoat)/multi-drug resistance protein

  11. The Effect of the Aqueous Extract of Bidens Pilosa L. on Androgen Deficiency Dry Eye in Rats

    Directory of Open Access Journals (Sweden)

    Chuanwei Zhang

    2016-06-01

    Full Text Available Background/Aims: Bidens pilosa L. (Bp is widely distributed in China and has been widely used as a traditional Chinese medicine. The aim of this study was to examine the effect of the extract of Bp on androgen deficiency dry eye and determine its possible mechanisms. Methods: Twenty-four rats were randomly divided into four groups: Group Con (control, Group Sal (physiological saline, Group Fin (oral finasteride, and Group Bp (oral finasteride and Bp. The dry eye model was established in group Fin and group Bp. Aqueous tear quantity was measured with phenol red-impregnated cotton threads with anesthesia. Tear film breakup time (BUT and corneal epithelial damage were evaluated by fluorescein staining. Animals were sacrificed at 28 days, and ocular tissues (lacrimal gland and cornea were evaluated with light microscopy; gene microarray analysis for inflammatory cytokines and Western blot were also performed. Results: Finasteride administration effectively induced dry eye in rats by 14 days after administration. Group Fin rats had significantly higher fluorescein staining scores and lower aqueous tear quantity and BUT than the group Con rats, and notable inflammatory cell infiltrates were observed in the lacrimal gland of group Fin rats. The fluorescein staining score, aqueous tear quantity and BUT significantly improved with Bp treatment in the group Bp rats, and the structures of the lacrimal gland were well maintained without significant lymphocyte infiltration. Cytokine antibody array data identified the cytokines B7-2/Cd86, IL-1β, IL-4, IL-6, IL-10, MMP-8, FasL, TNF-α and TIMP-1 as candidates for validation by Western blot. Expression levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, in group Fin were upregulated compared with group Con. Levels of anti-inflammatory cytokines, such as IL-4 and IL-10, in group Fin were also upregulated compared with those in group Con. Compared with group Fin, IL-1β, FasL, and TNF

  12. The Effect of the Aqueous Extract of Bidens Pilosa L. on Androgen Deficiency Dry Eye in Rats.

    Science.gov (United States)

    Zhang, Chuanwei; Li, Kai; Yang, Zichao; Wang, Yuliang; Si, Haipeng

    2016-01-01

    Bidens pilosa L. (Bp) is widely distributed in China and has been widely used as a traditional Chinese medicine. The aim of this study was to examine the effect of the extract of Bp on androgen deficiency dry eye and determine its possible mechanisms. Twenty-four rats were randomly divided into four groups: Group Con (control), Group Sal (physiological saline), Group Fin (oral finasteride), and Group Bp (oral finasteride and Bp). The dry eye model was established in group Fin and group Bp. Aqueous tear quantity was measured with phenol red-impregnated cotton threads with anesthesia. Tear film breakup time (BUT) and corneal epithelial damage were evaluated by fluorescein staining. Animals were sacrificed at 28 days, and ocular tissues (lacrimal gland and cornea) were evaluated with light microscopy; gene microarray analysis for inflammatory cytokines and Western blot were also performed. Finasteride administration effectively induced dry eye in rats by 14 days after administration. Group Fin rats had significantly higher fluorescein staining scores and lower aqueous tear quantity and BUT than the group Con rats, and notable inflammatory cell infiltrates were observed in the lacrimal gland of group Fin rats. The fluorescein staining score, aqueous tear quantity and BUT significantly improved with Bp treatment in the group Bp rats, and the structures of the lacrimal gland were well maintained without significant lymphocyte infiltration. Cytokine antibody array data identified the cytokines B7-2/Cd86, IL-1β, IL-4, IL-6, IL-10, MMP-8, FasL, TNF-α and TIMP-1 as candidates for validation by Western blot. Expression levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, in group Fin were upregulated compared with group Con. Levels of anti-inflammatory cytokines, such as IL-4 and IL-10, in group Fin were also upregulated compared with those in group Con. Compared with group Fin, IL-1β, FasL, and TNF-α were significantly decreased in group Bp. The

  13. Histomorphometric and microchemical characterization of maturing dental enamel in rats fed a boron-deficient diet

    Science.gov (United States)

    Few reports are available in the literature on enamel formation under nutritional deficiencies. Continuously erupting rodent incisors have considerable potential to serve as a model system for amelogenesis. Thus, we performed a study to determine the effects of boron (B) deficiency on the maturing d...

  14. Deficiency and toxicity of nanomolar copper in low irradiance—A physiological and metalloproteomic study in the aquatic plant Ceratophyllum demersum

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, George [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Andresen, Elisa [University of Konstanz, Department of Biology, D-78457 Konstanz (Germany); Institute of Plant Molecular Biology, Department Plant Biophysics and Biochemistry, Biology Centre of the ASCR, Branišovská 31/1160, CZ-37005 České Budějovice (Czech Republic); Mattusch, Jürgen [UFZ − Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, D-04318 Leipzig (Germany); Hubáček, Tomáš [Institute of Hydrobiology, Department of Hydrochemistry and Ecosystem Modelling, Biology Centre of the ASCR, Na Sádkách 7, 37005 České Budějovice (Czech Republic); SoWa National Research Infrastructure, Biology Centre of the ASCR, Na Sádkách 7, 37005 České Budějovice (Czech Republic); and others

    2016-08-15

    Highlights: • Environmentally relevant toxicity and limitation of Cu were investigated. • Copper > 50nM replaces Mg in the LHCII‐trimers. • Deficiency causes decreased electron flow through PSII via lack of plastocyanin. • Of all metabolic pathways, photosynthesis was most affected by Cu toxicity. • Detection of Cu in the Chl peaks of LHCII suggests the generation of [Cu]‐Chl. - Abstract: Essential trace elements (Cu{sup 2+}, Zn{sup 2+}, etc) lead to toxic effects above a certain threshold, which is a major environmental problem in many areas of the world. Here, environmentally relevant sub-micromolar concentrations of Cu{sup 2+} and simulations of natural light and temperature cycles were applied to the aquatic macrophyte Ceratophyllum demersum a s a model for plant shoots. In this low irradiance study resembling non‐summer conditions, growth was optimal in the range 7.5–35 nM Cu, while PSII activity (F{sub v}/F{sub m}) was maximal around 7.5 nM Cu. Damage to the light harvesting complex of photosystem II (LHCII) was the first target of Cu toxicity (>50 nM Cu) where Cu replaced Mg in the LHCII-trimers. This was associated with a subsequent decrease of Chl a as well as heat dissipation (NPQ). The growth rate was decreased from the first week of Cu deficiency. Plastocyanin malfunction due to the lack of Cu that is needed for its active centre was the likely cause of diminished electron flow through PSII (Φ{sub PSII}). The pigment decrease added to the damage in the photosynthetic light reactions. These mechanisms ultimately resulted in decrease of starch and oxygen production.

  15. Dietary cellulose has no effect on the regeneration of hemoglobin in growing rats with iron deficiency anemia

    Directory of Open Access Journals (Sweden)

    M. Catani

    2003-06-01

    Full Text Available The objective of the present study was to determine the effect of cellulose on intestinal iron absorption in rats during recovery from iron deficiency anemia. Twenty-one-day-old male Wistar-EPM rats were fed an iron-free ration for two weeks to induce anemia. At 5 weeks of age, the rats were divided into two groups (both groups receiving 35 mg of elemental iron per kg diet: cellulose group (N = 12, receiving a diet containing 100 g of cellulose/kg and control (N = 12, receiving a diet containing no cellulose. The fresh weight of the feces collected over a 3-day period between the 15th and 18th day of dietary treatment was 10.7 ± 3.5 g in the group receiving cellulose and 1.9 ± 1.2 g in the control group (P<0.001. Total food intake was higher in the cellulose group (343.4 ± 22.0 g than in the control (322.1 ± 13.1 g, P = 0.009 during the 3 weeks of dietary treatment. No significant difference was observed in weight gain (cellulose group = 132.8 ± 19.2, control = 128.0 ± 16.3 g, hemoglobin increment (cellulose group = 8.0 ± 0.8, control = 8.0 ± 1.0 g/dl, hemoglobin level (cellulose group = 12.3 ± 1.2, control = 12.1 ± 1.3 g/dl or in hepatic iron levels (cellulose group = 333.6 ± 112.4, control = 398.4 ± 168.0 µg/g dry tissue. We conclude that cellulose does not adversely affect the regeneration of hemoglobin, hepatic iron level or the growth of rats during recovery from iron deficiency anemia.

  16. Effects of thiamine deficiency on food intake and body weight increment in adult female and growing rats.

    Science.gov (United States)

    Bâ, Abdoulaye

    2012-09-01

    The present study compared the effects of thiamine (vitamin B1) deficiency (TD) on the patterns of food intake and body weight in adult female and neonatal Wistar rats. The adults weighed 250-270 g at the start and were fed for 60 days either with a synthetic TD diet (211 B1) or with the same synthetic diet+thiamine (210 B1). TD led to a marked reduction in food intake and the body weight set point, both recovering rapidly to their initial level in only 3 days after dietetic reversion. The effects of TD in developing rats were evaluated by subjecting pregnant rats to thiamine restriction during different time windows: prenatal (3 days before mating to parturition); perinatal (7 days after mating to the 10th postnatal day); and postnatal (from parturition to weaning). The effect of TD on the occurrence of low birth weight and ponderal growth retardation was examined from postnatal days 1 to 45. Only perinatal TD significantly decreased birth weight relative to untreated or pair-fed controls. Moreover, compared with the control treatments, ponderal growth retardation was not induced by prenatal TD, whereas induction of TD from perinatal into postnatal periods did cause ponderal growth retardation, with long-lasting effects persisting in adulthood. The results suggest a major physiological role of thiamine in the homeostasis of body weight programming, increment, and set point regulation in both offspring and adult female rats.

  17. In vitro Toxicity and Inflammatory Response Induced by Copper Nanoparticles in Rat Alveolar Macrophages

    Science.gov (United States)

    2008-03-01

    blood from intestinal mucosal cells (Linder and Hazegh-Azam, 1996:799S). Wilson’s disease is a genetic disorder that causes ineffective copper...mucociliary escalator, is via the trachea and subsequently cleared in the esophagus (Lam, et al., 2004:131). However, various situations exist in which...to motor oil,” Wear, 252(1-2): 63-69 (January 2002). Teeguarden, Justin G., Paul M. Hinderliter, Galya Orr, Brian D. Thrall, and Joel G. Pounds

  18. Peculiarities of the free radical processes in rat liver mitochondria under toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2016-04-01

    Full Text Available The rate of superoxide anion radical, hydroxyl radical and hydrogen peroxide generation, the level of oxidative modification of mitochondrial proteins in the liver of rats with toxic hepatitis was investigated on the background of alimentary protein deficiency. We did not find significant increases of the intensity of free radical processes in liver mitochondria of rats maintained on the protein-deficient ration. The most significant intensification of free radical processes in liver mitochondria is observed under the conditions of toxic hepatitis, induced on the background of alimentary protein deprivation. Under these conditions the aggravation of all studied forms of reactive oxygen species generation was observed in liver mitochondria. The generation rates were increased as follows: O2 – by 1.7 times, Н2О2 – by 1.5 times, •ОН – practically double on the background of accumulation of oxidized mitochondria-derived proteins. The established changes in thiol groups’ redox status of respiratory chain proteins insoluble in 0.05 M sodium-phosphate buffer (pH 11.5, and changes of their carbonyl derivatives content may be considered as one of the regulatory factors of mitochondrial energy-generating function.

  19. Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: A possible link with Parkinson's disease.

    Science.gov (United States)

    Abbaoui, Abdellatif; Chatoui, Hicham; El Hiba, Omar; Gamrani, Halima

    2017-11-01

    Numerous findings indicate an involvement of heavy metals in the neuropathology of several neurodegenerative disorders, especially Parkinson's disease (PD). Previous studies have demonstrated that Copper (Cu) exhibits a potent neurotoxic effect on dopaminergic neurons and triggers profound neurobehavioral alterations. Curcumin is a major component of Curcuma longa rhizomes and a powerful medicinal plant that exerts many pharmacological effects. However, the neuroprotective action of curcumin on Cu-induced dopaminergic neurotoxicity is yet to be investigated. The aim of the present study was to evaluate the impact of acute Cu-intoxication (10mg/kg B.W. i.p) for 3days on the dopaminergic system and locomotor performance as well as the possible therapeutic efficacy of curcumin I (30mg/kg B.W.). Intoxicated rats showed a significant loss of Tyrosine Hydroxylase (TH) expression within substantia nigra pars compacta (SNc), ventral tegmental area (VTA) and the striatal outputs. This was correlated with a clear decrease in locomotor performance. Critically, curcumin-I co-treatment reversed these changes and showed a noticeable protective effect; both TH expression and locomotor performance was reinstated in intoxicated rats. These results demonstrate altered dopaminergic innervations following Cu intoxication and a new therapeutic potential of curcumin against Cu-induced dopaminergic neurotransmission failure. Curcumin may therefore prevent heavy metal related Parkinsonism. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Isotope dilution measurement of copper absorption and excretion in rats fed different carbohydrates

    International Nuclear Information System (INIS)

    Johnson, P.E.; Bowman, T.D.

    1986-01-01

    An isotope dilution method using 67 Cu was developed to measure true absorption (A) and endogenous excretion (EE) of Cu in rats. Specific activity (SA) of injected 67 Cu was least variable in 7 tissues on days 6-8 after injection. SA of feces compared to tissues was used to calculate EE and A. This method was used to study Cu metabolism in rats fed 5 ppm or 0.4 ppm Cu and diets containing fructose (FR), glucose (GL), sucrose (SU), or cornstarch (CS). In rats fed 5 ppm Cu, the A, EE, and balance (B) were greatest for CS animals. There were no differences in A, B, or EE between FR and SU rats (p > .05). Rats fed GL had B and A lower than other groups (p .05). Liver Cu did not differ among groups fed 0.4 ppm Cu. Kidney Cu was higher ( p .05) compared to rats fed GL and 5 ppm Cu. EE was significantly lower in all groups on 0.4 ppm Cu than 5 ppm Cu. EE was 1 μg Cu/d on the 0.4 ppm Cu diet

  1. Relationship of antioxidant and oxidative stress markers in different organs following copper toxicity in a rat model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay [Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow (India); Kalita, Jayantee, E-mail: jayanteek@yahoo.com [Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow (India); Bora, Himangsu K. [National Laboratory Animal Centre, CSIR-Central Drug Research Institute, Lucknow (India); Misra, Usha K. [Department of Neurology, Sanjay Gandhi Post Graduate Medical Sciences, Lucknow (India)

    2016-02-15

    Copper (Cu) at a higher level becomes toxic and it can catalyze the formation of highly reactive hydroxyl radical. We report the vulnerability of liver, kidney and brain to different dose of copper sulfate (CuSO{sub 4}) induced oxidative stress at different time duration. Fifty-four male Wistar rats (weight range = 205 ± 10 g) were equally divided into three groups. CuSO{sub 4} was administered orally to the experimental groups (Group-II and III) up to 90 days in a dose of 100 and 200 mg/Kg body weight per day. Saline water was given to the control group (Group-I). At the end of 30, 60 and 90 days of administration, neurobehavioral studies were done and six rats from each group were sacrificed. Their liver, kidney and brain tissues were subjected for Cu, glutathione (GSH), malondialdehyde (MDA) and total antioxidant capacity (TAC) assay. Blood urea nitrogen (BUN), serum creatinine, bilirubin and transaminases were measured. GSH, TAC and MDA levels were correlated with the markers of respective organ dysfunction. Administration of CuSO{sub 4} resulted in increased free Cu and MDA level, and decrease GSH and TAC levels in group-II and III compared with group-I. In experimental groups, the reduction in TAC and GSH levels was maximum in liver tissue followed by brain and kidney; whereas increase in MDA level was highest in liver followed by brain and kidney at 30, 60 and 90 days. TAC and GSH levels in the liver inversely correlated with serum transaminases and bilirubin, and tissue free Cu, and positively correlated with MDA levels. Free Cu level in kidney tissue and BUN inversely correlated with TAC and GSH, and positively with MDA level. Grip-strength, rotarod and Y-maze findings were inversely correlated with brain free Cu and MDA levels and positively with GSH and TAC levels. The oxidative stress was highest in liver followed by brain and kidney after oral CuSO{sub 4} exposure in a rat model. These levels correlated with the respective organ dysfunction and tissue

  2. Growth hormone and IGF-1 deficiency exacerbate high-fat diet-induced endothelial impairment in obese Lewis dwarf rats: implications for vascular aging.

    Science.gov (United States)

    Bailey-Downs, Lora C; Sosnowska, Danuta; Toth, Peter; Mitschelen, Matthew; Gautam, Tripti; Henthorn, Jim C; Ballabh, Praveen; Koller, Akos; Farley, Julie A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2012-06-01

    Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1-deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-induced inflammation. GH/IGF-1 deficiency also exacerbated HFD-induced endothelial dysfunction, oxidative stress, and expression of inflammatory markers (tumor necrosis factor-α, ICAM-1) in aortas of Lewis dwarf rats. Overall, our results are consistent with the available clinical and experimental evidence suggesting that GH/IGF-1 deficiency renders the cardiovascular system more vulnerable to the deleterious effects of obesity.

  3. Vitamin C and Vitamin E in Prevention of Nonalcoholic Fatty Liver Disease (NAFLD in Choline Deficient Diet Fed Rats

    Directory of Open Access Journals (Sweden)

    Lopasso Fabio P

    2003-10-01

    Full Text Available Abstract Aim Oxidative stress has been implicated in the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD. Vitamin C and vitamin E are known to react with reactive oxygen species (ROS blocking the propagation of radical reactions in a wide range of oxidative stress situations. The potential therapeutic efficacy of antioxidants in NAFLD is unknown. The aim of this study was to evaluate the role of antioxidant drugs (vitamin C or vitamin E in its prevention. Methods Fatty liver disease was induced in Wistar rats by choline-deficient diet for four weeks. The rats were randomly assigned to receive vitamin E (n = 6 – (200 mg/day, vitamin C (n = 6 (30 mg/Kg/day or vehicle orally. Results In the vehicle and vitamin E-treated rats, there were moderate macro and microvesicular fatty changes in periportal area without inflammatory infiltrate or fibrosis. Scharlach stain that used for a more precise identification of fatty change was strong positive. With vitamin C, there was marked decrease in histological alterations. Essentially, there was no liver steatosis, only hepatocellular ballooning. Scharlach stain was negative. The lucigenin-enhanced luminescence was reduced with vitamin C (1080 ± 330 cpm/mg/minx103 as compared to those Vitamin E and control (2247 ± 790; 2020 ± 407 cpm/mg/minx103, respectively (p Conclusions 1 Vitamin C reduced oxidative stress and markedly inhibited the development of experimental liver steatosis induced by choline-deficient diet ; 2Vitamin E neither prevented the development of fatty liver nor reduced the oxidative stress in this model.

  4. Early histological and functional effects of chronic copper exposure in rat liver.

    Science.gov (United States)

    Cisternas, Felipe A; Tapia, Gladys; Arredondo, Miguel; Cartier-Ugarte, Denise; Romanque, Pamela; Sierralta, Walter D; Vial, María T; Videla, Luis A; Araya, Magdalena

    2005-10-01

    Cu is an essential trace element capable of producing toxic effects in animals and man when ingested acutely or chronically in excess. Although chronic Cu exposure is increasingly recognized as a public health issue, its early effects remain largely unknown. We approached the significance of a moderate chronic Cu load in young rats to correlate early hepatic histopathological changes with functional alterations of liver cells. For this purpose, supplementation with 1,200 ppm of Cu in rat food for 16 weeks was chosen. In these conditions, Cu load elicited a significant decrease in growth curves. There were mild light microscopy alterations in Cu-treated rats, although increasing intracellular Cu storage was correlated with longer Cu exposure both by histological and biochemical measurements. Ultrastructural alterations included lysosomal inclusions as well as mitochondrial and nuclear changes. Liver perfusion studies revealed higher rates of basal O(2) consumption and colloidal carbon-induced O(2) uptake in Cu-treated rats, with enhanced carbon-induced O(2)/carbon uptake ratios and NF-kappaB DNA binding activity. These changes were time-dependent and returned to control values after 12 or 16 weeks. It is concluded that subchronic Cu loading in young rats induces early hepatic morphological changes, with enhancement in Küpffer cell-dependent respiratory burst activity and NF-kappaB DNA binding, cellular responses that may prevent or alleviate the hepatotoxicity of the metal.

  5. Suppression Effects of Betaine-Enriched Spinach on Hyperhomocysteinemia Induced by Guanidinoacetic Acid and Choline Deficiency in Rats

    Directory of Open Access Journals (Sweden)

    Yi-Qun Liu

    2014-01-01

    Full Text Available Betaine is an important natural component of rich food sources, especially spinach. Rats were fed diets with betaine or spinach powder at the same level of betaine for 10 days to investigate the dose-dependent effects of spinach powder supplementation on hyperhomocysteinemia induced by guanidinoacetic acid (GAA addition and choline deprivation. The GAA-induced hyperhomocysteinemia in rats fed 25% casein diet (25C was significantly suppressed by supplementation with betaine or spinach, and it was completely suppressed by taking 11.0% spinach supplementation. The choline deprivation-induced enhancement of plasma homocysteine concentration in rats fed 25% soybean protein diet (25S was markedly suppressed by 3.82% spinach. Supplementation with betaine or spinach partially prevented the effects of GAA on hepatic concentrations of methionine metabolites. The decrease in activity of betaine-homocysteine S-methyltransferase (BHMT and cystathionine β-synthase (CBS in GAA-induced hyperhomocysteinemia was recovered by supplementation with betaine or spinach. Supplementation with betaine or spinach did not affect BHMT activity, whereas it partially restored CBS activity in choline-deprived 25S. The results indicated that betaine or spinach could completely suppress the hyperhomocysteinemia induced by choline deficiency resulting from stimulating the homocysteine removal by both remethylation and cystathionine formation.

  6. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    Science.gov (United States)

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  7. Selective deficiencies in descending inhibitory modulation in neuropathic rats: implications for enhancing noradrenergic tone.

    Science.gov (United States)

    Patel, Ryan; Qu, Chaoling; Xie, Jennifer Y; Porreca, Frank; Dickenson, Anthony H

    2018-05-31

    Pontine noradrenergic neurones form part of a descending inhibitory system that influences spinal nociceptive processing. Weak or absent descending inhibition is a common feature of chronic pain patients. We examined the extent to which the descending noradrenergic system is tonically active, how control of spinal neuronal excitability is integrated into thalamic relays within sensory-discriminative projection pathways, and how this inhibitory control is altered after nerve injury. In vivo electrophysiology was performed in anaesthetised spinal nerve ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus (VPL). In sham rats, spinal block of α2-adrenoceptors with atipamezole resulted in enhanced stimulus-evoked and spontaneous firing in the VPL, and produced conditioned place avoidance. However, in SNL rats these conditioned avoidance behaviours were absent. Furthermore, inhibitory control of evoked neuronal responses was lost but spinal atipamezole markedly increased spontaneous firing. Augmenting spinal noradrenergic tone in neuropathic rats with reboxetine, a selective noradrenergic reuptake inhibitor, modestly reinstated inhibitory control of evoked responses in the VPL but had no effect on spontaneous firing. In contrast, clonidine, an α2 agonist, inhibited both evoked and spontaneous firing, and exhibited increased potency in SNL rats compared to sham controls. These data suggest descending noradrenergic inhibitory pathways are tonically active in sham rats. Moreover, in neuropathic states descending inhibitory control is diminished, but not completely absent, and distinguishes between spontaneous and evoked neuronal activity. These observations may have implications for how analgesics targeting the noradrenergic system provide relief.

  8. Effects of Qiangji Jianli Yin on the hypothalamus CRH contents and plasma ACTH, cortisol levels in rat models of kidney-yang deficiency syndrome

    International Nuclear Information System (INIS)

    Zhao Hui; Chen Zhixi; Chen Jinyan; Li Zhiqiang; He Zanhou

    2007-01-01

    Objective: To investigate the effects of qiangji jianli yin on hypothalamus CRH contents and plasma ACTH, Cortisol levels in rat models with kidney-yang deficiency syndrome. Methods: Rat models of kidney-yang deficiency syndrome were prepared with intramuscular injuection of hydroeortisone and divided into 5 groups: (1) no further treatment, n=13 (2) treated with high dosage d qiangji jiandi yin, n=12 (3) treated with medium dosage of qiangji jianli yin, n=12 (4) treated with low dosage of qiangji jianli yin n=12, (5) treated with yougui wan, n=12. Ten rats injuected with intramuscular distilled water only served as controls. The animals were sacrificied 14 days later and the hypothalamus CRH contents as well as plasma AOM and cortisol levels were measured with RIA. The thymus gland weight index and the adrenal gland index were calculated. Results: (1) The hypothalamus CRH contents and plasma ACTH, cortisol levels were significantly lower (P<0.01) in the rat models of kidney-yang deficiency syndrome without any treatment thas those in controls rats; the thymus and adrenal gland weight index were significantly decreased too (P <0.01). The CRH conteats and ACTH, cortisol levels in all the three group of rat model treated with different dosage of qiangji jianli yin were significantly higher than those in the models without any treatment (P<0.05-0.01). Conclusion: In rat models of kidney-yang deficiency syndrome, dysfunction of the hypothalamus-pituitary-adrenal axis (HPAA) led to decreased secretion of related hormones. The HPAA function might be partially restored with administation of qiangji jianli yin. (authors)

  9. Effects of dietary ascorbic acid supplementation on lipid peroxidation and the lipid content in the liver and serum of magnesium-deficient rats.

    Science.gov (United States)

    Akiyama, Satoko; Uehara, Mariko; Katsumata, Shin-ichi; Ihara, Hiroshi; Hashizume, Naotaka; Suzuki, Kazuharu

    2008-12-01

    We investigated the effects of ascorbic acid (AsA) supplementation on lipid peroxidation and the lipid content in the liver and serum of magnesium (Mg)-deficient rats. Eighteen 3-week-old male Sprague-Dawley strain rats were divided into 3 groups and maintained on a control diet (C group), a low-Mg diet (D group), or a low-Mg diet supplemented with AsA (DA group) for 42 d. At the end of this period, the final body weight, weight gain, and serum Mg concentrations were significantly decreased in the Mg-deficient rats. Further, dietary AsA supplementation had no effect on the growth, serum Mg concentration, Mg absorption, and Mg retention. The serum concentration of AsA was significantly lower in the D group than in the C group but was unaltered in the DA group. The levels of phosphatidylcholine hydroperoxide (PCOOH) in the serum and of triglycerides (TGs) and total cholesterol (TC) in the serum and liver were significantly higher in the D group than in the C group. The serum PCOOH, liver TG, and liver TC levels were decreased in the DA group. These results indicate that Mg deficiency increases the AsA requirement of the body and that AsA supplementation normalizes the serum levels of PCOOH and the liver lipid content in Mg-deficient rats, without altering the Mg status.

  10. Munc18b Increases Insulin Granule Fusion, Restoring Deficient Insulin Secretion in Type-2 Diabetes Human and Goto-Kakizaki Rat Islets with Improvement in Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Tairan Qin

    2017-02-01

    Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS.

  11. Cellular Immunity State of Protein-deficient Rats with the Toxic Liver Injury

    Directory of Open Access Journals (Sweden)

    O.N. Voloshchuk

    2017-05-01

    Full Text Available Studies on the role of immunity mechanisms in the emergence and maintenance of inflammatory and destructive processes in the liver under toxic hepatitis and nutrient deficiency are topical. The aim of research – to study the quantitative content and functional activity of leukocytes under the conditions of acetaminophen-induced hepatitis on the background of nutritional protein deficiency. The most pronounced changes in cell-mediated immunity are observed in protein-deficient animals with toxic hepatitis. The pronounced defects of both specific and non-specific cellular immunity were manifested by the leukocytosis, increase number of segmented neutrophils in blood serum against decrease their phagocytic index and phagocytic number, reduction of total lymphocyte number, and simultaneously lowering of T- and B-lymphocytes was established under the conditions of acetaminophen-induced hepatotoxicity on the background of protein deficiency. Installed changes indicate the defective formation of functional immunity state which can manifest by decrease the body’s ability to carry out the reaction of cellular and humoral immunity. Research results may be used for the rationale of therapeutic approaches to the elimination and correction of the consequences of immunological status disturbances under the conditions of acetaminophen-induced hepatitis, aggravated by the alimentary protein deprivation.

  12. Vitamin A status affects the efficacy of iron repletion in rats with mild iron deficiency.

    NARCIS (Netherlands)

    Roodenburg, A.J.C.; West, C.E.; Beynen, A.C.

    1996-01-01

    In populations with vitamin A deficiency, vitamin A administration in addition to supplemental iron has been shown to further improve blood indicators of iron status. To obtain clues to associated changes at the level of organ indicators of iron status, we have attempted to mimic previous human

  13. The effect of melatonin on vascular function in NO-deficient hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Paulis, L.; Pecháňová, O.; Zicha, Josef; Gardlik, R.; Celec, P.; Kuneš, Jaroslav

    2008-01-01

    Roč. 26, Suppl.1 (2008), S382-S382 ISSN 0263-6352. [Scientific Meeting International Society of Hypertension /22./ , Scientific Meeting European Society of Hypertension /18./. 14.06.2008-19.06.2008, Berlin] Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * melatonin * NO-deficient hypertension * vascular function Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  14. Biotin deficiency in the rat as a model for reduced pyruvate carboxylase activity

    NARCIS (Netherlands)

    Schrijver, Jacobus

    1978-01-01

    The investigations described in this thesis are a contribution to the study of Leigh's disease (Subacute Necrotizing Encephalomyelopathy, SNE). SNE resembles in neuropathology Wernicke's encephalopathy, which is caused by thiamine deficiency. The scope and the purpose of the present study is given

  15. Influence of chronic alcoholism and oestrogen deficiency on the variation of stoichiometry of hydroxyapatite within alveolar bone crest of rats.

    Science.gov (United States)

    Marchini, Adriana M P S; Deco, Camila P; Lodi, Karina B; Marchini, Leonardo; Santo, Ana M E; Rocha, Rosilene F

    2012-10-01

    Previous findings suggest that chronic alcoholism and oestrogenic deficiency may affect bones in general (including alveolar bone) and increase individuals' susceptibility to the development of periodontal disease. The aim of this study was to assess possible alterations in the chemical composition of alveolar bone in rats subjected to chronic alcoholism, oestrogen deficiency or both. Fifty-four rats were initially divided into two groups: ovariectomized (Ovx), and Sham operated (Sham). A month after surgery, the groups were sub-divided and received the following dietary intervention for eight weeks: 20% alcohol, isocaloric diet and ad libitum diet. Samples of the mandible, in the alveolar bone crest region, were analyzed to verify possible changes in the stoichiometric composition of bone hydroxyapatite, by measuring the relationship between the concentration of calcium and phosphorus (Ca/P ratios), using micro X-ray fluorescence spectrometry. The ad libitum groups presented the highest average values of Ca/P ratios, while the groups with dietary restrictions presented the smallest average values. The Ovx ad libitum group presented the highest values of Ca/P ratios (2.03 ± 0.04). However, these values were not considered statistically different (p>0.05) from the Sham ad libitum group (2.01 ± 0.01). The Ovx alcohol group presented lower values for Ca/P ratios (1.92 ± 0.06), being the only group statistically different (palcohol consumption at 20% significantly changed the stoichiometry composition of hydroxyapatite in the alveolar bone crest, leading to a reduction in Ca/P ratios. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. The cognitive impairment induced by zinc deficiency in rats aged 0∼2 months related to BDNF DNA methylation changes in the hippocampus.

    Science.gov (United States)

    Hu, Yan-Dan; Pang, Wei; He, Cong-Cong; Lu, Hao; Liu, Wei; Wang, Zi-Yu; Liu, Yan-Qiang; Huang, Cheng-Yu; Jiang, Yu-Gang

    2017-11-01

    This study was carried out to understand the effects of zinc deficiency in rats aged 0∼2 months on learning and memory, and the brain-derived neurotrophic factor (BDNF) gene methylation status in the hippocampus. The lactating mother rats were randomly divided into three groups (n = 12): zinc-adequate group (ZA: zinc 30 mg/kg diet), zinc-deprived group (ZD: zinc 1 mg/kg diet), and a pair-fed group (PF: zinc 30 mg/kg diet), in which the rats were pair-fed to those in the ZD group. After weaning (on day 23), offspring were fed the same diets as their mothers. After 37 days, the zinc concentrations in the plasma and hippocampus were measured, and the behavioral function of the offspring rats was measured using the passive avoidance performance test. We then assessed the DNA methylation patterns of the exon IX of BDNF by methylation-specific quantitative real-time PCR and the mRNA expression of BDNF in the hippocampus by RT-PCR. Compared with the ZA and PF groups, rats in the ZD group had shorter latency period, lower zinc concentrations in the plasma and hippocampus (P zinc-deficient diet during 0∼2 month period. Furthermore, this work supports the speculative notion that altered DNA methylation of BDNF in the hippocampus is one of the main causes of cognitive impairment by zinc deficiency.

  17. Increase in tartrate-resistant acid phosphatase of bone at the early stage of ascorbic acid deficiency in the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat.

    Science.gov (United States)

    Goto, A; Tsukamoto, I

    2003-08-01

    The effect of ascorbic acid deficiency on bone metabolism was evaluated using the ascorbate-requiring Osteogenic Disorder Shionogi (ODS) rat model. Ascorbic acid (Asc)-deficient rats gained body weight in a manner similar to Asc-supplemented rats (control) during 3 weeks, but began to lose weight during the 4th week of Asc deficiency. The tartrate-resistant acid phosphatase (TRAP) activity in serum increased to about 2-fold the control value in the rats fed the Asc-free diet for 2, 3, and 4 weeks (AscD2, AscD3, and AscD4), while a decrease in the alkaline phosphatase (ALP) activity was observed only in AscD4 rats. The serum pyridinoline cross-linked carboxyterminal telopeptide of type I collagen (ICTP) level significantly increased to 1.3-, 1.4-, and 1.9-fold of that in the controls in AscD2, D3, and D4, respectively. The ALP activity in the distal femur was unchanged in AscD1, D2, and D3, but decreased to 50% of the control level in AscD4 rats. The TRAP activity in the distal femur increased to about 2-fold of that in the controls in the AscD2 and D3 and decreased to the control level in the AscD4 rats. The amount of hydroxyproline in the distal femur significantly decreased to about 80%, 70%, and 60% of the control in AscD2, D3, and D4 rats, respectively. These decreases were associated with a similar reduction in the calcium content of the distal femur. Histochemical analysis of the distal femur showed an increase in TRAP-positive cells in AscD2 and AscD3 rats and a decrease in the trabecular bone in AscD2, D3, and D4 rats. These results suggested that a deficiency of Asc stimulated bone resorption at an early stage, followed by a decrease in bone formation in mature ODS rats which already had a well-developed collagen matrix and fully differentiated osteoblasts.

  18. Effect of dietary Fe-deficiency on growth organ weight, haemoglobin formation and 59Fe-retention in rats

    International Nuclear Information System (INIS)

    Sinha, R.K.; Gautam, D.

    1985-01-01

    Rats of the experimental group consuming diets adequate in all respects, but deficient in iron (5 ppm iron in contrast to 50 ppm iron for the control group) were found to suffer from moderate to severe anaemia (Hb 7.39 ± 0.2 g/100 ml, in contrast to 13.88 ± 0.19 g/100 ml for the control group; PCV per cent 27.88 ± 0.76 in contrast to 43.82 ± 0.65 for the control group) whereas they had satisfactory growth rates and normal outward appearance in all respects. However, their spleen and heart weight/g of body weight were also found to be significantly reduced, though liver and kidney weights remained normal. Their 59 Fe retention was considerably more than that of the control group indicating iron absorption and uptake were entirely dependent on iron-storage or haemoglobin status of the body. The results indicated that even for almost normal growth and a deceptive normal outward appearance a subject could be actually morbid because of Fe-deficiency anaemia under conditions of otherwise adequate diets and sedentary activity. (author)

  19. A Calcium-Deficient Diet in Rat Dams during Gestation Decreases HOMA-β% in 3 Generations of Offspring.

    Science.gov (United States)

    Takaya, Junji; Yamanouchi, Sohsaku; Tanabe, Yuko; Kaneko, Kazunari

    2016-01-01

    Prenatal malnutrition can affect the phenotype of offspring by altering epigenetic regulation. Calcium (Ca) plays an important role in the pathogenesis of insulin resistance syndrome. We hypothesized that a Ca-deficient diet during pregnancy would alter insulin resistance and secretion in more than 1 generation of offspring. Female Wistar rats consumed either a Ca-deficient or a control diet ad libitum from 3 weeks before conception to 21 days after parturition and were mated with control males. Randomly selected F1 and F2 females were mated with males of each generation on postnatal day 70. The F1 and F2 dams were fed a control diet ad libitum during pregnancy and lactation. All offspring were fed a control diet starting at the time of weaning and were sacrificed on day 180. HOMA-β% decreased in F1 through F3, and levels in F2 and F3 males and females were significantly lower than in controls. The mean levels of insulin and HOMA-IR were higher in F1 males but lower in F3 males than in control males. The HOMA-IR did not differ between any of the female offspring and controls. Maternal Ca restriction during pregnancy and/or lactation influences insulin secretion in 3 generations of offspring. © 2017 S. Karger AG, Basel.

  20. Increased variability of bone tissue mineral density resulting from estrogen deficiency influences creep behavior in a rat vertebral body.

    Science.gov (United States)

    Kim, Do-Gyoon; Navalgund, Anand R; Tee, Boon Ching; Noble, Garrett J; Hart, Richard T; Lee, Hye Ri

    2012-11-01

    Progressive vertebral deformation increases the fracture risk of a vertebral body in the postmenopausal patient. Many studies have observed that bone can demonstrate creep behavior, defined as continued time-dependent deformation even when mechanical loading is held constant. Creep is a characteristic of viscoelastic behavior, which is common in biological materials. We hypothesized that estrogen deficiency-dependent alteration of the mineral distribution of bone at the tissue level could influence the progressive postmenopausal vertebral deformity that is observed as the creep response at the organ level. The objective of this study was thus to examine whether the creep behavior of vertebral bone is changed by estrogen deficiency, and to determine which bone property parameters are responsible for the creep response of vertebral bone at physiological loading levels using an ovariectomized (OVX) rat model. Correlations of creep parameters with bone mineral density (BMD), tissue mineral density (TMD) and architectural parameters of both OVX and sham surgery vertebral bone were tested. As the vertebral creep was not fully recovered during the post-creep unloading period, there was substantial residual displacement for both the sham and OVX groups. A strong positive correlation between loading creep and residual displacement was found (r=0.868, pcreep behavior of the OVX group (pcreep caused progressive, permanent reduction in vertebral height for both the sham and OVX groups. In addition, estrogen deficiency-induced active bone remodeling increased variability of trabecular TMD in the OVX group. Taken together, these results suggest that increased variability of trabecular TMD resulting from high bone turnover influences creep behavior of the OVX vertebrae. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Fetal effects of epidermal growth factor deficiency induced in rats by autoantibodies against epidermal growth factor

    DEFF Research Database (Denmark)

    Raaberg, Lasse; Nexø, Ebba; Jørgensen, P E

    1995-01-01

    , the amount of surfactant protein-A was decreased, suggesting a delayed lung maturation. The offspring of EGF-immunized rats had dry and wrinkled skin. The skin was thin and the hair follicles were immature. This suggests a role for EGF in the growth and development of the skin. The liver/body weight ratio...

  2. Induction by X-irradiation of adenosine triphosphatase-deficient islands in the rat liver and their characterization

    International Nuclear Information System (INIS)

    Kitagawa, T.; Nomura, K.; Sasaki, S.

    1985-01-01

    The potential of X-rays to induce preneoplastic lesions in the rat liver was studied in order to clarify the reason why X-rays are ineffective in inducing hepatocellular carcinoma in this animal. Male newborn rats at 8 or 22 days of age received whole body X-ray irradiation of 100 to 400 rads. After weaning they were fed either basal diet or a diet containing 0.05% phenobarbital as a promoter. X-rays induced numerous adenosine triphosphatase-deficient islands appearing in the liver by wk 22 of age. However, they were generally small, gamma-glutamyl transpeptidase-negative, and did not clearly respond to the promoting stimulus of phenobarbital. No hepatic tumors were observed by 22 mo after radiation, even in phenobarbital-treated animals. Thus, the X-ray-induced enzyme-altered islands differ somewhat qualitatively from those induced by potent hepatic carcinogens and their preneoplastic potential if at all present may be very low. Similarities between these X-ray-induced lesions and some types of spontaneous enzyme-altered islands are pointed out

  3. Influence of laser and LED irradiation on mast cells of cutaneous wounds of rats with iron deficiency anemia

    Science.gov (United States)

    Becher Rosa, Cristiane; Oliveira Sampaio, Susana C. P.; Monteiro, Juliana S. C.; Ferreira, Maria F. L.; Zanini, Fátima A. A.; Santos, Jean N.; Cangussú, Maria Cristina T.; Pinheiro, Antonio L. B.

    2011-03-01

    This work aimed to study histologically the effect of Laser or LED phototherapy on mast cells on cutaneous wounds of rats with iron deficiency. 18 rats were used and fed with special peleted iron-free diet. An excisional wound was created on the dorsum of each animal which were divided into: Group I - Control with anemia + no treatment; Group II - Anemia + Laser; Group III - Anemia + LED; Group IV - Healthy + no treatment; Group V - Healthy + Laser; Group VI - Healthy + LED. Irradiation was performed using a diode Laser (λ660nm, 40mW, CW, total dose of 10J/cm2, 4X2.5J/cm2) or a RED-LED ( λ700nm, 15mW, CW, total dose of 10J/cm2). Histological specimens were routinely processed, cut and stained with toluidine blue and mast cell counts performed. No significant statistic difference was found between groups as to the number of degranulated, non-degradulated or total mast cells. Greater mean values were found for degranulated mast cells in the Anemia + LED. LED irradiation on healthy specimens resulted in a smaller number of degranulated mast cells. Our results leads to conclude that there are no significant differences in the number of mast cells seven days after irradiation following Laser or LED phototherapy.

  4. Anemia and iron, zinc, copper and magnesium deficiency in Mexican adolescents: National Health and Nutrition Survey 2006 Anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos: resultados de la ENSANUT 2006

    Directory of Open Access Journals (Sweden)

    Vanessa De la Cruz-Góngora

    2012-04-01

    Full Text Available OBJETIVE: To describe the frequency of anemia and iron, zinc, copper and magnesium deficiencies among Mexican adolescents in the probabilistic survey ENSANUT 2006. MATERIALS AND METHODS: The sample included 2447 adolescents aged 12 to 19 y. Capillary hemoglobin and venous blood samples were collected to measure the concentrations of ferritin, sTFR, CRP, zinc, iron, copper and magnesium. Logistic regression models were constructed to assess the risk for mineral deficiencies. RESULTS: The overall prevalence of anemia was 11.8 and 4.6%, body iron deficiency 18.2 and 7.9% for females and males, respectively. Overall prevalence of tissue iron deficiency was 6.9%, low serum copper were14.4 and 12.25%; zinc 28.4 and 24.5%, magnesium 40 and 35.3%; for females and males, respectively. CONCLUSIONS: There is a high prevalence of mineral deficiency in Mexican adolescents; females were more prone to have more mineral deficiencies. Nutritional interventions are necessaries in order to reduce and control them.OBJETIVO: Describir la prevalencia de anemia y deficiencia de hierro, zinc, cobre y magnesio en adolescentes mexicanos en la encuesta probabilística ENSANUT 2006. MATERIAL Y MÉTODOS: La muestra incluyó 2447 adolescentes de 12 a 19 años de edad. Se tomó hemoglobina capilar y muestras de sangre venosa para medir las concentraciones séricas de ferritina, sTFR, CRP, zinc, hierro, cobre y magnesio. Se construyeron modelos de regresión logística para evaluar el riesgo de deficiencia de minerales. RESULTADOS: La prevalencia de anemia fue de 11.8% en mujeres y 4.6% en hombres. Las deficiencias de hierro fueron de 18.2 y 7.9% La deficiencia tisular de hierro fue 6.9%; la baja concentración de cobre fue de 14.4 y 12.25% la de zinc de 28.4 y 24.5%, la de magnesio fue 40 y 35.3% en mujeres y hombres, respectivamente. CONCLUSIONES: Existe una alta prevalencia de deficiencia de minerales en los adolescentes; las mujeres tuvieron mayor riesgo. Son necesarias

  5. Comparative tissue distribution profiles of five major bio-active components in normal and blood deficiency rats after oral administration of Danggui Buxue Decoction by UPLC-TQ/MS.

    Science.gov (United States)

    Shi, Xuqin; Tang, Yuping; Zhu, Huaxu; Li, Weixia; Li, Zhenhao; Li, Wei; Duan, Jin-ao

    2014-01-01

    Astragali Radix (AR) and Angelicae Sinensis Radix (ASR) were frequently combined and used in China as herbal pair called as Danggui Buxue Decoction (DBD) for treatment of blood deficiency syndrome, such as women's ailments. This study is to investigate the tissue distribution profiles of five major bio-active constituents (ferulic acid, caffeic acid, calycosin-7-O-β-glucoside, ononin and astragaloside IV) in DBD after oral administration of DBD in blood deficiency rats, and to compare the difference between normal and blood deficiency rats. The blood deficiency rats were induced by bleeding from orbit at the dosages of 5.0mLkg(-1) every day, and the experimental period was 12 days. At the finally day of experimental period, both normal and blood deficiency rats were orally administrated with DBD, and then the tissues samples were collected at different time points. Ferulic acid, caffeic acid, calycosin-7-O-β-glucoside, ononin and astragaloside IV in different tissues were detected simultaneously by UPLC-TQ/MS, and the histograms were drawn. The results showed that the overall trend was CLiver>CKidney>CHeart>CSpleen>CLung, CC-30min>CM-30min>CM-60min>CC-5min>CM-5min>CC-60min>CM-240min>CC-240min. The contents of the detected compounds in liver were more than that in other tissues no matter in normal or blood deficiency rats. Compared to normal rats, partial contents of the compounds in blood deficiency rats' tissues at different time points had significant difference (Pdistribution investigation in blood deficiency animals which is conducted by bleeding. And the results demonstrated that the five DBD components in normal and blood deficiency rats had obvious differences in some organs and time points, suggesting that the blood flow and perfusion rate of the organ were altered in blood deficiency animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Omega-3 fatty acid deficiency selectively up-regulates delta6-desaturase expression and activity indices in rat liver: prevention by normalization of omega-3 fatty acid status.

    Science.gov (United States)

    Hofacer, Rylon; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Magrisso, I Jack; Benoit, Stephen C; McNamara, Robert K

    2011-09-01

    This study investigated the effects of perinatal dietary omega-3 (n-3) fatty acid depletion and subsequent repletion on the expression of genes that regulate long-chain (LC) polyunsaturated fatty acid biosynthesis in rat liver and brain. It was hypothesized that chronic n-3 fatty acid deficiency would increase liver Fads1 and Fads2 messenger RNA (mRNA) expression/activity and that n-3 fatty acid repletion would normalize this response. Adult rats fed the n-3-free diet during perinatal development exhibited significantly lower erythrocyte, liver, and frontal cortex LCn-3 fatty acid composition and reciprocal elevations in LC omega-6 (n-6) fatty acid composition compared with controls (CONs) and repleted rats. Liver Fads2, but not Fads1, Elovl2, or Elovl5, mRNA expression was significantly greater in n-3-deficient (DEF) rats compared with CONs and was partially normalized in repleted rats. The liver 18:3n-6/18:2n-6 ratio, an index of delta6-desturase activity, was significantly greater in DEF rats compared with CON and repleted rats and was positively correlated with Fads2 mRNA expression among all rats. The liver 18:3n-6/18:2n-6 ratio, but not Fads2 mRNA expression, was also positively correlated with erythrocyte and frontal cortex LCn-6 fatty acid compositions. Neither Fads1 or Fads2 mRNA expression was altered in brain cortex of DEF rats. These results confirm previous findings that liver, but not brain, delta6-desaturase expression and activity indices are negatively regulated by dietary n-3 fatty acids. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. 78 FR 78727 - Copper Sulfate Pentahydrate; Exemption From the Requirement of a Tolerance

    Science.gov (United States)

    2013-12-27

    ... establishes recommended daily allowances (RDAs) of vitamins and minerals for the diet. The RDA for copper... with the deficiency rather than the excess of copper. Oral ingestion of excessive amounts of the copper... deficiency of copper intake than from excess intake. Copper also occurs naturally in a number of food items...

  8. Dietary Selenium Deficiency or Excess Reduces Sperm Quality and Testicular mRNA Abundance of Nuclear Glutathione Peroxidase 4 in Rats.

    Science.gov (United States)

    Zhou, Ji-Chang; Zheng, Shijie; Mo, Junluan; Liang, Xiongshun; Xu, Yuanfei; Zhang, Huimin; Gong, Chunmei; Liu, Xiao-Li; Lei, Xin Gen

    2017-10-01

    Background: Glutathione peroxidase (GPX) 4 and selenoprotein P (SELENOP) are abundant, and several variants are expressed in the testis. Objective: We determined the effects of dietary selenium deficiency or excess on sperm quality and expressions of GPX4 and SELENOP variants in rat testis and liver. Methods: After weaning, male Sprague-Dawley rats were fed a Se-deficient basal diet (BD) for 5 wk until they were 9 wk old [mean ± SEM body weight (BW) = 256 ± 5 g]. They were then fed the BD diet alone (deficient) or with 0.25 (adequate), 3 (excess), or 5 (excess) mg Se/kg for 4 wk. Testis, liver, blood, and semen were collected to assay for selenoprotein mRNA and protein abundances, selenium concentration, GPX activity, 8-hydroxy-deoxyguanosine concentration, and sperm quality. Results: Dietary selenium supplementations elevated ( P selenium concentrations and GPX activities. Compared with those fed BD + 0.25 mg Se/kg, rats fed BD showed lower ( P selenium-adequate group. Compared with the selenium-adequate group, dietary selenium deficiency (BD) or excess (BD + 3 or 5 mg Se/kg) resulted in 45-77% lower ( P selenium concentrations in similar ways to sperm parameters and may be used as a sensitive marker to assess appropriate Se status for male function. © 2017 American Society for Nutrition.

  9. Lactococcus lactis is capable of improving the riboflavin status in deficient rats

    OpenAIRE

    LeBlanc, Jean Guy; Burgess, Catherine M.; Sesma, Fernando; de Giori, Graciela Savoy; van Sinderen, Douwe

    2005-01-01

    Lactococcus lactis is a commonly used starter strain that can be converted from a vitamin B2 consumer into a vitamin B2 'factory' by over-expressing its riboflavin biosynthesis genes. The present study was conducted to assess in a rat bioassay the response of riboflavin produced by GM or native lactic acid bacteria (LAB). The riboflavin-producing strains were able to eliminate most physiological manifestations of ariboflavinosis such as stunted growth, elevated erythrocyte glutathione reducta...

  10. [Focal cerebral ischemia in rats with estrogen deficiency and endothelial dysfunction].

    Science.gov (United States)

    Litvinov, A A; Volotova, E V; Kurkin, D V; Logvinova, E O; Darmanyan, A P; Tyurenkov, I N

    2017-01-01

    To assess an effect of ovariectomy (OE) on the cerebral blood flow, endothelium-dependent vasodilation, neurological, cognitive and locomotor deficit as markers of brain damage after focal ischemia in rats. The study was conducted in 48 female Wistar rats. Ovariectomy was performed with ovaries and uterine body extirpation, cerebral ischemia was performed by middle cerebral artery occlusion (MCAO) in rats. To assess brain damage, Combs and Garcia scores, 'open field' test (OFT), 'extrapolatory escape test' (EET), 'passive avoidance test' (PAT), 'beam-walking test' were used. Cerebral blood flow was measured using ultrasonic flowmetry. After 7 days of MCAO, the cerebral blood flow in ovarioectomized animals was reduced by 20% compared to sham-ovariectomized animals. Ovariectomized animals with MCAO showed a three-fold endothelium-dependent vasodilation reduction (the reaction of cerebral vessels to the introduction of acetylcholine and N-L-arginine), indicating the presence of severe endothelial dysfunction. In ovarioectomized animals, the cerebral blood flow was reduced by 34% compared to sham-operated animals. MCAO and OE taken together resulted in more than 2-fold increase in neurological, motor disturbances, 3-fold decrease in motor activity of the animals in the OP test. Focal ischemia in ovarioectomized animals with endothelial dysfunction led to memory decrease by 1/5 fold in PAT and by 2-fold in EET.

  11. Urinary prostaglandin E and vasopressin excretion in essential fatty acid-deficient rats

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Jensen, B.

    1983-01-01

    excretion of prostaglandin E (PGE), immunoreactive arginine vasopressin (iA VP), and kallikrein were determined. PGE was quantitated with a radioimmunoassay having 4.9% cross-reactivity with prostaglandin E (PGE). After 4 weeks on the diet, water consumption and urinary iAVP excretion increased....... Increased water consumption and increased urinary iAVP excretion seem to be early symptoms (after 4 weeks) of EFA deficiency, whereas decreased urine output and decreased urinary PGE excretion occur much later (after 10 weeks). Two energy% linolenate supplementation to a fat-free diet did not change...

  12. CD48-deficient T-lymphocytes from DMBA-treated rats have de novo mutations in the endogenous Pig-a gene.

    Science.gov (United States)

    Dobrovolsky, Vasily N; Revollo, Javier; Pearce, Mason G; Pacheco-Martinez, M Monserrat; Lin, Haixia

    2015-10-01

    A major question concerning the scientific and regulatory acceptance of the rodent red blood cell-based Pig-a gene mutation assay is the extent to which mutants identified by their phenotype in the assay are caused by mutations in the Pig-a gene. In this study, we identified T-lymphocytes deficient for the glycosylphosphatidylinositol-anchored surface marker, CD48, in control and 7,12-dimethylbenz[a]anthracene (DMBA)-treated rats using a flow cytometric assay and determined the spectra of mutations in the endogenous Pig-a gene in these cells. CD48-deficient T-cells were seeded by sorting at one cell per well into 96-well plates, expanded into clones, and exons of their genomic Pig-a were sequenced. The majority (78%) of CD48-deficient T-cell clones from DMBA-treated rats had mutations in the Pig-a gene. The spectrum of DMBA-induced Pig-a mutations was dominated by mutations at A:T, with the mutated A being on the nontranscribed strand and A → T transversion being the most frequent change. The spectrum of Pig-a mutations in DMBA-treated rats was different from the spectrum of Pig-a mutations in N-ethyl-N-nitrosourea (ENU)-treated rats, but similar to the spectrum of DMBA mutations for another endogenous X-linked gene, Hprt. Only 15% of CD48-deficient mutants from control animals contained Pig-a mutations; T-cell biology may be responsible for a relatively large fraction of false Pig-a mutant lymphocytes in control animals. Among the verified mutants from control rats, the most common were frameshifts and deletions. The differences in the spectra of spontaneous, DMBA-, and ENU-induced Pig-a mutations suggest that the flow cytometric Pig-a assay detects de novo mutation in the endogenous Pig-a gene. © 2015 Wiley Periodicals, Inc.

  13. Effects of metformin treatment on Iron, Zinc and Copper status concentration in the serum of female rats with induced polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    Muhsin S. G. Al-Moziel

    2013-07-01

    Full Text Available This study conducted to investigate the effects of metformin drug on serum Iron, Zinc and Copper concentration in Estradiol Valerate(EV induced polycystic ovary syndrome(PCOS in virgin rats. Thirty virgin rats were randomly allotted to constitute Normal control (NC-I group and induced polycystic ovary (PCO-I and PCO-II groups having 10 rats in each group. Rats from NC-I group were administered intramuscularly with 0.2 ml of corn oil whereas polycystic ovary was induced in rats from PCO-I and PCO-II groups by administering single intra-muscular injection of estradiol Valerate 4mg/rat. The rats from PCO-I and PCO-II groups were left for 60 days for development of polycystic ovary syndrome. Animals from PCO-I group were then administered with 0.2 ml normal saline as oral gavage for 15 days, these animals were kept as PCO control group animals whereas those from PCO-II groups received metformin (50mg/kg B.wt as oral gavage for 15 days, these animals served as metformin treated PCO group animals. All the rats were thereafter sacrificed for collecting blood from inferior vena-cava. Serum samples from each rat were assessed for iron, zinc and copper status in each experimental group. The results revealed a significant (p≤0.05 increase in serum Fe and Zn and a significant (p≤0.05 decrease in serum Cu concentration in PCO group 1 compared with control non-treated group. The PCO group2 treated with metformin showed a significant (p≤0.05 decrease in serum Fe concentration as compared with those in animals from group NC-I and PCO-I. While, no significant differences were found in serum Zn concentration between all treated groups. On the other hand, a significant (p≤0.05 increase in serum Cu concentration appeared in metformin treated group compared with PCO group 1 which appears significant decrease compared with control group.

  14. Disruption of thyroid hormone homeostasis in Ugt1a-deficient Gunn rats by microsomal enzyme inducers is not due to enhanced thyroxine glucuronidation

    International Nuclear Information System (INIS)

    Richardson, Terrilyn A.; Klaassen, Curtis D.

    2010-01-01

    Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) are thought to increase glucuronidation of thyroxine (T 4 ), thus reducing serum T 4 , and subsequently increasing thyroid stimulating hormone (TSH). Ugt1a1 and Ugt1a6 mediate T 4 glucuronidation. Therefore, this experiment determined the involvement of Ugt1a enzymes in increased T 4 glucuronidation, decreased serum T 4 , and increased TSH after MEI treatment. Male Wistar and Ugt1a-deficient Wistar (Gunn) rats were fed a control diet or diet containing pregnenolone-16α-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum T 4 , triiodothyronine (T 3 ), and TSH concentrations, hepatic T 4 /T 3 glucuronidation, and thyroid histology and follicular cell proliferation were investigated. PCN, 3-MC, and PCB treatments decreased serum T 4 , whereas serum T 3 was maintained in both Gunn and Wistar rats (except for PCB treatment). TSH was increased in Wistar and Gunn rats after PCN (130 and 277%) or PCB treatment (72 and 60%). T 4 glucuronidation in Wistar rats was increased after PCN (298%), 3-MC (85%), and PCB (450%), but was extremely low in Gunn rats, and unchanged after MEI. T 3 glucuronidation was increased after PCN (121%) or PCB (58%) in Wistar rats, but only PCN increased T 3 glucuronidation in Gunn rats (43%). PCN treatment induced thyroid morphological changes and increased follicular cell proliferation in both strains. These data demonstrate that T 4 glucuronidation cannot be increased in Ugt1a-deficient Gunn rats. Thus, the decrease in serum T 4 , increase in TSH, and increase in thyroid cell proliferation after MEI are not dependent on increased T 4 glucuronidation, and cannot be attributed to Ugt1a enzymes.

  15. TOB1 Deficiency Enhances the Effect of Bone Marrow-Derived Mesenchymal Stem Cells on Tendon-Bone Healing in a Rat Rotator Cuff Repair Model

    Directory of Open Access Journals (Sweden)

    Yulei Gao

    2016-01-01

    Full Text Available Background/Aims: This study investigated the effect of silencing TOB1 (Transducer of ERBB2, 1 expression in bone marrow-derived mesenchymal stem cells (MSCs on MSC-facilitated tendon-bone healing in a rat supraspinatus repair model. Methods: Rat MSCs were transduced with a recombinant lentivirus encoding short hairpin RNA (shRNA against TOB1. MSC cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. The effect of MSCs with TOB1 deficiency on tendon-bone healing in a rat rotator cuff repair model was evaluated by biomechanical testing, histological analysis and collagen type I and II gene expression. An upstream regulator (miR-218 of TOB1 was determined in MSCs. Results: We found that knockdown of TOB1 significantly increased the proliferative activity of rat MSCs in vitro. When MSCs with TOB1 deficiency were injected into injured rat supraspinatus tendon-bone junctions, the effect on tendon-bone healing was enhanced compared to treatment with control MSCs with normal TOB1 expression, as evidenced by elevated levels of ultimate load to failure and stiffness, increased amount of fibrocartilage and augmented expression of collagen type I and type II genes. In addition, we found that the TOB1 3′ untranslated region is a direct target of miR-218. Similar to the effect of TOB1 deficiency, overexpression of miR-218 effectively promoted tendon-bone healing in rat. Conclusion: These results suggest that TOB1 may play a negative role in the effect of MSCs on tendon-bone healing, and imply that expression of TOB1 may be regulated by miR-218.

  16. Changes in the binding of copper in the plasma of molybdenum supplemented rats

    International Nuclear Information System (INIS)

    Nederbragt, H.; van den Hamer, C.J.

    1981-01-01

    After incubating plasma of Mo-supplemented rats (Mo-plasma) with /sup 64/Cu only part of it could be removed by dialysis against EDTA or histidine or by treatment with dithiocarbamate; this nondialyzable Cu was shown to be bound to albumin. The maximal amount of /sup 64/Cu bound this way equaled the Mo-induced increase in total plasma Cu. After addition of stable Cu, dialysis of Mo-plasma against a histidine solution showed that no extra Cu became tightly bound, suggesting that the /sup 64/Cu binding was due to an exchange between added /sup 64/Cu and stable Cu already present. Incubating Mo-plasma with Hg compounds prevented /sup 64/Cu binding and released stable Cu, indicating that Cu in Mo-plasma was sulfhydryl bound. Part of the Mo in Mo-plasma was freely dialyzable. The remaining part was shown to be SH bound as well. The estimated atomic ratio of SH-bound Cu and Mo was unity. Molybdenum increased the number of SH groups in plasma, and for each Cu atom at least one SH group was calculated to be present

  17. Functional phenotypic rescue of Caenorhabditis elegans neuroligin-deficient mutants by the human and rat NLGN1 genes.

    Directory of Open Access Journals (Sweden)

    Fernando Calahorro

    Full Text Available Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C and worm NLG-1 (R437C proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA, both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1 or pan-muscular (myo-3 specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders.

  18. Hypersensitivity to thromboxane receptor mediated cerebral vasomotion and CBF oscillations during acute NO-deficiency in rats.

    Directory of Open Access Journals (Sweden)

    Béla Horváth

    Full Text Available BACKGROUND: Low frequency (4-12 cpm spontaneous fluctuations of the cerebrovascular tone (vasomotion and oscillations of the cerebral blood flow (CBF have been reported in diseases associated with endothelial dysfunction. Since endothelium-derived nitric oxide (NO suppresses constitutively the release and vascular effects of thromboxane A(2 (TXA(2, NO-deficiency is often associated with activation of thromboxane receptors (TP. In the present study we hypothesized that in the absence of NO, overactivation of the TP-receptor mediated cerebrovascular signaling pathway contributes to the development of vasomotion and CBF oscillations. METHODOLOGY/PRINCIPAL FINDINGS: Effects of pharmacological modulation of TP-receptor activation and its downstream signaling pathway have been investigated on CBF oscillations (measured by laser-Doppler flowmetry in anesthetized rats and vasomotion (measured by isometric tension recording in isolated rat middle cerebral arteries, MCAs both under physiological conditions and after acute inhibition of NO synthesis. Administration of the TP-receptor agonist U-46619 (1 µg/kg i.v. to control animals failed to induce any changes of the systemic or cerebral circulatory parameters. Inhibition of the NO synthesis by nitro-L-arginine methyl ester (L-NAME, 100 mg/kg i.v. resulted in increased mean arterial blood pressure and a decreased CBF accompanied by appearance of CBF-oscillations with a dominant frequency of 148±2 mHz. U-46619 significantly augmented the CBF-oscillations induced by L-NAME while inhibition of endogenous TXA(2 synthesis by ozagrel (10 mg/kg i.v. attenuated it. In isolated MCAs U-46619 in a concentration of 100 nM, which induced weak and stable contraction under physiological conditions, evoked sustained vasomotion in the absence of NO, which effect could be completely reversed by inhibition of Rho-kinase by 10 µM Y-27632. CONCLUSION/SIGNIFICANCE: These results suggest that hypersensitivity of the TP

  19. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension.

    Science.gov (United States)

    Ivy, D Dunbar; McMurtry, Ivan F; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2005-06-07

    Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ET(B) receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ET(B) receptor-deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT(+/+)) and ET(B) receptor-deficient (MCT(sl/sl)) rats at 6 weeks of age were assessed. MCT(sl/sl) rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCT(sl/sl) rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCT(sl/sl) rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ET(B) receptors was decreased in MCT(sl/sl) rat lungs, ET(A) receptor expression increased. Deficiency of the ET(B) receptor markedly accelerates the progression of

  20. Development of Occlusive Neointimal Lesions in Distal Pulmonary Arteries of Endothelin B Receptor–Deficient Rats: A New Model of Severe Pulmonary Arterial Hypertension

    Science.gov (United States)

    Ivy, D. Dunbar; McMurtry, Ivan F.; Colvin, Kelley; Imamura, Masatoshi; Oka, Masahiko; Lee, Dong-Seok; Gebb, Sarah; Jones, Peter Lloyd

    2007-01-01

    Background Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ETB receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ETB receptor–deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. Methods and Results The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT+/+) and ETB receptor–deficient (MCTsl/sl) rats at 6 weeks of age were assessed. MCTsl/sl rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCTsl/sl rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCTsl/sl rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ETB receptors was decreased in MCTsl/sl rat lungs, ETA receptor expression increased. Conclusions Deficiency of the ETB receptor markedly

  1. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity.

    Science.gov (United States)

    Lei, Ronghui; Wu, Chunqi; Yang, Baohua; Ma, Huazhai; Shi, Chang; Wang, Quanjun; Wang, Qingxiu; Yuan, Ye; Liao, Mingyang

    2008-10-15

    Despite an increasing application of copper nanoparticles, there is a serious lack of information concerning their impact on human health and the environment. In this study, the biochemical compositions of urine, serum, and extracts of liver and kidney tissues of rats treated with nano-copper at the different doses (50, 100, and 200 mg/kg/d for 5 d) were investigated using (1)H NMR techniques with the pattern recognition methods. Serum biochemical analysis and histopathological examinations of the liver and kidney of all the rats were simultaneously performed. All the results indicated that the effects produced by nano-copper at a dose of 100 or 50 mg/kg/d were less than those induced at a higher dose of 200 mg/kg/d. Nano-copper induced overt hepatotoxicity and nephrotoxicity at 200 mg/kg/d for 5 d, which mainly involved scattered dot hepatocytic necrosis and widespread renal proximal tubule necrosis. Increased citrate, succinate, trimethylamine-N-oxide, glucose, and amino acids, accompanied by decreased creatinine levels were observed in the urine; furthermore, elevated levels of lactate, 3-hydroxybutyrate, acetate, creatine, triglycerides, and phosphatide and reduced glucose levels were observed in the serum. The predominant changes identified in the liver tissue aqueous extracts included increased lactate and creatine levels together with reduced glutamine and taurine levels, and the metabolic profile of the kidney tissue aqueous extracts showed an increase in lactate and a drop in glucose. In the chloroform/methanol extracts of the liver and kidney tissues, elevated triglyceride species were identified. These changes suggested that mitochondrial failure, enhanced ketogenesis, fatty acid beta-oxidation, and glycolysis contributed to the hepatotoxicity and nephrotoxicity induced by nano-copper at 200 mg/kg/d for 5 d. An increase in triglycerides in the serum, liver and kidney tissues could serve as a potential sensitive biomarker reflecting the lipidosis induced

  2. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid invivo screening method for nanotoxicity

    International Nuclear Information System (INIS)

    Lei Ronghui; Wu Chunqi; Yang Baohua; Ma Huazhai; Shi Chang; Wang Quanjun; Wang Qingxiu; Yuan Ye; Liao Mingyang

    2008-01-01

    Despite an increasing application of copper nanoparticles, there is a serious lack of information concerning their impact on human health and the environment. In this study, the biochemical compositions of urine, serum, and extracts of liver and kidney tissues of rats treated with nano-copper at the different doses (50, 100, and 200 mg/kg/d for 5 d) were investigated using 1 H NMR techniques with the pattern recognition methods. Serum biochemical analysis and histopathological examinations of the liver and kidney of all the rats were simultaneously performed. All the results indicated that the effects produced by nano-copper at a dose of 100 or 50 mg/kg/d were less than those induced at a higher dose of 200 mg/kg/d. Nano-copper induced overt hepatotoxicity and nephrotoxicity at 200 mg/kg/d for 5 d, which mainly involved scattered dot hepatocytic necrosis and widespread renal proximal tubule necrosis. Increased citrate, succinate, trimethylamine-N-oxide, glucose, and amino acids, accompanied by decreased creatinine levels were observed in the urine; furthermore, elevated levels of lactate, 3-hydroxybutyrate, acetate, creatine, triglycerides, and phosphatide and reduced glucose levels were observed in the serum. The predominant changes identified in the liver tissue aqueous extracts included increased lactate and creatine levels together with reduced glutamine and taurine levels, and the metabolic profile of the kidney tissue aqueous extracts showed an increase in lactate and a drop in glucose. In the chloroform/methanol extracts of the liver and kidney tissues, elevated triglyceride species were identified. These changes suggested that mitochondrial failure, enhanced ketogenesis, fatty acid β-oxidation, and glycolysis contributed to the hepatotoxicity and nephrotoxicity induced by nano-copper at 200 mg/kg/d for 5 d. An increase in triglycerides in the serum, liver and kidney tissues could serve as a potential sensitive biomarker reflecting the lipidosis induced by

  3. The effects of feeding rats diets deficient in folic acid and related methyl donors on the blood pressure and glucose tolerance of the offspring.

    Science.gov (United States)

    Maloney, Christopher A; Hay, Susan M; Rees, William D

    2009-05-01

    In humans poor maternal folate status is associated with a decrease in infant birth weight. As low birth weight increases the risk of cardiovascular and metabolic disease in adults, an inadequate supply of folic acid in the mother's diet may increase the susceptibility of the offspring to disease. We have fed laboratory rats diets deficient in folic acid and the related methyl donors methionine and choline to examine the effects on growth, blood pressure and insulin action in the offspring. Poor folate status transiently increased fetal growth but did not produce a long-term change in body weight. There were, however, small changes in the hearts of the female offspring. When folate deficiency was combined with low intakes of methionine and choline, the kidneys of the male offspring were proportionately smaller, probably because of the limited availability of methionine. There was no effect on the blood pressure of either the male or female offspring. The pancreatic insulin content of fetuses from animals fed the folate-deficient diets were higher than those of the controls. Following an oral glucose challenge, there was a weak trend for glucose-stimulated insulin release to be increased in the offspring of dams fed the folate-deficient diet. The changes in insulin concentrations were, however, much smaller than the corresponding changes observed in the offspring of animals fed protein-deficient diets. These results suggest that folate deficiency during gestation causes modest changes to the insulin axis of the fetus.

  4. Effects of Fish Oil Supplementation during the Suckling Period on Auditory Neural Conduction in n-3 Fatty Acid-Deficient Rat Pups

    Directory of Open Access Journals (Sweden)

    vida rahimi

    2014-07-01

    Full Text Available Abstract Introduction: Omega 3 fatty acid especially in the form of fish oil, has structural and biological role in the body's various systems especially nervous system. Numerous studies have tried to research about it. Auditory is one of the affected systems. Omega 3 deficiency can have devastating effects on the nervous system and auditory. This study aimed to evaluate neural conduction in n-3 fatty acid-deficient rat pups following the supplementation of fish oil consumption during the suckling period Materials and Methods: In this interventional and experimental study, one sources of omega3 fatty acid (fish oil were fed to rat pups of n-3 PUFA-deficient dams to compare changes in their auditory neural conduction with that of control and n-3 PUFA-deficient groups, using Auditory Brainstem Response (ABR. The parameters of interest were P1, P3, P4 absolute latency, P1-P3, P1-P4 and P3-P4 IPL , P4/P1 amplitude ratio . The rat pups were given oral fish oil, 5 Ml /g weight for 17 days, between the age of 5 and 21 days. Results There were no significant group differences in P1 and P3 absolute latency (p > 0.05. but the result in P4 was significant(P ≤ 0.05 . The n-3 PUFA deficient +vehicle had the most prolonged (the worst P1-P4 IPL and P3-P4 IPL compared with control and n-3 PUFA deficient + FO groups. There was no significant difference in P1-P4 IPL and P3-P4 IPL between n-3 PUFA deficient + FO and control groups (p > 0.05.There was a significant effect of diet on P1-P4 IPL and P3-P4 IPL between groups (P ≤ 0.05. Conclusion: The results of present study showed the effect of omega3 deficiency on auditory neural structure during pregnancy and lactation period. Additionally, we observed the reduced devastating effects on neural conduction in n-3 fatty acid-deficient rat pups following the supplementation of fish oil during the suckling period

  5. Selenium bioavailability from naturally produced high-selenium peas and oats in selenium-deficient rats.

    Science.gov (United States)

    Yan, Lin; Johnson, LuAnn K

    2011-06-08

    This study determined the bioavailability of selenium (Se) from yellow peas and oats harvested from the high-Se soil of South Dakota, United States. The Se concentrations were 13.5 ± 0.2 and 2.5 ± 0.1 mg/kg (dry weight) for peas and oats, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1 μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet supplemented with 20, 30, or 40 μg Se/kg from peas or oats, respectively. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for yellow peas and oats to those for l-selenomethionine (SeMet; used as a reference) by using a slope-ratio method. Dietary supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Supplementation with peas or oats resulted in linear or log-linear, dose-dependent increases in Se concentrations of plasma, liver, gastrocnemius muscle, and kidneys. The overall bioavailability was approximately 88% for Se from yellow peas and 92% from oats, compared to SeMet. It was concluded that Se from naturally produced high-Se yellow peas or oats is highly bioavailable in this model and that these high-Se foods may be a good dietary source of Se.

  6. Brain and Hepatic Mt mRNA Is Reduced in Response to Mild Energy Restriction and n-3 Polyunsaturated Fatty Acid Deficiency in Juvenile Rats

    Directory of Open Access Journals (Sweden)

    Aaron A. Mehus

    2017-10-01

    Full Text Available Metallothioneins (MTs perform important regulatory and cytoprotective functions in tissues including the brain. While it is known that energy restriction (ER and dietary n-3 polyunsaturated fatty acid (PUFA deficiency impact postnatal brain growth and development, little data exist regarding the impact of undernutrition upon MT expression in growing animals. We tested the hypothesis that ER with and without dietary n-3 PUFA deficiency reduces MT expression in juvenile rats. ER rats were individually pair-fed at 75% of the ad libitum (AL intake of control rats provided diets consisting of either soybean oil (SO that is α-linolenic acid (ALA; 18:3n-3 sufficient or corn oil (CO; ALA-deficient. Fatty acids (FA and metal concentrations of liver and brain regions were analyzed. Tissue expression of MTs (Mt1-3 and modulators of MT expression including glucocorticoid receptors (Nr3c1 and Nr3c2 and several mediators of thyroid hormone regulation (Dio1-3, Mct8, Oatp1c1, Thra, and Thrb were measured. Plasma corticosterone and triiodothyronine levels were also evaluated. ER, but not metal deficiency, reduced Mt2 expression in the cerebellum (50% and cerebral cortex (23%. In liver, a reduction in dietary n-3 PUFA reduced Mt1, Mt2, Nr3c1, Mct8, and Thrb. ER elevated Nr3c1, Dio1, and Thrb and reduced Thra in the liver. Given MT’s role in cellular protection, further studies are needed to evaluate whether ER or n-3 PUFA deficiency may leave the juvenile brain and/or liver more susceptible to endogenous or environmental stressors.

  7. The Effects of Methionine-Enriched and Vitamins (Folate, Pyridoxine and Cobalamine-Deficient Diet on Exploratory Activity in Rats - A Brief Report

    Directory of Open Access Journals (Sweden)

    Mijailovic Natasa

    2017-12-01

    Full Text Available The aim of this study was to evaluate the impact of increased homocysteine levels induced by methionine nutritional overload (twice as standard and deficiency of the vitamins folate, pyridoxine and cobalamine, which plays an important role in homocysteine metabolism in anxiety-related behaviour, expressed by means of exploratory activity in rats. Twenty-three male Wistar albino rats (4 weeks old, 100±15 g body weight were divided into three groups: control (n=8, methionine-enriched (Meth+, 7.7 g of methionine/kg chow, n=7 and methionine-enriched vitamin-deficient (Meth+Vit-, 7.7 g of methionine/ kg chow, deficient in folate, pyridoxine and cobalamine - 0.08, 0.01 and 0.01 mg/kg, n=8. All animals had free access to food and water for 30 days. Behavioural testing was performed using the elevated plus maze (EPM test. Standard parameters for vertical exploratory activity, the number of rearings and the number of head-dippings, as well as the total exploratory activity (summarizing overall exploratory activity in the EPM were significantly reduced following 30 days of methionine nutritional overload (p<0.05, p<0.05 and p<0.01, respectively. A methionine-enriched diet coupled with a reduction in some B vitamins resulted in a more pronounced decline in exploratory drive observed in the EPM test compared to the control (p<0.01. The decline in total exploratory activity associated with vitamin deficiency was significant compared to the Meth+ group (p<0.05. The results of this study highlight the important role of homocysteine in the modulation of exploratory activity in rats. Decreased exploratory drive induced by both a methionine-enriched and vitamin-deficient diet could be attributed to an anxiogenic effect of hyperhomocysteinemia.

  8. Evaluation of the effect of laser radiation on fibroblast proliferation in repair of skin wounds of rats with iron deficiency anemia

    Science.gov (United States)

    DeCastro, Isabele C. V.; Oliveira-Sampaio, Susana C. P.; Monteiro, Juliana S. de C.; Ferreira, Maria de Fátima L.; Cangussu, Maria T.; N. dos Santos, Jean; Pinheiro, Antonio Luiz B.

    2011-03-01

    The aim of this study was to assess the effect of low- level laser therapy (LLLT) on fibroblast proliferation on wound repair of rats with Iron deficiency anemia since there is no reports on literature about this subject. Iron deficiency anemia was induced on 36 newborn rats then an excisional wound was created on the dorsum of the animals which were divided into four groups: (I) - non-anemic, (II) - Anemic, (III) - non-anemic + LLLT, (IV) Anemic+ LLLT. The animals in each group were sacrificed at 7, 14 and 21 days. Laser irradiation was performed on each group (λ660nm,40Mw,CW) by contact mode with a dose of 2,5J/ cm2 in four points on the area of the wound and total of 10J/cm2 per session. Data were evaluated by analysis of variance (ANOVA) followed by Paired t-test. The results showed LLLT was able to stimulate fibroblastic proliferation in rats with iron deficiency anemia at the 21st day while at control group (III) no statistically significant differences was found.

  9. Disruption of redox homeostasis in liver function and activation of apoptosis on consumption of aspartame in folate deficient rat model

    Directory of Open Access Journals (Sweden)

    Ashok Iyaswamy

    2017-06-01

    Full Text Available This study assesses the effect of long-term intake of aspartame on liver function and apoptosis signaling pathway in the Wistar albino rats. Several reports have suggested that methanol is one of the major metabolites of Aspartame. Non-primate animals are usually resistant to methanol-induced metabolic acidosis due to high levels of hepatic folate content; hence a folate deficiency model was induced by treating animals with methotrexate (MTX prior to aspartame exposure. The aspartame treated MTX animals exhibited a marked significant increase in hepatic alanine transaminase (ALT, aspartate transaminase (AST, alkaline phosphatase (ALP and lactic acid dehydrogenase (LDH activity compared to controls. Aspartame treated MTX animals additionally exhibited down-regulation of genes namely B-cell lymphoma 2 (Bcl2 expression and up-regulation of Bcl-2-associated X protein (Bax, Fas-associated protein with death domain (FADD and Caspase 3, 9 genes and apoptotic protein expression, indicating the augmentation of hepatic apoptosis. Nuclear condensation, micro vacuole formation in the cytoplasm and necrosis were observed in the liver of the aspartame treated animals on histopathology evaluation. Additionally, Immunohistochemical analysis revealed a significant increase in positive cells expressing Fas, FADD, Bax and Caspase 9 protein, indicating an increase in apoptotic protein expression in the liver. Thus, Aspartame may act as a chemical stressor which alters the functional status of liver, leading to hepatotoxicity.

  10. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Interleukin-1 during Tooth Formation of Rat Molar

    International Nuclear Information System (INIS)

    Kim, Il Joong; Hwang, Eui Hwan; Lee, Sang Rae

    2000-01-01

    To elucidate the effects of the irradiation and calcium-deficient diet on expression of interleukin (IL)-1 during tooth formation of rat molar. The pregnant three-week-old Spague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group, and the experimental groups were irradiation/normal diet group and irradiation/calcium-diet group. The abdomen of the rats on the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed on the 14th day after delivery and the maxillae tooth germs were taken. The specimen were prepared to make sections for light microscopy, and some of tissue sections were stained immunohistochemically with anti-IL-1 antibody. In the irradiation/normal diet group, dental follicle showed fewer blood vessels, mononuclear cells, and fusions of mononuclear cells than in non-irradiation/normal diet group. Alveolar bone showed a few osteoblasts and osteoclasts. Periodontal ligament showed collagen fibers and fibroblasts with irregularity. Weak immunoreactivity for IL-1 was shown in dental follicle, alveolar bone, and periodontal ligament. In the irradiation/calcium-deficient diet group, dental follicle showed sparse cellularity. Alveolar bone showed diminished number of osteoblasts. Periodontal ligament showed irregular collagen fibers and atrophy of cementoblasts and fibroblasts. No immunoreactivity for IL-1 was shown in dental follicle, alveolar bone, and periodontal ligament. Irradiation and calcium-deficient diet seems to cause disturbance of the expression of interleukin-1 during tooth formation of rat molar.

  11. The Effects of Irradiation and Calcium-deficient Diet on the Expression of Interleukin-1 during Tooth Formation of Rat Molar

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il Joong; Hwang, Eui Hwan; Lee, Sang Rae [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Kyunghee University, Seoul (Korea, Republic of)

    2000-09-15

    To elucidate the effects of the irradiation and calcium-deficient diet on expression of interleukin (IL)-1 during tooth formation of rat molar. The pregnant three-week-old Spague-Dawley rats were used for the study. The control group was non-irradiation/normal diet group, and the experimental groups were irradiation/normal diet group and irradiation/calcium-diet group. The abdomen of the rats on the 9th day of pregnancy were irradiated with single dose of 350 cGy. The rat pups were sacrificed on the 14th day after delivery and the maxillae tooth germs were taken. The specimen were prepared to make sections for light microscopy, and some of tissue sections were stained immunohistochemically with anti-IL-1 antibody. In the irradiation/normal diet group, dental follicle showed fewer blood vessels, mononuclear cells, and fusions of mononuclear cells than in non-irradiation/normal diet group. Alveolar bone showed a few osteoblasts and osteoclasts. Periodontal ligament showed collagen fibers and fibroblasts with irregularity. Weak immunoreactivity for IL-1 was shown in dental follicle, alveolar bone, and periodontal ligament. In the irradiation/calcium-deficient diet group, dental follicle showed sparse cellularity. Alveolar bone showed diminished number of osteoblasts. Periodontal ligament showed irregular collagen fibers and atrophy of cementoblasts and fibroblasts. No immunoreactivity for IL-1 was shown in dental follicle, alveolar bone, and periodontal ligament. Irradiation and calcium-deficient diet seems to cause disturbance of the expression of interleukin-1 during tooth formation of rat molar.

  12. Leucine-rich repeat kinase 2 (LRRK2-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis.

    Directory of Open Access Journals (Sweden)

    Daniel Ness

    Full Text Available Genetic evidence links mutations in the LRRK2 gene with an increased risk of Parkinson's disease, for which no neuroprotective or neurorestorative therapies currently exist. While the role of LRRK2 in normal cellular function has yet to be fully described, evidence suggests involvement with immune and kidney functions. A comparative study of LRRK2-deficient and wild type rats investigated the influence that this gene has on the phenotype of these rats. Significant weight gain in the LRRK2 null rats was observed and was accompanied by significant increases in insulin and insulin-like growth factors. Additionally, LRRK2-deficient rats displayed kidney morphological and histopathological alterations in the renal tubule epithelial cells of all animals assessed. These perturbations in renal morphology were accompanied by significant decreases of lipocalin-2, in both the urine and plasma of knockout animals. Significant alterations in the cellular composition of the spleen between LRRK2 knockout and wild type animals were identified by immunophenotyping and were associated with subtle differences in response to dual infection with rat-adapted influenza virus (RAIV and Streptococcus pneumoniae. Ontological pathway analysis of LRRK2 across metabolic and kidney processes and pathological categories suggested that the thioredoxin network may play a role in perturbing these organ systems. The phenotype of the LRRK2 null rat is suggestive of a complex biology influencing metabolism, immune function and kidney homeostasis. These data need to be extended to better understand the role of the kinase domain or other biological functions of the gene to better inform the development of pharmacological inhibitors.

  13. Tetragonia tetragonioides (Pall.) Kuntze protects estrogen-deficient rats against disturbances of energy and glucose metabolism and decreases proinflammatory cytokines.

    Science.gov (United States)

    Ryuk, Jin Ah; Ko, Byoung-Seob; Lee, Hye Won; Kim, Da Sol; Kang, Suna; Lee, Yong Hyen; Park, Sunmin

    2017-03-01

    Tetragonia tetragonioides (Pall.) Kuntze (TTK) and JakYakGamCho-Tang (JGT) have been used for improving women's health and treating inflammatory diseases. We determined that the long-term consumption of these herbal extracts alleviates the progression of postmenopausal symptoms in high-fat-diet fed ovariectomized (OVX) rats, and further explored the mechanisms involved. Five groups of OVX rats were fed high fat diets that were supplemented with either 2% dextrin (control), 2% TTK (70% ethanol extract), 2% JGT (water extract), 1% JGT + 1% TTK (JGTT), or 30 µg/kg body weight/day of 17β-estradiol (positive control). After eight weeks of dietary intervention, the herbal treatments did not change the serum concentrations of 17β-estradiol or uterine weight in control rats, but they were higher in the positive-control group. TTK rats exhibited higher daily energy expenditure, particularly fat oxidation, without modifying the energy intake than the controls. TTK lowered the fat mass but lean body mass of the abdomen and leg were increased. JGT decreased periuterine fat mass and lean body mass more than the control but the decrease was not as much as TTK. TTK resulted in substantially lower serum concentrations of the proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1, than the control and JGT had lesser effect than TTK. Insulin resistance, determined by homeostasis model assessment estimate for assessing insulin resistance (HOMA-IR) and insulin tolerance test, was reduced in the decreasing order of control, JGT, JGTT, and TTK and the HOMA-IR of TTK was similar to the positive control. TTK, but not JGT, enhanced glucose tolerance compared with the control, although the serum insulin levels in TTK were lower compared to the control. Interestingly, the β-cell masses were much greater in the TTK and JGTT groups than in the control, and they were comparable to the positive control. The increases in β-cell masses in TTK and

  14. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats.

    Science.gov (United States)

    Nishida, Hikaru; Ikegami, Ayaka; Kaneko, Chiaki; Kakuma, Hitomi; Nishi, Hisano; Tanaka, Noriko; Aoyama, Michiko; Usami, Makoto; Okimura, Yasuhiko

    2015-01-01

    Branched-chain amino acids (BCAAs) and IGF-I, the secretion of which is stimulated by growth hormone (GH), prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex)-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs). Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA) of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR) mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex's action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.

  15. Dexamethasone and BCAA Failed to Modulate Muscle Mass and mTOR Signaling in GH-Deficient Rats.

    Directory of Open Access Journals (Sweden)

    Hikaru Nishida

    Full Text Available Branched-chain amino acids (BCAAs and IGF-I, the secretion of which is stimulated by growth hormone (GH, prevent muscle atrophy. mTOR plays a pivotal role in the protective actions of BCAA and IGF-1. The pathway by which BCAA activates mTOR is different from that of IGF-1, which suggests that BCAA and GH work independently. We tried to examine whether BCAA exerts a protective effect against dexamethasone (Dex-induced muscle atrophy independently of GH using GH-deficient spontaneous dwarf rats (SDRs. Unexpectedly, Dex did not induce muscle atrophy assessed by the measurement of cross-sectional area (CSA of the muscle fibers and did not increase atrogin-1, MuRF1 and REDD1 expressions, which are activated during protein degradation. Glucocorticoid (GR mRNA levels were higher in SDRs compared to GH-treated SDRs, indicating that the low expression of GR is not the reason of the defect of Dex's action in SDRs. BCAA did not stimulate the phosphorylation of p70S6K or 4E-BP1, which stimulate protein synthesis. BCAA did not decrease the mRNA level of atrogin-1 or MuRF1. These findings suggested that Dex failed to modulate muscle mass and that BCAA was unable to activate mTOR in SDRs because these phosphorylations of p70S6K and 4E-BP1 and the reductions of these mRNAs are regulated by mTOR. In contrast, after GH supplementation, these responses to Dex were normalized and muscle fiber CSA was decreased by Dex. BCAA prevented the Dex-induced decrease in CSA. BCAA increased the phosphorylation of p70S6K and decreased the Dex-induced elevations of atrogin-1 and Bnip3 mRNAs. However, the amount of mTORC1 components including mTOR was not decreased in the SDRs compared to the normal rats. These findings suggest that GH increases mTORC1 activity but not its content to recover the action of BCAA in SDRs and that GH is required for actions of Dex and BCAA in muscles.

  16. ACE-2/Ang1-7/Mas cascade mediates ACE inhibitor, captopril, protective effects in estrogen-deficient osteoporotic rats.

    Science.gov (United States)

    Abuohashish, Hatem M; Ahmed, Mohammed M; Sabry, Dina; Khattab, Mahmoud M; Al-Rejaie, Salim S

    2017-08-01

    The local role of the renin angiotensin system (RAS) was documented recently beside its conventional systemic functions. Studies showed that the effector angiotensin II (AngII) alters bone health, while inhibition of the angiotensin converting enzyme (ACE-1) preserved these effects. The newly identified Ang1-7 exerts numerous beneficial effects opposing the AngII. Thus, the current study examines the role of Ang1-7 in mediating the osteo-preservative effects of ACEI (captopril) through the G-protein coupled Mas receptor using an ovariectomized (OVX) rat model of osteoporosis. 8 weeks after the surgical procedures, captopril was administered orally (40mgkg -1 d -1 ), while the specific Mas receptor blocker (A-779) was delivered at infusion rate of 400ngkg -1 min -1 for 6 weeks. Bone metabolic markers were measured in serum and urine. Minerals concentrations were quantified in serum, urine and femoral bones by inductive coupled plasma mass spectroscopy (ICP-MS). Trabecular and cortical morphometry was analyzed in the right distal femurs using micro-CT. Finally, the expressions of RAS peptides, enzymes and receptors along with the receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) were determined femurs heads. OVX animals markedly showed altered bone metabolism and mineralization along with disturbed bone micro-structure. Captopril significantly restored the metabolic bone bio-markers and corrected Ca 2+ and P values in urine and bones of estrogen deficient rats. Moreover, the trabecular and cortical morphometric features were repaired by captopril in OVX groups. Captopril also improved the expressions of ACE-2, Ang1-7, Mas and OPG, while abolished OVX-induced up-regulation of ACE-1, AngII, Ang type 1 receptor (AT1R) and RANKL. Inhibition of Ang1-7 cascade by A-779 significantly eradicated captopril protective effects on bone metabolism, mineralization and micro-structure. A-779 also restored OVX effects on RANKL expression and ACE-1/AngII/AT1R

  17. Effects of protein and energy deficiency on the incorporation of /sup 14/C-Chlorella protein hydrolysate into body constituents of adult rats

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, S; Wakabayashi, K; Niiyama, Y; Inoue, G [Tokushima Univ. (Japan). School of Medicine

    1974-12-01

    The effects of protein and/or energy deficiency on /sup 14/C incorporation into body constituents and /sup 14/C output in expired air and urine were investigated in adult rats using /sup 14/C-Chlorella protein hydrolysate. Rats were given a protein-free diet (PFD) for 2 weeks and conrol rats were fed ad libitum or pari-fed with the PFD group on a 12% lactalbumin diet (LA and Pair-fed, respectively). On the 15th day, animals received /sup 14/C-Chlorella protein hydolysate with 5 g of their respective diet. One group of PFD animals was given tracer by stomach tube without food (PFD-fast). Normal control rats ate about twice as much diet as the PFD group. The respiratory /sup 14/C output in the PFD group was identical with those in the LA and Pair-fed groups and was less than that in the PFD-fast group. The rate of protein synthesis, provisionally expressed as relative specific radioactivity, was more in the PFD group than in the normal group in the liver and less than the latter in the muscle. The LA group retained less total radioactivity in the body than the Pair-fed or PFD group, indicating high capability to hold the body protein in protein deficiency. In addition, decreased conversion of amino acids to lipids and glycogen was observed in the PFD group. All these differences are interpreted as adaptations to protein shortage. On prolonged fasting (PFD-fast group), gluconeogenesis in the liver increased to provide energy, despite the protein deficiency. The relative importances of protein and energy for tissue protein synthesis are briefly discussed.

  18. Effects of protein and energy deficiency on the incorporation of 14C-Chlorella protein hydrolysate into body constituents of adult rats

    International Nuclear Information System (INIS)

    Yamamoto, Shigeru; Wakabayashi, Kazuo; Niiyama, Yoshiaki; Inoue, Goro

    1974-01-01

    The effects of protein and/or energy deficiency on 14 C incorporation into body constituents and 14 C output in expired air and urine were investigated in adult rats using 14 C-Chlorella protein hydrolysate. Rats were given a protein-free diet (PFD) for 2 weeks and conrol rats were fed ad libitum or pari-fed with the PFD group on a 12% lactalbumin diet (LA and Pair-fed, respectively). On the 15th day, animals received 14 C-Chlorella protein hydolysate with 5 g of their respective diet. One group of PFD animals was given tracer by stomach tube without food (PFD-fast). Normal control rats ate about twice as much diet as the PFD group. The respiratory 14 C output in the PFD group was identical with those in the LA and Pair-fed groups and was less than that in the PFD-fast group. The rate of protein synthesis, provisionally expressed as relative specific radioactivity, was more in the PFD group than in the normal group in the liver and less than the latter in the muscle. The LA group retained less total radioactivity in the body than the Pair-fed or PFD group, indicating high capability to hold the body protein in protein deficiency. In addition, decreased conversion of amino acids to lipids and glycogen was observed in the PFD group. All these differences are interpreted as adaptations to protein shortage. On prolonged fasting (PFD-fast group), gluconeogenesis in the liver increased to provide energy, despite the protein deficiency. The relative importances of protein and energy for tissue protein synthesis are briefly discussed. (author)

  19. Omega-3 Fatty Acid Deficient Male Rats Exhibit Abnormal Behavioral Activation in the Forced Swim Test Following Chronic Fluoxetine Treatment: Association with Altered 5-HT1A and Alpha2A Adrenergic Receptor Expression

    OpenAIRE

    Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K.

    2013-01-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n=34) or without (DEF, n=30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n=14) and DEF (n=12) rats were ...

  20. Effects of protein deficiency on the rate of radioactivity loss from body constituents in adult rats given 14C-amino acids

    International Nuclear Information System (INIS)

    Yamamoto, Shigeru; Inoue, Goro

    1975-01-01

    The effect of protein deficiency on the rate of loss of radioactivity from body constituents was studied in adult rats administered 14 C-Chlorella protein hydrolysate or 14 C-lysine. Rats were kept on a protein-free diet for 3 weeks and then injected with labelled amino acids and fed on a protein-free diet for 3 more days to allow 14 C deposition in tissues. Then they were given experimental diets (protein-free diet, 1% and 10% wheat gluten diets pair-fed with the protein-free diet, and 10% wheat gluten diet ad libitum) for 7 days and sacrificed. The rates of loss of radioactivity from tissue proteins became low in general with the extent of protein deficiency. This increased capacity of tissues to retain 14 C-amino acids may result from higher efficiency of protein utilization in protein deficiency. The reutilization of free amino acids and the rate of catabolism of tissue protein are discussed on the basis of the results. The half-life of muscle protein was too long to observe the effects of experimental diets given for 7 days on the rate of loss of radioactivity. (auth.)

  1. Influence of Secondary Hyperparathyroidism Induced by Low Dietary Calcium, Vitamin D Deficiency, and Renal Failure on Circulating Rat PTH Molecular Forms.

    Science.gov (United States)

    D'Amour, Pierre; Rousseau, Louise; Hornyak, Stephen; Yang, Zan; Cantor, Tom

    2011-01-01

    Rats(r) with secondary hyperparathyroidism were studied to define the relationship between vitamin D metabolites and rPTH levels measured by 3 different rat ELISAs. Controls and renal failure (RF) rats were on a normal diet, while 2 groups on a low-calcium (-Ca) or a vitamin D-deficient (-D) diet. RF was induced surgically. Mild RF rats had normal calcium and 25(OH)D but reduced 1,25(OH)(2)D levels (P < .001) with a 2.5-fold increased in rPTH (P < .001). Severe RF rats and those on a -Ca or -D diet had reduced calcium (P < .01) and 25(OH)D levels (P < .05), with rPTH increased by 2 (-Ca diet; P < .05), 4 (-D diet; P < .001), and 20-folds (RF; P < .001) while 1,25(OH)(2)D was high (-Ca diet: P < .001) or low (-D diet, RF: P < .001). 25(OH)D and 1,25(OH)(2)D were positively and negatively related on the -Ca and -D diets, respectively. rPTH molecular forms behaved as expected in RF and on -Ca diet, but not on -D diet with more C-rPTH fragments when less were expected. This may be related to the short-time course of this study compared to prior studies.

  2. Radiation induced changes in plasma total protein nitrogen and urinary total nitrogen in desert rodent and albino rats subjected to dietary protein deficiency

    International Nuclear Information System (INIS)

    Roushdy, H.; El-Husseini, M.; Saleh, F.

    1986-01-01

    The effect of gamma-irradiation on plasma total protein nitrogen and urinary total nitrogen was studied in the desert rodent, psammomy obesus obesus and albino rats subjected to dietary protein deficiency. In albino rats kept on high protein diet, the radiation syndrome resulted in urine retention, while in those kept on non-protein diet, such phenomenon was recorded only with the high radiation level of 1170r. Radiation exposure to 780 and 1170r caused remarkable diuresis in psammomys obesus obesus whereas they induced significant urine retention in albino rats. The levels of plasma total protein nitrogen and urinary total nitrogen were higher in albino rats maintained on high protein diet than in those kept on non-protein diet. Radiation exposure caused an initial drop in plasma total protein nitrogen concentration, concomitant with an initial rise in total urinary nitrogen, radiation exposure of psammomys obesus obesus caused significant increase in the levels of plasma protein nitrogen and urinary total nitrogen. Psammomys obesus obesus seemed to be more affected by radiation exposure than did the albino rats

  3. Studies on the pathogenesis in iron deficiency anemia Part 1. Urinary iron excretion in iron deficiency anemia patients and rats in various iron states

    OpenAIRE

    中西,徳彦

    1991-01-01

    In the "iron excretion test" , urinary iron excretion after injection of saccharated iron oxide has been reported to be accelerated in relapsing idiopathic iron deficiency anemia. To determine the relevance of urinary iron excretion to clinical factors other than iron metabolism, 15 clinical parameters were evaluated. The serum creatinine level was positively and the serum albumin level was negatively correlated with urinary iron excretion, showing coefficients of r=0.97,-0.86 respectively, a...

  4. Ability of Lactobacillus fermentum to overcome host α-galactosidase deficiency, as evidenced by reduction of hydrogen excretion in rats consuming soya α-galacto-oligosaccharides

    Directory of Open Access Journals (Sweden)

    Sesma Fernando

    2008-01-01

    Full Text Available Abstract Background Soya and its derivatives represent nutritionally high quality food products whose major drawback is their high content of α-galacto-oligosaccharides. These are not digested in the small intestine due to the natural absence of tissular α-galactosidase in mammals. The passage of these carbohydrates to the large intestine makes them available for fermentation by gas-producing bacteria leading to intestinal flatulence. The aim of the work reported here was to assess the ability of α-galactosidase-producing lactobacilli to improve the digestibility of α-galacto-oligosaccharides in situ. Results Gnotobiotic rats were orally fed with soy milk and placed in respiratory chambers designed to monitor fermentative gas excretion. The validity of the animal model was first checked using gnotobiotic rats monoassociated with a Clostridium butyricum hydrogen (H2-producing strain. Ingestion of native soy milk by these rats caused significant H2 emission while ingestion of α-galacto-oligosaccharide-free soy milk did not, thus validating the experimental system. When native soy milk was fermented using the α-galactosidase-producing Lactobacillus fermentum CRL722 strain, the resulting product failed to induce H2 emission in rats thus validating the bacterial model. When L. fermentum CRL722 was coadministered with native soy milk, a significant reduction (50 %, P = 0.019 in H2 emission was observed, showing that α-galactosidase from L. fermentum CRL722 remained active in situ, in the gastrointestinal tract of rats monoassociated with C. butyricum. In human-microbiota associated rats, L. fermentum CRL722 also induced a significant reduction of H2 emission (70 %, P = 0.004. Conclusion These results strongly suggest that L. fermentum α-galactosidase is able to partially alleviate α-galactosidase deficiency in rats. This offers interesting perspectives in various applications in which lactic acid bacteria could be used as a vector for

  5. Combination therapy with andrographolide and D-penicillamine enhanced therapeutic advantage over monotherapy with D-penicillamine in attenuating fibrogenic response and cell death in the periportal zone of liver in rats during copper toxicosis

    International Nuclear Information System (INIS)

    Roy, Dijendra Nath; Sen, Gargi; Chowdhury, Kaustav Dutta; Biswas, Tuli

    2011-01-01

    Long treatment regime with D-penicillamine is needed before it can exert clinically meaningful benefits in the treatment of copper toxicosis. The consequence of long-term D-penicillamine treatment is associated with numerous side effects. The limitations of D-penicillamine monotherapy prompted us to search for more effective treatment strategies that could decrease the duration of D-penicillamine therapy. The present study was designed to evaluate the therapeutic potential of D-penicillamine in combination with another hepatoprotective drug, andrographolide in treatment of copper toxicosis in rats. D-penicillamine treatment led to the excretion of copper through urine. Addition of andrographolide to D-penicillamine regime appeared to increase protection of liver by increasing the biliary excretion of copper and reduction in cholestatic injury. The early removal of the causative agent copper during combination treatment was the most effective therapeutic intervention that contributed to the early rectification of fibrosis in liver. Combination treatment reduced Kupffer cells accumulation and TNFα production in liver of copper exposed rats. In particular, andrographolide mediated the anti-inflammatory effect by inhibiting the cytokine production. However, another possible mechanism of cytoprotection of andrographolide was decreasing mitochondrial production of superoxide anions that resulted in better restoration of mitochondrial dysfunction during combination therapy than monotherapy. Furthermore, ROS inhibition by combination regimen resulted in significant decline in activation of caspase cascade. Inhibition of caspases attenuated apoptosis of hepatocytes, induced by chronic copper exposure. In summary, this study suggested that added benefit of combination treatment over use of either agent alone in alleviating the hepatotoxicity and fibrosis associated with copper toxicosis.

  6. Vitamin D3 deficiency increases DNA damage and modify the expression of genes associated with hypertension in normotensive and hypertensive rats

    Directory of Open Access Journals (Sweden)

    Carla Silva Machado

    2015-05-01

    Full Text Available Vitamin D3 is a lipophilic micronutrient obtained from the diet (salmon, sardines, mackerel and cod liver oil or by the conversion of 7-dehydrocholesterol on skin after exposure to UVB radiation. This vitamin participates in several cellular processes, contributes to the maintenance of calcium concentrations, acts on phosphorus absorption, and is also related to the development and progression of chronic diseases. In hypertension, it is known that vitamin D3 act on renin-angiotensin-aldosterone system, regulates the gene expression and can induce or attenuate oxidative DNA damage. Vitamin D3 deficiency is present in 30-50% of human population (Pilz et al., 2009, and has been associated with increase of chromosomal instability and DNA damage (Nair-Shalliker; Armstrong; Fenech, 2012. Since experimental and clinical studies have suggested a relationship between vitamin D3 and blood pressure, the aim of this study was to evaluate whether vitamin D3 deficiency or supplementation lead to an increase or decrease in DNA damage, regulates the expression of genes associated with hypertension and changes the systolic blood pressure. Spontaneously hypertensive rats (SHR, used as a model of human essential hypertension, and their normotensive controls (Wistar Kyoto – WKY were fed a control diet (vitamin D3 at 1.000 UI/kg, a deficient diet (vitamin D3 at 0 UI/kg or a supplemented diet (vitamin D3 at 10.000 UI/kg for 12 weeks. DNA damage was assessed by comet assay in cardiac muscle tissue and blood tissue, following the methodology proposed by Singh et al. (1988 and Tice et al. (2000; gene expression of 84 genes was assessed by RT2ProfilerTM PCR Array in cardiac muscle tissue; and systolic blood pressure was measured weekly by a noninvasive method using tail plethysmography. In SHR and WKY rats, vitamin D3 deficiency increased DNA damage in the blood tissue and did not change the DNA damage in cardiac muscle tissue; vitamin D3 supplementation maintained the

  7. A Comparative In Vivo Scrutiny of Biosynthesized Copper and Zinc Oxide Nanoparticles by Intraperitoneal and Intravenous Administration Routes in Rats.

    Science.gov (United States)

    C, Ashajyothi; K Handral, Harish; Kelmani R, Chandrakanth

    2018-04-03

    During the present time, anti-microbial features of copper (Cu) and zinc oxide (ZnO) nanoparticles (NPs) are extensively used to combat the growth of pathogenic microbes. CuNPs and ZnONPs are recurrently used in cosmetics, medicine and food additives, and their potential for toxic impacts on human and ecosystem is of high concern. In this study, the fate and toxicity of 16- to 96-nm-ranged biosynthesized copper (Bio-CuNPs) and zinc oxide (Bio-ZnONPs) was assessed in male Wistar rats. In vivo exposures of the two nanoparticles are achieved through two different administration routes namely, intraperitoneal (i/p) and intravenous (i/v) injections. The three different concentrations, no observable adverse effect concentration (NOAEC), inhibitory concentration (IC 50 ) and total lethal concentration (TLC), were appraised at the dose range of 6.1 to 19.82 μg/kg and 11.14 to 30.3 μg/kg for Bio-CuNPs and Bio-ZnONPs respectively, for both i/p and i/v routes on 14th and 28th day of observation. These dose ranges are considered based on the previous study of antibacterial dose on multidrug-resistant pathogenic bacteria. In this study, we investigated the toxic effect of Bio-CuNPs and Bio-ZnONPs on animal behaviour, animal mass, haematologic indices, organ indices and histopathology of liver, spleen, kidney and brain organs. We found that i/v and i/p administration of Bio-ZnONPs in three different doses did not cause mortality and body weight was slightly reduced up to second week of administration compared with the vehicle control group. At the dose ranges of 11-16 μg/kg (i/v) and 24-30 μg/kg (i/p), no significant changes were observed in the serum creatinine level as well as serum ALT, serum AST level and ALP level which were 40.7 mg/dl, 37.9 IU/L and 82.4 IU/L normal as compared to vehicle control on 14th and 28th day of observation. These findings are confirmed in liver, kidney and spleen indices and histopathology studies. Furthermore, liver and kidney injury

  8. The expression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of rats with a dihydrotestosterone (DHT) deficiency.

    Science.gov (United States)

    Kolasa, Agnieszka; Marchlewicz, Mariola; Kurzawa, Rafał; Głabowski, Wojciech; Trybek, Grzegorz; Wenda-Rózewicka, Lidia; Wiszniewska, Barbara

    2009-01-01

    In our previous studies, we showed that a finasteride-induced DHT deficiency may cause changes in the morphology of the seminiferous epithelium without any morphological alteration of the epididymis. In this study, we demonstrated the constitutive immunoexpression of inducible nitric oxide synthase (iNOS) in the testis and epididymis of Wistar rats treated with finasteride for 28 days (the duration of two cycles of the seminiferous epithelium) and 56 days (the duration of one spermatogenesis). We noted that a 56-day finasteride treatment mainly caused a decrease in the level of circulating DHT, as well as a statistically insignificant decrease in the level of T. The hormone deficiency also led to a change in the iNOS immnoexpression in the testis and epididymis of the finasteride-treated rats. In vitro, DHT did not modify NO production by the epithelial cells of the caput epididymis even when stimulated with LPS and IFNgamma, but it did give rise to an increase in NO production by the epithelial cells of the cauda epididymis without the stimulation. DHT did not have a statistically significant influence on estradiol production by cultured, LPS- and IFNgamma-stimulated epithelial cells from the caput and cauda epididymis. In conclusion, our data clearly indicates that a finasterideinduced DHT deficiency intensifies the constitutive expression of iNOS in most rat testicular and epididymal cells, so it can be expected that the expression of inducible nitric oxide synthase (iNOS) could be regulated by DHT. On the other hand, the profile of the circulating DHT and T levels strongly suggests that the regulation of constitutive iNOS expression is complex and needs more detailed study.

  9. Omega-3 fatty acid deficiency does not alter the effects of chronic fluoxetine treatment on central serotonin turnover or behavior in the forced swim test in female rats.

    Science.gov (United States)

    McNamara, Robert K; Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lipton, Jack W

    2013-12-01

    While translational evidence suggests that long-chain omega-3 fatty acid status is positively associated with the efficacy of selective serotonin reuptake inhibitor drugs, the neurochemical mechanisms mediating this interaction are not known. Here, we investigated the effects of dietary omega-3 (n-3) fatty acid insufficiency on the neurochemical and behavioral effects of chronic fluoxetine (FLX) treatment. Female rats were fed diets with (CON, n=56) or without (DEF, n=40) the n-3 fatty acids during peri-adolescent development (P21-P90), and one half of each group was administered FLX (10mg/kg/day) for 30days (P60-P90) prior to testing. In adulthood (P90), regional brain serotonin (5-HT) and 5-hydroxyindoleacetic (5-HIAA) concentrations, presynaptic markers of 5-HT neurotransmission, behavioral responses in the forced swim test (FST), and plasma FLX and norfluoxetine (NFLX) concentrations were investigated. Peri-adolescent n-3 insufficiency led to significant reductions in cortical docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-25%, p≤0.0001) and DEF+FLX (-28%, p≤0.0001) rats. Untreated DEF rats exhibited significantly lower regional 5-HIAA/5-HT ratios compared with untreated CON rats, but exhibited similar behavioral responses in the FST. In both CON and DEF rats, chronic FLX treatment similarly and significantly decreased 5-HIAA concentrations and the 5-HIAA/5-HT ratio in the hypothalamus, hippocampus, and nucleus accumbens, brainstem tryptophan hydroxylase-2 mRNA expression, and immobility in the FST. While the FLX-induced reduction in 5-HIAA concentrations in the prefrontal cortex was significantly blunted in DEF rats, the reduction in the 5-HIAA/5-HT ratio was similar to CON rats. Although plasma FLX and NFLX levels were not significantly different in DEF and CON rats, the NFLX/FLX ratio was significantly lower in DEF+FLX rats. These preclinical data demonstrate that n-3 fatty acid deficiency does not significantly reduce the effects of chronic

  10. Unopposed Estrogen Supplementation/Progesterone Deficiency in Post-Reproductive Age Affects the Secretory Profile of Resident Macrophages in a Tissue-Specific Manner in the Rat.

    Science.gov (United States)

    Stanojević, Stanislava; Kovačević-Jovanović, Vesna; Dimitrijević, Mirjana; Vujić, Vesna; Ćuruvija, Ivana; Blagojević, Veljko; Leposavić, Gordana

    2015-11-01

    The influence of unopposed estrogen replacement/isolated progesterone deficiency on macrophage production of pro-inflammatory/anti-inflammatory mediators in the post-reproductive age was studied. Considering that in the rats post-ovariectomy the circulating estradiol, but not progesterone level rises to the values in sham-operated controls, 20-month-old rats ovariectomized at the age of 10 months served as an experimental model. Estrogen and progesterone receptor expression, secretion of pro- and anti-inflammatory cytokines, and arginine metabolism end-products were examined in splenic and peritoneal macrophages under basal conditions and following lipopolysaccharide (LPS) stimulation in vitro. Almost all peritoneal and a subset of splenic macrophages expressed the intracellular progesterone receptor. Ovariectomy diminished cytokine production by splenic (IL-1β) and peritoneal (TNF-α, IL-1β, IL-10) macrophages and increased the production of IL-10 by splenic and TGF-β by peritoneal cells under basal conditions. Following LPS stimulation, splenic macrophages from ovariectomized rats produced less TNF-α and more IL-10, whereas peritoneal macrophages produced less IL-1β and TGF-β than the corresponding cells from sham-operated rats. Ovariectomy diminished urea production in both subpopulations of LPS-stimulated macrophages. Although long-lasting isolated progesterone deficiency in the post-reproductive age differentially affects cytokine production in the macrophages from distinct tissue compartments, in both subpopulations, it impairs the pro-inflammatory/anti-inflammatory cytokine secretory balance. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Over-Expression of Copper/Zinc Superoxide Dismutase in the Median Preoptic Nucleus Attenuates Chronic Angiotensin II-Induced Hypertension in the Rat

    Directory of Open Access Journals (Sweden)

    John P. Collister

    2014-12-01

    Full Text Available The brain senses circulating levels of angiotensin II (AngII via circumventricular organs, such as the subfornical organ (SFO, and is thought to adjust sympathetic nervous system output accordingly via this neuro-hormonal communication. However, the cellular signaling mechanisms involved in these communications remain to be fully understood. Previous lesion studies of either the SFO, or the downstream median preoptic nucleus (MnPO have shown a diminution of the hypertensive effects of chronic AngII, without providing a clear explanation as to the intracellular signaling pathway(s involved. Additional studies have reported that over-expressing copper/zinc superoxide dismutase (CuZnSOD, an intracellular superoxide (O2·− scavenging enzyme, in the SFO attenuates chronic AngII-induced hypertension. Herein, we tested the hypothesis that overproduction of O2·− in the MnPO is an underlying mechanism in the long-term hypertensive effects of chronic AngII. Adenoviral vectors encoding human CuZnSOD (AdCuZnSOD or control vector (AdEmpty were injected directly into the MnPO of rats implanted with aortic telemetric transmitters for recording of arterial pressure. After a 3 day control period of saline infusion, rats were intravenously infused with AngII (10 ng/kg/min for ten days. Rats over-expressing CuZnSOD (n = 7 in the MnPO had a blood pressure increase of only 6 ± 2 mmHg after ten days of AngII infusion while blood pressure increased 21 ± 4 mmHg in AdEmpty-infected rats (n = 9. These results support the hypothesis that production of O2·− in the MnPO contributes to the development of chronic AngII-dependent hypertension.

  12. Response of plasma and urinary uric acid, creatine and creatinine to dietary protein deficiency and/or whole body gamma-irradiation in desert rodent and albino rats

    International Nuclear Information System (INIS)

    Roushdy, H.M.; El-Husseini, M.; Saleh, F.

    1985-01-01

    The effect of whole body gamma-irradiation on the levels of plasma and urinary uric acid, creatine and creatinine was studied in the desert rodent, Psammomys obesus and albino rats subjected to dietary protein deficiency. In albino rats, the levels of uric acid in plasma and urine were higher in the animals kept on high protein diets than in those maintained on non-protein ones. Radiation exposure caused a significant increase in uric acid concentration both in plasma and urine of albino rats, whereas in Psammomys obesus obesus, it exerted a significant drop in uric acid concentration in blood paralleling a marked rise in the daily uric acid excretion in the urine, especially with the high radiation level of 1170 r. Creatinine concentrations in plasma and urine of albino rats were higher than the corresponding values in Psammomys obesus obesus. Radiation exposure in general caused an increase in the creatinine concentration in blood and a decrease in its concentration in urine. Plasma creatine was shown to increase due to the effect of radiation exposure. This runs in parallel with the increase in the excretion of creatine in urine. Creatinuria observed in whole body irradiation is obviously caused by a defect in the ability of skeletal muscle to take up creatine from blood. Such abnormality could be the result of direct damage to the muscle caused by incident radiation

  13. Response of plasma and urinary uric acid, creatine and creatinine to dietary protein deficiency and/or whole body gamma-irradiation in desert rodent and albino rats

    Energy Technology Data Exchange (ETDEWEB)

    Roushdy, H M; El-Husseini, M; Saleh, F [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1985-01-01

    The effect of whole body gamma-irradiation on the levels of plasma and urinary uric acid, creatine and creatinine was studied in the desert rodent, Psammomys obesus and albino rats subjected to dietary protein deficiency. In albino rats, the levels of uric acid in plasma and urine were higher in the animals kept on high protein diets than in those maintained on non-protein ones. Radiation exposure caused a significant increase in uric acid concentration both in plasma and urine of albino rats, whereas in Psammomys obesus obesus, it exerted a significant drop in uric acid concentration in blood paralleling a marked rise in the daily uric acid excretion in the urine, especially with the high radiation level of 1170 r. Creatinine concentrations in plasma and urine of albino rats were higher than the corresponding values in Psammomys obesus obesus. Radiation exposure in general caused an increase in the creatinine concentration in blood and a decrease in its concentration in urine. Plasma creatine was shown to increase due to the effect of radiation exposure. This runs in parallel with the increase in the excretion of creatine in urine. Creatinuria observed in whole body irradiation is obviously caused by a defect in the ability of skeletal muscle to take up creatine from blood. Such abnormality could be the result of direct damage to the muscle caused by incident radiation.

  14. Storage Pool Deficiencies

    Science.gov (United States)

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  15. Metallothionein metabolism in the streptozotocin-diabetic rat

    International Nuclear Information System (INIS)

    Chen, M.L.; Failla, M.L.

    1986-01-01

    Earlier reports from their laboratory showed the induction of the insulin-deficient diabetic state in adult rats was associated with an accumulation of zinc, copper, and a metallothionein-like zinc and copper binding protein in the soluble fraction of liver and kidney. Based upon chromatographic and electrophoretic properties, -SH to metal ratio and amino acid composition, they now report that elevated concentrations of metallothioneins (MT)-I and -II are indeed present in diabetic rat liver and kidney cytosol. The relative rates of MT synthesis in tissues from diabetic and control rats were measured by comparing incorporation of 35 S-cysteine into MT vs. total cytoplasmic proteins at 5 h after injection of the precursor. The relative rates of MT synthesis in livers from rats diabetic for 10 d and fed either chow or purified diet containing 13 or 35 ppm copper were 1.4, 2.3 and 2.8 times greater, respectively, than control rats fed the same diets. Higher relative rates of MT synthesis were also observed in kidneys from diabetic rats fed purified diets compared to controls. Maximal relative rates of MT synthesis in diabetic liver and kidney were observed at 4 and 10 d, respectively, after onset of diabetes. The half-lives of cytoplasmic MT in liver and kidney from diabetic (10 d) rats were 1.3 and 2.6 days, respectively; half-lives of MT in control liver and kidney were 5.0 and 2.1 days, respectively

  16. [Changes in serum lipids in rats treated with oral cooper].

    Science.gov (United States)

    Alarcón-Corredor, O M; Carnevalí de Tatá, E; Reinosa-Füller, J; Contreras, Y; Ramírez de Fernández, M; Yánez-Domínguez, C

    2000-09-01

    Disturbances in lipid metabolism during copper deficiency in rats are well recognized. Copper deficiency is associated with the spontaneous retention of hepatic iron. Previous studies have reported that hypercholesterolemia and hypertriglyceridemia are associated with elevated hepatic iron concentrations in copper deficient rats. There was a direct relationship between the magnitude of blood lipids and the concentration of hepatic iron. Based on these data, it has been hypothesized that iron was responsible for the development of lipemia of copper deficiency. In this study was determined the effect of increasing doses of Cu(10, 20 and 50 ppm) in the diet, on the serum total lipids, total cholesterol, triglycerides (triacylglicerols), phospholipids, non-esterified fatty acids (NEFA) and liver iron and zinc concentrations in normal rats. The results were compared with normal rats that received a balanced diet containing 0.6 and 6 ppm of Cu, respectively. The results show that Cu-supplement diminished the cholesterol and triglyceride serum levels, increased the level of phospholipids, NEFA and concomitantly decreased the hepatic concentrations of Fe and Zn. There was a statistically significant (p Cu (r = -0.612), liver Fe and liver Zn (r = 0.837), liver Cu and liver Zn (r = -0.612), and serum triglycerides and liver Zn (r = 0.967). The mechanism(s) by which Fe and Zn determine these changes is not known; none of the enzymes that act in cholesterol and triglyceride metabolism and biosynthesis require Fe and/or Zn. The increase of NEFA is due to changes in the process of lipolysis and re-esterification of the fatty acids in blood. However, additional studies are needed for the precise mechanisms of this interrelationships to be clarified.

  17. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil.

    Science.gov (United States)

    Weigand, Edgar; Egenolf, Jennifer

    2017-01-01

    The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each), were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ) and 22% cocoa butter (CB) or 22% safflower oil (SF) for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control). The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  18. A Moderate Zinc Deficiency Does Not Alter Lipid and Fatty Acid Composition in the Liver of Weanling Rats Fed Diets Rich in Cocoa Butter or Safflower Oil

    Directory of Open Access Journals (Sweden)

    Edgar Weigand

    2017-01-01

    Full Text Available The aim of the study was to examine whether a moderate zinc deficiency alters hepatic lipid composition. Male weanling rats, assigned to five groups (8 animals each, were fed low-carbohydrate high-fat diets supplemented with 7 or 50 mg Zn/kg (LZ or HZ and 22% cocoa butter (CB or 22% safflower oil (SF for four weeks. One group each had free access to the LZ-CB and LZ-SF diets, one group each was restrictedly fed the HZ-CB and HZ-SF diets in matching amounts, and one group had free access to the HZ-SF diet (ad libitum control. The rats fed the LZ diets had significantly lower energy intakes and final body weights than the ad libitum control group, and lower plasma and femur Zn concentrations than the animals consuming the HZ diets. Hepatic cholesterol, triacylglycerol and phospholipid concentrations, and fatty acid composition of hepatic triacylglycerols and phospholipids did not significantly differ between the LZ and their respective HZ groups, but were greatly affected by dietary fat source. In conclusion, the moderate Zn deficiency did not significantly alter liver lipid concentrations and fatty acid composition.

  19. Evaluation of the effect of LED radiation in the repair of skin wounds on the dorsum of rats with iron deficiency anemia

    Science.gov (United States)

    de Oliveira, Susana Carla Pires Sampaio; de Carvalho Monteiro, Juliana Santos; dos Santos Aciole, Gilberth Tadeu; DeCastro, Isabele Cardoso V.; Menezes, Diego Silva; de Fátima Lima Ferreira, Maria; dos Santos, Jean Nunes; Zanin, Fátima; Barbosa Pinheiro, Antônio Luiz

    2010-05-01

    Iron deficiency anemia causes reduction on the level of hemoglobin and of the number of RBC and affects around 35% of the human population. Laser and LED therapies have been successfully used on wound healing studies. The aim of the present study was to assess histologically the effect of LED Phototherapy on the healing of cutaneous wounds on anemic rats. Fifty one 21 days old male wistar rats weighting around 50 g were kept under iron free die (Sem ferro-AIN93-G) during 15 days in order to induce anemia. Non treated animals acted as controls. A standartized cutaneous wound was created on the dorsum of each animal whom were distributed into four groups: Group I—Anemia+LED, Group II—Non anemic+LED, Group III—Anemia+no treatment, Group IV—No anemic+no-treatment. Irradiation started immediately after surgery and repeated at 48 h intervals during 21 days. Animal death occurred after 7, 14 and 21 days after wounding. The results of the histologic analysis showed that LED Phototherapy stimulated fibroblastic proliferation. It is concluded that LED irradiation improves wound healing on iron deficient anemic animals.

  20. Wfs1- deficient rats develop primary symptoms of Wolfram syndrome: insulin-dependent diabetes, optic nerve atrophy and medullary degeneration.

    Science.gov (United States)

    Plaas, Mario; Seppa, Kadri; Reimets, Riin; Jagomäe, Toomas; Toots, Maarja; Koppel, Tuuliki; Vallisoo, Tuuli; Nigul, Mait; Heinla, Indrek; Meier, Riho; Kaasik, Allen; Piirsoo, Andres; Hickey, Miriam A; Terasmaa, Anton; Vasar, Eero

    2017-08-31

    Wolfram syndrome (WS) is a rare autosomal-recessive disorder that is caused by mutations in the WFS1 gene and is characterized by juvenile-onset diabetes, optic atrophy, hearing loss and a number of other complications. Here, we describe the creation and phenotype of Wfs1 mutant rats, in which exon 5 of the Wfs1 gene is deleted, resulting in a loss of 27 amino acids from the WFS1 protein sequence. These Wfs1-ex5-KO232 rats show progressive glucose intolerance, which culminates in the development of diabetes mellitus, glycosuria, hyperglycaemia and severe body weight loss by 12 months of age. Beta cell mass is reduced in older mutant rats, which is accompanied by decreased glucose-stimulated insulin secretion from 3 months of age. Medullary volume is decreased in older Wfs1-ex5-KO232 rats, with the largest decreases at the level of the inferior olive. Finally, older Wfs1-ex5-KO232 rats show retinal gliosis and optic nerve atrophy at 15 months of age. Electron microscopy revealed axonal degeneration and disorganization of the myelin in the optic nerves of older Wfs1-ex5-KO232 rats. The phenotype of Wfs1-ex5-KO232 rats indicates that they have the core symptoms of WS. Therefore, we present a novel rat model of WS.

  1. The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen improve ANP levels and decrease nuclear translocation of NF-kB in estrogen-deficient rats.

    Science.gov (United States)

    Lamas, Aline Z; Nascimento, Andrews M; Medeiros, Ana Raquel S; Caliman, Izabela F; Dalpiaz, Polyana L M; Firmes, Luciana B; Sousa, Glauciene J; Oliveira, Phablo Wendell C; Andrade, Tadeu U; Reis, Adelina M; Gouvea, Sônia A; Bissoli, Nazaré S

    2017-08-01

    The selective estrogen receptor modulators (SERMs) raloxifene and tamoxifen are used for the treatment of osteoporosis and cancer, respectively, in women. The impairment of both the Atrial Natriuretic Peptide (ANP) cell signaling system and the translocation of nuclear factor-kappa B (NF-kB) to the cell nucleus are associated with detrimental cardiovascular effects and inflammation. The effects of SERMs on these parameters in the cardiac tissue of estrogen-deficient rats has not been reported. We investigated the effects of raloxifene and tamoxifen on ANP signaling, p65 NF-kB nuclear translocation, cardiac histology and contractility. Female rats were divided into five groups: control (SHAM), ovariectomized (OVX), OVX-treated 17-β-estradiol (E), OVX-treated raloxifene (RLX) and OVX-treated tamoxifen (TAM). The treatments started 21days after ovariectomy and continued for 14days. Ovariectomy reduced ANP mRNA in the left atrium (LA), decreased the content of ANP protein in the LA and in plasma, and increased the level of p65 NF-kB nuclear translocation in the left ventricle. Both 17-β-estradiol and SERMs were able to reverse these alterations, which were induced by the estrogen deficient state. The hemodynamic and cardiac structural parameters analyzed in the present work were not modified by the interventions. Our study demonstrates, for the first time, the additional benefits of raloxifene and tamoxifen in an estrogen-deficient state. These include the normalization of plasmatic and cardiac ANP levels and cardiac p65 NF-kB translocation. Therefore, these treatments promote cardiovascular protection and may contribute to the prevention of cardiac dysfunction observed long-term in postmenopausal women. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  2. Glutathione deficiency induced by cystine and/or methionine deprivation does not affect thyroid hormone deiodination in cultured rat hepatocytes and monkey hepatocarcinoma cells

    International Nuclear Information System (INIS)

    Sato, K.; Robbins, J.

    1981-01-01

    To elucidate the recently advanced hypothesis that glutathione [L-gamma-glutamyl-L-cysteinyl glycine (GSH)] regulates deiodinating enzyme activities, accounting for the decreased conversion of T4 to T3 in the liver of fetal and starved animals, we investigated thyroid hormone metabolism in GSH-depleted neoplastic and normal hepatocytes. In monkey hepatocarcinoma cells, intracellular total GSH decreased below 10% of the control value (approximately 25 micrograms/mg protein) when cells were grown for 44 h in medium deficient in cystine and methionine or in cystine alone. The latter finding indicated that transsulfuration from methionine to cysteine was defective in these neoplastic cells. In primary cultured adult rat hepatocytes, on the other hand, the transsulfuration pathway was intact, and total GSH decreased below 10% of control (approximately 20 micrograms/mg protein) only in cells grown in cystine- and methionine-deficient medium. In both cell types, the oxidized GSH fraction remained constant (2-5% of total). Incubation with 125I-labeled T4 and T3, followed by chromatography, was used to evaluate 5-deiodination in hepatocarcinoma cells and both 5- and 5'-deiodination in normal hepatocytes. Deiodination was not decreased by GSH deficiency in either case, but was actually increased in hepatocarcinoma cells. This resulted from an increase in the Vmax of 5-deiodinase related to growth arrest. Diamide at 2 mM reversibly inhibited both 5'- and 5'-deiodination in rat hepatocytes, accompanied by decreased total GSH as well as increased GSH disulfide (27% of total). The data suggest that GSH is so abundant in the liver that hepatocytes can tolerate a greater than 90% decrease in intracellular concentration without any change in thyroid hormone deiodination and indicate that altered thyroid hormone metabolism in the fetus and in starvation cannot be accounted for by a decreased hepatic GSH concentration

  3. Effect of Dietary Phytase Supplementation on Bone and Hyaline Cartilage Development of Broilers Fed with Organically Complexed Copper in a Cu-Deficient Diet.

    Science.gov (United States)

    Muszyński, Siemowit; Tomaszewska, Ewa; Kwiecień, Małgorzata; Dobrowolski, Piotr; Tomczyk, Agnieszka

    2018-04-01

    Tibial mechanical, chemical, and histomorphometrical traits were investigated for growing male Ross 308 broiler chickens fed diets that had copper (Cu) from organic source at a lowered level of 25% of the daily requirement (4 mg kg -1 of a premix) with or without phytase. Dietary treatments were control non-copper, non-phytase group (0 Suppl); 4 mg kg -1 Cu non-phytase group (25%Cu); and 4 mg kg -1 Cu + 500 FTU kg -1 phytase group (25%Cu + phyt). The results show that birds fed with the addition of phytase exhibited improved weight gain and final body weight and had increased serum IGF-1 and osteocalcin concentrations. The serum concentration of Cu and P did not differ between groups; however, Ca concentration decreased in the 25%Cu + phyt group when compared to the 25%Cu group. Added Cu increased bone Ca, P, Cu, and ash content in Cu-supplemented groups, but bone weight and length increased only by the addition of phytase. Bone geometry, yield, and ultimate strengths were affected by Cu and phytase addition. A decrease of the elastic stress and ultimate stress of the tibia in Cu-supplemented groups was observed. The histomorphometric analysis showed a positive effect of Cu supplementation on real bone volume and trabecular thickness in the tibia metaphyseal trabeculae; additionally, phytase increased the trabeculea number. The supplementation with Cu significantly increased the total articular cartilage and growth plate cartilage thickness; however, the changes in thickness of particular zones were dependent upon phytase addition. In summary, dietary Cu supplements given to growing broilers with Cu in their diet restricted to 25% of the daily requirement had a positive effect on bone metabolism, and phytase supplementation additionally improved cartilage development.

  4. Leptin reverses hyperglycemia and hyperphagia in insulin deficient diabetic rats by pituitary-independent central nervous system actions.

    Directory of Open Access Journals (Sweden)

    Alexandre A da Silva

    Full Text Available The hypothalamic-pituitary-adrenal (HPA axis has been postulated to play a major role in mediating the antidiabetic effects of leptin. We tested if the pituitary is essential for the chronic central nervous system mediated actions of leptin on metabolic and cardiovascular function in insulin-dependent diabetic and non-diabetic rats. Male 12-week-old hypophysectomized Sprague-Dawley rats (Hypo, n = 5 were instrumented with telemetry probes for determination of mean arterial pressure (MAP and heart rate (HR 24-hrs/day and an intracerebroventricular (ICV cannula was placed into the brain lateral ventricle for continuous leptin infusion. In additional groups of Hypo and control rats (n = 5/group, diabetes was induced by single injection of streptozotocin (50 mg/kg, IP. Hypo rats were lighter, had lower MAP and HR (83±4 and 317±2 vs 105±4 mmHg and 339±4 bpm, with similar caloric intake per kilogram of body weight and fasting plasma glucose levels (84±4 vs 80±4 mg/dl compared to controls. Chronic ICV leptin infusion (7 days, 0.62 μg/hr in non-diabetic rats reduced caloric intake and body weight (-10% in Hypo and control rats and markedly increased HR in control rats (~25 bpm while causing only modest HR increases in Hypo rats (8 bpm. In diabetic Hypo and control rats, leptin infusion reduced caloric intake, body weight and glucose levels (323±74 to 99±20 and 374±27 to 108±10 mg/dl, respectively; however, the effects of leptin on HR were abolished in Hypo rats. These results indicate that hypophysectomy attenuates leptin's effect on HR regulation without altering leptin's ability to suppress appetite or normalize glucose levels in diabetes.

  5. Effects of chronic administration of tamsulosin and tadalafil, alone or in combination, in rats with bladder outlet obstruction induced by chronic nitric oxide deficiency.

    Science.gov (United States)

    Regadas, Rommel Prata; Reges, Ricardo; Cerqueira, João Batista Gadelha; Sucupira, Daniel Gabrielle; Jamacaru, Francisco Vagnaldo F; Moraes, Manoel Odorico de; Gonzaga-Silva, Lúcio Flávio

    2014-01-01

    The aim of this study was to define if tadalafil causes detrusor muscle impairment and to observe the effect of combination of tadalafil with tamsulosin on the lower urinary tract of rats with bladder outlet obstruction (BOO) induced by chronic nitric oxide deficiency. Thirty-one male rats were randomized to following groups: 1 - control; 2 - L-Nitroarginine methyl ester (L-NAME); 3 - Tamsulosin + L-NAME, 4 Tadalafil+L-NAME; and 5 - Tamsulosin + Tadalafil + L-NAME. At the end of the treatment period (30 days), all animals were submitted to urodynamic study. The administration of L-NAME increased the number of non-voiding contractions (NVC) (1.04 ± 0.22), volume threshold (VT) (1.86 ± 0.35), and micturition cycle (MC) (1.34 ± 0.11) compared with control (0.52 ± 0.06, 0.62 ± 0.06, and 0.67 ± 0.30), respectively. The administration of tamsulosin reduced the number of NVC (0.57 ± 0.42) and VT (0.76 ± 0.24 ) compared with L-NAME group. Co-treatment with tadalafil decreased the number of VT (0.85 ± 0.53) and MC (0.76 ± 0.22) compared with L-NAME group. The combination of tamsulosin with tadalafil improved the number of NVC (0.56 ± 0.18), VT (0.97 ± 0.52) and MC (0.68 ± 0.30) compared with L-NAME group. In rats with BOO induced by chronic nitric oxide deficiency, tadalafil did not cause impairment in detrusor muscle and seems to have an addictive effect to tamsulosin because the combination decreased non voiding contractions as well the number of micturition cycles.

  6. Effects of chronic administration of tamsulosin and tadalafil, alone or in combination, in rats with bladder outlet obstruction induced by chronic nitric oxide deficiency

    Directory of Open Access Journals (Sweden)

    Rommel Prata Regadas

    2014-08-01

    Full Text Available Purpose The aim of this study was to define if tadalafil causes detrusor muscle impairment and to observe the effect of combination of tadalafil with tamsulosin on the lower urinary tract of rats with bladder outlet obstruction (BOO induced by chronic nitric oxide deficiency. Materials and Methods Thirty-one male rats were randomized to following groups: 1 - control; 2 - L-Nitroarginine methyl ester (L-NAME; 3 - Tamsulosin + L-NAME, 4 Tadalafil+L-NAME; and 5 - Tamsulosin + Tadalafil + L-NAME. At the end of the treatment period (30 days, all animals were submitted to urodynamic study. Results The administration of L-NAME increased the number of non-voiding contractions (NVC (1.04 ± 0.22, volume threshold (VT (1.86 ± 0.35, and micturition cycle (MC (1.34 ± 0.11 compared with control (0.52 ± 0.06, 0.62 ± 0.06, and 0.67 ± 0.30, respectively. The administration of tamsulosin reduced the number of NVC (0.57 ± 0.42 and VT (0.76 ± 0.24 compared with L-NAME group. Co-treatment with tadalafil decreased the number of VT (0.85 ± 0.53 and MC (0.76 ± 0.22 compared with L-NAME group. The combination of tamsulosin with tadalafil improved the number of NVC (0.56 ± 0.18, VT (0.97 ± 0.52 and MC (0.68 ± 0.30 compared with L-NAME group. Conclusion In rats with BOO induced by chronic nitric oxide deficiency, tadalafil did not cause impairment in detrusor muscle and seems to have an addictive effect to tamsulosin because the combination decreased non voiding contractions as well the number of micturition cycles.

  7. Low-dose copper infusion into the coronary circulation induces acute heart failure in diabetic rats: New mechanism of heart disease.

    Science.gov (United States)

    Cheung, Carlos Chun Ho; Soon, Choong Yee; Chuang, Chia-Lin; Phillips, Anthony R J; Zhang, Shaoping; Cooper, Garth J S

    2015-09-01

    Diabetes impairs copper (Cu) regulation, causing elevated serum Cu and urinary Cu excretion in patients with established cardiovascular disease; it also causes cardiomyopathy and chronic cardiac impairment linked to defective Cu homeostasis in rats. However, the mechanisms that link impaired Cu regulation to cardiac dysfunction in diabetes are incompletely understood. Chronic treatment with triethylenetetramine (TETA), a Cu²⁺-selective chelator, improves cardiac function in diabetic patients, and in rats with heart disease; the latter displayed ∼3-fold elevations in free Cu²⁺ in the coronary effluent when TETA was infused into their coronary arteries. To further study the nature of defective cardiac Cu regulation in diabetes, we employed an isolated-perfused, working-heart model in which we infused micromolar doses of Cu²⁺ into the coronary arteries and measured acute effects on cardiac function in diabetic and non-diabetic-control rats. Infusion of CuCl₂ solutions caused acute dose-dependent cardiac dysfunction in normal hearts. Several measures of baseline cardiac function were impaired in diabetic hearts, and these defects were exacerbated by low-micromolar Cu²⁺ infusion. The response to infused Cu²⁺ was augmented in diabetic hearts, which became defective at lower infusion levels and underwent complete pump failure (cardiac output = 0 ml/min) more often (P acute effects on cardiac function of pathophysiological elevations in coronary Cu²⁺. The effects of Cu²⁺ infusion occur within minutes in both control and diabetic hearts, which suggests that they are not due to remodelling. Heightened sensitivity to the acute effects of small elevations in Cu²⁺ could contribute substantively to impaired cardiac function in patients with diabetes and is thus identified as a new mechanism of heart disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Luminol-and lucigenin-amplified chemiluminescence with rat liver microsomes. Kinetics and influence of ascorbic acid, glutathione, dimethylsulfoxide, N-t-butyl-a-phenyl-nitrone, copper-ions and a copper complex, catalase, superoxide dismutase, hexobarbital and aniline.

    Science.gov (United States)

    Klinger, W; Karge, E; Kretzschmar, M; Rost, M; Schulze, H P; Dargel, R; Reinemann, C; Rein, H

    1996-07-01

    For the investigation of luminol (LM)-and lucigenin (LC)-amplified chemiluminescence (CL) in rat liver microsomes using both a liquid-scintillation counter (LKB/Wallac 1219 Rackbeta) and a Berthold luminometer (AutoLumat LB 953) optimal incubation mixtures and conditions and basic kinetics have been established. Whereas calibration curves for both LM- and LC-CL are performed with hydrogenperoxide (LC quantum yield is 6.25 fold higher as that of LM), distinct differences were revealed with microsomes, indicating that different reactive oxygen species (ROS) are determined: Both LM- and LC-CL follow the kinetics of enzymatic reactions in terms of dependence on protein and NADPH or NADH concentration, time course, temperature etc., but with differences. LM-CL does not work without addition of Fe2+, whereas LC-CL does. Both copper ions and copper bound in a complex abolish CL, LC-CL being much more sensitive. Isolated cytochrome P-450 (P450) and NADPH P450 reductase from liver of pheno-barbital treated rats alone proved to be inactive in LM-and LC-CL production, whereas te combination 1:1 without and with addition of lipid was highly active in both LM-and LC-CL. Ascorbic acid and glutathione as scavengers diminish both LM- and LC-CL in concentrations higher then 10(5). Dimethyl-sulfoxide (DMSO) was ineffective in LM-CL up to concentrations of 0.2 M, the very high concentration of 2 M diminished LM-CL only to 1/3. LC-CL was diminished starting at concentrations of 100 mM and at 2 M only 10% of maximum LC-CL was observed. The trap substance N-t-butyl-a-phenylnitrone (BNP) also diminished LC-CL more effectively than LM-CL. Clearcut differences were revealed by the addition of catalase and superoxide dismutase: both enzymes diminished LM-CL only, without any influence on LC-CL. Hexobarbital, a potent uncoupler of P450, enhances LM-CL fivefold, whereas LC-CL is barely influenced. Aniline (without uncoupling capability) decreased both LM-and LC-CL increasingly with increasing

  9. In-vivo studies of mechanisms of haematologic oncogenesis after exposure to ionizing radiation utilizing a model of rats deficient in Potassium 53

    International Nuclear Information System (INIS)

    Casado, J.A.; Bauluz, C.; Vidania, R. de; Real, A.

    1997-01-01

    The development of an appropriate radiation protection system is based on the knowledge of health effects of moderate and low radiation. The knowledge of these effects at present is insufficient for determining with exactness the health risks of the said exposure. Epidemiological studies have serious limitations which stand in the way of addressing these problems. Through studies with new experimental models, interesting information can be obtained in this respect and in particular on the oncogenic mechanism of radiation. In this study, rats deficient in Phosphorus 53 have been used to study the impact of haematological cancer after irradiation. For the purpose of characterizing populations potentially implicated in carcinogenic development, cellular morphological analyses and expression of surface markers have been carried out and the content of DNA in haematopoietic cells has been looked into. Rats with Phosphorus 53 develop fundamentally altered lymphomas after irradiation. Leukaemias were also observed, even though the number of rats examined was low. The proposed methodology demonstrates great potential through the study of cellular changes and associated molecules in radiation induced carcinogenic development

  10. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  11. Dietary Components Affect the Plasma and Tissue Levels of Lutein in Aged Rats with Lutein Deficiency--A Repeated Gavage and Dietary Study.

    Science.gov (United States)

    Sheshappa, Mamatha Bangera; Ranganathan, Arunkumar; Bhatiwada, Nidhi; Talahalli, Ramprasad Ravichandra; Vallikannan, Baskaran

    2015-10-01

    The aim of this study was to find out the influence of selected dietary components on plasma and tissue response of repeated micellar and dietary lutein in aged rats with lutein deficiency. In repeated (16 d) gavage study, micellar lutein was co-ingested with either phosphatidylcholine (PC), lyso-phosphatidylcholine (lysoPC), β-carotene, dietary fiber or vegetable fat (3% soybean oil). In dietary study, rats were fed (4 wk) semi-synthetic diet either with lutein + PC, lutein + dietary fiber or B. alba (lutein source) + PC. The post-prandial plasma and tissue response of lutein was measured by HPLC. Results showed that micellar fat, PC and lysoPC significantly (P ≤ 0.05) increased the lutein levels in plasma (31.1%, 26.8%, and 34.9%), liver (27.4%, 29.5%, and 8.6%), and eyes (63.5%, 90.2%, and 86%) compared to the control group (group gavaged micelles with no dietary components studied). Similarly, dietary study showed an enhanced plasma, liver, and eye lutein levels by 44.8%, 24.1%, and 42.0% (lutein + PC group) and 51.7%, 39.8%, and 31.7% (B.alba + PC group), respectively compared to control. The activity of antioxidant enzymes in plasma and liver of both the studies were also affected compared to control. Result reveals, that PC enhance the intestinal absorption of both micellar and dietary lutein which is either in free or bound form with food matrices in aged rats with lutein deficiency. Hence, PC at a concentration used in this study can be considered to improve the lutein bioavailability in lutein deficiency. Lutein and zeaxanthin are macular pigments acquired mostly from greens, that play an significant role in protecting vision from Age related macular degeneration (AMD). However, their biological availability is poor and affected by dietary components. This study demonstrates the positive influence of dietary PC and lyso PC in improving intestinal uptake of lutein. Our previous and present finding shows there is a possibility of developing functional

  12. Intermittent fasting protects against the deterioration of cognitive function, energy metabolism and dyslipidemia in Alzheimer's disease-induced estrogen deficient rats.

    Science.gov (United States)

    Shin, Bae Kun; Kang, Suna; Kim, Da Sol; Park, Sunmin

    2018-02-01

    Intermittent fasting may be an effective intervention to protect against age-related metabolic disturbances, although it is still controversial. Here, we investigated the effect of intermittent fasting on the deterioration of the metabolism and cognitive functions in rats with estrogen deficiency and its mechanism was also explored. Ovariectomized rats were infused with β-amyloid (25-35; Alzheimer's disease) or β-amyloid (35-25, Non-Alzheimer's disease; normal cognitive function) into the hippocampus. Each group was randomly divided into two sub-groups: one with intermittent fasting and the other fed ad libitum: Alzheimer's disease-ad libitum, Alzheimer's disease-intermittent fasting, Non-Alzheimer's disease-ad libitum, and Non-Alzheimer's disease-intermittent fasting. Rats in the intermittent fasting groups had a restriction of food consumption to a 3-h period every day. Each group included 10 rats and all rats fed a high-fat diet for four weeks. Interestingly, Alzheimer's disease increased tail skin temperature more than Non-Alzheimer's disease and intermittent fasting prevented the increase. Alzheimer's disease reduced bone mineral density in the spine and femur compared to the Non-Alzheimer's disease, whereas bone mineral density in the hip and leg was reduced by intermittent fasting. Fat mass only in the abdomen was decreased by intermittent fasting. Intermittent fasting decreased food intake without changing energy expenditure. Alzheimer's disease increased glucose oxidation, whereas intermittent fasting elevated fat oxidation as a fuel source. Alzheimer's disease and intermittent fasting deteriorated insulin resistance in the fasting state but intermittent fasting decreased serum glucose levels after oral glucose challenge by increasing insulin secretion. Alzheimer's disease deteriorated short and spatial memory function compared to the Non-Alzheimer's disease, whereas intermittent fasting prevented memory loss in comparison to ad libitum. Unexpectedly

  13. Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet

    International Nuclear Information System (INIS)

    Akita, Shingo; Kubota, Koji; Kobayashi, Akira; Misawa, Ryosuke; Shimizu, Akira; Nakata, Takenari; Yokoyama, Takahide; Takahashi, Masafumi; Miyagawa, Shinichi

    2012-01-01

    Highlights: ► BMC-derived PSCs play a role in a rat CDE diet-induced pancreatitis model. ► BMC-derived PSCs contribute mainly to the early stage of pancreatic fibrosis. ► BMC-derived activated PSCs can produce PDGF and TGF β1. -- Abstract: Bone marrow cell (BMC)-derived myofibroblast-like cells have been reported in various organs, including the pancreas. However, the contribution of these cells to pancreatic fibrosis has not been fully discussed. The present study examined the possible involvement of pancreatic stellate cells (PSCs) originating from BMCs in the development of pancreatic fibrosis in a clinically relevant rat model of acute pancreatitis induced by a choline-deficient/ethionine-supplemented (CDE) diet. BMCs from female transgenic mice ubiquitously expressing green fluorescent protein (GFP) were transplanted into lethally irradiated male rats. Once chimerism was established, acute pancreatitis was induced by a CDE diet. Chronological changes in the number of PSCs originating from the donor BMCs were examined using double immunofluorescence for GFP and markers for PSCs, such as desmin and alpha smooth muscle actin (αSMA), 1, 3 and 8 weeks after the initiation of CDE feeding. We also used immunohistochemical staining to evaluate whether the PSCs from the BMCs produce growth factors, such as platelet-derived growth factor (PDGF) and transforming growth factor (TGF) β1. The percentage of BMC-derived activated PSCs increased significantly, peaking after 1 week of CDE treatment (accounting for 23.3 ± 0.9% of the total population of activated PSCs) and then decreasing. These cells produced both PDGF and TGFβ1 during the early stage of pancreatic fibrosis. Our results suggest that PSCs originating from BMCs contribute mainly to the early stage of pancreatic injury, at least in part, by producing growth factors in a rat CDE diet-induced pancreatitis model.

  14. Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet

    Energy Technology Data Exchange (ETDEWEB)

    Akita, Shingo; Kubota, Koji [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Kobayashi, Akira, E-mail: kbys@shinshu-u.ac.jp [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Misawa, Ryosuke; Shimizu, Akira; Nakata, Takenari; Yokoyama, Takahide [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Takahashi, Masafumi [Center for Molecular Medicine Division of Bioimaging Sciences, Jichi Medical University, 3311-1 Yakushiji, Shimono, Tochigi 329-0498 (Japan); Miyagawa, Shinichi [Department of Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer BMC-derived PSCs play a role in a rat CDE diet-induced pancreatitis model. Black-Right-Pointing-Pointer BMC-derived PSCs contribute mainly to the early stage of pancreatic fibrosis. Black-Right-Pointing-Pointer BMC-derived activated PSCs can produce PDGF and TGF {beta}1. -- Abstract: Bone marrow cell (BMC)-derived myofibroblast-like cells have been reported in various organs, including the pancreas. However, the contribution of these cells to pancreatic fibrosis has not been fully discussed. The present study examined the possible involvement of pancreatic stellate cells (PSCs) originating from BMCs in the development of pancreatic fibrosis in a clinically relevant rat model of acute pancreatitis induced by a choline-deficient/ethionine-supplemented (CDE) diet. BMCs from female transgenic mice ubiquitously expressing green fluorescent protein (GFP) were transplanted into lethally irradiated male rats. Once chimerism was established, acute pancreatitis was induced by a CDE diet. Chronological changes in the number of PSCs originating from the donor BMCs were examined using double immunofluorescence for GFP and markers for PSCs, such as desmin and alpha smooth muscle actin ({alpha}SMA), 1, 3 and 8 weeks after the initiation of CDE feeding. We also used immunohistochemical staining to evaluate whether the PSCs from the BMCs produce growth factors, such as platelet-derived growth factor (PDGF) and transforming growth factor (TGF) {beta}1. The percentage of BMC-derived activated PSCs increased significantly, peaking after 1 week of CDE treatment (accounting for 23.3 {+-} 0.9% of the total population of activated PSCs) and then decreasing. These cells produced both PDGF and TGF{beta}1 during the early stage of pancreatic fibrosis. Our results suggest that PSCs originating from BMCs contribute mainly to the early stage of pancreatic injury, at least in part, by producing growth factors in a rat CDE diet-induced pancreatitis model.

  15. Assessment of the use of LED phototherapy on bone defects grafted with hydroxyapatite on rats with iron-deficiency anemia and nonanemic: a Raman spectroscopy analysis.

    Science.gov (United States)

    de Castro, Isabele Cardoso Vieira; Rosa, Cristiane Becher; Dos Reis Júnior, João Alves; Moreira, Luiz Gaudêncio Passos; Aragão, Juliana S; Barbosa, Artur Felipe dos Santos; Silveira, Landulfo; Pinheiro, Antonio L B

    2014-09-01

    This study aimed to assess bone repair in defects grafted or not with hydroxyapatite (HA) on healthy and iron-deficiency anemia (IDA) rats submitted or not to LED phototherapy (LED-PT) by Raman spectroscopy. The animals were divided in eight groups with five rats each: Clot; Clot + LED; IDA + Clot; IDA + LED; Graft; Graft + LED; IDA + Graft; and IDA + Graft + LED. When appropriated, irradiation with IR LED (λ850 ± 10 nm, 150 mW, CW, Φ = 0.5 cm(2), 16 J/cm(2), 15 days) was carried out. Raman shifts: ∼ 960 [symmetric PO4 stretching (phosphate apatite)], ∼ 1,070 [symmetric CO3 stretching (B-type carbonate apatite)], and ∼ 1,454 cm(-1) [CH2/CH3 bending in organics (protein)] were analyzed. The mean peak values for ∼ 960, ∼ 1,070, and ∼ 1,454 cm(-1) were nonsignificantly different on healthy or anemic rats. The group IDA + Graft + LED showed the lowest mean values for the peak ∼ 960 cm(-1) when compared with the irradiated IDA group or not (p ≤ 0.001; p ≤ 0.001). The association of LED-PT and HA-graft showed lowest mean peak at ∼ 1,454 cm(-1) for the IDA rats. The results of this study indicated higher HA peaks as well as a decrease in the level of organic components on healthy animals when graft and LED phototherapy are associated. In the other hand, IDA condition interfered in the graft incorporation to the bone as LED phototherapy only improved bone repair when graft was not used.

  16. Modulatory role of Co-enzyme Q10 on methionine and choline deficient diet-induced non-alcoholic steatohepatitis (NASH) in albino rats.

    Science.gov (United States)

    Saleh, Dalia O; Ahmed, Rania F; Amin, Mohamed M

    2017-03-01

    The present study aimed to evaluate the hepato-protective and neuro-protective activity of Co-enzyme Q10 (CoQ10) on non-alcoholic steatohepatitis (NASH) in albino rats induced by methionine and choline-deficient (MCD) diet. Rats were fed an MCD diet for 8 weeks to induce non-alcoholic steatohepatitis. CoQ10 (10 mg/(kg·day) -1 ) was orally administered for 2 consecutive weeks. Twenty-four hours after the last dose of the drug, the behavioral test, namely the activity cage test, was performed and the activity counts were recorded. Serum alanine transaminase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total/direct bilirubin, and albumin were valued to assess liver function. Moreover, hepatic cytokines interleukin-6 as well as its modulator nuclear factor kappa-light-chain-enhancer of activated B cells were determined. In addition, brain biomarkers, viz ammonia, nitric oxide, and brain-derived neurotrophic factor (BDNF), were measured as they are reliable indices to assess brain damage. Histopathological and immunohistochemical examination of brain proliferating cell nuclear antigen in brain and liver tissues were also evaluated. Results revealed that MCD-induced NASH showed impairment in the liver functions with an increase in the liver inflammatory markers. Moreover, NASH resulted in pronounced brain dysfunction as evidenced by hyper-locomotor activity, a decrease in the BDNF level, as well as an increase in the brain nitric oxide and ammonia contents. Oral treatment of MCD-diet-fed rats with CoQ10 for 14 days showed a marked improvement in all the assigned parameters. Finally, it can be concluded that CoQ10 has a hepatoprotective and neuroprotective role in MCD-diet-induced NASH in rats.

  17. Preservation and promotion of bone formation in the mandible as a response to a novel calcium-phosphate based biomaterial in mineral deficiency induced low bone mass male versus female rats

    Science.gov (United States)

    Srinivasan, Kritika; Naula, Diana P.; Mijares, Dindo Q.; Janal, Malvin N.; LeGeros, Raquel Z.; Zhang, Yu

    2016-01-01

    Calcium and other trace mineral supplements have previously demonstrated to safely improve bone quality. We hypothesize that our novel calcium-phosphate based biomaterial (SBM) preserves and promotes mandibular bone formation in male and female rats on mineral deficient diet (MD). Sixty Sprague-Dawley rats were randomly assigned to receive one of three diets (n = 10): basic diet (BD), MD or mineral deficient diet with 2% SBM. Rats were sacrificed after 6 months. Micro-Computed Tomography (μCT) was used to evaluate bone volume and 3D-microarchitecture while microradiography (Faxitron) was used to measure bone mineral density from different sections of the mandible. Results showed that bone quality varied with region, gender and diet. MD reduced bone mineral density (BMD) and volume and increased porosity. SBM preserved BMD and bone mineral content (BMC) in the alveolar bone and condyle in both genders. In the alveolar crest and mandibular body, while preserving more bone in males, SBM also significantly supplemented female bone. Results indicate that mineral deficiency leads to low bone mass in skeletally immature rats, comparatively more in males. Furthermore, SBM administered as a dietary supplement was effective in preventing mandibular bone loss in all subjects. This study suggests that the SBM preparation has potential use in minimizing low peak bone mass induced by mineral deficiency and related bone loss irrespective of gender. PMID:26914814

  18. Cognitive impairment in folate-deficient rats corresponds to depleted brain phosphatidylcholine and is prevented by methionine without lowering homocysteine

    Science.gov (United States)

    Poor folate status is associated with cognitive decline and dementia in older adults. Although impaired brain methylation activity and homocysteine toxicity are widely believed to account for this association, how folate deficiency impairs cognition is uncertain. To better define the role of folate ...

  19. Supplementing with Opuntia ficus-indica Mill and Dioscorea nipponica Makino extracts synergistically attenuates menopausal symptoms in estrogen-deficient rats.

    Science.gov (United States)

    Ko, Byoung-Seob; Lee, Hye Won; Kim, Da Sol; Kang, Suna; Ryuk, Jin Ah; Park, Sunmin

    2014-08-08

    Prickly pear cactus grown in Korea (Opuntia ficus-indica Mill, KC) and Buchema (Dioscorea nipponica Makino, B) have been traditionally used in East Asia and South America to treat various metabolic diseases. The aim of the present study was to determine whether the extracts of KC, B, and KC+B can prevent the impairments of energy, glucose, lipid and bone homeostasis in estrogen-deficient ovariectomized (OVX) rats and to explore their mechanisms. OVX rats were divided into 4 groups and fed high fat diets supplemented with either 3% dextrin (control), 3% KC, 3% B or 1.5% KC+1.5% B. Sham rats were fed 3% dextrin. After 12 weeks of diet consumption, energy, lipid, glucose and bone metabolisms were analyzed and Wnt signaling in the femur and hepatic signaling were determined. OVX impaired energy, glucose and lipid metabolism and decreased uterine and bone masses. B and KC+B prevented the decrease in energy expenditure, especially from fat oxidation, in OVX rats, but did not affect food intake. KC+B and B reduced body weight and visceral fat levels, as compared to the OVX-control, by decreasing fat synthesis and inhibiting FAS and SREBP-1c expression. KC+B and B prevented the increases in serum lipid levels and insulin resistance by improving hepatic insulin signaling (pIRS→pAkt→pGSK-3β). KC and KC+B also prevented decreases in bone mineral density (BMD) in the femur and lumbar spine in OVX rats. This was related to decreased expressions of bone turnover markers such as serum osteocalcin, alkaline phosphatase (ALP) and bone-specific ALP levels, and increased serum P levels. KC and KC+B upregulated low-density lipoprotein receptor-related protein 5 and β-catenin in OVX rats, but suppressed the expression of dickkopf-related protein 1. B alone improved energy, lipid and glucose homeostasis, but not bone loss, whereas KC alone enhanced BMD, but not energy, lipid or glucose homeostasis. KC+B synergistically attenuated impairments of bone, energy, lipid and glucose

  20. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain.

    Science.gov (United States)

    Huang, Pengcheng; Wu, Fangying; Mao, Lanqun

    2015-07-07

    Copper ions (Cu(2+)) in the central nervous system play a crucial role in the physiological and pathological events, so simple, selective, and sensitive detection of cerebral Cu(2+) is of great importance. In this work, we report a facile yet effective fluorescent method for sensing of Cu(2+) in rat brain using one kind of lanthanide coordination polymer nanoparticle, adenosine monophosphate (AMP) and terbium ion (Tb(3+)), i.e., AMP-Tb, as the sensing platform. Initially, a cofactor ligand, 5-sulfosalicylic acid (SSA), as the sensitizer, was introduced into the nonluminescent AMP-Tb suspension, resulting in switching on the luminescence of AMP-Tb by the removal of coordinating water molecules and concomitant energy transfer from SSA to Tb(3+). The subsequent addition of Cu(2+) into the resulting SSA/AMP-Tb can strongly quench the fluorescence because the specific coordination interaction between SSA and Cu(2+) rendered energy transfer from SSA to Tb(3+) inefficient. The decrease ratio of the fluorescence intensities of SSA/AMP-Tb at 550 nm show a linear relationship for Cu(2+) within the concentration range from 1.5 to 24 μM with a detection limit of 300 nM. The method demonstrated here is highly selective and is free from the interference of metal ions, amino acids, and the biological species commonly existing in the brain such as dopamine, lactate, and glucose. Eventually, by combining the microdialysis technique, the present method has been successfully applied in the detection of cerebral Cu(2+) in rat brain with the basal dialysate level of 1.91 ± 0.40 μM (n = 3). This method is very promising to be used for investigating the physiological and pathological events that cerebral Cu(2+) participates in.

  1. Alterations of Liver Histomorphology in Relation to Copper Supplementation in Inorganic and Organic Form in Growing Rats

    Directory of Open Access Journals (Sweden)

    Tomaszewska Ewa

    2014-10-01

    Full Text Available The aim of this study was to define the effects of diet containing the same mineral content of mineral salt or amino acid chelate, and diet containing various levels of Cu amino acid chelate on liver histomorphometry in growing rats. Male Wistar rats were used in the 12th week experiment. The control group (n = 12 was fed standard diet, which provided Cu in an inorganic form at the level required for rats. The experimental animals were divided into four groups (each n = 12 depending on different levels (100%, 75%, 50%, 25% covered daily demand of Cu supplementation in chelated form. Cu content was determined in the liver tissue and blood plasma. Immunohistochemical staining with caspase-3 antibody was performed. Microscopic assessment of the liver structure indicated that Cu supplementation did not change the liver architecture. However, histomorphometric analysis revealed a significant increase in the number of nuclei, total cell number, and multinucleated hepatocytes in rats supplemented with the organic form of Cu at the level of 25% compared with the control group. There was a considerable increase in the number of apoptotic cells and ballooning degeneration of hepatocytes, especially in groups supplemented with organic form of Cu covering the daily demand in 100% and 75%, in comparison to control group. Moreover, there was no Cu deposition in the liver and changes in Cu content in blood. Cu provided in the diet in organic form covering an amount of its minimum daily demand in 25% appears to be the least harmful with regard to the liver. It indicates that there is a need to establish the level of diet supplementation with Cu amino acid chelates.

  2. Deficiency of sex hormones does not affect 17-ß-estradiol-induced coronary vasodilation in the isolated rat heart.

    Science.gov (United States)

    Santos, R L; Lima, J T; Rouver, W N; Moysés, M R

    2016-01-01

    The relaxation of coronary arteries by estrogens in the coronary vascular beds of naive and hypertensive rats has been well described. However, little is known about this action in gonadectomized rats. We investigated the effect of 17-ß-estradiol (E2) in coronary arteries from gonadectomized rats, as well as the contributions of endothelium-derived factors and potassium channels. Eight-week-old female and male Wistar rats weighing 220-300 g were divided into sham-operated and gonadectomized groups (n=9-12 animals per group). The baseline coronary perfusion pressure (CPP) was determined, and the vasoactive effects of 10 μM E2 were assessed by bolus administration before and after endothelium denudation or by perfusion with NG-nitro-L-arginine methyl ester (L-NAME), indomethacin, clotrimazole, L-NAME plus indomethacin, L-NAME plus clotrimazole or tetraethylammonium (TEA). The CPP differed significantly between the female and sham-operated male animals. Gonadectomy reduced the CPP only in female rats. Differences in E2-induced relaxation were observed between the female and male animals, but male castration did not alter this response. For both sexes, the relaxation response to E2 was, at least partly, endothelium-dependent. The response to E2 was reduced only in the sham-operated female rats treated with L-NAME. However, in the presence of indomethacin, clotrimazole, L-NAME plus indomethacin or L-NAME plus clotrimazole, or TEA, the E2 response was significantly reduced in all groups. These results highlight the importance of prostacyclin, endothelium-derived hyperpolarizing factor, and potassium channels in the relaxation response of coronary arteries to E2 in all groups, whereas nitric oxide may have had an important role only in the sham-operated female group.

  3. Effects of copper excess and copper deficiency on the structural and electrical properties of bulk Cu{sub x}SnSe{sub 3} with x=1.6–2.2

    Energy Technology Data Exchange (ETDEWEB)

    Wubet, Walelign; Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw

    2015-03-15

    Effects of the Cu variation on the morphological, structural, and electrical properties of bulk Cu{sub x}SnSe{sub 3} (CTSe) with x=1.6–2.2 have been investigated. Dense CTSe pellets with grains of 3–4 µm were obtained after sintering at 550 °C. All CTSe pellets showed a dominant p-type behavior. CTSe at x=2.0 with a hole concentration (n{sub p}) of 1.02×10{sup 18} cm{sup −3} and Hall mobility (μ) of 225 cm{sup 2}/V/s had a highest conductivity (σ) of 39 S/cm. CTSe at x=1.6 with n{sub p} of 5.0×10{sup 17} cm{sup −3} and of 11 cm{sup 2}/V/s had a lowest of 0.90 S/cm. The explanation, based upon vacancies and antisite defects, for the changes in electrical property with the Cu content is supported by the data from lattice parameter. The study in bulk properties of CTSe and its defects is helpful for selecting the suitable absorber composition to fabricate thin film solar cells. - Graphical abstract: Cu{sub 2}SnSe{sub 3} is an absorber candidate for solar cells. The Cu stoichiometry on electrical properties, which is important for CIGS and CZTS, is investigated and the Cu-deficiency composition is recommended. - Highlights: • Cu{sub x}SnSe{sub 3} (CTSe) bulks with 1.6≤x≤2.2 were prepared by reactive sintering. • Cu{sub 2}SnSe{sub 3} with n{sub p} of 1.02×10{sup 18} cm{sup −3} and μ of 225 cm{sup 2}/V/s had highest σ of 39 S/cm. • Cu{sub 1.6}SnSe{sub 3} with n{sub p}=5.0×10{sup 17} cm{sup −3} and μ=11 cm{sup 2}/V/s had lowest σ=0.90 S/cm. • Lower n{sub p} at CTSe at x=1.6 is related to the formation of the Sn-to-Cu defect. • The drop in n{sub p} for CTSe at x=2.2 indicates V{sub Sn}{sup 4−} dominates over Cu{sub Sn}{sup 3−} defect.

  4. Induction of monooxygenases and incorporation of radioactivity from 2-14C-lysine into hepatic microsomes of phenobarbital-treated rats fed a diet deficient in lysine, methionine, threonine and vitamines A, C, E

    International Nuclear Information System (INIS)

    Nurmagambetov, T.Zh.; Amirov, B.B.; Kuanysheva, T.G.; Sharmanov, T.Sh.

    1992-01-01

    The effect of diet on induction of monooxygenases and distribution of radioactivity from 2- 14 C-lysine in fractions of liver homogenate, muscle homogenate and blood of male rats treated with phenobarbital was studied. 2- 14 C-lysin was injected intraperitoneally 24 h before the first injection of phenobarbital. It was demonstrated that monooxygenase induction, increase of relative liver weight and incorporation of radioactivity from 2- 14 C-lysine into fractions of liver homogenate in phenobarbital-treated rats fed diet deficient in lysine, methionine, threonine and vitamins A, C, E were more pronounced as compared with the similarly treated rats which were fed a balanced diet. The possibility of mobilization of deficient essencial components to liver from other organs and tissues for maintenance of monooxygenase induction iis discussed

  5. NADH:ubiquinone reductase and succinate dehydrogenase activity in the liver of rats with acetaminophen-induced toxic hepatitis on the background of alimentary protein deficiency

    Directory of Open Access Journals (Sweden)

    G. P. Kopylchuk

    2015-02-01

    Full Text Available The ratio between the redox forms of the nicotinamide coenzymes and key enzymatic activity of the I and II respiratory chain complexes in the liver cells mitochondria of rats with acetaminophen-induced hepatitis under the conditions of alimentary deprivation of protein was studied. It was estimated, that under the conditions of acute acetaminophen-induced hepatitis of rats kept on a low-protein diet during 4 weeks a significant decrease of the NADH:ubiquinone reductase and succinate dehydrogenase activity with simultaneous increase of the ratio between redox forms of the nicotinamide coenzymes (NAD+/NADН is observed compared to the same indices in the liver cells of animals with experimental hepatitis kept on the ration balanced by all nutrients. Results of research may become basic ones for the biochemical rationale for the approaches directed to the correction and elimination of the consequences­ of energy exchange in the toxic hepatitis, induced on the background of protein deficiency.

  6. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  7. Comparatively evaluating the pharmacokinetic of fifteen constituents in normal and blood deficiency rats after oral administration of Xin-Sheng-Hua Granule by UPLC-MS/MS.

    Science.gov (United States)

    Pang, Han-Qing; Tang, Yu-Ping; Cao, Yu-Jie; Tan, Ya-Jie; Jin, Yi; Shi, Xu-Qin; Huang, Sheng-Liang; Sun, Da-Zheng; Sun, Jin; Tang, Zhi-Shu; Duan, Jin-Ao

    2017-09-01

    Xin-Sheng-Hua Granule (XSHG), a famous traditional Chinese medicine prescription, are clinically applied for the treatment of postpartum disease through nourishing blood and promoting blood circulation. In this investigation, a multi-constituents (trigonelline, stachydrine hydrochloride, hydroxysafflor yellow A, chlorogenic acid, amygdalin, leonurine, liquiritin, ferulic acid, senkyunolide I, senkyunolide H, glycyrrhizic acid, senkyunolide A, ligustilide, butylidenephthalide and glycyrrhetinic acid) pharmacokinetic study of XSHG was conducted for the first time. These fifteen constituents in both normal and blood deficiency rat plasma were monitored by using the established and validated ultra-high-performance liquid chromatography coupled with a triple quadrupole electrospray tandem mass spectrometry (UPLC-TQ-MS/MS) method. The samples were prepared through removing protein from plasma with three volumes of methanol. Sufficient separation of target constituents and internal standards (chloramphenicol and clarithromycin) was obtained on a Thermo Scientific Hypersil GOLD column (100mm×3mm, 1.9μm) within a 20min gradient elution (0.1% formic acid aqueous - acetonitrile). Multiple reaction monitoring (MRM) mode was applied to monitor target analytes in both positive and negative electrospray ionization. For the fifteen selected target analytes, this method was fully validated with excellent linearity (r≥0.9925), satisfactory intra- and inter-day precisions (RSD≤11.87%), as well as good accuracies (RE, between -12.84 and 11.69). And the stabilities, matrix effects and extraction recoveries of the rat plasma samples were also within acceptable limits (RSD<15%). Compared to normal group, the pharmacokinetics of major active constituents (except liquiritin and glycyrrhetinic acid) had significant differences (P<0.05) in the model rats, indicated that several metabolite enzymes activities could be altered at disease condition. Copyright © 2017 Elsevier B.V. All

  8. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  9. Different behaviour of 63Ni and 59Fe during absorption in iron-deficient and iron-adequate jejunal rat segments ex vivo

    International Nuclear Information System (INIS)

    Mueller-Fassbender, M.; Elsenhans, B.; McKie, A.T.; Schuemann, K.

    2003-01-01

    Nickel exhibits low oral toxicity. It shares the absorptive pathways for iron, though there are substantial quantitative differences in handling of both metals. To analyse these differences more closely, jejunal segments from iron-deficient and iron-adequate rats were luminally perfused ex vivo with 59 Fe and 63 Ni at six different concentrations (1-500 μmo1/l) under steady state conditions. 59 Fe over-all absorption increased 2.0-4.6-fold in iron-deficiency at luminal concentrations between 1 and 100 μmol/l, while 63 Ni absorption increased to a much lower extent (2.6-fold at 1 μmol/l and 1.5-fold at higher luminal concentrations). Moreover, there was a 5-7-fold higher concentration for 63 Ni in the jejunal tissue than in the absorbate at luminal concentrations above 50 μmol/l which was not observed at 1 μmol 63 Ni/l and not for 59 Fe. 63 Ni tissue load showed a linear and a saturable fraction. In iron-deficiency the saturable 63 Ni fraction increased 4-fold as compared to only 1.5-fold increments for 59 Fe. Moreover, a substantially higher share of 63 Ni was retained in the jejunal tissue at high as compare to low luminal concentrations after perfusion had been continued without luminal radioactivity. This was not found for 59 Fe and suggests a concentration-dependent block of 63 Ni export across the enterocytes' basolateral membrane. To explain these results one may speculate that 63 Ni may bind more tightly to tissue ligands than 59 Fe due to the higher thermodynamic and kinetic stability of nickel complexes. In particular, nickel may bind to a basolateral population of metal carriers and block its own basolateral transfer in a concentration-dependent manner. Tight 63 Ni binding to non-specific jejunal ligands is responsible for the unaltered high linear fraction of jejunal 63 Ni load in iron-deficient and iron-adequate segments. Binding of 63 Ni to food and tissue ligands in the small intestine may, thus, be a likely explanation for the low oral nickel

  10. Ascorbic acid deficiency decreases hepatic cytochrome P-450, especially CYP2B1/2B2, and simultaneously induces heme oxygenase-1 gene expression in scurvy-prone ODS rats.

    Science.gov (United States)

    Kobayashi, Misato; Hoshinaga, Yukiko; Miura, Natsuko; Tokuda, Yuki; Shigeoka, Shigeru; Murai, Atsushi; Horio, Fumihiko

    2014-01-01

    The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18 days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.

  11. Relative deficiency of nitric oxide-dependent vasodilation in salt hypertensive Dahl rats: the possible role of superoxide anions

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Dobešová, Zdenka; Kuneš, Jaroslav

    2001-01-01

    Roč. 19, č. 2 (2001), s. 247-254 ISSN 0263-6352 R&D Projects: GA AV ČR IAA7011805; GA AV ČR IAA7011711; GA MŠk LN00A069 Institutional research plan: CEZ:AV0Z5011922 Keywords : blood pressure * salt hypertension * Dahl rats Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.210, year: 2001

  12. [Peroxide modification of membranes and isomorphic composition of cytochrome P-450 of rat liver microsomes during antioxidant deficiency].

    Science.gov (United States)

    Gubskiy, Iu I; Paramonova, G I; Boldeskul, A E; Primak, R G; Bogdanova, L A; Zadorina, O V; Litvinova, N V

    1992-01-01

    Lipid peroxidation (LPO), physico-chemical properties of the membranes and isoformic composition of microsomal cytochrome P-450 from the rat liver were studied under conditions of antioxidant insufficiency (AOI) which was modelled by exclusion of alpha-tocopherol from the animals' ration. An insignificant accumulation of microsomal diene conjugates and schiff bases against a sharp increase of the ability to the prooxidant stimulated LPO in vitro took place. A significant decrease of membrane lipid microviscosity and a change in surface properties of microsomal membranes of rats with AOI was determined. Absence of alpha-tocopherol in the ration was accompanied by a significant change in the content of separate isoforms of cytochrome P-450 exhibited in growth of a polypeptide with m. w. 54 kDa and the lowering of proteins with m. w. 48 and 50 kDa. Less intensive quenching of tryptophan fluorescence by acrylamide was also revealed, which testified to a lower accessibility of the quencher to membrane proteins or their fluorophore sites. Modification of lipid composition and of physicochemical properties of the rat liver membrane microsomes which was observed at AOI was significantly correlated by pretreatment with the antioxidant 4-methyl-2,6-ditretbutylphenol (ionol).

  13. Evaluation of calcium, magnesium, zinc, aluminum and manganese deposition in bones and CNS of rats fed calcium-deficient diets

    International Nuclear Information System (INIS)

    Yasui, Masayuki; Ota, Kiichiro; Sasajima, Kazuhisa; Iwata, Shiro.

    1994-01-01

    The long term intake of unbalanced mineral diets has been reported to be one of the pathogenetic factors of central nervous system (CNS) degeneration, and the unbalanced mineral distribution in the bones clinically is expressed as a metabolic bone disorder or deposition of neurotoxic minerals/metals. The unbalanced mineral or metal diets in animals provoke the unbalanced mineral distribution in bones and soft tissues. In this study, the calcium (Ca), magnesium (Mg), zinc (Zn), aluminum (Al) and manganese (Mn) contents in the CNS and the bones of rats maintained on unbalanced mineral diets were analyzed to investigate the roles of bone on CNS degeneration. Male Wistar rats were maintained for 90 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca-Mg diet, (D) low Ca-Mg diet with high Al. Al and Mn contents were determined in the frontal cortex, spinal cord, lumbar spine and femur using inductively coupled plasma emission spectrometry (ICP) for Ca, Mg and Zn, and neutron activation analysis (NAA) for Al and Mn. Intake of low Ca and Mg with added Al in rats led to the abnormal distribution of metals or minerals in the bones and in the CNS. These results illustrate that unbalanced mineral diets and metal-metal interactions may lead to the irregular deposition of Al and Mn in the bones and ultimately in the CNS, thus inducing CNS degeneration. (author)

  14. [Impacts of the formula of Suoquanwan(SQW) on expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency].

    Science.gov (United States)

    Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang

    2009-06-01

    To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.

  15. Effects of potassium or potassium/magnesium supplementation on potassium content of body tissues and fluids in furosemide-treated rats on magnesium-deficient or magnesium-sufficient diet

    Energy Technology Data Exchange (ETDEWEB)

    Coram, W.M.; Kapeghian, J.C.; Plocinski, A.F.; Toledo, L.M.; Douglas, F.L.; Weiss, G.B. (Univ. of New Jersey, Newmark (USA))

    1990-01-01

    Persistent Mg{sup 2+} deficiency may interfere with restoration of normal tissue K{sup +} levels. This study examined: (a) the effects of chronic furosemide treatment of K{sup +} of sartorius, aorta and ventricle of rats fed Mg{sup 2+}-deficient or Mg{sup 2+} sufficient diet and deionized water; (b) whether normal tissue K{sup +} is restored by oral K{sup +} or K{sup +}/Mg{sup 2+} supplementation with continued furosemide therapy. Levels of Mg{sup 2+} were also measured. Furosemide decreased K{sup +} in sartorius, aorta and ventricle by 5.5, 4.3 and 19.9 {mu}Eq/gm, respectively, in rats fed 100 ppm Mg{sup 2+} diet. Furosemide did not alter K{sup +} levels in rats fed 400 ppm Mg{sup 2+} diet. K{sup +} supplementation restored K{sup +} to normal in sartorius but the addition of Mg{sup 2+} supplementation was necessary to restore K+ levels to normal in ventricle and aorta. These data indicate that furosemide can decrease tissue K{sup +} in rats on a Mg{sup 2+}- deficient diet. This decrease can be reversed during diuretic administration by K{sup +} supplementation in sartorius, or K{sup +} plus Mg{sup 2+} supplementation in ventricle and aorta.

  16. Chemopreventive evaluation of a Schiff base derived copper (II) complex against azoxymethane-induced colorectal cancer in rats.

    Science.gov (United States)

    Hajrezaie, Maryam; Hassandarvish, Pouya; Moghadamtousi, Soheil Zorofchian; Gwaram, Nura Suleiman; Golbabapour, Shahram; Najihussien, Abdrabuh; Almagrami, Amel Abdullah; Zahedifard, Maryam; Rouhollahi, Elham; Karimian, Hamed; Fani, Somaye; Kamalidehghan, Behnam; Majid, Nazia Abdul; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    Based on the potential of Schiff base compounds to act as sources for the development of cancer chemotherapeutic agents, this in vivo study was performed to investigate the inhibitory properties of the synthetic Schiff base compound Cu(BrHAP)2 on colonic aberrant crypt foci (ACF). This study involved five groups of male rats. The negative control group was injected with normal saline once a week for 2 weeks and fed 10% Tween 20 for 10 weeks, the cancer control group was subcutaneously injected with 15 mg/kg azoxymethane once per week for two consecutive weeks, the positive control group was injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and 35 mg/kg 5-fluorouracil (injected intra-peritoneally) for 4 weeks, and the experimental groups were first injected with 15 mg/kg azoxymethane once per week for two consecutive weeks and then fed 2.5 or 5 mg/kg of the Schiff base compound once a day for 10 weeks. Application of the Schiff base compound suppressed total colonic ACF formation by up to 72% to 74% (P<0.05) when compared with the cancer control group. Analysis of colorectal specimens revealed that treatments with the Schiff base compound decreased the mean crypt scores in azoxymethane-treated rats. Significant elevations of superoxide dismutase, glutathione peroxidase and catalase activities and a reduction in the level of malondialdehyde were also observed. Histologically, all treatment groups exhibited significant decreases in dysplasia compared to the cancer control group (P<0.05). Immunohistochemical staining demonstrated down-regulation of the PCNA protein. Comparative western blot analysis revealed that COX-2 and Bcl2 were up-regulated and Bax was down-regulated compared with the AOM control group. The current study demonstrated that the Cu(BrHAP)2 compound has promising chemoprotective activities that are evidenced by significant decreases in the numbers of ACFs in azoxymethane-induced colon cancer.

  17. Studies on lipids and fatty acids in rats with streptozotocin-induced insulin deficiency II. Incorporation of 1-(14)C-sodium acetate into lipids and fatty acids of liver slices and whole blood cells

    OpenAIRE

    三宅,寛治

    1988-01-01

    In order to study the lipid and fatty acid metabolism in the insulin deficient state, the in vitro incorporation of 1-(14)C-sodium acetate into major lipid fractions and fatty acids of liver slices and whole blood cells was determined. Rats were studied one week, one month and three months after insulin deficiency was induced by administration of streptozotocin.The net incorporation of (14)C into lipid fractions and total fatty acids of liver slices significantly decreased after one week. On ...

  18. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression.

    Science.gov (United States)

    Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K

    2014-03-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Combined treatment with Dendrobium candidum and black tea extract promotes osteoprotective activity in ovariectomized estrogen deficient rats and osteoclast formation.

    Science.gov (United States)

    Wang, Ming-Yue; Shen, Chang; An, Meng-Fei; Xie, Chuan-Qi; Wu, Xin; Zhu, Qiang-Qiang; Sun, Bin; Huang, Yan-Ping; Zhao, Yun-Li; Wang, Xuan-Jun; Sheng, Jun

    2018-05-01

    Dendrobium candidum (DC) and black tea, are traditional chinese drinks, which contain multiple active ingredients. However, whether or not the combination of these two ingredients can improve osteoporosis remains unknown. This study therefore aimed to examine the effects of the combination of DC and black tea extract (BTE) on osteoporosis. Ovariectomy (OVX)-induced osteoporosis in vivo as well as receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in vitro was selected. Results showed that OVX rats that were treated orally with a DC and BTE combination for 12 weeks maintained their calcium (Ca) and phosphorus (P) homeostasis and exhibited significantly enhanced estradiol (E 2 ) and OPG levels. This combination treatment also simultaneously reduced levels of interleukin (IL)-1β, IL-6 and improved the organ coefficients of the uterus and femur as well as BMD and BMC in OVX rats. In addition, this DC and BTE combination suppressed osteoclast differentiation in the RANKL-stimulated osteoclastogenesis of RAW 264.7 cells and effectively inhibited the expression of osteoclast-associated genes and proteins. The results of this study further highlight the fact that a combination of DC and BTE improved ovariectomy-induced osteoporosis in rats and suppressed RANKL-stimulated osteoclastogenesis in RAW 264.7 cells. This combination also significantly alleviated osteoporosis when compared to the alternative sole treatments above, due to synergistic effects among components. One partial mechanism of this combination might be the inhibition of osteoclast proliferation and the regulation of NFATC1/c-Fos expression. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Iodine Deficiency

    Science.gov (United States)

    ... Fax/Phone Home » Iodine Deficiency Leer en Español Iodine Deficiency Iodine is an element that is needed ... world’s population remains at risk for iodine deficiency. Iodine Deficiency FAQs WHAT IS THE THYROID GLAND? The ...

  1. Maternal diets deficient in folic acid and related methyl donors modify mechanisms associated with lipid metabolism in the fetal liver of the rat.

    Science.gov (United States)

    McNeil, Christopher J; Hay, Susan M; Rucklidge, Garry J; Reid, Martin D; Duncan, Gary J; Rees, William D

    2009-11-01

    Previously we have examined the effects of diets deficient in folic acid ( - F) or folate deficient with low methionine and choline ( - F LM LC) on the relative abundance of soluble proteins in the liver of the pregnant rat. In the present study we report the corresponding changes in the fetal liver at day 21 of gestation. The abundance of eighteen proteins increased when dams were fed the - F diet. When dams were fed the - F LM LC diet, thirty-three proteins increased and eight decreased. Many of the differentially abundant proteins in the fetal liver could be classified into the same functional groups as those previously identified in the maternal liver, namely protein synthesis, metabolism, lipid metabolism and proteins associated with the cytoskeleton and endoplasmic reticulum. The pattern was consistent with reduced cell proliferation in the - F LM LC group but not in the - F group. Metabolic enzymes associated with lipid metabolism changed in both the - F and - F LM LC groups. The mRNA for carnitine palmitoyl transferase were up-regulated and CD36 (fatty acid translocase) down-regulated in the - F group, suggesting increased mitochondrial oxidation of fatty acids as an indirect response to altered maternal lipid metabolism. In the - F LM LC group the mRNA for acetyl CoA carboxylase was down-regulated, suggesting reduced fatty acid synthesis. The mRNA for transcriptional regulators including PPARalpha and sterol response element-binding protein-1c were unchanged. These results suggest that an adequate supply of folic acid and the related methyl donors may benefit fetal development directly by improving lipid metabolism in fetal as well as maternal tissues.

  2. Rat infestation associated with environmental deficiencies in an urban slum community with high risk of leptospirosis transmission.

    Science.gov (United States)

    Santos, Norlan de Jesus; Sousa, Erica; Reis, Mitermayer G; Ko, Albert I; Costa, Federico

    2017-03-09

    We analyzed environmental factors that provide food, water and harborage to rodents and the risk of household rodent infestation in a slum community with a high risk of leptospirosis transmission. Detailed environmental surveys were performed in 221 households. Multivariate regression models evaluated the association between rodent infestation and socioeconomic status and environmental attributes obtained from Geographical Information System surveys. The general household infestation rate was 45.9%. Rattus norvegicus signs were the most prevalent, present in 74% of the infested households. The risk for rodent infestation was associated with environmental factors supporting harborage for rats, such as dilapidated fences/walls (OR: 8.95; 95%CI: 2.42-33.12) and households built on an earthen slope (OR: 4.68; 95%CI: 2.23-9.81). An increase of 1 meter from the nearest sewer was associated with a 3% (95%CI: 1%-5%) decrease in the risk of rodent infestation. A lack of sanitation where poor people live provides factors for rat infestation and could the target of educational interventions.

  3. Influence of the dietary protein deficiency on the activities of ribosomes and polysome patterns in muscle and liver of rats

    International Nuclear Information System (INIS)

    Goto, Akihiko; Kametaka, Masao

    1975-01-01

    A group of rats weighing about 120 g were killed at the beginning of the experiment and after 10 days on the 20% casein diet (C-0 and C-10 groups), and another group of rats were killed after 1,2 and 10 days on the protein-free diet (PF-1, PF-2 and PF-10 groups). From muscle and the liver of each group ribosomes were prepared, and the protein synthesis activity and the polysome patterns were investigated. The activity of polysome fractionated into each size was also measured. Muscle ribosome activity in PF-1, PF-2 and PF-10 groups decreased to about 60%, 40% and 40% of that in C groups, respectively, and this decrease was due to a fall in activity of prolysome itself rather than disaggregation of polysome. Liver ribosome activity in PF-1, PF-2 and PF-10 groups were reduced to about 95%, 90% and 65% of that in C groups, respectively. These alterations in PF-1 and PF-2 groups seemed to be in part related to changes in polysome pattern, whereas ribosome activity in PF-10 group was reduced without changes in polysome pattern. (auth.)

  4. Influence of estrogen deficiency and tibolone therapy on trabecular and cortical bone evaluated by computed radiography system in rats

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Ana Carolina Bergmann de; Henriques, Helene Nara [Postgraduate Program in Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Fernandes, Gustavo Vieira Oliveira [Postgraduate Program in Medical Sciences, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Lima, Inaya; Oliveira, Davi Ferreira de; Lopes, Ricardo Tadeu [Nuclear Engineering Program, Federal University of Rio de Janeiro (UFRJ), RJ (Brazil); Pantaleao, Jose Augusto Soares [Maternal and Child Department, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Granjeiro, Jose Mauro [Department of Cellular and Molecular Biology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Silva, Maria Angelica Guzman [Department of Pathology, Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil)

    2012-03-15

    Purpose: To verify the effects of tibolone administration on trabecular and cortical bone of ovariectomized female rats by computed radiography system (CRS). Methods: The experiment was performed on two groups of rats previously ovariectomized, one received tibolone (OVX+T) while the other did not (OVX), those groups were compared to a control group (C) not ovariectomized. Tibolone administration (1 mg/day) began thirty days after the ovariectomy and the treatment remained for five months. At last, the animals were euthanized and femurs and tibias collected. Computed radiographs of the bones were obtained and the digital images were used to determine the bone optical density and cortical thickness on every group. All results were statistically evaluated with significance set at P<0.05%. Results: Tibolone administration was shown to be beneficial only in the densitometric analysis of the femoral head, performing higher optical density compared to OVX. No difference was found in cortical bone thickness. Conclusion: Ovariectomy caused bone loss in the analyzed regions and tibolone administered in high doses over a long period showed not to be fully beneficial, but preserved bone mass in the femoral head. (author)

  5. [Epididymis in an experimental model of DHT deficiency: immunolocalization of ERalpha and ERbeta in rat epididymal epithelial cells. In vivo and in vitro studies].

    Science.gov (United States)

    Kolasa, Agnieszka

    2006-01-01

    The aim of this study was to determine the effect of reduced availability of dihydrotestosterone (DHT) on the expression of estrogen receptors alpha and beta (ERalpha and ERbeta) in the epididymis in vivo and in vitro. Expression of estrogen receptors (ERs) is interesting because of the fact that the male reproductive system is controlled not only by androgens but also, in a far-reaching and complex manner, by estrogens. Control by estrogens is exercised through activation of ERs widely distributed in the epididymal epithelium. Epididymal epithelial cells contain a 5alpha-reductase (5alpha-red) which catalyzes the irreversible conversion of testosterone (T) into the most potent and chief androgen of the epididymis, dihydrotestosterone, known to maintain and regulate the structure and functions of the epididymis. Two isoforms of the 5alpha-red were identified: type 1 (5alpha-redl) and type 2 (5alpha-red2). 5alpha-reductase type 2 is more widely expressed in the epididymis than 5alpha-redl. DHT deficit was produced by inhibition of 5alpha-red2 using finasteride (Proscar, MSD Sweden), a steroid inhibitor of this enzyme. The study was performed in the adult, male Wistar rats randomly divided into control (K) and study (Fin56) groups (5 animals in each). Animals in the study group received 5mg finasteride/kg b.w., orally during 56 days (duration of one spermatogenesis). Immunoexpression of ERs was also studied in epididymal epithelial cells cultured with or without finasteride. It was shown that DHT deficiency, both in vivo and in vitro condition, modulated ERs expression in comparison to the epididymis from control rats and to epididymal cells cultured without finasteride. Distribution of ERalpha and ERbeta in epididymal cells changed (from nucleus to cytoplasm) and the level of ERs expression was markedly decreased. The present findings show that the DHT deficiency caused by finasteride altered the expression of ERalpha and ERbeta in the epididymis and possibly may

  6. Ascorbate status modulates reticuloendothelial iron stores and response to deferasirox iron chelation in ascorbate-deficient rats

    DEFF Research Database (Denmark)

    Brewer, Casey; Otto-Duessel, Maya; Lykkesfeldt, Jens

    2012-01-01

    Iron chelation is essential to patients on chronic blood transfusions to prevent toxicity from iron overload and remove excess iron. Deferasirox (DFX) is the most commonly used iron chelator in the United States; however, some patients are relatively refractory to DFX therapy. We postulated...... that vitamin C supplementation would improve the availability of transfusional iron to DFX treatment by promoting iron's redox cycling, increasing its soluble ferrous form and promoting its release from reticuloendothelial cells. Osteogenic dystrophy rats (n = 54) were given iron dextran injections for 10...... 12 weeks of sham chelation. Most importantly, ascorbate supplementation at 2250 ppm improved DFX efficiency, allowing DFX to remove 21% more hepatic iron than ascorbate supplementation with 900 ppm or 150 ppm (p vitamin C status modulates the release of iron from...

  7. Assessment of selenium bioavailability from naturally produced high-selenium soy foods in selenium-deficient rats.

    Science.gov (United States)

    Yan, Lin; Reeves, Philip G; Johnson, LuAnn K

    2010-10-01

    We assessed the bioavailability of selenium (Se) from a protein isolate and tofu (bean curd) prepared from naturally produced high-Se soybeans. The Se concentrations of the soybeans, the protein isolate and tofu were 5.2±0.2, 11.4±0.1 and 7.4±0.1mg/kg, respectively. Male weanling Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet (4.1μg Se/kg) for 56 days, and then they were replenished with Se for an additional 50 days by feeding them the same diet containing 14, 24 or 30 μg Se/kg from the protein isolate or 13, 23 or 31 μg Se/kg from tofu, respectively. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the restoration of Se-dependent enzyme activities and tissue Se concentrations in Se-depleted rats, comparing those responses for the protein isolate and tofu to those for SeMet by using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in glutathione peroxidase activities in blood and liver and in thioredoxin reductase activity in liver. Furthermore, supplementation with the protein isolate or tofu resulted in linear or log-linear, dose-dependent increases in the Se concentrations of plasma, liver, muscle and kidneys. These results indicated an overall bioavailability of approximately 101% for Se from the protein isolate and 94% from tofu, relative to SeMet. We conclude that Se from naturally produced high-Se soybeans is highly bioavailable in this model and that high-Se soybeans may be a good dietary source of Se. Published by Elsevier GmbH.

  8. Beneficial effects of curcumin nano-emulsion on spermatogenesis and reproductive performance in male rats under protein deficient diet model: enhancement of sperm motility, conservancy of testicular tissue integrity, cell energy and seminal plasma amino acids content.

    Science.gov (United States)

    Ahmed-Farid, Omar A H; Nasr, Maha; Ahmed, Rania F; Bakeer, Rofanda M

    2017-09-02

    Malnutrition resulting from protein and calorie deficiency continues to be a major concern worldwide especially in developing countries. Specific deficiencies in the protein intake can adversely influence reproductive performance. The present study aimed to evaluate the effects of curcumin and curcumin nano-emulsion on protein deficient diet (PDD)-induced testicular atrophy, troubled spermatogenesis and decreased reproductive performance in male rats. Juvenile rats were fed the protein deficient diet (PDD) for 75 days. Starting from day 60 the rats were divided into 4 groups and given the corresponding treatments for the last 15 days orally and daily as follows: 1st group; curcumin group (C) received 50 mg/kg curcumin p.o. 2 nd group; curcumin nano-form low dose group (NCL) received 2.5 mg/kg nano-curcumin. 3rd group; curcumin nano-form high dose group (NCH) received 5 mg/kg nano-curcumin. 4th group served as malnutrition group (PDD group) receiving the protein deficient diet daily for 75 days and received distilled water ingestions (5 ml/kg p.o) daily for the last 15 days of the experiment. A normal control group was kept under the same conditions for the whole experiment and received normal diet according to nutrition requirement center daily for 75 days and received distilled water ingestions (5 ml/kg p.o) daily for the last 15 days of the experiment. PDD induced significant (P curcumin (50 mg/kg) and curcumin nano-emulsion (2.5 and 5 mg/kg) showed significant (Pcurcumin (50 mg/kg). The present study suggests that administration of curcumin nano-emulsion as a daily supplement would be beneficial in malnutrition- induced troubled male reproductive performance and spermatogenesis cases.

  9. Vitamin D deficiency impairs glucose-stimulated insulin secretion and increases insulin resistance by reducing PPAR-γ expression in nonobese Type 2 diabetic rats.

    Science.gov (United States)

    Park, Sunmin; Kim, Da Sol; Kang, Suna

    2016-01-01

    Human studies have provided relatively strong associations of poor vitamin D status with Type 2 diabetes but do not explain the nature of the association. Here, we explored the physiological pathways that may explain how vitamin D status modulates energy, lipid and glucose metabolisms in nonobese Type 2 diabetic rats. Goto-Kakizaki (GK) rats were fed high-fat diets containing 25 (VD-low), 1000 (VD-normal) or 10,000 (VD-high) cholecalciferol-IU/kg diet for 8 weeks. Energy expenditure, insulin resistance, insulin secretory capacity and lipid metabolism were measured. Serum 25-OH-D levels, an index of vitamin D status, increased dose dependently with dietary vitamin D. VD-low resulted in less fat oxidation without a significant difference in energy expenditure and less lean body mass in the abdomen and legs comparison to the VD-normal group. In comparison to VD-low, VD-normal had lower serum triglycerides and intracellular fat accumulation in the liver and skeletal muscles which was associated with down-regulation of the mRNA expressions of sterol regulatory element binding protein-1c and fatty acid synthase and up-regulation of gene expressions of peroxisome proliferator-activated receptors (PPAR)-α and carnitine palmitoyltransferase-1. In euglycemic hyperinsulinemic clamp, whole-body and hepatic insulin resistance was exacerbated in the VD-low group but not in the VD-normal group, possibly through decreasing hepatic insulin signaling and PPAR-γ expression in the adipocytes. In 3T3-L1 adipocytes 1,25-(OH)2-D (10 nM) increased triglyceride accumulation by elevating PPAR-γ expression and treatment with a PPAR-γ antagonist blocked the triglyceride deposition induced by 1,25-(OH)2-D treatment. VD-low impaired glucose-stimulated insulin secretion in hyperglycemic clamp and decreased β-cell mass by decreasing β-cell proliferation. In conclusion, vitamin D deficiency resulted in the dysregulation of glucose metabolism in GK rats by simultaneously increasing insulin

  10. Mutation analysis with random DNA identifiers (MARDI) catalogs Pig-a mutations in heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats.

    Science.gov (United States)

    Revollo, Javier R; Crabtree, Nathaniel M; Pearce, Mason G; Pacheco-Martinez, M Monserrat; Dobrovolsky, Vasily N

    2016-03-01

    Identification of mutations induced by xenotoxins is a common task in the field of genetic toxicology. Mutations are often detected by clonally expanding potential mutant cells and genotyping each viable clone by Sanger sequencing. Such a "clone-by-clone" approach requires significant time and effort, and sometimes is even impossible to implement. Alternative techniques for efficient mutation identification would greatly benefit both basic and regulatory genetic toxicology research. Here, we report the development of Mutation Analysis with Random DNA Identifiers (MARDI), a novel high-fidelity Next Generation Sequencing (NGS) approach that circumvents clonal expansion and directly catalogs mutations in pools of mutant cells. MARDI uses oligonucleotides carrying Random DNA Identifiers (RDIs) to tag progenitor DNA molecules before PCR amplification, enabling clustering of descendant DNA molecules and eliminating NGS- and PCR-induced sequencing artifacts. When applied to the Pig-a cDNA analysis of heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats, MARDI detected nearly all Pig-a mutations that were previously identified by conventional clone-by-clone analysis and discovered many additional ones consistent with DMBA exposure: mostly A to T transversions, with the mutated A located on the non-transcribed DNA strand. © 2015 Wiley Periodicals, Inc.

  11. Metabolic Signatures of Kidney Yang Deficiency Syndrome and Protective Effects of Two Herbal Extracts in Rats Using GC/TOF MS

    Directory of Open Access Journals (Sweden)

    Linjing Zhao

    2013-01-01

    Full Text Available Kidney Yang Deficiency Syndrome (KDS-Yang, a typical condition in Chinese medicine, shares similar clinical signs of the glucocorticoid withdrawal syndrome. To date, the underlying mechanism of KDS-Yang has been remained unclear, especially at the metabolic level. In this study, we report a metabolomic profiling study on a classical model of KDS-Yang in rats induced by hydrocortisone injection to characterize the metabolic transformation using gas chromatography/time-of-flight mass spectrometry. WKY1, a polysaccharide extract from Astragalus membranaceus and Lycium barbarum, and WKY2, an aqueous extract from a similar formula containing Astragalus membranaceus, Lycium barbarum, Morinda officinalis, Taraxacum mongolicum, and Cinnamomum cassia presl, were used separately for protective treatments of KDS-Yang. The changes of serum metabolic profiles indicated that significant alterations of key metabolic pathways in response to abrupt hydrocortisone perturbation, including decreased energy metabolism (lactic acid, acetylcarnitine, lipid metabolism (free fatty acids, 1-monolinoleoylglycerol, and cholesterol, gut microbiota metabolism (indole-3-propionic acid, biosynthesis of catecholamine (norepinephrine, and elevated alanine metabolism, were attenuated or normalized with different degrees by the pretreatment of WKY1 or WKY2, which is consistent with the observations in which the two herbal agents could ameliorate biochemical markers of serum cortisone, adrenocorticotropic (ACTH, and urine 17-hydroxycorticosteroids (17-OHCS.

  12. Maternal vitamin D deficiency during pregnancy results in insulin resistance in rat offspring, which is associated with inflammation and Iκbα methylation.

    Science.gov (United States)

    Zhang, Huaqi; Chu, Xia; Huang, Yifan; Li, Gang; Wang, Yuxia; Li, Ying; Sun, Changhao

    2014-10-01

    We aimed to investigate the impact of maternal vitamin D deficiency during pregnancy on insulin resistance in male offspring and examine its mechanism. Pregnant Sprague-Dawley rats were maintained on a vitamin-D-free diet with ultraviolet-free light during pregnancy (early-VDD group). Insulin resistance in the male offspring was assessed by HOMA-IR, OGTT and euglycaemic clamp. NEFA, oxidative stress and inflammation levels were estimated as risk factors for insulin resistance. DNA methylation was examined by bisulfate sequencing PCR analysis. Luciferase reporter assay was performed to validate the effect of DNA methylation. The offspring in the early-VDD group had significantly higher fasting insulin and HOMA-IR levels, markedly reduced glucose tolerance and significantly lower tissue sensitivity to exogenous insulin at 16 weeks (all p insulin resistance in the offspring, which is associated with persistently increased inflammation. Persistently decreased Iκbα expression, potentially caused by changes in Iκbα methylation, plays an important role in persistent inflammation.

  13. Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses.

    Science.gov (United States)

    Pellanda, Hélène; Forges, Thierry; Bressenot, Aude; Chango, Abalo; Bronowicki, Jean-Pierre; Guéant, Jean-Louis; Namour, Fares

    2012-06-01

    Prenatal folate and methyl donor malnutrition lead to epigenetic alterations that could enhance susceptibility to disease. Methyl-deficient diet (MDD) and fumonisin FB1 are risk factors for neural tube defects and cancers. Evidence indicates that FB1 impairs folate metabolism. Folate receptors and four heterochromatin markers were investigated in rat fetuses liver derived from dams exposed to MDD and/or FB1 administered at a dose twice higher than the provisional maximum tolerable daily intake (PMTDI = 2 μg/kg/day). Even though folate receptors transcription seemed up-regulated by methyl depletion regardless of FB1 treatment, combined MDD/FB1 exposure might reverse this up-regulation since folate receptors transcripts were lower in the MDD/FB1 versus MDD group. Methyl depletion decreased H4K20me3. Combined MDD/FB1 decreased H4K20me3 even more and increased H3K9me3. The elevated H3K9me3 can be viewed as a defense mechanism inciting the cell to resist heterochromatin disorganization. H3R2me2 and H4K16Ac varied according to this mechanism even though statistical significance was not consistent. Considering that humans are exposed to FB1 levels above the PMTDI, this study is relevant because it suggests that low doses of FB1 interact with MDD thus contributing to disrupt the epigenetic landscape. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  15. Copper imbalances in ruminants and humans: unexpected common ground.

    Science.gov (United States)

    Suttle, Neville F

    2012-09-01

    Ruminants are more vulnerable to copper deficiency than humans because rumen sulfide generation lowers copper availability from forage, increasing the risk of conditions such as swayback in lambs. Molybdenum-rich pastures promote thiomolybdate (TM) synthesis and formation of unabsorbable Cu-TM complexes, turning risk to clinical reality (hypocuprosis). Selection pressures created ruminant species with tolerance of deficiency but vulnerability to copper toxicity in alien environments, such as specific pathogen-free units. By contrast, cases of copper imbalance in humans seemed confined to rare genetic aberrations of copper metabolism. Recent descriptions of human swayback and the exploratory use of TM for the treatment of Wilson's disease, tumor growth, inflammatory diseases, and Alzheimer's disease have created unexpected common ground. The incidence of pre-hemolytic copper poisoning in specific pathogen-free lambs was reduced by an infection with Mycobacterium avium that left them more responsive to treatment with TM but vulnerable to long-term copper depletion. Copper requirements in ruminants and humans may need an extra allowance for the "copper cost" of immunity to infection. Residual cuproenzyme inhibition in TM-treated lambs and anomalies in plasma copper composition that appeared to depend on liver copper status raise this question "can chelating capacity be harnessed without inducing copper-deficiency in ruminants or humans?" A model of equilibria between exogenous (TM) and endogenous chelators (e.g., albumin, metallothionein) is used to predict risk of exposure and hypocuprosis; although risk of natural exposure in humans is remote, vulnerability to TM-induced copper deficiency may be high. Biomarkers of TM impact are needed, and copper chaperones for inhibited cuproenzymes are prime candidates.

  16. Health Deficiencies

    Data.gov (United States)

    U.S. Department of Health & Human Services — A list of all health deficiencies currently listed on Nursing Home Compare, including the nursing home that received the deficiency, the associated inspection date,...

  17. Induction of monooxygenases and incorporation of radioactivity from 2-14C-lysine into hepatic microsomes of phenobarbital-treated rats fed a diet deficient in lysine, methionine, threonine and vitamine A, C and E

    International Nuclear Information System (INIS)

    Nurmagambetov, T.Zh.; Amirov, B.B.; Kuanysheva, T.K.; Sharmanov, T.Sh.

    1991-01-01

    The effect of diet on induction of monooxygenases and distribution of label from 2- 14 C-lysine in fractions of liver homogenate, muscle homogenate and blood of male rats treated with phenobarbital (80 mg/rg, three days) was studied. 2- 14 C-lysine was injected intraperitoneally 24 h before the first injection of phenobarbital. It was demonstrated that monooxygenase induction, increase of relative liver weight and incorporation of label from 2- 14 C-lysine into fractions of liver homogenate in phenobarbital-treated rats were more pronounced as compared with the similarly trated rats that were fed a balanced diet. The possibility of mobilization of deficient essential components to liver from other organs and tissues for maintenance of monooxygenase induction is discussed

  18. Copper hazards to fish, wildlife and invertebrates: a synoptic review

    Science.gov (United States)

    Eisler, Ronald

    1998-01-01

    Selective review and synthesis of the technical literature on copper and copper salts in the environment and their effects primarily on fishes, birds, mammals, terrestrial and aquatic invertebrates, and other natural resources. The subtopics include copper sources and uses; chemical and biochemical properties; concentrations of copper in field collections of abiotic materials and living organisms; effects of copper deficiency; lethal and sublethal effects on terrestrial plants and invertebrates, aquatic organisms, birds and mammals, including effects on survival, growth, reproduction, behavior, metabolism, carcinogenicity, matagenicity, and teratogenicity; proposed criteria for the protection of human health and sensitive natural resources; and recommendations for additional research.

  19. Some aspects of copper metabolism in Brindled mice

    International Nuclear Information System (INIS)

    Prins, H.W.

    1981-01-01

    The semi-dominant X-linked mutation in Brindled mice causes a severe copper deficiency of which the hemizygous Brindled mice die between 14 and 21 days post partum. Previously, in analogy to Menkes' disease in man, the primary defect in mutated Brindled mice has been described as a block in the resorption of alimentary copper, i.e., the transport of copper from the intestinal lumen into the portal blood circulation. During this research it became clear that the impaired resorption of alimentary copper is only a part of a more general aberration of copper metabolism in epithelioid cells. Tracer techniques using 64 Cu are used for metabolism studies. (Auth.)

  20. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    NARCIS (Netherlands)

    Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; van de Sluis, Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan

    2016-01-01

    The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to

  1. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers : a new canine model for copper-metabolism disorders

    NARCIS (Netherlands)

    Fieten, Hille; Gill, Yadvinder; Martin, Alan J.; Concilli, Mafalda; Dirksen, Karen; van Steenbeek, Frank G.; Spee, Bart; van den Ingh, Ted S. G. A. M.; Martens, Ellen C. C. P.; Festa, Paola; Chesi, Giancarlo; Sluis, van de Bart; Houwen, Roderick H. J. H.; Watson, Adrian L.; Aulchenko, Yurii S.; Hodgkinson, Victoria L.; Zhu, Sha; Petris, Michael J.; Polishchuk, Roman S.; Leegwater, Peter A. J.; Rothuizen, Jan

    2016-01-01

    The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to

  2. Protection by meningococcal outer membrane protein PorA-specific antibodies and a serogroup B capsular polysaccharide-specific antibody in complement-sufficient and C6-deficient infant rats.

    Science.gov (United States)

    Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena

    2006-05-01

    The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.

  3. Copper Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review.

    Science.gov (United States)

    1998-01-01

    recognized (National Academy of Sciences [NAS] 1977; Gallagher 1979). Copper deficiency in verte- brates, for example, is associated with anemia ...0.9 million metric tons of copper. Also in 1986,1.1 million tons of copper were imported into the United States, mostly from Canada, Chile, Peru ...ease are hepatic and renal lesions and hemolytic anemia (Schroeder et al. 1966; Goresky et al. 1968; Baker 1969; USEPA 1980; Aaseth and Norseth 1986

  4. Mechanistic Studies of the Anti-Ulcerogenic Activity and Acute Toxicity Evaluation of Dichlorido-Copper(II-4-(2-5-Bromo-benzylideneaminoethyl Piperazin-1-ium Phenolate Complex against Ethanol-Induced Gastric Injury in Rats

    Directory of Open Access Journals (Sweden)

    A. Hamid A. Hadi

    2011-10-01

    Full Text Available The compound dichlorido-copper(II-4-(2-5-bromobenzylideneaminoethyl piperazin-1-ium phenolate (CuLBS was synthesized, characterized and screened for acute toxicity and protective activity against ethanol-induced gastric mucosal injury in rats. Gross microscopic lesions, biochemical and immunological parameters and histochemcial staining of glycogen storage were taken into consideration. Oral administration of CuLBS (30 and 60 mg/Kg for two weeks dose-dependently flattened gastric mucosa, significantly increased gastric mucus and total acidity, compared with control group (P < 0.01. Serum levels of liver enzymes aspartate (AST and alanine transaminases (ALT, pro-inflammatory (IL-6 and TNF-α and anti-inflammatory (IL-10 cytokines in the rats exposed to ethanol induced ulceration have been altered. Administration of CuLBS showed considerable (P < 0.05 protection against ulceration by modulating the acute alterations of cytokines AST, ALT and stomach glycogen. Interestingly, CuLBS did not interfere with the natural release of nitric oxide. CuLBS alone (60 mg/Kg did not exhibit any ulcerogenic effect as assessed using Adami’s scoring scale. An acute toxicity study showed that rats treated with CuLBS (1,000 and 2,000 mg/Kg manifested no abnormal signs. These findings therefore, suggested that the gastroprotective activity of CuLBS might contribute in modulating the inflammatory cytokine-mediated oxidative damage to gastric mucosa.

  5. Iodine Deficiency

    NARCIS (Netherlands)

    Zimmermann, M.B.

    2009-01-01

    Iodine deficiency has multiple adverse effects in humans, termed iodine deficiency disorders, due to inadequate thyroid hormone production. Globally, it is estimated that 2 billion individuals have an insufficient iodine intake, and South Asia and sub-Saharan Africa are particularly affected.

  6. Vitamin A Repletion in rats with concurrent vitamin A and iodine deficiency affects pituitary THS {beta} gene expression and reduces thyroid hyperstimulation and thyroid size

    NARCIS (Netherlands)

    Biebinger, R.; Arnold, M.; Langhans, W.; Hurrell, R.F.; Zimmermann, M.B.

    2007-01-01

    Concurrent vitamin A (VA) deficiency (VAD) and iodine deficiency (ID) are common in developing countries. VAD has effects on thyroid metabolism that may be dependent on iodine status. The aim of this study was to investigate the effect of VA supplementation (VAS) and/or dietary iodine repletion,

  7. Role of UDP-Glucuronosyltransferase (UGT) 2B2 in Metabolism of Triiodothyronine: Effect of Microsomal Enzyme Inducers in Sprague Dawley and UGT2B2-Deficient Fischer 344 Rats

    Science.gov (United States)

    Richardson, Terrilyn A.; Klaassen, Curtis D.

    2010-01-01

    Microsomal enzyme inducers (MEI) that increase UDP-glucuronosyltransferases (UGTs) can impact thyroid hormone homeostasis in rodents. Increased glucuronidation can result in reduction of serum thyroid hormone and a concomitant increase in thyroid-stimulating hormone (TSH). UGT2B2 is thought to glucuronidate triiodothyronine (T3). The purposes of this study were to determine the role of UGT2B2 in T3 glucuronidation and whether increased T3 glucuronidation mediates the increased TSH observed after MEI treatment. Sprague Dawley (SD) and UGT2B2-deficient Fischer 344 (F344) rats were fed a control diet or diet containing pregnenolone-16α-carbonitrile (PCN; 800 ppm), 3-methylcholanthrene (3-MC; 200 ppm), or Aroclor 1254 (PCB; 100 ppm) for 7 days. Serum thyroxine (T4), T3, and TSH concentrations, hepatic androsterone/T4/T3 glucuronidation, and thyroid follicular cell proliferation were determined. In both SD and F344 rats, MEI treatments decreased serum T4, whereas serum T3 was maintained (except with PCB treatment). Hepatic T4 glucuronidation increased significantly after MEI in both rat strains. Compared with the other MEI, only PCN treatment significantly increased T3 glucuronidation (281 and 497%) in both SD and UGT2B2-deficient F344 rats, respectively, and increased both serum TSH and thyroid follicular cell proliferation. These data demonstrate an association among increases in T3 glucuronidation, TSH, and follicular cell proliferation after PCN treatment, suggesting that T3 is glucuronidated by other PCN-inducible UGTs in addition to UGT2B2. These data also suggest that PCN (rather than 3-MC or PCB) promotes thyroid tumors through excessive TSH stimulation of the thyroid gland. PMID:20421340

  8. MARGINAL IODINE DEFICIENCY EXACERBATES PERCHLORATE THYROID TOXICITY.

    Science.gov (United States)

    The environmental contaminant perchlorate disrupts thyroid homeostasis via inhibition of iodine uptake into the thyroid. This work tested whether iodine deficiency exacerbates the effects of perchlorate. Female 27 day-old LE rats were fed a custom iodine deficient diet with 0, 50...

  9. The effect of a moderate zinc deficiency and dietary fat source on the activity and expression of the Δ(3)Δ (2)-enoyl-CoA isomerase in the liver of growing rats.

    Science.gov (United States)

    Justus, Jennifer; Weigand, Edgar

    2014-06-01

    Auxiliary enzymes participate in β-oxidation of unsaturated fatty acids. The objective of the study was to investigate the impact of a moderate zinc deficiency and a high intake of polyunsaturated fat on Δ(3)Δ(2)-enoyl-CoA isomerase (ECI) in the liver and other tissues. Five groups of eight weanling rats each were fed moderately zinc-deficient (ZD) or zinc-adequate (ZA) semisynthetic diets (7 or 50 mg Zn/kg) enriched with 22 % cocoa butter (CB) or 22 % safflower oil (SO) for 4 weeks: (1) ZD-CB, fed free choice; (2) ZA-CBR, ZA-CB diet fed in equivalent amounts consumed by the ZD-CB group; (3) ZD-SO, fed free choice; (4) ZA-SOR, ZA-SO diet fed in equivalent amounts consumed by the ZD-SO group; and (5) ZA-SO, fed free choice. Growth and Zn status markers were markedly reduced in the ZD groups. ECI activity in the liver of the animals fed the ZD- and ZA-SO diets were significantly higher (approximately 2- and 3-fold, respectively) as compared with the CB-fed animals, whereas activities in extrahepatic tissues (kidneys, heart, skeletal muscle, testes, adipose tissue) were not altered by dietary treatments. Transcript levels of the mitochondrial Eci gene in the liver did not significantly differ between ZD and ZA rats, but were 1.6-fold higher in the ZA-SO- than in the ZD-CB-fed animals (P safflower oil as a source high in linoleic acid induce markedly increased hepatic ECI activities and that a moderate Zn deficiency does not affect transcription of the mitochondrial Eci gene in the liver.

  10. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Daisuke Watanabe

    2014-07-01

    Full Text Available The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1, which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

  11. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi

    2014-07-07

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1 , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

  12. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  13. Effect of whole body gamma-irradiation and/or dietary protein deficiency on the levels of plasma non-protein nitrogen and amino acids; plasma and urinary ammonia and urea in desert rodent and albino rats

    International Nuclear Information System (INIS)

    Roushdy, H.M.; El-Husseini, M.; Saleh, F.

    1984-01-01

    The effect of gamma-irradiation exposure on the levels of non-protein nitrogen (N.P.N.) and amino acids in plasma; ammonia and urea in plasma and urine was studied in the desert rodent, Psammomys obesus obesus and albino rats subjected to dietary protein deficiency, N.P.N. and amino acids in plasma were shown to increase by irradiation exposure. The effect of radiation on blood ammonia was less marked, but it caused a significant increase in ammonia excretion in urine. Radiation exposure in albino rats caused a marked increase in urea concentration in plasma of animals fed the high protein diet and irradiated at 780 r. In urine, the tested radiation levels caused an initial increase in urea concentration followed by a subsequent decrease. In psammomys, radiation exposure exerted a little effect on the plasma urea level, whereas significant increase in the daily urea excretion was recorded. It seems that urea level in plasma is more stabilized in psammomys than in albino rats

  14. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  15. What Are Rare Clotting Factor Deficiencies?

    Science.gov (United States)

    ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ... Deficiency Factor V Deficiency Combined FV & FVIII Deficiencies Factor VII Deficiency Factor X Deficiency Factor XI Deficiency Factor ...

  16. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  17. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  18. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  19. Different Roles of 8‐Hydroxyguanine Formation and 2‐Thiobarbituric Acid‐reacting Substance Generation in the Early Phase of Liver Carcinogenesis Induced by a Choline‐deficient, l‐Amino Acid‐defined Diet in Rats

    Science.gov (United States)

    Nakae, Dai; Mizumoto, Yasushi; Yoshiji, Hitoshi; Andoh, Nobuaki; Horiguchi, Kohsuke; Shiraiwa, Kazumi; Kobayashi, Eisaku; Endoh, Takehiro; Shimoji, Naoshi; Tamura, Kazutoshi; Tsujiuchi, Toshifumi; Denda, Ayumi

    1994-01-01

    The present study was performed to assess the roles of hepatocellular oxidative damage to DNA and constituents other than DNA in rat liver carcinogenesis caused by a choline‐deficient, l‐amino acid‐defined (CDAA) diet by examining the effects of the antioxidant N, N′‐diphenyl‐p‐phenylenediamine (DPPD). The parameters used for cellular oxidative damage were the level of 8‐hydroxyguanine (8‐OHGua) for DNA and that of 2‐thiobarbituric acid‐reacting substance (TBARS) for constituents other than DNA. A total of 40 male Fischer 344 rats, 6 weeks old, were fed the CDAA diet for 12 weeks with or without DPPD (0.05, 0.10 or 0.20%) or butylated hydroxytoluene (BHT, 0.25%). In the livers of the rats, the numbers and sizes of glutathione S‐transferasc (EC 2.5.1.18) placental form (GSTP)‐ and/or γ‐glutamyltransferase (GGT, EC 2.3.2.2)‐positive lesions and levels of 8‐OHGua and TBARS were determined. The GSTP‐positive lesions of 0.08 mm2 or larger were all stained positively for GGT as well in cross‐sectional area, whereas the smaller lesions were generally negative for GGT. DPPD and BHT reduced the size of the GSTP‐positive lesions without affecting their total numbers. At the same time, they reduced TBARS generation without affecting 8‐OHGua formation in DNA. The present results indicate that oxidative DNA damage (represented by 8‐OHGua formation) and damage to constituents other than DNA (represented by TBARS generation) may play different roles in rat liver carcinogenesis caused by the CDAA diet; the former appears to be involved in the induction of phenotypically altered hepatocyte populations while the latter may be related to the growth of such populations. PMID:8014108

  20. Noninferiority of glucose-6-phosphate dehydrogenase deficiency diagnosis by a point-of-care rapid test vs the laboratory fluorescent spot test demonstrated by copper inhibition in normal human red blood cells.

    Science.gov (United States)

    Baird, J Kevin; Dewi, Mewahyu; Subekti, Decy; Elyazar, Iqbal; Satyagraha, Ari W

    2015-06-01

    Tens of millions of patients diagnosed with vivax malaria cannot safely receive primaquine therapy against repeated attacks caused by activation of dormant liver stages called hypnozoites. Most of these patients lack access to screening for glucose-6-phosphate dehydrogenase (G6PD) deficiency, a highly prevalent disorder causing serious acute hemolytic anemia with primaquine therapy. We optimized CuCl inhibition of G6PD in normal red blood cells (RBCs) to assess G6PD diagnostic technologies suited to point of care in the impoverished rural tropics. The most widely applied technology for G6PD screening-the fluorescent spot test (FST)-is impractical in that setting. We evaluated a new point-of-care G6PD screening kit (CareStart G6PD, CSG) against FST using graded CuCl treatments to simulate variable hemizygous states, and varying proportions of CuCl-treated RBC suspensions to simulate variable heterozygous states of G6PD deficiency. In experiments double-blinded to CuCl treatment, technicians reading FST and CSG test (n = 269) classified results as positive or negative for deficiency. At G6PD activity ≤40% of normal (n = 112), CSG test was not inferior to FST in detecting G6PD deficiency (P = 0.003), with 96% vs 90% (P = 0.19) sensitivity and 75% and 87% (P = 0.01) specificity, respectively. The CSG test costs less, requires no specialized equipment, laboratory skills, or cold chain for successful application, and performs as well as the FST standard of care for G6PD screening. Such a device may vastly expand access to primaquine therapy and aid in mitigating the very substantial burden of morbidity and mortality imposed by the hypnozoite reservoir of vivax malaria. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Effect of 24,25-dihydroxyvitamin D3 on 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] metabolism in vitamin D-deficient rats infused with 1,25-(OH)2D3

    International Nuclear Information System (INIS)

    Yamato, H.; Matsumoto, T.; Fukumoto, S.; Ikeda, K.; Ishizuka, S.; Ogata, E.

    1989-01-01

    Previous studies revealed that administration of 24,25-dihydroxyvitamin D3 [24,25-(OH)2D3] to calcium (Ca)-deficient rats causes a dose-dependent reduction in markedly elevated serum 1,25-(OH)2D3 level. Although the results suggested that the metabolism of 1,25-(OH)2D3 was accelerated by 24,25-(OH)2D3, those experiments could not define whether the enhanced metabolism of 1,25-(OH)2D3 played a role in the reduction in the serum 1,25-(OH)2D3 level. In the present study, in order to address this issue more specifically, serum 1,25-(OH)2D3 was maintained solely by exogenous administration through miniosmotic pumps of 1,25-(OH)2D3 into vitamin D-deficient rats. Thus, by measuring the serum 1,25-(OH)2D3 concentration, the effect of 24,25-(OH)2D3 on the MCR of 1,25-(OH)2D3 could be examined. Administration of 24,25-(OH)2D3 caused a dose-dependent enhancement in the MCR of 1,25-(OH)2D3, and 1 microgram/100 g rat.day 24,25-(OH)2D3, which elevated serum 24,25-(OH)2D3 to 8.6 +/- 1.3 ng/ml, significantly increased MCR and suppressed serum levels of 1,25-(OH)2D3. The effect of 24,25-(OH)2D3 on 1,25-(OH)2D3 metabolism developed with a rapid time course, and the recovery of iv injected [1 beta-3H]1,25-(OH)2D3 in blood was significantly reduced within 1 h. In addition, there was an increase in radioactivity in the water-soluble fraction of serum as well as in urine, suggesting that 1,25-(OH)2D3 is rapidly degraded to a water-soluble metabolite(s). Furthermore, the reduction in serum 1,25-(OH)2D3 was associated with a reduction in both serum and urinary Ca levels. Because the conversion of [3H]24,25-(OH)2D3 to [3H]1,24,25-(OH)2D3 or other metabolites was minimal in these rats, 24,25-(OH)2D3 appears to act without being converted into other metabolites. These results demonstrate that 24,25-(OH)2D3 rapidly stimulates the metabolism of 1,25-(OH)2D3 and reduces its serum level

  2. Vitamin A deficiency leads to severe functional disturbance of the intestinal epithelium enzymes associated with diarrhoea and increased bacterial translocation in gnotobiotic rats

    Czech Academy of Sciences Publication Activity Database

    Kozáková, Hana; Hason, L. A.; Štěpánková, Renata; Kahu, H.; Dahlgren, U. I.; Wiedermann, U.

    2003-01-01

    Roč. 5, - (2003), s. 405-411 ISSN 1286-4579 R&D Projects: GA AV ČR IAA5020101; GA ČR GA303/00/1370 Institutional research plan: CEZ:AV0Z5020903 Keywords : vitamin a deficiency * diarroea * septicaemia Subject RIV: EE - Microbiology, Virology Impact factor: 3.772, year: 2003

  3. Imbalanced Diet Deficient in Calcium and Vitamin D- Induced Juvenile Osteopenia in Rats; the Potential Therapeutic Effect of Egyptian Moghat Roots Water Extract (Glossostemon bruguieri).

    Science.gov (United States)

    Ghareeb, Doaa A; El-Rashidy, Fatma H; El-Mallawany, Sherif

    2014-01-01

    This study aimed to explore and validate a new juvenile osteopenic (JO) rat model then examine the efficacy of moghat (Glossostemon bruguieri) as an alternative reversal therapy for JO. Phytochemical screening analysis showed that moghat contains 5.8% alkaloids, 1.5% flavonoids and 13.2% total phenols. Juvenile osteopenia was induced in 15 days old Sprague- Dawley female rats by feeding them free Ca and vitamin D synthetic diet for 21 days. Osteopenic rats were either treated with moghat (0.8 g dried plant tissue/Kg body weight, orally), or with a reference nutritional supplements of calcium chloride (14 mg Ca/Kg) and vitamin D3 (7 IU/Kg), for extra 21 days. Both untreated and treated groups were compared to a control group that fed a regular pelleted food. Our results showed that osteopenic rats lost normal bone tissue architecture, 30 % of body mass, 54 % of bone mass and finally 93% of bone calcium mass. Furthermore, these rats showed a markedly increase in serum phosphate, PTH, alkaline phosphatase, aspartate transaminase activities and creatinine level as compared to the control group. Moghat administration was successfully reversed osteopenia by normalizing body and bone masses to the reference ranges, increased the bone calcium mass by 17 fold without any detectable side effects on liver and kidney physiological performance. Therefore, moghat could be considered as potent safe -JO- reversal extract.

  4. Differential regulation of hepatic transcription factors in the Wistar rat offspring born to dams fed folic acid, vitamin B12 deficient diets and supplemented with omega-3 fatty acids.

    Directory of Open Access Journals (Sweden)

    Akshaya Meher

    Full Text Available Nutritional status of the mother is known to influence various metabolic adaptations required for optimal fetal development. These may be mediated by transcription factors like peroxisome proliferator activated receptors (PPARs, which are activated by long chain polyunsaturated fatty acids. The objective of the current study was to examine the expression of different hepatic transcription factors and the levels of global methylation in the liver of the offspring born to dams fed micronutrient deficient (folic acid and vitamin B12 diets and supplemented with omega-3 fatty acids. Female rats were divided into five groups (n = 8/group as follows; control, folic acid deficient (FD, vitamin B12 deficient (BD and omega-3 fatty acid supplemented groups (FDO and BDO. Diets were given starting from pre-conception and continued throughout pregnancy and lactation. Pups were dissected at the end of lactation. Liver tissues were removed; snap frozen and stored at -80°C. Maternal micronutrients deficiency resulted in lower (p<0.05 levels of pup liver docosahexaenoic acid (DHA and arachidonic acid (ARA as compared to the control group. Pup liver PPARα and PPARγ expression was lower (p<0.05 in the BD group although there were no differences in the expression of SREBP-1c, LXRα and RXRα expression. Omega-3 fatty acids supplementation to this group normalized (p<0.05 levels of both PPARα and PPARγ but reduced (p<0.05 SREBP-1c, LXRα and RXRα expression. There was no change in any of the transcription factors in the pup liver in the FD group. Omega-3 fatty acids supplementation to this group reduced (p<0.05 PPARα, SREBP-1c and RXRα expression. Pup liver global methylation levels were higher (p<0.01 in both the micronutrients deficient groups and could be normalized (p<0.05 by omega-3 fatty acid supplementation. Our novel findings suggest a role for omega-3 fatty acids in the one carbon cycle in influencing the hepatic expression of transcription factors

  5. The Effects of Tocotrienol and Lovastatin Co-Supplementation on Bone Dynamic Histomorphometry and Bone Morphogenetic Protein-2 Expression in Rats with Estrogen Deficiency

    Directory of Open Access Journals (Sweden)

    Kok-Yong Chin

    2017-02-01

    Full Text Available Both tocotrienol and statins are suppressors of the mevalonate pathway. Supplementation of tocotrienol among statin users could potentially protect them against osteoporosis. This study aimed to compare the effects of tocotrienol and lovastatin co-supplementation with individual treatments on bone dynamic histomorphometric indices and bone morphogenetic protein-2 (BMP-2 gene expression in ovariectomized rats. Forty-eight female Sprague-Dawley rats were randomized equally into six groups. The baseline was sacrificed upon receipt. All other groups were ovariectomized, except for the sham group. The ovariectomized groups were administered orally daily with (1 lovastatin 11 mg/kg/day alone; (2 tocotrienol derived from annatto bean (annatto tocotrienol 60 mg/kg/day alone; (3 lovastatin 11 mg/kg/day, and annatto tocotrienol 60 mg/kg/day. The sham and ovariectomized control groups were treated with equal volume of vehicle. After eight weeks of treatment, the rats were sacrificed. Their bones were harvested for bone dynamic histomorphometry and BMP-2 gene expression. Rats supplemented with annatto tocotrienol and lovastatin concurrently demonstrated significantly lower single-labeled surface, but increased double-labeled surface, mineralizing surface, mineral apposition rate and bone formation rate compared to individual treatments (p < 0.05. There was a parallel increase in BMP-2 gene expression in the rats receiving combined treatment (p < 0.05. The combination of annatto tocotrienol and lovastatin exerted either additively or synergistically on selected bone parameters. In conclusion, tocotrienol can augment the bone formation and mineralization in rats receiving low-dose statins. Supplementation of tocotrienol in statin users can potentially protect them from osteoporosis.

  6. Changes on metabolic parameters induced by acute cannabinoid administration (CBD, THC) in a rat experimental model of nutritional vitamin A deficiency

    OpenAIRE

    El Amrani, Loubna; Porres, Jesus M.; Merzouki, Abderrahmane; Louktibi, Abdelaziz; Aranda, Pilar; Lopez-Jurado, María; Urbano, Gloria

    2013-01-01

    Introduction: Vitamin A deficiency can result from malnutrition, malabsorption of vitamin A, impaired vitamin metabolism associated with liver disease, or chronic debilitating diseases like HIV infection or cancer. Background & aims: Cannabis administration has been described as a palliative symptom management therapy in such pathological stages. Therefore, this research aimed to study the effects of acute administration of cannabidiol (CBD) or thetrahydrocannabinol (THC) on the levels of ret...

  7. The effect of soy products in the diet on retention of non-heme iron from radiolabeled test meals fed to marginally iron-deficient young rats

    International Nuclear Information System (INIS)

    Thompson, D.B.

    1984-01-01

    Diets based either on casein or soy products and containing about 25 ppm iron were fed to weanling rats for 13 days. Rats were fasted overnight and fed a 59 Fe-radiolabeled casein test meal the morning of day 14. On day 21 less 59 Fe was retained by rats fed various diets based on selected soy products than by rats fed the casein-based diet. A similar adverse effect of diet components on 59 Fe retention from a casein test meal was observed for lactalbumin and for psyllium husk. No adverse effect of diet on 59 Fe retention was observed for the fiber of soy cotyledons or for rapeseed protein concentrate. For a commercial soy protein isolated (SPI) fed throughout the 21-day experiment, the adverse effect of diet on 59 Fe retention was observed to the sum of the effect of dietary SPI previous to the 59 Fe-radiolabeled casein test meal fed on day 14 and the effect of dietary SPI subsequent to the casein test meal. An effect of dietary soy products on 59 Fe retention from a casein test meal was not observed with diets containing higher iron levels (83 ppm) or when diets were fed for a longer period prior to the test meal (56 days). The present work shows that in some circumstances the concept of iron bioavailability must be expanded to include not only the influence of meal composition, but also the influence of diet previous to and subsequent to a meal

  8. N-methyl-d-aspartate receptor – nitric oxide synthase pathway in the cortex of Nogo-A-deficient rats in relation to brain laterality and schizophrenia

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Vrajová, M.; Šírová, J.; Valeš, Karel; Petrásek, Tomáš; Schönig, K.; Tews, B.; Schwab, M.; Bartsch, D.; Stuchlík, Aleš; Řípová, D.

    2013-01-01

    Roč. 7, Aug 12 (2013), s. 90 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 Keywords : Nogo-A * biochemic markers * rat Subject RIV: FH - Neurology Impact factor: 4.160, year: 2013

  9. Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring.

    Science.gov (United States)

    Kesby, James P; O'Loan, Jonathan C; Alexander, Suzanne; Deng, Chao; Huang, Xu-Feng; McGrath, John J; Eyles, Darryl W; Burne, Thomas H J

    2012-04-01

    Developmental vitamin D (DVD) deficiency is a candidate risk factor for developing schizophrenia in humans. In rodents DVD deficiency induces subtle changes in the way the brain develops. This early developmental insult leads to select behavioural changes in the adult, such as an enhanced response to amphetamine-induced locomotion in female DVD-deficient rats but not in male DVD-deficient rats and an enhanced locomotor response to the N-methyl-D: -aspartate (NMDA) receptor antagonist, MK-801, in male DVD-deficient rats. However, the response to MK-801-induced locomotion in female DVD-deficient rats is unknown. Therefore, the aim of the current study was to further examine this behavioural finding in male and female rats and assess NMDA receptor density. DVD-deficient Sprague Dawley rats were assessed for locomotion, ataxia, acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR to multiple doses of MK-801. The NMDA receptor density in relevant brain regions was assessed in a drug-naive cohort. DVD deficiency increased locomotion in response to MK-801 in both sexes. DVD-deficient rats also showed an enhanced ASR compared with control rats, but PPI was normal. Moreover, DVD deficiency decreased NMDA receptor density in the caudate putamen of both sexes. These results suggest that a transient prenatal vitamin D deficiency has a long-lasting effect on NMDA-mediated signalling in the rodent brain and may be a plausible candidate risk factor for schizophrenia and other neuropsychiatric disorders.

  10. Enhancing hepatic fibrosis in spontaneously hypertensive rats fed a choline-deficient diet: a follow-up report on long-term effects of oxidative stress in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Yamamoto, Hiroya; Kanno, Keishi; Ikuta, Takuya; Arihiro, Koji; Sugiyama, Akiko; Kishikawa, Nobusuke; Tazuma, Susumu

    2016-05-01

    We previously reported a model of non-alcoholic fatty liver disease (NAFLD) using spontaneously hypertensive rats (SHRs), fed a choline-deficient (CD) diet for 5 weeks, that hepatic steatosis but not fibrosis is developed through oxidative stress. To determine the relationship between hypertension and hepatic fibrosis in NAFLD, we examined whether long-term CD diet leads to hepatic fibrosis through oxidative stress. Eight-week-old male SHR and normotensive Wistar Kyoto rats (WKYs) were fed a CD diet for 5 or 20 weeks, then liver histology and hepatic expression of genes related to lipid metabolism, fibrosis, and oxidative stress were assessed. Oxidative stress was assessed by hepatic thiobarbituric acid reactive substance (TBARS) levels. After 5 weeks on CD diet, prominent hepatic steatosis and decrease in expression of genes for lipid metabolism were observed in SHRs as compared with WKYs. SHRs on a CD diet demonstrated a downregulated expression of genes for antioxidants, along with significant increases in hepatic TBARS. After 20 weeks on CD diet, SHRs demonstrated severe liver fibrosis and upregulated expressions of genes for fibrosis when compared with WKY. Hypertension precipitated hepatic steatosis, and further, acts as an enhancer in NAFLD progression to liver fibrosis through oxidative stress. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  11. Functional ET(A)-ET(B) Receptor Cross-talk in Basilar Artery In Situ From ET(B) Receptor Deficient Rats.

    Science.gov (United States)

    Yoon, SeongHun; Gariepy, Cheryl E; Yanagisawa, Masashi; Zuccarello, Mario; Rapoport, Robert M

    2016-03-01

    The role of endothelin (ET)(A)-ET(B) receptor cross-talk in limiting the ET(A) receptor antagonist inhibition of ET-1 constriction is revealed by the partial or complete dependency of the ET(A) receptor antagonist inhibition on functional removal of the ET(B) receptor. Although functional removal of the ET(B) receptor is generally accomplished with ET(B) receptor antagonist, a novel approach using rats containing a naturally occurring deletion mutation in the ET(B) receptor [rescued "spotting lethal" (sl) rats; ET(B)(sl/sl)] demonstrated increased ET(A) receptor antagonist inhibition of ET-1 constriction in vena cava. We investigated whether this deletion mutation was also sufficient to remove the ET(B) receptor dependency of the ET(A) receptor antagonist inhibition of ET-1 constriction in the basilar artery. Consistent with previous reports, ET-1 plasma levels were elevated in ET(B)(sl/sl) as compared with ET(B)(+/+) rats. ET(B) receptor antagonist failed to relax the ET-1 constricted basilar artery from ET(B)(+/+) and ET(B)(sl/sl) rats. Relaxation to combined ET(A) and ET(B) receptor antagonist was greater than relaxation to ET(A) receptor antagonist in the basilar artery from ET(B)(+/+) and, unexpectedly, ET(B)(sl/sl) rats. These findings confirm the presence of ET(A)-ET(B) receptor cross-talk in the basilar artery. We speculate that mutant ET(B) receptor expression produced by alternative splicing may be sufficient to allow cross-talk.

  12. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Research Home / < Back To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... iron-deficiency anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  13. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway

    OpenAIRE

    Hatori, Yuta; Yan, Ye; Schmidt, Katharina; Furukawa, Eri; Hasan, Nesrin M.; Yang, Nan; Liu, Chin-Nung; Sockanathan, Shanthini; Lutsenko, Svetlana

    2016-01-01

    Brain development requires a fine-tuned copper homoeostasis. Copper deficiency or excess results in severe neuro-pathologies. We demonstrate that upon neuronal differentiation, cellular demand for copper increases, especially within the secretory pathway. Copper flow to this compartment is facilitated through transcriptional and metabolic regulation. Quantitative real-time imaging revealed a gradual change in the oxidation state of cytosolic glutathione upon neuronal differentiation. Transiti...

  14. Iron deficiency

    DEFF Research Database (Denmark)

    Schou, Morten; Bosselmann, Helle; Gaborit, Freja

    2015-01-01

    BACKGROUND: Both iron deficiency (ID) and cardiovascular biomarkers are associated with a poor outcome in heart failure (HF). The relationship between different cardiovascular biomarkers and ID is unknown, and the true prevalence of ID in an outpatient HF clinic is probably overlooked. OBJECTIVES.......043). CONCLUSION: ID is frequent in an outpatient HF clinic. ID is not associated with cardiovascular biomarkers after adjustment for traditional confounders. Inflammation, but not neurohormonal activation is associated with ID in systolic HF. Further studies are needed to understand iron metabolism in elderly HF...

  15. Magnesium, zinc and copper estimation in children with attention deficit hyperactivity disorder (ADHD

    Directory of Open Access Journals (Sweden)

    Farida Elbaz

    2017-04-01

    Conclusion: Children with ADHD have lower levels of zinc, copper and magnesium compared to both laboratory reference ranges and to normal controls in both hair and serum. These deficiencies are correlated with the core symptoms of ADHD.

  16. Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: a study in Zucker rats

    Czech Academy of Sciences Publication Activity Database

    Špolcová, Andrea; Mikulášková, Barbora; Kršková, K.; Gajdošechová, L.; Zórad, Š.; Olszanecki, R.; Suski, M.; Bujak-Gizycka, B.; Železná, Blanka; Maletínská, Lenka

    2014-01-01

    Roč. 15, Sep 25 (2014), 111/1-111/8 ISSN 1471-2202 R&D Projects: GA ČR GAP303/12/0576; GA MŠk 7AMB12FR011 Institutional support: RVO:61388963 Keywords : Zucker fa/fa rats * insulin resistance * obesity * GSK-3 beta * Tau protein Subject RIV: CE - Biochemistry Impact factor: 2.665, year: 2014

  17. Omega-3 Fatty Acid Deficiency Does Not Alter the Effects of Chronic Fluoxetine Treatment on Central Serotonin Turnover or Behavior in the Forced Swim Test in Female Rats

    OpenAIRE

    McNamara, Robert K.; Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Lipton, Jack W.

    2013-01-01

    While translational evidence suggests that long-chain omega-3 fatty acid status is positively associated with the efficacy of selective serotonin reuptake inhibitor drugs, the neurochemical mechanisms mediating this interaction are not known. Here we investigated the effects of dietary omega-3 (n-3) fatty acid insufficiency on the neurochemical and behavioral effects of chronic fluoxetine (FLX) treatment. Female rats were fed diets with (CON, n=56) or without (DEF, n=40) the n-3 fatty acids d...

  18. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  19. The effect of leptin receptor deficiency and fasting on cannabinoid receptor 1 mRNA expression in the rat hypothalamus, brainstem and nodose ganglion.

    Science.gov (United States)

    Jelsing, Jacob; Larsen, Philip Just; Vrang, Niels

    2009-10-02

    Despite ample evidence for the involvement of the endocannabinoid system in the control of appetite, food intake and energy balance, relatively little is known about the regulation of cannabinoid receptor 1 (CB(1)R) expression in respect to leptin signalling and fasting. In the present study, we examined CB(1)R mRNA levels in lean (Fa/?) and obese (fa/fa) male Zucker rats under basal and food-restricted conditions. Using stereological sampling principles coupled with semi-quantitative radioactive in situ hybridization we provide semi-quantitative estimates of CB(1)R mRNA expression in key appetite regulatory hypothalamic and brainstem areas, as well as in the nodose ganglia. Whereas no effect of fasting were determined on CB(1)R mRNA levels in the paraventricular (PVN) and ventromedial hypothalamic (VMH) nucleus, in the brainstem dorsal vagal complex or nodose ganglion of lean Zucker rats, CB(1)R mRNA levels were consistently elevated in obese Zucker rats pointing to a direct influence of disrupted leptin signalling on CB(1)R mRNA regulation.

  20. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  1. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  2. The potential of the essential fatty acid-deficient hairless rat as a psoriasis screening model for topical anti-proliferative drugs

    DEFF Research Database (Denmark)

    Jensen, Mette; Groth, L.; Holmer, G.

    2002-01-01

    were fed with a fat-free diet lacking linoleic acid. The EFAD condition was established within 8 weeks. In order to ensure that this condition had been established, several parameters were measured and observed, i.e. animal weight, water consumption, transepidermal water loss, clinical skin symptoms...... with calcipotriol. Dithranol and its coal tar-containing vehicle also showed a reductive effect on epidermal thickness. EFAD hairless rats possess various histological changes resembling psoriasis. These histological changes normalise during treatment with anti-psoriatic drugs as calcipotriol, dithranol and coal...

  3. Biologic assessment of copper-containing amalgams.

    Science.gov (United States)

    Mjor, I A; Eriksen, H M; Haugen, E; Skogedal, O

    1977-12-01

    In order to reduce creep and avoid marginal fractures in amalgam restorations, new alloys containing higher proportions of copper have been introduced. Fillings of these materials were placed in cavities prepared in the deciduous teeth of monkeys or placed in polyethylene tubes and implanted subcutaneously in rats. Conventional silver/tin alloys and zinc oxide eugenol cement were used as reference materials. Despite limitations due to the varying depths of cavities and the small number of animals involved it was concluded that the high copper alloys caused more severe pulp damage than the other materials studied. In the implantation studies many of the high copper specimens were exfoliated before the end of the experimental period. It is concluded that in deep cavities these materials require the use of a non-toxic base or lining material although as they are commonly used in young children's teeth the placement of linings and the isolation of the cavity pose problems.

  4. Hematopoietic studies in vitamin A deficiency.

    Science.gov (United States)

    Hodges, R E; Sauberlich, H E; Canham, J E; Wallace, D L; Rucker, R B; Mejia, L A; Mohanram, M

    1978-05-01

    Recent studies of experimental vitamin A deficiency in man led the authors to conclude that anemia may result from lack of vitamin A. A review of numerous nutrition surveys in underdeveloped countries enhanced the suspicion that deficiency of vitamin A does contribute to the prevalence of anemia. Preliminary studies of vitamin A-deficient rats confirmed previous observations that anemia may result from lack of this vitamin. The livers of these animals had very low concentrations of vitamin A but normal or increased concentrations of iron. The finding of anemia is in contrast with other reports that vitamin A deficiency may cause elevated values for hemoglobin and hematocrit. The authors suggest that loss of taste and smell as a result of deficiency may account for refusal of experimental animals to eat and drink enough to prevent inanitation and dehydration. The resulting hemoconcentration may mask the true hematological picture, which is one of anemia.

  5. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  6. Iron-Deficiency Anemia

    Science.gov (United States)

    ... To Health Topics / Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency ... anemia. Blood tests to screen for iron-deficiency anemia To screen for iron-deficiency anemia, your doctor ...

  7. Multi-element analysis of the rat hippocampus by proton induced x-ray emission spectroscopy (phosphorus, sulfur, chlorine, potassium, calcium, iron, zinc, copper, lead, bromine, and rubidium)

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, K.; Danscher, G.

    1979-01-22

    A technique for multi-element analysis of brain tissue by proton induced x-ray emission spectroscopy (PIXE) is described and data from analysis of fixed and unfixed samples from rat hippocampus, neocortex, amygdala, and spinal cord are presented and commented on. The atoms present in the tissue are bombarded with protons which cause the ejection of electrons from the inner shells. When the holes are refilled with electrons from outer shells, x-ray quanta characteristic for each element are emitted. Using a high resolution energy dispersive detector, a complete x-ray spectrum of the specimen can be recorded in a single measurement. Detection limits less than or approximately 5 ppM of dry matter are obtained for most elements with atomic number greater than 14 (silicon). Around 13 elements were found in concentrations above the detection limits. The grand means for non-fixed hippocampi were e.g., for Zn-120 ppM; Rb-20 ppM; Fe-150 ppM; Pb-3 ppM; Ni-5 ppM.

  8. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation

    International Nuclear Information System (INIS)

    Takeuchi-Yorimoto, Ayano; Noto, Takahisa; Yamada, Atsushi; Miyamae, Yoichi; Oishi, Yuji; Matsumoto, Masahiro

    2013-01-01

    Nonalcoholic steatohepatitis (NASH) is characterized by combined pathology of steatosis, lobular inflammation, fibrosis, and hepatocellular degeneration, with systemic symptoms of diabetes or hyperlipidemia, all in the absence of alcohol abuse. Given the therapeutic importance and conflicting findings regarding the potential for healing the histopathologic features of NASH in humans, particularly fibrosis, we investigated the reversibility of NASH-related findings in Wistar rats fed a choline-deficient and iron-supplemented L-amino acid-defined (CDAA) diet for 12 weeks, with a recovery period of 7 weeks, during which the diets were switched to a choline-sufficient and iron-supplemented L-amino acid-defined (CSAA) one. Analysis showed that steatosis and inflammation were significantly resolved by the end of the recovery period, along with decreases in AST and ALT activities within 4 weeks. In contrast, fibrosis remained even after the recovery period, to an extent similar to that in continuously CDAA-fed animals. Real-time reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemical investigations revealed that expression of some factors indicating oxidative stress (CYP2E1, 4-HNE, and iNOS) were elevated, whereas catalase and SOD1 were decreased, and a hypoxic state and CD34-positive neovascularization were evident even after the recovery period, although the fibrogenesis pathway by activated α-SMA-positive hepatic stellate cells via TGF-β and TIMPs decreased to the CSAA group level. In conclusion, persistent fibrosis was noted after the recovery period of 7 weeks, possibly due to sustained hypoxia and oxidative stress supposedly caused by capillarization. Otherwise, histopathological features of steatosis and inflammation, as well as serum AST and ALT activities, were recovered. - Highlights: ► NASH-like liver lesions are induced in rats by feeding a CDAA diet. ► Steatosis and lobular inflammation are resolved after switching to a

  9. Persistent fibrosis in the liver of choline-deficient and iron-supplemented L-amino acid-defined diet-induced nonalcoholic steatohepatitis rat due to continuing oxidative stress after choline supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi-Yorimoto, Ayano, E-mail: ayano.takeuchi@astellas.com [Drug Safety Research Labs, Astellas Pharma Inc., Osaka 532-8514 (Japan); Noto, Takahisa [Drug Safety Research Labs, Astellas Pharma Inc., Osaka 532-8514 (Japan); Yamada, Atsushi [Drug Safety Research Division, Astellas Research Technologies Co., Ltd., Osaka 532-8514 (Japan); Miyamae, Yoichi; Oishi, Yuji; Matsumoto, Masahiro [Drug Safety Research Labs, Astellas Pharma Inc., Osaka 532-8514 (Japan)

    2013-05-01

    Nonalcoholic steatohepatitis (NASH) is characterized by combined pathology of steatosis, lobular inflammation, fibrosis, and hepatocellular degeneration, with systemic symptoms of diabetes or hyperlipidemia, all in the absence of alcohol abuse. Given the therapeutic importance and conflicting findings regarding the potential for healing the histopathologic features of NASH in humans, particularly fibrosis, we investigated the reversibility of NASH-related findings in Wistar rats fed a choline-deficient and iron-supplemented L-amino acid-defined (CDAA) diet for 12 weeks, with a recovery period of 7 weeks, during which the diets were switched to a choline-sufficient and iron-supplemented L-amino acid-defined (CSAA) one. Analysis showed that steatosis and inflammation were significantly resolved by the end of the recovery period, along with decreases in AST and ALT activities within 4 weeks. In contrast, fibrosis remained even after the recovery period, to an extent similar to that in continuously CDAA-fed animals. Real-time reverse transcriptase-polymerase chain reaction, Western blot, and immunohistochemical investigations revealed that expression of some factors indicating oxidative stress (CYP2E1, 4-HNE, and iNOS) were elevated, whereas catalase and SOD1 were decreased, and a hypoxic state and CD34-positive neovascularization were evident even after the recovery period, although the fibrogenesis pathway by activated α-SMA-positive hepatic stellate cells via TGF-β and TIMPs decreased to the CSAA group level. In conclusion, persistent fibrosis was noted after the recovery period of 7 weeks, possibly due to sustained hypoxia and oxidative stress supposedly caused by capillarization. Otherwise, histopathological features of steatosis and inflammation, as well as serum AST and ALT activities, were recovered. - Highlights: ► NASH-like liver lesions are induced in rats by feeding a CDAA diet. ► Steatosis and lobular inflammation are resolved after switching to a

  10. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... you are diagnosed with iron-deficiency anemia. Risk Factors You may have an increased risk for iron- ... iron-deficiency anemia if you have certain risk factors , including pregnancy. To prevent iron-deficiency anemia, your ...

  11. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... to moderate iron-deficiency anemia, or red blood cell transfusion for severe iron-deficiency anemia. You may ... body needs iron to make healthy red blood cells. Iron-deficiency anemia usually develops over time because ...

  12. Vitamin Deficiency Anemia

    Science.gov (United States)

    ... are unique to specific vitamin deficiencies. Folate-deficiency anemia risk factors include: Undergoing hemodialysis for kidney failure. ... the metabolism of folate. Vitamin B-12 deficiency anemia risk factors include: Lack of intrinsic factor. Most ...

  13. Prevention by Methionine of Enhancement of Hepatocarcinogenesis by Coadministration of a Choline‐deficient L‐Amino Acid‐defined Diet and Ethionine in Rats

    Science.gov (United States)

    Tsujiuchi, Toshifumi; Kobayashi, Eisaku; Nakae, Dai; Mizumoto, Yasushi; Andoh, Nobuaki; Kitada, Hiromichi; Ohashi, Kazuo; Fukuda, Tomokazu; Kido, Akira; Tsutsumi, Masahiro; Denda, Ayumi

    1995-01-01

    The effects of methionine on hepatocarcinogenesis induced by Coadministration of a choline‐deflcient L‐amino acid‐defined (CDAA) diet and ethionine were examined. F344 male rats were divided into 4 experimental groups. Groups 1 and 2 received the CDAA diet and a choline‐supplemented L‐amino acid‐defined (CSAA) diet, respectively. Group 3 received the CDAA diet containing 0.05% ethionine, and group 4 the CDAA diet containing 0.05% ethionine and 0.47% methionine. Animals were killed after 12 weeks of treatment. Histologically, the CDAA diet induced intracellular fat accumulation and foci. In contrast, ethionine caused not only foci, but also hyperplastic nodules, cholangiofibrosis and the proliferation of oval cells without such fat accumulation. Methionine abolished the development of all of the liver lesions induced by Coadministration of the CDAA diet and ethionine. To investigate the effects of methionine on induction of c‐myc and c‐Ha‐ras expression, as well as generation of 8‐hydroxyguanine (8‐OHGua) and 2‐thiobarbituric acid‐reacting substances (TBARS), by Coadministration of the CDAA diet and ethionine, subgroups of 3 to 5 animals were killed at 2, 4, 8 or 11 days after the beginning of the experiment. Coadministration of the CDAA diet and ethionine markedly enhanced the level of expression of c‐myc and c‐Ha‐ras, 8‐OHGua formation and TBARS generation as compared with the CDAA or CSAA diet within 11 days, and methionine blocked these actions. These results indicate that addition of methionine prevents the induction of c‐myc and c‐Ha‐ras expression, 8‐OHGua formation and TBARS generation, as well as hepatocellular lesions, by Coadministration of the CDAA diet and ethionine in rats, and suggest a possible involvement of oxidative stress and gene expression in hepatocarcinogenesis by these agents. PMID:8636001

  14. Manganese, iron and copper contents in leaves of maize plants ...

    African Journals Online (AJOL)

    Micronutrients such as boron (B), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) play important physiological roles in humans and animals. Zn and B are the micronutrients most often deficient in maize, in Iran. A completely randomized factorial block design experiment was carried out at Fars province of Iran during ...

  15. Fighting Oxidative Stress: Increased Resistance of Male Rat Cerebellum at Weaning Induced by Low Omega 6/Omega 3 Ratio in a Protein-Deficient Diet.

    Science.gov (United States)

    Augusto, Ricielle Lopes; Isaac, Alinny Rosendo; Silva-Júnior, Ivanildo Inácio da; Santana, David Filipe de; Ferreira, Diorginis José Soares; Lagranha, Claudia Jacques; Gonçalves-Pimentel, Catarina; Rodrigues, Marcelo Cairrão Araujo; Andrade-da-Costa, Belmira Lara da Silveira

    2017-02-01

    The cerebellum is vulnerable to malnutrition effects. Notwithstanding, it is able to incorporate higher amount of docosahexaenoic acid (DHA) than the cerebral cortex (Cx) when low n-6/n-3 fatty acid ratio is present in a multideficient diet. Considering importance of DHA for brain redox balance, we hypothesize that this cerebellum feature improves its antioxidant status compared to the Cx. A chronic malnutrition status was induced on dams before mating and kept until weaning or adulthood (offspring). A group nutritionally rehabilitated from weaning was also analyzed. Morphometric parameters, total-superoxide dismutase (t-SOD) and catalase activities, lipoperoxidation (LP), nitric oxide (NO), reduced (GSH) and oxidized (GSSG) glutathione, reactive oxygen species (ROS), and reduced nicotinamide adenine dinucleotide/phosphate levels were assessed. Both ROS and LP levels were increased (∼53 %) in the Cx of malnourished young animals while the opposite was seen in the cerebellum (72 and 20 % of the control, respectively). Consistently, lower (∼35 %) and higher t-SOD (∼153 %) and catalase (CAT) (∼38 %) activities were respectively detected in the Cx and cerebellum compared to the control. In malnourished adult animals, redox balance was maintained in the cerebellum and recovered in the Cx (lower ROS and LP levels and higher GSH/GSSG ratio). NO production was impaired by malnutrition at either age, mainly in the cerebellum. The findings suggest that despite a multinutrient deficiency and a modified structural development, a low dietary n-6/n-3 ratio favors early antioxidant resources in the male cerebellum and indicates an important role of astrocytes in the redox balance recovery of Cx in adulthood.

  16. The effects of estrogens on learning in rats with chronic brain cholinergic deficiency in a Morris water test. Identification of the "passive swimming" component.

    Science.gov (United States)

    Mukhina, T V; Lermontova, N N; Van'kin, G I; Oettel, M; P'chev, V K; Bachurin, S O

    2004-03-01

    Chronic decreases in brain cholinergic functions due to intraventricular administration of the neurotoxin AF64A were accompanied by increases in the latent period of locating an invisible platform during training of rats in a Morris water test, as compared with control sham-operated animals. Recordings of the animals' movement trajectories using a video camera along with an original computer program (Behavioral Vision) showed that administration of 17beta-estradiol and its synthetic analog J-861 (0.2 mg/kg p.o. daily for seven days before and 10 days after single intraventricular injections of AF64A) improved learning. The directivity of platform search trajectories was assessed quantitatively using a new parameter--trajectory straightness. Introduction of the "passive swimming" parameter allowed periods of immobility in water to be identified within the total latent period in animals after administration of AF64A; 17beta-estradiol but not J-861 "eliminated" these periods. The new parameters (especially trajectory straightness) allowed the ability to learn to be discriminated from decreases in mobility, including mobility losses due to study agents, in the Morris water test.

  17. Reduced microvascular volume and hemispherically deficient vasoreactivity to hypercapnia in acute ischemia: MRI study using permanent middle cerebral artery occlusion rat model.

    Science.gov (United States)

    Suh, J Y; Shim, Woo H; Cho, Gyunggoo; Fan, Xiang; Kwon, Seon J; Kim, Jeong K; Dai, George; Wang, Xiaoying; Kim, Young R

    2015-06-01

    Vasoreactivity to hypercapnia has been used for assessing cerebrovascular tone and control altered by ischemic stroke. Despite the high prognostic potential, traits of hypercapnia-induced hemodynamic changes have not been fully characterized in relation with baseline vascular states and brain tissue damage. To monitor cerebrovascular responses, T2- and T2*-weighted magnetic resonance imaging (MRI) images were acquired alternatively using spin- and gradient-echo echo plannar imaging (GESE EPI) sequence with 5% CO2 gas inhalation in normal (n=5) and acute stroke rats (n=10). Dynamic relative changes in cerebrovascular volume (CBV), microvascular volume (MVV), and vascular size index (VSI) were assessed from regions of interest (ROIs) delineated by the percent decrease of apparent diffusion coefficient (ADC). The baseline CBV was not affected by middle cerebral artery occlusion (MCAO) whereas the baseline MVV in ischemic areas was significantly lower than that in the rest of the brain and correlated with ADC. Vasoreactivity to hypercapnic challenge was considerably attenuated in the entire ipsilesional hemisphere including normal ADC regions, in which unsolicited, spreading depression-associated increases of CBV and MVV were observed. The lesion-dependent inhomogeneity in baseline MVV indicates the effective perfusion reserve for accurately delineating the true ischemic damage while the cascade of neuronal depolarization is probably responsible for the hemispherically lateralized changes in overall neurovascular physiology.

  18. Deficient functional recovery after facial nerve crush in rats is associated with restricted rearrangements of synaptic terminals in the facial nucleus.

    Science.gov (United States)

    Hundeshagen, G; Szameit, K; Thieme, H; Finkensieper, M; Angelov, D N; Guntinas-Lichius, O; Irintchev, A

    2013-09-17

    Crush injuries of peripheral nerves typically lead to axonotmesis, axonal damage without disruption of connective tissue sheaths. Generally, human patients and experimental animals recover well after axonotmesis and the favorable outcome has been attributed to precise axonal reinnervation of the original peripheral targets. Here we assessed functionally and morphologically the long-term consequences of facial nerve axonotmesis in rats. Expectedly, we found that 5 months after crush or cryogenic nerve lesion, the numbers of motoneurons with regenerated axons and their projection pattern into the main branches of the facial nerve were similar to those in control animals suggesting precise target reinnervation. Unexpectedly, however, we found that functional recovery, estimated by vibrissal motion analysis, was incomplete at 2 months after injury and did not improve thereafter. The maximum amplitude of whisking remained substantially, by more than 30% lower than control values even 5 months after axonotmesis. Morphological analyses showed that the facial motoneurons ipsilateral to injury were innervated by lower numbers of glutamatergic terminals (-15%) and cholinergic perisomatic boutons (-26%) compared with the contralateral non-injured motoneurons. The structural deficits were correlated with functional performance of individual animals and associated with microgliosis in the facial nucleus but not with polyinnervation of muscle fibers. These results support the idea that restricted CNS plasticity and insufficient afferent inputs to motoneurons may substantially contribute to functional deficits after facial nerve injuries, possibly including pathologic conditions in humans like axonotmesis in idiopathic facial nerve (Bell's) palsy. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Iron-Deficiency Anemia

    Medline Plus

    Full Text Available ... Iron-Deficiency Anemia Iron-Deficiency Anemia Also known as Leer en español Iron-deficiency anemia is a ... address the cause of your iron deficiency, such as any underlying bleeding. If undiagnosed or untreated, iron- ...

  20. Neutron-activation analysis of copper in food-stuffs and biomedium of organism

    International Nuclear Information System (INIS)

    Rasulov, S.K.

    2004-01-01

    Full text: Our investigation has been carried out in the area with different ecologic characteristics of Samarkand region in Zarafshon valley (Urgut, Samarkand, Djambay and Nurabad). Tests for food-stuffs and hairs of children were carried out by neutron-activation analysis as per method worked out in the Nuclear Physics institute of academy of Sciences Republic of Uzbekistan. We have studied 37 varieties of food-stuffs, mainly of vegetable and animal origin. 245 healthy school children were investigated for copper deficiency, aged 7-14. The results of the study showed high concentration of copper in the bread of coarse grist, black raisin, dried apricots, sumalak (national Uzbek food), pea, broth from vinery stalk (100, 51, 24, 36, 21, 33 mg/kg respectively). As for animal products high concentration of copper was in white of egg and beef (480 and 25 mg/kg respectively). Copper concentration was insignificant in many other investigated products of vegetable origin, but in 15 of them Neutron-activation analysis showed the absence of copper at all. Concentration of microelements in hairs is an important index of micro element status assessment. Copper concentration in hairs of practically healthy school children of Zarafshon valley made up 9,24 ± 0,84 mkg/g. Our data of copper in hairs of healthy school children in Zarafshon valley was lower compared the data stated by other investigators (A.A. Kist, 1987) and concerning other regions too. Lore copper content in hairs, probably depends on the structure of nutritional products consumed and peculiarities of natural condition of biogeochemical area. Os per sexual characters copper content in hairs was lore - 7,97±1,38 mkg/g in girls under investigation (n=33), compared myth boys (n=131) -9,67±0,71 mkg/g; as per place of residence, copper concentration indices in hairs was nearly the some as in urban (n=66) and rural (n=98) children (7,62 ± 0,96 and 8,38 ± 0,77 mg/kg, respectively). Thus, determination of

  1. Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yinan; Xiao, Wei [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Bal, B. Sonny [Department of Orthopaedic Surgery, University of Missouri, Columbia, MO 65212 (United States); Rahaman, Mohamed N., E-mail: rahaman@mst.edu [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States)

    2016-10-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13–93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0–2.0 wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8 wt.% CuO in the glass but they were significantly reduced by 2.0 wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6 weeks in rat calvarial defects (46 ± 8%) was not significantly affected by 0.4 or 0.8 wt.% CuO in the glass whereas it was significantly inhibited (0.8 ± 0.7%) in the scaffolds doped with 2.0 wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0 wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1 μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13–93 glass scaffolds with up to 0.8 wt.% CuO did not affect their biocompatibility whereas 2.0 wt.% CuO was toxic to cells and detrimental to bone regeneration. - Highlights: • First study to evaluate Cu ion release from silicate (13-93) bioactive glass scaffolds on osteogenesis in vivo • Released Cu ions influenced bone regeneration in a dose dependent manner • Lower concentrations of Cu ions had little effect on bone regeneration • Cu ion

  2. Effect of copper-doped silicate 13–93 bioactive glass scaffolds on the response of MC3T3-E1 cells in vitro and on bone regeneration and angiogenesis in rat calvarial defects in vivo

    International Nuclear Information System (INIS)

    Lin, Yinan; Xiao, Wei; Bal, B. Sonny; Rahaman, Mohamed N.

    2016-01-01

    The release of inorganic ions from biomaterials could provide an alternative approach to the use of growth factors for improving tissue healing. In the present study, the release of copper (Cu) ions from bioactive silicate (13–93) glass scaffolds on the response of cells in vitro and on bone regeneration and angiogenesis in vivo was studied. Scaffolds doped with varying concentrations of Cu (0–2.0 wt.% CuO) were created with a grid-like microstructure by robotic deposition. When immersed in simulated body fluid in vitro, the Cu-doped scaffolds released Cu ions into the medium in a dose-dependent manner and converted partially to hydroxyapatite. The proliferation and alkaline phosphatase activity of pre-osteoblastic MC3T3-E1 cells cultured on the scaffolds were not affected by 0.4 and 0.8 wt.% CuO in the glass but they were significantly reduced by 2.0 wt.% CuO. The percent new bone that infiltrated the scaffolds implanted for 6 weeks in rat calvarial defects (46 ± 8%) was not significantly affected by 0.4 or 0.8 wt.% CuO in the glass whereas it was significantly inhibited (0.8 ± 0.7%) in the scaffolds doped with 2.0 wt.% CuO. The area of new blood vessels in the fibrous tissue that infiltrated the scaffolds increased with CuO content of the glass and was significantly higher for the scaffolds doped with 2.0 wt.% CuO. Loading the scaffolds with bone morphogenetic protein-2 (1 μg/defect) significantly enhanced bone infiltration and reduced fibrous tissue in the scaffolds. These results showed that doping the 13–93 glass scaffolds with up to 0.8 wt.% CuO did not affect their biocompatibility whereas 2.0 wt.% CuO was toxic to cells and detrimental to bone regeneration. - Highlights: • First study to evaluate Cu ion release from silicate (13-93) bioactive glass scaffolds on osteogenesis in vivo • Released Cu ions influenced bone regeneration in a dose dependent manner • Lower concentrations of Cu ions had little effect on bone regeneration • Cu ion

  3. Effect of calcium and vitamin D deficiency in the diet on the capture and retention of 99mTc-methylenediphosphonate and of 85Sr in rat bones

    International Nuclear Information System (INIS)

    Kapitola, J.; Jahoda, I.; Kobos, L.; Knotova, S.; Stepankova, M.

    1990-01-01

    The effect was examined of vitamin D-free low-calcium diet on the 24 h retention of 99m Tc-methylenediphosphonate in the whole body and in the tibia, on the long-term whole-body 85 Sr retention and on the 2 h retention of 85 Sr in the epiphysis, the metaphysis and the diaphysis of the rat femur and tibia. The density and ash weight of the tibia were also determined in some experiments. The whole-body 99m Tc-MDP retention increased significantly as early as the 3rd day of administration of the diet. In two other experiments, the retention in the tibia as well as in the whole body was increased in 1, 2 and 4 weeks of the diet; the density decreased from the 1st or 2nd week. The whole-body 85 Sr retention was increased after significantly as early as after two days of administration of the diet; after discontinuation of the diet the high difference as against controls only slowly decreased. The 2 h 85 Sr retention in samples of the femur and the tibia on days 2, 5, 10 and 20 of the diet was examined in a separate experiment. The retention increased significantly in 20 days; the bone density and ash weight were significantly lower on days 10 and 20 days of the diet. Hence, the low-calcium diet brings about an increase in the retention of the two osteotropic substances in the bone. This response was expected in the case of 85 Sr; in the case of 99m Tc-MDP it indicates that the retention may be related to the mineral component of the bone tissue. The enhanced retention of the two substances is apparently not associated with local blood circulation, which in earlier experiments was found reduced under the conditions employed. The results confirm that 85 Sr and 99m Tc-MDP retention is a sensitive and early indicator of calcium metabolism imbalance. (author). 1 fig., 2 tabs., 10 refs

  4. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  5. Copper and ectopic expression of the Arabidopsis transport protein COPT1 alter iron homeostasis in rice (Oryza sativa L.).

    Science.gov (United States)

    Andrés-Bordería, Amparo; Andrés, Fernando; Garcia-Molina, Antoni; Perea-García, Ana; Domingo, Concha; Puig, Sergi; Peñarrubia, Lola

    2017-09-01

    Copper deficiency and excess differentially affect iron homeostasis in rice and overexpression of the Arabidopsis high-affinity copper transporter COPT1 slightly increases endogenous iron concentration in rice grains. Higher plants have developed sophisticated mechanisms to efficiently acquire and use micronutrients such as copper and iron. However, the molecular mechanisms underlying the interaction between both metals remain poorly understood. In the present work, we study the effects produced on iron homeostasis by a wide range of copper concentrations in the growth media and by altered copper transport in Oryza sativa plants. Gene expression profiles in rice seedlings grown under copper excess show an altered expression of genes involved in iron homeostasis compared to standard control conditions. Thus, ferritin OsFER2 and ferredoxin OsFd1 mRNAs are down-regulated whereas the transcriptional iron regulator OsIRO2 and the nicotianamine synthase OsNAS2 mRNAs rise under copper excess. As expected, the expression of OsCOPT1, which encodes a high-affinity copper transport protein, as well as other copper-deficiency markers are down-regulated by copper. Furthermore, we show that Arabidopsis COPT1 overexpression (C1 OE ) in rice causes root shortening in high copper conditions and under iron deficiency. C1 OE rice plants modify the expression of the putative iron-sensing factors OsHRZ1 and OsHRZ2 and enhance the expression of OsIRO2 under copper excess, which suggests a role of copper transport in iron signaling. Importantly, the C1 OE rice plants grown on soil contain higher endogenous iron concentration than wild-type plants in both brown and white grains. Collectively, these results highlight the effects of rice copper status on iron homeostasis, which should be considered to obtain crops with optimized nutrient concentrations in edible parts.

  6. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism.

    Science.gov (United States)

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-02-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  7. Primary biochemical defect in copper metabolism in mice with a recessive X-linked mutation analogous to Menkes' disease in man

    International Nuclear Information System (INIS)

    Prins, H.W.; Hamer, C.J.A. van den.

    1979-01-01

    The defect in Menkes' disease in man is identical to that in Brindled mice. The defect manifests itself in a accumulation of copper in some tissues, such as renal, intestinal (mucosa and muscle), pancreatic, osseous, muscular, and dermal. Hence a fatal copper deficiency results in other tissues (e.g., hepatic). The copper transport through the intestine is impaired and copper, which circumvents the block in the copper resorption, is irreversibly trapped in the above-mentioned, copper accumulating tissues where it is bound to a cytoplasmatic protein with molecular weight 10,000 daltons, probably the primary cytoplasmatic copper transporting protein. This protein shows a Cu-S absorption band at 250 nm, and the copper:protein ratio is increased. Such copper rich protein was found neither in the kidneys of the unaffected mica nor in the liver of the mice that do have the defect. Three models of the primary defect in Menkes' disease are proposed

  8. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. Th