WorldWideScience

Sample records for copper cluster ions

  1. Molecular dynamic simulation of interaction of low-energy Ar and Xe ions with copper clusters at graphite surface

    International Nuclear Information System (INIS)

    Kornich, G.V.; Lozovskaya, L.I.; Betts, G.; Zaporozhchenko, V.I.; Faupel, F.

    2005-01-01

    One conducted molecular and dynamic simulation of sputtering of isolated clusters consisting of 13, 27 and 195 Cu atoms from the (0001) graphite surface by 200 eV energy Ar and Xe ions. It is shown that the factors of reflection of Ar and Xe ions from copper clusters differ from one another insignificantly, though the energy of the reflected Xe ions is essentially lower than that of Ar ions. The values of the factor of cluster sputtering by Xe ions are higher in contrast to sputtering by Ar ions. One identified two mechanisms of cluster sputtering resulting in the maximum of sputtering intensity at the polar angles near the normal one, and in periodicity of maximums within the azimuth distributions of sputtering intensity with 60 deg period [ru

  2. Radiation enhanced copper clustering processes in Fe-Cu alloys during electron and ion irradiations as measured by electrical resistivity

    International Nuclear Information System (INIS)

    Ishino, S.; Chimi, Y.; Bagiyono; Tobita, T.; Ishikawa, N.; Suzuki, M.; Iwase, A.

    2003-01-01

    To study the mechanism of radiation-enhanced clustering of copper atoms in Fe-Cu alloys, in situ electrical resistivity measurements are performed during irradiation with 100 MeV carbon ions and with 2 MeV electrons at 300 K. Two kinds of highly pure Fe-Cu alloys with Cu content of 0.02 and 0.6 wt% are used. The results are summarized as follows: - Although there is a steep initial resistivity increase below about 10 μdpa, the resistivity steadily decreases after this initial transient in Fe-0.6wt%Cu alloy, while in Fe-0.02wt%Cu alloy, the resistivity either decreases slowly or stays almost constant. The rate of change in resistivity depends on copper concentration. - The rate of change in resistivity per dpa is larger for electron irradiation than for ion irradiation. - Change in dose rate from 10 -8 to 10 -9 dpa/s slightly enhances the rate of resistivity change per dpa. The decrease in resistivity with dose is considered to be due to clustering or precipitation of copper atoms. The initial abrupt increase in resistivity is too large to be accounted for by initial introduction of point defects before copper clustering. Tentatively the phenomenon is explained as due to the formation of embryos of copper precipitates with a large strain field around them. Quantitative evaluation of the results using resistivity contribution of a unit concentration of Frenkel pairs and that of copper atoms gives an important conclusion that more than one copper atom are removed from solid solution by one Frenkel pair. The clustering efficiency is surprisingly high in the present case compared with the ordinary radiation-induced or radiation-enhanced precipitation processes

  3. Synthesis and characterization of αzirconium (IV) hydrogenphosphate containing metallic copper clusters

    International Nuclear Information System (INIS)

    Souza, Alexilda Oliveira de; Rangel, Maria do Carmo; Alves, Oswaldo Luiz

    2005-01-01

    The α-zirconium (IV) hydrogenphosphate (α-ZrP) has received great attention in the last years due to its properties like ion exchange, intercalation, ionic conductivity and catalytic activity. This work reports a method to produce metallic copper clusters on α-ZrP to be used as catalysts in petrochemical processes. It was found that the solids were non-crystalline regardless of the uptake of copper and the reduction. The specific surface area increased as a consequence of the increase of the interlayer distance to accept the copper ions between the layers. During the reduction, big clusters of copper (0,5-11μ) with different sizes and shapes were produced. (author)

  4. Structure investigation of metal ions clustering in dehydrated gel using x-ray anomalous dispersion effect

    CERN Document Server

    Soejima, Y; Sugiyama, M; Annaka, M; Nakamura, A; Hiramatsu, N; Hara, K

    2003-01-01

    The structure of copper ion clusters in dehydrated N-isopropylacrylamide/sodium acrylate (NIPA/SA) gel has been studied by means of small angle X-ray scattering (SAXS) method. In order to distinguish the intensity scattered by Cu ions, the X-ray anomalous dispersion effect around the Cu K absorption edge has been coupled with SAXS. It is found that the dispersion effect dependent on the incident X-ray energy is remarkable only at the momentum transfer q = 0.031 A sup - sup 1 , where a SAXS peak is observed. The results indicate that copper ions form clusters in the dehydrated gel, and that the mean size of clusters is the same as that of SA clusters produced by microphase separation. It is therefore naturally presumed that copper ions are adsorbed into the SA molecules. On the basis of the presumption, a mechanism is proposed for microphase-separation and clustering of Cu ions.

  5. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  6. Evaluation of the energetics of copper-vacancy clusters in Fe

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Kazunori, E-mail: morishita@iae.kyoto-u.ac.jp; Nakasuji, Toshiki; Ruan, Xiaoyong

    2017-02-15

    Highlights: • Thermodynamics evaluation of the nucleation process of copper-vacancy clusters in Fe is performed. • Nucleation free energy of copper-vacancy clusters in Fe is formulated. • With this energetics, two different nucleation paths of clusters are found as a function of the damage rate. - Abstract: A theoretical study is conducted to evaluate the nucleation free energy of copper-vacancy clusters in Fe as a function of the numbers of copper atoms and of vacancies in a cluster. Using this free energy value, cluster nucleation processes during irradiation are investigated. The results clearly show that there are two different types of cluster nucleation paths on the free energy surface; one is the formation of empty voids by jumping over the ridge of the free energy surface, and the other corresponds to a path for the formation of copper clusters by going around the ridge. The dependence of easy nucleation paths on the damage rate is discussed.

  7. Effect of solute atoms on collision cascades in copper and molybdenum irradiated with self-ions

    International Nuclear Information System (INIS)

    English, C.A.; Eyre, B.L.; Wadley, H.; Stathopoulos, A.Y.

    1975-01-01

    An examination of the effect material purity has on the numbers and sizes of the vacancy loops formed in collision cascades produced by self-ion irradiation of copper and molybdenum is reported. It is shown that substitutional and interstitial impurities both markedly reduce the damage generated in molybdenum by 60 keV Mo + ions but little effect is seen in copper irradiated by 30 keV Cu + ions. These results are compared with recent observations of vacancy defects in type 316 stainless steel following irradiation with 40-200 keV Cr + . The comparison highlights the much lower vacancy concentration retained in visible clusters in the complex alloy

  8. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    Science.gov (United States)

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they

  9. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S.; Sood, D.K.; Zmood, R.B. [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1993-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  10. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S; Sood, D K; Zmood, R B [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1994-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  11. Seeding of silicon by copper ion implantation for selective electroless copper plating

    International Nuclear Information System (INIS)

    Bhansali, S.; Sood, D.K.; Zmood, R.B.

    1993-01-01

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm 2 using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm 2 for 'seed' formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by 'scotch tape test'. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs

  12. Modification of medical metals by ion implantation of copper

    Science.gov (United States)

    Wan, Y. Z.; Xiong, G. Y.; Liang, H.; Raman, S.; He, F.; Huang, Y.

    2007-10-01

    The effect of copper ion implantation on the antibacterial activity, wear performance and corrosion resistance of medical metals including 317 L of stainless steels, pure titanium, and Ti-Al-Nb alloy was studied in this work. The specimens were implanted with copper ions using a MEVVA source ion implanter with ion doses ranging from 0.5 × 10 17 to 4 × 10 17 ions/cm 2 at an energy of 80 keV. The antibacterial effect, wear rate, and inflexion potential were measured as a function of ion dose. The results obtained indicate that copper ion implantation improves the antibacterial effect and wear behaviour for all the three medical materials studied. However, corrosion resistance decreases after ion implantation of copper. Experimental results indicate that the antibacterial property and corrosion resistance should be balanced for medical titanium materials. The marked deteriorated corrosion resistance of 317 L suggests that copper implantation may not be an effective method of improving its antibacterial activity.

  13. Adsorption of copper ions of natural montmorillonite clay

    Directory of Open Access Journals (Sweden)

    Pimneva Ludmila

    2017-01-01

    Full Text Available The prospects of montmorillonite clay using for the extraction of copper ions from natural and waste waters were determined. Specified chemical and phase composition of natural forms of the montmorillonite clay are shown in the article. Quantitative characteristics of adsorption process of copper ions, the statistical exchange capacity is 1,21 (298 К, 1,25 (313 К, 1,43 (333 К. The authors have studied the balance of copper ions by the method of constructing the isotherms. The description of the adsorption process was carried out by the Langmuir, Freundlich and Temkin models. The calculations showed that the best data for the sorption described by Langmuir model. The nature of the interaction of copper ions with montmorillonite clay in natural form is presented. The calculated thermodynamic parameters of the adsorption process, the obtained values of the Gibbs energy have a negative sign -11,5 (298 К, -15,6 (313 К, -16,2 (333 К кJ/mol, that corresponds to a sustainable consolidation of copper ions on the surface of the montmorillonite clay.

  14. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  15. Damage of copper by low energy xenon ions

    International Nuclear Information System (INIS)

    Babad-Zakhryapin, A.A.; Popenko, V.A.

    1988-01-01

    Changes in the copper crystal structure bombarded by xenon ions with 30-150 eV energy are studied. Foils of MOb copper mark, 10 mm in diameter and 100 μm thickness, are irradiated. The initial specimens are annealed in vacuum during 1 h at 900 K temperature. The specimens are bombarded by xenon ions in a water-cooled holder. A TE-O type accelerator serves as a xenon ion source. The ion energy varies within 30 to 150 eV range. The ion flux density is 8x10 16 ion/(cm 2 xs). It is shown that crystal structure variations at deep depths are observed not only at high (>1 keV), but at low ion energies down to several dozens of electronvolt as well. The crystal structure variation on copper irradiation by xenon ions with 30-150 eV energy is followed by formation of defects like dislocation loops, point defects in the irradiated target bulk

  16. Copper Sensing Function of Drosophila Metal-Responsive Transcription Factor-1 Is Mediated By a Tetranuclear Cu(I) Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X.; Hua, H.; Balamurugan, K.; Kong, X.; Zhang, L.; George, G.N.; Georgiev, O.; Schaffner, W.; Giedroc, D.P.

    2009-05-12

    Drosophila melanogaster MTF-1 (dMTF-1) is a copper-responsive transcriptional activator that mediates resistance to Cu, as well as Zn and Cd. Here, we characterize a novel cysteine-rich domain which is crucial for sensing excess intracellular copper by dMTF-1. Transgenic flies expressing mutant dMTF-1 containing alanine substitutions of two, four or six cysteine residues within the sequence {sup 547}CNCTNCKCDQTKSCHGGDC{sup 565} are significantly or completely impaired in their ability to protect flies from copper toxicity and fail to up-regulate MtnA (metallothionein) expression in response to excess Cu. In contrast, these flies exhibit wild-type survival in response to copper deprivation thus revealing that the cysteine cluster domain is required only for sensing Cu load by dMTF-1. Parallel studies show that the isolated cysteine cluster domain is required to protect a copper-sensitive S. cerevisiae ace1 strain from copper toxicity. Cu(I) ligation by a Cys-rich domain peptide fragment drives the cooperative assembly of a polydentate [Cu{sub 4}-S{sub 6}] cage structure, characterized by a core of trigonally S{sub 3} coordinated Cu(I) ions bound by bridging thiolate ligands. While reminiscent of Cu{sub 4}-L{sub 6} (L = ligand) tetranuclear clusters in copper regulatory transcription factors of yeast, the absence of significant sequence homology is consistent with convergent evolution of a sensing strategy particularly well suited for Cu(I).

  17. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing....

  18. Removal of adsorbent particles od copper ions by Jet flotation

    International Nuclear Information System (INIS)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-01-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m - 3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  19. Metal cluster cation reactions: Carbon monoxide association to Cu + n ions

    Science.gov (United States)

    Leuchtner, R. E.; Harms, A. C.; Castleman, A. W., Jr.

    1990-06-01

    Copper cluster cations (Cu+n,n=1-14) were produced in a laser vaporization/flow tube apparatus and equilibrated to room temperature. The association rate constants of carbon monoxide onto these ions were measured; low-pressure, termolecular behavior was observed for the smaller species while for clusters greater than Cu+7, the longer lifetimes due to the increased number of degrees of freedom leads to pressure independence (>0.3 Torr) of the effective bimolecular rates. Unimolecular decay theory (RRKM) is used to explain the overall trend and when intrinsic surface site reactivity is taken into account, excellent agreement with measured reactivity is obtained.

  20. CO2 laser photolysis of clustered ions, (1)

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takeshi; Suzuki, Kazuya; Ohno, Shin-ichi.

    1990-09-01

    Vibrational excitation and the following decomposition of cluster ions by CO 2 laser photons are studied. Characteristics of the cluster ion and the CO 2 laser photon are summarized in their relation to the photolysis of cluster ions. An apparatus was installed, which is composed of (1) corona discharge-jet expansion section (formation of cluster ions), (2) CO 2 laser section (photolysis of cluster ions), and (3) mass spectrometer section. Experimental results of ammonia cluster ions were described. Effects of repeller voltage, shape of repellers, and adiabatic cooling are examined on the formation of ammonia cluster ions by corona discharge-jet expansion method. Collisional dissociation of cluster ions was observed at high repeller voltages. Size distribution of the ammonia cluster ion is discussed in connection with the temperature of cluster ions. Intensity of CO 2 laser was related to decomposition yield of cluster ions. (author)

  1. Mass spectrum of secondary ions knocked-out from copper surface by argon ion beam

    International Nuclear Information System (INIS)

    Koval', A.G.; Bobkov, V.V.; Klimovskij, Yu.A.; Fogel', Ya.M.

    1976-01-01

    The mass-spectrum of secondary ions was studied within a mass range of 1-400. The ions were knocked-out by the beam of ions Ar + from the copper surface with different content of oxygen and sulphur solved in the volume. The studies were conducted at three temperatures of the target. The atomic and molecular ions of the metal matrix, volumetric impurities of metal and ions of chemical compounds molecules of the metal under study with gas particles adsorbed on its surface and atoms of the metal volumetric admixtures may be observed in the mass spectrum. Detection of secondary ions of the copper multi-atomic complexes and ions of these complexes compounds with the adsorbed molecules is of interest

  2. Beams of mass-selected clusters: realization and first experiments

    International Nuclear Information System (INIS)

    Kamalou, O.

    2007-04-01

    The main objective of this work concerns the production of beams of mass-selected clusters of metallic and semiconductor materials. Clusters are produced in magnetron sputtering source combined with a gas aggregation chamber, cooled by liquid nitrogen circulation. Downstream of the cluster source, a Wiley-McLaren time-of-flight setup allows to select a given cluster size or a narrow size range. The pulsed mass-selected cluster ion beam is separated from the continuous neutral one by an electrostatic 90-quadrupole deflector. After the deflector, the density of the pulsed beam amounts to about 10 3 particles/cm 3 . Preliminary deposition experiments of mass-selected copper clusters with a deposition energy of about 0.5 eV/atom have ben performed on highly oriented pyrolytic graphite (HOPG) substrates, indicating that copper clusters are evidently mobile on the HOPG-surface until they reach cleavage steps, dislocation lines or other surface defects. In order to lower the cluster mobility on the HOPG-surface, we have first irradiated HOPG samples with slow highly charged ions (high dose) in order to create superficial defects. In a second step we have deposited mass-selected copper clusters on these pre-irradiated samples. The first analysis by AFM (Atomic Force Microscopy) techniques showed that the copper clusters are trapped on the defects produced by the highly charged ions. (author)

  3. Comparison of oxidation resistance of copper treated by beam-line ion implantation and plasma immersion ion implantation

    International Nuclear Information System (INIS)

    An Quanzhang; Li Liuhe; Hu Tao; Xin Yunchang; Fu, Ricky K.Y.; Kwok, D.T.K.; Cai Xun; Chu, Paul K.

    2009-01-01

    Copper which has many favorable properties such as low cost, high thermal and electrical conductivity, as well as easy fabrication and joining is one of the main materials in lead frames, interconnects, and foils in flexible circuits. Furthermore, copper is one of the best antibacterial materials. However, unlike aluminum oxide or chromium oxide, the surface copper oxide layer does not render sufficient protection against oxidation. In this work, in order to improve the surface oxidation resistance of Cu, Al and N were introduced into copper by plasma immersion ion implantation (PIII) and beam-line ion implantation (BII). The implantation fluences of Al and N were 2 x 10 17 ions cm -2 and 5 x 10 16 ions cm -2 , respectively. The implanted and untreated copper samples were oxidized in air at 260 deg. C for 1 h. The X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as X-ray photoelectron spectroscopy (XPS) results indicate that both implantation methods can enhance the oxidation resistance of copper but to different extent. PIII is superior to BII in enhancing the oxidation resistance of copper. The effects and possible mechanisms are discussed.

  4. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    Science.gov (United States)

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. On the application of the weak-beam technique to the determination of the sizes of small point-defect clusters in ion-irradiated copper

    International Nuclear Information System (INIS)

    Jenkins, M. L.

    1998-01-01

    We have made an analysis of the conditions necessary for the successful use of the weak-beam technique for identifying and characterizing small point-defect clusters in ion-irradiated copper. The visibility of small defects was found to depend only weakly on the magnitude of the beam-convergence. In general, the image sizes of small clusters were found to be most sensitive to the magnitude of Sa with the image sizes of some individual defects changing by large amounts with changes as small as 0.025 nm -1 . The most reliable information on the true defect size is likely to be obtained by taking a series of 5-9 micrographs with a systematic variation of deviation parameter from 0.2-0.3 nm -1 . This procedure allows size information to be obtained down to a resolution limit of about 0.5 nm for defects situated throughout a foil thickness of 60 nm. The technique has been applied to the determination of changes in the sizes of small defects produced by a low-temperature in-situ irradiation and annealing experiment

  6. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Zeng, Guisheng; Deng, Xiaorong; Luo, Shenglian; Luo, Xubiao; Zou, Jianping

    2012-01-01

    Highlights: ► Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. ► The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. ► A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO 2 ) in this paper. The influence of copper ions on bioleaching of LiCoO 2 by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO 2 underwent a cationic interchange reaction with copper ions to form CuCo 2 O 4 on the surface of the sample, which could be easily dissolved by Fe 3+ .

  7. A quadrupole ion trap as low-energy cluster ion beam source

    CERN Document Server

    Uchida, N; Kanayama, T

    2003-01-01

    Kinetic energy distribution of ion beams was measured by a retarding field energy analyzer for a mass-selective cluster ion beam deposition system that uses a quadrupole ion trap as a cluster ion beam source. The results indicated that the system delivers a cluster-ion beam with energy distribution of approx 2 eV, which corresponded well to the calculation results of the trapping potentials in the ion trap. Using this deposition system, mass-selected hydrogenated Si cluster ions Si sub n H sub x sup + were actually deposited on Si(111)-(7x7) surfaces at impact kinetic energy E sub d of 3-30 eV. Observation by using a scanning tunneling microscope (STM) demonstrated that Si sub 6 H sub x sup + cluster ions landed on the surface without decomposition at E sub d =3 eV, while the deposition was destructive at E sub d>=18 eV. (author)

  8. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration

    Directory of Open Access Journals (Sweden)

    Kowalska Izabela

    2017-01-01

    Full Text Available The aim of the study was to assess the usefulness of micellar–enhanced ultrafiltration (MEUF for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi–pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration. Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L, the average concentration of copper ions in the permeate ranged from 1.2–4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.

  9. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guisheng, E-mail: zengguisheng@hotmail.com [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Deng, Xiaorong [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Xubiao; Zou, Jianping [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. Black-Right-Pointing-Pointer The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. Black-Right-Pointing-Pointer A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO{sub 2}) in this paper. The influence of copper ions on bioleaching of LiCoO{sub 2} by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO{sub 2} underwent a cationic interchange reaction with copper ions to form CuCo{sub 2}O{sub 4} on the surface of the sample, which could be easily dissolved by Fe{sup 3+}.

  10. Effects of copper ions on the characteristics of egg white gel induced by strong alkali.

    Science.gov (United States)

    Shao, Yaoyao; Zhao, Yan; Xu, Mingsheng; Chen, Zhangyi; Wang, Shuzhen; Tu, Yonggang

    2017-09-01

    This study investigated the effects of copper ions on egg white (EW) gel induced by strong alkali. Changes in gel characteristics were examined through texture profile analysis, scanning electron microscopy (SEM), and chemical methods. The value of gel strength reached its maximum when 0.1% copper ions was added. However, the lowest cohesiveness values were observed at 0.1%. The springiness of gel without copper ions was significantly greater than the gel with copper ions added. SEM results illustrated that the low concentration of copper ions contributes to a dense and uniform gel network, and an open matrix was formed at 0.4%. The free and total sulphhydryl group content in the egg white protein gel significantly decreased with the increased copper. The increase of copper ions left the contents of ionic and hydrogen bonds basically unchanged, hydrophobic interaction presented an increasing trend, and the disulfide bond exhibited a completely opposite change. The change of surface hydrophobicity proved that the main binding force of copper induced gel was hydrophobic interaction. However, copper ions had no effect on the protein component of the gels. Generally, a low level of copper ions facilitates protein-protein association, which is involved in the characteristics of gels. Instead, high ionic strength had a negative effect on gels induced by strong alkali. © 2017 Poultry Science Association Inc.

  11. Reduction and aggregation of silver, copper and cadmium ions in aqueous solutions of gelatin and carboxymethyl cellulose

    International Nuclear Information System (INIS)

    Kapoor, S.; Gopinathan, C.

    1998-01-01

    Radiolytic reduction of silver, copper and cadmium ions and the subsequent formation of their clusters was studied in aqueous gelatin or carboxy methyl cellulose (CMC) solutions. Presence of gelatin or CMC in the solution affects the early processes. The rate of reduction by hydrated electron reduces due to complexation. However, when the ratio of silver ions to monomeric chains decreases over a certain limit the process of reduction inhibits completely. The effect of ionic strength or pH and the reducing radical on the rate of formation of colloidal Cu and Cd is also discussed

  12. Characterization of Lactobacillus brevis L62 strain, highly tolerant to copper ions.

    Science.gov (United States)

    Mrvčić, Jasna; Butorac, Ana; Solić, Ema; Stanzer, Damir; Bačun-Družina, Višnja; Cindrić, Mario; Stehlik-Tomas, Vesna

    2013-01-01

    Lactic acid bacteria (LAB) as starter culture in food industry must be suitable for large-scale industrial production and possess the ability to survive in unfavorable processes and storage conditions. Approaches taken to address these problems include the selection of stress-resistant strains. In food industry, LAB are often exposed to metal ions induced stress. The interactions between LAB and metal ions are very poorly investigated. Because of that, the influence of non-toxic, toxic and antioxidant metal ions (Zn, Cu, and Mn) on growth, acid production, metal ions binding capacity of wild and adapted species of Leuconostoc mesenteroides L3, Lactobacillus brevis L62 and Lactobacillus plantarum L73 were investigated. The proteomic approach was applied to clarify how the LAB cells, especially the adapted ones, protect themselves and tolerate high concentrations of toxic metal ions. Results have shown that Zn and Mn addition into MRS medium in the investigated concentrations did not have effect on the bacterial growth and acid production, while copper ions were highly toxic, especially in static conditions. Leuc. mesenteroides L3 was the most efficient in Zn binding processes among the chosen LAB species, while L. plantarum L73 accumulated the highest concentration of Mn. L. brevis L62 was the most copper resistant species. Adaptation had a positive effect on growth and acid production of all species in the presence of copper. However, the adapted species incorporated less metal ions than the wild species. The exception was adapted L. brevis L62 that accumulated high concentration of copper ions in static conditions. The obtained results showed that L. brevis L62 is highly tolerant to copper ions, which allows its use as starter culture in fermentative processes in media with high concentration of copper ions.

  13. Recovery of copper ion by flotation with potassium amylxanthate

    International Nuclear Information System (INIS)

    Ramirez-Serrano, B.; Coello-Velazquez, A. L.; Bernardo, A.; Afif, E.; Menendez-Aguado, J. M.

    2012-01-01

    In this paper a study about the column flotation process of copper ion employing potassium amylxanthate as collector reagent is carried out. The effect on the recovery of copper ion by the modification of variables such as collector/metal relation and surface velocity of gas and liquid was determined experimentally by the analysis of the statistic-mathematical model of the copper flotation process, as well as the physico-chemical phenomena that take place, showing the effect of the collector/metal relation in the process. The effect of pH as the main properties of the chemical system in the recovery and the kinetic of the flotation process is made too. The experimental results shows that the recovery of copper in the pH range of 4,5 - 12 is possible with prevalence of precipitate flotation. (Author) 43 refs.

  14. Determining the Amount of Copper(II) Ions in a Solution Using a Smartphone

    Science.gov (United States)

    Montangero, Marc

    2015-01-01

    When dissolving copper in nitric acid, copper(II) ions produce a blue-colored solution. It is possible to determine the concentration of copper(II) ions, focusing on the hue of the color, using a smartphone camera. A free app can be used to measure the hue of the solution, and with the help of standard copper(II) solutions, one can graph a…

  15. Removal of adsorbent particles od copper ions by Jet flotation; Remocion de particulas adsorbentes de iones cobre por flotacion Jet

    Energy Technology Data Exchange (ETDEWEB)

    Santander, M.; Tapia, P.; Pavez, O.; Valderrama, L.; Guzman, D.

    2009-07-01

    The present study shows the results obtained on the removal of copper ions from synthetic effluents by using the adsorbent particles flotation technique (APF) in a Jet flotation cell (Jameson type). In a typical experimental run, a mineral with high quartz content was used as adsorbent particles in the adsorption and flotation experiments, to determine optimal pH conditions, adsorbent particles concentration; flotation reagents dosage and air/effluent flow ratio for applying in the Jet cell to maximize the efficiency of copper ions adsorptions and the removal of particles adsorbents containing the absorbed copper ions. The results indicate the at pH>7 and at adsorbent particles concentration of 2 kg.m{sup -}3, 99% of copper ions is adsorbed and, when the air/effluent flow ratio applied in the Jet cell is 0,2, 98% of absorbent particles containing the adsorbed copper ions is removed. (Author) 39 refs.

  16. Binding energies of cluster ions

    International Nuclear Information System (INIS)

    Parajuli, R.; Matt, S.; Scheier, P.; Echt, O.; Stamatovic, A.; Maerk, T.D.

    2002-01-01

    The binding energy of charged clusters may be measured by analyzing the kinetic energy released in the metastable decay of mass selected parent ions. Using finite heat bath theory to determine the binding energies of argon, neon, krypton, oxygen and nitrogen from their respective average kinetic energy released were carried out. A high-resolution double focussing two-sector mass spectrometer of reversed Nier-Johnson type geometry was used. MIKE ( mass-analysed ion kinetic energy) were measured to investigate decay reactions of mass-selected ions. For the inert gases neon (Ne n + ), argon (Ar n + ) and krypton (Kr n + ), it is found that the binding energies initially decrease with increasing size n and then level off at a value above the enthalpy of vaporization of the condensed phase. Oxygen cluster ions shown a characteristic dependence on cluster size (U-shape) indicating a change in the metastable fragmentation mechanism when going from the dimer to the decamer ion. (nevyjel)

  17. Detection of gold cluster ions by ion-to-ion conversion using a CsI-converter

    International Nuclear Information System (INIS)

    Nguyen, V.-T.; Novilkov, A.C.; Obnorskii, V.V.

    1997-01-01

    Gold cluster ions in the m/z range of 10 4 -2 x 10 6 u were produced by bombarding a thin film of gold with 252 Cf-fission fragments. The gold covering a C-Al substrate formed islets having a mean diameter of 44 A. Their size- and mass-distribution was determined by means of electron microscopy. The main task was to measure the m/z distribution of the cluster ions ejected from the sample surface. For this purpose we built a time-of-flight (TOF) mass spectrometer, which could be used as a linear TOF instrument or, alternatively, as a tandem-TOF instrument being equipped with an ion-to-ion converter. Combining the results obtained in both modes, it turned out that the linear TOF instrument equipped with micro-channel plates had a mean detection efficiency for 20 keV cluster ions of about 40%. In the tandem mode, the cluster ions hit a CsI converter with energies of 40z keV (z = charge state), from where secondary ions - mainly Cs + and (CsI) n Cs + cluster ions - were ejected. These ions were used to measure the TOF spectrum of the gold cluster ions. The detection efficiency of the cluster ions was found to vary in the available mass range from 99.7% to 96.5%. The complete mass distribution between 4 x 10 4 and 4 x 10 6 u was determined and compared with the corresponding mass distribution of the gold islets covering the substrate. (orig.)

  18. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    Directory of Open Access Journals (Sweden)

    Qing-qing Pan

    2018-01-01

    Full Text Available The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing flotation. However, Fe3+ ions would increase the surface potential, reduce the S2− adsorption, generate more sulfur element, and therefore inhibit the sulphidizing flotation.

  19. Low-energy irradiation effects of gas cluster ion beams

    International Nuclear Information System (INIS)

    Houzumi, Shingo; Takeshima, Keigo; Mochiji, Kozo; Toyoda, Noriaki; Yamada, Isao

    2007-01-01

    A cluster-ion irradiation system with cluster-size selection has been developed to study the effects of the cluster size for surface processes using cluster ions. A permanent magnet with a magnetic field of 1.2 T is installed for size separation of large cluster ions. Trace formations at HOPG surface by the irradiation with size-selected Ar-cluster ions under acceleration energy of 30 keV were investigated by a scanning tunneling microscopy. Generation behavior of the crater-like traces is strongly affected by the number of constituent atoms (cluster size) of the irradiating cluster ion. When the incident cluster ion is composed of 100-3000 atoms, crater-like traces are observed on the irradiated surfaces. In contrast, such traces are not observed at all with the irradiation of the cluster-ions composed of over 5000 atoms. Such the behavior is discussed on the basis of the kinetic energy per constituent atom of the cluster ion. To study GCIB irradiation effects against macromolecule, GCIB was irradiated on DNA molecules absorbed on graphite surface. By the GCIB irradiation, much more DNA molecules was sputtered away as compared with the monomer-ion irradiation. (author)

  20. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    International Nuclear Information System (INIS)

    Osipov, E. M.; Polyakov, K. M.; Tikhonova, T. V.; Kittl, R.; Dorovatovskii, P.V.; Shleev, S. V.; Popov, V. O.; Ludwig, R.

    2015-01-01

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu + -containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu + - and Cu 2+ -containing solutions. Copper ions were found to be incorporated into the active site only when Cu + was used. A comparative analysis of the native and depleted forms of the enzymes was performed

  1. Development of pits and cones on ion bombarded copper

    International Nuclear Information System (INIS)

    Tanovic, L.A.; Carter, G.; Nobes, M.J.; Whitton, I.L.; Williams, J.S.

    1980-01-01

    The formation of pits and cones on Ar ion bombarded copper has been studied. Carefully polished surfaces of large grained 99.999% pure copper crystals have been bombarded at normal incidence with 40 keV argon ions. The cone formation has been investigated for annealed and non-annealed crystals at room temperature and at 30 K and in the case of monocrystal and polycrystal samples. Although in the most other studies the presence of impurities is as a necessary condition for generation of cones and pits the obtained experimental results show that under certain conditions these features are formed on clean surfaces. It is shown that the dominant parameter in the production of cones on copper is the crystal orientation [ru

  2. Cluster Ions and Atmospheric Processes

    Science.gov (United States)

    D'Auria, R.; Turco, R. P.

    We investigate the properties and possible roles of naturally occurring ions under at- mospheric conditions. Among other things, the formation of stable charged molecular clusters represents the initial stages of aerosol nucleation [e.g., Keesee and Castle- man, 1982], while the conversion of vapor to aggregates is the first step in certain atmospheric phase transitions [e.g. Hamill and Turco, 2000]. We analyze the stability and size distributions of common ionic clusters by solving the differential equations describing their growth and loss. The necessary reaction rate coefficients are deter- mined using kinetic and thermodynamic data. The latter are derived from direct labo- ratory measurements of equilibrium constants, from the classical charged liquid drop model applied to large aggregates (i.e., the Thomson model [Thomson, 1906]), and from quantum mechanical calculations of the thermodynamic potentials associated with the cluster structures. This approach allows us to characterize molecular clusters across the entire size range from true molecular species to larger aggregates exhibiting macroscopic behavior [D'Auria, 2001]. Cluster systems discussed in this talk include the proton hydrates (PHs) and nitrate-water and nitrate-nitric acid series [D'Auria and Turco, 2001]. These ions have frequently been detected in the stratosphere and tropo- sphere [e.g., Arnold et al., 1977; Viggiano and Arnold, 1981]. We show how the pro- posed hybrid cluster model can be extended to a wide range of ion systems, including non-proton hydrates (NPHs), mixed-ligand clusters such as nitrate-water-nitric acid and sulfate-sulfuric acid-water, as well as more exotic species containing ammonia, pyridine and other organic compounds found on ions [e.g., Eisele, 1988; Tanner and Eisele, 1991]. References: Arnold, F., D. Krankowsky and K. H. Marien, First mass spectrometric measurements of posi- tive ions in the stratosphere, Nature, 267, 30-32, 1977. D'Auria, R., A study of ionic

  3. Experimental and numerical optical characterization of plasmonic copper nanoparticles embedded in ZnO fabricated by ion implantation and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Le, Khai Q. [Faculty of Science and Technology, Hoa Sen University, Ho Chi Minh City (Viet Nam); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia); Nguyen, Hieu P.T. [Department of Electrical and Computer Engineering, New Jersey Institute of Technology, NJ 07102 (United States); Ngo, Quang Minh [Institute of Material Sciences, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi (Viet Nam); Canimoglu, Adil [Nigde University, Faculty of Arts and Sciences, Physics Department, Nigde (Turkey); Can, Nurdogan, E-mail: cannurdogan@yahoo.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Department of Physics, Faculty of Science, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2016-06-05

    Here we describe the successfully fabrication of metal nanoparticle crystals by implanting copper (Cu) ions into single zinc oxide (ZnO) crystals with ion energy of 400 keV at ion doses of 1 × 10{sup 16} to 1 × 10{sup 17} ions/cm{sup 2}. After implantation and post-annealing treatment, the Cu implanted ZnO produces a broad range of luminescence emissions, ranging from green to yellow. A green luminescence peak at 550 nm could be ascribed to the isolated Cu ions. The changes in luminescence emission bands between the initial implant and annealed suggest that the implants give rise to clustering Cu nanoparticles in the host matrix but that the annealing process dissociates these. Numerical modelling of the Cu nanoparticles was employed to simulate their optical properties including the extinction cross section, electron energy loss spectroscopy and cathodoluminescence. We demonstrate that the clustering of nanoparticles generates Fano resonances corresponding to the generation of multiple resonances, while the isolation of nanoparticles results in intensity amplification. - Highlights: • We present the fabrication of metal nanoparticle crystals by implanting Cu into ZnO. • The luminescence properties were studied at different annealing temperature. • Numerical modelling of the Cu nanoparticles was employed. • We demonstrate that the clustering of nanoparticles generates Fano resonances.

  4. Fragmentation of cluster ions produced by electron impact ionization

    International Nuclear Information System (INIS)

    Parajuli, R.

    2001-12-01

    By studying fragmentation of dimer and cluster ions produced by electron impact ionization of a neutral cluster beam, it is possible to elucidate structure, stability and energetics of these species and the dynamics of the corresponding decay reactions. Fragmentation of carbon cluster ions formed from C 6 0 fullerenes, rare gas cluster ions and dimer ions and simple molecular cluster ions (oxygen and nitrogen) and dimer ions have been studied in this thesis using a high resolution two sector field mass spectrometer of reversed geometry and a NIER type electron impact ion source. Spontaneous decay reactions of triply and quadruply charged C 4 0 z + and C 4 1 z + cluster ions which are formed from C 6 0 fullerenes by electron impact ionization have been analyzed. A new but very weak decay reaction for the even-sized carbon clusters ions is observed, namely loss of C 3 . The odd-sized clusters ions preferentially decay by loss of carbon atoms and, to a lesser degree, trimers. A weak signal due to C 2 loss is observed for C 4 1 3 + ion. These decay channels are discussed in terms of the geometric structure of these metastable, relatively cold cluster ions. Measurements on metastable fragmentation of mass selected rare gas cluster ions (Ne, Ar, Kr) which are produced by electron impact ionization of a neutral rare gas cluster beam have been carried out. From the shape of the fragment ion peaks (MIKE scan technique) information about the distribution of kinetic energy that is released in the decay reaction can be deduced. In this study, the peak shape observed for cluster ions with sizes larger than five is Gaussian and thus from the peak width the mean kinetic energy release of the corresponding decay reactions can be calculated. Using finite heat bath theory, the binding energies of the decaying cluster ions are calculated from these data and have been compared to data in the literature where available. In addition to the decay reactions of cluster ions the metastable

  5. Unusual behavior in magnesium-copper cluster matter produced by helium droplet mediated deposition

    Energy Technology Data Exchange (ETDEWEB)

    Emery, S. B., E-mail: samuel.emery@navy.mil; Little, B. K. [University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469 (United States); Air Force Research Laboratory, Munitions Directorate, 2306 Perimeter Rd., Eglin AFB, Florida 32542 (United States); Xin, Y. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Ridge, C. J.; Lindsay, C. M. [Air Force Research Laboratory, Munitions Directorate, 2306 Perimeter Rd., Eglin AFB, Florida 32542 (United States); Buszek, R. J. [ERC Inc., Edwards AFB, California 93524 (United States); Boatz, J. A. [Air Force Research Laboratory, Aerospace System Directorate, Edwards AFB, California 93524 (United States); Boyle, J. M. [Naval Surface Warfare Center Indian Head Explosive Ordnance Technology Division, Indian Head, Maryland 20640 (United States)

    2015-02-28

    We demonstrate the ability to produce core-shell nanoclusters of materials that typically undergo intermetallic reactions using helium droplet mediated deposition. Composite structures of magnesium and copper were produced by sequential condensation of metal vapors inside the 0.4 K helium droplet baths and then gently deposited onto a substrate for analysis. Upon deposition, the individual clusters, with diameters ∼5 nm, form a cluster material which was subsequently characterized using scanning and transmission electron microscopies. Results of this analysis reveal the following about the deposited cluster material: it is in the un-alloyed chemical state, it maintains a stable core-shell 5 nm structure at sub-monolayer quantities, and it aggregates into unreacted structures of ∼75 nm during further deposition. Surprisingly, high angle annular dark field scanning transmission electron microscopy images revealed that the copper appears to displace the magnesium at the core of the composite cluster despite magnesium being the initially condensed species within the droplet. This phenomenon was studied further using preliminary density functional theory which revealed that copper atoms, when added sequentially to magnesium clusters, penetrate into the magnesium cores.

  6. Properties of an ionised-cluster beam from a vaporised-cluster ion source

    International Nuclear Information System (INIS)

    Takagi, T.; Yamada, I.; Sasaki, A.

    1978-01-01

    A new type of ion source vaporised-metal cluster ion source, has been developed for deposition and epitaxy. A cluster consisting of 10 2 to 10 3 atoms coupled loosely together is formed by adiabatic expansion ejecting the vapour of materials into a high-vacuum region through the nozzle of a heated crucible. The clusters are ionised by electron bombardment and accelerated with neutral clusters toward a substrate. In this paper, mechanisms of cluster formation experimental results of the cluster size (atoms/cluster) and its distribution, and characteristics of the cluster ion beams are reported. The size is calculated from the kinetic equation E = (1/2)mNVsub(ej) 2 , where E is the cluster beam energy, Vsub(ej) is the ejection velocity, m is the mass of atom and N is the cluster size. The energy and the velocity of the cluster are measured by an electrostatic 127 0 energy analyser and a rotating disc system, respectively. The cluster size obtained for Ag is about 5 x 10 2 to 2 x 10 3 atoms. The retarding potential method is used to confirm the results for Ag. The same dependence on cluster size for metals such as Ag, Cu and Pb has been obtained in previous experiments. In the cluster state the cluster ion beam is easily produced by electron bombardment. About 50% of ionised clusters are obtained under typical operation conditions, because of the large ionisation cross sections of the clusters. To obtain a uniform spatial distribution, the ionising electrode system is also discussed. The new techniques are termed ionised-cluster beam deposition (ICBD) and epitaxy (ICBE). (author)

  7. Copper Removal from A-01 Outfall by Ion Exchange

    International Nuclear Information System (INIS)

    Oji, L.N.

    1999-01-01

    Chelex100, a commercially available ion exchange resin, has been identified in this study as having a significant affinity for copper and zinc in the A-01 outfall water. Removal of copper and zinc from A-01 outfall water will ensure that the outfall meets the state of South Carolina's limit on these heavy metals

  8. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    OpenAIRE

    Qing-qing Pan; Hui-qing Peng

    2018-01-01

    The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing...

  9. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II oxalate precursor layers

    Directory of Open Access Journals (Sweden)

    Kai Rückriem

    2016-06-01

    Full Text Available Copper(II oxalate grown on carboxy-terminated self-assembled monolayers (SAM using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS. Helium ion microscopy (HIM reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.

  10. Experimental investigations of hydrogen cluster ions

    International Nuclear Information System (INIS)

    Lumig, H.A. van.

    1978-01-01

    Experiments to obtain information about the structure and stability of small hydrogen cluster ions have been performed. Attenuation and fragmentation measurements are presented of hydrogen cluster ions colliding with nitrogen, argon, hydrogen and helium over fixed energy ranges. The total collision and differential fragmentation cross sections are tabulated. (C.F.)

  11. Some properties of ion and cluster plasma

    International Nuclear Information System (INIS)

    Gudzenko, L.I.; Derzhiev, V.I.; Yakovlenko, S.I.

    1982-01-01

    The aggregate of problems connected with the physics of ion and cluster plasma is qualitatively considered. Such a plasma can exist when a dense gas is ionized by a hard ionizer. The conditions for the formation of an ion plasma and the difference between its characteristics and those of an ordinary electron plasma are discussed; a solvated-ion model and the distribution of the clusters with respect to the number of solvated molecules are considered. The recombination rate of the positively and negatively charged clusters is roughly estimated. The parameters of a ball-lightning plasma are estimated on the basis of the cluster model

  12. Visual Observation of Dissolution of Copper Ions from a Copper Electrode

    Science.gov (United States)

    Ikemoto, Isao; Saitou, Kouichi

    2013-01-01

    During electrolysis, to visually observe the conversion of a metal to its cation, either the cation or its complex ion should have a distinct color while the electrolyte solution must be colorless and transparent. A demonstration is described in which copper is used as the electrodes and sodium polyacrylate (a superabsorbent polymer) solution is…

  13. Control of cluster ion sizes for efficient injection heating

    International Nuclear Information System (INIS)

    Enjoji, Hiroshi; Be, S.H.; Yano, Katsuki; Okamoto, Kosuke

    1976-01-01

    For heating of plasmas by injection of hydrogen cluster ions, the specific size (N/Z) approximately 10 2 molecules/charge is believed to be most desirable. A fundamental research to develop a practical method for tailoring large cluster ions into small suitable sizes has been carried out by using nitrogen cluster ions of the initial mean specific size (N/Z) 0 approximately 10 5 . The beam of neutral large clusters of total intensity 20 mAsub(eq) was led to an ionizer and then the large cluster ions are accelerated to 8.9 keV before entering the divider which disintegrates them into small fragments by multiple ionization. The mean specific size of disintegrated cluster ions (N/Z)' becomes smaller with increase in ionizing electron current of the divider. (N/Z)' becomes 10 3 approximately 10 4 at an electron current of 140 mA and an accelerating voltage of 680 V of the divider with its efficiency of 20 approximately 60%. Thus, the original large cluster ions are divided into small fragments of which the mean specific size is 1/20 approximately 1/100 of the initial value without much decrease in total intensity of the cluster ion beam

  14. Copper ion as a new leakage tracer.

    Science.gov (United States)

    Modaresi, J; Baharizade, M; Shareghi, A; Ahmadi, M; Daneshkazemi, A

    2013-12-01

    Most failures of root canal treatments are caused by bacteria. Studies showed that the most common cause of endodontic failures were the incomplete obturation of the root canal and the lack of adequate apical seal. Some in-vitro methods are used to estimate sealing quality, generally by measuring microleakage that allows the tracer agent to penetrate the filled canal. Conventional methods of evaluating the seal of endodontically treated teeth are complicated and have some drawbacks. We used copper ion diffusion method to assess the leakage and the results were compared to dye penetration method. The crowns of 21 extracted teeth were cut off at the CEJ level. After preparing the canals, the teeth were placed in tubes containing saline. They were divided randomly into 15 experimental cases; 3 positive and 3 negative controls. Positive controls were filled by single cone without sealer while the experimental and the negative control groups were filled by lateral technique. The coronal portion of gutta was removed and 9mm was left. The external surface of each tooth was coated with nail polish. Two millimeters of apical portion was immersed into 9ml of distilled water and 0.3ml of CuSO4 solution was injected into the coronal portion. After 2 days, copper sulfate was measured by an atomic absorption spectrophotometer. The teeth were then immersed in 2% methylene blue for 24 hours, sectioned and the extent of dye penetration was measured by a stereomicroscope. The maximum and minimum recorded copper ion concentrations for the experimental group were 18.37 and 2.87ppm respectively. The maximum and minimum recorded dye penetrations for the experimental group were 8.5 and 3.5mm respectively. The statistical analysis, adopting paired samples test, showed poor correlation between average recorded results of two methods. Based on our results, there was no significant correlation between the dye penetration and the copper ion diffusion methods.

  15. Ion beam induced nanosized Ag metal clusters in glass

    International Nuclear Information System (INIS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-01-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam

  16. Comparison of Se and Te clusters produced by ion bombardment

    Directory of Open Access Journals (Sweden)

    Trzyna Małgorzata

    2017-01-01

    Full Text Available Nanostructures based on tellurium and selenium are materials used as components for the manufacturing topological insulators. Therefore it is crucial to precisely characterize these materials. In this work the emission of selenium and tellurium cluster ions, sputtered by Bi+ primary ion guns, was investigated by using Time-of-Flight Secondary Ion Mass Spectrometry (TOF SIMS. It has been found that BixTex and BixSex clusters appear in addition to Sex and Tex clusters in the mass range up to ~ 1300 m/z. Local maxima or minima (magic numbers are observed in the ion intensity versus a number of atoms per cluster for both positive and negative ions spectra for all types of clusters and primary ions used. These extrema can be attributed to different yield and stability of certain clusters but also to fragmentation of high-mass clusters.

  17. Comparison of Se and Te clusters produced by ion bombardment

    Science.gov (United States)

    Trzyna, Małgorzata

    2017-01-01

    Nanostructures based on tellurium and selenium are materials used as components for the manufacturing topological insulators. Therefore it is crucial to precisely characterize these materials. In this work the emission of selenium and tellurium cluster ions, sputtered by Bi+ primary ion guns, was investigated by using Time-of-Flight Secondary Ion Mass Spectrometry (TOF SIMS). It has been found that BixTex and BixSex clusters appear in addition to Sex and Tex clusters in the mass range up to 1300 m/z. Local maxima or minima (magic numbers) are observed in the ion intensity versus a number of atoms per cluster for both positive and negative ions spectra for all types of clusters and primary ions used. These extrema can be attributed to different yield and stability of certain clusters but also to fragmentation of high-mass clusters.

  18. Evaluation of copper ion of antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori and optical, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Hwan [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of); Choi, Yu-ri; Kim, Kwang-Mahn [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, University of Yonsei, Seoul (Korea, Republic of); Choi, Se-Young, E-mail: sychoi@yonsei.ac.kr [School of Materials Science and Engineering, University of Yonsei, Seoul (Korea, Republic of)

    2012-02-01

    Antibacterial effect on Pseudomonas aeruginosa, Salmonella typhimurium and Helicobacter pylori of copper ion was researched. Also, additional effects of copper ion coating on optical and mechanical properties were researched as well. Copper ion was coated on glass substrate as a thin film to prevent bacteria from growing. Cupric nitrate was used as precursors for copper ion. The copper ion contained sol was deposited by spin coating process on glass substrate. Then, the deposited substrates were heat treated at the temperature range between 200 Degree-Sign C and 250 Degree-Sign C. The thickness of deposited copper layer on the surface was 63 nm. The antibacterial effect of copper ion coated glass on P. aeruginosa, S. typhimurium and H. pylori demonstrated excellent effect compared with parent glass. Copper ion contained layer on glass showed a similar value of transmittance compared with value of parent glass. The 3-point bending strength and Vickers hardness were 209.2 MPa, 540.9 kg/mm{sup 2} which were about 1.5% and 1.3% higher than the value of parent glass. From these findings, it is clear that copper ion coating on glass substrate showed outstanding effect not only in antibacterial activity but also in optical and mechanical properties as well.

  19. Colorimetric assay of copper ions based on the inhibition of peroxidase-like activity of MoS2 nanosheets

    Science.gov (United States)

    Chen, Huan; Li, Zhihong; Liu, Xueting; Zhong, Jianhai; Lin, Tianran; Guo, Liangqia; Fu, Fengfu

    2017-10-01

    The peroxidase-like catalytic activity of MoS2 nanomaterials has been utilized for colorimetric bioassays and medical diagnostics. However, the application of peroxidase-like catalytic activity of MoS2 nanomaterials in environmental analysis was seldom explored. Herein, copper ions were found to inhibit the peroxidase-like catalytic activity of MoS2 nanosheets, which can catalyze the oxidation of 3, 3‧, 5, 5‧-tetramethylbenzidine by H2O2 to produce a colorimetric product. Based on this finding, a simple sensitive colorimetric method for the detection of copper ions was developed. In the presence of copper ions, the absorbance and color of the solution decreased with the increasing concentration of copper ions. The color of the solution can be used to semi-quantitative on-site assay of copper ions by naked eyes. A linear relationship between the absorbance and the concentration of copper ions was observed in the range of 0.4-4.0 μmol L- 1 with a detection limit of 92 nmol L- 1, which was much lower than the maximum contaminant level of copper in drinking water legislated by the Environmental Protection Agency of USA and the World Health Organization. The method was applied to detect copper ions in environmental water samples with satisfactory results.

  20. Selective and Efficient Solvent Extraction of Copper(II Ions from Chloride Solutions by Oxime Extractants

    Directory of Open Access Journals (Sweden)

    Zahra Kaboli Tanha

    2016-06-01

    Full Text Available Oxime extractants 3-tert-butyl-2-hydroxy-5-methyl benzaldehyde oxime (HL1 and 3-tert-butyl-2-hydroxy-5-methoxy benzaldehyde oxime (HL2 were synthesized and characterized by conventional spectroscopic methods. Suitable lipophilic nature of the prepared extractants allowed examining the ability of these molecules for extraction-separation of copper from its mixture with normally associated metal ions by performing competitive extraction experiments of Cu(II, Co(II, Ni(II, Zn(II, Cd(II and Pb(II ions from chloride solutions. Both ligands transfer selectively the copper ions into dichloromethane by a cation exchange mechanism. Conventional log-log analysis and isotherm curves showed that Cu(II ions are extracted as the complexes with 1:2 metal to ligand ratio by both extractants. Verification of the effect of the organic diluent used in the extraction of copper ions by HL1 and HL2 demonstrated that the extraction efficiency varies as: dichloromethane ~ dichloroethane > toluene > xylene > ethylacetate. Time dependency investigation of the extraction processes revealed that the kinetics of the extraction of copper by HL2 is more rapid than that of HL1. The application of the ligands for extraction-separation of copper ions from leach solutions of cobalt and nickel-cadmium filter-cakes of a zinc production plants was evaluated.

  1. Study of the secondary negative ion emission of copper and several of its alloys by impact with Cs+ ions

    International Nuclear Information System (INIS)

    Vallerand, P.; Baril, M.

    1977-01-01

    Secondary ion emission studies have been undertaken using Cs + as the primary ion beam. A good vacuum (ca. 10 -8 torr) is needed to eliminate contamination by residual gases. Negative ion emission of pure copper is compared with its alloys. The thermodynamic equilibrium model of Andersen is discussed. For low element concentrations, the experimental data show enhancement in negative emission of P, Al, Fe, Sn, Ni, and attenuation for Zn, Pb. The order of magnitude of ionic efficiency S - for copper is evaluated at 10 -4 . (Auth.)

  2. Smoothing an isolated interface of cobalt-copper under irradiation by low-energy argon ions

    International Nuclear Information System (INIS)

    Stognij, A.I.; Novitskij, N.N.; Stukalov, O.M.

    2003-01-01

    Multilayer film structures, i.e. gold layer-copper-cobalt, are considered. It is shown that the structure, where cobalt surface prior to copper layer deposition was subjected to additional irradiation by a flow of argon ions, features the smoothest surface. The conclusion is made about smoothing out of cobalt-copper interface as a result of multiple collisions of argon slow ions and cobalt atoms during braking within two or three upper atomic rows of the cobalt layer [ru

  3. Kinetic investigation of myeloperoxidase upon interaction with copper, cadmium, and lead ions

    International Nuclear Information System (INIS)

    Shabani, M.; Ani, M.; Movahedian, A.; Samsam Shariat, Z. A.

    2011-01-01

    Myeloperoxidase, which is abundantly expressed in neutrophils, catalyzes the formation of a number of reactive oxidant species. However, evidence has emerged that Myeloperoxidase-derived oxidants contribute to tissue damage and initiation and propagation of inflammatory diseases, particularly, cardiovascular diseases. Therefore, studying the regulatory mechanisms of the enzyme activity is of great importance. For clarifying some possible mechanism of the enzyme activity, kinetic investigations of Myeloperoxidase in the presence of Copper, Cadmium, and Lead ions were carried out in vitro. Methods: Myeloperoxidase was partially purified from human white blood cells using ion-exchange and gel-filtration chromatography techniques. Its activity was measured spectrophotometrically by using tetramethyl benzidine as substrate. Results: Purified enzyme had a specific activity of 21.7 U/mg protein with a purity index of about 0.71. Copper inhibited Myeloperoxidase activity progressively up to a concentration of 60 m M at which about 80% of inhibition achieved. The inhibition was non-competitive with respect to tetramethyl benzidine. An inhibitory constant (Ki) of about 19 m M was calculated from the slope of repot. Cadmium and Lead did not show any significant inhibitory effect on the enzyme activity. Conclusion: The results of the present study may indicate that there are some places on the enzyme and enzyme-substrate complex for Copper ions. Binding of Copper ions to these places result in conformational changes of the enzyme and thus, enzyme inhibition. This inhibitory effect of Copper on the enzyme activity might be considered as a regulatory mechanism on Myeloperoxidase activity.

  4. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation

    International Nuclear Information System (INIS)

    Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.

    2017-01-01

    Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of the Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.

  5. METI/NEDO Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Yamada, Isao; Matsuo, Jiro; Toyoda, Noriaki

    2003-01-01

    Since the initial study of gas cluster ion beams (GCIB) was started in the Ion Beam Engineering Experimental Laboratory of Kyoto University, more than 15 years have passed. Some of the results of that study have already been applied for industrial use. Unique characteristics of gas cluster ion bombardment have been found to offer potential for various other industrial applications. The impact of an accelerated cluster ion upon a target surface imparts very high energy densities into the impact area and produces non-linear effects that are not associated with the impacts of atomic ions. Among prospective applications for these effects are included shallow ion implantation, high rate sputtering, surface cleaning and smoothing, and low temperature thin film formation

  6. A new paramagnetic center of copper ion γ-irradiated phosphate glasses

    International Nuclear Information System (INIS)

    Bogomolova, L.D.; Fedorov, A.G.; Jachkin, V.A.; Lazukin, V.N.; Pavlushkina, T.K.

    1981-01-01

    In the present paper are shown the results of EPR and optical absorption investigations of copper ions in γ-irradiated sodium-phosphate glasses and in MO-P 2 O 5 glasses (M = MG,Ca, Sr, Zn, Ba) containing copper and comparisons are made with the data for sodium-silicate glasses. (orig./HOF)

  7. Lithium formate ion clusters formation during electrospray ionization: Evidence of magic number clusters by mass spectrometry and ab initio calculations

    International Nuclear Information System (INIS)

    Shukla, Anil; Bogdanov, Bogdan

    2015-01-01

    Small cationic and anionic clusters of lithium formate were generated by electrospray ionization and their fragmentations were studied by tandem mass spectrometry (collision-induced dissociation with N 2 ). Singly as well as multiply charged clusters were formed in both positive and negative ion modes with the general formulae, (HCOOLi) n Li + , (HCOOLi) n Li m m+ , (HCOOLi) n HCOO − , and (HCOOLi) n (HCOO) m m− . Several magic number cluster (MNC) ions were observed in both the positive and negative ion modes although more predominant in the positive ion mode with (HCOOLi) 3 Li + being the most abundant and stable cluster ion. Fragmentations of singly charged positive clusters proceed first by the loss of a dimer unit ((HCOOLi) 2 ) followed by the loss of monomer units (HCOOLi) although the former remains the dominant dissociation process. In the case of positive cluster ions, all fragmentations lead to the magic cluster (HCOOLi) 3 Li + as the most abundant fragment ion at higher collision energies which then fragments further to dimer and monomer ions at lower abundances. In the negative ion mode, however, singly charged clusters dissociated via sequential loss of monomer units. Multiply charged clusters in both positive and negative ion modes dissociated mainly via Coulomb repulsion. Quantum chemical calculations performed for smaller cluster ions showed that the trimer ion has a closed ring structure similar to the phenalenylium structure with three closed rings connected to the central lithium ion. Further additions of monomer units result in similar symmetric structures for hexamer and nonamer cluster ions. Thermochemical calculations show that trimer cluster ion is relatively more stable than neighboring cluster ions, supporting the experimental observation of a magic number cluster with enhanced stability

  8. Formation of copper silicides by high dose metal vapor vacuum arc ion implantation

    International Nuclear Information System (INIS)

    Rong Chun; Zhang Jizhong; Li Wenzhi

    2003-01-01

    Si(1 1 1) was implanted by copper ions with different doses and copper distribution in silicon matrix was obtained. The as-implanted samples were annealed at 300 and 540 deg. C, respectively. Formation of copper silicides in as-implanted and annealed samples were studied. Thermodynamics and kinetics of the reaction were found to be different from reaction at copper-silicon interface that was applied in conventional studies of copper-silicon interaction. The defects in silicon induced by implantation and formation of copper silicides were recognized by Si(2 2 2) X-ray diffraction (XRD)

  9. Removal of Copper ions from aqueous solutions using polymer derivations of poly (styrene-alt-maleic anhydride

    Directory of Open Access Journals (Sweden)

    Naser Samadi

    2017-06-01

    Full Text Available In this study chelating resins have been considered to be suitable materials for the recovery of Copper (II ions in water treatments. Furthermore, these modified resins were reacted with 1,2-diaminoethane in the presence of ultrasonic irradiation for the preparation of a tridimensional chelating resin on the Nano scale for the recovery of Copper (II ions from aqueous solutions. This method which is used for removing and determining Copper (II ions using copolymers derived resins of poly (styrene-alternative-maleic anhydride (SMA and atomic absorption spectroscopy. The method is simple, sensitive, inexpensive and fast. The various parameters such as pH, contact time, concentrations of metal ions, mass of resin, and agitation speed were investigated on adsorption effect. The adsorption behavior of Copper (II ions were investigated by the synthesis of chelating resins at various pHs. The prepared resins showed a good tendency for removing the selected metal ions from aqueous solution, even at an acidic pH. Also, the prepared resins were examined for the removal of Copper (II ions from real samples such as industrial wastewater and were shown to be very efficient at adsorption in the cases of Copper (II ions. The pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetics equations were used for modeling of adsorption data and it was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. The intra-particle diffusion study revealed that external diffusion might be involved in this case. The resins were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analysis.

  10. Reagent precipitation of copper ions from wastewater of machine-building factories

    Science.gov (United States)

    Porozhnyuk, L. A.; Lupandina, N. S.; Porozhnyuk, E. V.

    2018-03-01

    The article presents the results of reagent removal of copper ions from wastewater of machine-building factories. The urgency of the study is conditioned by the widening of the range of effective reagents through the implementation of industrial waste. The investigation covers mineralogical and fractional composition of chalk enrichment waste. In the work, the conditions of thermal activation of chalk enrichment waste used for reagent removal of copper ions from wastewater were elaborated. It was shown that the thermal activation of waste facilitates the increased treatment efficacy up to the set sanitation, hygiene and technological standards.

  11. Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.

    Science.gov (United States)

    Jo, Se-Hee; Park, Chanhun; Yi, Sung Chul; Kim, Dukjoon; Mun, Sungyong

    2011-08-19

    A three-zone carousel process, in which Cu(II)-imprinted polymer (Cu-MIP) and a buffer solution were employed as adsorbent and eluent respectively, has been developed previously for continuous separation of Cu²⁺ (product) from Mn²⁺ and Co²⁺ (impurities). Although this process was reported to be successful in the aforementioned separation task, the way of using a buffer solution as eluent made it inevitable that the product stream included the buffer-related metal ions (i.e., the constituent metal ions of the buffer solution) as well as copper ions. For a more perfect recovery of copper ions, it would be necessary to improve the previous carousel process such that it can remove the buffer-related metal ions from copper ions while maintaining the previous function of separating copper ions from the other 2 impure heavy-metal ions. This improvement was made in this study by proposing a four-zone carousel process based on the following strategy: (1) the addition of one more zone for performing the two-step re-equilibration tasks and (2) the use of water as the eluent of the washing step in the separation zone. The operating conditions of such a proposed process were determined on the basis of the data from a series of single-column experiments. Under the determined operating conditions, 3 runs of carousel experiments were carried out. The results of these experiments revealed that the feed-loading time was a key parameter affecting the performance of the proposed process. Consequently, the continuous separation of copper ions from both the impure heavy-metal ions and the buffer-related metal ions could be achieved with a purity of 91.9% and a yield of 92.8% by using the proposed carousel process based on a properly chosen feed-loading time. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Study of the secondary negative ion emission of copper and several of its alloys by impact with Cs/sup +/ ions

    Energy Technology Data Exchange (ETDEWEB)

    Vallerand, P; Baril, M [Laval Univ., Quebec City (Canada). Dept. de Physique

    1977-07-01

    Secondary ion emission studies have been undertaken using Cs/sup +/ as the primary ion beam. A good vacuum (ca. 10/sup -8/ torr) is needed to eliminate contamination by residual gases. Negative ion emission of pure copper is compared with its alloys. The thermodynamic equilibrium model of Andersen is discussed. For low element concentrations, the experimental data show enhancement in negative emission of P, Al, Fe, Sn, Ni, and attenuation for Zn, Pb. The order of magnitude of ionic efficiency S/sup -/ for copper is evaluated at 10/sup -4/.

  13. Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release.

    Science.gov (United States)

    Barralet, Jake; Gbureck, Uwe; Habibovic, Pamela; Vorndran, Elke; Gerard, Catherine; Doillon, Charles J

    2009-07-01

    Angiogenesis in a tissue-engineered device may be induced by incorporating growth factors (e.g., vascular endothelial growth factor [VEGF]), genetically modified cells, and=or vascular cells. It represents an important process during the formation and repair of tissue and is essential for nourishment and supply of reparative and immunological cells. Inorganic angiogenic factors, such as copper ions, are therefore of interest in the fields of regenerative medicine and tissue engineering due to their low cost, higher stability, and potentially greater safety compared with recombinant proteins or genetic engineering approaches. The purpose of this study was to compare tissue responses to 3D printed macroporous bioceramic scaffolds implanted in mice that had been loaded with either VEGF or copper sulfate. These factors were spatially localized at the end of a single macropore some 7 mm from the surface of the scaffold. Controls without angiogenic factors exhibited only poor tissue growth within the blocks; in contrast, low doses of copper sulfate led to the formation of microvessels oriented along the macropore axis. Further, wound tissue ingrowth was particularly sensitive to the quantity of copper sulfate and was enhanced at specific concentrations or in combination with VEGF. The potential to accelerate and guide angiogenesis and wound healing by copper ion release without the expense of inductive protein(s) is highly attractive in the area of tissue-engineered bone and offers significant future potential in the field of regenerative biomaterials.

  14. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Nicholas B. [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  15. The ligational behavior of an isatinic quinolyl hydrazone towards copper(II- ions

    Directory of Open Access Journals (Sweden)

    Mousa Marwa A

    2011-04-01

    Full Text Available Abstract Background The importance of the isatinic quinolyl hydrazones arises from incorporating the quinoline ring with the indole ring. Quinoline ring has therapeutic and biological activities whereas, the indole ring occurs in Jasmine flowers and Orange blossoms. As a ligand, the isatin moiety is potentially ambidentate and can coordinate the metal ions either through its lactam or lactim forms. In a previous study, the ligational behavior of a phenolic quinolyl hydrazone towards copper(II- ions has been studied. As continuation of our interest, the present study is planned to check the ligational behavior of an isatinic quinolyl hydrazone. Results New homo- and heteroleptic copper(II- complexes were obtained from the reaction of an isatinic quinolyl hydrazone (HL with several copper(II- salts viz. Clˉ, Brˉ, NO3ˉ, ClO4-, SO42- and AcO-. The obtained complexes have Oh, Td and D4h- symmetry and fulfill the strong coordinating ability of Clˉ, Brˉ, NO3ˉ and SO42- anions. Depending on the type of the anion, the ligand coordinates the copper(II- ions either through its lactam (NO3ˉ and ClO4- or lactim (the others forms. Conclusion The effect of anion for the same metal ion is obvious from either the geometry of the isolated complexes (Oh, Td and D4h or the various modes of bonding. Also, the obtained complexes fulfill the strong coordinating ability of Clˉ, Brˉ, NO3ˉ and SO42- anions in consistency with the donor ability of the anions. In case of copper(II- acetate, a unique homoleptic complex (5 was obtained in which the AcO- anion acts as a base enough to quantitatively deprotonate the hydrazone. The isatinic hydrazone uses its lactim form in most complexes.

  16. Indium tin oxide surface smoothing by gas cluster ion beam

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    CO sub 2 cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surfaces and thus to attain highly smooth surfaces. CO sub 2 monomer ions are also bombarded on the ITO surfaces at the same acceleration voltage to compare sputtering phenomena. From the atomic force microscope results, the irradiation of monomer ions makes the hillocks sharper and the surfaces rougher from 1.31 to 1.6 nm in roughness. On the other hand, the irradiation of CO sub 2 cluster ions reduces the height of hillocks and planarize the ITO surfaces as smooth as 0.92 nm in roughness. This discrepancy could be explained by large lateral sputtering yield of the cluster ions and re-deposition of sputtered particles by the impact of the cluster ions on surfaces.

  17. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    Science.gov (United States)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P0.05), and the quadratic effects of copper ion concentration were significant ( P0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  18. Cluster ion-surface interactions: from meV to MeV energies

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Kai; Meinander, Kristoffer; Jaervi, Tommi T.; Peltola, Jarkko; Samela, Juha [Accelerator Laboratory, University of Helsinki (Finland)

    2008-07-01

    The nature of cluster ion-surface interactions changes dramatically with the kinetic energy of the incoming cluster species. In this talk I review some of our recent work on the nature of cluster-surface interactions spanning an energy range from a few MeV/cluster to about 1 MeV/cluster and cluster sizes in the range of 10 - 1000 atoms/cluster. In the energy range of a few MeV/cluster ion, the kinetic energy of the incoming ion is insignificant compared to the energy gained when the surface potential energy at the cluster-surface interface is released and partly translated into kinetic energy. Even in this energy regime I show that surprisingly drastic effects can occur. When the energy of the incoming cluster is raised to a few eV/atom, the kinetic energy of the incoming cluster starts to affect the deposition. It will cause the cluster to entirely reform on impact. When the energy is raised to the range of keV's/cluster, the clusters start to penetrate the sample, fairly similar to conventional ion implantation. However, in dense targets the cluster ions may stick close to each other long enough to cause a significant enhancement of the heat spike in the material. Finally, I show that at kinetic energies around 1 MeV/cluster the cluster enhancement of the heat spike may lead to dramatic surface effects.

  19. Ion clusters, REB, and current sheath characteristics in focused discharges

    International Nuclear Information System (INIS)

    Bortolotti, A.; Brzosko, J.; DeChiara, P.; Kilic, H.; Mezzetti, F.; Nardi, V.; Powell, C.; Zeng, D.

    1990-01-01

    Small fluctuations in the current sheath characteristics (peak current density, FWHM of leading sheath, control parameters of sheath internal structure) are linked to wide fluctuations of ion and ion cluster emission from the pinch. Magnetic probe data are used for correlating variations of current sheath parameters with particle emission intensity, Z/M composition, particle energy spectrum. The emission of ion and ion clusters at 90 degrees from the axis of a plasma focus discharge is monitored simultaneously with the 0 degrees emission. The particle energy spectrum is analyzed with a Thomson (parabola) spectrometer (time resolution ∼ 1 nanosec). The cross-sectional structure of the REB at 180 degrees along the discharge axis is monitored via the deposition of collective-field accelerated ions on a target in the REB direction. Etched tracks of ion and ion clusters are in all cases recorded on CR-39 plates. Sharp peaks of the D + -ion spectrum at 90 degrees are found for E > 200 keV/unit charge in all focused discharges. These peaks are due to ion crossing of the azimuthal magnetic field of the pinch region, in a predominant ion cluster structure

  20. Influence of residual Ar+ in Ar cluster ion beam for DLC film formation

    International Nuclear Information System (INIS)

    Kitagawa, Teruyuki; Miyauchi, Kazuya; Toyoda, Noriaki; Kanda, Kazuhiro; Ikeda, Tokumi; Tsubakino, Harushige; Matsuo, Jiro; Matsui, Shinji; Yamada, Isao

    2003-01-01

    In order to study the influences of residual Ar monomer ion (Ar + ) on sp 2 content and hardness of diamond like carbon (DLC) films formed by Ar cluster ion beam assisted deposition, Ar cluster ion, Ar + and their mixed ions (Ar cluster ion and Ar + ) bombardments were performed during evaporation of C 60 . From near edge X-ray absorption fine structure (NEXAFS) and Raman spectroscopy measurements, lower sp 2 content in the carbon films was obtained with Ar cluster ion bombardment than that with Ar + and mixed ion. Furthermore higher hardness and smooth surface were shown with Ar cluster ion bombardments. Therefore it was important to reduce Ar + in Ar cluster ion beams to obtain hard DLC films with flat surface

  1. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  2. Nonlinear damage effect in graphene synthesis by C-cluster ion implantation

    International Nuclear Information System (INIS)

    Zhang Rui; Zhang Zaodi; Wang Zesong; Wang Shixu; Wang Wei; Fu Dejun; Liu Jiarui

    2012-01-01

    We present few-layer graphene synthesis by negative carbon cluster ion implantation with C 1 , C 2 , and C 4 at energies below 20 keV. The small C-clusters were produced by a source of negative ion by cesium sputtering with medium beam current. We show that the nonlinear effect in cluster-induced damage is favorable for graphene precipitation compared with monomer carbon ions. The nonlinear damage effect in cluster ion implantation shows positive impact on disorder reduction, film uniformity, and the surface smoothness in graphene synthesis.

  3. Impact of environmental regulations on control of copper ion concentration in the DIII-D cooling water system

    International Nuclear Information System (INIS)

    Gootgeld, A.M.

    1993-10-01

    Tokamaks and industrial users are faced with the task of maintaining closed-loop, low conductivity, low impurity, cooling water systems. Operating these systems concentrates the impurities in the water requiring subsequent disposal. Environmental regulations are making this increasingly difficult. This paper will discuss the solution to the problem of removing and disposing of copper ions in the DIII-D low conductivity water system. Since the commissioning of the Doublet facility, the quality of the water in the 3000 gpm system that cools the DIII-D vacuum vessel coils, power supplies and auxiliary heating components has been controlled with mixed-bed ion exchangers. Low ion levels, particularly copper, are required to operate this equipment. In early 1992, the company that leases and regenerates DIII-D ion exchangers said they no longer can accept these resin beds for regeneration due to the level of copper ion on the resin. This change in policy, a change that has been adopted throughout their industry, was necessary to assure that the Metropolitan Sewerage System of the City of San Diego stays in compliance with State of California regulations and EPA-mandated national pretreatment standards and regulations. A cost effective solution was implemented which utilizes a reverse osmosis filtration system with the ion exchangers for make-up water. Levels of copper ion disposed to the sewer are in compliance with government standards. These measures have thus far proved effective in maintaining low conductivity and overall good quality cooling water. Specifically, this paper discusses DIII-D deionized cooling water quality requirements and an affective means to meet these requirements in order to be in compliance with government regulations for copper ion disposal. The problems discussed, the alternatives considered and the approach taken would be readily applicable to any deionized cooling water system containing copper where EPA standards and regulations are mandated

  4. Dependence of energy per molecule on sputtering yields with reactive gas cluster ions

    International Nuclear Information System (INIS)

    Toyoda, Noriaki; Yamada, Isao

    2010-01-01

    Gas cluster ions show dense energy deposition on a target surface, which result in the enhancement of chemical reactions. In reactive sputtering with gas cluster ions, the energy per atom or molecule plays an important role. In this study, the average cluster size (N, the number of atoms or molecules in a cluster ion) was controlled; thereby the dependences of the energy per molecule on the sputtering yields of carbon by CO 2 cluster ions and that of Si by SF 6 /Ar mixed gas cluster ions were investigated. Large CO 2 cluster ions with energy per molecule of 1 eV showed high reactive sputtering yield of an amorphous carbon film. However, these ions did not cause the formation of large craters on a graphite surface. It is possible to achieve very low damage etching by controlling the energy per molecule of reactive cluster ions. Further, in the case of SF 6 /Ar mixed cluster ions, it was found that reactive sputtering was enhanced when a small amount of SF 6 gas (∼10%) was mixed with Ar. The reactive sputtering yield of Si by one SF 6 molecule linearly increased with the energy per molecule.

  5. Comparison of secondary ion emission yields for poly-tyrosine between cluster and heavy ion impacts

    International Nuclear Information System (INIS)

    Hirata, K.; Saitoh, Y.; Chiba, A.; Yamada, K.; Takahashi, Y.; Narumi, K.

    2010-01-01

    Emission yields of secondary ions necessary for the identification of poly-tyrosine were compared for incident ion impacts of energetic cluster ions (0.8 MeV C 8 + , 2.4 MeV C 8 + , and 4.0 MeV C 8 + ) and swift heavy monoatomic molybdenum ions (4.0 MeV Mo + and 14 MeV Mo 4+ ) with similar mass to that of the cluster by time-of-flight secondary ion mass analysis combined with secondary ion electric current measurements. The comparison revealed that (1) secondary ion emission yields per C 8 + impact increase with increasing incident energy within the energy range examined, (2) the 4.0 MeV C 8 + impact provides higher emission yields than the impact of the monoatomic Mo ion with the same incident energy (4.0 MeV Mo + ), and (3) the 2.4 MeV C 8 + impact exhibits comparable emission yields to that for the Mo ion impact with higher incident energy (14 MeV Mo 4+ ). Energetic cluster ion impacts effectively produce the characteristic secondary ions for poly-tyrosine, which is advantageous for highly sensitive amino acid detection in proteins using time-of-flight secondary ion mass analysis.

  6. Removal of copper (II) from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

    International Nuclear Information System (INIS)

    Almohammadi, S.; Mirzaei, M.

    2016-01-01

    In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC) in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as p H, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum p H required for maximum adsorption was found to be 4.5 for copper. Equilibrium was evaluated at 144 h at room temperature. The removal efficiency of Cu(II) was 71.12% at this time. The kinetics of copper adsorption on activated carbon followed the pseudo second-order model. The experimental equilibrium sorption data were tested using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) equations and the Langmuir model was found to be well fitted for copper adsorption onto GAC. The maximum adsorption capacity of the adsorbent for Cu(II) was calculated from the Langmuir isotherm and found to be 7.03 mg/g. Subsequently, the removal of copper by granular activated carbon in the presence of Ag 1 + and Mn 2 + as competitor ions was investigated. The removal efficiency of Cu(II) ions without the presence of the competitor ions was 46% at 6 h, while the removal efficiency of Cu(II) ions in the presence of competitor ions, Ag 1 + and Mn 2 + , was 34.76% and 31.73%, respectevely.

  7. Heavy-ion dominance near Cluster perigees

    Science.gov (United States)

    Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.

    2015-12-01

    Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.

  8. Irradiation effects of Ar cluster ion beams on Si substrates

    International Nuclear Information System (INIS)

    Ishii, Masahiro; Sugahara, Gaku; Takaoka, G.H.; Yamada, Isao

    1993-01-01

    Gas-cluster ion beams can be applied to new surface modification techniques such as surface cleaning, low damage sputtering and shallow junction formation. The effects of energetic Ar cluster impacts on solid surface were studied for cluster energies of 10-30keV. Irradiation effects were studied by RBS. For Si(111) substrates, irradiated with Ar ≥500 clusters to a dose of 1x10 15 ion/cm 2 at acceleration voltage 15kV, 2x10 14 atoms/cm 2 implanted Ar atoms were detected. In this case, the energy per cluster atom was smaller than 30eV; at this energy, no significant implantation occurs in the case of monomer ions. Ar cluster implantation into Si substrates occurred due to the high energy density irradiation. (author)

  9. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    International Nuclear Information System (INIS)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-01-01

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu 2+ was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu 2+ were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu 2+ ). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied

  10. Effect of Mo Ion Implantation on Stability of Nanocrystalline Copper Surface Layers

    Directory of Open Access Journals (Sweden)

    XI Yang

    2016-08-01

    Full Text Available The surface of pure copper was modified using the surface mechanical attrition treatment (SMAT method, and molybdenum ions were implanted in the nanosurface using a metal vapor vacuum arc (MEVVA. The results of the SMAT were observed by optical microscopy (OM, X-ray diffraction (XRD and scanning electron microscopy (SEM. An obvious nanocrystalline layer and a deformation region exist on the surface. The size of the nanocrystalline layer was characterized using atomic force microscopy (AFM. The results indicate remarkable suppression on grain size, the nanocrystalline layer grows to 163nm after annealing and reduces to only 72nm due to the Mo ion implantation. In addition, the hardness of the topmost surface of the material is 3.5 times that of the SMATed copper, which is about 7 times of the value of the matrix. The above improvements most likely result from the dispersion of the Mo ions and the reactions of the crystal defects due to the SMAT and ion implantation.

  11. Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents

    Science.gov (United States)

    Paksamut, J.; Boonsong, P.

    2018-03-01

    In this study, the purpose of our interest is to investigatethe adsorption behavior of copper (II) ions in aqueous solution using some tannin-rich plants as natural bio-adsorbents such as mangosteen peels (Garciniamangostana L.), cassava leaves (Manihotesculenta Crantz) and Thai copper pod leaves (Sennasiamea (Lam.)) as powder form in different dosage of adsorbent plant materials.The adsorption capacities at different pH of solution and contact time were performed.All the experiments in this studywere chosen at room temperature by batch technique. From the experimental results showed that cassava leaves gave better adsorbent properties than mangosteen peels and Thai copper pod leaves. The increasing dosage of all adsorbents and contact time have been found to increase adsorption capacities. In this respect, the adsorption capacities depend crucially on the adsorbents and contact time. The optimum pH of copper (II) ions adsorption was pH4. According to this work, it was observed that bioadsorbent materials from tannin-rich plants could be used to remove copper (II) ions from aqueous solutions.

  12. A study of defect cluster formation in vanadium by heavy ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sekimura, Naoto; Shirao, Yasuyuki; Morishita, Kazunori [Tokyo Univ. (Japan)

    1996-10-01

    Formation of defect clusters in thin foils of vanadium was investigated by heavy ion irradiation. In the very thin region of the specimens less than 20 nm, vacancy clusters were formed under gold ion irradiation, while very few clusters were detected in the specimens irradiated with 200 and 400 keV self-ions up to 1 x 10{sup 16} ions/m{sup 2}. The density of vacancy clusters were found to be strongly dependent on ion energy. Only above the critical value of kinetic energy transfer density in vanadium, vacancy clusters are considered to be formed in the cascade damage from which interstitials can escape to the specimen surface in the very thin region. (author)

  13. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T

    2004-05-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters {psi} and {delta} at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance.

  14. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    International Nuclear Information System (INIS)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T.

    2004-01-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters Ψ and Δ at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance

  15. Effect of Phosphorylation and Copper(II or Iron(II Ions Enrichment on Some Physicochemical Properties of Spelt Starch

    Directory of Open Access Journals (Sweden)

    Jacek Rożnowski

    Full Text Available ABSTRACT: This paper provides an assessment of the effect of saturation of spelt starch and monostarch phosphate with copper or iron ions on selected physicochemical properties of the resulting modified starches. Native and modified spelt starch samples were analyzed for selected mineral element content using Atomic Absorption Spectroscopy (AAS. Thermodynamic properties were measured using DSC, and pasting properties by RVA. Flow curves of 5% pastes were plotted and described using the Herschel-Bulkley model. The structure recovery ratio was measured. AAS analysis established the presence of iron(II and copper(II ions in the samples of modified starches and that potassium and magnesium ions had leached from them. In comparison to unfortified samples, enriching native starch with copper(II ions decreases value of all temperatures of phase transformation about 1.3-2.7 °C, but in case of monostarch phosphates bigger changes (2.8-3.7 °C were observed. Fortified native spelt starch with copper(II ions caused increasing the final viscosity of paste from 362 to 429 mPa·s. However, presence iron(II ions in samples caused reduced its final viscosity by 170 (spelt starch and 103 mPa·s (monostarch phosphate. Furthermore, enriching monostarch phosphate contributed to reduce degree of structure recovery of pastes from 70.9% to 66.6% in case of copper(II ions and to 59.9% in case of iron(II ions.

  16. Patterned electrochemical deposition of copper using an electron beam

    Directory of Open Access Journals (Sweden)

    Mark den Heijer

    2014-02-01

    Full Text Available We describe a technique for patterning clusters of metal using electrochemical deposition. By operating an electrochemical cell in the transmission electron microscope, we deposit Cu on Au under potentiostatic conditions. For acidified copper sulphate electrolytes, nucleation occurs uniformly over the electrode. However, when chloride ions are added there is a range of applied potentials over which nucleation occurs only in areas irradiated by the electron beam. By scanning the beam we control nucleation to form patterns of deposited copper. We discuss the mechanism for this effect in terms of electron beam-induced reactions with copper chloride, and consider possible applications.

  17. Removal of copper (II from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

    Directory of Open Access Journals (Sweden)

    Saeed Almohammadi

    2016-04-01

    Full Text Available In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as pH, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum pH required for maximum adsorption was found to be 4.5 for copper. Equilibrium was evaluated at 144 h at room temperature. The removal efficiency of Cu(II was 71.12% at this time. The kinetics of copper adsorption on activated carbon followed the pseudo second-order model. The experimental equilibrium sorption data were tested using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R equations and the Langmuir model was found to be well fitted for copper adsorption onto GAC. The maximum adsorption capacity of the adsorbent for Cu(II was calculated from the Langmuir isotherm and found to be 7.03 mg/g. Subsequently, the removal of copper by granular activated carbon in the presence of Ag1+ and Mn2+ as competitor ions was investigated. The removal efficiency of Cu(II ions without the presence of the competitor ions was 46% at 6 h, while the removal efficiency of Cu(II ions in the presence of competitor ions, Ag1+ and Mn2+ , was 34.76% and 31.73%, respectively.

  18. Spectator Ions ARE Important! A Kinetic Study of the Copper-Aluminum Displacement Reaction

    Science.gov (United States)

    Sobel, Sabrina G.; Cohen, Skyler

    2010-01-01

    Surprisingly, spectator ions are responsible for unexpected kinetics in the biphasic copper(II)-aluminum displacement reaction, with the rate of reaction dependent on the identity of the otherwise ignored spectator ions. Application of a published kinetic analysis developed for a reaction between a rotating Al disk and a Cu(II) ion solution to the…

  19. Precursor Ion Scan Mode-Based Strategy for Fast Screening of Polyether Ionophores by Copper-Induced Gas-Phase Radical Fragmentation Reactions.

    Science.gov (United States)

    Crevelin, Eduardo J; Possato, Bruna; Lopes, João L C; Lopes, Norberto P; Crotti, Antônio E M

    2017-04-04

    The potential of copper(II) to induce gas-phase fragmentation reactions in macrotetrolides, a class of polyether ionophores produced by Streptomyces species, was investigated by accurate-mass electrospray tandem mass spectrometry (ESI-MS/MS). Copper(II)/copper(I) transition directly induced production of diagnostic acylium ions with m/z 199, 185, 181, and 167 from α-cleavages of [macrotetrolides + Cu] 2+ . A UPLC-ESI-MS/MS methodology based on the precursor ion scan of these acylium ions was developed and successfully used to identify isodinactin (1), trinactin (2), and tetranactin (3) in a crude extract of Streptomyces sp. AMC 23 in the precursor ion scan mode. In addition, copper(II) was also used to induce radical fragmentation reactions in the carboxylic acid polyether ionophore nigericin. The resulting product ions with m/z 755 and 585 helped to identify nigericin in a crude extract of Streptomyces sp. Eucal-26 by means of precursor ion scan experiments, demonstrating that copper-induced fragmentation reactions can potentially identify different classes of polyether ionophores rapidly and selectively.

  20. Effects of light and copper ions on volatile aldehydes of milk and milk fractions

    Energy Technology Data Exchange (ETDEWEB)

    Jeno, W.; Bassette, R.; Crang, R.E.

    1988-09-01

    Raw, laboratory-pasteurized and plant-pasteurized homogenized milks were exposed to copper ions (5 ppm), to sunlight or fluorescent light and the effects determined on the composition of volatile aldehydes. The greatest change due to copper treatment was an increase in n-hexanal; acetaldehyde showed the least response in each of the sources of milk. The responses were similar from all three sources of milk with laboratory-pasteurized milk samples showing the greatest responses for each aldehyde analyzed. Similar milk samples exposed to sunlight also showed an increase in volatile aldehydes from all milk sources but with the greatest response being acetaldehyde and n-pentanal components. The milk fraction most susceptible to changes in the presence of light was neutralized whey, whereas resuspended cream was most susceptible to copper exposure. Overall, dialyzed whey appeared to be influenced more than other milk fractions by both light and copper ions.

  1. Vibrational contribution to the thermodynamics of nanosized precipitates: vacancy-copper clusters in bcc-Fe

    International Nuclear Information System (INIS)

    Talati, Mina; Posselt, Matthias; Al-Motasem, Ahmed; Bergner, Frank; Bonny, Giovanni

    2012-01-01

    The effects of lattice vibration on the thermodynamics of nanosized coherent clusters in bcc-Fe consisting of vacancies and/or copper are investigated within the harmonic approximation. A combination of on-lattice simulated annealing based on Metropolis Monte Carlo simulations and off-lattice relaxation by molecular dynamics is applied to obtain the most stable cluster configurations at T = 0 K. The most recent interatomic potential built within the framework of the embedded-atom method for the Fe-Cu system is used. The total free energy of pure bcc-Fe and fcc-Cu as well as the total formation free energy and the total binding free energy of the vacancy-copper clusters are determined for finite temperatures. Our results are compared with the available data from previous investigations performed using many-body interatomic potentials and first-principles methods. For further applications in rate theory and object kinetic Monte Carlo simulations, the vibrational effects evaluated in the present study are included in the previously developed analytical fitting formulae. (paper)

  2. Removal of Copper (II Ions in Aqueous Solutions by Sorption onto Alkali Activated Fly Ash

    Directory of Open Access Journals (Sweden)

    Darmayanti Lita

    2018-01-01

    Full Text Available Fly ash is a particulate material produced from coal combustion power plants with major components are silica, alumina, iron oxide, calcium oxide, magnesium oxide, and carbon which are ideal for metal adsorbents. The potential use of fly ash in the wastewater treatment process is obvious because it can be obtained cheaply in large quatities and it can be used as an adsorbent. However, fly ash still shows lower adsorption capacity unless it is activated. In this study, fly ash activated by NaOH 14 M and KOH 14 M solutions. The batch experiments were carried out to study the sorption of copper ions from aqueous on alkali activated fly ash. The influence of initial concentration and contact time were examined at constant pH and dose of adsorbent. The sorption capacity of copper ions increased with the initial concentration and contact time. The sorption capacities followed the order Na1>Ka1>FA. The adsorption isotherm model exhibited that the Langmuir model is very suitable with copper ions adsorption onto fly ash and alkali activated fly ash. Kinetic study shows that adsorption of copper ions onto FA, Na1, and Ka1 follows the pseudo second-order kinetics.

  3. XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Robin, E-mail: r.simpson@surrey.ac.uk [The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey (United Kingdom); Thermo Scientific, East Grinstead (United Kingdom); White, Richard G. [Thermo Scientific, East Grinstead (United Kingdom); Watts, John F.; Baker, Mark A. [The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey (United Kingdom)

    2017-05-31

    Highlights: • Ion beam induced oxide reduction from monatomic and gas cluster ion beam exposure are compared. • Lower relative level of preferential sputtering is shown in gas cluster ion beam depth profiling. • A lack of “steady state” is observed in gas cluster ion beam depth profiles of tantalum pentoxide. • Possible mechanisms behind the observed results, including temperature effects are proposed. - Abstract: In recent years, gas cluster ion beams (GCIB) have become the cutting edge of ion beam technology to sputter etch organic materials in surface analysis. However, little is currently known on the ability of argon cluster ions (Ar{sub n}{sup +}) to etch metal oxides and other technologically important inorganic compounds and no depth profiles have previously been reported. In this work, XPS depth profiles through a certified (European standard BCR-261T) 30 nm thick Ta{sub 2}O{sub 5} layer grown on Ta foil using monatomic Ar{sup +} and Ar{sub 1000}{sup +} cluster ions have been performed at different incident energies. The preferential sputtering of oxygen induced using 6 keV Ar{sub 1000}{sup +} ions is lower relative to 3 keV and 500 eV Ar{sup +} ions. Ar{sup +} ions exhibit a steady state O/Ta ratio through the bulk oxide but Ar{sub 1000}{sup +} ions show a gradual decrease in the O/Ta ratio as a function of depth. The depth resolution and etch rate is substantially better for the monatomic beam compared to the cluster beam. Higher O concentrations are observed when the underlying Ta bulk metal is sputtered for the Ar{sub 1000}{sup +} profiles compared to the Ar{sup +} profiles.

  4. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen, E-mail: zhangch@mail.buct.edu.cn

    2014-07-15

    Highlights: • Interface functionalized PGMA porous monolith was fabricated. • The adsorption capacity of Cu{sup 2+} was 35.3 mg/g. • The effects of porous structure on the adsorption of Cu{sup 2+} were studied. • The adsorption behaviors of porous monolith were studied. - Abstract: The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu{sup 2+}). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  5. Gas cluster ion beam equipments for industrial applications

    International Nuclear Information System (INIS)

    Matsuo, J.; Takaoka, G.H.; Yamada, I.

    1995-01-01

    30 keV and 200 keV gas cluster ion beam equipments have been developed for industrial applications. A gas cluster source with a non-cooled nozzle was used for both the equipments. Sufficient monomer ion suppression was achieved by using an ExB filter and chromatic lenses mass filter with low extraction voltage. These equipments are suitable to be used for low-damage surface treatment of metals, insulators and semiconductors without heavy metal contamination. (orig.)

  6. Crater formation by single ions, cluster ions and ion "showers"

    CERN Document Server

    Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2011-01-01

    The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

  7. Influence of solutes on heavy ion induced void-swelling in binary copper alloys

    International Nuclear Information System (INIS)

    Leister, K.H.

    1983-05-01

    As radiation induced swelling of metals depends on their constitution, swelling of copper and copper alloys with low solute concentration is studied. Diffusion coefficients and solubility of solute in copper were used as criteria of selection of the alloys. The samples were irradiated by 200keV copper ions. Swelling and void densities were measured by transmission electron microscopy. The measurements show low dependence of swelling upon the diffusibility of the solute in the solvent and a strong dependence on their concentration. Alloys of 0.1at% solute show more swelling than pure copper, and alloys of 1at% show less swelling under the irradiation conditions. The different swelling behavior in Cu-Ni alloys is due to the different void densities. (orig.) [de

  8. Structural and phase changes in copper-fullerene films by ion implantation and annealing

    International Nuclear Information System (INIS)

    Shpilevsky, E.M.; Baran, L.V.; Okatova, G.P.; Jakimovich, A.V.

    2001-01-01

    The structural and phase changes and the electrical properties of copper - fullerene (Cu-C 60 ) films by the ion implantation(B + , E=80 keV, D 5·10 21 m -2 ) and the thermal annealing are described. We found the copper-fullerene solid supersaturated solution formed in process of the two-component films obtaining. The result of the thermal annealing is the phase segregation of fullerene. It has been established the ion implantation adduces to the partial fragmentation of fullerene, to the destruction of the C 60 molecules and to the formation of the CuB 24 , B 25 C and B 4 C phases

  9. Probing thin over layers with variable energy/cluster ion beams

    International Nuclear Information System (INIS)

    Spool, A.; White, R.

    2006-01-01

    A series of carbon-coated magnetic recording disks proved ideal for exploring sampling depth and ion formation trends as a function of variations in energy and cluster size (Au x ) of the primary ion beam, and variations in over coat thickness and type. Ion yield from the underlying metal layer increased with increasing energy and decreasing cluster size of the primary ions. The yields varied nearly linearly with over layer thickness. In contrast, M x Cs y depth profiles were unaffected by changes in the primary ion. The samples were fortuitously dosed with dinonyl phthalate, allowing a study similar to prior GSIMS work [I.S. Gilmore, M.P. Seah, J.E. Johnstone, in: A. Benninghoven, P. Bertrand, H.-N. Migeon, H.W. Werner (Eds.), Proceedings of the 12th International Conference on SIMS, Elsevier, Brussels, 2000, p. 801]. Ions prominent in the EI mass spectrum, including even electron ions, were more consistently enhanced at lower energies and higher cluster sizes than the primary (M + H) + ion. The total secondary ion count was inversely proportional to the film thickness. Secondary electrons, largely originating in the buried metal layer, may be inducing organic ion formation [A.M. Spool, Surf. Interface Anal. 36 (2004) 264

  10. Copper ion treatment for zebra mussel mitigation in house service water systems

    Energy Technology Data Exchange (ETDEWEB)

    Babinec, J. [We Energies, Milwaukee, WI (United States)

    2003-09-01

    The Oak Creek Power Plant is a four unit, coal-fired plant totaling 1 140 MW. The plant has a once-through circulating water system with a common forebay, from which it draws both main condenser circulating and house service water. System design prohibits thermal treatment strategies and obtaining environmental permitting for mollusicidal treatments is difficult at best. Initial treatment strategies revolved around chlorination, using sodium hypochlorite, which proved to be marginally successful, or chlorine dioxide, which raised safety concerns. This paper discusses plant design, treatment history, environmental permitting issues, design and installation of a copper ion generator, problems encountered and solutions, operating and maintenance requirements, and results to date of copper ion technology at the Energies' Oak Creek Power Plant. (orig.)

  11. Effect and interactions of commercial additives and chloride ion in copper electrowinning

    Science.gov (United States)

    Cui, Wenyuan

    This thesis is to understand and compare the effects and interactions of modified polysaccharide (HydroStar), polyacrylamide (Cyquest N-900) and chloride ion on copper electrowinning. A study of the nucleation and growth was conducted in a synthetic electrolyte (40 g/L Cu, 160 g/L H2SO 4, 20 mg/L Cl-) with the addition of HydroStar or Cyquest N-900 using potential step measurements. The current responses generated were compared to theoretical models of nucleation and growth mechanisms. The nucleation and growth mechanism changed as function of potential and the presence of organic additives. The nucleation and growth mechanisms were confirmed using scanning electron microscopy (SEM). At low overpotentials, electrodeposition from the electrolyte without additives proceeded by progressive nucleation with three-dimensional (3-D) growth. The addition of HydroStar produced smaller nuclei and changed the mechanism to progressive nucleation and 2-D growth. Cyquest N-900 used there appeared to be progressive nucleation with 2-D growth and polarize the cathodes. In addition, instantaneous nucleation under diffusion control occurred at high overpotentials. Chloride ion and its interaction with HydroStar and Cyquest N-900 were further characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The trends observed from Nyquist plots and equivalent circuit models were consistent with the CV results. Chloride, on its own, depolarized copper electrodeposition, while chloride ion associated with Cyquest N-900 inhibited the reaction. It is proposed that Cl- acted as a bridging ligand between copper and Cyquest N-900. The addition of HydroStar depolarized copper deposition, but it did not interact with.

  12. Glassy carbon electrode modified with polyanilne/ethylenediamine for detection of copper ions

    Science.gov (United States)

    Patil, Harshada K.; Deshmukh, Megha A.; Bodkhe, Gajanan A.; Shirsat, Mahendra D.

    2018-05-01

    Increasing water pollution is having high concern, since it creates the threats to all leaving organisms of existence. Industrial sewages have not only polluted the main stream lines of water, also the ground level water is having serious contaminations. Heavy metal ions are the pollutants which are not degradable and can be accumulated on living things ultimately the excess accumulation results into the serious concerns. Therefore, it is necessary to develop the sensors which can detect the heavy metal ions up to its maximum contamination limits. Conducting polymers are the materials which possess large application spectra. This investigation reports the electrochemically synthesized polyaniline (PANI) for modification of glassy carbon electrode (GCE). Ethylenediamine (EDA) - chelating ligand used for the modification of polyaniline so as to inculcate the selectivity toward copper ions Cu (II). The electrochemical cyclic voltammetry (CV) was used for the study of redox characteristics of PANI and influence of EDA modification. The result of CV has shown the reduced oxidation and reduction peak currents after modification indicating the domination of EDA. GCE modified with PANI/EDA was then employed for the detection of divalent copper ions and have shown the affinity toward Cu ions. The detection limit achieved was equal to 10mg/lit.

  13. Range of plasma ions in cold cluster gases near the critical point

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, G. [Cyclotron Institute, Texas A& M University, 77843 College Station, TX (United States); Quevedo, H.J. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Bonasera, A., E-mail: abonasera@comp.tamu.edu [Cyclotron Institute, Texas A& M University, 77843 College Station, TX (United States); Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Donovan, M.; Dyer, G.; Gaul, E. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Guardo, G.L. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Gulino, M. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Libera Universita' Kore, 94100 Enna (Italy); La Cognata, M.; Lattuada, D. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Palmerini, S. [Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Pizzone, R.G.; Romano, S. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Smith, H. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States); Trippella, O. [Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Istituto Nazionale di Fisica Nucleare, Section of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Anzalone, A.; Spitaleri, C. [Laboratori Nazionali del Sud-INFN, via S. Sofia 64, 95123 Catania (Italy); Ditmire, T. [Center for High Energy Density Science, C1510, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-05-18

    We measure the range of plasma ions in cold cluster gases by using the Petawatt laser at the University of Texas-Austin. The produced plasma propagated in all directions some hitting the cold cluster gas not illuminated by the laser. From the ratio of the measured ion distributions at different angles we can estimate the range of the ions in the cold cluster gas. It is much smaller than estimated using popular models, which take only into account the slowing down of charged particles in uniform matter. We discuss the ion range in systems prepared near a liquid–gas phase transition. - Highlights: • We present experimental results obtained at the UT Petawatt laser facility, Austin, TX. • The ion range is strongly modified for cluster gases as compared to its value in a homogeneous system. • Large fluctuations are found if the cluster gas is prepared near the liquid–gas phase transition region.

  14. Range of plasma ions in cold cluster gases near the critical point

    International Nuclear Information System (INIS)

    Zhang, G.; Quevedo, H.J.; Bonasera, A.; Donovan, M.; Dyer, G.; Gaul, E.; Guardo, G.L.; Gulino, M.; La Cognata, M.; Lattuada, D.; Palmerini, S.; Pizzone, R.G.; Romano, S.; Smith, H.; Trippella, O.; Anzalone, A.; Spitaleri, C.; Ditmire, T.

    2017-01-01

    We measure the range of plasma ions in cold cluster gases by using the Petawatt laser at the University of Texas-Austin. The produced plasma propagated in all directions some hitting the cold cluster gas not illuminated by the laser. From the ratio of the measured ion distributions at different angles we can estimate the range of the ions in the cold cluster gas. It is much smaller than estimated using popular models, which take only into account the slowing down of charged particles in uniform matter. We discuss the ion range in systems prepared near a liquid–gas phase transition. - Highlights: • We present experimental results obtained at the UT Petawatt laser facility, Austin, TX. • The ion range is strongly modified for cluster gases as compared to its value in a homogeneous system. • Large fluctuations are found if the cluster gas is prepared near the liquid–gas phase transition region.

  15. Gas phase reactivity of thermal metal clusters

    Science.gov (United States)

    Castleman, A. W., Jr.; Harms, A. C.; Leuchtner, R. E.

    1991-03-01

    Reaction kinetics of metal cluster ions under well defined thermal conditions were studied using a flow tube reactor in combination with laser vaporization. Aluminum anions and cations were reacted with oxygen, and several species which are predicted jellium shell closings, were found to have special stability. Metal alloy cluster anions comprised of Al, V and Nb were also seen to react with oxygen. Alloy clusters with an even number of electrons reacted more slowly than odd electron species, and certain clusters appeared to be exceptionally unreactive. Copper cation clusters were observed to associate with carbon monoxide with reactivities that approach bulk behavior at surprisingly small cluster size. These reactions demonstrate how the rate of reaction changes with cluster size.

  16. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1), Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo.

    Science.gov (United States)

    Sankova, Tatiana P; Orlov, Iurii A; Saveliev, Andrey N; Kirilenko, Demid A; Babich, Polina S; Brunkov, Pavel N; Puchkova, Ludmila V

    2017-11-03

    There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST) and the N-terminal domain (ectodomain) of human high affinity copper transporter CTR1 (hNdCTR1), which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell's copper metabolism and its chelating properties are discussed.

  17. Dependence of surface smoothing, sputtering and etching phenomena on cluster ion dosage

    CERN Document Server

    Song, J H; Choi, W K

    2002-01-01

    The dependence of surface smoothing and sputtering phenomena of Si (1 0 0) solid surfaces irradiated by CO sub 2 cluster ions on cluster-ion dosage was investigated using an atomic force microscope. The flux and total ion dosage of impinging cluster ions at the acceleration voltage of 50 kV were fixed at 10 sup 9 ions/cm sup 2 s and were scanned from 5x10 sup 1 sup 0 to 5x10 sup 1 sup 3 ions/cm sup 2 , respectively. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5x10 sup 1 sup 1 ions/cm sup 2 , which caused that the irradiated surface became rough from 0.4 to 1.24 nm in root-mean-square roughness (sigma sub r sub m sub s). At the boundary of the ion dosage of 10 sup 1 sup 2 ions/cm sup 2 , the density of the induced hillocks was decreased and sigma sub r sub m sub s was about 1.21 nm, not being deteriorated further. At the dosage of 5x10 sup 1 sup 3 ions/cm sup 2 , the induced hillocks completely disappeared and the surface became very flat as much as sigma...

  18. Effect of copper (II) ion against elongation behavior of amyloid {beta} fibrils on liposome membranes

    Energy Technology Data Exchange (ETDEWEB)

    Shimanouchi, T.; Onishi, R.; Kitaura, N.; Umakoshi, H.; Kuboi, R. [Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka (Japan)

    2012-01-15

    The fibril growth behavior of amyloid {beta} protein (A{beta}) on cell membranes is relating to the progression of Alzheimer's disease. This growth behavior of A{beta} fibrils is sensitively affected by the metal ions, neurotransmitters, or bioreactive substrate. The inhibitory effect of those materials was quantitatively estimated from the viewpoints of ''crystal growth''. In a bulk aqueous solution, copper (II) ion showed the strong inhibitory effect on the growth of A{beta} fibrils. Meanwhile, the addition of a closed-phospholipid bilayer membrane (liposome) could reduce the above inhibitory effect of copper (II) ion. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. A preliminary study on coloring mechanism of Jun copper red glaze

    International Nuclear Information System (INIS)

    Tian Shibing; Liu Yuzhen; Zhang Maolin; Wang Lihua; Wang Cangsui; Xie Yaning

    2009-01-01

    The origin of a red color glazes decorated on the ancient Jun porcelain has been attributed to the presence of combined copper clusters and cuprous oxide, or cuprous oxide alone. For better understanding of the color-forming mechanism, X-ray absorption at the Cu-edge by the red area of a Jun porcelain shard was carried out. By comparing the XANFS spectra of the sample with metal copper and cubic Cu 2 O, we found that the spectra of the red layer of sample were similar to the spectrum combination of 37% Cu 2 O and 63% metal copper,while the spectra from surface of the red spot mainly resembled that of cubic Cu 2 O. The EXAFS results showed that monovalence copper cations were isolated in the glaze matrix, and copper atoms were formed to metallic copper clusters or mutimers dominantly distributed in the inner layer. These can be responsible to the optical properties of the red decoration with the presence of colloidal composition containing copper particles and the Cu + ions. In conclusion, a preliminary non-destructive elemental analysis using synchrotron radiation-induce X-ray fluorescence (SR-XRF) is demonstrated, and mechanism about the formation of the complicated structures is discussed. (authors)

  20. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    Science.gov (United States)

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  1. The smoke ion source: A device for the generation of cluster ions via inert gas condensation

    International Nuclear Information System (INIS)

    McHugh, K.M.; Sarkas, H.W.; Eaton, J.G.; Bowen, K.H.; Westgate, C.R.

    1989-01-01

    We report the development of an ion source for generating intense, continuous beams of both positive and negative cluster ions. This device is the result of the marriage of the inert gas condensation method with techniques for injecting electrons directly into expanding jets. In the preliminary studies described here, we have observed cluster ion size distributions ranging from n=1-400 for Pb n + and Pb n - and from n=12-5700 for Li n - . (orig.)

  2. Cluster Ion Implantation in Graphite and Diamond

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    Cluster ion beam technique is a versatile tool which can be used for controllable formation of nanosize objects as well as modification and processing of surfaces and shallow layers on an atomic scale. The current paper present an overview and analysis of data obtained on a few sets of graphite...... and diamond samples implanted by keV-energy size-selected cobalt and argon clusters. One of the emphases is put on pinning of metal clusters on graphite with a possibility of following selective etching of graphene layers. The other topic of concern is related to the development of scaling law for cluster...... implantation. Implantation of cobalt and argon clusters into two different allotropic forms of carbon, namely, graphite and diamond is analysed and compared in order to approach universal theory of cluster stopping in matter....

  3. Fullerene nanostructure design with cluster ion impacts

    Czech Academy of Sciences Publication Activity Database

    Lavrentiev, Vasyl; Vacík, Jiří; Naramoto, H.; Narumi, K.

    2009-01-01

    Roč. 483, - (2009), s. 479-483 ISSN 0925-8388 R&D Projects: GA AV ČR IAA200480702; GA AV ČR IAA400100701; GA AV ČR(CZ) KAN400480701 Institutional research plan: CEZ:AV0Z10480505 Keywords : fullerene films, clusters C60+ * cluster ion implantation * patterning Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.135, year: 2009

  4. Arrays of Size-Selected Metal Nanoparticles Formed by Cluster Ion Beam Technique

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Zenin, Volodymyr

    2018-01-01

    Deposition of size-selected copper and silver nanoparticles (NPs) on polymers using cluster beam technique is studied. It is shown that ratio of particle embedment in the film can be controlled by simple thermal annealing. Combining electron beam lithography, cluster beam deposition, and heat...... with required configurations which can be applied for wave-guiding, resonators, in sensor technologies, and surface enhanced Raman scattering....

  5. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization.

    Science.gov (United States)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E; Ding, Zhong-Tao

    2015-02-25

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar.

    Science.gov (United States)

    Oliveira, Paulo Roberto; Lamy-Mendes, Alyne C; Rezende, Edivaltrys Inayve Pissinati; Mangrich, Antonio Sálvio; Marcolino, Luiz Humberto; Bergamini, Márcio F

    2015-03-15

    This work describes for first time the use of biochar as electrode modifier in combination with differential pulse adsorptive stripping voltammetric (DPAdSV) techniques for preconcentration and determination of copper (II) ions in spirit drinks samples (Cachaça, Vodka, Gin and Tequila). Using the best set of the experimental conditions a linear response for copper ions in the concentration range of 1.5 × 10(-6) to 3.1 × 10(-5) mol L(-1) with a Limit of Detection (LOD) of 4.0 × 10(-7) mol L(-1). The repeatability of the proposed sensor using the same electrode surface was measured as 3.6% and 6.6% using different electrodes. The effect of foreign species on the voltammetric response was also evaluated. Determination of copper ions content in different samples of spirit drinks samples was also realized adopting inductively coupled plasma optical emission spectroscopy (ICP-OES) and the results achieved are in agreement at a 95% of confidence level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Phosphate ions as inhibiting agents for copper corrosion in chlorinated tap water

    International Nuclear Information System (INIS)

    Yohai, L.; Schreiner, W.H.; Vázquez, M.; Valcarce, M.B.

    2013-01-01

    PO 4 3− ions as corrosion inhibitor were investigated on copper in tap water in the presence of NaClO. The inhibitor was evaluated by electrochemical techniques and weight loss tests. Raman spectroscopy and X-ray photoelectron spectroscopy were used to study the passive layer. In inhibited tap water, the passive layer is thick and compact if NaClO is present. Weight-loss tests showed the inhibition of uniform dissolution and no pitting attack. When adding NaClO, Cu 3 (PO 4 ) 2 is incorporated to the passive film. Thus, phosphate ions are effective as inhibitors for copper in tap water, even when using high dosages of biocides. - Highlights: ► Changes in the copper corrosion after adding phosphate to tap water were analyzed. ► When NaClO and phosphates are present, Cu 3 (PO 4 ) 2 participates of the surface film. ► In the absence of biocide the surface film contains a mixture of Cu 2 O, CuO and Cu(OH) 2 . ► PO 4 3− is an effective inhibitor for Cu in tap water containing high NaClO dosages

  8. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  9. Biosorption of the Copper and Cadmium Ions - a Study through Adsorption Isotherms Analysis

    Directory of Open Access Journals (Sweden)

    Marcia T. Veit

    2007-10-01

    Full Text Available In this work, the biosorption process of copper-cadmium ions binary mixture by using marine algae Sargassum filipendula was investigated. A set of experiments was performed to obtain equilibrium data for the given batch operational conditions - T=30°C, pH=5. The interpretation of equilibrium data was based on the binary adsorption isotherms models in the Langmuir and Freundlich forms. To evaluate the models parameters, nonlinear identification procedure was used based on the Least Square statistical method and SIMPLEX local optimizer. An analysis of the obtained results showed that the marine algae biomass has higher affinity to copper ions than to cadmium ones. The biomass maximum adsorption capacity for the binary system was about 1.16 meq/g.

  10. Gas phase reactivity of thermal metal clusters

    International Nuclear Information System (INIS)

    Castleman, A.W. Jr.; Harms, A.C.; Leuchtner, R.E.

    1991-01-01

    Reaction kinetics of metal cluster ions under well defined thermal conditions were studied using a flow tube reactor in combination with laser vaporization. Aluminum anions and cations were reacted with oxygen, and several species which are predicted jellium shell closings, were found to have special stability. Metal alloy cluster anions comprised of Al, V and Nb were also seen to react with oxygen. Alloy clusters with an even number of electrons reacted more slowly than odd electron species, and certain clusters appeared to be exceptionally unreactive. Copper cation clusters were observed to associate with carbon monoxide with reactivities that approach bulk behavior at surprisingly small cluster size. These reactions demonstrate how the rate of reaction changes with cluster size. (orig.)

  11. Copper ions stimulate the proliferation of hepatic stellate cells via oxygen stress in vitro.

    Science.gov (United States)

    Xu, San-qing; Zhu, Hui-yun; Lin, Jian-guo; Su, Tang-feng; Liu, Yan; Luo, Xiao-ping

    2013-02-01

    This study examined the effect of copper ions on the proliferation of hepatic stellate cells (HSCs) and the role of oxidative stress in this process in order to gain insight into the mechanism of hepatic fibrosis in Wilson's disease. LX-2 cells, a cell line of human HSCs, were cultured in vitro and treated with different agents including copper sulfate, N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO) for different time. The proliferation of LX-2 cells was measured by non-radioactive cell proliferation assay. Real-time PCR and Western blotting were used to detect the mRNA and protein expression of platelet-derived growth factor receptor β subunit (PDGFβR), ELISA to determine the level of glutathione (GSH) and oxidized glutathione (GSSG), dichlorofluorescein assay to measure the level of reactive oxygen species (ROS), and lipid hydroperoxide assay to quantify the level of lipid peroxide (LPO). The results showed that copper sulfate over a certain concentration range could promote the proliferation of LX-2 cells in a time- and dose-dependent manner. The effect was most manifest when LX-2 cells were treated with copper sulfate at a concentration of 100 μmol/L for 24 h. Additionally, copper sulfate could dose-dependently increase the levels of ROS and LPO, and decrease the ratio of GSH/GSSG in LX-2 cells. The copper-induced increase in mRNA and protein expression of PDGFβR was significantly inhibited in LX-2 cells pre-treated with NAC, a precursor of GSH, and this phenomenon could be reversed by the intervention of BSO, an inhibitor of NAC. It was concluded that copper ions may directly stimulate the proliferation of HSCs via oxidative stress. Anti-oxidative stress therapies may help suppress the copper-induced activation and proliferation of HSCs.

  12. The Extracellular Domain of Human High Affinity Copper Transporter (hNdCTR1, Synthesized by E. coli Cells, Chelates Silver and Copper Ions In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana P. Sankova

    2017-11-01

    Full Text Available There is much interest in effective copper chelators to correct copper dyshomeostasis in neurodegenerative and oncological diseases. In this study, a recombinant fusion protein for expression in Escherichia coli cells was constructed from glutathione-S-transferase (GST and the N-terminal domain (ectodomain of human high affinity copper transporter CTR1 (hNdCTR1, which has three metal-bound motifs. Several biological properties of the GST-hNdCTR1 fusion protein were assessed. It was demonstrated that in cells, the protein was prone to oligomerization, formed inclusion bodies and displayed no toxicity. Treatment of E. coli cells with copper and silver ions reduced cell viability in a dose- and time-dependent manner. Cells expressing GST-hNdCTR1 protein demonstrated resistance to the metal treatments. These cells accumulated silver ions and formed nanoparticles that contained AgCl and metallic silver. In this bacterial population, filamentous bacteria with a length of about 10 µm were often observed. The possibility for the fusion protein carrying extracellular metal binding motifs to integrate into the cell’s copper metabolism and its chelating properties are discussed.

  13. Synthesis and application of a highly selective copper ions fluorescent probe based on the coumarin group

    Science.gov (United States)

    He, Guangjie; Liu, Xiangli; Xu, Jinhe; Ji, Liguo; Yang, Linlin; Fan, Aiying; Wang, Songjun; Wang, Qingzhi

    2018-02-01

    A highly selective copper ions fluorescent probe based on the coumarin-type Schiff base derivative 1 (probe) was produced by condensation reaction between coumarin carbohydrazide and 1H-indazole-3-carbaldehyde. The UV-vis spectroscopy showed that the maximum absorption peak of compound 1 appeared at 439 nm. In the presence of Cu2 + ions, the maximum peak decreased remarkably compared with other physiological important metal ions and a new absorption peak at 500 nm appeared. The job's plot experiments showed that complexes of 1:2 binding mode were formed in CH3CN:HEPES (3:2, v/v) solution. Compound 1 exhibited a strong blue fluorescence. Upon addition of copper ions, the fluorescence gradually decreased and reached a plateau with the fluorescence quenching rate up to 98.73%. The detection limit for Cu2 + ions was estimated to 0.384 ppm. Fluorescent microscopy experiments demonstrated that probe 1 had potential to be used to investigate biological processes involving Cu2 + ions within living cells.

  14. Ionization and fragmentation of water clusters by fast highly charged ions

    International Nuclear Information System (INIS)

    Adoui, L; Cassimi, A; Gervais, B; Grandin, J-P; Guillaume, L; Maisonny, R; Legendre, S; Tarisien, M; Lopez-Tarifa, P; Alcami, M; Martin, F; Politis, M-F; Penhoat, M-A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study the dissociative ionization of water clusters by impact of 12 MeV/u Ni 25+ ions. Cold target recoil ion momentum spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized water clusters. An unusual stability of the H 9 O + 4 ion is observed, which could be the signature of the so-called Eigen structure in gas-phase water clusters. From the analysis of coincidences between charged fragments, we conclude that charge mobility is very high and is responsible for the formation of protonated water clusters, (H 2 O) n H + , that dominate the mass spectrum. These results are supported by Car-Parrinello molecular dynamics and time-dependent density functional theory simulations, which also reveal the mechanisms of such mobility.

  15. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.; Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, Doddahalli H.; Krishna Pai, Ranjith

    2015-01-01

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic

  16. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions.

    Science.gov (United States)

    Soomro, Razium A; Nafady, Ayman; Sirajuddin; Memon, Najma; Sherazi, Tufail H; Kalwar, Nazar H

    2014-12-01

    This report demonstrates a novel, simple and efficient protocol for the synthesis of copper nanoparticles in aqueous solution using L-cysteine as capping or protecting agent. UV-visible (UV-vis) spectroscopy was employed to monitor the LSPR band of L-cysteine functionalized copper nanoparticles (Cyst-Cu NPs) based on optimizing various reaction parameters. Fourier Transform Infrared (FTIR) spectroscopy provided information about the surface interaction between L-cysteine and Cu NPs. Transmission Electron Microscopy (TEM) confirmed the formation of fine spherical, uniformly distributed Cyst-Cu NPs with average size of 34 ± 2.1 nm. X-ray diffractometry (XRD) illustrated the formation of pure metallic phase crystalline Cyst-Cu NPs. As prepared Cyst-Cu NPs were tested as colorimetric sensor for determining mercuric (Hg(2+)) ions in an aqueous system. Cyst-Cu NPs demonstrated very sensitive and selective colorimetric detection of Hg(2+) ions in the range of 0.5 × 10(-6)-3.5 × 10(-6) mol L(-1) based on decrease in LSPR intensity as monitored by a UV-vis spectrophotometer. The developed sensor is simple, economic compared to those based on precious metal nanoparticles and sensitive to detect Hg(2+) ions with detection limit down to 4.3 × 10(-8) mol L(-1). The sensor developed in this work has a high potential for rapid and on-site detection of Hg(2+) ions. The sensor was successfully applied for assessment of Hg(2+) ions in real water samples collected from various locations of the Sindh River. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of citric acid modification of aspen wood on sorption of copper ion

    Science.gov (United States)

    James D. McSweeny; Roger M. Rowell; Soo Hong Min

    2006-01-01

    Milled aspen wood was thermochemically modified with citric acid for the purpose of improving the copper (Cu2+) ion sorption capacity of the wood when tested in 24-hour equilibrium batch tests. The wood-citric acid adducts provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ ion uptake of the modified wood compared with that...

  18. Fabrication of Chitosan-complexed Electrode and Evaluation of Its Efficiency in Removal of Copper Ion from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Yoon Young-Chan

    2016-01-01

    Full Text Available In this study, we fabricated chitosan/PVA/activated carbon complexed electrode to remove copper ion from aqueous solution. The prepared composite electrode was analyzed by BET and SEM to investigate its physicochemical properties. Electrochemical properties of prepared composite electrodes were analyzed via cyclic voltammetry. Adsorption performance of copper ion on chitosan composite complexed electrodes was evaluated. Almost similar pore size distribution results were observed in the series of ACP not included electrodes while observed differences in pore size distribution for the ACP included one. Cyclic voltammetry results exhibited that oxidation-reduction reaction does not occur in a potential range of -1.0 ~ 1.0 V. The amount of copper ion during adsroption reaction is increase according to increase of adsorption potential to 1.0 V.

  19. Influence of ion irradiation induced defects on mechanical properties of copper nanowires

    International Nuclear Information System (INIS)

    Li, Weina; Sun, Lixin; Xue, Jianming; Wang, Jianxiang; Duan, Huiling

    2013-01-01

    The mechanical properties of copper nanowires irradiated with energetic ions have been investigated by using molecular dynamics simulations. The Cu ions with energies ranging from 0.2 to 8.0 keV are used in our simulation, and both the elastic properties and yields under tension and compression are analyzed. The results show that two kinds of defects, namely point defects and stacking faults, appear in the irradiated nanowires depending on the incident ion energy. The Young modulus is significantly reduced by the ion irradiation, and the reduction magnitude depends on the vacancy number, which is determined by the ion energy. Moreover, the irradiated nanowires yield at a smaller strain, compared with the unirradiated nanowire. The mechanism for these changes are also discussed

  20. Ion induced electron emission statistics under Agm- cluster bombardment of Ag

    Science.gov (United States)

    Breuers, A.; Penning, R.; Wucher, A.

    2018-05-01

    The electron emission from a polycrystalline silver surface under bombardment with Agm- cluster ions (m = 1, 2, 3) is investigated in terms of ion induced kinetic excitation. The electron yield γ is determined directly by a current measurement method on the one hand and implicitly by the analysis of the electron emission statistics on the other hand. Successful measurements of the electron emission spectra ensure a deeper understanding of the ion induced kinetic electron emission process, with particular emphasis on the effect of the projectile cluster size to the yield as well as to emission statistics. The results allow a quantitative comparison to computer simulations performed for silver atoms and clusters impinging onto a silver surface.

  1. Thermal release behavior of helium from copper irradiated by He+ ions

    International Nuclear Information System (INIS)

    Yamauchi, T.; Tokura, S.; Yamanaka, S.; Miyake, M.

    1988-01-01

    Thermal release behavior of helium from copper irradiated by 20 keV He + ions with a dose of 2x10 15 to 3x10 17 ions/cm 2 has been studied. The shape of the thermal release curves and thew number of helium release peaks strongly depend on the irradiation dose. Results from SEM surface observastion after post-irradiation heating suggested that helium release caused various surface damages such as blistering, flaking, and hole formation. Helium release resulting in small holes was analyzed and helium bubble growth mechanisms are discussed. (orig.)

  2. Phosphate ions as inhibiting agents for copper corrosion in chlorinated tap water

    Energy Technology Data Exchange (ETDEWEB)

    Yohai, L. [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Schreiner, W.H. [Laboratório de Superfícies e Interfases, Departamento de Física, Universidade Federal do Paraná, 81531-990 Curitiba, PR (Brazil); Vázquez, M., E-mail: mvazquez@fi.mdp.edu.ar [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Valcarce, M.B. [División Electroquímica y Corrosión, INTEMA, CONICET, UNMdP, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2013-05-15

    PO{sub 4}{sup 3−} ions as corrosion inhibitor were investigated on copper in tap water in the presence of NaClO. The inhibitor was evaluated by electrochemical techniques and weight loss tests. Raman spectroscopy and X-ray photoelectron spectroscopy were used to study the passive layer. In inhibited tap water, the passive layer is thick and compact if NaClO is present. Weight-loss tests showed the inhibition of uniform dissolution and no pitting attack. When adding NaClO, Cu{sub 3}(PO{sub 4}){sub 2} is incorporated to the passive film. Thus, phosphate ions are effective as inhibitors for copper in tap water, even when using high dosages of biocides. - Highlights: ► Changes in the copper corrosion after adding phosphate to tap water were analyzed. ► When NaClO and phosphates are present, Cu{sub 3}(PO{sub 4}){sub 2} participates of the surface film. ► In the absence of biocide the surface film contains a mixture of Cu{sub 2}O, CuO and Cu(OH){sub 2}. ► PO{sub 4}{sup 3−} is an effective inhibitor for Cu in tap water containing high NaClO dosages.

  3. Acceleration of cluster and molecular ions by TIARA 3 MV tandem accelerator

    CERN Document Server

    Saitoh, Y; Tajima, S

    2000-01-01

    We succeeded in accelerating molecular and cluster ions (B sub 2 sub - sub 4 , C sub 2 sub - sub 1 sub 0 , O sub 2 , Al sub 2 sub - sub 4 , Si sub 2 sub - sub 4 , Cu sub 2 sub - sub 3 , Au sub 2 sub - sub 3 , LiF, and AlO) to MeV energies with high-intensity beam currents by means of a 3 MV tandem accelerator in the TIARA facility. These cluster ions were generated by a cesium sputter-type negative ion source. We tested three types of carbon sputter cathodes in which graphite powder was compressed with different pressures. The pressure difference affected the generating ratio of clusters generated to single atom ions extracted from the source and it appeared that the high-density cathode was suitable. We also investigated the optimum gas pressure for charge exchange in the tandem high-voltage terminal. Clusters of larger size tend to require lower pressure than do smaller ones. In addition, we were able to obtain doubly charged AlO molecular ions. (authors)

  4. Angular distributions of particles sputtered from multicomponent targets with gas cluster ions

    Energy Technology Data Exchange (ETDEWEB)

    Ieshkin, A.E. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Ermakov, Yu.A., E-mail: yuriermak@yandex.ru [Skobeltsyn Nuclear Physics Research Institute, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Chernysh, V.S. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation)

    2015-07-01

    The experimental angular distributions of atoms sputtered from polycrystalline W, Cd and Ni based alloys with 10 keV Ar cluster ions are presented. RBS was used to analyze a material deposited on a collector. It has been found that the mechanism of sputtering, connected with elastic properties of materials, has a significant influence on the angular distributions of sputtered components. The effect of non-stoichiometric sputtering at different emission angles has been found for the alloys under cluster ion bombardment. Substantial smoothing of the surface relief was observed for all targets irradiated with cluster ions.

  5. SOURCES OF COPPER IONS AND SELECTED METHODS OF THEIR REMOVAL FROM WASTEWATER FROM THE PRINTED CIRCUITS BOARD PRODUCTION

    Directory of Open Access Journals (Sweden)

    Maciej Thomas

    2014-10-01

    Full Text Available This paper presents the issues related to the presence and removal of copper compounds from industrial effluents with including wastewater from plants involved in the production of printed circuit boards. Characterized the toxicological properties of selected copper compounds, described the applicable technological processes, sources of copper ions in the effluents and selected methods for their removal.

  6. Influence of copper ions on the viability and cytotoxicity of Pseudomonas aeruginosa under conditions relevant to drinking water environments.

    Science.gov (United States)

    Dwidjosiswojo, Zenyta; Richard, Jessica; Moritz, Miriam M; Dopp, Elke; Flemming, Hans-Curt; Wingender, Jost

    2011-11-01

    Copper plumbing materials can be the source of copper ions in drinking water supplies. The aim of the current study was to investigate the influence of copper ions on the viability and cytotoxicity of the potential pathogen Pseudomonas aeruginosa that presents a health hazard when occurring in building plumbing systems. In batch experiments, exposure of P. aeruginosa (10(6)cells/mL) for 24h at 20°C to copper-containing drinking water from domestic plumbing systems resulted in a loss of culturability, while total cell numbers determined microscopically did not decrease. Addition of the chelator diethyldithiocarbamate (DDTC) to copper-containing water prevented the loss of culturability. When suspended in deionized water with added copper sulfate (10 μM), the culturability of P. aeruginosa decreased by more than 6 log units, while total cell counts, the concentration of cells with intact cytoplasmic membranes, determined with the LIVE/DEAD BacLight kit, and the number of cells with intact 16S ribosomal RNA, determined by fluorescent in situ hybridization, remained unchanged. When the chelator DDTC was added to copper-stressed bacteria, complete restoration of culturability was observed to occur within 14 d. Copper-stressed bacteria were not cytotoxic towards Chinese hamster ovary (CHO-9) cells, while untreated and resuscitated bacteria caused an almost complete decrease of the concentration of viable CHO-9 cells within 24 h. Thus, copper ions in concentrations relevant to drinking water in plumbing systems seem to induce a viable but non-culturable (VBNC) state in P. aeruginosa accompanied by a loss of culturability and cytotoxicity, and VBNC cells can regain both culturability and cytotoxicity, when copper stress is abolished. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. Structure of bimetallic clusters. Extended x-ray absorption fine structure (EXAFS) studies of Rh--Cu clusters

    International Nuclear Information System (INIS)

    Meitzner, G.; Via, G.H.; Lytle, F.W.; Sinfelt, J.H.

    1983-01-01

    An investigation of the structure of the bimetallic clusters present in rhodium--copper catalysts was conducted with the use of extended x-ray absorption fine structure (EXAFS) measurements. Two catalysts were studied, both employing silica as a support for the clusters and both containing 1 wt. % rhodium. In one catalyst the Cu:Rh atomic ratio was 1:2 and in the other 1:1. Studies were made of the EXAFS associated with the K absorption edges of the rhodium and copper. The results of the EXAFS studies indicate that copper concentrates at the surface of the rhodium--copper clusters. In this regard the results are similar to our earlier reported results on ruthenium--copper clusters. However, the extent of surface segregation of the copper appears to be less pronounced for rhodium--copper clusters. This result is reasonable on the basis that rhodium and copper, unlike ruthenium and copper, exhibit at least some miscibility in the bulk

  8. Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Shim Hee-Sang

    2011-01-01

    Full Text Available Abstract We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoO x . The copper nanofibers (CuNFs were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoO x thin-film (CoO x TF electrodes, the CuNFs@CoO x electrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate. Such enhanced Li-ion storage performance may be associated with modified electrode structure at the nanoscale, improved charge transfer, and facile stress relaxation from the embedded CuNF network. Consequently, the CuNFs@CoO x composite structure demonstrated here can be used as a promising high-performance electrode for Li-ion batteries.

  9. Removal of copper ions from water using chemical modified multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Y.J.; Yang, J.

    2014-01-01

    Multi-walled carbon nanotubes (CNTs) were modified by oxidation with sodium hypochlorite (NaClO) solutions and were employed as adsorbents to study the adsorption characteristics of copper ions from water. The results show that adsorption capacity of CNTs treated by NaClO solution can be greatly enhanced. The adsorption capacity of Cu2+ on as received and modified CNTs increased with the increase of pH and CNTs mass, but it decreased with the temperature. Experimental data also indicated that the adsorption process could achieve equilibrium within 40 min. Both Langmuir and Freundlich isotherm models fitted the experimental data very well. According to the Langmuir model the maximum copper ions adsorption uptake onto modified CNTs was determined as 40.00 mg/g. Our results suggest that CNTs have profound potential application in environmental protection. (author)

  10. Coumarin-Based Fluorescent Probes for Dual Recognition of Copper(II and Iron(III Ions and Their Application in Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Olimpo García-Beltrán

    2014-01-01

    Full Text Available Two new coumarin-based “turn-off” fluorescent probes, (E-3-((3,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS1 and (E-3-((2,4-dihydroxybenzylideneamino-7-hydroxy-2H-chromen-2-one (BS2, were synthesized and their detection of copper(II and iron(III ions was studied. Results show that both compounds are highly selective for Cu2+ and Fe3+ ions over other metal ions. However, BS2 is detected directly, while detection of BS1 involves a hydrolysis reaction to regenerate 3-amino-7-hydroxycoumarin (3 and 3,4-dihydroxybenzaldehyde, of which 3 is able to react with copper(II or iron(III ions. The interaction between the tested compounds and copper or iron ions is associated with a large fluorescence decrease, showing detection limits of ca. 10−5 M. Preliminary studies employing epifluorescence microscopy demonstrate that Cu2+ and Fe3+ ions can be imaged in human neuroblastoma SH-SY5Y cells treated with the tested probes.

  11. Flotation of traces of silver and copper(II) ions with a methyl cellosolve solution of dithizone.

    Science.gov (United States)

    Hiraide, M; Mizuike, A

    1975-06-01

    Microgram quantities of silver and copper(II) ions in aqueous solutions are collected on dithizone precipitates, which are then floated with the aid of small nitrogen bubbles. This separation technique has been successfully applied to the atomic-absorption spectrophotometric determination of down to a tenth ppm of silver and copper in high-purity lead and zinc metals.

  12. Synthesis of silver nanoparticles stabilized with C-phycocyanin and for fluorimetric detection of copper ions

    Science.gov (United States)

    Wei, Nana; Hou, Yanhua; Lu, Zongbao; Yu, Huatong; Wang, Quanfu

    2018-01-01

    In this study, C-phycocyanin as protective agent, AgNO3 as raw material and NaBH4 as reducing agent synthesized C-phycocyanin-Ag nanoparticles (PC-AgNPs). The synthesis conditions of PC-AgNPs were determined by optimization. The maximum UV absorption peak of PC-AgNPs at 400 nm. The fluorescence excitation wavelength was 580 nm and the emission wavelength was 625 nm. PC-AgNPs was spherical in transmission electron microscope and the particles sizes were about 10-25 nm. In addition, fluorescence quenching was observed after adding copper ions to PC-AgNPs, which indicated that PC-AgNPs has potential applications in the detection of copper ions in diverse water environment.

  13. A novel dumbbell-like polyoxometalate assembled of copper(II)-disubstituted monovacant keggin polyoxoanions with a tetranuclear copper cluster.

    Science.gov (United States)

    Miao, Hao; Xu, Xiao; Ju, Wei-Wei; Wan, Hong-Xiang; Zhang, Yu; Zhu, Dun-Ru; Xu, Yan

    2014-03-17

    A dimeric Keggin polyoxometalate, [Cu(bpy)(μ2-OH)]4[(H2O)(bpy)2HPW11Cu2O39]2·2CH3CH2OH·10H2O (1), constructed from two dicopper(II)-substituted monovacant Keggin polyoxoanions bridged by a Cu4 cluster, has been hydrothermally synthesized. Magnetic analysis indicates predominantly an antiferromagnetic interaction between copper(II) centers. Compound 1 also shows very high catalytic activity for the esterification of phosphoric acid with equimolar lauryl alcohol to monoalkyl phosphate ester.

  14. The formation of magnetic silicide Fe3Si clusters during ion implantation

    Science.gov (United States)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe3Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  15. The formation of magnetic silicide Fe3Si clusters during ion implantation

    International Nuclear Information System (INIS)

    Balakirev, N.; Zhikharev, V.; Gumarov, G.

    2014-01-01

    A simple two-dimensional model of the formation of magnetic silicide Fe 3 Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field

  16. Group IIB-VIA semiconductor oxide cluster ions

    Science.gov (United States)

    Jayasekharan, Thankan

    2018-05-01

    Metal oxide cluster ions, MnOm± (M = Zn, Cd) and HgnOm- of various stoichiometry have been generated from solid IIB-VIA semiconductor oxides targets, (ZnO(s), CdO(s), and HgO(s)) by using pulse laser desorption ionization time of flight mass spectrometry with a laser of λ = 355 nm. Analysis of mass spectral data indicates the formation of stoichiometric cluster ions viz., (ZnO)n=1-30+ and (CdO)n=1-40+ along with -O bound anions, (ZnO)n=1-30O-, (CdO)n=1-40O- and (HgO)n=1-36O- from their respective solids. Further, metal oxoanions such as ZnOn=2,3-, CdOn=2,3,6-, and HgOn=2,3,6,7- have also been noted signifying the higher coordination ability of both Cd and Hg with O/O2/O3 species.

  17. Synthesis, Structure and Electrochemistry of Tetranuclear Oxygen-Centered Copper(II) Clusters with Acetylacetone and Benz-pyrazole Hydrolyzed Derivatives as Ligand.

    Science.gov (United States)

    Vafazadeh, Rasoul; Willis, Anthony C

    2016-01-01

    Two copper(II) clusters Cu(4)OCl(6)(pyrazole)4, 1, and Cu(4)OBr(6)(Br-pyrazole)4, 2, have been synthesized by reacting acetylacetone and benzohydrazide (1:1 ratio) with CuX(2) (X = Cl for 1 and X= Br for 2) in methanol solutions. The structures of both clusters have been established by X-ray crystallography. The clusters contain four Cu, one O, six μ(2)-X atoms, and four pyrazole ligands. The pyrazoles was prepared in situ by the reaction of acetylacetone with benzohydrazide in methanol under reflux. In 2, the methine hydrogens of the pyrazole ligands have been replaced by bromine atoms. The four copper atoms encapsulate the central O atom in a tetrahedral arrangement. All copper atoms are five-coordinate and have similar coordination environments with slightly distorted trigonal bipyramidal geometry. The cyclic voltammogram of the clusters 1 and 2 show a one-electron quasi-reversible reduction wave in the region 0.485 to 0.731 V, and a one-electron quasi-reversible oxidation wave in the region 0.767 to 0.898 V. In 1, one irreversible oxidative response is observed on the positive of side of the voltammogram at 1.512 V and this can be assigned to Cu(II) to Cu(III) oxidation.

  18. Formation and metastable decomposition of unprotonated ammonia cluster ions upon femtosecond ionization

    International Nuclear Information System (INIS)

    Buzza, S.A.; Wei, S.; Purnell, J.; Castleman, A.W. Jr.

    1995-01-01

    The formation and metastable dissociation mechanism of unprotonated ammonia cluster ions, (NH 3 ) + n , produced by multiphoton ionization (MPI) at 624 nm and a nominal pulse width of 350 fs, are investigated through a reflectron time-of-flight (TOF) mass spectrometric technique. Detection of the unprotonated ions after femtosecond and nanosecond multiphoton ionization under various intensity conditions is explained. The role of the energy of the ionizing photons, and the observation of these ions after femtosecond MPI is examined. The formation of the unprotonated series is found to be a function of intensity in the case of ionization on the nanosecond time scale, but not so for the femtosecond time domain. The results can be explained in terms of ionization mechanisms and ionizing pulse durations. The findings of the present study suggest that the unprotonated ions are trapped behind the barrier to intracluster proton transfer and/or concomitant NH 2 loss. The studies of metastable decomposition also reveal that the unprotonated ammonia cluster ions dissociate in the field-free region of the TOF by losing an NH 2 radical rather than via the evaporative loss of NH 3 as occurs for protonated clusters. Additionally, isotopic investigations of the unimolecular decay reveal a strong dependence on the conditions of cluster formation. The cluster formation condition dependence of the unimolecular decay is further investigated by altering formation temperatures and observing the consequences reflected by changes in the spontaneous metastable decay rate constant. This is a unique example of a cluster system whose metastable dissociation does not obey an evaporative ensemble model

  19. Time-of-flight secondary ion mass spectrometry with energetic cluster ion impact ionization for highly sensitive chemical structure characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, K., E-mail: k.hirata@aist.go.jp [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Saitoh, Y.; Chiba, A.; Yamada, K.; Narumi, K. [Takasaki Advanced Radiation Research Institute (TARRI), Japan Atomic Energy Agency (JAEA), Takasaki, Gumma 370-1292 (Japan)

    2013-11-01

    Energetic cluster ions with energies of the order of sub MeV or greater were applied to time-of-flight (TOF) secondary ion (SI) mass spectrometry. This gave various advantages including enhancement of SIs required for chemical structure characterization and prevention of charging effects in SI mass spectra for organic targets. We report some characteristic features of TOF SI mass spectrometry using energetic cluster ion impact ionization and discuss two future applications of it.

  20. Cluster ions and van der Waals molecules

    CERN Document Server

    Smirnov, Boris M

    1992-01-01

    This review discusses current ideas in the physics and chemistry of cluster ions and Van der Waals molecules as well as presenting numerical data on their parameters and the processes involving them. It is also a detailed reference on basic data relating to many species.

  1. Adsorption of lead and copper ions from aqueous effluents on rice husk ash in a dynamic system

    Directory of Open Access Journals (Sweden)

    M. G. A. Vieira

    2014-06-01

    Full Text Available This study evaluated the kinetic adsorption of Pb and Cu ions using rice husk ash as adsorbent in a fixed bed. The maximum adsorption capacities obtained for lead and copper ions in the fixed bed were 0.0561 and 0.0682 mmol/g (at 20 ºC, respectively. The thermodynamic studies indicated that the lead adsorption process was exothermic and spontaneous, while the copper adsorption process was endothermic and spontaneous. Characterization results indicated the presence of several functional groups, amorphous silica and a fibrous and longitudinal structure of rice husks. Rice husk ash (RHA from northern Brazil can be used as a bioadsorbent for the individual removal of Pb(II and Cu(II ions from metal-containing effluents.

  2. Transmitted ion energy loss distributions to detect cluster formation in silicon

    International Nuclear Information System (INIS)

    Selen, L.J.M.; Loon, A. van; IJzendoorn, L.J. van; Voigt, M.J.A. de

    2002-01-01

    The energy loss distribution of ions transmitted through a 5.7±0.2 μm thick Si crystal was measured and simulated with the Monte Carlo channeling simulation code FLUX. A general resemblance between the measured and simulated energy loss distributions was obtained after incorporation of an energy dependent energy loss in the simulation program. The energy loss calculations are used to investigate the feasibility to detect the presence of light element dopant clusters in a host crystal from the shape of the energy loss distribution, with transmission ion channeling. A curved crystal structure is used as a model for a region in the host crystal with clusters. The presence of the curvature does have a large influence on the transmitted energy distribution, which offers the possibility to determine the presence of dopant clusters in a host crystal with transmission ion channeling

  3. Ab initio study of the structural, magnetic, and electronic properties of copper and silver clusters and their alloys with one palladium atom

    Directory of Open Access Journals (Sweden)

    S. J Hashemifar

    2015-01-01

    Full Text Available In this paper, the structural, magnetic, and electronic properties of two- to nine-atom copper and silver clusters and their alloys with one palladium atom are investigated by using full-potential all-electron density functional computations. After calculating minimized energy of several structural isomers of every nanocluster, it is argued that the small size nanoclusters (up to size of 6, ‎ prefer planar structures, while by increasing size a 2D-3D structural transformation is observed. The structural transformation of pure and copper-palladium clusters occurs in the size of seven and that of silver-palladium cluster in happens at the size of six. The calculated second difference and dissociation energies confirm that the two- and eight- atom pure clusters and three- and seven- atom alloyed clusters are magic clusters. The electronic and magnetic properties of stable isomers are calculated and considered after applying many body based GW correction.

  4. Self-Assembled Gold Nano-Ripple Formation by Gas Cluster Ion Beam Bombardment.

    Science.gov (United States)

    Tilakaratne, Buddhi P; Chen, Quark Y; Chu, Wei-Kan

    2017-09-08

    In this study, we used a 30 keV argon cluster ion beam bombardment to investigate the dynamic processes during nano-ripple formation on gold surfaces. Atomic force microscope analysis shows that the gold surface has maximum roughness at an incident angle of 60° from the surface normal; moreover, at this angle, and for an applied fluence of 3 × 10 16 clusters/cm², the aspect ratio of the nano-ripple pattern is in the range of ~50%. Rutherford backscattering spectrometry analysis reveals a formation of a surface gradient due to prolonged gas cluster ion bombardment, although the surface roughness remains consistent throughout the bombarded surface area. As a result, significant mass redistribution is triggered by gas cluster ion beam bombardment at room temperature. Where mass redistribution is responsible for nano-ripple formation, the surface erosion process refines the formed nano-ripple structures.

  5. Selective electrochemical sensor for copper (II) ion based on chelating ionophores

    International Nuclear Information System (INIS)

    Singh, Ashok Kumar; Mehtab, Sameena; Jain, Ajay Kumar

    2006-01-01

    Plasticized membranes using 3-(2-pyridinyl)-2H-pyrido[1,2,-a]-1,3,5-triazine-2,4(3H)-dithione (L 1 ) and acetoacetanilide (L 2 ) have been prepared and explored as Cu 2+ -selective sensors. Effect of various plasticizers, viz. chloronaphthalene (China), benzyl acetate (BA), o-nitrophenyloctyl ether (o-NPOE), and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied in detail and improved performance was observed at several instances. Optimum performance was observed with dithione derivative (L 1 ) having a membrane composition of L 1 (5):PVC (120):o-NPOE (240):OA (10). The sensor works satisfactorily in the concentration range 5.0 x 10 -8 to 1.0 x 10 -2 M (detection limit 4.0 x 10 -8 M) with a Nernstian slope of 29.5 mV decade -1 of activity. Wide pH range (3.0-9.5), fast response time (12 s), non-aqueous tolerance (up to 20%) and adequate shelf life (4 months) indicate the vital utility of the proposed sensor. The potentiometric selectivity coefficient values as determined by match potential method (MPM) indicate good response for Cu 2+ in presence of interfering ions. The proposed electrode comparatively shows good selectivity with respect to alkali, alkaline earth, transition and some rare earth metals ions. The electrode was used for the determination of copper in different milk powder, water samples and as indicator electrode in potentiometric titration of copper ion with EDTA

  6. Imaging with Mass Spectrometry: A SIMS and VUV-Photoionization Study of Ion-Sputtered Atoms and Clusters from GaAs and Au

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Lynelle; Zhou, Jia; Wilson, Kevin R.; Leone, Stephen R.; Ahmed, Musahid

    2008-12-05

    A new mass spectrometry surface imaging method is presented in which ion-sputtered neutrals are postionized by wavelength-tunable vacuum ultraviolet (VUV) light from a synchrotron source. Mass spectra and signal counts of the photoionized neutrals from GaAs (100) and Au are compared to those of the secondary ions. While clusters larger than dimers are more efficiently detected as secondary ions, certain species, such as As2, Au and Au2, are more efficiently detected through the neutral channel. Continuously tuning the photon wavelength allows photoionization efficiency (PIE) curves to be obtained for sputtered Asm (m=1,2) and Aun (n=1-4). From the observed ionization thresholds, sputtered neutral As and Au show no clear evidence of electronic excitation, while neutral clusters have photoionization onsets shifted to lower energies by ~;;0.3 eV. These shifts are attributed to unresolved vibrational and rotational excitations. High-spatial resolution chemical imaging with synchrotron VUV postionization is demonstrated at two different photon energies using a copper TEM grid embedded in indium. The resulting images are used to illustrate the use of tunable VUV light for verifying mass peak assignments by exploiting the unique wavelength-dependent PIE of each sputtered neutral species. This capability is valuable for identifying compounds when imaging chemically complex systems with mass spectrometry-based techniques.

  7. THE EFFECTS OF COPPER AND ZINC IONS DURING THEIR BINDING WITH HUMAN SERUM γ-GLOBULIN

    Directory of Open Access Journals (Sweden)

    S. B. Cheknev

    2006-01-01

    Full Text Available Abstract. Conformational changes of human serum γ-globulin were studied during and after its binding with copper and zinc ions, using molecular ultrafiltration and differential spectrophotometry. The contents of nonbound metals in the filtrate were evaluated, resp., with sodium diethyl thyocarbamate and o-phenanthroline. It has been shown that copper and zinc exhibited common biological properties during their interactions with protein, but the binding differed sufficiently under similar experimental conditions. E.g., it was confirmed that copper was more active at the external sites of γ-globulin molecule, whereas zinc demonstrated tropicity for the areas of protein intraglobular compartments. The metal-binding sites have been described that differ in their parameters of interactions with cations and their spatial location within globular domains. Approaches are suggested for dynamic analysis of saturation for these differently located sites by the metal ions. We discuss the issues of altered conformational state of the γ-globulin molecule during the binding of cations, as well as potential usage of these data in clinical immunology.

  8. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne, E-mail: egarand@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706 (United States)

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.

  9. A theoretical investigation of the collective acceleration of cluster ions with accelerated potential waves

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Enjoji, Hiroshi; Kawaguchi, Motoichi; Noritake, Toshiya

    1984-01-01

    A theoretical treatment of the acceleration of cluster ions for additional heating of fusion plasma using the trapping effect in an accelerated potential wave is described. The conceptual design of the accelerator is the same as that by Enjoji, and the potential wave used is sinusoidal. For simplicity, collisions among cluster ions and the resulting breakups are neglected. The masses of the cluster ions are specified to range from 100 m sub(D) to 1000 m sub(D) (m sub(D): mass of a deuterium atom). Theoretical treatment is carried out only for the injection velocity which coincides with the phase velocity of the applied wave at the entrance of the accelerator. An equation describing the rate for successful acceleration of ions with a certain mass is deduced for the continuous injection of cluster ions. Computation for a typical mass distribution shows that more than 70% of the injected particles are effectively accelerated. (author)

  10. Are clusters important in understanding the mechanisms in atmospheric pressure ionization? Part 1: Reagent ion generation and chemical control of ion populations.

    Science.gov (United States)

    Klee, Sonja; Derpmann, Valerie; Wißdorf, Walter; Klopotowski, Sebastian; Kersten, Hendrik; Brockmann, Klaus J; Benter, Thorsten; Albrecht, Sascha; Bruins, Andries P; Dousty, Faezeh; Kauppila, Tiina J; Kostiainen, Risto; O'Brien, Rob; Robb, Damon B; Syage, Jack A

    2014-08-01

    It is well documented since the early days of the development of atmospheric pressure ionization methods, which operate in the gas phase, that cluster ions are ubiquitous. This holds true for atmospheric pressure chemical ionization, as well as for more recent techniques, such as atmospheric pressure photoionization, direct analysis in real time, and many more. In fact, it is well established that cluster ions are the primary carriers of the net charge generated. Nevertheless, cluster ion chemistry has only been sporadically included in the numerous proposed ionization mechanisms leading to charged target analytes, which are often protonated molecules. This paper series, consisting of two parts, attempts to highlight the role of cluster ion chemistry with regard to the generation of analyte ions. In addition, the impact of the changing reaction matrix and the non-thermal collisions of ions en route from the atmospheric pressure ion source to the high vacuum analyzer region are discussed. This work addresses such issues as extent of protonation versus deuteration, the extent of analyte fragmentation, as well as highly variable ionization efficiencies, among others. In Part 1, the nature of the reagent ion generation is examined, as well as the extent of thermodynamic versus kinetic control of the resulting ion population entering the analyzer region.

  11. Evaluation of secondary ion yield enhancement from polymer material by using TOF-SIMS equipped with a gold cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aimoto, K. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)]. E-mail: dm053502@cc.seikei.ac.jp; Aoyagi, S. [Department of Regional Development, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504 (Japan); Kato, N. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Yamamoto, A. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2006-07-30

    We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au{sup +} and Au{sub 3} {sup +} bombardment in comparison with Ga{sup +} excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au{sup +} and Ga{sup +} as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au{sub 3} {sup +} bombardment caused intensity enhancement about 100-2600 compared with Ga{sup +} bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au{sub 3} {sup +}, compared with Au{sup +}, therefore, was estimated to be about 10-45.

  12. Summary of Industry-Academia Collaboration Projects on Cluster Ion Beam Process Technology

    International Nuclear Information System (INIS)

    Yamada, Isao; Toyoda, Noriaki; Matsuo, Jiro

    2008-01-01

    Processes employing clusters of ions comprised of a few hundred to many thousand atoms are now being developed into a new field of ion beam technology. Cluster-surface collisions produce important non-linear effects which are being applied to shallow junction formation, to etching and smoothing of semiconductors, metals, and dielectrics, to assisted formation of thin films with nano-scale accuracy, and to other surface modification applications. In 2000, a four year R and D project for development of industrial technology began in Japan under funding from the New Energy and Industrial Technology Development Organization (NEDO). Subjects of the projects are in areas of equipment development, semiconductor surface processing, high accuracy surface processing and high-quality film formation. In 2002, another major cluster ion beam project which emphasized nano-technology applications has started under a contract from the Ministry of Economy and Technology for Industry (METI). This METI project involved development related to size-selected cluster ion beam equipment and processes, and development of GCIB processes for very high rate etching and for zero damage etching of magnetic materials and compound semiconductor materials. This paper describes summery of the results.

  13. Structure and reactivity of molybdenum oxide cluster ions in the gas phase

    International Nuclear Information System (INIS)

    Goncharov, V.B.; Fialko, E.F.

    2002-01-01

    A set of cluster ions of molybdenum oxides Mo x O y + (x = 1-5, y = 1-15) was prepared using a combination of the ionic cyclotron resonance method and Knudsen effusion source. Dependence of concentration of different molybdenum oxide ions on the time of retention and their interaction with carbon monoxide was studied. It is shown that Mo x O y + ions with x>3 contain cyclic fragment Mo 3 O 9 in their structure. Oxygen binding energies within ionic clusters Mo x O y + were estimated [ru

  14. Pre-equilibrium (exciton) model and the heavy-ion reactions with cluster emission

    CERN Document Server

    Betak, E

    2015-01-01

    We bring the possibility to include the cluster emission into the statistical pre-equilibrium (exciton) model enlarged for considering also the heavy ion collisions. At this moment, the calculations have been done without treatment of angular momentum variables, but all the approach can be straightforwardly applied to heavy-ion reactions with cluster emission including the angular momentum variables. The direct motivation of this paper is a possibility of producing the superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, $\\alpha$-particles).

  15. Visualization of DNA clustered damage induced by heavy ion exposure

    International Nuclear Information System (INIS)

    Tomita, M.; Yatagai, F.

    2003-01-01

    Full text: DNA double-strand breaks (DSBs) are the most lethal damage induced by ionizing radiations. Accelerated heavy-ions have been shown to induce DNA clustered damage, which is two or more DNA lesions induced within a few helical turns. Higher biological effectiveness of heavy-ions could be provided predominantly by induction of complex DNA clustered damage, which leads to non-repairable DSBs. DNA-dependent protein kinase (DNA-PK) is composed of catalytic subunit (DNA-PKcs) and DNA-binding heterodimer (Ku70 and Ku86). DNA-PK acts as a sensor of DSB during non-homologous end-joining (NHEJ), since DNA-PK is activated to bind to the ends of double-stranded DNA. On the other hand, NBS1 and histone H2AX are essential for DSB repair by homologous recombination (HR) in higher vertebrate cells. Here we report that phosphorylated H2AX at Ser139 (named γ-H2AX) and NBS1 form large undissolvable foci after exposure to accelerated Fe ions, while DNA-PKcs does not recognize DNA clustered damage. NBS1 and γ-H2AX colocalized with forming discrete foci after exposure to X-rays. At 0.5 h after Fe ion irradiation, NBS1 and γ-H2AX also formed discrete foci. However, at 3-8 h after Fe ion irradiation, highly localized large foci turned up, while small discrete foci disappeared. Large NBS1 and γ-H2AX foci were remained even 16 h after irradiation. DNA-PKcs recognized Ku-binding DSB and formed foci shortly after exposure to X-rays. DNA-PKcs foci were observed 0.5 h after 5 Gy of Fe ion irradiation and were almost completely disappeared up to 8 h. These results suggest that NBS1 and γ-H2AX can be utilized as molecular marker of DNA clustered damage, while DNA-PK selectively recognizes repairable DSBs by NHEJ

  16. Development and tests of molybdenum armored copper components for MITICA ion source

    Science.gov (United States)

    Pavei, Mauro; Böswirth, Bernd; Greuner, Henri; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo

    2016-02-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  17. Development and tests of molybdenum armored copper components for MITICA ion source

    International Nuclear Information System (INIS)

    Pavei, Mauro; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo; Böswirth, Bernd; Greuner, Henri

    2016-01-01

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results

  18. Development and tests of molybdenum armored copper components for MITICA ion source

    Energy Technology Data Exchange (ETDEWEB)

    Pavei, Mauro, E-mail: mauro.pavei@igi.cnr.it; Marcuzzi, Diego; Rizzolo, Andrea; Valente, Matteo [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Böswirth, Bernd; Greuner, Henri [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2016-02-15

    In order to prevent detrimental material erosion of components impinged by back-streaming positive D or H ions in the megavolt ITER injector and concept advancement beam source, a solution based on explosion bonding technique has been identified for producing a 1 mm thick molybdenum armour layer on copper substrate, compatible with ITER requirements. Prototypes have been recently manufactured and tested in the high heat flux test facility Garching Large Divertor Sample Test Facility (GLADIS) to check the capability of the molybdenum-copper interface to withstand several thermal shock cycles at high power density. This paper presents both the numerical fluid-dynamic analyses of the prototypes simulating the test conditions in GLADIS as well as the experimental results.

  19. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    Science.gov (United States)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  20. The formation of magnetic silicide Fe{sub 3}Si clusters during ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, N. [Kazan National Research Technological University, K.Marx st. 68, Kazan 420015 (Russian Federation); Zhikharev, V., E-mail: valzhik@mail.ru [Kazan National Research Technological University, K.Marx st. 68, Kazan 420015 (Russian Federation); Gumarov, G. [Zavoiskii Physico-Technical Institute of Russian Academy of Sciences, 10/7 Sibirskii trakt st., Kazan 420029 (Russian Federation)

    2014-05-01

    A simple two-dimensional model of the formation of magnetic silicide Fe{sub 3}Si clusters during high-dose Fe ion implantation into silicon has been proposed and the cluster growth process has been computer simulated. The model takes into account the interaction between the cluster magnetization and magnetic moments of Fe atoms random walking in the implanted layer. If the clusters are formed in the presence of the external magnetic field parallel to the implanted layer, the model predicts the elongation of the growing cluster in the field direction. It has been proposed that the cluster elongation results in the uniaxial magnetic anisotropy in the plane of the implanted layer, which is observed in iron silicide films ion-beam synthesized in the external magnetic field.

  1. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  2. Ionization of water clusters by fast Highly Charged Ions: Stability, fragmentation, energetics and charge mobility

    International Nuclear Information System (INIS)

    Legendre, S; Maisonny, R; Capron, M; Bernigaud, V; Cassimi, A; Gervais, B; Grandin, J-P; Huber, B A; Manil, B; Rousseau, P; Tarisien, M; Adoui, L; Lopez-Tarifa, P; AlcamI, M; MartIn, F; Politis, M-F; Penhoat, M A Herve du; Vuilleumier, R; Gaigeot, M-P; Tavernelli, I

    2009-01-01

    We study dissociative ionization of water clusters by impact of fast Ni ions. Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) is used to obtain information about stability, energetics and charge mobility of the ionized clusters. An unusual stability of the (H 2 O) 4 H ''+ ion is observed, which could be the signature of the so called ''Eigen'' structure in gas phase water clusters. High charge mobility, responsible for the formation of protonated water clusters that dominate the mass spectrum, is evidenced. These results are supported by CPMD and TDDFT simulations, which also reveal the mechanisms of such mobility.

  3. The effects of silver ions on copper metabolism in rats.

    Science.gov (United States)

    Ilyechova, E Yu; Saveliev, A N; Skvortsov, A N; Babich, P S; Zatulovskaia, Yu A; Pliss, M G; Korzhevskii, D E; Tsymbalenko, N V; Puchkova, L V

    2014-10-01

    The influence of short and prolonged diet containing silver ions (Ag-diet) on copper metabolism was studied. Two groups of animals were used: one group of adult rats received a Ag-diet for one month (Ag-A1) and another group received a Ag-diet for 6 months from birth (Ag-N6). In Ag-A1 rats, the Ag-diet caused a dramatic decrease of copper status indexes that was manifested as ceruloplasmin-associated copper deficiency. In Ag-N6 rats, copper status indexes decreased only 2-fold as compared to control rats. In rats of both groups, silver entered the bloodstream and accumulated in the liver. Silver was incorporated into ceruloplasmin (Cp), but not SOD1. In the liver, a prolonged Ag-diet caused a decrease of the expression level of genes, associated with copper metabolism. Comparative spectrophotometric analysis of partially purified Cp fractions has shown that Cp from Ag-N6 rats was closer to holo-Cp by specific enzymatic activities and tertiary structure than Cp from Ag-A1 rats. However, Cp of Ag-N6 differs from control holo-Cp and Cp of Ag-A1 in its affinity to DEAE-Sepharose and in its binding properties to lectins. In the bloodstream of Ag-N6, two Cp forms are present as shown in pulse-experiments on rats with the liver isolated from circulation. One of the Cp isoforms is of hepatic origin, and the other is of extrahepatic origin; the latter is characterized by a faster rate of secretion than hepatic Cp. These data allowed us to suggest that the disturbance of holo-Cp formation in the liver was compensated by induction of extrahepatic Cp synthesis. The possible biological importance of these effects is discussed.

  4. MECHANICAL PROPERTIES OF PVA NANOFIBER TEXTILES WITH INCORPORATED NANODIAMONDS, COPPER AND SILVER IONS

    Directory of Open Access Journals (Sweden)

    Kateřina Indrová

    2015-02-01

    Full Text Available The unique properties of nanotextiles based on poly(vinyl-alcohol (PVA manufactured using electrospinning method have been known and exploited for many years. Recently, the enrichment of nanofiber textiles with nanoparticles, such as ions or nanodiamond particles (NDP, has become a popular way to modify the textile mechanical, chemical and physical properties. The aim of our study is to investigate the macromechanical properties of PVA nanotextiles enriched with NDP, silver (Ag and copper (Cu ions. The nanofiber textiles of a various surface weight were prepared from 16% PVA solution, while glyoxal and phosphoric acid were used as cross-linking agents. The copper and silver ions were diluted in aqueous solution and NDP were dispersed into the fibers by ultrasound homogenization. All but one set of samples were exposed to the temperature of 140 °C for 10 minutes. The samples without thermal stabilization exhibited significantly lower elastic stiffness and tensile strength. Moreover, the results of tensile testing indicate that the addition of dispersed nanoparticles has a minor effect on the mechanical properties of textiles and contributes rather to their reinforcement. On the other hand, the lack of thermal stabilization results in a poor interconnection of individual nanofiber layers and the non-stabilized textiles exhibit a lower elastic stiffness and reduced tensile strength.

  5. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters

    International Nuclear Information System (INIS)

    Adrouche, N.

    2006-09-01

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne 9+- argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne 9+ with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne 9+ beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  6. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study.

    Science.gov (United States)

    Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander

    2018-04-01

    The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.

  7. Ion-streaming induced order transition in three-dimensional dust clusters

    International Nuclear Information System (INIS)

    Ludwig, Patrick; Kählert, Hanno; Bonitz, Michael

    2012-01-01

    Dust dynamics simulations utilizing a dynamical screening approach are performed to study the effect of ion-streaming on the self-organized structures in a three-dimensional spherically confined complex (dusty) plasma. Varying the Mach number M, the ratio of ion drift velocity to the sound velocity, the simulations reproduce the experimentally observed cluster configurations in the two limiting cases: at M = 0 strongly correlated crystalline structures consisting of nested spherical shells (Yukawa balls) and, for M ⩾ 1, flow-aligned dust chains, respectively. In addition, our simulations reveal a discontinuous transition between these two limits. It is found that already a moderate ion drift velocity (M ≈ 0.1 for the plasma conditions considered here) destabilizes the highly ordered Yukawa balls and initiates an abrupt melting transition. The critical value of M is found to be independent of the cluster size. (paper)

  8. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats

    Directory of Open Access Journals (Sweden)

    Lee IC

    2016-06-01

    Full Text Available In-Chul Lee,1 Je-Won Ko,1 Sung-Hyeuk Park,1 Je-Oh Lim,1 In-Sik Shin,1 Changjong Moon,1 Sung-Hwan Kim,2 Jeong-Doo Heo,3 Jong-Choon Kim1 1College of Veterinary Medicine BK21 Plus Project Team, Chonnam National University, Gwangju, 2Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup, 3Gyeongnam Department of Environment and Toxicology, Korea Institute of Toxicology, Gyeongnam, Republic of Korea Abstract: Despite widespread use and prospective biomedical applications of copper nanoparticles (Cu NPs, their biosafety issues and kinetics remain unclear. Thus, the aim of this study was to compare the detailed in vivo toxicity of Cu NPs and cupric ions (CuCl2; Cu ions after a single oral dose. We determined the physicochemical characteristics of Cu NPs, including morphology, hydrodynamic size, zeta potential, and dissolution in gastric (pH 1.5, vehicle (pH 6.5, and intestinal (pH 7.8 conditions. We also evaluated the kinetics of Cu following a single equivalent dose (500 mg/kg of Cu NPs and Cu ions. Cu NPs had highest dissolution (84.5% only in gastric conditions when compared with complete dissolution of Cu ions under various physiological milieus. Kinetic analysis revealed that highest Cu levels in blood and tested organs of Cu NP-treated rats were 15%–25% lower than that of Cu ions. Similar to the case of Cu ions, Cu levels in the tested organs (especially liver, kidney, and spleen of Cu NP-treated rats increased significantly when compared with the vehicle control. However, delay in reaching the highest level and biopersistence of Cu were observed in the blood and tested organs of Cu NP-treated rats compared with Cu ions. Extremely high levels of Cu in feces indicated that unabsorbed Cu NPs or absorbed Cu ions were predominantly eliminated through liver/feces. Cu NPs exerted apparent toxicological effects at higher dose levels compared with Cu ions and showed sex-dependent differences in mortality, biochemistry, and

  9. Investigation of the alpha cluster model and the density matrix expansion in ion-ion collision

    International Nuclear Information System (INIS)

    Rashdan, M.B.M.

    1986-01-01

    This thesis deals with the investigation of the alpha cluster model (ACM) of brink and studies of the accuracy of the density matrix expansion (DME) approximation in deriving the real part of the ion-ion optical potential. the ACM is applied to calculate the inelastic 0 1 + →2 1 + charge form factor for electron scattering by 12 C to investigate the validity of this model for 12 C nucleus. it is found that the experimental curve can be fitted over the entire range of the momentum transfer by a generator - coordinate state for the 2 1 + state that consist of a superposition of two triangular ACM states with two different cluster separations and the same oscillator parameter

  10. Solid-phase extraction of copper, iron and zinc ions on Bacillus thuringiensis israelensis loaded on Dowex optipore V-493

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa; Melek, Esra [Gaziosmanpasa University, Faculty of Science and Arts, Chemistry Department, 60250 Tokat (Turkey); Soylak, Mustafa [Erciyes University, Faculty of Science and Arts, Chemistry Department, 38039 Kayseri (Turkey)], E-mail: msoylak@gmail.com

    2008-11-30

    Bacillus thuringiensis israelensis loaded on Dowex optipore V-493 as new adsorbent for the separation-preconcentration of heavy metal ions has been proposed. The analytical conditions for the quantitative recoveries of copper(II), iron(III) and zinc(II) including pH, amounts of adsorbent, sample volume, etc. were investigated. The influences of alkaline and earth alkaline ions were also reported. The recovery values for the analytes are generally higher than 95%. The preconcentration factor was 37. The limit of detections of the analyte ions (k = 3, N = 21) were 1.14 {mu}g L{sup -1} for copper, 2.01 {mu}g L{sup -1} for iron and 0.14 {mu}g L{sup -1} for zinc. The relative standard deviations of the determinations were found to be lower than 9%. The procedure was validated by analyzing copper, iron and zinc contents in two certified reference materials, NRCC-SLRS-4 Riverine water and NIST SRM 1515 Apple leaves. Agreements between the obtained results and the certified values were achieved. The developed preconcentration method was applied in the flame atomic absorption spectrometric determination of copper, iron and zinc in several samples including a multivitamin-multimineral tablet, dialysis solutions, natural waters and some food samples.

  11. Biological Effects of Drug-Free Alginate Beads Cross-Linked by Copper Ions Prepared Using External Ionotropic Gelation.

    Science.gov (United States)

    Pavelková, M; Kubová, K; Vysloužil, J; Kejdušová, M; Vetchý, D; Celer, V; Molinková, D; Lobová, D; Pechová, A; Vysloužil, J; Kulich, P

    2017-05-01

    External ionotropic gelation offers a unique possibility to entrap multivalent ions in a polymer structure. The aim of this experimental study was to prepare new drug-free sodium alginate (ALG) particles cross-linked by Cu 2+ ions and to investigate their technological parameters (particle size, sphericity, surface topology, swelling capacity, copper content, release of Cu 2+ ions, mucoadhesivity) and biological activity (cytotoxicity and efficiency against the most common vaginal pathogens-Herpes simplex, Escherichia coli, Candida albicans) with respect to potential vaginal administration. Beads prepared from NaALG dispersions (3 or 4%) were cross-linked by Cu 2+ ions (0.5 or 1.0 M CuCl 2 ) using external ionotropic gelation. Prepared mucoadhesive beads with particle size over 1000 μm exhibited sufficient sphericity (all ˃0.89) and copper content (214.8-249.07 g/kg), which increased with concentration of polymer and hardening solution. Dissolution behaviour was characterized by extended burst effect, followed by 2 h of copper release. The efficiency of all samples against the most common vaginal pathogens was observed at cytotoxic Cu 2+ concentrations. Anti-HSV activity was demonstrated at a Cu 2+ concentration of 546 mg/L. Antibacterial activity of beads (expressed as minimum inhibition concentration, MIC) was influenced mainly by the rate of Cu 2+ release which was controlled by the extent of swelling capacity. Lower MIC values were found for E. coli in comparison with C. albicans. Sample ALG-3_1.0 exhibited the fastest copper release and was proved to be the most effective against both bacteria. This could be a result of its lower polymer concentration in combination with smaller particle size and thus larger surface area.

  12. Dynamics of Neutral Cluster Growth and Cluster Ion Fragmentation for Toluene/Water, Aniline/Argon, and 4-Fluorostyrene/Argon Clusters: Covariance Mapping of the Mass Spectral Data

    National Research Council Canada - National Science Library

    Foltin, M

    1998-01-01

    .... To explore sensitivity of the parent ion/fragment ion correlation coefficient to cluster fragmentation, correlation coefficients are measured as a function of ionization photon energy as thresholds...

  13. Properties of ammonium ion-water clusters: analyses of structure evolution, noncovalent interactions, and temperature and humidity effects.

    Science.gov (United States)

    Pei, Shi-Tu; Jiang, Shuai; Liu, Yi-Rong; Huang, Teng; Xu, Kang-Ming; Wen, Hui; Zhu, Yu-Peng; Huang, Wei

    2015-03-26

    Although ammonium ion-water clusters are abundant in the biosphere, some information regarding these clusters, such as their growth route, the influence of temperature and humidity, and the concentrations of various hydrated clusters, is lacking. In this study, theoretical calculations are performed on ammonium ion-water clusters. These theoretical calculations are focused on determining the following characteristics: (1) the pattern of cluster growth; (2) the percentages of clusters of the same size at different temperatures and humidities; (3) the distributions of different isomers for the same size clusters at different temperatures; (4) the relative strengths of the noncovalent interactions for clusters of different sizes. The results suggest that the dipole moment may be very significant for the ammonium ion-water system, and some new stable isomers were found. The nucleation of ammonium ions and water molecules is favorable at low temperatures; thus, the clusters observed at high altitudes might not be present at low altitudes. High humidity can contribute to the formation of large ammonium ion-water clusters, whereas the formation of small clusters may be favorable under low-humidity conditions. The potential energy surfaces (PES) of these different sized clusters are complicated and differ according to the distribution of isomers at different temperatures. Some similar structures are observed between NH4(+)(H2O)n and M(H2O)n (where M represents an alkali metal ion or water molecule); when n = 8, the clusters begin to form the closed-cage geometry. As the cluster size increases, these interactions become progressively weaker. The successive binding energy at the DF-MP2-F12/VDZ-F12 level is better than that at the PW91PW91/6-311++G(3df, 3pd) level and is consistent with the experimentally determined values.

  14. From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model

    Directory of Open Access Journals (Sweden)

    F. Yu

    2006-01-01

    Full Text Available Ions, which are generated in the atmosphere by galactic cosmic rays and other ionization sources, may play an important role in the formation of atmospheric aerosols. In the paper, a new second-generation ion-mediated nucleation (IMN model is presented. The new model explicitly treats the evaporation of neutral and charged clusters and it describes the evolution of the size spectra and composition of both charged and neutral clusters/particles ranging from small clusters of few molecules to large particles of several micrometers in diameter. Schemes used to calculate the evaporation coefficients for small neutral and charged clusters are consistent with the experimental data within the uncertainty range. The present IMN model, which is size-, composition-, and type-resolved, is a powerful tool for investigating the dominant mechanisms and key parameters controlling the formation and subsequent growth of nanoparticles in the atmosphere. This model can be used to analyze simultaneous measurements of the ion-mobility spectra and particle size distributions, which became available only recently. General features of the spectra for ions smaller than the critical size, size-dependent fractions of charged nanoparticles, and asymmetrical charging of freshly nucleated particles predicted by the new IMN model are consistent with recent measurements. Results obtained using the second generation IMN model, in which the most recent thermodynamic data for neutral and charged H2SO4-H2O clusters were used, suggest that ion-mediated nucleation of H2SO4-H2O can lead to a significant production of new particles in the lower atmosphere (including the boundary layer under favorable conditions. It has been shown that freshly nucleated particles of few nanometers in size can grow by the condensation of low volatile organic compounds to the size of cloud condensation nuclei. In such cases, the chemical composition of nucleated particles larger than ~10 nm is dominated

  15. Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution

    Science.gov (United States)

    Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu

    2015-05-01

    The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.

  16. A PEG/copper(i) halide cluster as an eco-friendly catalytic system for C-N bond formation.

    Science.gov (United States)

    Li, Cheng-An; Ji, Wei; Qu, Jian; Jing, Su; Gao, Fei; Zhu, Dun-Ru

    2018-05-22

    The catalytic activities of eight copper(i) halide clusters assembled from copper(i) halide and ferrocenyltelluroethers, 1-8, were investigated in C-N formation under various conditions. A catalytic procedure using poly(ethylene glycol) (PEG-400) as a greener alternative organic solvent has been developed. The PEG-400/5 system can achieve 99% targeted yield with a mild reaction temperature and short reaction time. After the isolation of the products by extraction with diethyl ether, this PEG-400/cluster system could be easily recycled. Spectroscopic studies elucidate a stepwise mechanism: firstly, proton-coupled electron transfer (PCET) involving the transfer of an electron from Cu+ and a proton from imidazole results in the formation of a labile penta-coordinated Cu2+ and aryl radical; the following effective electron transfer from the ferrocene unit reduces Cu2+ and forms the target product; finally, the ferrocenium unit is reduced by the I- anion. The merits of this eco-friendly synthesis are the efficient utilization of reagents and easy recyclability.

  17. Influences of Au ion radiation on microstructure and surface-enhanced Raman scattering of nanoporous copper

    Science.gov (United States)

    Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping

    2018-05-01

    In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.

  18. Controlled copper ion release from phosphate-based glasses improves human umbilical vein endothelial cell survival in a reduced nutrient environment.

    Science.gov (United States)

    Stähli, Christoph; Muja, Naser; Nazhat, Showan N

    2013-02-01

    The success of tissue engineering is dependent on rapid scaffold vascularization after engraftment. Copper ions are well known to be angiogenic but exhibit cytotoxicity at elevated doses. The high sensitivity to copper concentration underlines the need of a controlled release mechanism. This study investigated the effect of copper ions released from phosphate-based glasses (PGs) on human umbilical vein endothelial cells (HUVECs) under standard growth conditions (SGC), as well as in a reduced nutrient environment (RNE) with decreased bovine serum and growth factor concentrations to approximate conditions in the core of large volume scaffolds where nutrient diffusion is limited. Initially, HUVECs were exposed to a range of CuCl(2) concentrations in order to identify an optimal response in terms of their metabolism, viability, and apoptotic activity. Under SGC, HUVEC metabolic activity and viability were reduced in a dose-dependent manner in the presence of 0.44-12 ppm Cu(2+). In contrast, HUVEC death induced by the RNE was delayed by an optimal dose of 4 ppm Cu(2+), which was associated with a down-regulation of apoptosis as evidenced by caspase-3/7 activity. Copper ion release from soluble PGs of the formulation 50P(2)O(5)-30CaO-(20-x)Na(2)O-xCuO [mol%] (x=0, 1, 5 and 10) demonstrated a controllable increase with CuO content. The presence of 4 ppm copper ions released from the 10% CuO PG composition reproduced the delay in HUVEC death in the RNE, suggesting the potential of these materials to extend survival of transplanted endothelial cells in large volume scaffolds.

  19. Label-free tungsten disulfide quantum dots as a fluorescent sensing platform for highly efficient detection of copper (II) ions

    International Nuclear Information System (INIS)

    Zhao Xuan; He Da-Wei; Wang Yong-Sheng; Hu Yin; Fu Chen; Li Xue

    2017-01-01

    A fluorescent probe for the sensitive and selective determination of copper ion (Cu 2+ ) is presented. It is based on the use of tungsten disulfide quantum dots (WS 2 QDs) which is independent of the pH of solution and emits strong blue fluorescence. Copper ions could cause aggregation of the WS 2 QDs and lead to fluorescence quenching of WS 2 QDs. The change of fluorescence intensity is proportional to the concentration of Cu 2+ , and the limit of detection is 0.4 μM. The fluorescent probe is highly selective for Cu 2+ over some potentially interfering ions. These results indicate that WS 2 QDs, as a fluorescent sensing platform, can meet the selective requirements for biomedical and environmental application. (paper)

  20. Electrochemical removal of copper ions from dilute solutions using packed bed electrode. Part І

    Directory of Open Access Journals (Sweden)

    I.A. Khattab

    2013-06-01

    Full Text Available Removal of some hazardous waste like copper from effluent streams has an industrial importance. In this field, this paper is directed towards electrochemical removal of copper ions from sulfate solution using packed bed electrode. The cathode packing is in static mode, consisted of graphite particles, with mean particle size equal to 0.125 cm. The high surface area of this cell is expected to give high current efficiency and removal percent. The effect of current density and liquid flow rate were tested. Experimental results obtained indicate that the efficiencies are in direct proportional with current density while inversely proportional with liquid flow rate. It was observed that, using this cell was effective in reducing copper concentration to less than 4 mg/l with R.E of 96.2% during 30 min electrolysis time.

  1. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO2 transformation

    Science.gov (United States)

    Shanmugam, Ramasamy; Thamaraichelvan, Arunachalam; Ganesan, Tharumeya Kuppusamy; Viswanathan, Balasubramanian

    2017-02-01

    Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO2 to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO2 to CO at an applied potential of -0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO2 to various value added chemicals.

  2. Cu22Bi12S21Cl16-A mixed conductor with fast one-dimensional copper(I) ion transport

    International Nuclear Information System (INIS)

    Heerwig, Andreas; Merkle, Rotraut; Maier, Joachim; Ruck, Michael

    2011-01-01

    Melting reactions of Cu, CuCl, S, and Bi 2 S 3 yield black, shiny needles of Cu 22(1) Bi 12 S 21(1) Cl 16(1) . The compound decomposes peritectically at 649(5) K. Oxidation state +I of the copper atoms is supported by Cu-K-XANES. The compound crystallizes in the hexagonal space group P6/m with a=2116.7(7) pm and c=395.17(5) pm. Seven anions coordinate each of the two independent bismuth cations in the shape of mono-capped trigonal prisms. These polyhedra share edges and faces to form trigonal and hexagonal tubes running along [0 0 1]. The hexagonal tubes are centered by chloride ions, which are surrounded by disordered copper cations. The majority of copper cations are distributed over numerous sites between the tubes. The Joint Probability Density Function (JPDF) reveals a continuous pathway along [0 0 1]. The high mobility of the copper cations along [0 0 1] was demonstrated by impedance spectroscopy and DC polarization measurements on single crystals. The ionic conductivity at 450 K is about σ ion =0.06 S cm -1 , and the activation energy for Cu + ion conduction is E a =0.44 eV. The chemical diffusion coefficient of copper is in the order of D cu δ =10 19 cm -3 at 420 K. The electronic band gap (p-type conductor) was determined as E g =0.06 eV. At room temperature the thermal conductivity of a pressed pellet is about κ=0.3 W K -1 m -1 and the Seebeck coefficient is S=43 μV K -1 . -- Graphical Abstract: Copper cations easily move through the rigid tubular crystal structure of Cu 22 Bi 12 S 21 Cl 16 . Display Omitted

  3. Copper ion fluxes through the floating water bridge under strong electric potential.

    Science.gov (United States)

    Giuliani, Livio; D'Emilia, Enrico; Lisi, Antonella; Grimaldi, Settimio; Brizhik, Larissa; Del Giudice, Emilio

    2015-01-01

    We have performed a series of experiments applying high voltage between two electrodes, immersed in two beakers containing bidistilled water in a way similar to experiments conducted by Fuchs and collaborators, which showed that a water bridge can be formed between the two containers. We also observed the formation of water bridge. Moreover, choosing different pairs of electrodes depending on the material they are made up of, we observed that copper ions flow can pass along the bridge if the negative electrode is made up of copper. We show that the direction of the flux not only depends on the applied electrostatic field but on the relative electronegativity of the electrodes too. These results open new perspectives in understanding the properties of water. We suggest a possible explanation of the obtained results.

  4. High sensitive detection of copper II ions using D-penicillamine-coated gold nanorods based on localized surface plasmon resonance

    Science.gov (United States)

    Hong, Yoochan; Jo, Seongjae; Park, Joohyung; Park, Jinsung; Yang, Jaemoon

    2018-05-01

    In this paper, we describe the development of a nanoplasmonic biosensor based on the localized surface plasmon resonance (LSPR) effect that enables a sensitive and selective recognition of copper II ions. First, we fabricated the nanoplasmonics as LSPR substrates using gold nanorods (GNR) and the nano-adsorption method. The LSPR sensitivity of the nanoplasmonics was evaluated using various solvents with different refractive indexes. Subsequently, D-penicillamine (DPA)—a chelating agent of copper II ions—was conjugated to the surface of the GNR. The limit of detection (LOD) for the DPA-conjugated nanoplasmonics was 100 pM. Furthermore, selectivity tests were conducted using various divalent cations, and sensitivity tests were conducted on the nanoplasmonics under blood-like environments. Finally, the developed nanoplasmonic biosensor based on GNR shows great potential for the effective recognition of copper II ions, even in human blood conditions.

  5. The Formation of Polycomplexes of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride and Bovine Serum Albumin in the Presence of Copper Ions

    Directory of Open Access Journals (Sweden)

    Karahan Mesut

    2014-09-01

    Full Text Available The binary and ternary complex formations of poly(methyl vinyl ether-co-maleic anhydride (PMVEMA with copper ions and with bovine serum albumin (BSA in the presence of copper ions in phosphate buffer solution at pH = 7 were examined by the techniques of UV-visible, fluorescence, dynamic light scattering, atomic force microscopy measurements. In the formation of binary complexes of PMVEMA-Cu(II, the addition of copper ions to the solution of PMVEMA in phosphate buffer solution at pH = 7 forms homogeneous solutions when the molar ratio of Cu(II/MVEMA is 0.5. Then the formations of ternary complexes of PMVEMA-Cu(II-BSA were examined. Study analysis revealed that the toxicities of polymer-metal and polymer-metal-protein mixture solutions depend on the nature and ratio of components in mixtures.

  6. Membrane Anchoring and Ion-Entry Dynamics in P-type ATPase Copper Transport

    DEFF Research Database (Denmark)

    Grønberg, Christina; Sitsel, Oleg; Lindahl, Erik

    2016-01-01

    Cu(+)-specific P-type ATPase membrane protein transporters regulate cellular copper levels. The lack of crystal structures in Cu(+)-binding states has limited our understanding of how ion entry and binding are achieved. Here, we characterize the molecular basis of Cu(+) entry using molecular-dynamics...... simulations, structural modeling, and in vitro and in vivo functional assays. Protein structural rearrangements resulting in the exposure of positive charges to bulk solvent rather than to lipid phosphates indicate a direct molecular role of the putative docking platform in Cu(+) delivery. Mutational analyses...... and simulations in the presence and absence of Cu(+) predict that the ion-entry path involves two ion-binding sites: one transient Met148-Cys382 site and one intramembranous site formed by trigonal coordination to Cys384, Asn689, and Met717. The results reconcile earlier biochemical and x-ray absorption data...

  7. Irradiation characteristics of metal-cluster-complex ions containing diverse multi-elements with large mass differences

    International Nuclear Information System (INIS)

    Fujiwara, Yukio; Kondou, Kouji; Teranishi, Yoshikazu; Nonaka, Hidehiko; Saito, Naoaki; Fujimoto, Toshiyuki; Kurokawa, Akira; Ichimura, Shingo; Tomita, Mitsuhiro

    2007-01-01

    Tetrairidium dodecacarbonyl, Ir 4 (CO) 12 , is a metal cluster complex which has a molecular weight of 1104.9. Using a metal-cluster-complex ion source, the interaction between Ir 4 (CO) n + ions (n=0-12) and silicon substrates was studied at a beam energy ranging from 2keV to 10keV at normal incidence. By adjusting Wien-filter voltage, the influence of CO ligands was investigated. Experimental results showed that sputtering yield of silicon bombarded with Ir 4 (CO) n + ions at 10keV decreased with the number of CO ligands. In the case of 2keV, deposition tended to be suppressed by removing CO ligands from the impinging cluster ions. The influence of CO ligands was explained by considering changes in surface properties caused by the irradiation of Ir 4 (CO) n + ions. It was also found that the bombardment with Ir 4 (CO) 7 + ions at 2.5keV caused deposition on silicon target

  8. Polar cap ion beams during periods of northward IMF: Cluster statistical results

    Directory of Open Access Journals (Sweden)

    R. Maggiolo

    2011-05-01

    Full Text Available Above the polar caps and during prolonged periods of northward IMF, the Cluster satellites detect upward accelerated ion beams with energies up to a few keV. They are associated with converging electric field structures indicating that the acceleration is caused by a quasi-static field-aligned electric field that can extend to altitudes higher than 7 RE (Maggiolo et al., 2006; Teste et al., 2007. Using the AMDA science analysis service provided by the Centre de Données de la Physique des Plasmas, we have been able to extract about 200 events of accelerated upgoing ion beams above the polar caps from the Cluster database. Most of these observations are taken at altitudes lower than 7 RE and in the Northern Hemisphere. We investigate the statistical properties of these ion beams. We analyze their geometry, the properties of the plasma populations and of the electric field inside and around the beams, as well as their dependence on solar wind and IMF conditions. We show that ~40 % of the ion beams are collocated with a relatively hot and isotropic plasma population. The density and temperature of the isotropic population are highly variable but suggest that this plasma originates from the plasma sheet. The ion beam properties do not change significantly when the isotropic, hot background population is present. Furthermore, during one single polar cap crossing by Cluster it is possible to detect upgoing ion beams both with and without an accompanying isotropic component. The analysis of the variation of the IMF BZ component prior to the detection of the beams indicates that the delay between a northward/southward turning of IMF and the appearance/disappearance of the beams is respectively ~2 h and 20 min. The observed electrodynamic characteristics of high altitude polar cap ion beams suggest that they are closely connected to polar cap auroral arcs. We discuss the implications of these Cluster observations above the polar cap on the magnetospheric

  9. Upgrading the Lyon cluster ion accelerator by a radiofrequency quadrupole

    International Nuclear Information System (INIS)

    Moser, H.O.; Schempp, A.

    1987-02-01

    The design is presented of an RFQ with variable final energy suitable to post-accelerate cluster ions from the Lyon electrostatic cluster-ion accelerator in the mass ranges from 1 to 25 μ and 1 to 50 μ to kinetic energies of 1.32-2.5 MeV and 2.64-5.0 MeV for cw and pulsed operation, respectively. Furthermore, a beam line is described which matches the electrostatically preaccelerated beam to the RFQ by use of electrostatic quadrupole triplets. When used without RFQ this beam line serves to improve beam parameters on the target, such as the particle flux density or beam divergence. The estimated costs of this project are about DM 345 000.- or FF 1 200 000.- without VAT. (orig.) [de

  10. Mass spectrometric probes of metal cluster distributions and metastable ion decay

    International Nuclear Information System (INIS)

    Parks, E.K.; Liu, K.; Cole, S.K.; Riley, S.J.

    1988-01-01

    The study of metal clusters has provided both an opportunity and a challenge to the application of mass spectrometry. These days the most often-used technique for cluster generation - laser vaporization - leads to extensive distributions of cluster sizes, from one to perhaps thousands of atoms, and most studies reported to date use excimer laser ionization and time-of-flight mass spectrometry for cluster detection. Our apparatus is a simple one-stage TOF design employing Wiley-McLauren spatial focusing and a one-meter drift tube. In a second apparatus employing a pulsed valve in the cluster source, we see asymmetric broadening of niobium cluster mass peaks under multiphoton ionization conditions, indicating metastable decay of parent cluster ions. Other studies of niobium clusters have shown no such asymmetric peaks. 2 figs

  11. Minimization of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Yen-Ming; Hsu, Shih-Ting; Tseng, Yu-Hsien; Yeh, Te-Fu; Hou, Sheng-Shu; Jan, Jeng-Shiung; Lee, Yuh-Lang; Teng, Hsisheng

    2018-03-01

    This study uses graphene oxide quantum dots (GOQDs) to enhance the Li + -ion mobility of a gel polymer electrolyte (GPE) for lithium-ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile-co-vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF 6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3-11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion-solvent clusters and immobilize PF6- anions, affording the GPE a high ionic conductivity and a high Li + -ion transference number (0.77). When assembled into Li|electrolyte|LiFePO 4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge-discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion-solvent clusters and degree of Li + -ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li-metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion-solvent coordination in GPEs and thus improve the performance and lifespan of LIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ion clustering in aqueous salt solutions near the liquid/vapor interface

    Directory of Open Access Journals (Sweden)

    J.D. Smith

    2016-03-01

    Full Text Available Molecular dynamics simulations of aqueous NaCl, KCl, NaI, and KI solutions are used to study the effects of salts on the properties of the liquid/vapor interface. The simulations use the models which include both charge transfer and polarization effects. Pairing and the formation of larger ion clusters occurs both in the bulk and surface region, with a decreased tendency to form larger clusters near the interface. An analysis of the roughness of the surface reveals that the chloride salts, which have less tendency to be near the surface, have a roughness that is less than pure water, while the iodide salts, which have a greater surface affinity, have a larger roughness. This suggests that ions away from the surface and ions near the surface affect the interface in opposite ways.

  13. Use of Fatty Acid Methyl Ester Profiles to Compare Copper-Tolerant and Copper-Sensitive Strains of Pantoea ananatis.

    Science.gov (United States)

    Nischwitz, C; Gitaitis, R; Sanders, H; Langston, D; Mullinix, B; Torrance, R; Boyhan, G; Zolobowska, L

    2007-10-01

    ABSTRACT A survey was conducted to evaluate differences in fatty acid methyl ester (FAME) profiles among strains of Pantoea ananatis, causal agent of center rot of onion (Allium cepa), isolated from 15 different onion cultivars in three different sites in Georgia. Differences in FAME composition were determined by plotting principal components (PCs) in two-dimensional plots. Euclidean distance squared (ED(2)) values indicated a high degree of similarity among strains. Plotting of PCs calculated from P. ananatis strains capable of growing on media amended with copper sulfate pentahydrate (200 mug/ml) indicated that copper-tolerant strains grouped into tight clusters separate from clusters formed by wild-type strains. However, unlike copper-sensitive strains, the copper-tolerant strains tended to cluster by location. A total of 80, 60, and 73% of the strains from Tift1, Tift2, and Tattnall, respectively, exhibited either confluent growth or partial growth on copper-amended medium. However, all strains were sensitive to a mixture of copper sulfate pentahydrate (200 mug/ml) and maneb (40 mug/ml). When copper-tolerant clones were analyzed and compared with their wild-type parents, in all cases the plotting of PCs developed from copper-tolerant clones formed tight clusters separate from clusters formed by the parents. Eigenvalues generated from these tests indicated that two components provided a good summary of the data, accounting for 98, 98, and 96% of the standardized variance for strains Pna 1-15B, Pna 1-12B, and Pna 2-5A, respectively. Furthermore, feature 4 (cis-9-hexadecenoic acid/2-hydroxy-13-methyltetradecanoic acid) and feature 7 (cis-9/trans-12/cis-7-octadecenoic acid) were the highest or second highest absolute values for PC1 in all three strains of the parents versus copper-tolerant clones, and hexadecanoic acid was the highest absolute value for PC2 in all three strains. Along with those fatty acids, dodecanoic acid and feature 3 (3-hydroxytetradecanoic

  14. Investigation of peptide based surface functionalization for copper ions detection using an ultrasensitive mechanical microresonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Fischer, Lee MacKenzie; Rasmussen, Jakob Lyager

    2011-01-01

    In the framework of developing a portable label-free sensor for multi arrayed detection of heavy metals in drinking water, we present a mechanical resonator-based copper ions sensor, which uses a recently synthesized peptide Cysteine–Glycine–Glycine–Histidine (CGGH) and the l-Cysteine (Cys) peptide...

  15. Three-dimensional endothelial cell morphogenesis under controlled ion release from copper-doped phosphate glass.

    Science.gov (United States)

    Stähli, Christoph; James-Bhasin, Mark; Nazhat, Showan N

    2015-02-28

    Copper ions represent a promising angiogenic agent but are associated with cytotoxicity at elevated concentrations. Phosphate-based glasses (PGs) exhibit adjustable dissolution properties and allow for controlled ion release. This study examined the formation of capillary-like networks by SVEC4-10 endothelial cells (ECs) seeded in a three-dimensional (3D) type I collagen hydrogel matrix mixed with PG particles of the formulation 50P2O5-30CaO-(20-x)Na2O-xCuO (x=0 and 10 mol%). Copper and total phosphorus release decreased over time and was more sustained in the case of 10% CuO PG. Moreover, increasing the concentration of 10% CuO PG in collagen substantially delayed dissolution along with preferential release of copper. A 3D morphometric characterization method based on confocal laser scanning microscopy image stacks was developed in order to quantify EC network length, connectivity and branching. Network length was initially reduced in a concentration-dependent fashion by 10% CuO PG and, to a lesser extent, by 0% CuO PG, but reached values identical to the non-PG control by day 5 in culture. This reduction was attributed to a PG-mediated decrease in cell metabolic activity while cell proliferation as well as network connectivity and branching were independent of PG content. Gene expression of matrix metalloproteinases (MMP)-1 and -2 was up-regulated by PGs, indicating that MMPs did not play a critical role in network growth. The relationship between ion release and EC morphogenesis in 3D provided in this study is expected to contribute to an ultimately successful pro-angiogenic application of CuO-doped PGs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Self-organized formation of metal-carbon nanostructures by hyperthermal ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hannstein, I.K.

    2006-04-26

    The quasi-simultaneous deposition of mass-selected hyperthermal carbon and metal ions results in a variety of interesting film morphologies, depending on the metal used and the deposition conditions. The observed features are of the order of a few nanometres and are therefore interesting for future potential applications in the various fields of nanotechnology. The present study focuses on the structural analysis of amorphous carbon films containing either copper, silver, gold, or iron using amongst others Rutherford Backscattering Spectroscopy, High Resolution Transmission Electron Microscopy, and Energy Dispersive X-Ray Spectroscopy. The film morphologies found are as follows: copper-containing films consist of copper nanoclusters with sizes ranging from about 3 to 9 nm uniformly distributed throughout the amorphous carbon matrix. The cluster size hereby rises with the copper content of the films. The silver containing films decompose into a pure amorphous carbon film with silver agglomerates at the surface. Both, the gold- and the iron-containing films show a multilayer structure of metal-rich layers with higher cluster density separated by metal-depleted amorphous carbon layers. The layer distances are of the order of up to 15 nm in the case of gold-carbon films and 7 nm in the case of iron-carbon films. The formation of theses different structures cannot be treated in the context of conventional self-organization mechanisms basing upon thermal diffusion and equilibrium thermodynamics. Instead, an ion-induced atomic transport, sputtering effects, and the stability of small metal clusters were taken into account in order to model the structure formation processes. A similar multilayer morphology was recently also reported in the literature for metal-carbon films grown by magnetron sputtering techniques. In order to investigate, whether the mechanisms are the same as in the case of the ion beam deposited films described above, first experiments were conducted

  17. Investigations on carbon cluster formation in heavy ion irradiated polymers

    International Nuclear Information System (INIS)

    Tripathy, S.P.; Mishra, R.; Mawar, A.K.; Dwivedi, K.K.; Khathing, D.T.; Srivastava, A.; Avasthi, D.K.; Ghosh, S.; Fink, D.

    2000-01-01

    In polymers, the carbonaceous clusters are supposed to be responsible for the electrical conductivity. So, the irradiation of organic polymers namely polypropylene (8μ) and polyimide (50μ) by energetic heavy ions 28 Si and 58 Ni produce significant changes in the size of these clusters leading to the corresponding change in the band gap and other electrical properties as revealed by the UV-VIS spectroscopic examinations. (author)

  18. The surface topography of Inconel, stainless steel and copper after argon ion bombardment

    International Nuclear Information System (INIS)

    Vogelbruch, K.; Vietzke, E.

    1983-01-01

    Energetic particle bombardment of metals is known to change the surface topography. To simulate the behaviour of the first wall of a fusion device under real plasma conditions, we have investigated the surface topography of rotating targets after 30 keV argon ion bombardment at 70deg incident angle by electron scanning micrographs. Under these conditions Inconel 600, 601, 625, stainless steel, and copper showed no cones, pyramids or cliffs, but only etching figures and at higher ion doses relatively flat hills. Thus, it can be concluded, that the influence of energetic particles on the first wall of a fusion reactor is smaller than expected from the results of such sputtering experiments, which have dealt with the formation of surface structures under ion bombardment at constant incident direction. (author)

  19. High performance maleated lignocellulose epicarp fibers for copper ion removal

    Directory of Open Access Journals (Sweden)

    A. P. Vieira

    2014-03-01

    Full Text Available Natural lignocellulosic fiber epicarp extracted from the babassu coconut (Orbignya speciosa was chemically modified through reaction with molten maleic anhydride without solvent, with incorporation of 189.34 mg g-1 of carboxylic acid groups into the biopolymer structure. The success of this reaction was also confirmed by the presence of carboxylic acid bands at 1741 and 1164 cm-1 in the infrared spectrum. Identically, the same group is observed through 13C NMR CP/MAS in the solid state, via high field signals in the 167 pm region. Both the precursor and the immobilized maleated biopolymers presented nearly the same thermal stability and similar crystallinity to cellulose. However, the pendant carboxylic groups have the ability to remove copper with maximum sorption through a batchwise process at pH 6.0, as expected from the point of zero charge, determined to be 6.45. The sorption kinetic data were fitted to pseudo-first order, pseudo-second order, Elovich-chemisorption and intra-particle diffusion models and the equilibrium data were fitted to the Langmuir, the Freundlich and Tenkim isotherm models. Taking into account a statistical error function and determination coefficients, the data were fit to the pseudo-first and pseudo-second order kinetic and Langmuir isotherm models, with a maximum sorption capacity of copper ions of 55.09 mg g-1. This value suggests the application of this biopolymer with incorporated carboxylate groups as a favorable agent for copper removal from appropriate systems.

  20. Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, N.A., E-mail: nkulagin@bestnet.kharkov.u [Kharkiv National University for Radio Electronics, Avenue Shakespeare 6-48, 61045 Kharkiv (Ukraine)

    2011-03-15

    Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr{sup +4} ions in oxides, Cu{sup +2} in HTSC, Nd{sup +2} in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10{sup -9} m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: External influence and variation of technology induce changes in valence of nl ions in compounds. Wave function of cluster presented as anti-symmetrical set of ions wave functions. The main equation describes the self-consistent field depending on state of all electrons of cluster. Level scheme of Cr{sup 4+} ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. Plasma treatment effects in appearance of systems of unit crystallites with size of about 10{sup -6}-10{sup -9} m.

  1. Electronic structure and dynamics of ordered clusters with ME or RE ions on oxide surface

    International Nuclear Information System (INIS)

    Kulagin, N.A.

    2011-01-01

    Selected data of ab initio simulation of the electronic structure and spectral properties of either cluster with ions of iron, rare earth or actinium group elements have been presented here. Appearance of doped Cr +4 ions in oxides, Cu +2 in HTSC, Nd +2 in solids has been discussed. Analysis of experimental data for plasma created ordered structures of crystallites with size of about 10 -9 m on surface of separate oxides are given, too. Change in the spectroscopic properties of clusters and nano-structures on surface of strontium titanate crystals discussed shortly using the X-ray line spectroscopy experimental results. - Research highlights: → External influence and variation of technology induce changes in valence of nl ions in compounds. → Wave function of cluster presented as anti-symmetrical set of ions wave functions. → The main equation describes the self-consistent field depending on state of all electrons of cluster. → Level scheme of Cr 4+ ions in octo- and tetra-site corresponds to doped oxides spectra after treatment. → Plasma treatment effects in appearance of systems of unit crystallites with size of about 10 -6 -10 -9 m.

  2. Evaluation of the possible role of copper ions in drinking water in the pathogenesis of oral submucous fibrosis: a pilot study.

    Science.gov (United States)

    Arakeri, Gururaj; Patil, Shekhar Gowda; Ramesh, D N S V; Hunasgi, Santosh; Brennan, Peter A

    2014-01-01

    We aimed to investigate the concentration of copper ions in drinking water and to assess whether copper has a role in the pathogenesis of oral submucous fibrosis (OSMF). We studied 50 patients with clinically and histologically diagnosed OSMF from the Yadgir district of Karnataka in India. Fifty healthy people matched for age and sex were used as controls. In both groups concentrations of copper ions in serum, saliva, and home drinking water were measured using atomic absorption spectroscopy and intelligent nephelometry technology. Serum ceruloplasmin concentrations were also estimated in both groups. The mean (SD) concentration of copper in the home drinking water of patients with OSMF was significantly higher (764.3 (445.9)μmol/L) than in the controls (305.7 (318.5)μmol/L) (p<0.001). Patients with OSMF also had a significantly higher copper concentrations in serum and saliva, and serum ceruloplasmin than controls (p<0.001). For the first time these data have shown a positive association between copper concentrations in home drinking water and OSMF. It raises the possibility that increased copper in drinking water contributes to the development of OSMF, and adds to that ingested when areca nut is chewed. Copyright © 2013 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  4. Selective adsorption of silver(I) ions over copper(II) ions on a sulfoethyl derivative of chitosan.

    Science.gov (United States)

    Petrova, Yulia S; Pestov, Alexandr V; Usoltseva, Maria K; Neudachina, Ludmila K

    2015-12-15

    This study presents a simple and effective method of preparation of N-(2-sulfoethyl) chitosan (NSE-chitosan) that allows obtaining a product with a degree of modification up to 1.0. The chemical structure of the obtained polymers was confirmed by FT-IR and 1H NMR spectroscopies. Cross-linking of N-(2-sulfoethyl) chitosans by glutaraldehyde allows preparation of sorbents for removal and concentration of metal ions. Capacity of sorbents towards hydroxide ions was determined depending on the degree of sulfoethylation under static and dynamic conditions. Dissociation constants of functional amino groups of the analyzed sorbents were determined by potentiometric titration. It was shown that basicity of the amino groups decreased (wherein pKa decreased from 6.53 to 5.67) with increase in degree of sulfoethylation. It explains the significant influence of sulfo groups on selectivity of sorption of metal ions on N-(2-sulfoethyl) chitosan-based sorbents. The investigated substances selectively remove copper(II) and silver(I) ions from solutions of complex composition. Wherein the selectivity coefficient KAg/Cu increased to 20 (pH 6.5, ammonium acetate buffer solution) with increase in degree of sulfoethylation of the sorbent up to 1.0. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Periodate and hypobromite modification of Southern pine wood to improve sorption of copper ion

    Science.gov (United States)

    James D. McSweeny; Roger M. Rowell; George C. Chen; Thomas L. Eberhardt; Min Soo-Hong

    2008-01-01

    Milled southern pine wood was modified with sequential treatments of sodium periodate and sodium hypobromite for the purpose of improving copper ion (Cu2+) sorption capacity of the wood when tested in 24-h equilibrium batch tests. The modified wood provided additional carboxyl groups to those in the native wood and substantially increased Cu2+ uptake over that of...

  6. Further evidences for enhanced nuclear cross-sections observed in 44 GeV carbon ion interactions with copper

    International Nuclear Information System (INIS)

    Brandt, R.; Abdullaev, I.G.; Adloff, J.C.

    1995-01-01

    The work of enhanced nuclear cross-sections of secondary fragments produced in the interaction of 44 GeV 12 C with copper has been deepened and extended. The earlier experiment on the emission of secondary fragments into large angles producing enhanced amounts of 24 Na in copper (Phys. Rev. C, 45, 1194(1992)) was confirmed and refined both experimentally and theoretically. In this context, one looked for another signature of such enhanced production, namely for enhanced neutron production. In order to search for this, a 20 cm thick massive copper target was irradiated with 18 and 44 GeV 12 C-ions. Secondary fragments already described could interact again with copper. Outside the metallic target, secondary neutrons got moderated and low energy nuclear reactions were studied in La and U radiochemically via (n,γ)-reactions and also with various solid state nuclear track detectors. One observed an indication, however not yet significant, of enhanced production rates for low energy nuclear reactions only with 44 GeV 12 C, when compared to 18 GeV 12 C-ions. Besides some proton irradiations at SATURNE, Saclay (France) at 2.6 GeV and at PSI, Villigen (Switzerland) at 0.6 GeV all other irradiations were carried out at the Synchrophasotron, LHE, JINR, Dubna (Russia). 46 refs., 14 figs., 8 tabs

  7. The influence of ion energy, target temperature, dose rate and crystal order on the shape of bombardment induced pyramids on copper crystals

    International Nuclear Information System (INIS)

    Tanovic, L.; Whitton, J.L.; Kofod, S.

    1978-01-01

    Following recent studies of energetic ion bombardment of copper, which established the conditions necessary for the production of cones/pyramids, investigations have been extended to include the effects of change in ion energy, target temperature and dose rate. In addition, the authors have attempted a detailed analysis of the influence of sample crystal orientation on the final form of pyramids and have investigated the stability of the pyramids as a function of the total dose. These experiments, as in earlier work, have been done using very pure copper, mass-analyzed ion beams and free of any metal contamination from, for example, defining apertures. (Auth.)

  8. The mobilies of chiral molecular cluster ions in He gas

    International Nuclear Information System (INIS)

    Saito, Kazuyuki; Matoba, Shiro; Koizumi, Tetsuo; Kojima, Takao M; Tanuma, Hajime; Shiromaru, Haruo

    2012-01-01

    We measured the mobilities of Li + -(2-butanol) and Li + -(limonene) ions in He gas at room temperature using a drift tube mass spectrometer. The zero field mobilities of Li + -(2-Butanol) and Li + -(Limonene) were much lower than the polarization limit, indicating that the geometric collision cross-sections between the cluster ions and He atom were larger than the cross-sections predicted by the presence of a polarization force alone.

  9. Molecular growth in clusters of polycyclic aromatic hydrocarbons induced by collisions with ions

    International Nuclear Information System (INIS)

    Delaunay, Rudy

    2016-01-01

    This thesis concerns the experimental study of the interaction between low energy ions (keV range) and neutral isolated molecules or clusters of polycyclic aromatic hydrocarbons (PAH) in the gas phase. The use of ionising radiations on these complex molecular systems of astrophysical interest allowed to highlight processes of statistical fragmentation, corresponding to the redistribution of the energy through the degrees of freedom of the target, and non-statistical fragmentation, linked to binary collisions of the ions on the nuclei of the target. A mechanism of intermolecular growth in clusters of PAH is observed. It is associated to the ultrafast (≤ ps) formation of fragments inside the clusters following binary collisions. The presence of a molecular environment around the fragments formed during the interaction may initiate a process of reactivity between the fragments and the molecules of the clusters. More precisely, the study focusses on the importance of the electronic stopping power SE and the nuclear stopping power SN of the projectile ion. It shows that the molecular growth is enhanced when SN is higher than SE. This can be explained by the fact that the deposit of energy is mainly due to the interaction with the nuclei of the target. The process of growth has been observed for all the molecules of PAH studied during this thesis and also for nitrogenated analogues of the molecule of anthracene. This demonstrates that molecular growth may be efficiently induced by collisions of low energy ions with clusters of PAH. (author) [fr

  10. Observations on small anionic clusters in an electrostatic ion beam trap

    International Nuclear Information System (INIS)

    Eritt, Markus

    2008-01-01

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C n - n=2-12), aluminium (Al n - n=2-7) and silver clusters (Ag n - n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon emission. The thermionic evaporative decay of anionic aluminium and

  11. Dispersive liquid-liquid microextraction of copper ions as neocuproine complex in environmental aqueous samples.

    Science.gov (United States)

    Shariati, Shahab; Golshekan, Mostafa

    2011-06-01

    In the present study, a simple and efficient extraction method based on dispersive liquid-liquid microextraction prior to UV-Vis spectrophotometry was developed for the preconcentration and determination of copper ions in environmental samples. Briefly, cupric ions (Cu II) were reduced to cuprous (Cu I) with addition of hydroxyl amine hydrochloride and formed hydrophobic chelates with neocuproine. Then, a proper mixture of acetonitrile (as dispersive solvent) and choloroform (as extraction solvent) was rapidly injected into the solution and a cloudy solution was formed. After centrifuging, choloroform was sedimented at the bottom of a conical tube and diluted with 100 µL of methanol for further UV-Vis spectrophotometry measurement. An orthogonal array design (OAD) was employed to study the effects of different parameters on the extraction efficiency. Under the optimum experimental conditions, a preconcentration factor up to 63.6 was achieved for extraction from 5.0 mL of sample solution. The limit of detection (LOD) based on S/N = 3 was 0.33 µg L-1 and the calibration curve was linear in the range of 1-200 µg L-1 with reasonable linearity (r2 > 0.997). Finally, the accuracy of the proposed method was successfully evaluated by determination of trace amounts of copper ions in different water samples and satisfactory results were obtained.

  12. Synthesis and characterization of ceramic/carbon nanotubes composite adsorptive membrane for copper ion removal from water

    Energy Technology Data Exchange (ETDEWEB)

    Tofighy, Maryam Ahmadzadeh; Mohammadi, Toraj [Iran University of Science and Technology (IUST), Tehran (Iran, Islamic Republic of)

    2015-02-15

    We prepared a novel adsorptive membrane by implanting carbon nanotubes (CNTs) in pore channels of ceramic (α-alumina) support via chemical vapor deposition (CVD) method using cyclohexanol and ferrocene as carbon precursor and catalyst, respectively. Optimization of CNTs growth conditions resulted in uniform distribution of the CNTs in the pore channels of the support. The optimized CNTs-ceramic membrane was oxidized with concentrated nitric acid, and chitosan was employed for filling intertube-CNT gaps. The modified CNTs-ceramic membrane was used for copper ion removal from water, and the effects of the modification steps (oxidation and filling intertube-CNT gaps with chitosan) and pH on permeation flux and rejection of the prepared adsorptive membrane were investigated. Moreover, static adsorption was also investigated and Langmuir and Freundlich isotherms and two kinetics models were used to describe adsorption behavior of copper ions by the prepared adsorptive membrane.

  13. Particle modeling of transport of α-ray generated ion clusters in air

    International Nuclear Information System (INIS)

    Tong, Lizhu; Nanbu, Kenichi; Hirata, Yosuke; Izumi, Mikio; Miyamoto, Yasuaki; Yamaguchi, Hiromi

    2006-01-01

    A particle model is developed using the test-particle Monte Carlo method to study the transport properties of α-ray generated ion clusters in a flow of air. An efficient ion-molecule collision model is proposed to simulate the collisions between ion and air molecule. The simulations are performed for a steady state of ion transport in a circular pipe. In the steady state, generation of ions is balanced with such losses of ions as absorption of the measuring sensor or pipe wall and disappearance by positive-negative ion recombination. The calculated ion current to the measuring sensor agrees well with the previous measured data. (author)

  14. Copper-transporting P-type ATPases use a unique ion-release pathway

    DEFF Research Database (Denmark)

    Andersson, Magnus; Mattle, Daniel; Sitsel, Oleg

    2014-01-01

    Heavy metals in cells are typically regulated by PIB-type ATPases. The first structure of the class, a Cu(+)-ATPase from Legionella pneumophila (LpCopA), outlined a copper transport pathway across the membrane, which was inferred to be occluded. Here we show by molecular dynamics simulations...... that extracellular water solvated the transmembrane (TM) domain, results indicative of a Cu(+)-release pathway. Furthermore, a new LpCopA crystal structure determined at 2.8-Å resolution, trapped in the preceding E2P state, delineated the same passage, and site-directed-mutagenesis activity assays support...... a functional role for the conduit. The structural similarities between the TM domains of the two conformations suggest that Cu(+)-ATPases couple dephosphorylation and ion extrusion differently than do the well-characterized PII-type ATPases. The ion pathway explains why certain Menkes' and Wilson's disease...

  15. Sorption of diuron, atrazine, and copper ion on chars with long-term natural oxidation in soils

    Science.gov (United States)

    Cheng, C.; Lin, T.; Lai, C.

    2011-12-01

    Biochar has been proposed as a measure to sequestrate carbon (C) and to increase soil fertility in sustainable agriculture. However, its sorption characteristics to herbicides, such as lowing herbicides efficacy, may constrain its agricultural application. This assertion may be arguable because most studies so far were conducted with the newly produced char and barely considered the "ageing effect" of old char since it could be oxidized over long time. In this study, historical char samples were collected and compared with the newly produced char. Batch sorption studies of diuron, atrazine, and copper ion onto chars was performed. Greater sorption of Cu was observed on the historical char samples and reached a saturated sorption at 30 mg g-1 for Cu, much higher adsorption value than newly produced char at 4 mg g-1. In contrast, sorption of diuron and atrazine on newly produced char had the highest sorption capacity than the historical char samples. The historical chars also had much higher negative charge than the newly produced char, but its surface area were lower than the new char. The results indicated that change in surface functional groups through natural oxidation rather than the change of surface area may have more pronounced influences on sorption characteristics, in which the negative charge on the historical chars' surface could hinder the adsorption of diuron and atrazine while enhance the sorption to copper ion. Biological assay to test the toxicity of diuron and copper ion for both historical and new chars on rye seed were conducted and will be presented in our poster.

  16. Chemisorption on size-selected metal clusters: activation barriers and chemical reactions for deuterium and aluminum cluster ions

    International Nuclear Information System (INIS)

    Jarrold, M.F.; Bower, J.E.

    1988-01-01

    The authors describe a new approach to investigating chemisorption on size-selected metal clusters. This approach involves investigating the collision-energy dependence of chemisorption using low-energy ion beam techniques. The method provides a direct measure of the activation barrier for chemisorption and in some cases an estimate of the desorption energy as well. They describe the application of this technique to chemisorption of deuterium on size-selected aluminum clusters. The activation barriers increase with cluster size (from a little over 1 eV for Al 10 + to around 2 eV for Al 27 + ) and show significant odd-even oscillations. The activation barriers for the clusters with an odd number of atoms are larger than those for the even-numbered clusters. In addition to chemisorption of deuterium onto the clusters, chemical reactions were observed, often resulting in cluster fragmentation. The main products observed were Al/sub n-1/D + , Al/sub n-2/ + , and Al + for clusters with n + and Al/sub n-1/D + for the larger clusters

  17. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  18. Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon

    International Nuclear Information System (INIS)

    Onundi, Y. B.; Mamun, A. A.; Al Khatib, M. F.; Ahmad, Y. M.

    2010-01-01

    Granular activated carbon produced from palm kernel shell was used as adsorbent to remove copper, nickel and lead ions from a synthesized industrial wastewater. Laboratory experimental investigation was carried out to identify the effect of p H and contact time on adsorption of lead, copper and nickel from the mixed metals solution. Equilibrium adsorption experiments at ambient room temperature were carried out and fitted to Langmuir and Freundlich models. Results showed that p H 5 was the most suitable, while the maximum adsorbent capacity was at a dosage of 1 g/L, recording a sorption capacity of 1.337 mg/g for lead, 1.581 mg/g for copper and 0.130 mg/g for nickel. The percentage metal removal approached equilibrium within 30 minutes for lead, 75 minutes for copper and nickel, with lead recording 100 p ercent , copper 97 p ercent a nd nickel 55 p ercent r emoval, having a trend of Pb 2+ > Cu 2+ > Ni 2+ . Langmuir model had higher R 2 values of 0.977, 0.817 and 0.978 for copper, nickel and lead respectively, which fitted the equilibrium adsorption process more than Freundlich model for the three metals.

  19. First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS experiment

    Directory of Open Access Journals (Sweden)

    H. Rème

    2001-09-01

    Full Text Available On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+ from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF, giving the mass per charge composition with medium (22.5° angular resolution, and a Hot Ion Analyser (CIS2/HIA, which does not offer mass resolution but has a better angular resolution (5.6° that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions

  20. Preconcentration and Extraction of Copper ion on Activated Carbon using α-Benzoinoxime and Pyrimidin 2-Thiole

    International Nuclear Information System (INIS)

    Ghaedi, M.; Mortazavi, K.; Janbezar, M.; Parham, H.

    2006-01-01

    Activated carbon modified methods were used for preconcentration and determination of copper in some real sample by flame atomic absorption spectrometry. The copper was adsorbed quantitatively on activated carbon due to their complexation with α-benzoinoxime and pyrimidin 2-thiole. The adsorbed copper on solid phase was eluted quantitatively using nitric acid. The important parameters such as pH, amount of carrier, flow rate, amount of activated carbon and type and concentration of eluting agent for obtaining maximum recovery was optimized. The methods based on α- benzoinoxime and pyrimidin 2-thiole at optimum conditions is linear over concentration range of 0.05-1.3 ug mL and 0.06-1.2 ug mL of copper with correlation coefficient of 0.9997 and 0.9994 and both detection limit of 1.2 ngmL, respectively. The preconcentration leads to enrichment factor of 200 and 240 and break through volume of 1200 mL for methods based on α- benzoinoxime and pyrimidin 2-thiole, respectively. The methods have good tolerance limit of interfering ion and selectivity that has been successfully applied for determination of copper content in real sample such as blood, wastewater and river sample. (author)

  1. Combined copper/zinc attachment to prion protein

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  2. Mixed clusters from the coexpansion of C2F6 and n2 in a pulsed, supersonic expansion cluster ion source and beam deflection time-of-flight mass spectrometer: A first application

    Science.gov (United States)

    Thompson, Steven D.

    The following topics are discussed: (1) cluster ion genesis; (2) cluster ion detection; (3) Ion source; (4) pulse valve; (5) e-gun; (6) Ion optics; (7) a first order model; and (8) a modified Bakker's model.

  3. Influence of copper single crystal structures on the reflection of low energy hydrogen and helium ions

    International Nuclear Information System (INIS)

    Feijen, H.H.W.

    1975-01-01

    A theoretical basis for the 'wedge-focussing' phenomenon is outlined. Investigations have been made to check up to what extent proton reflection can be simulated by using H 2 + or H 3 + as incident ions and analysing the reflected protons. The results of an experimental study of the influence of surface semi-channels on the reflection of low energy ( + , H 2 + and He + ions from copper single crystals with attention to the wedge-focussing effect are presented (G.T.H.)

  4. Study of shallow junction formation by boron-containing cluster ion implantation of silicon and two-stage annealing

    Science.gov (United States)

    Lu, Xin-Ming

    Shallow junction formation made by low energy ion implantation and rapid thermal annealing is facing a major challenge for ULSI (ultra large scale integration) as the line width decreases down to the sub micrometer region. The issues include low beam current, the channeling effect in low energy ion implantation and TED (transient enhanced diffusion) during annealing after ion implantation. In this work, boron containing small cluster ions, such as GeB, SiB and SiB2, was generated by using the SNICS (source of negative ion by cesium sputtering) ion source to implant into Si substrates to form shallow junctions. The use of boron containing cluster ions effectively reduces the boron energy while keeping the energy of the cluster ion beam at a high level. At the same time, it reduces the channeling effect due to amorphization by co-implanted heavy atoms like Ge and Si. Cluster ions have been used to produce 0.65--2keV boron for low energy ion implantation. Two stage annealing, which is a combination of low temperature (550°C) preannealing and high temperature annealing (1000°C), was carried out to anneal the Si sample implanted by GeB, SiBn clusters. The key concept of two-step annealing, that is, the separation of crystal regrowth, point defects removal with dopant activation from dopant diffusion, is discussed in detail. The advantages of the two stage annealing include better lattice structure, better dopant activation and retarded boron diffusion. The junction depth of the two stage annealed GeB sample was only half that of the one-step annealed sample, indicating that TED was suppressed by two stage annealing. Junction depths as small as 30 nm have been achieved by two stage annealing of sample implanted with 5 x 10-4/cm2 of 5 keV GeB at 1000°C for 1 second. The samples were evaluated by SIMS (secondary ion mass spectrometry) profiling, TEM (transmission electron microscopy) and RBS (Rutherford Backscattering Spectrometry)/channeling. Cluster ion implantation

  5. Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials

    Science.gov (United States)

    Bastos, Carlos A. P.; Faria, Nuno; Ivask, Angela; Bondarenko, Olesja M.; Kahru, Anne; Powell, Jonathan

    2018-04-01

    Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile formulations that will readily release copper ions at biologically compatible pHs. Here, we have developed nanoparticulate copper hydroxide adipate tartrate (CHAT) as a cheap, safe, and readily synthesised material that should enable antimicrobial copper ion release in an infected wound environment. First, we synthesised CHAT and showed that this had disperse aquated particle sizes of 2-5 nm and a mean zeta potential of - 40 mV. Next, when diluted into bacterial medium, CHAT demonstrated similar efficacy to copper chloride against Escherichia coli and Staphylococcus aureus, with dose-dependent activity occurring mostly around 12.5-50 mg/L of copper. Indeed, at these levels, CHAT very rapidly dissolved and, as confirmed by a bacterial copper biosensor, showed identical intracellular loading to copper ions derived from copper chloride. However, when formulated at 250 mg/L in a topically applied matrix, namely hydroxyethyl cellulose, the benefit of CHAT over copper chloride was apparent. The former yielded rapid sustained release of copper within the bactericidal range, but the copper chloride, which formed insoluble precipitates at such concentration and pH, achieved a maximum release of 10 ± 7 mg/L copper by 24 h. We provide a practical formulation for topical copper-based antimicrobial therapy. Further studies, especially in vivo, are merited.

  6. Formation of stable products from cluster-cluster collisions

    International Nuclear Information System (INIS)

    Alamanova, Denitsa; Grigoryan, Valeri G; Springborg, Michael

    2007-01-01

    The formation of stable products from copper cluster-cluster collisions is investigated by using classical molecular-dynamics simulations in combination with an embedded-atom potential. The dependence of the product clusters on impact energy, relative orientation of the clusters, and size of the clusters is studied. The structures and total energies of the product clusters are analysed and compared with those of the colliding clusters before impact. These results, together with the internal temperature, are used in obtaining an increased understanding of cluster fusion processes

  7. Observations on small anionic clusters in an electrostatic ion beam trap

    Energy Technology Data Exchange (ETDEWEB)

    Eritt, Markus

    2008-10-02

    The term atomic cluster relates to compounds of at least two or three atoms. Thereby the physical properties are size dependent and the property transitions between single atoms and bulk material are not always smooth. Ion traps allow it to observe internal cluster properties independent from the influence of external forces. In this work the electron induced decay of singly negatively charged atomic clusters was observed. The dissociation cross section of the clusters is dominated by detachment of the only weakly bound outer electrons. For simple atoms at low electron energies a simple scaling law can be obtained that includes only the binding energies of the valence electrons. Nevertheless for larger sizes theoretical calculations predict so called ''giant resonances'' as dominant decay process in metal clusters. Due to mass limitations in storage rings exist so far only cross section measurements for simple anions and small negative molecules. In this work the electron detachment cross sections of small negatively charged carbon (C{sub n}{sup -} n=2-12), aluminium (Al{sub n}{sup -} n=2-7) and silver clusters (Ag{sub n}{sup -} n=1-11) were measured in an electrostatic ion beam trap. The classical scaling law, including only the binding energies of the valence electrons, turned out to be not sufficient, especially for larger clusters. In order to improve the correlation between measured and predicted values it was proposed to involve the influence of the cluster volume and the specific polarisability induced by long range coulomb interaction. For silver clusters the best agreement was obtained using a combination of the projected area reduced by the polarisability. The existence of ''giant resonances'' could not be confirmed. According to theory for clusters with a broad internal energy distribution, a power-law decay close to 1/time is expected. For some clusters the lifetime behaviour would be strongly quenched by photon

  8. Cloning, crystallization and preliminary X-ray studies of XC2981 from Xanthomonas campestris, a putative CutA1 protein involved in copper-ion homeostasis

    International Nuclear Information System (INIS)

    Lin, Chien-Hung; Chin, Ko-Hsin; Gao, Fei Philip; Lyu, Ping-Chiang; Shr, Hui-Lin; Wang, Andrew H.-J.; Chou, Shan-Ho

    2006-01-01

    A probable copper-ion tolerance protein from the plant pathogen X. campestris has been overexpressed in E. coli, purified and crystallized. Divalent metal ions play key roles in all living organisms, serving as cofactors for many proteins involved in a variety of electron-transfer activities. However, copper ions are highly toxic when an excessive amount is accumulated in a cell. CutA1 is a protein found in all kingdoms of life that is believed to participate in copper-ion tolerance in Escherichia coli, although its specific function remains unknown. Several crystal structures of multimeric CutA1 with different rotation angles and degrees of interaction between trimer interfaces have been reported. Here, the cloning, expression, crystallization and preliminary X-ray analysis of XC2981, a possible CutA1 protein present in the plant pathogen Xanthomonas campestris, are reported. The XC2981 crystals diffracted to a resolution of 2.6 Å. They are cubic and belong to space group I23, with unit-cell parameters a = b = c = 130.73 Å

  9. The investigation of the elastic photon scattering cross sections by copper atoms and ions

    International Nuclear Information System (INIS)

    Kuplyauskene, A.B.

    1976-01-01

    The differential cross sections of coherent scattering of photons on a copper atom and ions Cu + and Cu 2+ and also on ions Zn + and Ga 2+ in their ground states have been studied theoretically. The energy of an incident photon has varied in the range from 0.5 keV to 200 keV, and the scattering cross sections are given for angles of 30 deg, 60 deg, 90 deg, 120 deg, 150 deg. The calculations are performed in the formfactor approximation with the use of generalized hydrogen-like analytical radial orbitals. To clarify the contribution from individual shells the cross sections of photon scattering on individual electron of shells are calculated. It follows from the calculations that when the energies of the incident photon are less than 4 keV, the main contribution into the differential cross section is made by external electrons. Then, alongside with the increase of the energy, the contribution of the electrons decreases, and the inner shells begin to play a more important role. Therefore the photon cross sections for the energies greater than 50 keV practically coincide for atoms and ions of copper. The general regularities of the cross section variation accompanying the increase of the photon energy are similar for all the elements under study. The angular dependences of cross sections are such that they decrease first and after reaching the minimum at angles of 90 deg - 120 deg increase again

  10. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  11. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    Science.gov (United States)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  12. Symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster studies of electronically excited states of copper tetrachloride and copper tetrabromide dianions

    International Nuclear Information System (INIS)

    Ehara, Masahiro; Piecuch, Piotr; Lutz, Jesse J.; Gour, Jeffrey R.

    2012-01-01

    Graphical abstract: Electronically excited states of CuCl 4 2- and CuBr 4 2- are determined using the scalar relativistic symmetry-adapted-cluster configuration-interaction and equation-of-motion coupled-cluster calculations. The results are compared with experimental spectra. Highlights: ► Electronic spectra of CuCl 4 2- and CuBr 4 2- are examined by SAC-CI and EOMCC methods. ► Relativistic SAC-CI and EOMCC results are compared with experimental spectra. ► An assignment of bands in the CuCl 4 2- and CuBr 4 2- absorption spectra is obtained. ► Relativistic effects affect excitation energies and ground-state geometries. ► The effect of relativity on the oscillator strengths is generally small. - Abstract: The valence excitation spectra of the copper tetrachloride and copper tetrabromide open-shell dianions, CuCl 4 2- and CuBr 4 2- , respectively, are investigated by a variety of symmetry-adapted-cluster configuration-interaction (SAC-CI) and equation-of-motion coupled-cluster (EOMCC) methods. The valence excited states of the CuCl 4 2- and CuBr 4 2- species that correspond to transitions from doubly occupied molecular orbitals (MOs) to a singly occupied MO (SOMO), for which experimental spectra are available, are examined with the ionized (IP) variants of the SAC-CI and EOMCC methods. The higher-energy excited states of CuCl 4 2- and CuBr 4 2- that correspond to transitions from SOMO to unoccupied MOs, which have not been characterized experimentally, are determined using the electron-attached (EA) SAC-CI and EOMCC approaches. An emphasis is placed on the scalar relativistic SAC-CI and EOMCC calculations based on the spin-free part of the second-order Douglass–Kroll–Hess Hamiltonian (DKH2) and on a comparison of the results of the IP and EA SAC-CI and EOMCC calculations with up to 2-hole-1-particle (2h-1p) and 2-particle-1-hole (2p-1h) excitations, referred to as the IP-SAC-CI SD-R and IP-EOMCCSD(2h-1p) methods in the IP case and EA-SAC-CI SD-R and EA

  13. On the mechanism of water cluster-ion formation in carbon dioxide

    International Nuclear Information System (INIS)

    Warneck, P.; Rakshit, A.B.

    1981-01-01

    A drift chamber mass spectrometer has been used to study the formation of water cluster-ions in carbon dioxide containing traces of water vapour. The dominant reaction sequences were identified up to the fourth generation of daughter ions starting with CO 2 + . The subsequent reaction mechanism remains uncertain and several possibilities are discussed. The final ions are H 3 O + H 2 O and H 3 O + (H 2 O) 2 . The significance of the reaction schemes to the radiation chemistry of carbon dioxide is pointed out. (orig.)

  14. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  15. Developing on-site paper colorimetric monitoring technique for quick evaluating copper ion concentration in mineral wastewater

    Science.gov (United States)

    Liu, Guokun; Peng, Jingji; Zheng, Hong; Yuan, Dongxing

    2018-05-01

    With the reinforce of the copper mining, the on-site monitoring of the accompanied effluent discharge is highly demanded for the emergency response to minimize the negative effect of the effluent on the surrounding ecosystem. On the basis of the specific interaction between Cu2+ and L-Cysteine (L-Cys), which was modified on gold nanoparticles (Au NPs), and the aggregation dependent surface plasmon resonance (SPR) of Au NPs, we developed an easy-on-going paper colorimetric method for the quick evaluating the copper ion concentration in the waste water excreted from the copper mine. The color change of L-Cys modified Au NPs (L-Cys-Au NPs)immobilized on a filter paper was very sensitive to the Cu2+ concentration and free of interference from other metal ions typically in waste water. The proposed paper colorimetry has the LOD of 0.09 mg/L and the linear range of 0.1-10 mg/L, respectively, with the RSD (n = 5) was 6.6% for 1 mg/L Cu2+ and 3.5% for 5 mg/L Cu2+. The quantitative analysis results for the mineral wastewater is in good agreement the China National Environmental Protection Standards HJ485-2009, which indicates the current method could be developed to the on-site detection technique for the emergency response in monitoring Cu2+ in industrial wastewater or polluted water.

  16. Si clusters/defective graphene composites as Li-ion batteries anode materials: A density functional study

    International Nuclear Information System (INIS)

    Li, Meng; Liu, Yue-Jie; Zhao, Jing-xiang; Wang, Xiao-guang

    2015-01-01

    Highlights: • We study the interaction between Si clusters with pristine and defective graphene. • We find that the binding strength of Si clusters on graphene can be enhanced to different degrees after introducing various defects. • It is found that both graphene and Si cluster in the Si/graphene composites can preserve their Li uptake ability. - Abstract: Recently, the Si/graphene hybrid composites have attracted considerable attention due to their potential application for Li-ion batteries. How to effectively anchor Si clusters to graphene substrates to ensure their stability is an important factor to determine their performance for Li-ion batteries. In the present work, we have performed comprehensive density functional theory (DFT) calculations to investigate the geometric structures, stability, and electronic properties of the deposited Si clusters on defective graphenes as well as their potential applications for Li-ion batteries. The results indicate that the interfacial bonding between these Si clusters with the pristine graphene is quietly weak with a small adsorption energy (<−0.21 eV). Due to the presence of vacancy site, the binding strength of Si clusters on defective graphene is much stronger than that of pristine one, accompanying with a certain amount of charge transfer from Si clusters to graphene substrates. Moreover, the ability of Si/graphene hybrids for Li uptake is studied by calculating the adsorption of Li atoms. We find that both graphenes and Si clusters in the Si/graphene composites preserve their Li uptake ability, indicating that graphenes not only server as buffer materials for accommodating the expansion of Si cluster, but also provide additional intercalation sites for Li

  17. Metallic and/or oxygen ion implantation into AlN ceramics as a method of preparation for its direct bonding with copper

    International Nuclear Information System (INIS)

    Barlak, M.; Borkowska, K.; Olesinska, W.; Kalinski, D.; Piekoszewski, J.; Werner, Z.; Jagielski, J.; Sartowska, B.

    2006-01-01

    Direct bonding (DB) process is recently getting an increasing interest as a method for producing high quality joints between aluminum nitride (AlN) ceramics and copper. The metallic ions were implanted using an MEVVA type TITAN implanter with unseparated beam. Oxygen ions were implanted using a semi-industrial ion implanter without mass separation equipped with a gaseous ion source. The substrate temperature did not exceed 200 o C. Ions were implanted at two acceleration voltages, i.e. 15 and 70 kV. The fluence range was between 1·E16 and 1·E18 cm -2 . After implantation, some of the samples were characterized by the Rutherford backscattering (RBS) method. In conclusion: (a) The investigations performed in the present work confirm an assumption that ion implantation is a very promising technique as a pretreatment of AlN ceramics for the formation of the joints with copper in direct bonding process. (b) It has been shown that titanium implantation gives the best results in comparison to other metals examined (Fe, Cr, Cu) but also in comparison to double Ti+O and O+Ti implantations

  18. Evaluation of Resin Regeneration Using HCl and H2SO4 for the Ion Exchanger of Copper

    International Nuclear Information System (INIS)

    Prayitno; Djoko Sardjono

    2002-01-01

    The experimental investigation on the regeneration of resin using HCl and H 2 SO 4 with its varian concentration of 1; 2.5; 2; 2.5 and 3 N and the stirring time was 5; 10; 15; 20; and 25 minutes. For evaluating their effectiveness on the separation of ion copper in the waste with concentration 500 ppm. Experimentally this investigation is the first step of resin results of regeneration process usage as an alternative resin for the treatment of liquid waste containing especially copper. The experimental resulted by mixing the feed copper waste with resin after regeneration. Therefore it could be concluded that the most effective regeneration was obtained with HCl as the regeneration of concentration 2 N and the stirring time 15 minutes with the percentage of separation used of 85.1 %. (author)

  19. A brief review of cavity swelling and hardening in irradiated copper and copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1990-01-01

    The literature on radiation-induced swelling and hardening in copper and its alloy is reviewed. Void formation does not occur during irradiation of copper unless suitable impurity atoms such as oxygen or helium are present. Void formation occurs for neutron irradiation temperatures of 180 to 550 degree C, with peak swelling occurring at ∼320 degree C for irradiation at a damage rate of 2 x 10 -7 dpa/s. The post-transient swelling rate has been measured to be ∼0.5%/dpa at temperatures near 400 degree C. Dispersion-strengthened copper has been found to be very resistant to void swelling due to the high sink density associated with the dispersion-stabilized dislocation structure. Irradiation of copper at temperatures below 400 degree C generally causes an increase in strength due to the formation of defect clusters which inhibit dislocation motion. The radiation hardening can be adequately described by Seeger's dispersed barrier model, with a barrier strength for small defect clusters of α ∼ 0.2. The radiation hardening apparently saturates for fluences greater than ∼10 24 n/m 2 during irradiation at room temperature due to a saturation of the defect cluster density. Grain boundaries can modify the hardening behavior by blocking the transmission of dislocation slip bands, leading to a radiation- modified Hall-Petch relation between yield strength and grain size. Radiation-enhanced recrystallization can lead to softening of cold-worked copper alloys at temperatures above 300 degree C

  20. Synthesis of N-acetyl-L-cysteine capped Mn:doped CdS quantum dots for quantitative detection of copper ions

    Science.gov (United States)

    Yang, Xiupei; Jia, Zhihui; Cheng, Xiumei; Luo, Na; Choi, Martin M. F.

    2018-06-01

    In this work, a new assembled copper ions sensor based on the Mn metal-enhanced fluorescence of N-acetyl-L-cysteine protected CdS quantum dots (NAC-Mn:CdS QDs) was developed. The NAC and Mn:CdS QDs nanoparticles were assembled into NAC-Mn:CdS QDs complexes through the formation of Cdsbnd S and Mnsbnd S bonds. As compared to NAC capped CdS QDs, higher fluorescence quantum yields of NAC-Mn:CdS QDs was observed, which is attributed to the surface plasmon resonance of Mn metal. In addition, the fluorescence intensity of as-formed complexes weakened in the presence of copper ions. The decrease in fluorescence intensity presented a linear relationship with copper ions concentration in the range from 0.16-3.36 μM with a detection limit of 0.041 μM . The characterization of as-formed QDs was analyzed by photoluminescence (PL), ultra violet-visible (UV-vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS) respectively. Furthermore, the recoveries and relative standard deviations of Cu2+ spiked in real water samples for the intra-day and inter-day analyses were 88.20-117.90, 95.20-109.90, 0.80-5.80 and 1.20-3.20%, respectively. Such a metal-enhanced QDs fluorescence system may have promising application in chemical and biological sensors.

  1. Energetics and dynamics of the neutralization of clustered ions in ammonia and water vapour

    International Nuclear Information System (INIS)

    Sennhauser, E.S.; Armstrong, D.A.

    1978-01-01

    The energetics and dynamics of neutralization reactions of clustered ions in ammonia and water vapour have been analysed. Neutralization rate coefficients were calculated for the ions in ammonia and for H + .(H 2 O)sub(n) combining with various clustered anions in water vapour up to densities of 4 x 10 19 molecule cm -3 at 390 K. In the case of ammonia, calculations were also performed at 298 K. For all systems, fractional contributions of the neutralization coefficients for specific cluster sizes to the overall coefficient αsub(eff) were evaluated. The computed value of αsub(eff) for NH 3 was in reasonable agreement with experimental data in the [NH 3 ] range 0.3 to 4 x 10 19 molecule cm -3 , and general trends stemming from the effects of increasing ion mass were pointed out. Calculations of energies of individual cluster sizes indicate possible neutralization reaction mechanisms. With some exception, proton transfer is the only possible path and no H atoms should be formed. This is in general agreement with literature results for water vapour at approximately 390 K and with [H 2 O] >= 2 x 10 x 10 19 molecule cm -3 . (author)

  2. Vacancy defect and defect cluster energetics in ion-implanted ZnO

    Science.gov (United States)

    Dong, Yufeng; Tuomisto, F.; Svensson, B. G.; Kuznetsov, A. Yu.; Brillson, Leonard J.

    2010-02-01

    We have used depth-resolved cathodoluminescence, positron annihilation, and surface photovoltage spectroscopies to determine the energy levels of Zn vacancies and vacancy clusters in bulk ZnO crystals. Doppler broadening-measured transformation of Zn vacancies to vacancy clusters with annealing shifts defect energies significantly lower in the ZnO band gap. Zn and corresponding O vacancy-related depth distributions provide a consistent explanation of depth-dependent resistivity and carrier-concentration changes induced by ion implantation.

  3. Study of the Effect of Sulfide Ions on the Corrosion Resistance of Copper for Use in Containers for High Level radioactive waste

    International Nuclear Information System (INIS)

    Urbal Espinoza, Andrea Elizabeth

    2000-01-01

    The work 'Study of sulfide ion on Resisting Copper Corrosion' is part of the project 'Study of Copper Corrosion in Underground Water Solution in Reducer Conditions', which the Department of Nuclear Materials, Chilean Nuclear Energy Commission is carrying out. These activities are important because of this metal's potential applications for handling and controlling contaminating wastes that are a product of using nuclear energy in electric generation. Copper has important mechanical properties and is also resistant to disintegration in corrosive environments, which is an important condition for its use in manufacturing of high level radioactive waste containers. This work is based on a study of cyclic volta metric curves, anodic and cathodic polarization and potentiostatic measurements, with which the potential range, sweep speed system, electrochemical reactions involved and corrosion speed could be defined. The microstructural characterization of the films was done by Scanning Electron Microscopy (SEM), and the chemical composition and surface contamination of the film were studied by photoelectron spectroscopy induced by X- rays (XPS), and the crystalline structure by X- ray Diffraction (XRD). Some noticeable results, such as low potentials (less than .7 V, in cathode direction) and high concentrations of sulfur make the formation of copper sulfides (I) and (II) possible; unlike the potential over .6 V, in anodic direction, where copper oxides (I) and (II) are formed, but they are inhibited by high sulfur concentrations. The morphological study of the copper surface has shown that the film that forms is more abundant and granular at higher cathodic potentials, forming small pits on the surface. The effect of the presence of sulfur ions is minimal, and the metal's deterioration is inhibited by other ions in the groundwater. The corrosion rate is greater as the sulfur concentration rises, and a time period of 20,000 years can be predicted for the total corrosion of

  4. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    Science.gov (United States)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  5. Effects of specific adsorption of copper (II) ion on charge transfer reaction at the thin film LiMn2O4 electrode/aqueous electrolyte interface

    International Nuclear Information System (INIS)

    Nakayama, N.; Yamada, I.; Huang, Y.; Nozawa, T.; Iriyama, Y.; Abe, T.; Ogumi, Z.

    2009-01-01

    This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn 2 O 4 thin film electrode/aqueous solution (1 mol dm -3 LiNO 3 ) interface. The zeta potential of LiMn 2 O 4 particles showed a negative value in 1 x 10 -2 mol dm -3 LiNO 3 aqueous solution, while it was measured as positive in the presence of 1 x 10 -2 mol dm -3 Cu(NO 3 ) 2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO 3 ) 2 was estimated to be 35 kJ mol -1 , which was ca. 10 kJ mol -1 larger than that observed in the solution without Cu(NO 3 ) 2 . These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction

  6. Observations of copper clustering in a 25Cr-7Ni super duplex stainless steel during low-temperature aging under load

    Science.gov (United States)

    Thuvander, M.; Zhou, J.; Odqvist, J.; Hertzman, S.; Hedström, P.

    2012-07-01

    Atom-probe tomography was used to investigate phase separation and copper (Cu) clustering in the ferrite phase of a 25Cr-7Ni super duplex stainless steel. The steel was subjected to a tensile load during aging at 325°C for 5800 h. The degree of phase separation into α (Fe-rich) and α‧ (Cr-rich) was small, but still, it was the highest in the steel subjected to the highest load. Cu was found to cluster, and the number density of clusters increased with increasing load. In the material subjected to the highest load, Cu was enriched in regions that were neither Fe-rich nor Cr-rich. These regions also had the highest number density of Cu clusters.

  7. Gas cluster ion beam assisted NiPt germano-silicide formation on SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Ahmet S., E-mail: asozcan@us.ibm.com [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Lavoie, Christian; Jordan-Sweet, Jean [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York 10598 (United States); Alptekin, Emre; Zhu, Frank [IBM Semiconductor Research and Development Center, 2070 Route 52, Hopewell Junction, New York 12533 (United States); Leith, Allen; Pfeifer, Brian D.; LaRose, J. D.; Russell, N. M. [TEL Epion Inc., 900 Middlesex Turnpike, Bldg. 6, Billerica, Massachusetts 01821 (United States)

    2016-04-21

    We report the formation of very uniform and smooth Ni(Pt)Si on epitaxially grown SiGe using Si gas cluster ion beam treatment after metal-rich silicide formation. The gas cluster ion implantation process was optimized to infuse Si into the metal-rich silicide layer and lowered the NiSi nucleation temperature significantly according to in situ X-ray diffraction measurements. This novel method which leads to more uniform films can also be used to control silicide depth in ultra-shallow junctions, especially for high Ge containing devices, where silicidation is problematic as it leads to much rougher interfaces.

  8. Detoxification of copper fungicide using EDTA-modified cellulosic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-04

    Feb 4, 2009 ... Different countries or states have different laws, thus, ... fungi is due to the toxicity of copper ions in solution. A variety of copper .... initial concentration of Cu(II) ion solution, which ranged from 1400 to ..... exchange mechanism.

  9. Interaction of cysteine and copper ions on the surface of iron: EIS, polarization and XPS study

    International Nuclear Information System (INIS)

    El-Deab, Mohamed S.

    2011-01-01

    Highlights: → The current study demonstrates a comprehensive study for Cysteine + Cu(II) ions as an efficient inhibitor as demonstrated by EIS, XPS and potentiodynamic polarization measurements, in addition to traditional weight loss measurements. → The novelty of the current work originates from the combined use of an eco-friendly compound (i.e., cysteine) with a minute amount of copper ions (in the micro molar range) as a corrosion inhibitor for low carbon steel in acidic medium. To this end, cysteine shows only moderate inhibition ca. 60% for iron which jumps up to more than 95% in the presence of micro molar range of Cu(II) ions. → Cysteine-Cu(II) blends are found superior to benzotriazole (BTAH)-Cu(II) blends in terms of their long-term stability in addition to the avoidance of the use of the well-reported highly toxic BTAH. - Abstract: This study addresses the enhancing effect of copper ions on the inhibition efficiency (IE) of cysteine (an eco-friendly compound) against the corrosion of iron in 0.5 M sulphuric acid. Electrochemical impedance spectroscopy (EIS) data revealed a significant increase in the polarization resistance (R p ) of the iron/solution interface in the presence of cysteine and Cu(II) ions instead of cysteine alone. That is, IE of 95% is obtained in the presence of 5 mM cysteine and 25 μM Cu(II) ions, compared to 66% in absence of Cu(II) ions. Moreover, electrochemical polarization measurements indicate that cysteine and Cu(II) ions blends act as mixed-type inhibitors for the corrosion of iron. The formation of Cu(I)-cysteinate complex and/or cysteine SAM at Cu atop the iron surface (as evident from X-ray photoelectron spectroscopy (XPS)) blocks the underlying iron surface and imparts a pronounced protection against its corrosion. IE of cysteine-Cu(II) blend remains effectively unchanged with immersion time indicating its high stability in the used acidic medium.

  10. Preparation and electrochemical performance of copper foam-supported amorphous silicon thin films for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Li Haixia; Cheng Fangyi; Zhu Zhiqiang; Bai Hongmei; Tao Zhanliang; Chen Jun

    2011-01-01

    Research highlights: → Amorphous Si thin films have been deposited on copper foam substrate by radio-frequency (rf) magnetron sputtering. → The as-prepared Si/Cu films with interconnected 3-dimensional structure are employed as anode materials of rechargeable lithium-ion batteries, showing that the electrode properties are greatly affected by the deposition temperature. → The film electrode deposited at an optimum temperature of 300 deg. C delivers a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. → The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm 2 /s. → The combination of rf magnetron sputtering and cooper foam substrate is an efficient route to prepare amorphous Si films with high capacity and cyclability due to the efficient ionic diffusion and interface contact with a good conductive current collector. - Abstract: Amorphous Si thin films, which have been deposited on copper foam by radio-frequency (rf) magnetron sputtering, are employed as anode materials of rechargeable lithium-ion batteries. The morphologies and structures of the as-prepared Si thin films are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD). Electrochemical performance of lithium-ion batteries with the as-prepared Si films as the anode materials is investigated by cyclic voltammetry and charge-discharge measurements. The results show that the electrode properties of the prepared amorphous Si films are greatly affected by the deposition temperature. The film electrode deposited at an optimum temperature of 300 deg. C can deliver a specific capacity of ∼2900 mAh/g and a coulombic efficiency above 95% at charge/discharge current density of 0.2C after 30 cycles. The Li + diffusion coefficiency in copper foam-supported Si thin films is determined to be 2.36 x 10 -9 cm

  11. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    Science.gov (United States)

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-07

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries.

  12. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  13. ION INJECTION AT QUASI-PARALLEL SHOCKS SEEN BY THE CLUSTER SPACECRAFT

    International Nuclear Information System (INIS)

    Johlander, A.; Vaivads, A.; Khotyaintsev, Yu. V.; Retinò, A.; Dandouras, I.

    2016-01-01

    Collisionless shocks in space plasma are known to be capable of accelerating ions to very high energies through diffusive shock acceleration (DSA). This process requires an injection of suprathermal ions, but the mechanisms producing such a suprathermal ion seed population are still not fully understood. We study acceleration of solar wind ions resulting from reflection off short large-amplitude magnetic structures (SLAMSs) in the quasi-parallel bow shock of Earth using in situ data from the four Cluster spacecraft. Nearly specularly reflected solar wind ions are observed just upstream of a SLAMS. The reflected ions are undergoing shock drift acceleration (SDA) and obtain energies higher than the solar wind energy upstream of the SLAMS. Our test particle simulations show that solar wind ions with lower energy are more likely to be reflected off the SLAMS, while high-energy ions pass through the SLAMS, which is consistent with the observations. The process of SDA at SLAMSs can provide an effective way of accelerating solar wind ions to suprathermal energies. Therefore, this could be a mechanism of ion injection into DSA in astrophysical plasmas

  14. Relaxation effects in ionic mobility and cluster formation: negative ions in SF6 at high pressures

    International Nuclear Information System (INIS)

    Juarez, A M; De Urquijo, J; Hinojosa, G; Hernandez-Avila, J L; Basurto, E

    2010-01-01

    The relaxation effects of the ionic mobility and the formation of negative-ion clusters in SF 6 are studied in this work. For this purpose, we have measured the mobility of negative ions in SF 6 over the pressure range 100-800 Torr at a fixed value of density-normalized electric field, E/N, of 20 Td (1 Townsend = 10 -17 V cm 2 ). The data obtained show a clear dependence of the negative-ion drift velocity on drift distance. It is observed that the drift velocity (mobility) reaches a steady-state value only for drift distances above 2 cm, over the studied pressure range. In addition to this, we have observed that the ionic mobility depends strongly on the gas pressure. An explanation of this dependence of the ionic mobility on gas pressure is given in terms of a negative-ion clustering formation process. It was found that the assumption of a linear dependence of the cluster ion mass on pressure provides a satisfactory explanation for the observed mobilities.

  15. Study of the interaction mechanism in the biosorption of copper(II) ions onto posidonia oceanica and peat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, Marta; Marzal, Paula; Gabaldon, Carmen [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, Valencia (Spain); Silvetti, Margherita; Castaldi, Paola [Dipartimento di Scienze Ambientali e Agrarie e Biotecnologie Agro-Alimentari, Sez. Chimica Agraria ed Ambientale, University of Sassari, Sassari (Italy)

    2012-04-15

    A systematic approach was used to characterize the biosorption of copper(II) onto two biosorbents, Posidonia oceanica and peat, focusing on the interaction mechanisms, the copper(II) sorption-desorption process and the thermal behavior of the biosorbents. Sorption isotherms at pH 4-6 were obtained and the experimental data were fitted to the Langmuir model with a maximum uptake (q{sub max}) at pH 6 of 85.78 and 49.69 mg g{sup -1}, for P. oceanica and peat, respectively. A sequential desorption (SD) with water, Ca(NO{sub 3}){sub 2}, and EDTA was applied to copper-saturated biosorbents. Around 65-70% copper(II) were desorbed with EDTA, indicating that this heavy metal was strongly bound. The reversibility of copper(II) sorption was obtained by desorption with HCl and SD. Fourier transform IR spectroscopy (FTIR) analysis detected the presence of peaks associated with OH groups in aromatic and aliphatic structures, CH, CH{sub 2}, and CH{sub 3} in aliphatic structures, COO{sup -} and COOH groups and unsaturated aromatic structures on the surface of both biosorbents, as well as peaks corresponding to Si-O groups on the surface of peat. The results of SEM-EDX and FTIR analysis of copper-saturated samples demonstrated that ion exchange was one of the mechanisms involved in copper(II) retention. Thermal analysis of biosorbent samples showed that copper(II) sorption-desorption processes affected the thermal stability of the biosorbents. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Interaction of ion clusters with fusion plasmas: Scaling laws

    International Nuclear Information System (INIS)

    Arista, N.R.; Bringa, E.M.

    1997-01-01

    The interaction between large ion clusters or very intense ion beams with fusion plasma is studied using the dielectric function formalism with appropriate quantum corrections. The contributions from individual and collective modes to the energy loss are calculated. The general properties of the interference effects are characterized in terms of the relevant parameters, and simple scaling laws are obtained. In particular, the conditions for a maximum enhancement in the energy deposition are derived. The study provides a unified view and a general formulation of collective effects in the energy loss for low and high velocities of the beam particles. copyright 1997 The American Physical Society

  17. Ion-neutral Clustering of Bile Acids in Electrospray Ionization Across UPLC Flow Regimes

    Science.gov (United States)

    Brophy, Patrick; Broeckling, Corey D.; Murphy, James; Prenni, Jessica E.

    2018-02-01

    Bile acid authentic standards were used as model compounds to quantitatively evaluate complex in-source phenomenon on a UPLC-ESI-TOF-MS operated in the negative mode. Three different diameter columns and a ceramic-based microfluidic separation device were utilized, allowing for detailed descriptions of bile acid behavior across a wide range of flow regimes and instantaneous concentrations. A custom processing algorithm based on correlation analysis was developed to group together all ion signals arising from a single compound; these grouped signals produce verified compound spectra for each bile acid at each on-column mass loading. Significant adduction was observed for all bile acids investigated under all flow regimes and across a wide range of bile acid concentrations. The distribution of bile acid containing clusters was found to depend on the specific bile acid species, solvent flow rate, and bile acid concentration. Relative abundancies of each cluster changed non-linearly with concentration. It was found that summing all MS level (low collisional energy) ions and ion-neutral adducts arising from a single compound improves linearity across the concentration range (0.125-5 ng on column) and increases the sensitivity of MS level quantification. The behavior of each cluster roughly follows simple equilibrium processes consistent with our understanding of electrospray ionization mechanisms and ion transport processes occurring in atmospheric pressure interfaces. [Figure not available: see fulltext.

  18. Fabrication of new carbon paste electrodes based on gold nano-particles self-assembled to mercapto compounds as suitable ionophores for potentiometric determination of copper ions

    Directory of Open Access Journals (Sweden)

    Rasoul Pourtaghavi Talemi

    2013-12-01

    Full Text Available In the present study, we investigate the potentiometric behavior of Cu2+ carbon paste electrodes based on two mercapto compounds 2-ethylmino-5-mercapto-1,3,4-thiadiazole (EAMT and 2-acetylamino-5-mercapto-1,3,4-thiadiazole (AAMT self-assembled on gold nano-paricle (GNP as ionophore. Then, the obtained results from the modified electrodes are compared. The self-assembled ionophores exhibit a high selectivity for copper ion (Cu2+, in which the sulfur and nitrogen atoms in their structure play a significant role as the effective coordination donor site for the copper ion. Among these electrodes, the best performance was obtained with the sensor with a EAMT/graphite powder/paraffin oil weight ratio of 4.0/68/28 with 200 µL of GNP which exhibits the working concentration range of 1.6×10−9 to 6.3×10−2 M and a nernstian slope of 28.9±0.4 mVdecade−1 of copper(II activity. The detection limit of electrode was 2.9(±0.2×10−10M and potential response was pH ; in other words, it was independent across the range of 2.8–6.3. The proposed electrode presented very good selectivity and sensitivity towards the Cu2+ ions over a wide variety of cations including alkali, alkaline earth, transition and heavy metal ions. Moreover, the proposed electrode was successfully applied as an indicator electrode in the potentiometric titration of Cu(II ions with EDTA and also the potentiometric determination of copper ions in spiked water samples.

  19. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  20. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  1. Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries.

    Science.gov (United States)

    Liang, Zhicong; Fan, Xiaofeng; Zheng, Weitao; Singh, David J

    2017-05-24

    Layered carbon is a likely anode material for Na-ion batteries (NIBs). Graphitic carbon has a low capacity of approximately 35 (mA h)/g due to the formation of NaC 64 . Using first-principles methods including van der Waals interactions, we analyze the adsorption of Na ions and clusters on graphene in the context of anodes. The interaction between Na ions and graphene is found to be weak. Small Na clusters are not stable on the surface of pristine graphene in the electrochemical environment of NIBs. However, we find that Na ions and clusters can be stored effectively on defected graphene that has double vacancies. In addition, the adsorption energy of small Na clusters near a double vacancy is found to decrease with increasing cluster size. With high concentrations of vacancies the capacity of Na on defective graphene is found to be as much as 10-30 times higher than that of graphitic carbon.

  2. Human cytoplasmic copper chaperones Atox1 and CCS exchange copper ions in vitro.

    Science.gov (United States)

    Petzoldt, Svenja; Kahra, Dana; Kovermann, Michael; Dingeldein, Artur P G; Niemiec, Moritz S; Ådén, Jörgen; Wittung-Stafshede, Pernilla

    2015-06-01

    After Ctr1-mediated copper ion (Cu) entry into the human cytoplasm, chaperones Atox1 and CCS deliver Cu to P1B-type ATPases and to superoxide dismutase, respectively, via direct protein-protein interactions. Although the two Cu chaperones are presumed to work along independent pathways, we here assessed cross-reactivity between Atox1 and the first domain of CCS (CCS1) using biochemical and biophysical methods in vitro. By NMR we show that CCS1 is monomeric although it elutes differently from Atox1 in size exclusion chromatography (SEC). This property allows separation of Atox1 and CCS1 by SEC and, combined with the 254/280 nm ratio as an indicator of Cu loading, we demonstrate that Cu can be transferred from one protein to the other. Cu exchange also occurs with full-length CCS and, as expected, the interaction involves the metal binding sites since mutation of Cu-binding cysteine in Atox1 eliminates Cu transfer from CCS1. Cross-reactivity between CCS and Atox1 may aid in regulation of Cu distribution in the cytoplasm.

  3. Major signal suppression from metal ion clusters in SFC/ESI-MS - Cause and effects.

    Science.gov (United States)

    Haglind, Alfred; Hedeland, Mikael; Arvidsson, Torbjörn; Pettersson, Curt E

    2018-05-01

    The widening application area of SFC-MS with polar analytes and water-containing samples facilitates the use of quick and simple sample preparation techniques such as "dilute and shoot" and protein precipitation. This has also introduced new polar interfering components such as alkali metal ions naturally abundant in e.g. blood plasma and urine, which have shown to be retained using screening conditions in SFC/ESI-TOF-MS and causing areas of major ion suppression. Analytes co-eluting with these clusters will have a decreased signal intensity, which might have a major effect on both quantification and identification. When investigating the composition of the alkali metal clusters using accurate mass and isotopic pattern, it could be concluded that they were previously not described in the literature. Using NaCl and KCl standards and different chromatographic conditions, varying e.g. column and modifier, the clusters proved to be formed from the alkali metal ions in combination with the alcohol modifier and make-up solvent. Their compositions were [(XOCH 3 ) n  + X] + , [(XOH) n  + X] + , [(X 2 CO 3 ) n  + X] + and [(XOOCOCH 3 ) n  + X] + for X = Na + or K + in ESI+. In ESI-, the clusters depended more on modifier, with [(XCl) n  + Cl] - and [(XOCH 3 ) n  + OCH 3 ] - mainly formed in pure methanol and [(XOOCH) n  + OOCH] - when 20 mM NH 4 Fa was added. To prevent the formation of the clusters by avoiding methanol as modifier might be difficult, as this is a widely used modifier providing good solubility when analyzing polar compounds in SFC. A sample preparation with e.g. LLE would remove the alkali ions, however also introducing a time consuming and discriminating step into the method. Since the alkali metal ions were retained and affected by chromatographic adjustments as e.g. mobile phase modifications, a way to avoid them could therefore be chromatographic tuning, when analyzing samples containing them. Copyright © 2018 Elsevier

  4. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Maurizio, E-mail: maurizio.lazzari@unibo.it; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-15

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L{sup −1}. Densitometric values of cONS, immunostained with anti-G {sub αolf}, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G {sub

  5. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    International Nuclear Information System (INIS)

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-01-01

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L"−"1. Densitometric values of cONS, immunostained with anti-G _α_o_l_f, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G _

  6. Gas discharge ion source. I. Duoplasmatron

    International Nuclear Information System (INIS)

    Bacon, F.M.

    1978-01-01

    The effects of the plasma expansion cup on the operation of a duoplasmatron ion source have been investigated by measuring the total ion current and the distributions of the ion energy, mass, and current density. A copper expansion cup did not affect the magnetic field near the anode of the ion source and consequently the ion current density distribution was sharply peaked near the center of the cup. Ion energy distributions were approximately symmetrical about anode potential. The dominant ionic species were D + 3 and D + at low and high arc currents, respectively. Changes in the electrical potential of the copper cup with respect to the anode produced negligible changes in the above data. A mild steel plasma expansion cup caused the magnetic field to diverge and intercept the cup walls, resulting in ion current density distributions that were flatter and more amenable to focusing than the ones with the copper cup. With the steel cup at anode potential, the ion mass distribution was similar to that from the copper cup; however, the ion energy distribution was asymmetrical about the anode potential with a peak about 10-20 V above anode potential. The total ion current from this mode of operation was about one-third the value from the copper cup. If the steel cup assumed floating potential, about 50 V below anode potential, the total current increased to the level observed from the copper cup and the ion energy distribution was similar to that observed with the copper cup but the current density distribution was much flatter than that of the copper cup. The ion mass distribution was 60%-70% atomic ions over the entire arc current range investigated. Based on these data, a modified plasma expansion cup was designed with tapered steel walls lined with a boron nitride insert. The overall performance of the duoplasmatron ion source with this cup was superior to any of the previous three modes of operation

  7. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes.

    Science.gov (United States)

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A

    2017-01-05

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper ions and resulting in variable outcomes. Herein we set out to assess whether copper metal organic framework nanoparticles (HKUST-1 NPs) embedded within an antioxidant thermoresponsive citrate-based hydrogel would decrease copper ion toxicity and accelerate wound healing in diabetic mice. HKUST-1 and poly-(polyethyleneglycol citrate-co- N -isopropylacrylamide) (PPCN) were synthesized and characterized. HKUST-1 NP stability in a protein solution with and without embedding them in PPCN hydrogel was determined. Copper ion release, cytotoxicity, apoptosis, and in vitro migration processes were measured. Wound closure rates and wound blood perfusion were assessed in vivo using the splinted excisional dermal wound diabetic mouse model. HKUST-1 NP disintegrated in protein solution while HKUST-1 NPs embedded in PPCN (H-HKUST-1) were protected from degradation and copper ions were slowly released. Cytotoxicity and apoptosis due to copper ion release were significantly reduced while dermal cell migration in vitro and wound closure rates in vivo were significantly enhanced. In vivo , H-HKUST-1 induced angiogenesis, collagen deposition, and re-epithelialization during wound healing in diabetic mice. These results suggest that a cooperatively stabilized, copper ion-releasing H-HKUST-1 hydrogel is a promising innovative dressing for the treatment of chronic wounds.

  8. Photoelectrochemical detection of copper ions by modulating the growth of CdS quantum dots.

    Science.gov (United States)

    Grinyte, Ruta; Barroso, Javier; Díez-Buitrago, Beatriz; Saa, Laura; Möller, Marco; Pavlov, Valeri

    2017-09-15

    We discovered that copper ions (Cu 2+ ) catalyze the oxidation of cysteine (CSH) by oxygen (O 2 ) to modulate the growth of CSH-capped cadmium sulfide (CdS) nanoparticles (NPs). This new chemical process was applied to sensitive fluorogenic and photoelectrochemical (PEC) detection of Cu 2+ ions in real samples of mineral and tap water using the photocatalytic activity of the resulting NPs. Disposable screen-printed electrodes (SPCEs) modified with electroactive polyvinylpyridine bearing osmium complex (Os-PVP) by cyclic voltammetry (CV) were employed for PEC analytical system. CdS NPs formed during the assay photocatalyze oxidation of 1-thioglycerol (TG) upon application of 0.3 V vs. Ag/AgCl to SPCEs. Os-PVP complex mediated the electron transfer between the electrode surface and CdS NPs. We proved that our assays did not suffer from interference from other ions accompanying Cu 2+ and the sensitivity of our assays covers the European Union standard limit of Cu 2+ ions in drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reprint of: Negative carbon cluster ion beams: New evidence for the special nature of C60

    Science.gov (United States)

    Liu, Y.; O'brien, S. C.; Zhang, Q.; Heath, J. R.; Tittel, F. K.; Curl, R. F.; Kroto, H. W.; Smalley, R. E.

    2013-12-01

    Cold carbon cluster negative ions are formed by supersonic expansion of a plasma created at the nozzle of a supersonic cluster beam source by an excimer laser pulse. The observed distribution of mass peaks for the Cn- ions for n > 40 demonstrates that the evidence previously given for the special stability of neutral C60 and the existence of spheroidal carbon shells cannot be an artifact of the ionization conditions.

  10. Manganese Coated Sand for Copper (II Removal from Water in Batch Mode

    Directory of Open Access Journals (Sweden)

    Nidal Hilal

    2013-09-01

    Full Text Available Removal of heavy metals, such as copper ions, from water is important to protect human health and the environment. In this study, manganese coated sand (MCS was used as an adsorbent to remove copper ions in a batch system. Equilibrium data were determined at a temperature of 25.6 °C and the Langmuir model was used to describe the experimental data. Mn-coating improved the removal of copper ions by 70% as compared to uncoated sand. Based on a kinetics study, the adsorption of copper ions on MCS was found to occur through a chemisorption process and the pseudo-second-order model was found to fit the kinetics experimental data well. Due to particle interactions, the equilibrium uptake was reduced as the ratio of sand to volume of solution increased. pH affected the removal of copper ions with lowest uptakes found at pH 3 and pHs >7, whilst at pHs in the range of 4 to 7, the uptake was highest and almost constant at the value of 0.0179 mg/g ± 4%. This study has also revealed that copper ions removal was dissolved oxygen (DO dependent with the highest removal occurring at ambient DO concentration, which suggests that DO should be carefully studied when dealing with copper ions adsorption.

  11. potentiometric studies of the complexes formed by copper (ii)

    African Journals Online (AJOL)

    MBI

    The overall stability constants of copper (II) and zinc (II) ions with some polar ... The average number of coordinated amino acids to the copper (II) and zinc (II) ions .... of chelated rings (Yamuchi and Odani, 1996). ... Synthesis and techniques in.

  12. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    International Nuclear Information System (INIS)

    Yurtsever, E.; Onal, E. D.; Calvo, F.

    2011-01-01

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  13. Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ligare, Marshall R.; Baker, Erin M.; Laskin, Julia; Johnson, Grant E.

    2017-01-01

    Structural isomerism in ligated gold clusters is revealed using electrospray ionization ion mobility spectrometry mass spectrometry. Phosphine ligated Au8 clusters are shown to adopt more “extended” type structures with increasing exchange of methyldiphenylphosphine (MePPh2) for triphenylphosphine (PPh3). These ligand-dependant structure-property relationships are critical to applications of clusters in catalysis.

  14. Ag clustering investigation in laser irradiated ion-exchanged glasses by optical and vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trave, E., E-mail: enrico.trave@unive.it [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Cattaruzza, E.; Gonella, F.; Calvelli, P. [Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venezia, Dorsoduro 2137, I-30123 Venezia (Italy); Quaranta, A. [Department of Materials Engineering and Industrial Technologies, University of Trento, via Mesiano 77, I-38050 Povo (Italy); Rahman, A.; Mariotto, G. [Department of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona (Italy)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We modify the properties of Ag{sup +} exchanged glasses by thermal and laser treatment. Black-Right-Pointing-Pointer The induced microstructural changes are analyzed by optical and Raman spectroscopy. Black-Right-Pointing-Pointer Ag-based species in the glass show a peculiar PL activity in the UV-Vis range. Black-Right-Pointing-Pointer Raman and OA analysis allow for determining the Ag cluster size evolution. Black-Right-Pointing-Pointer Laser processing leads to different cluster formation and fragmentation mechanisms. - Abstract: Ion exchange process is widely used to dope silicate glass layers with silver for several applications, ranging from light waveguide to nanostructured composite glass fabrication. The silver-doped structure and its physical properties depend on the preparation parameters as well as on subsequent treatments. In particular, laser irradiation of the ion exchanged glasses has been demonstrated to be an effective tool to control cluster size and size distribution. Nevertheless, a complete comprehension of the basic phenomena and a systematic characterization of these systems are still lacking. In this paper, an extended optical characterization is presented for soda-lime glass slides, doped with silver by Ag{sup +}-Na{sup +} ion exchange, thermally treated and irradiated with a Nd:YAG laser beam at different wavelengths, and for different energy density. The samples were characterized by various spectroscopic techniques, namely, optical absorption, photoluminescence and micro-Raman analysis. The availability of all these characterization techniques allowed pointing out a suitable scenario for the Ag clustering evolution as a function of the ion exchange, annealing and laser irradiation parameters.

  15. Bio sorption of copper ions with biomass of algae and dehydrated waste of olives; Biosorcion de iones cobre con biomasa de algas y orujos deshidratados

    Energy Technology Data Exchange (ETDEWEB)

    Tapia, P.; Santander, M.; Pavez, O.; Valderrama, L.; Guzman, D.; Romero, L.

    2011-07-01

    They were carried out experiments of biosorption batch and in continuous to remove copper from aqueous solutions using as adsorbents green algae and olive residues under virgins conditions and chemically activated. The results of batch bio sorption indicate that the algae present mayor elimination capacities than the waste of olives, with uptakes of copper of the order of 96 % using activated algae with dissolution of Na{sub 2}SO{sub 4} under the optimum conditions. The results of the columns tests show that the virgin algae permits the removal of more copper ions than the activate algae, with removal efficiency of 98 % during the firth 20 min, a breakthrough time of 240 min and a saturation at time of 600 min. In the second cycle the regenerated biomass showed a best performance indicating that they can be used for another bio sorption cycle. (Author) 42 refs.

  16. Spatial distribution of ion energy related on electron density in a plasma channel generated in gas clusters by a femtosecond laser

    International Nuclear Information System (INIS)

    Nam, S. M.; Han, J. M.; Cha, Y. H.; Lee, Y. W.; Rhee, Y. J.; Cha, H. K.

    2008-01-01

    Neutron generation through Coulomb explosion of deuterium contained gas clusters is known as one of the very effective methods to produce fusion neutrons using a table top terawatt laser. The energy of ions produced through Coulomb explosions is very important factor to generate neutrons efficiently. Until the ion energy reaches around∼MeV level, the D D fusion reaction probability increases exponentially. The understanding of laser beam propagation and laser energy deposition in clusters is very important to improve neutron yields. As the laser beam propagates through clusters medium, laser energy is absorbed in clusters by ionization of molecules consisting clusters. When the backing pressure of gas increases, the average size of clusters increases and which results in higher energy absorption and earlier termination of laser propagation. We first installed a Michelson interferometer to view laser beam traces in a cluster plume and to measure spatial electron density profiles of a plasma channel which was produced by a laser beam. And then we measured the energy of ions distributed along the plasma channel with a translating slit to select ions from narrow parts of a plasma channel. In our experiments, methane gas was used to produce gas clusters at a room temperature and the energy distribution of proton ions for different gas backing pressure were measured by the time of flight method using dual micro channel plates. By comparing the distribution of ion energies and electron densities, we could understand the condition for effective laser energy delivery to clusters

  17. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  18. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions

    International Nuclear Information System (INIS)

    Lin Meng; Hu Xiaoke; Ma Zhaohu; Chen Lingxin

    2012-01-01

    Highlights: ► PPy nanotube arrays were electropolymerized using ZnO nanowire arrays as templates. ► PPy nanotube arrays were anchored onto ITO glass without any chemical linker. ► Using SWV, the biosensor was found to be highly sensitive and selective to Cu 2+ . ► The biosensor was successfully applied for the determination of Cu 2+ in drinking water. - Abstract: A novel electrochemical biosensor based on functionalized polypyrrole (PPy) nanotube arrays modified with a tripeptide (Gly-Gly-His) proved to be highly effective for electrochemical analysis of copper ions (Cu 2+ ). The vertically oriented PPy nanotube arrays were electropolymerized by using modified zinc oxide (ZnO) nanowire arrays as templates which were electrodeposited on indium–tin oxide (ITO) coated glass substrates. The electrodes were functionalized by appending pyrrole-α-carboxylic acid onto the surface of polypyrrole nanotube arrays by electrochemical polymerization. The carboxylic groups of the polymer were covalently coupled with the amine groups of the tripeptide, and its structural features were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The tripeptide modified PPy nanotube arrays electrode was used for the electrochemical analysis of various trace copper ions by square wave voltammetry. The electrode was found to be highly sensitive and selective to Cu 2+ in the range of 0.1–30 μM. Furthermore, the developed biosensor exhibited a high stability and reproducibility, despite the repeated use of the biosensor electrode.

  19. Anodic polarization behavior of pure copper in carbonate solutions

    International Nuclear Information System (INIS)

    Kawasaki, Manabu; Taniguchi, Naoki; Naitou, Morimasa

    2008-03-01

    Copper is one of the candidate materials for overpacks. The redox condition at the early stage of the post closure will be oxidizing. In order to understand the influence of environmental factors on the corrosion behavior of copper in such oxidizing environment, anodic polarization tests were performed in carbonate aqueous solution with varying the concentration of representative chemical species in groundwater. As the results of potentiodynamic and potentiostatic tests, anodic polarization behavior of pure copper was summarized as follows; Carbonate ion and bicarbonate ion promoted the passivation of pure copper, and suppressed the initiation of film breakdown. Chloride ion promoted both the active dissolution and initiation of film breakdown of pure copper. The influence of sulfate ion and pH was small, but the action of sulfate ion to the pure copper was similar to that of chloride ion, and the increase of pH was likely to promote the passivation and suppress the initiation of film breakdown. The film breakdown potential, Eb, was represented as a function of the ratio of aggressive ion and inhibiting ion such as [Cl - ]/[HCO 3 - ], [SO 4 2- ]/[HCO 3 - ]. When the ratio exceeds a certain value, the anodic polarization curve becomes active dissolution type so that no macroscopic film breakdown can not be occurred. The lower limit of Eb in passive type region was estimated to be about -200 mV vs. SCE. As the results of potentio static tests, the corrosion form near the Eb was uniform dissolution over the surface, but pitting corrosion and non-uniform corrosion occurred according to the condition of the test solution. Neither pitting corrosion nor non-uniform corrosion occurred at the potential below Eb in every test cases. (author)

  20. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Bejšovec, Václav; Vacík, Jiří; Lavrentiev, Vasyl; Vrňata, M.; Kormunda, M.; Daniš, S.

    2016-01-01

    Roč. 389, DEC (2016), s. 751-759 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : Copper oxide * ion beam sputtering * Van der Pauw * nuclear reaction analysis * gas sensing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  1. Preparation of phenacylchloride, morpholinophenacyl and N-Piperidinophenacyl oximes and study of their complexation with Copper (II) and Cobalt (II) ions

    International Nuclear Information System (INIS)

    Ali, Kamal Eldin Ahmed

    1999-01-01

    The aim of the present work is to prepare phenacyl chloride oxime and phenacyl of N-Piperidine and morpholine derivatives, and mainly to study their complexes with Cu(II) and Co(II) ions with objective ascertaining that one of these ligands can be used in quantitative extraction of these metal ions from the aqueous solution. Copper (II) salts form 1:1 complexes with the phenyacyl oximes of N-piperidine and morpholine and 1:2 complex with phenacyl chloride oxime. However, cobalt(II) salts form 1:2 complexes with phenacyl oxime of N-piperidine and morpholine but does not complex with phenacyl chloride oxime. The stoichiometry of these complexes were determined by UV/VIS spectrophotometry using the mole ratio, continuous variation and slope ratio methods.The stability constants of the five complexes were calculated from aberrances using Job's method. They showed that the copper (II) and cobalt (II) complexes with N-piperidinophenacy oxime are more stable than those with morpholinophenacyl oxime. Copper (II) complexes with any of these two ligands are more stable than those of cobalt (II). IR spectra of the complexes of copper (II) and cobalt (II) with phenacyl oxime of N-piperidine and morpholine show diminished peaks of hydrogen bonds between N and O atoms of the ligand. Specific extractabilities using amylalcohol of copper (II) complexes with the three ligands increase from PH4 to reach its maximum at PH8. The high value for N-piperidinophenacyl oxime ligand (96%-97%) indicates that, this ligand can be used as analytical reagent for the quantitative spectrophotometric determination of copper (II) salts in aqueous media. Cobalt (II) complexes were formed and extracted from solution only at PH6 (specific PH). The extractabilities ranging from 81.6-87.2% warrants the use of these ligands in quantitative spectrophotometric determination of cobalt (II).(Author)

  2. Precipitation and ion floatation of molybdenum, tungsten, copper, and cobalt compounds by cetyltrimethylammonium bromide and sodium diethyldithiocarbamate

    International Nuclear Information System (INIS)

    Strizhko, V.S.; Shekhirev, D.V.; Ignatkina, V.A.; Alimova, R.Eh.

    1996-01-01

    Experimental data are presented on application of ion-flotation in purification of low-concentration (less than 10 -3 M) acid solutions from molybdenum, tungsten, copper and cobalt ions. Two collectors, i.e. DEDC and CTMAB have been tested, their optimal consumption is determined. It is shown that CTMAB provides for selective purification from Mo and W ions and allows foam product with little water on flotation in a column to be obtained. But the achieved residual W and Mo concentration of 20 to 10 mg/l require deeper finishing purification in order to meet a sanitary permissible limiting concentration value employing other methods. DEDC provides for sufficient purification from nonferrous metal ions but does not possess selectivity with respect to some metals. The obtained results have shown the possibility to apply ion-flotation in concentration of metal ions in foam product in the process of waste water purification with further finishing purification up to a sanitary permissible limiting concentration value. 14 refs.; 3 figs.; 1 tab

  3. A selective potentiometric copper (II) ion sensor based on the functionalized ZnO nanorods.

    Science.gov (United States)

    Khun, K; Ibupoto, Z H; Liu, X; Nur, O; Willander, M; Danielsson, B

    2014-09-01

    In this work, ZnO nanorods were hydrothermally grown on the gold-coated glass substrate and characterized by field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) techniques. The ZnO nanorods were functionalized by two different approaches and performance of the sensor electrode was monitored. Fourier transform infrared spectroscopy (FTIR) was carried out for the confirmation of interaction between the ionophore molecules and ZnO nanorods. In addition to this, the surface of the electrode was characterized by X-ray photoelectron spectroscopy (XPS) showing the chemical and electronic state of the ionophore and ZnO nanorod components. The ionophore solution was prepared in the stabilizer, poly vinyl chloride (PVC) and additives, and then functionalized on the ZnO nanorods that have shown the Nernstian response with the slope of 31 mV/decade. However, the Cu2+ ion sensor was fabricated only by immobilizing the selective copper ion ionophore membrane without the use of PVC, plasticizers, additives and stabilizers and the sensor electrode showed a linear potentiometric response with a slope of 56.4 mV/decade within a large dynamic concentration range (from 1.0 x 10(-6) to 1.0 x 10(-1) M) of copper (II) nitrate solutions. The sensor showed excellent repeatability and reproducibility with response time of less than 10 s. The negligible response to potentially interfering metal ions such as calcium (Ca2+), magnesium (Mg2+), potassium (K+), iron (Fe3+), zinc (Zn2+), and sodium (Na+) allows this sensor to be used in biological studies. It may also be used as an indicator electrode in the potentiometric titration.

  4. Experimental study of the dissociation of 100-600 KeV hydrogen cluster ions in an argon gas target

    International Nuclear Information System (INIS)

    Chevallier, M.; Clouvas, A.; Frischkorn, H.J.; Gaillard, M.J.; Poizat, J.C.; Remillieux, J.

    1985-09-01

    We have studied the break-up of accelerated hydrogen cluster ions passing through an argon gas target. The absolute dissociation cross section has been measured for a wide variety of H n + (odd masses only) cluster ions, with n between 5 and 23 and with projectile velocities ranging from 1.5 to 5 x 10 8 cm/s. We discuss the dissociation processes and the dependence of their cross-sections upon the cluster mass and velocity

  5. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  6. Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives

    International Nuclear Information System (INIS)

    Pasquale, M.A.; Gassa, L.M.; Arvia, A.J.

    2008-01-01

    Copper electrodeposition on copper from still plating solutions of different compositions was investigated utilising electrochemical impedance spectroscopy (EIS), cyclic voltammetry, and scanning electron microscopy (SEM). An acid copper sulphate plating base solution was employed either with or without sodium chloride in the presence of a single additive, either polyethylene glycol (PEG) or 3-mercapto-2-propanesulphonic acid (MPSA), and their mixture. Thallium underpotential deposition/anodic stripping was employed to determine the adsorption capability of additives on copper. In the absence of chloride ions, MPSA shows a moderate adsorption on copper, whereas PEG is slightly adsorbed. At low cathodic overpotentials, the simultaneous presence of MPSA and chloride ions accelerates copper electrodeposition through the formation of an MPSA-chloride ion complex in the solution, particularly for about 220 μM sodium chloride. The reverse effect occurs in PEG-sodium chloride plating solutions. In this case, from EIS data the formation of a film that interferes with copper electrodeposition can be inferred. At higher cathodic overpotentials, when copper electrodeposition is under mass transport control, the cathode coverage by a PEG-copper chloride-mediated film becomes either partially or completely detached as the concentration of chloride ions at the negatively charged copper surface diminishes. The copper cathode grain topography at the μm scale depends on the cathodic overpotential, plating solution composition and average current density. Available data about the solution constituents and their adsorption on copper make it possible to propose a likely complex mechanism to understand copper electrodeposition from these media, including the accelerating effect of MPSA and the dynamics of PEG-copper chloride complex adsorbate interfering with the surface mobility of depositing copper ad-ions/ad-atoms

  7. Depth distribution of damage in copper irradiated with MeV, Ni and He ions

    International Nuclear Information System (INIS)

    Narayan, J.; Noggle, T.S.; Oen, O.S.

    1975-01-01

    Transmission electron microscopy was used to study radiation damage as a function of depth caused by 58 and 4-MeV 58 Ni and 1-MeV He ions in copper single crystals at ambient temperature. The experimental damage density vs penetration depth distributions were compared with calculations based on the atomic collision theory of Lindhard et al. (LSS). For 58-MeV Ni ions, the calculated damage profile using the theoretical LSS value of the electronic stopping parameter (k = 0.167) agrees well with experiment. However, for 4-MeV Ni ions it is necessary to use k = 0.12 to get agreement with the experimental data. In the case of 1-MeV He, the depth location of the calculated damage peak is in good agreement with experiment when the electronic stopping determined by Chu and Powers is used whereas it is about 15 percent too close to the surface using the tables of Northcliffe and Schilling. (auth)

  8. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Directory of Open Access Journals (Sweden)

    J. Soucek

    2011-06-01

    Full Text Available Mirror modes are among the most intense low frequency plasma wave phenomena observed in the magnetosheaths of magnetized planets. They appear as large amplitude non-propagating fluctuations in the magnetic field magnitude and plasma density. These structures are widely accepted to represent a non-linear stage of the mirror instability, dominant in plasmas with large ion beta and a significant ion temperature anisotropy T⊥/T∥>1. It has long been recognized that the mirror instability both in the linear and non-linear stage is a kinetic process and that the behavior of resonant particles at small parallel velocities is crucial for its development and saturation. While the dynamics of the instability and the effect of trapped particles have been studied extensively in theoretical models and numerical simulations, only spurious observations of the trapped ions were published to date. In this work we used data from the Cluster spacecraft to perform the first detailed experimental study of ion velocity distribution associated with mirror mode oscillations. We show a conclusive evidence for the predicted cooling of resonant ions at small parallel velocities and heating of trapped ions at intermediate pitch angles.

  9. Novel radial vanadium pentoxide nanobelt clusters for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanping; Zhong, Wenwu [Department of Physics and Electronic Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Du, Yinxiao, E-mail: duyinxiao@zzia.edu.cn [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Yuan, Q.X. [Department of Mathematics and Physics, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015 (China); Wang, Xu [School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi' an 710071 (China); Jia, Renxu, E-mail: rxjia@mail.xidian.edu.cn [School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi' an 710071 (China)

    2015-06-05

    Highlights: • Radial V{sub 2}O{sub 5} nanobelt clusters were synthesized by a novel hydrothermal process. • The V{sub 2}O{sub 5} clusters are single crystallites with [0 1 0] growth direction. • Specific discharge capacity of V{sub 2}O{sub 5} is 134 mA h/g coupled with good cycle stability. - Abstract: This paper reports the synthesis, characterization and Li-ion intercalation properties of moundlily-like radial vanadium pentoxide (V{sub 2}O{sub 5}) nanobelt clusters. The V{sub 2}O{sub 5} nanobelt clusters was successfully synthesized by a novel soft template assisted hydrothermal process followed by thermal annealing. The as-prepared products were characterized by X-ray diffraction, thermogravimetric analysis, FT-IR spectrometry, scanning electron microscopy and high resolution transmission electron microscopy. The obtained V{sub 2}O{sub 5} possesses a single-crystalline structure with a preferred orientation along the [0 1 0] crystal plane. Electrochemical analysis shows that the specific discharge capacity of the V{sub 2}O{sub 5} nanobelt clusters reaches 134 mA h/g at a current density of 2 A/g coupled with good cycle stability.

  10. Charge-sign-clustering observed in high-multiplicity, high-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Takahashi, Y.; Gregory, J.C.; Hayashi, T.

    1989-01-01

    Charge-sign distribution in 200 GeV/amu heavy-ion collisions is studied with the Magnetic-Interferometric-Emulsion-Chamber (MAGIC) for central collision events in 16 O + Pb and 32 S + Pb interactions. Charge-sign clustering is observed in most of the fully-analyzed events. A statistical 'run-test' is performed for each measured event, which shows significant deviation from a Gaussian distribution (0,1) expected for random-charge distribution. Candidates of charge clusters have 5 - 10 multiplicity of like-sign particles, and are often accompanied by opposite-sign clusters. Observed clustering of identical charges is more significant in the fragmentation region than in the central region. Two-particle Bose-Einstein interference and other effects are discussed for the run-test examination. (author)

  11. Fe-S Clusters Emerging as Targets of Therapeutic Drugs

    Directory of Open Access Journals (Sweden)

    Laurence Vernis

    2017-01-01

    Full Text Available Fe-S centers exhibit strong electronic plasticity, which is of importance for insuring fine redox tuning of protein biological properties. In accordance, Fe-S clusters are also highly sensitive to oxidation and can be very easily altered in vivo by different drugs, either directly or indirectly due to catabolic by-products, such as nitric oxide species (NOS or reactive oxygen species (ROS. In case of metal ions, Fe-S cluster alteration might be the result of metal liganding to the coordinating sulfur atoms, as suggested for copper. Several drugs presented through this review are either capable of direct interaction with Fe-S clusters or of secondary Fe-S clusters alteration following ROS or NOS production. Reactions leading to Fe-S cluster disruption are also reported. Due to the recent interest and progress in Fe-S biology, it is very likely that an increasing number of drugs already used in clinics will emerge as molecules interfering with Fe-S centers in the near future. Targeting Fe-S centers could also become a promising strategy for drug development.

  12. Irradiation damage in aluminium single crystals produced by 50-keV aluminium and copper ions

    DEFF Research Database (Denmark)

    Henriksen, L.; Johansen, A.; Koch, J.

    1968-01-01

    Aluminium single crystals, thin enough to be examined by electron microscopy, have been irradiated with 50-keV aluminium and copper ions. The irradiation fluxes were in the range 1011–1014 cm−2 s−1 and the doses were from 6 × 1012 to 6 × 1014 cm−2. Irradiation along either a or a direction produces...... rows of dislocation loops all lying parallel to one particular direction. If the aluminium target is quenched from 600 °C and annealed at room temperature prior to irradiation with aluminium ions, the rows of loops are suppressed. The amount of damage observed is considerably less than would...

  13. Smoothing of ZnO films by gas cluster ion beam

    International Nuclear Information System (INIS)

    Chen, H.; Liu, S.W.; Wang, X.M.; Iliev, M.N.; Chen, C.L.; Yu, X.K.; Liu, J.R.; Ma, K.; Chu, W.K.

    2005-01-01

    Planarization of wide-band-gap semiconductor ZnO surface is crucial for thin-film device performance. In this study, the rough initial surfaces of ZnO films deposited by r.f. magnetron sputtering on Si substrates were smoothed by gas cluster ion beams. AFM measurements show that the average surface roughness (R a ) of the ZnO films could be reduced considerably from 16.1 nm to 0.9 nm. Raman spectroscopy was used to monitor the structure of both the as-grown and the smoothed ZnO films. Rutherford back-scattering in combination with channeling effect was used to study the damage production induced by the cluster bombardment

  14. Raman spectroscopy of few-layer graphene prepared by C2–C6 cluster ion implantation

    International Nuclear Information System (INIS)

    Wang, Z.S.; Zhang, R.; Zhang, Z.D.; Huang, Z.H.; Liu, C.S.; Fu, D.J.; Liu, J.R.

    2013-01-01

    Few-layer graphene has been prepared on 300 nm-thick Ni films by C 2 –C 6 cluster ion implantation at 20 keV/cluster. Raman spectroscopy reveals significant influence of the number of atoms in the cluster, the implantation dose, and thermal treatment on the structure of the graphene layers. In particular, the graphene samples exhibit a sharp G peak at 1584 cm −1 and 2D peaks at 2711–2717 cm −1 . The I G /I 2D ratios higher than 1.70 and I G /I D ratio as high as 1.95 confirm that graphene sheets with low density of defects have been synthesized with much improved quality by ion implantation with larger clusters of C 4 –C 6

  15. Ultrahigh reactivity and grave nanotoxicity of copper nanoparticles

    International Nuclear Information System (INIS)

    Huan Meng; Zhen Chen; Chengcheng Zhang; Yun Wang; Yuliang Zhao

    2007-01-01

    Recently, it was reported that the toxicity of copper particles increases with the decrease of the particle size on a mass basis. To understand this phenomenon, inductively coupled plasma mass spectrometry (ICP-MS) techniques and in vitro chemical studies were carried out to explore how they produce toxicity in vivo. The results suggest that when the sizes of particles become small and down to a nanoscale, copper becomes extremely reactive in a simulative intracorporeal environment. The nanosized copper particles consume the hydrogen ions in stomach more quickly than micron ones. These processes further convert the copper nanoparticles into cupric ions whose toxicity is very high in vivo. (author)

  16. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    Science.gov (United States)

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  17. Molecular dynamics simulations to examine structure, energetics, and evaporation/condensation dynamics in small charged clusters of water or methanol containing a single monatomic ion.

    Science.gov (United States)

    Daub, Christopher D; Cann, Natalie M

    2012-11-01

    We study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules. We report data on the evaporation and condensation of solvent from the clusters and argue that the observed temperature dependence of evaporation in the smallest clusters demonstrates that the presence of heated gas alone cannot, in most cases, solely account for bare ion production in electrospray ionization (ESI), neglecting the key contribution of the electric field. We also present our findings on the structure and energetics of the clusters as a function of size. Our data agree well with the abundant literature on hydrated ion clusters and offer some novel insight into the structure of methanol and ion clusters, especially those with a Cl(-) anion, where we observe the presence of chain-like structures of methanol molecules. Finally, we provide some data on the reparameterizations necessary to simulate ions in methanol using the separately developed Drude oscillator models for methanol and for ions in water.

  18. 3D morphological analysis of copper foams as current collectors for Li-ion batteries by means of X-ray tomography

    Energy Technology Data Exchange (ETDEWEB)

    Etiemble, A. [Institut National des Sciences Appliquées de Lyon, Laboratoire MATEIS, F-69621 Villeurbanne (France); Institut National de la Recherche Scientifique – Centre Énergie, Matériaux, Télécommunications, Varennes, Québec J3X 1S2 (Canada); Adrien, J. [Institut National des Sciences Appliquées de Lyon, Laboratoire MATEIS, F-69621 Villeurbanne (France); Maire, E., E-mail: eric.maire@insa-lyon.fr [Institut National des Sciences Appliquées de Lyon, Laboratoire MATEIS, F-69621 Villeurbanne (France); Idrissi, H. [Institut National des Sciences Appliquées de Lyon, Laboratoire MATEIS, F-69621 Villeurbanne (France); Reyter, D. [Institut National de la Recherche Scientifique – Centre Énergie, Matériaux, Télécommunications, Varennes, Québec J3X 1S2 (Canada); Roué, L., E-mail: roue@emt.inrs.ca [Institut National de la Recherche Scientifique – Centre Énergie, Matériaux, Télécommunications, Varennes, Québec J3X 1S2 (Canada)

    2014-09-15

    Highlights: • X-ray tomography analysis of open-cell copper foams is performed. • The effect of a dissolution treatment on the foam morphology is highlighted. • The interest of such Cu foams as current collectors for Li-ion batteries is discussed. - Abstract: As-received and chemically treated copper foams were characterized by means of laboratory X-ray tomography with a resolution of 0.5 μm. 3D image processing and analysis allowed the morphological parameters (size, sphericity, tortuosity etc.) of the pores and copper skeleton to be determined. The chemical dissolution of the Cu foam in an acid hydrogen peroxide solution results in an increase of the open pore size (from 54 to 93 μm) and a decrease of the foam thickness (from 140 to 115 μm). With an open porosity of 81.8% and a specific surface area as high as 280,000 (49,000) m{sup 2}/m{sup 3} of Cu (foam), the chemically-treated Cu foam appears very attractive for use as a 3D current collector for metal (e.g. Si) based anodes for Li-ion batteries.

  19. Effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes.

    OpenAIRE

    宮地,芳之

    1987-01-01

    The effects of copper, organic mercury and a mixture of the two on glycerol lysis of erythrocytes were examined. Copper ion and organic mercury (EMP; ethylmercury phosphate, and PCMB; sodium p-chloromercuricbenzoate) inhibited glycerol lysis of erythrocytes. The inhibitory effects was dependent on the incubation period. An equimolor solution of copper ion and EMP showed between copper ion and EMP. Similar results were obtained with copper and PCMB.

  20. Computational evaluation of sub-nanometer cluster activity of singly exposed copper atom with various coordinative environment in catalytic CO{sub 2} transformation

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugam, Ramasamy [Department of Chemistry, Thiagarajar College, Madurai, Tamilnadu 625 009 (India); National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India); Thamaraichelvan, Arunachalam [Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Kelambakkam, Tamilnadu 603 103 (India); Ganesan, Tharumeya Kuppusamy [Department of Chemistry, The American College, Madurai, Tamilnadu 625 002 (India); Viswanathan, Balasubramanian, E-mail: bvnathan@iitm.ac.in [National Center for Catalysis Research, Indian Institute of Technology Madras, Chennai, Tamilnadu 600 036 (India)

    2017-02-28

    Highlights: • On interaction with adsorbate CO{sub 2,} the adsorbent changes its configuration around the metal. • Electron transfer is faster in low coordinative environment of Cu. • CO formation is more favorable on Cu sites with even coordination number. • Cu at coordination number two has a over potential of −0.35 V. - Abstract: Metal cluster, at sub-nanometer level has a unique property in the activation of small molecules, in contrast to that of bulk surface. In the present work, singly exposed active site of copper metal cluster at sub-nanometer level was designed to arrive at the energy minimised configurations, binding energy, electrostatic potential map, frontier molecular orbitals and partial density of states. The ab initio molecular dynamics was carried out to probe the catalytic nature of the cluster. Further, the stability of the metal cluster and its catalytic activity in the electrochemical reduction of CO{sub 2} to CO were evaluated by means of computational hydrogen electrode via calculation of the free energy profile using DFT/B3LYP level of theory in vacuum. The activity of the cluster is ascertained from the fact that the copper atom, present in a two coordinative environment, performs a more selective conversion of CO{sub 2} to CO at an applied potential of −0.35 V which is comparatively lower than that of higher coordinative sites. The present study helps to design any sub-nano level metal catalyst for electrochemical reduction of CO{sub 2} to various value added chemicals.

  1. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  2. [Effects of copper on biodegradation mechanism of trichloroethylene by mixed microorganisms].

    Science.gov (United States)

    Gao, Yanhui; Zhao, Tiantao; Xing, Zhilin; He, Zhi; Zhang, Lijie; Peng, Xuya

    2016-05-25

    We isolated and enriched mixed microorganisms SWA1 from landfill cover soils supplemented with trichloroethylene (TCE). The microbial mixture could degrade TCE effectively under aerobic conditions. Then, we investigated the effect of copper ion (0 to 15 μmol/L) on TCE biodegradation. Results show that the maximum TCE degradation speed was 29.60 nmol/min with 95.75% degradation when copper ion was at 0.03 μmol/L. In addition, genes encoding key enzymes during biodegradation were analyzed by Real-time quantitative reverse transcription PCR (RT-qPCR). The relative expression abundance of pmoA gene (4.22E-03) and mmoX gene (9.30E-06) was the highest when copper ion was at 0.03 μmol/L. Finally, we also used MiSeq pyrosequencing to investigate the diversity of microbial community. Methylocystaceae that can co-metabolic degrade TCE were the dominant microorganisms; other microorganisms with the function of direct oxidation of TCE were also included in SWA1 and the microbial diversity decreased significantly along with increasing of copper ion concentration. Based on the above results, variation of copper ion concentration affected the composition of SWA1 and degradation mechanism of TCE. The degradation mechanism of TCE included co-metabolism degradation of methanotrophs and oxidation metabolism directly at copper ion of 0.03 μmol/L. When copper ion at 5 μmol/L (biodegradation was 84.75%), the degradation mechanism of TCE included direct-degradation and co-metabolism degradation of methanotrophs and microorganisms containing phenol hydroxylase. Therefore, biodegradation of TCE by microorganisms was a complicated process, the degradation mechanism included co-metabolism degradation of methanotrophs and bio-oxidation of non-methanotrophs.

  3. Copper ferrocyanide - polyurethane foam as a composite ion exchanger for removal of radioactive cesium

    International Nuclear Information System (INIS)

    Rao, S.V.S.; Lal, K.B.; Ahmed, J.; Narasimhan, S.V.

    1999-01-01

    A method has been developed for the removal of cesium from the aqueous radioactive waste using a composite ion-exchanger consisting of Copper-Ferrocyanide Powder (CFC) and Polyurethane (PU) Foam. Polyvinyl acetate has been used as a binder in the preparation of CFC-PU foam. The physical properties of CFC such as density, surface area, IR stretching frequency and lattice parameters have been evaluated and also its potassium and copper(II) content have been estimated. Optimization of loading of CFC on PU foam has been studied. The CFC-PU was viewed under microscope to find out the homogeneity of distribution. Exchange capacities of the CFC-PU foam in different media have been determined and column studies have been carried out. Studies have been undertaken on extraction of cesium from CFC foam and also on digestion of spent CFC-PU foam and immobilization of digested solution in cement matrix. The cement matrices have been characterized with respect to density, bio-resistance and leaching resistance. (author)

  4. In situ ATR FTIR studies of SO4 adsorption on goethite in the presence of copper ions.

    Science.gov (United States)

    Beattie, D A; Chapelet, J K; Gräfe, M; Skinner, W M; Smith, E

    2008-12-15

    Despite the existence of many single ion sorption studies on iron and aluminum oxides, fewer studies have been reported that describe cosorption reactions. In this work, we present an in situ ATR FTIR study of synergistic adsorption of sulfate (SO4) and copper (Cu) on goethite, which is representative of the minerals and ions present in mine wastes, acid sulfate soils, and other industrial and agricultural settings. Sulfate adsorption was studied as a function of varying pH, and as a function of increasing concentration in the absence and presence of Cu. The presence of Cu ions in solution had a complex effect on the ability of SO4 ions to be retained on the goethite surface with increasing pH, with complete desorption occurring near pH 7 and 9 in the absence and presence of Cu, respectively. In addition, Cu ions altered the balance of inner vs outer sphere adsorbed SO4. The solid phase partitioning of SO4 at pH 3 and pH 5 was elevated by the presence of Cu; in both cases Cu increased the affinity of SO4 for the goethite surface. Complementary ex situ sorption edge studies of Cu on goethite in the absence and presence of SO4 revealed that the Cu adsorption edge shifted to lower pH (6.3 --> 5.6) in the presence of SO4, consistent with a decrease of the electrostatic repulsion between the goethite surface and adsorbing Cu. Based on the ATR FTIR and bulk sorption data we surmise that the cosorption products of SO4 and Cu at the goethite-water interface were not in the nature of ternary complexes under the conditions studied here. This information is critical for the evaluation of the onset of surface precipitates of copper-hydroxy sulfates as a function of pH and solution concentration.

  5. Analytical application of solid contact ion-selective electrodes for determination of copper and nitrate in various food products and drinking water.

    Science.gov (United States)

    Wardak, Cecylia; Grabarczyk, Malgorzata

    2016-08-02

    A simple, fast and cheap method for monitoring copper and nitrate in drinking water and food products using newly developed solid contact ion-selective electrodes is proposed. Determination of copper and nitrate was performed by application of multiple standard additions technique. The reliability of the obtained results was assessed by comparing them using the anodic stripping voltammetry or spectrophotometry for the same samples. In each case, satisfactory agreement of the results was obtained, which confirms the analytical usefulness of the constructed electrodes.

  6. Post-ion beam induced degradation of copper layers in transmission electron microscopy specimens

    Science.gov (United States)

    Seidel, F.; Richard, O.; Bender, H.; Vandervorst, W.

    2015-11-01

    Copper containing transmission electron microscopy (TEM) specimens frequently show corrosion after focused ion beam (FIB) preparation. This paper reveals that the corrosion product is a Cu-S phase growing over the specimen surface. The layer is identified by energy-dispersive x-ray spectroscopy, and lattice spacing indexing of power spectra patterns. The corrosion process is further studied by TEM on cone-shaped specimens, which are intentionally stored after FIB preparation with S flakes for short time. Furthermore, a protective method against corrosion is developed by varying the time in the FIB vacuum and the duration of a subsequent plasma cleaning.

  7. Investigation of energy thresholds of atomic and cluster sputtering of some elements under ion bombardment

    CERN Document Server

    Atabaev, B G; Lifanova, L F

    2002-01-01

    Threshold energies of sputtering of negative cluster ions from the Si(111) surface were measured at bombardment by Cs sup + , Rb sup + , and Na sup + ions with energy of 0.1-3.0 keV. These results are compared with the calculations of the similar thresholds by Bohdansky etc. formulas (3) for clusters Si sub n sup - and Cu sub n sup - with n=(1-5) and also for B, C, Al, Si, Fe, Cu atoms. Threshold energies of sputtering for the above elements were also estimated using the data from (5). Satisfactory agreement between the experimental and theoretical results was obtained. (author)

  8. Micronized Copper Wood Preservatives: Efficacy of Ion, Nano, and Bulk Copper against the Brown Rot Fungus Rhodonia placenta.

    Science.gov (United States)

    Civardi, Chiara; Schubert, Mark; Fey, Angelika; Wick, Peter; Schwarze, Francis W M R

    2015-01-01

    Recently introduced micronized copper (MC) formulations, consisting of a nanosized fraction of basic copper (Cu) carbonate (CuCO3·Cu(OH)2) nanoparticles (NPs), were introduced to the market for wood protection. Cu NPs may presumably be more effective against wood-destroying fungi than bulk or ionic Cu compounds. In particular, Cu- tolerant wood-destroying fungi may not recognize NPs, which may penetrate into fungal cell walls and membranes and exert their impact. The objective of this study was to assess if MC wood preservative formulations have a superior efficacy against Cu-tolerant wood-destroying fungi due to nano effects than conventional Cu biocides. After screening a range of wood-destroying fungi for their resistance to Cu, we investigated fungal growth of the Cu-tolerant fungus Rhodonia placenta in solid and liquid media and on wood treated with MC azole (MCA). In liquid cultures we evaluated the fungal response to ion, nano and bulk Cu distinguishing the ionic and particle effects by means of the Cu2+ chelator ammonium tetrathiomolybdate (TTM) and measuring fungal biomass, oxalic acid production and laccase activity of R. placenta. Our results do not support the presence of particular nano effects of MCA against R. placenta that would account for an increased antifungal efficacy, but provide evidence that attribute the main effectiveness of MCA to azoles.

  9. Model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    Science.gov (United States)

    Skinner, Brian; Fogler, M. M.; Shklovskii, B. I.

    2011-12-01

    Electric double-layer supercapacitors (SCs) are promising devices for high-power energy storage based on the reversible absorption of ions into porous conducting electrodes. Graphene is a particularly good candidate for the electrode material in SCs due to its high conductivity and large surface area. In this paper, we consider SC electrodes made from a stack of graphene sheets with randomly inserted spacer molecules. We show that the large volumetric capacitances C≳100F/cm3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  10. Changes in cluster magnetism and suppression of local superconductivity in amorphous FeCrB alloy irradiated by Ar"+ ions

    International Nuclear Information System (INIS)

    Okunev, V.D.; Samoilenko, Z.A.; Szymczak, H.; Szewczyk, A.; Szymczak, R.; Lewandowski, S.J.; Aleshkevych, P.; Malinowski, A.; Gierłowski, P.; Więckowski, J.; Wolny-Marszałek, M.; Jeżabek, M.; Varyukhin, V.N.; Antoshina, I.A.

    2016-01-01

    We show that cluster magnetism in ferromagnetic amorphous Fe_6_7Cr_1_8B_1_5 alloy is related to the presence of large, D=150–250 Å, α-(Fe Cr) clusters responsible for basic changes in cluster magnetism, small, D=30–100 Å, α-(Fe, Cr) and Fe_3B clusters and subcluster atomic α-(Fe, Cr, B) groupings, D=10–20 Å, in disordered intercluster medium. For initial sample and irradiated one (Φ=1.5×10"1"8 ions/cm"2) superconductivity exists in the cluster shells of metallic α-(Fe, Cr) phase where ferromagnetism of iron is counterbalanced by antiferromagnetism of chromium. At Φ=3×10"1"8 ions/cm"2, the internal stresses intensify and the process of iron and chromium phase separation, favorable for mesoscopic superconductivity, changes for inverse one promoting more homogeneous distribution of iron and chromium in the clusters as well as gigantic (twice as much) increase in density of the samples. As a result, in the cluster shells ferromagnetism is restored leading to the increase in magnetization of the sample and suppression of local superconductivity. For initial samples, the temperature dependence of resistivity ρ(T)~T"2 is determined by the electron scattering on quantum defects. In strongly inhomogeneous samples, after irradiation by fluence Φ=1.5×10"1"8 ions/cm"2, the transition to a dependence ρ(T)~T"1"/"2 is caused by the effects of weak localization. In more homogeneous samples, at Φ=3×10"1"8 ions/cm"2, a return to the dependence ρ(T)~T"2 is observed. - Highlights: • The samples at high dose of ion irradiation become more homogeneous. • Gigantic increase in density of the samples (twice as much) is observed. • Ferromagnetism in large Fe–Cr clusters is restored. • Ferromagnetism of Fe–Cr clusters suppresses local superconductivity in them. • The participation of quantum defects in scattering of electrons is returned.

  11. Electron impact ionization of size selected hydrogen clusters (H2)N: ion fragment and neutral size distributions.

    Science.gov (United States)

    Kornilov, Oleg; Toennies, J Peter

    2008-05-21

    Clusters consisting of normal H2 molecules, produced in a free jet expansion, are size selected by diffraction from a transmission nanograting prior to electron impact ionization. For each neutral cluster (H2)(N) (N=2-40), the relative intensities of the ion fragments Hn+ are measured with a mass spectrometer. H3+ is found to be the most abundant fragment up to N=17. With a further increase in N, the abundances of H3+, H5+, H7+, and H9+ first increase and, after passing through a maximum, approach each other. At N=40, they are about the same and more than a factor of 2 and 3 larger than for H11+ and H13+, respectively. For a given neutral cluster size, the intensities of the ion fragments follow a Poisson distribution. The fragmentation probabilities are used to determine the neutral cluster size distribution produced in the expansion at a source temperature of 30.1 K and a source pressure of 1.50 bar. The distribution shows no clear evidence of a magic number N=13 as predicted by theory and found in experiments with pure para-H2 clusters. The ion fragment distributions are also used to extract information on the internal energy distribution of the H3+ ions produced in the reaction H2+ + H2-->H3+ +H, which is initiated upon ionization of the cluster. The internal energy is assumed to be rapidly equilibrated and to determine the number of molecules subsequently evaporated. The internal energy distribution found in this way is in good agreement with data obtained in an earlier independent merged beam scattering experiment.

  12. FY 2000 report on the results of the research and development project for new industry creation type industrial science technologies. Cluster ion beam process technology; 2000 nendo shinki sangyo soshutsugata sangyo kagaku gijutsu kenkyu kaihatsu seido seika hokokusho. Cluster ion beam process technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Described herein are the FY 2000 results of development of cluster ion beams. This technology generates the strong ion beams of atom and molecule clusters, and irradiate them onto the solid surfaces, to create new materials or treat materials. It allows the nano-level treatment. The program for high-current cluster ion beam generation/irradiation technology for industrial purposes attains the target high-current beam of 500{mu}m. It is necessary to establish the optimum cluster size, irradiated energy and ion species for the highly functional surface treatment, for which applicable technologies, e.g., those related to time of flight and molecular dynamics, are developed. Studies on high-current, large-area irradiation technologies are started. The program for material processing technologies involves evaluation of crystalline defects formed during the beam implantation by photoluminescence spectroscopy, and studies on semiconductor surface processing technologies. The surface smoothening technology is investigated to reduce crystalline defects and stress-induced strains for difficult-to-process materials, e.g., SiC and diamond, and the good results are produced. The program for development of superflat/superhard thin film formation technology involves irradiation of the Ar ion beams during the deposition of C{sub 60}(fullerene), to produce the superhard thin film. (NEDO)

  13. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  14. Evaluation of Zirconium Silico phosphate Material for the Removal of Copper Ions from Waste Water

    International Nuclear Information System (INIS)

    Abd El-Mohsen, E.S.; El-Naggar, M.R.; EI-Naggar, I.M.; El-Shahhat, M.F.

    2014-01-01

    Zirconium silico phosphate/polyacrylamide (ZrSP/PAA) nano composite was synthesized. Synthesis process was based on the intercalation polymerization technique. The obtained nano product was characterized using XRF, XRD, FTIR, TG-DTA, SEM and TEM techniques. The physicochemical properties indicated that the synthesized material was semicrystalline in nature with a particle size in the nan orange (45 nm). FTIR analysis suggested that the intercalation polymerization was achieved via hydrogen bonding. The kinetics of copper retention at different temperatures were analyzed using pseudo first-order, pseudo second-order and Helfferich kinetic models. Kinetic modeling of the experimentally obtained data indicated that the intra-particle diffusion was the controlled mechanism of the sorption process. Various parameters such as effective diffusion coefficient and activation energy were evaluated. The mean free energy was in the range corresponding to the ion exchange type of sorption. Results indicated that synthetic ZrSP/PAA nano composite can be used as an efficient ion exchange material for the removal of cupper ions from waste water

  15. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  16. Near-UV sensitized 1.06 μm emission of Nd{sup 3+} ions via monovalent copper in phosphate glass

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez, José A., E-mail: jose.jimenez@unf.edu [Department of Chemistry, University of North Florida, Jacksonville, FL 32224 (United States); Sendova, Mariana [Optical Spectroscopy & Nano-Materials Lab, New College of Florida, Sarasota, FL 34243 (United States)

    2015-07-15

    Monovalent copper ions effectively incorporated in Nd-containing phosphate glass by a single-step melt-quench method have been established as near-ultraviolet (UV) sensitizers of Nd{sup 3+} ions, resulting in a remarkable {sup 4}F{sub 3/2} → {sup 4}I{sub 11/2} emission at 1.06 μm. The spectroscopic data indicates an efficient energy conversion process. The Cu{sup +} ions first absorb photons broadly around 360 nm, and subsequently transfer the energy from the Stokes-shifted emitting states to resonant Nd{sup 3+} energy levels in the visible. Ultimately, the Nd{sup 3+} electronic excited states decay and the upper lasing state {sup 4}F{sub 3/2} is populated, leading to the enhanced emission at 1.06 μm. The characteristic features of the Cu{sup +} visible emission spectra and the reduced lifetime of the corresponding Cu{sup +} donor states indicate an efficient non-radiative transfer. The Cu{sup +}/Nd{sup 3+} co-doped phosphate glass appears suitable as solid-state laser material with enhanced pump range in the near-UV part of the spectrum and for solar spectral conversion in photovoltaic cells. - Graphical abstract: Display Omitted - Highlights: • Monovalent copper ions effectively stabilized in Nd{sup 3+}-containing phosphate glass. • Enhanced Nd{sup 3+} near-infrared emission observed upon the Cu{sup +} ions incorporation. • Cu{sup +} → Nd{sup 3+} non-radiative energy transfer efficiencies and likely energy transfer pathways evaluated. • Potential for solid-state lasers and solar spectral conversion suggested.

  17. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  18. Sputtering of copper atoms by keV atomic and molecular ions A comparison of experiment with analytical and computer based models

    CERN Document Server

    Gillen, D R; Goelich,

    2002-01-01

    Non-resonant multiphoton ionisation combined with quadrupole and time-of-flight analysis has been used to measure energy distributions of sputtered copper atoms. The sputtering of a polycrystalline copper target by 3.6 keV Ar sup + , N sup + and CF sub 2 sup + and 1.8 keV N sup + and CF sub 2 sup + ion bombardment at 45 deg. has been investigated. The linear collision model in the isotropic limit fails to describe the high energy tail of the energy distributions. However the TRIM.SP computer simulation has been shown to provide a good description. The results indicate that an accurate description of sputtering by low energy, molecular ions requires the use of computer simulation rather than analytical approaches. This is particularly important when considering plasma-surface interactions in plasma etching and deposition systems.

  19. The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA

    International Nuclear Information System (INIS)

    Hanif, Sarmad; Shamim, Uzma; Ullah, M.F.; Azmi, Asfar S.; Bhat, Showket H.; Hadi, S.M.

    2008-01-01

    Epidemiological and experimental evidence exists to suggest that pomegranate and its juice possess chemopreventive and anticancer properties. The anthocyanidin delphinidin is a major polyphenol present in pomegranates and has been shown to be responsible for these effects. Plant polyphenols are recognized as naturally occurring antioxidants but also catalyze oxidative DNA degradation of cellular DNA either alone or in the presence of transition metal ions such as copper. In this paper we show that similar to various other classes of polyphenols, delphinidin is also capable of causing oxidative degradation of cellular DNA. Lymphocytes were exposed to various concentrations of delphinidin (10, 20, 50 μM) for 1 h and the DNA breakage was assessed using single cell alkaline gel electrophoresis (Comet assay). Inhibition of DNA breakage by several scavengers of reactive oxygen species (ROS) indicated that it is caused by the formation of ROS. Incubation of lymphocytes with neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation in intact lymphocytes in a dose dependent manner. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. We have further shown that delphinidin is able to degrade DNA in cell nuclei and that such DNA degradation is also inhibited by neocuproine suggesting that nuclear copper is mobilized in this reaction. These results indicate that the generation of ROS possibly occurs through mobilization of endogenous copper ions. The results are in support of our hypothesis that the prooxidant activity of plant polyphenols may be an important mechanism for their anticancer properties

  20. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Steven Kopitzke

    2014-02-01

    Full Text Available Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments.

  1. Study of sorption processes of copper on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Rosskopfova, O.; Galambos, M.; Ometakova, J.; Rajec, P.; Caplovicova, M.

    2012-01-01

    The sorption of copper on synthetic hydroxyapatite was investigated using a batch method and radiotracer technique. The hydroxyapatite sample prepared by a wet precipitation process was of high crystallinity with Ca/P ratio of 1.688. The sorption of copper on hydroxyapatite was pH independent ranging from 4 to 6 as a result of buffering properties of hydroxyapatite. The adsorption of copper was rapid and the percentage of Cu sorption was >98% during the first 15-30 min of the contact time. The experimental data for sorption of copper have been interpreted in the term of Langmuir isotherm. The sorption of Cu 2+ ions was performed by ion-exchange with Ca 2+ cations on the crystal surface of hydroxyapatite under experimental conditions. The competition effect of Zn 2+ , Fe 2+ and Pb 2+ towards Cu 2+ sorption was stronger than that of Co 2+ , Ni 2+ and Ca 2+ ions. The ability of the bivalent cations to depress the sorption of copper on hydroxyapatite was in the following order Pb 2+ > Fe 2+ > Zn 2+ > Co 2+ ∼ Ni 2+ . (author)

  2. Chemical degradation of selected Zn-based corrosion products induced by C{sub 60} cluster, Ar cluster and Ar{sup +} ion sputtering in the focus of X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, R., E-mail: roland.steinberger@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Sicking, J., E-mail: jens.sicking@bayer.com [Bayer AG, Engineering & Technology, Applied Physics, Chempark Building E 41, 51368 Leverkusen (Germany); Weise, J., E-mail: juliane.weise@physik.tu-freiberg.de [Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg (Germany); Duchoslav, J., E-mail: jiri.duchoslav@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Greunz, T., E-mail: theresia.greunz@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria); Meyer, D.C., E-mail: Dirk-Carl.Meyer@physik.tu-freiberg.de [Institut für Experimentelle Physik, TU Bergakademie Freiberg, Leipziger Straße 23, 09599 Freiberg (Germany); Stifter, D., E-mail: david.stifter@jku.at [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz (Austria)

    2017-05-01

    Highlights: • XPS investigations for various sputter concepts on Zn-based corrosions products. • Direct comparison of induced chemical damage for ion and cluster sputtering. • Azimuthal rotation or heavy projectile bombardment was not found to be beneficial. • Ar cluster etching is rated as unsuitable for surface cleaning or depth profiling. • C{sub 60} and Ar{sup +} are applicable for sputtering when degradation is carefully considered. - Abstract: Monoatomic ion sputtering is a common concept for surface sensitive analysis methods to clean surfaces prior investigation or to obtain information from deeper regions. However, severe damage of the materials – linked to preferential sputtering, ion implantation, atomic mixing and in worst case chemical degradation – can affect the validity of the analysis. Hence, the impact of C{sub 60} cluster etching, furthermore, of Ar{sup +} ion bombardment with and without azimuthal sample rotation and also the application of heavy projectiles (Xe{sup +} ions) was investigated to find a concept, which is less destructive or with less critical influence on the chemical nature of the investigated materials. In this work the focus is set on hydrozincite and zinc oxide, two common corrosion products of Zn-based coatings. As a main point, all the obtained results from (i) Ar{sup +} ion, (ii) Ar cluster, and (iii) C{sub 60} cluster etching on the degradation kinetics of hydrozincite were compared with respect to the reached sputter depth. In addition, the sputter rate of all three methods was experimentally determined for ZnO. In total, fully non-destructive conditions could not be found, but valuable knowledge on the type and rate of degradation, which is essential to choose the most suited sputter concept.

  3. Microstructural characterization of irradiated PWR steels using the atom probe field-ion microscope

    International Nuclear Information System (INIS)

    Miller, M.K.; Burke, M.G.

    1987-08-01

    Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries

  4. Solid state solubility of copper oxides in hydroxyapatite

    Science.gov (United States)

    Zykin, Mikhail A.; Vasiliev, Alexander V.; Trusov, Lev A.; Dinnebier, Robert E.; Jansen, Martin; Kazin, Pavel E.

    2018-06-01

    Samples containing copper oxide doped hydroxyapatite with the composition Ca10(PO4)6(CuxOH1-x-δ)2, x = 0.054 - 0.582, in the mixture with CuO/Cu2O were prepared by a solid-state high-temperature treatment at varying annealing temperatures and at different partial water vapor and oxygen pressures. The crystal structures of the apatite compounds were refined using powder X-ray diffraction patterns and the content of copper ions x in the apatite was determined. Copper ions enter exclusively into the apatite trigonal channels formally substituting protons of OH-groups and the hexagonal cell parameters grow approximately linearly with x, the channel volume mostly expanding while the remaining volume of the crystal lattice changing only slightly. The equilibrium copper content in the apatite increases drastically, by almost a factor of 10 with the annealing temperature rising from 800° to 1200°C. The reduction of the water partial pressure leads to a further increase of x, while the dependence of x on the oxygen partial pressure exhibits a maximum. The observed relations are consistent with the proposed chemical reactions implying the copper introduction is followed by the release of a considerable quantity of gaseous products - water and oxygen. The analysis of interatomic distances suggests that the maximum content of copper ions in the channel cannot exceed 2/3.

  5. Mixed complex combinations with a new schiff base used as membranes ion-selective for copper and nickel ions, analytical applications)

    International Nuclear Information System (INIS)

    Mitu, L.; Tigae, C.

    2009-01-01

    Four electrodes with liquid membrane, Cu/sup 2+/ -selective and Ni/sup 2+/ -selective, not previously described in the literature, were prepared and characterized. Electrodes 1 and 2 are based on mixed complexes of Cu(II) and Ni(II) with isonicotinoylhydrazone-2-aldehyde pyrrole (INH2AP= HL/sup 1/) as ligand and electrodes 3 and 4 are based on the mixed complexes with isonicotinoyl- hydrazone-2-hydroxy-l-naphthaldehyde (INH2HNA = H/sub 2/L/sup 2/ ) Cu/sup 2+/. selective and Ni/sup 2+/ -selective electrodes have been used to determine the copper and nickel ions in aqueous solutions, by both direct potentiometric and potentiometric titration with EDTA. They have also been used for determining the Cu/sup 2+/ and Ni/sup 2+/ ions in industrial waters by direct potentiometry. The analytical results obtained have been checked by the standard addition method and by comparison with determinations through atomic absorption spectrometry. (author)

  6. Changes in cluster magnetism and suppression of local superconductivity in amorphous FeCrB alloy irradiated by Ar{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Okunev, V.D., E-mail: okunev@mail.fti.ac.donetsk.ua [Donetsk Physiko-Technical Institute, Ukrainian Academy of Sciences, av. Nauki 46, 03028 Kiev (Ukraine); Samoilenko, Z.A. [Donetsk Physiko-Technical Institute, Ukrainian Academy of Sciences, av. Nauki 46, 03028 Kiev (Ukraine); Szymczak, H.; Szewczyk, A.; Szymczak, R.; Lewandowski, S.J.; Aleshkevych, P.; Malinowski, A.; Gierłowski, P.; Więckowski, J. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Wolny-Marszałek, M.; Jeżabek, M. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Varyukhin, V.N. [Donetsk Physiko-Technical Institute, Ukrainian Academy of Sciences, av. Nauki 46, 03028 Kiev (Ukraine); Antoshina, I.A. [Obninsk State Technical University of Atomic Energy, 249020 Obninsk (Russian Federation)

    2016-02-01

    We show that cluster magnetism in ferromagnetic amorphous Fe{sub 67}Cr{sub 18}B{sub 15} alloy is related to the presence of large, D=150–250 Å, α-(Fe Cr) clusters responsible for basic changes in cluster magnetism, small, D=30–100 Å, α-(Fe, Cr) and Fe{sub 3}B clusters and subcluster atomic α-(Fe, Cr, B) groupings, D=10–20 Å, in disordered intercluster medium. For initial sample and irradiated one (Φ=1.5×10{sup 18} ions/cm{sup 2}) superconductivity exists in the cluster shells of metallic α-(Fe, Cr) phase where ferromagnetism of iron is counterbalanced by antiferromagnetism of chromium. At Φ=3×10{sup 18} ions/cm{sup 2}, the internal stresses intensify and the process of iron and chromium phase separation, favorable for mesoscopic superconductivity, changes for inverse one promoting more homogeneous distribution of iron and chromium in the clusters as well as gigantic (twice as much) increase in density of the samples. As a result, in the cluster shells ferromagnetism is restored leading to the increase in magnetization of the sample and suppression of local superconductivity. For initial samples, the temperature dependence of resistivity ρ(T)~T{sup 2} is determined by the electron scattering on quantum defects. In strongly inhomogeneous samples, after irradiation by fluence Φ=1.5×10{sup 18} ions/cm{sup 2}, the transition to a dependence ρ(T)~T{sup 1/2} is caused by the effects of weak localization. In more homogeneous samples, at Φ=3×10{sup 18} ions/cm{sup 2}, a return to the dependence ρ(T)~T{sup 2} is observed. - Highlights: • The samples at high dose of ion irradiation become more homogeneous. • Gigantic increase in density of the samples (twice as much) is observed. • Ferromagnetism in large Fe–Cr clusters is restored. • Ferromagnetism of Fe–Cr clusters suppresses local superconductivity in them. • The participation of quantum defects in scattering of electrons is returned.

  7. Plasma diagnostics of the SIMPA Ecr ion source by X-ray spectroscopy, Collisions of H-like Neon ions with Argon clusters; Diagnostic du plasma de la source d'ions ECR SIMPA par spectroscopie X, Collision d'ions neon hydrogenoides avec des agregats d'argon

    Energy Technology Data Exchange (ETDEWEB)

    Adrouche, N

    2006-09-15

    The first part of this thesis is devoted to the SIMPA ECR ion source characterization, first, I explored the ion source's capacities on the point of view of extracted currents for three elements, argon, krypton and neon. By analyzing the Bremsstrahlung spectra, I determined the electronic temperature in the plasma and the electronic and ionic densities. In a second time, I recorded high resolution X-spectra of argon and krypton plasma's. By taking into account the principal mechanisms of production of a K hole in the ions inside the plasma, I determined the ionic densities of the high charge states of argon. Lastly, I highlighted a correlation between the ions charge states densities with the intensities of extracted currents. The second part of the thesis is devoted to Ne{sup 9+-} argon clusters collisions. First, I presented simple and effective theoretical models allowing to describe the phenomena occurring during a collision, from the point of view of the projectile. I carried out a simulation for a collision of an ion Ne{sup 9+} with an argon cluster of a given size, which has enabled us to know the energy levels populated during the electronic capture and to follow the number of electrons in each projectile shell. Lastly, I presented the first results of a collision between a Ne{sup 9+} beam and argon clusters. These results, have enabled me by using projectile X-ray spectroscopy during the ions-clusters collision, to evidence a strong clustering of targets atoms and to highlight an electronic multi-capture in the projectile ion excited states. (author)

  8. Electron-ion collision rates in atomic clusters irradiated by femtosecond laser pulses

    International Nuclear Information System (INIS)

    Moll, M; Hilse, P; Schlanges, M; Bornath, Th; Krainov, V P

    2010-01-01

    In atomic clusters irradiated by femtosecond laser pulses, plasmas with high density and high temperature are created. The heating is mainly caused by inverse bremsstrahlung, i.e. determined by electron-ion collisions. In the description of the scattering of electrons on noble gas ions in such plasmas, it is important to account for the inner structure of the ions and the screening by the surrounding plasma medium which can be accomplished by using suitable model potentials. In the wide parameter range met in experiments, the Born approximation is not applicable. Instead, the electron-ion collision frequency is calculated on the basis of classical momentum transport cross sections. Results are presented for xenon, krypton and argon ions in different charge states. A comparison of these results to those for the scattering on Coulomb particles with the same charge shows an enhancement of the collision frequency. The Born approximation, however, leads to an overestimation.

  9. Properties of clusters in the gas phase: V. Complexes of neutral molecules onto negative ions

    International Nuclear Information System (INIS)

    Keesee, R.G.; Lee, N.; Castleman, A.W. Jr.

    1980-01-01

    Ion--molecules association reactions of the form A - (B)/sub n1/-+B=A - (B)/sub n/ were studied over a range of temperatures in the gas phase using high pressure mass spectrometry. Enthalpy and entropy changes were determined for the stepwise clustering reactions of (1) sulfur dioxide onto Cl - , I - , and NO 2 - with n ranging from one to three or four, and onto SO 2 - and SO 3 - with n equal to one; and (2) carbon dioxide onto Cl - , I - , NO 2 - , CO 3 - , and SO 3 - with n equal to one. From these data and earlier hydration results, the order of the magnitude of the enthalpy changes on the association of the first neutral for a series of negative ions was found to parallel the gas-phase basicity of those anions. For any given ion, the relative order of the addition enthalpies among the neutrals was found to be dependent on the polarizabilities of the neutrals and on the covalency in the ion-neutral bond. Dispersion of charge via covalent bonding was found to affect significantly the succeeding clustering steps

  10. A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes

    OpenAIRE

    Xiao, Jisheng; Chen, Siyu; Yi, Ji; Zhang, Hao; Ameer, Guillermo A.

    2016-01-01

    Chronic non-healing wounds remain a major clinical challenge that would benefit from the development of advanced, regenerative dressings that promote wound closure within a clinically relevant time frame. The use of copper ions has shown promise in wound healing applications possibly by promoting angiogenesis. However, reported treatments that use copper ions require multiple applications of copper salts or oxides to the wound bed, exposing the patient to potentially toxic levels of copper io...

  11. APFIM investigation of clustering in neutron-irradiated Fe-Cu alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Blavette, D.

    1996-01-01

    Pressure vessel steels used in PWRs are known to be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are commonly supposed to result from the formation of point defects, dislocation loops, voids and copper-rich precipitates. However, the real nature of the irradiation induced damage, in these particularly low copper steels (>0,1 wt%), has not been clearly identify yet. A new experimental work has been carried out thanks to atom probe and field ion microscopy (APFIM) facilities and, more particularly with a new generation of atom probe recently developed, namely the tomographic atom probe (TAP), in order to improve: the understanding of the complex behavior of copper precipitation which occurs when low-alloyed Fe-Cu model alloys are irradiated with neutrons; the microstructural characterization of the pressure vessel steel of the CHOOZ A reactor under various fluences (French Surveillance Programme). The investigations clearly reveal the precipitation of copper-rich clusters in irradiated Fe-Cu alloys while more complicated Si, Ni, Mn and Cu-solute 'clouds' were observed to develop in the low-copper ferritic solid solution of the pressure vessel steel. (authors)

  12. Carbon nanotube growth from catalytic nano-clusters formed by hot-ion-implantation into the SiO{sub 2}/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Arima, Hiroki; Yokoyama, Ai; Saito, Yasunao; Nakata, Jyoji [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2012-07-01

    We have studied growth of chirality-controlled carbon nanotubes (CNTs) from hot-implantation-formed catalytic nano-clusters in a thermally grown SiO{sub 2}/Si substrate. This procedure has the advantage of high controllability of the diameter and the number of clusters by optimizing the conditions of the ion implantation. In the present study, Co{sup +} ions with ion dose of 8 Multiplication-Sign 10{sup 16} cm{sup -2} are implanted in the vicinity of the SiO{sub 2}/Si interface at 300 Degree-Sign C temperature. The implanted Co atoms located in the SiO{sub 2} layer has an amorphous-like structure with a cluster diameter of several nm. In contrast, implanted Co atoms in the Si substrate are found to take a cobalt silicide structure, confirmed by the high-resolution image of transmission electron microscope. CNTs are grown by microwave-plasma-enhanced chemical vapor deposition. We have confirmed a large amount of vertically-aligned multi-walled CNTs from the Co nano-clusters formed by the hot-ion-implantation near the SiO{sub 2}/Si interface.

  13. Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry

    NARCIS (Netherlands)

    Lou, X.; Dongen, van J.L.J.; Meijer, E.W.

    2010-01-01

    A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI(3)

  14. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils

    OpenAIRE

    DeBord, J. Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A.; Verkhoturov, Stanislav V.; Schweikert, Emile A.

    2012-01-01

    Carbon cluster emission from thin carbon foils (5–40 nm) impacted by individual Aun+q cluster projectiles (95–125 qkeV, n/q = 3–200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function...

  15. Electronic and geometric structures of Ge{sub n}{sup -} and Ge{sub n}{sup +} (n=5-10) clusters in comparison with corresponding Si{sub n} ions

    Energy Technology Data Exchange (ETDEWEB)

    Li Baoxing; Cao Peilin; Song Bin; Ye Zhezhen

    2003-02-10

    Using full-potential linear-muffin-tin-orbital molecular-dynamics (FP-LMTO-MD) method, we have studied the geometric and electronic structures of ionic Ge{sub 5-10} clusters. Our calculations show that the ground state structures of some Ge cluster ions are different from those of their corresponding neutral Ge clusters. Furthermore, the positive Ge ions have more severe structural distortion than the negative Ge ions due to Jahn-Teller distortion. In addition, there are differences between the ground state structures of Ge ions and Si ions, although most of the Ge ions have similar geometrical configurations to their corresponding Si ions.

  16. The effects of copper proximity on oxalate production in Fibroporia radiculosa

    Science.gov (United States)

    Katie M. Jenkins; Carol A. Clausen; Frederick Green III

    2014-01-01

    Copper remains a key component used in wood preservatives available today. However, the observed tolerance of several critical wood rotting organisms continues to be problematic. Tolerance to copper has been linked to the production and accumulation of oxalate, which precipitates copper into insoluble copper-oxalate crystals, thus inactivating copper ions. The purpose...

  17. IR photodissociation spectroscopy of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} cluster ions: Similarity and dissimilarity in the structure of CO{sub 2}, OCS, and CS{sub 2} cluster ions

    Energy Technology Data Exchange (ETDEWEB)

    Inokuchi, Yoshiya, E-mail: y-inokuchi@hiroshima-u.ac.jp; Ebata, Takayuki [Department of Chemistry, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan)

    2015-06-07

    Infrared photodissociation (IRPD) spectra of (OCS){sub n}{sup +} and (OCS){sub n}{sup −} (n = 2–6) cluster ions are measured in the 1000–2300 cm{sup −1} region; these clusters show strong CO stretching vibrations in this region. For (OCS){sub 2}{sup +} and (OCS){sub 2}{sup −}, we utilize the messenger technique by attaching an Ar atom to measure their IR spectra. The IRPD spectrum of (OCS){sub 2}{sup +}Ar shows two bands at 2095 and 2120 cm{sup −1}. On the basis of quantum chemical calculations, these bands are assigned to a C{sub 2} isomer of (OCS){sub 2}{sup +}, in which an intermolecular semi-covalent bond is formed between the sulfur ends of the two OCS components by the charge resonance interaction, and the positive charge is delocalized over the dimer. The (OCS){sub n}{sup +} (n = 3–6) cluster ions show a few bands assignable to “solvent” OCS molecules in the 2000–2080 cm{sup −1} region, in addition to the bands due to the (OCS){sub 2}{sup +} ion core at ∼2090 and ∼2120 cm{sup −1}, suggesting that the dimer ion core is kept in (OCS){sub 3–6}{sup +}. For the (OCS){sub n}{sup −} cluster anions, the IRPD spectra indicate the coexistence of a few isomers with an OCS{sup −} or (OCS){sub 2}{sup −} anion core over the cluster range of n = 2–6. The (OCS){sub 2}{sup −}Ar anion displays two strong bands at 1674 and 1994 cm{sup −1}. These bands can be assigned to a C{sub s} isomer with an OCS{sup −} anion core. For the n = 2–4 anions, this OCS{sup −} anion core form is dominant. In addition to the bands of the OCS{sup −} core isomer, we found another band at ∼1740 cm{sup −1}, which can be assigned to isomers having an (OCS){sub 2}{sup −} ion core; this dimer core has C{sub 2} symmetry and {sup 2}A electronic state. The IRPD spectra of the n = 3–6 anions show two IR bands at ∼1660 and ∼2020 cm{sup −1}. The intensity of the latter component relative to that of the former one becomes stronger and stronger with

  18. X-ray absorption spectroscopy and high-energy XRD study of the local environment of copper in antibacterial copper-releasing degradable phosphate glasses

    OpenAIRE

    Pickup, David M.; Ahmed, Ifty; Fitzgerald, Victoria; Moss, Rob M.; Wetherall, Karen; Knowles, Jonathan C.; Smith, Mark E.; Newport, Robert J.

    2006-01-01

    Phosphate-based glasses of the general formula Na2O-CaO-P2O5 are degradable in an aqueous environment, and therefore can act as antibacterial materials through the inclusion of ions such as copper. In this study, CuO and Cu2O were added to Na2O-CaO-P2O5 glasses (1-20 mol% Cu) and X-ray absorption spectroscopy (XAS) and high-energy X-ray diffraction (HEXRD) used to probe the local environment of the copper ions. Copper K-edge X-ray absorption near-edge structure (XANES) spectra confirm the oxi...

  19. COMPOSITIONS BASED ON PALLADIUM(II AND COPPER(II COMPOUNDS, HALIDE IONS, AND BENTONITE FOR OZONE DECOMPOSITION

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2017-05-01

    bromide ion. For Cu(II-KBr/N-Bent composition, kinetic and calculation data show that, in the presence of bromide ions, copper(II inhibits the ozone decomposition. For Pd(II-KBr/NBent composition, it has been found that the maximum activity is attained at СPd(II = 1.02·10-5 mol/g. For bimetallic Pd(II- Cu(II-KBr/N-Bent composition, changes in τ0, τ1/2, k1/2, and Q1/2 parameters depending on a Pd(II content are similar to those for monometallic Pd(II-KBr/NBent composition; however, values of the parameters are higher for the monometallic system. Thus, the inhibiting effect of Cu(II is observed even in the presence of palladium(II.

  20. Microstructural characterization of copper corrosion in aqueous and soil environments

    International Nuclear Information System (INIS)

    Srivastava, A.; Balasubramaniam, R.

    2005-01-01

    Scanning electron microscopy has been used to investigate the surface films on pure copper after exposure to different aqueous and soil environments, containing chloride, sulfide and ammonium salts. The morphology of the films formed on copper surface in aqueous and soil environments was different for the same amount of pollutants. The surface films formed in soil environments were not homogenous in contrast to the films formed in aqueous environments. The damaging effect of chloride ions and the benign role of sulfide ions were revealed in both the environments. Local compositional analysis confirmed that the surface films formed on copper consisted predominantly of copper and oxygen

  1. Determination of trace labile copper in environmental waters by magnetic nanoparticle solid phase extraction and high-performance chelation ion chromatography.

    Science.gov (United States)

    Wei, Z; Sandron, S; Townsend, A T; Nesterenko, P N; Paull, B

    2015-04-01

    Cobalt magnetic nanoparticles surface functionalised with iminodiacetic acid were evaluated as a nano-particulate solid phase extraction absorbent for copper ions (Cu(2+)) from environmental water samples. Using an external magnetic field, the collector nanoparticles could be separated from the aqueous phase, and adsorbed ions simply decomplexed using dilute HNO3. Effects of pH, buffer concentration, sample and sorbent volume, extraction equilibrium time, and interfering ion concentration on extraction efficiency were investigated. Optimal conditions were then applied to the extraction of Cu(2+) ions from natural water samples, prior to their quantitation using high-performance chelation ion chromatography. The limits of detection (LOD) of the combined extraction and chromatographic method were ~0.1 ng ml(-1), based upon a 100-fold preconcentration factor (chromatographic performance; LOD=9.2 ng ml(-1) Cu(2+)), analytical linear range from 20 to 5000 ng mL(-1), and relative standard deviations=4.9% (c=1000 ng ml(-1), n=7). Accuracy and precision of the combined approach was verified using a certified reference standard estuarine water sample (SLEW-2) and comparison of sample determinations with sector field inductively coupled plasma mass spectrometry. Recoveries from the addition of Cu(2+) to impacted estuarine and rain water samples were 103.5% and 108.5%, respectively. Coastal seawater samples, both with and without prior UV irradiation and dissolved organic matter removal were also investigated using the new methodology. The effect of DOM concentration on copper availability was demonstrated. Copyright © 2015. Published by Elsevier B.V.

  2. Studies on the optical absorption of copper-dopped myoglobin: conformational changes

    International Nuclear Information System (INIS)

    Lamy, M.T.M.

    1976-03-01

    Optical absorption changes in the visible and near U.V. spectrum of myoglobin molecules are observed when copper ions are added to the macromolecule. The heme optical transitions are investigated through a theoretical simulation of the optical absorption spectrum. A study of the absorption band in the region of 700 nm associated with the copper - myoglobin complexes indicated the existence of two kinds of metal-protein complexes: one associated with the six or eitht first added copper ions and the other related with the higher concentrations. Conformational changes caused by thermal treatment are studied in myoglobin water solutions and solutions containing copper ions. The phenomenon named pre-denaturation is observed through the optical absorption at 245 nm. It is shown that interactions between myoglobin molecules occur in the pre-denaturation phenomenon. (Author) [pt

  3. Solar wind dependence of ion parameters in the Earth's magnetospheric region calculated from CLUSTER observations

    Directory of Open Access Journals (Sweden)

    M. H. Denton

    2008-03-01

    Full Text Available Moments calculated from the ion distributions (~0–40 keV measured by the Cluster Ion Spectrometry (CIS instrument are combined with data from the Cluster Flux Gate Magnetometer (FGM instrument and used to characterise the bulk properties of the plasma in the near-Earth magnetosphere over five years (2001–2005. Results are presented in the form of 2-D xy, xz and yz GSM cuts through the magnetosphere using data obtained from the Cluster Science Data System (CSDS and the Cluster Active Archive (CAA. Analysis reveals the distribution of ~0–40 keV ions in the inner magnetosphere is highly ordered and highly responsive to changes in solar wind velocity. Specifically, elevations in temperature are found to occur across the entire nightside plasma sheet region during times of fast solar wind. We demonstrate that the nightside plasma sheet ion temperature at a downtail distance of ~12 to 19 Earth radii increases by a factor of ~2 during periods of fast solar wind (500–1000 km s−1 compared to periods of slow solar wind (100–400 km s−1. The spatial extent of these increases are shown in the xy, xz and yz GSM planes. The results from the study have implications for modelling studies and simulations of solar-wind/magnetosphere coupling, which ultimately rely on in situ observations of the plasma sheet properties for input/boundary conditions.

  4. Cluster ion formation during sputtering processes: a complementary investigation by ToF-SIMS and plasma ion mass spectrometry

    International Nuclear Information System (INIS)

    Welzel, T; Ellmer, K; Mändl, S

    2014-01-01

    Plasma ion mass spectrometry using a plasma process monitor (PPM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) have been complementarily employed to investigate the sputtering and ion formation processes of Al-doped zinc oxide. By comparing the mass spectra, insights on ion formation and relative cross-sections have been obtained: positive ions as measured during magnetron sputtering by PPM are originating from the plasma while those in SIMS start at the surface leading to large differences in the mass spectra. In contrast, negative ions originating at the surface will be accelerated through the plasma sheath. They arrive at the PPM after traversing the plasma nearly collisionless as seen from the rather similar spectra. Hence, it is possible to combine the high mass resolution of ToF-SIMS to obtain insight for separating cluster ions, e.g. Zn x and ZnO y , and the energy resolution of PPM to find fragmentation patterns for negative ions. While the ion formation processes during both experiments can be assumed to be similar, differences may arise due to the lower volume probed by SIMS. In the latter case, there is a chance of small target inhomogeneities being able to be enhanced and lower surface temperatures leading to less outgassing and, thus, retention of volatile compounds. (paper)

  5. Treatment of model and galvanic waste solutions of copper(II) ions using a lignin/inorganic oxide hybrid as an effective sorbent.

    Science.gov (United States)

    Ciesielczyk, Filip; Bartczak, Przemysław; Klapiszewski, Łukasz; Jesionowski, Teofil

    2017-04-15

    A study was made concerning the removal of copper(II) ions from model and galvanic waste solutions using a new sorption material consisting of lignin in combination with an inorganic oxide system. Specific physicochemical properties of the material resulted from combining the activity of the functional groups present in the structure of lignin with the high surface area of the synthesized oxide system (585m 2 /g). Analysis of the porous structure parameters, particle size and morphology, elemental composition and characteristic functional groups confirmed the effective synthesis of the new type of sorbent. A key element of the study was a series of tests of adsorption of copper(II) ions from model solutions. It was determined how the efficiency of the adsorption process was affected by the process time, mass of sorbent, concentration of adsorbate, pH and temperature. Potential regeneration of adsorbent, which provides the possibility of its reusing and recovering the adsorbed copper, was also analyzed. The sorption capacity of the material was measured (83.98mg/g), and the entire process was described using appropriate kinetic models. The results were applied to the design of a further series of adsorption tests, carried out on solutions of real sewage from a galvanizing plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. A model of large volumetric capacitance in graphene supercapacitors based on ion clustering

    Science.gov (United States)

    Skinner, Brian; Fogler, Michael; Shklovskii, Boris

    2012-02-01

    Electric double layer supercapacitors are promising devices for high-power energy storage based on the reversible absorption of ions into porous, conducting electrodes. Graphene is a particularly good candidate for the electrode material in supercapacitors due to its high conductivity and large surface area. In this paper we consider supercapacitor electrodes made from a stack of graphene sheets with randomly-inserted ``spacer" molecules. We show that the large volumetric capacitances C > 100 F/cm^3 observed experimentally can be understood as a result of collective intercalation of ions into the graphene stack and the accompanying nonlinear screening by graphene electrons that renormalizes the charge of the ion clusters.

  7. Interaction of nanosecond laser pulse with tetramethyl silane (Si(CH34 clusters: Generation of multiply charged silicon and carbon ions

    Directory of Open Access Journals (Sweden)

    Purav M. Badani

    2011-12-01

    Full Text Available Present work reports significantly high levels of ionization, eventually leading to Coulomb explosion of Tetramethyl silane (TMS clusters, on interaction with laser pulses of intensity ∼109 W/cm2. Tetramethyl silane clusters, prepared by supersonic expansion were photoionized at 266, 355 or 532 nm and the resultant ions were detected using time-of-flight mass spectrometer. It is observed that wavelength of irradiation and the size of the cluster are crucial parameters which drastically affect the nature of charge species generated upon photoionization of cluster. The results show that clusters absorb significantly higher energy from the laser field at longer wavelengths (532 nm and generate multiply charged silicon and carbon ions which have large kinetic energies. Further, laser-cluster interaction at different wavelengths has been quantified and charge densities at 266, 355 and 532 nm are found to be 4x 1010, 5x 1010 and 5x 1011 charges/cm3 respectively. These unusual results have been rationalized based on dominance of secondary ionization processes at 532 nm ultimately leading to Coulomb explosion of clusters. In another set of experiments, multiply charged ions of Ar (up to +5 state and Kr (up to +6 state were observed when TMS doped inert gas clusters were photoionized at 532 and 355 nm. The extent of energy absorption at these two wavelengths is clearly manifested from the charge state of the atomic ions generated upon Coulomb disintegration of the doped cluster. These experiments thus demonstrate a novel method for generation of multiply charged atomic ions of inert gases at laser intensity of ∼ 109 W/cm2. The average size of the cluster exhibiting Coulomb explosion phenomena under giga watt intensity conditions has been estimated to be ∼ 6 nm. Experimental results obtained in the present work agree qualitatively with the model proposed earlier [D. Niu, H. Li, F. Liang, L. Wen, X. Luo, B. Wang, and H. Qu, J. Chem. Phys. 122, 151103

  8. CONSIDERATIONS ON THE INFLUENCE OF COMPLEXATION IN THE COPPER UPTAKE AND TRANSLOCATION

    Directory of Open Access Journals (Sweden)

    SEMAGHIUL BIRGHILA

    2014-07-01

    Full Text Available The actual knowledge about food and the environment underlines the fact that agricultural and environmental sciences must solve various problems regarding copper uptake from soil to plants and its bioaccumulation, being important issues for copper concentration in crops and also for phytoremediation of polluted soils. We studied the relation between the form in which copper is applied to soil and the consequential copper bioavailability, uptake and translocation, using as examples simple and complex copper compounds. The copper concentration in basil plants harvested from soils treated with copper compounds and the calculated values of transfer coefficient, translocation factor, bioaccumulation factor, and uptake coefficient demonstrated that the ionic copper (from simple salts is not necessarily easier to uptake than complex ions, but is easier translocated in plants, while the copper given as complex ions is most likely to be retained by roots. The results indicated that the involvement of copper complexes in agricultural treatments is a solution for soils phytoremediation, concerning the phytostabilization technology.

  9. The scattering of low energy helium ions and atoms from a copper single crystal, ch. 2

    International Nuclear Information System (INIS)

    Verheij, L.K.; Poelsema, B.; Boers, A.L.

    1976-01-01

    The scattering of 4-10 keV helium ions from a copper surface cannot be completely described with elastic, single collisions. The general behaviour of the measured energy and width of the surface peak can be explained by differences in inelastic energy losses for scattering from an ideal surface and from surface structures (damage). Multiple scattering effects have a minor influence. Additional information about the inelastic processes is obtained from scattering experiments with a primary atom beam. For large angles of incidence, the energy of the reflected ions is reduced about 20 eV if the primary beam consists of atoms instead of ions. An explanation of this effect and an explanation of the different behaviour of small angles is given. In the investigated energy range, the electronic stopping power might depend on the charge state of the primary particles. The experimental results are rather well explained by the Lindhard, Scharff, Schioett theory

  10. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode

    Directory of Open Access Journals (Sweden)

    Aysenur Birinci

    2016-07-01

    Full Text Available A new solid contact copper selective electrode with a poly (vinyl chloride (PVC membrane consisting of o-xylylenebis(N,N-diisobutyldithiocarbamate as ionophore has been prepared. The main novelties of constructed ion selective electrode concept are the enhanced robustness, cheapness, and fastness due to the use of solid contacts. The electrode exhibits a rapid (< 10 seconds and near-Nernstian response to Cu2+ activity from 10−1 to 10−6 mol/L at the pH range of 4.0–6.0. No serious interference from common ions was found. The electrode characterizes by high potential stability, reproducibility, and full repeatability. The electrode was used as an indicator electrode in potentiometric titration of Cu(II ions with EDTA and for the direct assay of tea infusion samples by means of the calibration graph technique. The results compared favorably with those obtained by the atomic absorption spectroscopy (AAS.

  11. A study of the behaviour of copper in different types of silicate glasses implanted with Cu+ and O+ ions

    Czech Academy of Sciences Publication Activity Database

    Švecová, B.; Vařák, P.; Vytykačová, S.; Nekvindová, P.; Macková, Anna; Malinský, Petr; Bottger, R.

    2017-01-01

    Roč. 406, SEP (2017), s. 193-198 ISSN 0168-583X R&D Projects: GA MŠk LM2015056; GA ČR GA15-01602S Institutional support: RVO:61389005 Keywords : silicate glasses * ion implantation * copper Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 1.109, year: 2016

  12. Chitosan/halloysite beads fabricated by ultrasonic-assisted extrusion-dripping and a case study application for copper ion removal.

    Science.gov (United States)

    Choo, Cheng Keong; Kong, Xin Ying; Goh, Tze Lim; Ngoh, Gek Cheng; Horri, Bahman Amini; Salamatinia, Babak

    2016-03-15

    Development of new materials for different applications especially as bio-composites has received great attention. This study concentrates on development of a biopolymer based on chitosan (CT) and halloysite nanotubes (HNT) and evaluates the copper removal intake as a potential application of this bio-composite. In this study, CT/HNT beads were prepared by ultrasonic-assisted extrusion-dripping method for the first time. Two sources of HNTs (i.e. Dragonite and Matauri Bay) were added into a chitosan solution (2wt.%) at various loading fractions (25, 50, 75wt.%). The effect of ultrasound as a mixing device was also studied by varying the amplitude at constant frequency of 25%, 50% and 75%. Characteristics and physical properties of the prepared CT/HNT beads were also analyzed by SEM, FTIR, TGA and BET the results show that introducing HNT to chitosan increases the adsorption capacity toward copper ions; however HNT loading fraction above 50wt.% resulted in a decrease in adsorption capacity attributed to limited accessibility of the amino groups. The adsorption capacity of the CT/HNT beads prepared from Dragonite source had a larger adsorption capacity of 14.2mg/g as compared to that of Matauri Bay, 10.55mg/g. It was observed that the adsorption capacity of the beads toward copper ions decreased when the loading fraction of HNT is increased at constant ultrasound amplitude. The result of this study helps to understand the links between the characteristics and adsorption abilities of CT/HNT beads. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Neutron production from 158 GeV/c per nucleon lead ions on thin copper and lead targets in the angular range 30-135 deg

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Gini, L; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from 5, 10 and 20 mm thick lead and 10 and 20 mm thick copper targets bombarded by a lead ion beam with momentum of 158 GeV/c per nucleon were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident ion on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg. with respect to beam direction. Monte Carlo simulations with the FLUKA code were performed to establish a guess spectrum for the unfolding of the experimental data. The results have shown that, lacking Monte Carlo radiation transport codes dealing with ions with masses larger than 1 amu, a reasonable prediction can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number to the power of 0.85-0.95 for a lead target and 0.88-1.03 for a copper target.

  14. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

    Science.gov (United States)

    DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459

  15. Sputtering induced surface composition changes in copper-palladium alloys

    International Nuclear Information System (INIS)

    Sundararaman, M.; Sharma, S.K.; Kumar, L.; Krishnan, R.

    1981-01-01

    It has been observed that, in general, surface composition is different from bulk composition in multicomponent materials as a result of ion beam sputtering. This compositional difference arises from factors like preferential sputtering, radiation induced concentration gradients and the knock-in effect. In the present work, changes in the surface composition of copper-palladium alloys, brought about by argon ion sputtering, have been studied using Auger electron spectroscopy. Argon ion energy has been varied from 500 eV to 5 keV. Enrichment of palladium has been observed in the sputter-altered layer. The palladium enrichment at the surface has been found to be higher for 500 eV argon ion sputtering compared with argon ion sputtering at higher energies. Above 500 eV, the surface composition has been observed to remain the same irrespective of the sputter ion energy for each alloy composition. The bulk composition ratio of palladium to copper has been found to be linearly related to the sputter altered surface composition ratio of palladium to copper. These results are discussed on the basis of recent theories of alloy sputtering. (orig.)

  16. Concentration dependent transcriptome responses of zebrafish embryos after exposure to cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2017-12-01

    Environmental metals are known to cause harmful effects to fish of which many molecular mechanisms still require elucidation. Particularly concentration dependence of gene expression effects is unclear. Focusing on this matter, zebrafish embryo toxicity tests were used in combination with transcriptomics. Embryos were exposed to three concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) from just after fertilization until the end of the 48hpf pre- and 96hpf post-hatch stage. The RNA was then analyzed on Agilent's Zebrafish (V3, 4×44K) arrays. Enrichment for GO terms of biological processes illustrated for cadmium that most affected GO terms were represented in all three concentrations, while for cobalt and copper most GO terms were represented in the lowest test concentration only. This suggested a different response to the non-essential cadmium than cobalt and copper. In cobalt and copper treated embryos, many developmental and cellular processes as well as the Wnt and Notch signaling pathways, were found significantly enriched. Also, different exposure concentrations affected varied functional networks. In contrast, the largest clusters of enriched GO terms for all three concentrations of cadmium included responses to cadmium ion, metal ion, xenobiotic stimulus, stress and chemicals. However, concentration dependence of mRNA levels was evident for several genes in all metal exposures. Some of these genes may be indicative of the mechanisms of action of the individual metals in zebrafish embryos. Real-time quantitative RT-PCR (qRT-PCR) verified the microarray data for mmp9, mt2, cldnb and nkx2.2a. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Copper-silver ionization at a US hospital: interaction of treated ...

    Science.gov (United States)

    Tap water sampling and surface analysis of copper pipe/bathroom porcelain were performed to explore the fate of copper and silver during the first nine months of copper-silver ionization (CSI) applied to cold and hot water at a hospital in Cincinnati, Ohio. Ions dosed by CSI into the water at its point of entry to the hospital were inadvertently removed from hot water by a cation-exchange softener in one building (average removal of 72% copper and 51% silver). Copper at the tap was replenished from corrosion of the building’s copper pipes but was typically unable to reach 200 µg/L in first-draw and flushed hot and cold water samples. Unlike copper, silver solubility was not restricted by the incoming water’s high pH of 8.5. Cold water lines had >20 µg/L silver at most of the taps that were sampled, which further increased after flushing. However, silver plating onto copper pipe surfaces (particularly in the hot water line) prevented reaching 20 µg/L silver in hot water of many taps. Aesthetically displeasing purple/grey stains in bathroom porcelain were attributed to chlorargyrite [AgCl(s)], an insoluble precipitate that formed when CSI-dosed Ag+ ions combined with Cl- ions that were present in the incoming water. Overall, CSI aims to control Legionella bacteria in drinking water, but plumbing material interactions, aesthetics and other implications also deserve consideration to holistically evaluate in-building drinking water disinfection. To inform the

  18. Chemical sensors in natural water: peculiarities of behaviour of chalcogenide glass electrodes for determination of copper, lead and cadmium ions

    International Nuclear Information System (INIS)

    Seleznev, B.L.; Legin, A.V.; Vlasov, Yu.G.

    1996-01-01

    Specific features of chemical sensors (chalcogenide glass and crystal ion-selective electrodes) behaviour have been studied to determine copper (2), lead, cadmium and fluorine in the course of in situ measurements, including long-term uninterrupted testing, for solving the problem of inspection over natural water contamination. 16 refs., 3 figs., 2 tabs

  19. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Science.gov (United States)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  20. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-01-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10 -5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  1. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M., E-mail: chumakov.xray@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I. [State University of Moldova (Moldova, Republic of); Jeanneau, E. [Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces (France); Bairac, N. N. [State University of Moldova (Moldova, Republic of); Bocelli, G. [National Research Council (IMEM-CNR), Institute of Materials for Electronics and Magnetism (Italy); Poirier, D.; Roy, J. [Centre Hospitalier Universitaire de Quebec (CHUQ) (Canada); Gulea, A. P. [State University of Moldova (Moldova, Republic of)

    2008-09-15

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10{sup -5} mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  2. Synthesis, spectroscopic and thermal studies of the copper(II) aspartame chloride complex

    Science.gov (United States)

    Çakır, S.; Coşkun, E.; Naumov, P.; Biçer, E.; Bulut, İ.; İçbudak, H.; Çakır, O.

    2002-08-01

    Aspartame adduct of copper(II) chloride Cu(Asp) 2Cl 2·2H 2O (Asp=aspartame) is synthesized and characterized by elemental analysis, FT IR, UV/vis, ESR spectroscopies, TG, DTG, DTA measurements and molecular mechanics calculations. Aqueous solution of the green solid absorbs strongly at 774 and 367 nm. According to the FT IR spectra, the aspartame moiety coordinates to the copper(II) ion via its carboxylate ends, whereas the ammonium terminal groups give rise to hydrogen bonding network with the water, the chloride ions or neighboring carboxylate groups. The results suggest tetragonally distorted octahedral environment of the copper ions.

  3. Metastable decay and binding energies of van der Waals cluster ions

    International Nuclear Information System (INIS)

    Ernstberger, B.; Krause, H.; Neusser, H.J.

    1991-01-01

    In this work the appearance potentials for the metastable decay channel of a series of van der Waals dimer ions are presented. Ionization and metastable dissociation is achieved by resonance-enhanced two-photon absorption in a linear reflectron time-of-flight mass spectrometer. From the appearance potentials the binding energy of the neutral dimers is obtained and from the additionally measured ionization potentials binding energies of the dimer cations are achieved. The contribution of charge transfer resonance interaction to the binding in cluster ions is evaluated by investigation of several homo- and heterodimers of aromatic components and the heterodimer benzene/cyclohexane as an example for a dimer consisting of an aromatic and a nonaromatic component. (orig.)

  4. Site-specific fragmentation of polystyrene molecule using size-selected Ar gas cluster ion beam

    International Nuclear Information System (INIS)

    Moritani, Kousuke; Mukai, Gen; Hashinokuchi, Michihiro; Mochiji, Kozo

    2009-01-01

    The secondary ion mass spectrum (SIMS) of a polystyrene thin film was investigated using a size-selected Ar gas cluster ion beam (GCIB). The fragmentation in the SIM spectrum varied by kinetic energy per atom (E atom ); the E atom dependence of the secondary ion intensity of the fragment species of polystyrene can be essentially classified into three types based on the relationship between E atom and the dissociation energy of a specific bonding site in the molecule. These results indicate that adjusting E atom of size-selected GCIB may realize site-specific bond breaking within a molecule. (author)

  5. Ion emission in solids bombarded with Aun+ (n = 1 - 9) clusters accelerated within the 0.15 - 1.25 MeV energy range

    International Nuclear Information System (INIS)

    Wehbe, Nimer

    2006-06-01

    This experimental work is devoted to the study of the ion emission in solids at the impact of gold clusters of energies within 0.15 to 1.25 MeV range. The physics of ion-solid collisions and the theoretical models of sputtering of solids under ion bombardment are presented in the first chapter. The chapter no. 2 deals with the description of the experimental setup. The study of a gold target allowed to evidence the role of the size and energy of the clusters in determining the emission intensity and the mass distribution of the ions. The 4. chapter gives results from the study of cesium iodide in which the intense emission of CsI clusters could be investigated quantitatively due to multiplicity measurements. Finally, the chapter no. 5 was devoted to the study of a biologic molecule, the phenylalanine, and of a pesticide molecule, chlorosulfuron. This work evidenced the importance of clusters for surface analyses by mass spectrometry

  6. Rate and Regulation of Copper Transport by Human Copper Transporter 1 (hCTR1)*

    Science.gov (United States)

    Maryon, Edward B.; Molloy, Shannon A.; Ivy, Kristin; Yu, Huijun; Kaplan, Jack H.

    2013-01-01

    Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using 64Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu+ first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry. PMID:23658018

  7. Cluster observations of the high-latitude magnetopause and cusp: initial results from the CIS ion instruments

    Directory of Open Access Journals (Sweden)

    J. M. Bosqued

    2001-09-01

    Full Text Available Launched on an elliptical high inclination orbit (apogee: 19.6 RE since January 2001 the Cluster satellites have been conducting the first detailed three-dimensional studies of the high-latitude dayside magnetosphere, including the exterior cusp, neighbouring boundary layers and magnetopause regions. Cluster satellites carry the CIS ion spectrometers that provide high-precision, 3D distributions of low-energy (<35 keV/e ions every 4 s. This paper presents the first two observations of the cusp and/or magnetopause behaviour made under different interplanetary magnetic field (IMF conditions. Flow directions, 3D distribution functions, density profiles and ion composition profiles are analyzed to demonstrate the high variability of high-latitude regions. In the first crossing analyzed (26 January 2001, dusk side, IMF-BZ < 0, multiple, isolated boundary layer, magnetopause and magnetosheath encounters clearly occurred on a quasi-steady basis for ~ 2 hours. CIS ion instruments show systematic accelerated flows in the current layer and adjacent boundary layers on the Earthward side of the magnetopause. Multi-point analysis of the magnetopause, combining magnetic and plasma data from the four Cluster spacecraft, demonstrates that oscillatory outward-inward motions occur with a normal speed of the order of ± 40 km/s; the thickness of the high-latitude current layer is evaluated to be of the order of 900–1000 km. Alfvénic accelerated flows and D-shaped distributions are convincing signatures of a magnetic reconnection occurring equatorward of the Cluster satellites. Moreover, the internal magnetic and plasma structure of a flux transfer event (FTE is analyzed in detail; its size along the magnetopause surface is ~ 12 000 km and it convects with a velocity of ~ 200 km/s. The second event analyzed (2 February 2001 corresponds to the first Cluster pass within the cusp when the IMF-BZ component was northward directed. The analysis of relevant CIS plasma

  8. Colloidal copper in aqueous solutions: radiation-chemical reduction, mechanism of formation and properties

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1994-01-01

    Colloidal copper was obtained upon γ-irradiation of aqueous solutions of divalent copper perchlorate in the presence of alcohol and polyethyleneimine (PEI). The sols were in the form of spherical particles 4 nm in diameter, which were promptly oxidized by oxygen or other oxidants. The copper ions were reduced on the surface of silver sols. The optical parameters of the obtained bimetallic particles were studied. The copper ions led to the broadening and shift of the absorption bands of the silver sols to the UV region

  9. Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion

    International Nuclear Information System (INIS)

    Liu Zhengqing; Liu Shaopu; Yin Pengfei; He Youqiu

    2012-01-01

    Graphical abstract: Glyphosate (Glyp) had been used to modify the surface of CdTe/CdS QDs, resulting in the enhancement of fluorescence intensity. The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu 2+ based on the fluorescence quenching. Highlights: ► Water soluble CdTe/CdS quantum dots capped with glyphosate were firstly synthesized. ► The fluorescence of the Glyp-functionalized QDs was quenched by copper ion. ► A new fluorescent sensor for copper ion was developed based on the prepared QDs. ► The sensor exhibited high sensitivity and good selectivity for copper ion. - Abstract: A novel fluorescent probe for Cu 2+ determination based on the fluorescence quenching of glyphosate (Glyp)-functionalized quantum dots (QDs) was firstly reported. Glyp had been used to modify the surface of QDs to form Glyp-functionalized QDs following the capping of thioglycolic acid on the core–shell CdTe/CdS QDs. Under the optimal conditions, the response was linearly proportional to the concentration of Cu 2+ between 2.4 × 10 −2 μg mL −1 and 28 μg mL −1 , with a detection limit of 1.3 × 10 −3 μg mL −1 (3δ). The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu 2+ . The fluorescent probe was successfully used for the determination of Cu 2+ in environmental samples. The mechanism of reaction was also discussed.

  10. Field Observation of the Green Ocean Amazon. Neutral Cluster Air Ion Spectrometer (NAIS) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    Petaja, T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Backman, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Manninen, H. E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wimmer, D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The neutral cluster and air ion spectrometer (NAIS) was deployed to the T3 site for Intensive Operations Periods 1 and 2 (IOP1 and IOP2). The NAIS is an instrument that measures aerosol particle and ion number size distributions in the mobility diameter range of 0.8 to 42 nm, corresponding to electrical mobility range between 3.2 and 0.0013 cm2 V-1 s-1. New particle formation (NPF) events were detected using the NAIS at the T3 field site during IOP1 and IOP2. Secondary NPF is a globally important source of aerosol number. To fully explain atmospheric NPF and subsequent growth, we need to directly measure the initial steps of the formation processes in different environments, including rain forest. Particle formation characteristics, such as formation and growth rates, were used as indicators of the relevant processes and participating compounds in the initial formation. In a case of parallel ion and neutral cluster measurements, we estimated the relative contribution of ion-induced and neutral nucleation to the total particle formation.

  11. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete

    DEFF Research Database (Denmark)

    Thit, Amalie; Ramskov, Tina; Croteau, Marie-Noële Croteau

    2016-01-01

    the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically...

  12. Active screen cage pulsed dc discharge for implanting copper in polytetrafluoroethylene (PTFE)

    Science.gov (United States)

    Zaka-ul-Islam, Mujahid; Naeem, Muhammad; Shafiq, Muhammad; Sitara; Jabbar Al-Rajab, Abdul; Zakaullah, Muhammad

    2017-07-01

    Polymers such as polytetrafluoroethylene (PTFE) are widely used in artificial organs where long-term anti-bacterial properties are required to avoid bacterial proliferation. Copper or silver ion implantation on the polymer surface is known as a viable method to generate long-term anti-bacterial properties. Here, we have tested pulsed DC plasma with copper cathodic cage for the PTFE surface treatment. The surface analysis of the treated specimens suggests that the surface, structural properties, crystallinity and chemical structure of the PTFE have been changed, after the plasma treatment. The copper release tests show that copper ions are released from the polymer at a slow rate and quantity of the released copper increases with the plasma treatment time.

  13. Clustered DNA damage induced by proton and heavy ion irradiation

    International Nuclear Information System (INIS)

    Davidkova, M.; Pachnerova Brabcova, K; Stepan, V.; Vysin, L.; Sihver, L.; Incerti, S.

    2014-01-01

    Ionizing radiation induces in DNA strand breaks, damaged bases and modified sugars, which accumulate with increasing density of ionizations in charged particle tracks. Compared to isolated DNA damage sites, the biological toxicity of damage clusters can be for living cells more severe. We investigated the clustered DNA damage induced by protons (30 MeV) and high LET radiation (C 290 MeV/u and Fe 500 MeV/u) in pBR322 plasmid DNA. To distinguish between direct and indirect pathways of radiation damage, the plasmid was irradiated in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The goal of the contribution is the analysis of determined types of DNA damage in dependence on radiation quality and related contribution of direct and indirect radiation effects. The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers. (authors)

  14. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation

    International Nuclear Information System (INIS)

    Tokuyama, Yuka; Terato, Hiroaki; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira

    2015-01-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm -1 , respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. (author)

  15. Determination of HCl and VOC Emission from Thermal Degradation of PVC in the Absence and Presence of Copper, Copper(II Oxide and Copper(II Chloride

    Directory of Open Access Journals (Sweden)

    Ahamad J. Jafari

    2009-01-01

    Full Text Available Polyvinyl chloride (PVC has played a key role in the development of the plastic industry over the past 40 years. Thermal degradation of PVC leads to formation of many toxic pollutants such as HCl, aromatic and volatile organic carbon vapors. Thermal degradation of PVC and PVC in the present of copper, cupric oxide and copper(II chloride were investigated in this study using a laboratory scale electrical furnace. HCl and Cl- ion were analyzed by a Dionex ion chromatograph and VOCs compounds were analyzed using GC or GC-MS. The results showed that HCl plus Cl- ion and benzene formed about 99% and 80% respectively in the first step of thermal degradation under air atmosphere. The presence of cupric oxide increases the percentage of short chain hydrocarbons more than 184% and decreases the amount of the major aromatic hydrocarbon and HCl plus Cl- ion to 90% and 65% respectively. The total aromatic hydrocarbon emitted less than when atmosphere was air and difference was statistically significant (Pvalue<0.000

  16. SBA-15 mesoporous silica free-standing thin films containing copper ions bounded via propyl phosphonate units - preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl [Czestochowa University of Technology, Institute of Computational Intelligence, Unit of Microelectronics and Nanotechnology, Al. Armii Krajowej 36, 42–201 Czestochowa (Poland); Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, 31-342 Krakow, ul. Radzikowskiego 152 (Poland); Jelonkiewicz, Jerzy, E-mail: jerzy.jelonkiewicz@kik.pcz.pl [Czestochowa University of Technology, Institute of Computational Intelligence, Unit of Microelectronics and Nanotechnology, Al. Armii Krajowej 36, 42–201 Czestochowa (Poland); Dulski, Mateusz, E-mail: mateusz.dulski@us.edu.pl [University of Silesia, Faculty of Computer Science and Materials Science, Institute of Materials Science, Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41–500 Chorzów (Poland); Wojtyniak, Marcin, E-mail: marcin.wojtyniak@us.edu.pl [University of Silesia, Institute of Physics, Silesian Center for Education and Interdisciplinary Research, ul. 75 Pułku Piechoty 1A, 41–500 Chorzów (Poland); Fitta, Magdalena, E-mail: magdalena.fitta@ifj.edu.pl [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31–342 Krakow, ul. Radzikowskiego 152 (Poland); Balanda, Maria, E-mail: Maria.Balanda@ifj.edu.pl [H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 31–342 Krakow, ul. Radzikowskiego 152 (Poland)

    2016-09-15

    The SBA-15 silica thin films containing copper ions anchored inside channels via propyl phosphonate groups are investigated. Such materials were prepared in the form of thin films, with hexagonally arranged pores, laying rectilinear to the substrate surface. However, in the case of our thin films, their free standing form allowed for additional research possibilities, that are not obtainable for typical thin films on a substrate. The structural properties of the samples were investigated by X-ray reflectometry, atomic force microscopy (AFM) and transmission electron microscopy (TEM). The molecular structure was examined by Raman spectroscopy supported by numerical simulations. Magnetic measurements (SQUID magnetometry and EPR spectroscopy) showed weak antiferromagnetic interactions between active units inside silica channels. Consequently, the pores arrangement was determined and the process of copper ions anchoring by propyl phosphonate groups was verified in unambiguous way. Moreover, the type of interactions between magnetic atoms was determined. - Highlights: • Functionalized free-standing SBA-15 thin films were synthesized for a first time. • Thin films synthesis procedure was described in details. • Structural properties of the films were thoroughly investigated and presented. • Magnetic properties of the novel material was investigated and presented.

  17. Is a high serum copper concentration a risk factor for implantation failure?

    Science.gov (United States)

    Matsubayashi, Hidehiko; Kitaya, Kotaro; Yamaguchi, Kohei; Nishiyama, Rie; Takaya, Yukiko; Ishikawa, Tomomoto

    2017-08-10

    Copper-containing contraceptive devices may deposit copper ions in the endometrium, resulting in implantation failure. The deposition of copper ions in many organs has been reported in patients with untreated Wilson's disease. Since these patients sometimes exhibit subfertility and/or early pregnancy loss, copper ions were also considered to accumulate in the uterine endometrium. Wilson's disease patients treated with zinc successfully delivered babies because zinc interfered with the absorption of copper from the gastrointestinal tract. These findings led to the hypothesis that infertile patients with high serum copper concentrations may have implantation failure due to the excess accumulation of copper ions. The relationship between implantation (pregnancy) rates and serum copper concentrations has not yet been examined. The Japanese government recently stated that actual copper intake was higher among Japanese than needed. Therefore, the aim of the present study was to investigate whether serum copper concentrations are related to the implantation (pregnancy) rates of human embryos in vivo. We included 269 patients (age copper, and zinc concentrations were measured 16 days after the first date of progesterone replacement. We compared 96 women who were pregnant without miscarriage at 10 weeks of gestation (group P) and 173 women who were not pregnant (group NP). No significant differences were observed in age or BMI between the groups. Copper concentrations were significantly higher in group NP (average 193.2 μg/dL) than in group P (average 178.1 μg/dL). According to the area under the curve (AUC) on the receiver operating characteristic curve for the prediction of clinical pregnancy rates, the Cu/Zn ratio (AUC 0.64, 95% CI 0.54-0.71) was a better predictor than copper or zinc. When we set the cut-off as 1.59/1.60 for the Cu/Zn ratio, sensitivity, specificity, the positive predictive value, and negative predictive value were 0.98, 0.29, 0.71, and 0

  18. Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles

    Science.gov (United States)

    Hwang, Jangsun; Hwang, Mintai P.; Choi, Moonhyun; Seo, Youngmin; Jo, Yeonho; Son, Jaewoo; Hong, Jinkee; Choi, Jonghoon

    2016-10-01

    Heavy metal pollution has been a problem since the advent of modern transportation, which despite efforts to curb emissions, continues to play a critical role in environmental pollution. Copper ions (Cu2+), in particular, are one of the more prevalent metals that have widespread detrimental ramifications. From this perspective, a simple and inexpensive method of detecting Cu2+ at the micromolar level would be highly desirable. In this study, we use porous silicon nanoparticles (NPs), obtained via anodic etching of Si wafers, as a basis for undecylenic acid (UDA)- or acrylic acid (AA)-mediated hydrosilylation. The resulting alkyl-terminated porous silicon nanoparticles (APS NPs) have enhanced fluorescence stability and intensity, and importantly, exhibit [Cu2+]-dependent quenching of fluorescence. After determining various aqueous sensing conditions for Cu2+, we demonstrate the use of APS NPs in two separate applications - a standard well-based paper kit and a portable layer-by-layer stick kit. Collectively, we demonstrate the potential of APS NPs in sensors for the effective detection of Cu2+.

  19. A novel solidified floating organic drop microextraction method for preconcentration and determination of copper ions by flow injection flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sahin, Cigdem Arpa; Tokgoez, Ilknur

    2010-01-01

    A rapid, simple and cost effective solidified floating organic drop microextraction (SFODME) and flow injection flame atomic absorption spectrometric determination (FI-FAAS) method for copper was developed. In this method, a free microdrop of 1-undecanol containing 1,5-diphenyl carbazide (DPC) as the complexing agent was transferred to the surface of an aqueous sample including Cu(II) ions, while being agitated by a stirring bar in the bulk of the solution. Under the proper stirring conditions, the suspended microdrop can remain at the top-center position of the aqueous sample. After the completion of the extraction, the sample vial was cooled by placing it in a refrigerator for 10 min. The solidified microdrop was then transferred into a conical vial, where it melted immediately and diluted to 300 μL with ethanol. Finally, copper ions in 200 μL of diluted solution were determined by FI-FAAS. Several factors affecting the microextraction efficiency, such as type of extraction solvent, pH, complexing agent concentration, extraction time, stirring rate, sample volume and temperature were investigated and optimized. Under optimized conditions for 100 mL of solution, the preconcentration factor was 333 and the enrichment factor was 324. The limit of detection (3 s) was 0.4 ng mL -1 , the limit of quantification (10 s) was 1.1 ng mL -1 and the relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL -1 copper was 0.9%. The proposed method was successfully applied to the determination of copper in different water samples.

  20. Copper implantation defects in MgO observed by positron beam analysis, RBS and X-TEM

    International Nuclear Information System (INIS)

    Huis, M.A. van; Fedorov, A.V.; Veen, A. van; Smulders, P.J.M.; Kooi, B.J.; Hosson, J.Th.M. de

    2000-01-01

    In this work, effects of copper ion implantation in MgO were studied. (1 0 0) MgO samples were implanted with 50 keV Cu ions and thermally annealed stepwise in air for 30 minutes at 550, 750, 1000, 1250 and 1350 K. After ion implantation and after each annealing step, the samples were analysed with positron beam analysis (PBA). Use was also made of Rutherford backscattering spectrometry/channeling (RBS-C) and cross-sectional transmission electron microscopy (X-TEM). The combination of these techniques enabled to monitor the depth resolved evolution of both created defects and the copper atom depth distribution. PBA results show that copper implantation at a dose of 10 15 ions cm -2 yields a single layer of vacancy type defects after annealing. However a copper implantation at a dose of 10 16 ions cm -2 clearly yields two layers of defects in the material after annealing, separated by an intermediate layer. In both layers nanocavities have been identified. RBS experimental results show that the implanted copper atoms diffuse into the bulk material during annealing. X-TEM and channeling results show that after annealing, the lattice of the copper nanoprecipitates is epitaxial to the MgO host lattice. Under some circumstances, copper precipitates and small voids can co-exist. Furthermore, X-TEM measurements show that the nanocavities have rectangular shapes

  1. An Investigation of Low Biofouling Copper-charged Membranes

    Science.gov (United States)

    Asapu, Sunitha

    Water is essential for the survival of life on Earth, but pollutants in water can cause dangerous diseases and fatalities. The need for purified water has been increasing with increasing world population; however, natural sources of water such as rivers, lakes and streams, are progressively falling shorter and shorter of meeting water needs. The provision of clean, drinkable water to people is a key factor for the development of novel and alternative water purification technologies, such as membrane separations. Nanofiltration (NF) is a membrane separations technology that purifies water from lower quality sources, such as brackish water, seawater and wastewater. During the filtration of such sources, materials that are rejected by the membrane may accumulate on the surface of the membrane to foul it. Such materials include organic and inorganic matter, colloids, salts and microorganisms. The former four can often be controlled via pretreatment; however, the accumulation of microorganisms is more problematic to membranes. Biofouling is the accumulation and growth of microorganisms on the surface of membranes and on feed spacers. After attachment, microorganisms excrete extracellular polymeric substances (EPS), which form a matrix around the organism's outer surface as biofilm. These biofilms are detrimental and result in irreversible membrane fouling. Copper and silver ions inactivate the bacterial cells and prevent the DNA replication in microbial cells. Previous studies using copper-charged feed spacers have shown the ability of copper to control biofouling without a significant amount of copper leaching from copper-charged polypropylene (PP) feed spacers during crossflow filtration. Also, filtration using unmodified speed facers experienced almost 70% flux decline, while filtration using copper-charged feed spacers displayed only 25% flux decline. These intriguing results led to the hypothesis that the polymer chemistry could be extrapolated to produce membranes

  2. Study of point defect clustering in electron and ion irradiated zirconium alloys

    International Nuclear Information System (INIS)

    Hellio, C.; Boulanger, L.

    1986-09-01

    Dislocation loops created by 500 keV Zr + ions and 1 MeV electrons in zirconium have a/3 type Burgers vectors, and in ion irradiated samples, loops lie preferentially on planes close to (1010). From in-situ observations of loop growth under 1 MeV electron irradiation in zirconium and dilute Zr (Nb,O) alloys, a strong increase of the vacancy migration energy with oxygen concentration was observed, from 0.72 eV for pure zirconium to 1.7 eV for Zr and Zr-1% Nb doped with 1800 ppm weight oxygen, indicating large trapping of vacancies by O single interstitials or clusters

  3. A novel aggregation induced emission active cyclometalated Ir(III) complex as a luminescent probe for detection of copper(II) ion in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei; Yan, Liqiang; Tian, Wenwen; Cui, Xia; Qi, Zhengjian, E-mail: qizhengjian@seu.edu.cn; Sun, Yueming, E-mail: sun@seu.edu.cn

    2016-09-15

    We report the synthesis and characterization of a novel aggregation induced emission (AIE) active cyclometalated Ir(III) complex, namely [Ir(dfppy){sub 2}(phen-DPA)]PF{sub 6}, where dfppy and phen-DPA represent 2-(2,4-difluorophenyl)pyridine and 2-(bis(pyridin-2-ylmethyl)amino)-N-(1,10-phenanthrolin-5-yl)acetamide, respectively. The complex showed remarkable selectivity for copper(II) in aqueous solution over other competitive ions. Furthermore, this sensor showed a rapid and reversible response to copper(II) in aqueous solution with a detection limit of 65 nM.

  4. Observations of high-n transitions in the spectra of near-neon-like copper ions from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K.B. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Moscow (Russian Federation); Flora, F.; Bollanti, S.; Lazzaro, P.Di.; Murra, D. [ENEA, Dipartimento Innovazione, Settore Fisica Applicata, Frascati, Rome (Italy); Grilli, A. [INFN Frascati, Rome (Italy); Reale, A.; Reale, L.; Tomassetti, G.; Ritucci, A. [Dipartimento di Fisica e INFM, INFN g.c. LNGS, Universita dell' Aquila, L' Aquila (Italy); Bellucci, I.; Martellucci, S.; Petrocelli, G. [INFM, Dipartimento di Scienze e Tecnologie Fisiche ed Energetiche, Universita di Roma Tor Vergata, Rome (Italy)

    2002-08-14

    Spectra in the 7.50-8.70 A range from highly charged copper ions are analysed, and line identifications are made for the Na-, Ne-, F- and O-like charge states. The spectra are recorded with a spherically bent crystal spectrometer using either a mica or quartz crystal for moderate ({lambda}/{delta}{lambda}=3000) and high ({lambda}/{delta}{lambda}=8000) energy resolution, respectively. The plasmas from which the spectra are emitted are formed with either a Nd:glass (15 ns pulse) or a XeCl (12 ns pulse) laser. Systematic variations in the observed spectra with pulse energy are studied. Using different laser energies, and defocusing of the laser to reduce the intensity, we create plasmas with different ionization state distributions, which allows us to deconvolve blended lines from different copper ions. Line identifications are made based on relativistic atomic structure calculations that account for configuration interaction in level energies and transition rates. We use full kinetics simulations of ion emissivities, not just calculations of theoretical transition energies, to identify the strong and weak lines in crowded spectral regions. We identify 2p-nl transitions for Ne-like Cu{sup 19+} for 4{<=}n{<=}8 and 2s-np transitions for 4{<=}n{<=}6. We offer the first identification of high-n (n{<=}8) Na-like satellites to Ne-like Rydberg resonance lines. The first and second ionization energies for Cu{sup 19+} are found, at 1689.02 and 1709.16 eV, respectively, based on our observations. (author)

  5. Distribution of implanted ions in seeds and roots of mung bean

    International Nuclear Information System (INIS)

    Liu Donghua; Wang Wei; Jiang Wusheng; Zhang Zhixiang; Hou Wenqiang; Guo Ximing; Li Yi

    1998-01-01

    Doses of 1 x 10 16 , and 2 x 10 16 cm -2 and 1 x 10 16 , 2 x 10 16 , 3 x 10 16 and 3.6 x 10 16 cm -2 for iron and copper ions are implanted in dry seeds of mung bean, respectively. The results show that the accumulated-copper and -iron ion amounts in the seeds and roots vary with different doses of ion beam, and the fresh and dry weights of the roots decrease progressively with increasing iron and copper doses, except the treatment of 1 x 10 16 Cu + ions/cm 2 , and the accumulated-copper and -iron ion amounts in the seeds of the different test groups can be correlated with the ion distribution in the roots

  6. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    Science.gov (United States)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  7. Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.

    Science.gov (United States)

    Pliego, Josefredo R; Miguel, Elizabeth L M

    2013-05-02

    Absolute solvation free energy of the lithium cation in methanol was calculated by the cluster-continuum quasichemical theory of solvation. Clusters with up to five methanol molecules were investigated using X3LYP, MP2, and MP4 methods with DZVP, 6-311+G(2df,2p), TZVPP+diff, and QZVPP+diff basis sets and including the cluster solvation through the PCM and SMD continuum models. Our calculations have determined a value of -118.1 kcal mol(-1) for the solvation free energy of the lithium, in close agreement with a value of -116.6 kcal mol(-1) consistent with the TATB assumption. Using data of solvation and transfer free energy of a pair of ions, electrode potentials and pKa, we have obtained the solvation free energy of 25 ions in methanol. Our analysis leads to a value of -253.6 kcal mol(-1) for the solvation free energy of the proton, which can be compared with the value of -263.5 kcal mol(-1) obtained by Kelly et al. using the cluster pair approximation. Considering that this difference is due to the methanol surface potential, we have estimated that it corresponds to -0.429 V.

  8. Effect of Phosphorylation and Copper(II) or Iron(II) Ions Enrichment on Some Physicochemical Properties of Spelt Starch

    OpenAIRE

    Rożnowski, Jacek; Fortuna, Teresa; Nowak, Katarzyna; Szuba, Edyta

    2016-01-01

    ABSTRACT: This paper provides an assessment of the effect of saturation of spelt starch and monostarch phosphate with copper or iron ions on selected physicochemical properties of the resulting modified starches. Native and modified spelt starch samples were analyzed for selected mineral element content using Atomic Absorption Spectroscopy (AAS). Thermodynamic properties were measured using DSC, and pasting properties by RVA. Flow curves of 5% pastes were plotted and described using the Hersc...

  9. Quantitative Determination of NTA and Other Chelating Agents in Detergents by Potentiometric Titration with Copper Ion Selective Electrode.

    Science.gov (United States)

    Ito, Sana; Morita, Masaki

    2016-01-01

    Quantitative analysis of nitrilotriacetate (NTA) in detergents by titration with Cu 2+ solution using a copper ion selective electrode was achieved. This method tolerates a wide range of pH and ingredients in detergents. In addition to NTA, other chelating agents, having relatively lower stability constants toward Cu 2+ , were also qualified with sufficient accuracy by this analytical method for model detergent formulations. The titration process was automated by automatic titrating systems available commercially.

  10. Surface Collisions of Small Cluster Ions at Incident Energies 10-102 eV

    Czech Academy of Sciences Publication Activity Database

    Herman, Zdeněk

    2004-01-01

    Roč. 233, - (2004), s. 361-371 ISSN 1387-3806 R&D Projects: GA MŠk ME 561 Grant - others:XE(CZ) EURATOM-IPP.CR Institutional research plan: CEZ:AV0Z4040901 Keywords : surface collisions * cluster ions * unimolecular dissociation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.235, year: 2004

  11. A novel application of the CuI thin film for preparing thin copper nanowires

    International Nuclear Information System (INIS)

    Shi Shuo; Sun Jialin; Zhang Jianhong; Cao Yang

    2005-01-01

    We present a novel application of the CuI thin film for preparing thin copper nanowires under a direct current electric field (DCEF). The CuI thin film was used as a medium for transmitting cuprous ions during the growing process of copper nanowires. As electrodes are the source of cuprous ions, high-purity copper films were deposited on both ends of the CuI thin film. At 353 K, under whole solid condition, without any templates, and having applied a DCEF of 1.5x10 4 V/m, cuprous ions were generated at the anode and migrated towards the cathode through the CuI film. At the edge of the cathode, cuprous ions obtained electrons and congregated to form a disordered thin copper nanowires bundle. The SEM images showed that these copper nanowires were from 10 to 20 nm in diameter and several hundred nanometers in length. The effect of the electric field intensity and the growth temperature on the diameter of the nanowires was also studied

  12. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  13. Reference masses for precision mass spectrometry design and implementation of a Pierce geometry to the cluster Ion source at ISOLTRAP

    CERN Document Server

    Lommen, Jonathan

    At the mass spectrometer ISOLTRAP carbon clusters ($^{12}$Cn, 1$\\leqslant$n$\\leqslant$25) are provided as reference masses, which are of particular importance in higher mass ranges (m $\\geqslant$ 200u). In this mass range the measurlment uncertainty is increasingly dominated by the difference of the reference mass and the mass of the ion of interest. Using carbon clusters instead of the common $^{133}$Cs ions, this difference decreases. The carbon clusters are produced in a laser ion source which has been improved in the frame of this thesis. The fluctuations of the count rate have been investigated as a function of the laser energy. Furthermore, the energy density at the target has been increased by implementation of a telescope into the laser beam line, which leads to a more narrow energy distribution of the ions. Through the exact adjustment of timing and length of a pulsed cavity an energy range with constant count rate could be selected. In order to provide ideal starting conditions during and after the ...

  14. Fluorescence enhancement of CdTe/CdS quantum dots by coupling of glyphosate and its application for sensitive detection of copper ion

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhengqing; Liu Shaopu; Yin Pengfei [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); He Youqiu, E-mail: heyq@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2012-10-01

    Graphical abstract: Glyphosate (Glyp) had been used to modify the surface of CdTe/CdS QDs, resulting in the enhancement of fluorescence intensity. The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu{sup 2+} based on the fluorescence quenching. Highlights: Black-Right-Pointing-Pointer Water soluble CdTe/CdS quantum dots capped with glyphosate were firstly synthesized. Black-Right-Pointing-Pointer The fluorescence of the Glyp-functionalized QDs was quenched by copper ion. Black-Right-Pointing-Pointer A new fluorescent sensor for copper ion was developed based on the prepared QDs. Black-Right-Pointing-Pointer The sensor exhibited high sensitivity and good selectivity for copper ion. - Abstract: A novel fluorescent probe for Cu{sup 2+} determination based on the fluorescence quenching of glyphosate (Glyp)-functionalized quantum dots (QDs) was firstly reported. Glyp had been used to modify the surface of QDs to form Glyp-functionalized QDs following the capping of thioglycolic acid on the core-shell CdTe/CdS QDs. Under the optimal conditions, the response was linearly proportional to the concentration of Cu{sup 2+} between 2.4 Multiplication-Sign 10{sup -2} {mu}g mL{sup -1} and 28 {mu}g mL{sup -1}, with a detection limit of 1.3 Multiplication-Sign 10{sup -3} {mu}g mL{sup -1} (3{delta}). The Glyp-functionalized QDs fluorescent probe offers good sensitivity and selectivity for detecting Cu{sup 2+}. The fluorescent probe was successfully used for the determination of Cu{sup 2+} in environmental samples. The mechanism of reaction was also discussed.

  15. The development of cones and associated features on ion bombarded copper

    International Nuclear Information System (INIS)

    Whitton, J.L.; Carter, G.; Nobes, M.J.; Williams, J.S.

    1977-01-01

    Observations of ion-bombardment-induced surface modifications on crystalline copper substrates have been made using scanning electron microscopy. The delineation and development of grain boundary edges, faceted and terraced etch pits and small-scale ripple structure, together with the formation of faceted conical features, have all been observed on low and high purity polycrystalline substrates. In general, the density of such surface morphological features, although variable from grain to grain, is higher in the proximity of grain boundaries. In particular, cones are only found within regions where other surface erosional features are present and it would appear that the development of these other features is a pre-requisite to cone generation in high-purity crystalline substrates. We suggest the operation of a defect-induced mechanism of cone formation whereby sputter elaboration of bulk defects (either pre-existing or bombardment-induced) leads to the formation and development of surface features which, in turn, may intersect and result in the generation of cones. (author)

  16. The development of cones and associated features on ion bombarded copper

    International Nuclear Information System (INIS)

    Whitton, J.L.; Williams, J.S.

    1977-01-01

    Observations of ion-bombardment-induced surface modifications on crystalline copper substrates have been made using scanning electron microscopy. The delineation and development of grain boundary edges, faceted and terraced etch pits and small-scale ripple structure, together with the formation of faceted conical features have all been observed on low and high purity polycrystalline substrates. In general, the density of such surface morphological features, although variable from grain to grain, is higher in the proximity of grain boundaries. In particular, cones are only found within regions where other surface erosional features are present and it would appear that the development of these other surface features is a pre-requisite to cone generation in high-purity crystalline substrates. The authors suggest the operation of a defect-induced mechanism of cone formation whereby sputter elaboration of bulk defects (either preexisting or bombardment-induced) leads to the formation and development of surface features which, in turn, may intersect and result in the generation of cones. (Auth.)

  17. Cluster observations of the high-latitude magnetopause and cusp: initial results from the CIS ion instruments

    Directory of Open Access Journals (Sweden)

    J. M. Bosqued

    Full Text Available Launched on an elliptical high inclination orbit (apogee: 19.6 RE since January 2001 the Cluster satellites have been conducting the first detailed three-dimensional studies of the high-latitude dayside magnetosphere, including the exterior cusp, neighbouring boundary layers and magnetopause regions. Cluster satellites carry the CIS ion spectrometers that provide high-precision, 3D distributions of low-energy (<35 keV/e ions every 4 s. This paper presents the first two observations of the cusp and/or magnetopause behaviour made under different interplanetary magnetic field (IMF conditions. Flow directions, 3D distribution functions, density profiles and ion composition profiles are analyzed to demonstrate the high variability of high-latitude regions. In the first crossing analyzed (26 January 2001, dusk side, IMF-BZ < 0, multiple, isolated boundary layer, magnetopause and magnetosheath encounters clearly occurred on a quasi-steady basis for ~ 2 hours. CIS ion instruments show systematic accelerated flows in the current layer and adjacent boundary layers on the Earthward side of the magnetopause. Multi-point analysis of the magnetopause, combining magnetic and plasma data from the four Cluster spacecraft, demonstrates that oscillatory outward-inward motions occur with a normal speed of the order of ± 40 km/s; the thickness of the high-latitude current layer is evaluated to be of the order of 900–1000 km. Alfvénic accelerated flows and D-shaped distributions are convincing signatures of a magnetic reconnection occurring equatorward of the Cluster satellites. Moreover, the internal magnetic and plasma structure of a flux transfer event (FTE is analyzed in detail; its size along the magnetopause surface is ~ 12 000 km and it convects with a velocity of ~ 200 km/s. The second event analyzed (2 February 2001 corresponds to the first Cluster pass within the cusp when the IMF-BZ component was northward directed. The analysis of

  18. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries.

    Science.gov (United States)

    Liao, Mingna; Zhang, Qilun; Tang, Fengling; Xu, Zhiwei; Zhou, Xin; Li, Youpeng; Zhang, Yali; Yang, Chenghao; Ru, Qiang; Zhao, Lingzhi

    2018-03-22

    The synthesis of nanosized CoO anodes with unique morphologies via a hydrothermal method is investigated. By adjusting the pH values of reaction solutions, nanoflakes (CoO-NFs) and nanoflowers (CoO-FLs) are successfully located on copper foam. Compared with CoO-FLs, CoO-NFs as anodes for lithium ion batteries present ameliorated lithium storage properties, such as good rate capability, excellent cycling stability, and large CoO nanoflakes; CoO nanoflowers; anodes; binder free; lithium ion batteriesreversible capacity. The initial discharge capacity is 1470 mA h g -1 , while the reversible capacity is maintained at 1776 m Ah g -1 after 80 cycles at a current density of 100 mA h g -1 . The excellent electrochemical performance is ascribed to enough free space and enhanced conductivity, which play crucial roles in facilitating electron transport during repetitive Li⁺ intercalation and extraction reaction as well as buffering the volume expansion.

  19. Nanosized CoO Loaded on Copper Foam for High-Performance, Binder-Free Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mingna Liao

    2018-03-01

    Full Text Available The synthesis of nanosized CoO anodes with unique morphologies via a hydrothermal method is investigated. By adjusting the pH values of reaction solutions, nanoflakes (CoO-NFs and nanoflowers (CoO-FLs are successfully located on copper foam. Compared with CoO-FLs, CoO-NFs as anodes for lithium ion batteries present ameliorated lithium storage properties, such as good rate capability, excellent cycling stability, and large CoO nanoflakes; CoO nanoflowers; anodes; binder free; lithium ion batteriesreversible capacity. The initial discharge capacity is 1470 mA h g−1, while the reversible capacity is maintained at 1776 m Ah g−1 after 80 cycles at a current density of 100 mA h g−1. The excellent electrochemical performance is ascribed to enough free space and enhanced conductivity, which play crucial roles in facilitating electron transport during repetitive Li+ intercalation and extraction reaction as well as buffering the volume expansion.

  20. Determination of interstellar pickup ion distributions in the solar wind with SOHO and Cluster

    Directory of Open Access Journals (Sweden)

    E. Möbius

    1996-05-01

    Full Text Available Over the last 10 years, the experimental basis for the study of the local interstellar medium has been substantially enhanced by the direct detection of interstellar pickup ions and of interstellar neutral helium within the heliosphere. Pickup ions can be studied for a wide range of interstellar species. However, currently the accuracy of the method to determine the parameters of the interstellar medium, namely neutral density, temperature and relative velocity, is hampered by two problems: (1 In most cases the crucial ionization rates are not available from simultaneous measurements and (2 the transport of the pickup ions in the interplanetary medium substantially modifies the measured spatial distribution of the ions. In this study we will discuss how the enhanced capabilities of the instrumentation on SOHO and Cluster in combination with ongoing efforts to model the pickup ion distributions will lead to a significant improvement over the coming years.

  1. Construction of a new functional platform by grafting poly(4-vinylpyridine) in multi-walled carbon nanotubes for complexing copper ions aiming the amperometric detection of L-cysteine

    International Nuclear Information System (INIS)

    Carvalho Castro e Silva, Cecília de; Breitkreitz, Márcia Cristina; Santhiago, Murilo; Crispilho Corrêa, Cátia; Tatsuo Kubota, Lauro

    2012-01-01

    Highlights: ► Construction of new nanostructured platform based on MWCNTs–PVP to complex copper(II) ions. ► Development of an amperometric sensor for highly selective determination of Cys in food supplement samples. ► Combination of nanocomposite and the copper(II) ions causes a dramatic enhancement in the sensitivity of Cys quantification at low overpotential. - Abstract: This work describes the preparation of an amperometric sensor for electrocatalytical detection of L-cysteine (Cys). The developed sensor is based on a functional platform to complex copper ions on multi-walled carbon nanotubes (MWCNTs) modified with poly-4-vinylpyridine (PVP) through an in situ polymerization. The obtained values for the kinetic constants of heterogeneous electron transfer rate (k s ) and for chemical reaction (k obs ) between Cu 2+ and cysteine were 5.78 s −1 and 6.96 L mol −1 s −1 , respectively. The analytical curve showed a linear response range for detecting L-cysteine in concentrations from 5 to 60 μmol L −1 . The detection and quantification limits obtained were 1.50 and 5.00 μmol L −1 , respectively with a response time of 0.10 s at an applied potential of 150 mV vs SCE.

  2. Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model.

    Science.gov (United States)

    Prinz, Cornelia; Elhensheri, Mohamed; Rychly, Joachim; Neumann, Hans-Georg

    2017-08-01

    Current strategies in implant technology are directed to generate bioactive implants that are capable to activate the regenerative potential of the surrounding tissue. On the other hand, implant-related infections are a common problem in orthopaedic trauma patients. To meet both challenges, i.e. to generate a bone implant with regenerative and antimicrobial characteristics, we tested the use of copper coated nails for surgical fixation in a rabbit model. Copper acetate was galvanically deposited with a copper load of 1 µg/mm 2 onto a porous oxide layer of Ti6Al4V nails, which were used for the fixation of a tibia fracture, inoculated with bacteria. After implantation of the nail the concentration of copper ions did not increase in blood which indicates that copper released from the implant was locally restricted to the fracture site. After four weeks, analyses of the extracted implants revealed a distinct antimicrobial effect of copper, because copper completely prevented both a weak adhesion and firm attachment of biofilm-forming bacteria on the titanium implant. To evaluate fracture healing, radiographic examination demonstrated an increased callus index in animals with copper coated nails. This result indicates a stimulated bone formation by releasing copper ions. We conclude that the use of implants with a defined load of copper ions enables both prevention of bacterial infection and the stimulation of regenerative processes.

  3. Kinetic and radiation processes in cluster plasmas

    International Nuclear Information System (INIS)

    Smirnov, B.M.

    1996-01-01

    The analysis of processes is made for a cluster plasma which is a xenon arc plasma of a high pressure with an admixture of tungsten cluster ions. Because cluster ions emit radiation, this system is a light source which parameters are determined by various processes such as heat release and transport of charged particles in the plasma, radiative processes involving clusters, processes of cluster evaporation and attachment of atoms to it that leads to an equilibrium between clusters and vapor of their atoms, processes of cluster generation, processes of the ionization equilibrium between cluster ions and plasma electrons, transport of cluster ions in the discharge plasma in all directions. These processes govern by properties of a specific cluster plasma under consideration. (author)

  4. Impact of slow gold clusters on various solids

    International Nuclear Information System (INIS)

    Benguerba, M.; Brunelle, A.; Della-Negra, S.; Depauw, J.; Joret, H.; Beyec, Y. Le; Schweikert, E.A.; Assayag, G.B.; Sudraud, P.

    1991-01-01

    A liquid metal ion source has been installed on a pulsed ion gun. The time of flight (TOF) spectra of the pulsed beam were recorded. With the gold source several cluster ions (up to 10 atoms in the cluster) and doubly charged ions were identified in the ion beam TOF spectra. With a second pulsation, single cluster ions can be selected as projectiles for secondary ion TOF mass spectrometry. The secondary ion emission induced by cluster impact from a variety of targets (organic, CsI, metallic) was studied. A large enhancement of yield is observed by comparison to single atomic ion impact (e.g., a factor of 30 between Au 3 + and Au + ). The secondary ion yields increase nonlinearly with the number of constituents in the cluster. A comparison with other types of clusters and also fission fragments of 252 Cf has been performed. The rate of secondary emission stimulated by cluster is similar to the secondary ion yield induced by fission fragments. (author) 47 refs., 18 figs., 5 tabs

  5. Binding of copper and nickel to cavities in silicon formed by helium ion implantation

    International Nuclear Information System (INIS)

    Myers, S.M.; Follstaedt, D.M.; Bishop, D.M.

    1993-01-01

    Cavities formed in Si by He ion implantation and annealing are shown to be strong traps for Cu and Ni impurities. Experiments utilizing ion-beam analysis and transmission electron microscopy indicate that Cu is trapped at the internal surfaces of cavities up to ∼1 monolayer coverage with a binding energy of 2.2±0.2 eV relative to solution. This is greater than the heat of solution from the precipitated Cu 3 Si phase, determined to be 1.7 eV in agreement with earlier work. Copper at cavity-wall sites is reversibly replaced by H during heating in H 2 gas, indicating the relative stability of the two surface terminations. Initial results for Ni impurities indicate that trapping at cavities is again energetically preferred to silicide formation. The saturation coverage of Ni on the internal surfaces, however, is an order of magnitude smaller for Ni than Cu, consistent with published studies of external-surface adsorption. These results suggest that cavity trapping may getter metallic impurities in Si more effectively than methods based on silicide precipitation

  6. Interactions between copper(II) and DOM in the urban stormwater runoff: modeling and characterizations.

    Science.gov (United States)

    Zhao, Chen; Wang, Chong-Chen; Li, Jun-Qi; Wang, Peng; Ou, Jia-Qi; Cui, Jing-Rui

    2018-01-01

    Dissolved organic matter (DOM) can strongly interact with both organic and inorganic contaminants to influence their transportation, transformation, bioavailability, toxicity and even their ultimate fate. Within this work, DOM was extracted from urban stormwater runoff samples collected from a regular sampling site of a typical residential area in Beijing, China. Copper(II) ions were selected as model to investigate the interactions between DOM and typical heavy metals. Both ultraviolet (UV) absorbance and fluorescence titration methods were introduced to determine the complex capacities (C L ) and conditional stability constants (log K M ) of bonding between DOM and copper (II) ions, which revealed that the values of C L were 85.62 and 87.23 μmol mg -1 and the log K M values were 5.37 and 5.48, respectively. The results suggested the successful complexation between DOM and copper(II) ions. Furthermore, morphology of the DOM binding to copper(II) ions was confirmed by both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS), which can facilitate to clarify the corresponding mechanism. The Cu 2p 3/2 peak at 933.7 eV and the characteristic shake-up peaks of Cu-O were found in the XPS spectra, implying that copper(II) ions might coordinate with hydroxyl (aliphatic or phenolic) or carboxyl groups. With these profitable results, it can be concluded that DOM in urban stormwater runoff has a strong binding affinity with copper(II) ions, which may further lead to potentially significant influence on their migration and transformation.

  7. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.

    Science.gov (United States)

    Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata

    2011-11-21

    The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.

  8. Uranium accompanying recovery from copper ores

    International Nuclear Information System (INIS)

    Golynko, Z.Sh.; Laskorin, B.N.

    1981-01-01

    In the search for new raw material sources for nuclear power engineering a review of the technique of uranium accompaning recovery from copper ores reprocessing products in some countries is presented. In the USA a sorption method of uranium extraction by means of strongly basic ion exchange resins from solutions upon copper case- hardening with subsequent extraction from eluates by solutions of tertiary amines is realized. Elution is realized with sulphuric acid. In South Africa an extraction reprocessing of gravitational concentrate extracted from copper sulphide flotation tailings is organized. In India the uranium extraction from copper ores flotation enrichment tailings is organized on a commerical scale. Presented are data on the scale of uranium recovery, various conditions of its recovery as well as block diagrams of the processes. It is shown that copper ores become an additional source of uranium recovery [ru

  9. Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters

    Science.gov (United States)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj

    2018-04-01

    Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.

  10. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  11. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  12. Copper corrosion in irradiated environments: The influence of H2O2 on the electrochemistry of copper dissolution in HCl electrolyte

    International Nuclear Information System (INIS)

    Smyrl, W.H.; Bell, B.T.; Atanasoski, R.T.; Glass, R.S.

    1986-12-01

    The anodic dissolution of copper was examined in deaerated, 0.1 M HCl aqueous solution in the presence of H 2 O 2 . Concentrations of H 2 O 2 up to 0.2 M were studied at a rotating copper disk-platinum ring electrode. The open circuit potential (OCP) of copper was found to depend on both peroxide concentration and rotation rate. The OCP shifts towards more positive values with increasing H 2 O 2 concentration (C) and decreasing rotation rate. The current-voltage curves for anodic dissolution of copper were also influenced by the presence of peroxide. The curves recorded with the potential scanned in the positive direction showed the expected 60 mV slope, but the reverse scans showed significant departures. At a given potential scan rate, hysteresis was observed which was larger for higher H 2 O 2 concentrations, lower rotation rates, and more positive anodic potential limits. Monitoring the cuprous ions at the outer Pt ring revealed that there was a complex set of events taking place at the copper surface, including film formation and the appearance of cupric ions. 13 refs., 7 figs

  13. An Evaluation of Kinetic Parameters of Cadmium and Copper Biosorption by Immobilized Cells

    Directory of Open Access Journals (Sweden)

    Nelly Georgieva

    2007-10-01

    Full Text Available Bioremediation is the use of living organisms to reduce or eliminate environmental hazards resulting from the accumulation of toxic chemicals and other hazardous wastes. This technology is based on the utilization of microorganisms to transform organic and inorganic compounds. The filamentous yeast Trichosporon cutaneum strain R57, immobilized and free cells was cultivated as batch culture on a liquid medium in the presence of various concentrations of cadmium and copper ions. The simultaneous uptake and accumulation of Cd2+ and Cu2+ ions by Tr. cutaneum cells depending on the initial concentration of Cd2+ and Cu2+ in the medium were studied. The potential use of the free and immobilized cells of Trichosporon cutaneum to remove cadmium and copper ions, from aqueous solutions was evaluated. Two important physicochemical aspects for the evaluation of the sorption process as a unit operation are the equilibrium of sorption and the kinetics. The Cd2+ and Cu2+ ions biosorption capacities of all tested adsorbent were presented as a function of the initial concentration of metal ions within the aqueous biosorption medium. The individual, as well as bicomponent sorption kinetics of copper and cadmium ions by immobilised cells of Trichosporon cutaneum R57 is presented. A second order kinetic model obtains kinetic parameters for the copper and cadmium ions.

  14. Fabrication of ion source components by electroforming

    International Nuclear Information System (INIS)

    Schechter, D.E.; Sluss, F.

    1983-01-01

    Several components of the Oak Ridge National Laboratory (ORNL)/Magnetic Fusion Test Facility (MFTF-B) ion source have been fabricated utilizing an electroforming process. A procedure has been developed for enclosing coolant passages in copper components by electrodepositing a thick (greater than or equal to 0.75-mm) layer of copper (electroforming) over the top of grooves machined into the copper component base. Details of the procedure to fabricate acceleration grids and other ion source components are presented

  15. Production of strange clusters in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dover, C.B.; Baltz, A.J.; Pang, Yang; Schlagel, T.J.; Kahana, S.H.

    1993-02-01

    We address a number of issues related to the production of strangeness in high energy heavy ion collisions, including the possibility that stable states of multi-strange hyperonic or quark matter might exist, and the prospects that such objects may be created and detected in the laboratory. We make use of events generated by the cascade code ARC to estimate the rapidity distribution dN/dy of strange clusters produced in Si+Au and Au+Au collisions at AGS energies. These calculations are performed in a simple coalescence model, which yields a consistent description of the strange cluster (d, 3 HE, 3 H, 4 He) production at these energies. If a doubly strange, weakly bound ΛΛ dibaryon exists, we find that it is produced rather copiously in Au+Au collisions, with dN/dy ∼0.1 at raid-rapidity. If one adds another non-strange or strange baryon to a cluster, the production rate decreases by roughly one or two orders of magnitude, respectively. For instance, we predict that the hypernucleus ΛΛ 6 He should have dN/dy ∼5 x 10 -6 for Au+Au central collisions. It should be possible to measure the successive Λ → pπ- weak decays of this object. We comment on the possibility that conventional multi-strange hypernuclei may serve as ''doorway states'' for the production of stable configurations of strange quark matter, if such states exist

  16. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense

    Directory of Open Access Journals (Sweden)

    Philipp Wiemann

    2017-05-01

    Full Text Available The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs, and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically or enhancement of copper-exporting activity (CrpA in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.

  17. Photophysical studies of the interactions of poly(amidoamine) generation zero (PAMAM G0) with copper and zinc ions

    Energy Technology Data Exchange (ETDEWEB)

    López-Cabaña, Z.E. [Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, University of Talca (Chile); Valdés, O. [Nanobiotechnology Division at University of Talca, Fraunhofer Chile Research Foundation – Center for Systems Biotechnology, FCR-CSB, P.O. Box 747 Talca (Chile); Vergara, C.E. [Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, University of Talca (Chile); Camarada, M.B. [Universidad Andrés Bello, Facultad de Biología, Center for Bioinformatics and Integrative Biology (CBIB), República 239, Santiago (Chile); Fundación Fraunhofer Chile Research, M. Sánchez Fontecilla 310 piso 14, Las Condes (Chile); Nachtigall, F.M. [Nanobiotechnology Division at University of Talca, Fraunhofer Chile Research Foundation – Center for Systems Biotechnology, FCR-CSB, P.O. Box 747 Talca (Chile); González-Nilo, F.D. [Universidad Andrés Bello, Facultad de Biología, Center for Bioinformatics and Integrative Biology (CBIB), República 239, Santiago (Chile); Fundación Fraunhofer Chile Research, M. Sánchez Fontecilla 310 piso 14, Las Condes (Chile); Santos, Leonardo S., E-mail: lssantos@utalca.cl [Laboratory of Asymmetric Synthesis, Chemistry Institute of Natural Resources, University of Talca (Chile); Nanobiotechnology Division at University of Talca, Fraunhofer Chile Research Foundation – Center for Systems Biotechnology, FCR-CSB, P.O. Box 747 Talca (Chile)

    2015-08-15

    This study reports the photophysical behavior of poly(amidoamine) generation zero (PAMAM G0) in the presence of Cu(II) and Zn(II) ions in aqueous solutions using absorption and fluorescence spectroscopy. Theoretical and experimental results confirmed the presence of a strong covalent metal–ligand interaction between PAMAM G0 and copper ion that favored the formation of a ligand–metal charge transfer band coordination complex. In the case of Zn(II), no complex formation with PAMAM G0 was registered. Structure analysis identified the presence of aggregate like PAMAM G0–Zn moieties that generated an enhancement in the fluorescence emission of PAMAM G0. - Highlights: • Photophysical behavior of PAMAM G0 dendrimer with Cu and Zn ions was studied. • Strong covalent metal–ligand interaction was confirmed between PAMAM G0–Cu(II). • No complex formation with PAMAM G0 was registered in the case of Zn(II). • Dendrimer aggregate generated an enhancement in fluorescence emission.

  18. Photophysical studies of the interactions of poly(amidoamine) generation zero (PAMAM G0) with copper and zinc ions

    International Nuclear Information System (INIS)

    López-Cabaña, Z.E.; Valdés, O.; Vergara, C.E.; Camarada, M.B.; Nachtigall, F.M.; González-Nilo, F.D.; Santos, Leonardo S.

    2015-01-01

    This study reports the photophysical behavior of poly(amidoamine) generation zero (PAMAM G0) in the presence of Cu(II) and Zn(II) ions in aqueous solutions using absorption and fluorescence spectroscopy. Theoretical and experimental results confirmed the presence of a strong covalent metal–ligand interaction between PAMAM G0 and copper ion that favored the formation of a ligand–metal charge transfer band coordination complex. In the case of Zn(II), no complex formation with PAMAM G0 was registered. Structure analysis identified the presence of aggregate like PAMAM G0–Zn moieties that generated an enhancement in the fluorescence emission of PAMAM G0. - Highlights: • Photophysical behavior of PAMAM G0 dendrimer with Cu and Zn ions was studied. • Strong covalent metal–ligand interaction was confirmed between PAMAM G0–Cu(II). • No complex formation with PAMAM G0 was registered in the case of Zn(II). • Dendrimer aggregate generated an enhancement in fluorescence emission

  19. Combined action of radiation, salts of copper and nickel on cell viability in vitro

    Directory of Open Access Journals (Sweden)

    D. D. Gapeenko

    2014-09-01

    Full Text Available Experimental study of the combined action of heavy metals and ionizing radiation on the viability of cells in culture was made. We established a significant toxic effect of copper and nickel in the proliferative and mitotic activity of cells in vitro. Under the combined effects of radiation and copper ions on cells we observed the mor-phological changes in morphologically-functional properties of cells that were determined by or radiation dose or by concentration of copper ions. While incubation of irradiated cells with nickel ions we observed sensitiza-tion of cells by nickel ions under the irradiation dose of 0.5 and 5.0 Gy, and the resistance of cells to exposure to sublethal dose of 10.0 Gy.

  20. D-penicillamine-templated copper nanoparticles via ascorbic acid reduction as a mercury ion sensor.

    Science.gov (United States)

    Lin, Shu Min; Geng, Shuo; Li, Na; Li, Nian Bing; Luo, Hong Qun

    2016-05-01

    Mercury ion is one of the most hazardous metal pollutants that can cause deleterious effects on human health and the environment even at low concentrations. It is necessary to develop new mercury detection methods with high sensitivity, specificity and rapidity. In this study, a novel and green strategy for synthesizing D-penicillamine-capped copper nanoparticles (DPA-CuNPs) was successfully established by a chemical reduction method, in which D-penicillamine and ascorbic acid were used as stabilizing agent and reducing agent, respectively. The as-prepared DPA-CuNPs showed strong red fluorescence and had a large Stoke's shift (270nm). Scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, fluorescence spectroscopy, and ultraviolet-visible spectrophotometry were utilized to elucidate the possible fluorescence mechanism, which could be aggregation-induced emission effect. Based on the phenomenon that trace mercury ion can disperse the aggregated DPA-CuNPs, resulting in great fluorescence quench of the system, a sensitive and selective assay for mercury ion in aqueous solution with the DPA-CuNPs was developed. Under optimum conditions, this assay can be applied to the quantification of Hg(2+) in the 1.0-30μM concentration range and the detection limit (3σ/slope) is 32nM. The method was successfully applied to determine Hg(2+) in real water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The effect of pH and storage on copper speciation and bacterial growth in complex growth media

    DEFF Research Database (Denmark)

    Hasman, Henrik; Bjerrum, Morten J.; Christiansen, Lasse Engbo

    2009-01-01

    correlation between the free copper concentration and bacterial growth, than for the total copper concentration and growth. Furthermore, it is shown that the initial pH influences the amount of free copper ions in the media and that this has a direct effect on the ability of bacterial cultures to grow......In this paper we examine how the bacterial growth is influenced by the availability of copper ions in complex Mueller Hinton growth media. The data shows that the free copper concentration is seven to eight orders of magnitude lower the total copper concentration and that there seems to be a better....... However, there still remains an effect of pH on bacterial growth which cannot be attributed to the influence of the Cu2+ concentration alone. The study also shows that the sterilization treatment can have some effect on the availability of copper ions in the media over time. Freshly autoclaved and sterile...

  2. Synthesis of graphene by MEVVA source ion implantation

    International Nuclear Information System (INIS)

    Ying, J.J.; Xiao, X.H.; Dai, Z.G.; Wu, W.; Li, W.Q.; Mei, F.; Cai, G.X.; Ren, F.; Jiang, C.Z.

    2013-01-01

    Ion implantation provides a new synthesis route for graphene, and few-layered graphene synthesis by ion implantation has been reported. Here we show the synthesis of a single layer of high-quality graphene by Metal Vapor Vacuum Arc (MEVVA) source ion implantation. Polycrystalline nickel and copper thin films are implanted with MEVVA source carbon ions at 40 kV, followed by high-temperature thermal annealing and quenching. A Raman spectrum is applied to probe the quality and thickness of the prepared graphene. A single layer of high-quality graphene is grown on the nickel films, but not on the copper films. The growth mechanisms on the nickel and copper films are explained. MEVVA source ion implantation has been widely applied in industrial applications, demonstrating that this synthesis method can be generalized for industrial production

  3. Sputtering of neutral and ionic indium clusters

    International Nuclear Information System (INIS)

    Ma, Z.; Coon, S.R.; Calaway, W.F.; Pellin, M.J.; Gruen, D.M.; Von Nagy-Felsobuki, E.I.

    1993-01-01

    Secondary neutral and secondary ion cluster yields were measured during the sputtering of a polycrystalline indium surface by normally incident ∼4 keV Ar + ions. In the secondary neutral mass spectra, indium clusters as large as In 32 were observed. In the secondary ion mass spectra, indium clusters up to In 18 + were recorded. Cluster yields obtained from both the neutral and ion channel exhibited a power law dependence on the number of constituent atoms, n, in the cluster, with the exponents measured to be -5.6 and -4. 1, respectively. An abundance drop was observed at n=8, 15, and 16 in both the neutral and ion yield distributions suggesting that the stability of the ion (either secondary ion or photoion) plays a significant role in the observed distributions. In addition, our experiments suggest that unimolecular decomposition of the neutral cluster may also plays an important role in the measured yield distributions

  4. The determination of copper in biological materials by flame spectrophotometry

    Science.gov (United States)

    Newman, G. E.; Ryan, M.

    1962-01-01

    A method for the determination of the copper content of biological materials by flame spectrophotometry is described. The effects of interference by ions such as sodium and phosphate were eliminated by isolating copper as the dithizonate in CCl4. Results obtained for the urinary excretion of copper by a patient with Wilson's disease before and after treatment with penicillamine are reported. PMID:14479334

  5. Supersonic bare metal cluster beams

    International Nuclear Information System (INIS)

    Smalley, R.E.

    1991-01-01

    Progress continued this past year on two principal fronts in the study of bare metal clusters: photoelectron spectroscopy of mass selected negative ions, and surface chemisorption of cluster ions levitated in a superconducting magnet as monitored by fourier transform ion cyclotron resonance

  6. Assessment of the anti-biofouling potentials of a copper iodide-doped nylon mesh.

    Science.gov (United States)

    Sato, Tetsuya; Fujimori, Yoshie; Nakayama, Tsuruo; Gotoh, Yasuo; Sunaga, Yoshihiko; Nemoto, Michiko; Matsunaga, Tadashi; Tanaka, Tsuyoshi

    2012-08-01

    We propose a copper iodide (CuI)-doped nylon mesh prepared using polyiodide ions as a precursor toward anti-biofouling polymer textile. The CuI-doped nylon mesh was subjected to the prevention of biofouling in marine environments. The attachment of the marine organisms was markedly inhibited on the CuI-doped nylon mesh surface until 249 days. Scanning electron microscopy-energy dispersive X-ray analysis indicated that copper compounds were maintained in the nylon mesh after the field experiment, although copper content in the nylon mesh was reduced. Therefore, the copper ions slowly dissolved from nylon mesh will contribute to the long-term prevention of biofouling. Furthermore, electron spin resonance analysis revealed the generation of reactive oxygen species (ROS) from CuI-doped nylon mesh after the field experiment. One of the possibilities for toxic action of copper ions will be the direct effect of Cu+ -induced ROS on biofilm forming on nylon mesh surface. The proposed polymer textile can be applied to fishing and aquafarming nets, mooring rope for ship, or silt fence to restrict polluted water in marine environments.

  7. Bi-Directional Ion Emission from Massive Gold Cluster Impacts on Nanometric Carbon Foils.

    Science.gov (United States)

    Debord, J Daniel; Della-Negra, Serge; Fernandez-Lima, Francisco A; Verkhoturov, Stanislav V; Schweikert, Emile A

    2012-04-12

    Carbon cluster emission from thin carbon foils (5-40 nm) impacted by individual Au(n) (+q) cluster projectiles (95-125 qkeV, n/q = 3-200) reveals features regarding the energy deposition, projectile range, and projectile fate in matter as a function of the projectile characteristics. For the first time, the secondary ion emission from thin foils has been monitored simultaneously in both forward and backward emission directions. The projectile range and depth of emission were examined as a function of projectile size, energy, and target thickness. A key finding is that the massive cluster impact develops very differently from that of a small polyatomic projectile. The range of the 125 qkeV Au(100q) (+q) (q ≈ 4) projectile is estimated to be 20 nm (well beyond the range of an equal velocity Au(+)) and projectile disintegration occurs at the exit of even a 5 nm thick foil.

  8. Ligandless-dispersive liquid-liquid microextraction of trace amount of copper ions

    International Nuclear Information System (INIS)

    Mohammadi, Sayed Zia; Afzali, Daryoush; Baghelani, Yar Mohammad

    2009-01-01

    In the present work, a new ligandless-dispersive liquid-liquid microextraction (LL-DLLME) method has been developed for preconcentration trace amounts of copper as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents, respectively. Some factors influencing on the extraction efficiency of copper and its subsequent determination were studied and optimized, such as the extraction and dispersive solvent type and volume, pH of sample solution, extraction time and salting out effect. Under the optimal conditions, the calibration curve was linear in the range of 1.0 ng mL -1 -0.6 μg mL -1 of copper with R 2 = 0.9985. Detection limit was 0.5 ng mL -1 in original solution (3S b /m) and the relative standard deviation for seven replicate determination of 0.2 μg mL -1 copper was ±1.4%. The proposed method has been applied for determination of copper in standard and water samples with satisfactory results.

  9. Unprecedented hetero-geometric discrete copper(II) complexes ...

    Indian Academy of Sciences (India)

    Copper; X-ray structure; radical activity; catechol oxidase activity. 1. Introduction ... dylamine and thiocyanate ions but none of these groups .... Independent reflections. 7978 ... was added to it to achieve the ultimate concentration of .... as exchange couples so as to form a single species with ... cantly on central Cu(II) ion.

  10. Cadmium Sulphide-Reduced Graphene Oxide-Modified Photoelectrode-Based Photoelectrochemical Sensing Platform for Copper(II Ions.

    Directory of Open Access Journals (Sweden)

    I Ibrahim

    Full Text Available A photoelectrochemical (PEC sensor with excellent sensitivity and detection toward copper (II ions (Cu2+ was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO nanocomposite on an indium tin oxide (ITO surface, with triethanolamine (TEA used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.

  11. Formation of positive cluster ions Li(n) Br (n = 2-7) and ionization energies studied by thermal ionization mass spectrometry.

    Science.gov (United States)

    Veličković, S R; Đustebek, J B; Veljković, F M; Veljković, M V

    2012-05-01

    Clusters of the type Li(n)X (X = halides) can be considered as potential building blocks of cluster-assembly materials. In this work, Li(n)Br (n = 2-7) clusters were obtained by a thermal ionization source of modified design and selected by a magnetic sector mass spectrometer. Positive ions of the Li(n)Br (n = 4-7) cluster were detected for the first time. The order of ion intensities was Li(2)Br(+) > Li(4)Br(+) > Li(5)Br(+) > Li(6)Br(+) > Li(3)Br(+). The ionization energies (IEs) were measured and found to be 3.95 ± 0.20 eV for Li(2)Br, 3.92 ± 0.20 eV for Li(3)Br, 3.93 ± 0.20 eV for Li(4)Br, 4.08 ± 0.20 eV for Li(5)Br, 4.14 ± 0.20 eV for Li(6)Br and 4.19 ± 0.20 eV for Li(7)Br. All of these clusters have a much lower ionization potential than that of the lithium atom, so they belong to the superalkali class. The IEs of Li(n)Br (n = 2-4) are slightly lower than those in the corresponding small Li(n) or Li(n)H clusters, whereas the IEs of Li(n)Br are very similar to those of Li(n) or Li(n)H for n = 5 and 6. The thermal ionization source of modified design is an important means for simultaneously obtaining and measuring the IEs of Li(n)Br (n = 2-7) clusters (because their ions are hermodynamically stable with respect to the loss of lithium atoms in the gas phase) and increasingly contributes toward the development of clusters for practical applications. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Effect of Jahn-Teller distortion on the short range magnetic order in copper ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abdellatif, M.H., E-mail: Mohamed.abdellatif@iit.it [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Innocenti, Claudia [INSTM—Department of Chemistry, University of Florence, via della Lastruccia 3, I-50019 Sesto Fiorentino, FI (Italy); Liakos, Ioannis [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Scarpellini, Alice; Marras, Sergio [Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Salerno, Marco [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-02-15

    Copper ferrite of spinel crystal structure was synthesized in the form of nano-particles using citrate-gel auto-combustion method. The sample morphology and composition were identified using scanning electron microscopy, X-ray diffraction, and X-ray spectroscopy. The latter technique reveals an inverse spinel structure with Jahn-Teller tetragonal distortion. The static magnetization was measured using vibrating sample magnetometer. Magnetic force microscopy was used in combination with the magnetization data to demonstrate the finite size effect of the magnetic spins and their casting behavior due to the introduction of copper ions in the tetrahedral magnetic sub-lattices, which results in tetragonal distorting the spinel structure of the copper ferrite. The magnetic properties of materials are a result of the collective behavior of the magnetic spins, and magnetic force microscopy can probe the collective behavior of the magnetic spins in copper ferrite, yet providing a sufficient resolution to map the effects below the micrometer size scale, such as the magnetic spin canting. A theoretical study was done to clarify the finite size effect of Jahn-Teller distortion on the magnetic properties of the material. When the particles are in the nano-scale, below the single domain size, their magnetic properties are very sensitive to their size change. - Highlights: • The spin canting due to Jahn-Teller distortion in Copper ferrite can be detected using magnetic force microscope. • The contrast in the magnetic AFM image can be analyzed to give information not only about the surface spins but also about the canting of the core spins inside the aggregated cluster of magnetic nanoparticle.

  13. Thermodynamic modeling of the formation and stability of small tin clusters and their ions

    International Nuclear Information System (INIS)

    Kodlaa, A.; Suliman, A.

    2005-01-01

    Based on the results of previous quantum-chemical study of electronic structure properties for neutral and single positively and negatively charged thin clusters in the size range of N 2-17 atoms, and on the thermodynamic laws, we have studied the thermodynamic properties of tin clusters and their ions. The characteristic amounts (cohesive enthalpy, formation enthalpy, fragmentation enthalpy, entropy and free enthalpy) for the formation and stability of these clusters at different temperatures were calculated. From the results, which are presented and discussed in this work, one can observe the following: The tin clusters Sn N (N=2-17) and their cations Sn + N and anions Sn - N are formed in the gas phase, and this agrees with experimental results. The clusters Sn 3 and Sn 1 0 are the most stable clusters of all. Here we also, find a correspondence with the results of the experimental studies. Our results go beyond that since we have found Sn 1 5 is also specially stable. By this thermodynamic study we could evaluate approximately the formation and stability of small neutral, single positively and negatively charged tin clusters. It has also allowed us to study the effects of the temperature on the formation and stability of these clusters. The importance of such study is not only what mentioned above, but it is also the first thermodynamic study for modeling the formation and stability of small tin clusters. (author)

  14. Effects of Copper Exchange Levels on Complexation of Ammonia in ...

    African Journals Online (AJOL)

    NJD

    Cation exchange, catalysis, copper, complexation, copper ammines. 1. Introduction ... ammonia is able to de-link Cu2+ ions away from the influence of .... Figure 1 DRS of CuX at different concentration levels of Cu/UC: (a). 38 Cu/UC, (b) 24 ...

  15. Electric and electrochemical properties of surface films formed on copper in the presence of bicarbonate anions

    International Nuclear Information System (INIS)

    Sirkiae, P.; Saario, T.; Maekelae, K.; Laitinen, T.; Bojinov, M.

    1999-01-01

    Copper is used as an outer shield of cast iron canisters planned for storage of spent nuclear fuel. The copper shield is responsible for the corrosion protection of the canister. The aim of the present work was to study the influence of bicarbonate (HCO 3 - ) anions on the stability of the copper oxide film. The work consists of a brief literature survey and an experimental part, in which voltammetry, electrochemical impedance spectroscopy and dc resistance measurements via the Contact Electric Resistance (CER) technique were used. The studies reported in the literature indicated that HCO 3 - ions increase the solubility of copper in the stability region of Cu(II). Thus they render the oxide film formed on copper susceptible to local damage and to localised corrosion at high potentials. Unfortunately, despite the great importance of bicarbonates in copper corrosion, most of the environments used in the electrochemical and corrosion studies are not comparable with repository conditions. In the existing studies either the bicarbonate concentrations or pH of the solutions were too high. In addition, no such studies were available, in which not only the effect of carbonate ions, but also possible synergetic effects of them with other aggressive ions would have been clarified. The voltammetric results of the experimental part of this work point to a bilayer structure of the anodic film on copper in neutral solutions containing HCO 3 - ions. The transport of ionic defects through a thin continuous p-type semiconductor layer was concluded to be the rate limiting step of the anodic oxidation of copper in the stability region of monovalent copper and in the mixed oxide (Cu(I)/Cu(II) oxide) region. Films formed in the divalent copper region did not show well-pronounced semiconductor behaviour. Substantial evidence was found in the voltammetric, CER and impedance results for the increased defectiveness of the anodic film in the Cu(II) region. The oxidation rate of copper in

  16. Electric and electrochemical properties of surface films formed on copper in the presence of bicarbonate anions

    Energy Technology Data Exchange (ETDEWEB)

    Sirkiae, P.; Saario, T.; Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-11-01

    Copper is used as an outer shield of cast iron canisters planned for storage of spent nuclear fuel. The copper shield is responsible for the corrosion protection of the canister. The aim of the present work was to study the influence of bicarbonate (HCO{sub 3}{sup -}) anions on the stability of the copper oxide film. The work consists of a brief literature survey and an experimental part, in which voltammetry, electrochemical impedance spectroscopy and dc resistance measurements via the Contact Electric Resistance (CER) technique were used. The studies reported in the literature indicated that HCO{sub 3}{sup -} ions increase the solubility of copper in the stability region of Cu(II). Thus they render the oxide film formed on copper susceptible to local damage and to localised corrosion at high potentials. Unfortunately, despite the great importance of bicarbonates in copper corrosion, most of the environments used in the electrochemical and corrosion studies are not comparable with repository conditions. In the existing studies either the bicarbonate concentrations or pH of the solutions were too high. In addition, no such studies were available, in which not only the effect of carbonate ions, but also possible synergetic effects of them with other aggressive ions would have been clarified. The voltammetric results of the experimental part of this work point to a bilayer structure of the anodic film on copper in neutral solutions containing HCO{sub 3}{sup -}ions. The transport of ionic defects through a thin continuous p-type semiconductor layer was concluded to be the rate limiting step of the anodic oxidation of copper in the stability region of monovalent copper and in the mixed oxide (Cu(I)/Cu(II) oxide) region. Films formed in the divalent copper region did not show well-pronounced semiconductor behaviour. Substantial evidence was found in the voltammetric, CER and impedance results for the increased defectiveness of the anodic film in the Cu(II) region. The

  17. Formation of copper precipitates in silicon

    Science.gov (United States)

    Flink, Christoph; Feick, Henning; McHugo, Scott A.; Mohammed, Amna; Seifert, Winfried; Hieslmair, Henry; Heiser, Thomas; Istratov, Andrei A.; Weber, Eicke R.

    1999-12-01

    The formation of copper precipitates in silicon was studied after high-temperature intentional contamination of p- and n-type FZ and Cz-grown silicon and quench to room temperature. With the Transient Ion Drift (TID) technique on p-type silicon a critical Fermi level position at EC-0.2 eV was found. Only if the Fermi level position, which is determined by the concentrations of the acceptors and the copper donors, surpasses this critical value precipitation takes place. If the Fermi level is below this level the supersaturated interstitial copper diffuses out. An electrostatic precipitation model is introduced that correlates the observed precipitation behavior with the electrical activity of the copper precipitates as detected with Deep Level Transient Spectroscopy (DLTS) on n-type and with Minority Carrier Transient Spectroscopy (MCTS) on p-type silicon.

  18. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  19. Accurate argon cluster-ion sputter yields: Measured yields and effect of the sputter threshold in practical depth-profiling by x-ray photoelectron spectroscopy and secondary ion mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Cumpson, Peter J.; Portoles, Jose F.; Barlow, Anders J.; Sano, Naoko [National EPSRC XPS User' s Service (NEXUS), School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2013-09-28

    Argon Gas Cluster-Ion Beam sources are likely to become widely used on x-ray photoelectron spectroscopy and secondary ion mass spectrometry instruments in the next few years. At typical energies used for sputter depth profiling the average argon atom in the cluster has a kinetic energy comparable with the sputter threshold, meaning that for the first time in practical surface analysis a quantitative model of sputter yields near threshold is needed. We develop a simple equation based on a very simple model. Though greatly simplified it is likely to have realistic limiting behaviour and can be made useful for estimating sputter yields by fitting its three parameters to experimental data. We measure argon cluster-ion sputter yield using a quartz crystal microbalance close to the sputter threshold, for silicon dioxide, poly(methyl methacrylate), and polystyrene and (along with data for gold from the existing literature) perform least-squares fits of our new sputter yield equation to this data. The equation performs well, with smaller residuals than for earlier empirical models, but more importantly it is very easy to use in the design and quantification of sputter depth-profiling experiments.

  20. Synthesis and characterisation of copper doped Ca–Li hydroxyapatite

    International Nuclear Information System (INIS)

    Pogosova, M.A.; Kazin, P.E.; Tretyakov, Y.D.

    2012-01-01

    Hydroxyapapites M 10 (PO 4 ) 6 (OH) 2 (MHAP), where M is an alkaline earth metal, colored by incorporation of copper ions substituting protons, were discovered recently . Now this kind of apatite-type materials can be used as inorganic pigments. Until now blue (BaHAP), violet (SrHAP) and wine-red (CaHAP) colors were achieved by the copper ions introduction . The task of the present work was to study possibility of further M-ion substitution to affect the color and shift it toward the red–orange tint. Polycrystalline hydroxyapatites Ca 10−x Li x+y Cu z (PO 4 ) 6 O 2 H 2−y−z−σ (Ca–LiHAP) were synthesized by solid state reaction at 1150 °C (ceramic method) and studied by X-ray powder diffraction (XRD), infrared absorption and diffuse-reflectance spectroscopy. Refinement of the X-ray diffraction patterns by the Rietveld method shows that CaHAP unit cell parameters are a little bigger, than Ca–LiHAP ones. Small difference between unit cell parameters could be caused by two ways of the Li + ions introduction: (1) at the Ca 2+ sites (Ca–Li substitution); (2) into hexagonal channels (H–Li substitution). The Li ions doping changes the color of the copper doped CaHAP from wine-red to pink and red.

  1. The role of point defect clusters in reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    Stoller, R.E.

    1993-01-01

    Radiation-induced point defect clusters (PDC) are a plausible source of matrix hardening in reactor pressure vessel (RPV) steels in addition to copper-rich precipitates. These PDCs can be of either interstitial or vacancy type, and could exist in either 2 or 3-D shapes, e.g. small loops, voids, or stacking fault tetrahedra. Formation and evolution of PDCs are primarily determined by displacement damage rate and irradiation temperature. There is experimental evidence that size distributions of these clusters are also influenced by impurities such as copper. A theoretical model has been developed to investigate potential role of PDCs in RPV embrittlement. The model includes a detailed description of interstitial cluster population; vacancy clusters are treated in a more approximate fashion. The model has been used to examine a broad range of irradiation and material parameters. Results indicate that magnitude of hardening increment due to these clusters can be comparable to that attributed to copper precipitates. Both interstitial and vacancy type defects contribute to this hardening, with their relative importance determined by the specific irradiation conditions

  2. Ligandless-dispersive liquid-liquid microextraction of trace amount of copper ions

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Sayed Zia, E-mail: szmohammadi@yahoo.com [Department of Chemistry, Payame Noor University (PNU), Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Environment Department, Institute Research of Environmental Sciences, International Center for Science, High Technology and Environmental Sciences, Kerman (Iran, Islamic Republic of); Baghelani, Yar Mohammad [Department of Chemistry, Payame Noor University (PNU), Kerman (Iran, Islamic Republic of)

    2009-10-27

    In the present work, a new ligandless-dispersive liquid-liquid microextraction (LL-DLLME) method has been developed for preconcentration trace amounts of copper as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach 1,2-dicholorobenzene and ethanol were used as extraction and dispersive solvents, respectively. Some factors influencing on the extraction efficiency of copper and its subsequent determination were studied and optimized, such as the extraction and dispersive solvent type and volume, pH of sample solution, extraction time and salting out effect. Under the optimal conditions, the calibration curve was linear in the range of 1.0 ng mL{sup -1}-0.6 {mu}g mL{sup -1} of copper with R{sup 2} = 0.9985. Detection limit was 0.5 ng mL{sup -1} in original solution (3S{sub b}/m) and the relative standard deviation for seven replicate determination of 0.2 {mu}g mL{sup -1} copper was {+-}1.4%. The proposed method has been applied for determination of copper in standard and water samples with satisfactory results.

  3. Biosorption of copper(II) and lead(II) onto potassium hydroxide treated pine cone powder.

    Science.gov (United States)

    Ofomaja, A E; Naidoo, E B; Modise, S J

    2010-08-01

    Pine cone powder surface was treated with potassium hydroxide and applied for copper(II) and lead(II) removal from solution. Isotherm experiments and desorption tests were conducted and kinetic analysis was performed with increasing temperatures. As solution pH increased, the biosorption capacity and the change in hydrogen ion concentration in solution increased. The change in hydrogen ion concentration for lead(II) biosorption was slightly higher than for copper(II) biosorption. The results revealed that ion-exchange is the main mechanism for biosorption for both metal ions. The pseudo-first order kinetic model was unable to describe the biosorption process throughout the effective biosorption period while the modified pseudo-first order kinetics gave a better fit but could not predict the experimentally observed equilibrium capacities. The pseudo-second order kinetics gave a better fit to the experimental data over the temperature range from 291 to 347 K and the equilibrium capacity increased from 15.73 to 19.22 mg g(-1) for copper(II) and from 23.74 to 26.27 for lead(II). Activation energy was higher for lead(II) (22.40 kJ mol(-1)) than for copper(II) (20.36 kJ mol(-1)). The free energy of activation was higher for lead(II) than for copper(II) and the values of DeltaH* and DeltaS* indicate that the contribution of reorientation to the activation stage is higher for lead(II) than copper(II). This implies that lead(II) biosorption is more spontaneous than copper(II) biosorption. Equilibrium studies showed that the Langmuir isotherm gave a better fit for the equilibrium data indicating monolayer coverage of the biosorbent surface. There was only a small interaction between metal ions when simultaneously biosorbed and cation competition was higher for the Cu-Pb system than for the Pb-Cu system. Desorption studies and the Dubinin-Radushkevich isotherm and energy parameter, E, also support the ion-exchange mechanism. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Effect of electrolysis parameters on the morphologies of copper powder obtained at high current densities

    Directory of Open Access Journals (Sweden)

    Orhan Gökhan

    2012-01-01

    Full Text Available The effects of copper ion concentrations and electrolyte temperature on the morphologies and on the apparent densities of electrolytic copper powders at high current densities under galvanostatic regime were examined. These parameters were evaluated by the current efficiency of hydrogen evolution. In addition, scanning electron microscopy was used for analyzing the morphology of the copper powders. It was found that the morphology was dependent over the copper ion concentration and electrolyte temperature under same current density (CD conditions. At 150 mA cm-2 and the potential of 1000±20 mV (vs. SCE, porous and disperse copper powders were obtained at low concentrations of Cu ions (0.120 M Cu2+ in 0.50 M H2SO4. Under this condition, high rate of hydrogen evolution reaction took place parallel to copper electrodeposition. The morphology was changed from porous, disperse and cauliflower-like to coral-like, shrub-like and stalk-stock like morphology with the increasing of Cu ion concentrations towards 0.120 M, 0.155 M, 0.315 M, 0.475 M and 0.630 M Cu2+ in 0.5 M H2SO4 respectively at the same CD. Similarly, as the temperature was increased, powder morphology and apparent density were observed to be changed. The apparent density values of copper powders were found to be suitable for many of the powder metallurgy applications.

  5. Case Study of Ion Beams Observed By Cluster At Perigee

    Science.gov (United States)

    Sergeev, V.; Sauvaud, J.-A.; Perigee Beam Team

    During substorms the short beams of ions in the keV-to-tens keV energy range are injected into the auroral flux tubes from the magnetotail (sometimes extending up to >100 keV energy) carrying the information on the source distance, scale-size and temporal history of plasma acceleration. We present observations with the CLUSTER crossing inward the auroral zone flux tubes at ~4Re distance near its perigee during the substorm activity on February 14, 2001. The ion beams cover the same region (poleward half) of the auroral oval where the low-energy ions are extracted from the ionosphere, and where the small-scale transient transverse Alfven waves are observed which carry predominantly the downward parallel Poynting flux into the ionosphere. The multiple beams were basically confirmed to be the transient effects, although some effects including the (spatial) velocity filter and the parallel electric fields (im- posed by quasineutrality requirement) may complicate the interpretation. The gener- ation region of ion beams is not limited to most poleward, newly-reconnected flux tubes; the beam generation region could extend across magnetic field inward by as much as >100km (if mapped to the ionosphere). Surprising variety of injection dis- tances observed nearly simultaneously (ranging between >60 Re and ~10 Re) have been inferred when using the full available energy and time resolution, with shorter injection distances be possibly associated with the flow braking process. The beam multiplicity often displays the apparent ~3 min quasiperiodicity inherent to the basic dissipation process, it was not yet explained by any substorm theory.

  6. Towards an all-copper redox flow battery based on a copper-containing ionic liquid.

    Science.gov (United States)

    Schaltin, Stijn; Li, Yun; Brooks, Neil R; Sniekers, Jeroen; Vankelecom, Ivo F J; Binnemans, Koen; Fransaer, Jan

    2016-01-07

    The first redox flow battery (RFB), based on the all-copper liquid metal salt [Cu(MeCN)4][Tf2N], is presented. Liquid metal salts (LMS) are a new type of ionic liquid that functions both as solvent and electrolyte. Non-aqueous electrolytes have advantages over water-based solutions, such as a larger electrochemical window and large thermal stability. The proof-of-concept is given that LMSs can be used as the electrolyte in RFBs. The main advantage of [Cu(MeCN)4][Tf2N] is the high copper concentration, and thus high charge and energy densities of 300 kC l(-1) and 75 W h l(-1) respectively, since the copper(i) ions form an integral part of the electrolyte. A Coulombic efficiency up to 85% could be reached.

  7. Statistics of high-altitude and high-latitude O+ ion outflows observed by Cluster/CIS

    Directory of Open Access Journals (Sweden)

    A. Korth

    2005-07-01

    Full Text Available The persistent outflows of O+ ions observed by the Cluster CIS/CODIF instrument were studied statistically in the high-altitude (from 3 up to 11 RE and high-latitude (from 70 to ~90 deg invariant latitude, ILAT polar region. The principal results are: (1 Outflowing O+ ions with more than 1keV are observed above 10 RE geocentric distance and above 85deg ILAT location; (2 at 6-8 RE geocentric distance, the latitudinal distribution of O+ ion outflow is consistent with velocity filter dispersion from a source equatorward and below the spacecraft (e.g. the cusp/cleft; (3 however, at 8-12 RE geocentric distance the distribution of O+ outflows cannot be explained by velocity filter only. The results suggest that additional energization or acceleration processes for outflowing O+ ions occur at high altitudes and high latitudes in the dayside polar region. Keywords. Magnetospheric physics (Magnetospheric configuration and dynamics, Solar wind-magnetosphere interactions

  8. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Porcile-Saavedra, P.F. [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Trejo-Cruz, C. [Department of Physics, Faculty of Science, University of Biobío, Avenue Collao 1202, Box 5C, Concepción 4051381 (Chile)

    2016-07-15

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.

  9. Push-and-stick mechanism for charged and excited small cluster emission under ion bombardment

    International Nuclear Information System (INIS)

    Bitensky, I.S.; Parilis, E.S.; Wojciechowski, I.A.

    1992-01-01

    The mechanism for the formation, excitation and ionization of small clusters emitted under ion bombardment is discussed. It is shown that the increased degree of ionization for the transition metal dimers, trimers and tetramers can be explained by the existence of an additional effective channel for their formation, namely the associative ionization process. A simple estimate shows that the sticking together of a fast cascade atom and the pushed out surface atom is 30-40 times more effective for dimer formation, than the recombination of two fast atoms. This push-and-stick mechanism of cluster formation could also be effective for the formation of trimers and tetramers. (orig.)

  10. Thermally modified bentonite clay for copper removal

    International Nuclear Information System (INIS)

    Bertagnolli, C.; Kleinübing, S.J.; Silva, M.G.C.

    2011-01-01

    Bentonite clay coming from Pernambuco was thermally modified in order to increase its affinity and capacity in the copper removal in porous bed. The application of this procedure is justified by the low cost of clay, their abundance and affinity for various metal ions. Thermally treatment modifies the clay adsorption properties enables its use in porous bed system, with the increase in surface area and mechanical strength. The material was characterized by x-ray diffraction, thermogravimetric analysis and N_2 physisorption. Then tests were carried out for adsorption of copper in various experimental conditions and evaluated the mass transfer zone, useful and total adsorbed removal amounts and total copper removal percentage. The results showed that the clay treated at higher temperature showed higher copper removal. (author)

  11. Bioleaching of copper, aluminum, magnesium and manganese from ...

    African Journals Online (AJOL)

    The present study was done to check the bioleaching feasibility of brown shale for the recovery of copper (Cu), aluminum (Al), magnesium (Mg) and manganese (Mn) ions using Ganoderma lucidum. Different experimental parameters were optimized for the enhanced recovery of metals ions. Effect of different substrates like ...

  12. Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K., E-mail: fujiik@inss.co.jp [Institute of Nuclear Safety System, Inc., Mihama 919-1205 (Japan); Fukuya, K. [Institute of Nuclear Safety System, Inc., Mihama 919-1205 (Japan); Hojo, T. [Japan Nuclear Energy Safety Organization, Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2013-11-15

    Specimens of A533B steels containing 0.04, 0.09 and 0.21 wt%Cu were irradiated at 290 °C to 3 dpa with 3 MeV Fe ions and subjected to atom probe analyses, transmission electron microscopy observations and hardness measurements. The atom probe analysis results showed that two types of solute clusters were formed: Cu-enriched clusters containing Mn, Ni and Si atoms as irradiation-enhanced solute atom clusters and Mn/Ni/Si-enriched clusters as irradiation-induced solute atom clusters. Both cluster types occurred in the highest Cu-content steel and the ratio of Mn/Ni/Si-enriched clusters to Cu-enriched clusters increased with irradiation doses. It was confirmed that the cluster formation was a key factor in the microstructure evolution until the high dose irradiation was reached even in the low Cu content steels though the dislocation loops with much lower density than that of the clusters were observed as matrix damage. The difference in the hardening efficiency due to the difference in the nature of the clusters was small. The irradiation-induced clustering of undersized Si atoms suggested that a clustering driving force other than vacancy-driven diffusion, probably an interstitial mechanism, may become important at higher dose rates.

  13. Concomitant formation of different nature clusters and hardening in reactor pressure vessel steels irradiated by heavy ions

    International Nuclear Information System (INIS)

    Fujii, K.; Fukuya, K.; Hojo, T.

    2013-01-01

    Specimens of A533B steels containing 0.04, 0.09 and 0.21 wt%Cu were irradiated at 290 °C to 3 dpa with 3 MeV Fe ions and subjected to atom probe analyses, transmission electron microscopy observations and hardness measurements. The atom probe analysis results showed that two types of solute clusters were formed: Cu-enriched clusters containing Mn, Ni and Si atoms as irradiation-enhanced solute atom clusters and Mn/Ni/Si-enriched clusters as irradiation-induced solute atom clusters. Both cluster types occurred in the highest Cu-content steel and the ratio of Mn/Ni/Si-enriched clusters to Cu-enriched clusters increased with irradiation doses. It was confirmed that the cluster formation was a key factor in the microstructure evolution until the high dose irradiation was reached even in the low Cu content steels though the dislocation loops with much lower density than that of the clusters were observed as matrix damage. The difference in the hardening efficiency due to the difference in the nature of the clusters was small. The irradiation-induced clustering of undersized Si atoms suggested that a clustering driving force other than vacancy-driven diffusion, probably an interstitial mechanism, may become important at higher dose rates

  14. Optimisation of a combined transient-ion-drift/rapid thermal annealing process for copper detection in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Belayachi, A.; Heiser, T.; Schunck, J.P.; Bourdais, S.; Bloechl, P.; Huber, A.; Kempf, A

    2003-09-15

    The transient ion drift (TID) technique has been recently proposed for copper trace detection in silicon. Cu atoms may be present either in the vicinity of the Si surface or within the volume. In the latter case they are either gathered at secondary defects or form precipitates believed to be silicides. In order to become detectable by TID Cu atoms must be put into the highly mobile interstitial state. Depending on the initial configuration of the Cu/Si system different physical mechanisms may enable Cu atoms to become 'TID active'. In this work we study the Cu activation process using rapid thermal processing (RTP) in an attempt to minimise the thermal budget required to achieve a complete activation. Both, surface and volume contaminated samples are investigated. During RTP treatments the activation of surface Cu atoms is found to proceed significantly faster than during standard furnace anneal. We tentatively attribute this behaviour to the UV light exposure associated with the RTP, which may enhance the release of copper atoms from the surface. The dissolution kinetics of the Cu precipitates occurring during RTPs are found to be only limited by Cu diffusion. The RTP/TID process is used to study the low temperature reaction path of supersaturated Cu. If prior to the RTP process, Cu atoms are chemically removed from the surface or near surface region, TID measures only the residual bulk Cu atoms. Our results show that out-diffusion and near-surface precipitation are reducing mostly the copper supersaturation.

  15. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  16. Short-range clustering and decomposition in copper-nickel and copper-nickel-iron alloys

    International Nuclear Information System (INIS)

    Aalders, T.J.A.

    1982-07-01

    The thermodynamic equilibrium state of short-range clustering and the kinetics of short-range clustering and decomposition has been studied for a number of CuNi(Fe)-alloys by means of neutron scattering. The validity of the theories, which are usually applied to describe spinodal decomposition, nucleation and growth, coarsening etc., was investigated. It was shown that for the investigated substances the conventional theory of spinodal decomposition is valid for the relaxation of short-range clustering only for the case that the initial and final states do not differ too much. The dynamical scaling procedure described by Lebowitz et al. did not lead to a time-independent scaled function F(x) for the relaxation of short-range clustering, for the early stages of decomposition and for the case that an alloy, which was already decomposed at the quench temperature T 1 , was annealed at a temperature T 2 (T 1 ). For the later stages of decomposition, however, the scaling procedure was indeed successful. The coarsening of the alloys could, except for the later stages, be described by the Lifshitz-Slyozov theory. (Auth.)

  17. Sorption of copper, zinc and cobalt by oat and oat products.

    Science.gov (United States)

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  18. Carbon-cluster mass calibration at SHIPTRAP

    International Nuclear Information System (INIS)

    Chaudhuri, Ankur

    2007-01-01

    A carbon-cluster ion source has been installed and tested at SHIPTRAP, the Penning-trap mass spectrometer for mass measurements of heavy elements at GSI/Darmstadt, Germany. A precision mass determination is carried out by measuring the ion cyclotron frequency ω c =qB=m, where q/m is the charge-to-mass ratio of the ion and B is the magnetic field. The mass of the ion of interest is obtained from the comparison of its cyclotron frequency ω c with that of a well-known reference ion. Carbon clusters are the mass reference of choice since the unified atomic mass unit is defined as 1/12 of the mass of the 12 C atom. Thus the masses of carbon clusters 12 C n , n=1,2,3,.. are multiples of the unified atomic mass unit. Carbon-cluster ions 12 C n + , 5≤n≤23, were produced by laser-induced desorption and ionization from a carbon sample. Carbon clusters of various sizes ( 12 C 7 + , 12 C 9 + , 12 C 10 + , 12 C 11 + , 12 C 12 + , 12 C 15 + , 12 C 18 + , 12 C 19 + , 12 C 20 + ) were used for an investigation of the accuracy of SHIPTRAP covering a mass range from 84 u to 240 u. To this end the clusters were used both as ions of interest and reference ions. Hence the true values of the frequency ratios are exactly known. The mass-dependent uncertainty was found to be negligible for the case of (m-m ref ) -8 was revealed. In addition, carbon clusters were employed for the first time as reference ions in an on-line studies of short-lived nuclei. Absolute mass measurements of the radionuclides 144 Dy, 146 Dy and 147 Ho were performed using 12 C 11 + as reference ion. The results agree with measurements during the same run using 85 Rb + as reference ion. The investigated radionuclides were produced in the fusion-evaporation reaction 92 Mo( 58 Ni,xpyn) at SHIP (Separator for Heavy Ion reaction Products) at GSI. Among the measured nuclei 147 Ho has the lowest half life (5.8 s). A relative mass uncertainty of 5 x 10 -8 was obtained from the mass measurements using carbon clusters

  19. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    International Nuclear Information System (INIS)

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos; Cerpa, Waldo; Cambiazo, Veronica; Inestrosa, Nibaldo C.; Gonzalez, Mauricio

    2009-01-01

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu 2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu 2+ reduction and 64 Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu 2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu 2+ ions. Moreover, wild-type cells exposed to both Cu 2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu 2+ reductase activity and increased 64 Cu uptake. We conclude that Cu 2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  20. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    Science.gov (United States)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode

  1. Visual detection of copper(II) ions in blood samples by controlling the leaching of protein-capped gold nanoparticles.

    Science.gov (United States)

    Lee, Yen-Fei; Deng, Ting-Wei; Chiu, Wei-Jane; Wei, Tsao-Yen; Roy, Prathik; Huang, Chih-Ching

    2012-04-21

    We have developed a simple, low-cost, paper-based probe for the selective colorimetric detection of copper ions (Cu(2+)) in aqueous solutions. The bovine serum albumin (BSA)-modified 13.3-nm Au nanoparticle (BSA-Au NP) probe was designed to detect Cu(2+) ions using lead ions (Pb(2+)) and 2-mercaptoethanol (2-ME) as leaching agents in a glycine-NaOH (pH 12.0) solution. In addition, a nitrocellulose membrane (NCM) was used to trap the BSA-Au NPs, leading to the preparation of a nanocomposite film consisting of a BSA-Au NP-decorated membrane (BSA-Au NPs/NCM). The BSA-Au NPs probe operates on the principle that Cu deposition on the surface of the BSA-Au NPs inhibits their leaching ability, which is accelerated by Pb(2+) ions in the presence of 2-ME. Under optimal solution conditions (5 mM glycine-NaOH (pH 12.0), Pb(2+) (50 μM), and 2-ME (1.0 M)), the Pb(2+)/2-ME-BSA-Au NPs/NCM enabled the detection of Cu(2+) at nanomolar concentrations in aqueous solutions by the naked eye with high selectivity (at least 100-fold over other metal ions). In addition, this cost-effective probe allowed for the rapid and simple determination of Cu(2+) ions in not only natural water samples but also in a complex biological sample (in this case, blood sample).

  2. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  3. Evidence for nano-Si clusters in amorphous SiO anode materials for rechargeable Li-ion batteries

    International Nuclear Information System (INIS)

    Sepehri-Amin, H.; Ohkubo, T.; Kodzuka, M.; Yamamura, H.; Saito, T.; Iba, H.; Hono, K.

    2013-01-01

    Atom probe tomography and high resolution transmission electron microscopy have shown the presence of nano-sized amorphous Si clusters in non-disproportionated amorphous SiO powders are under consideration for anode materials in Li-ion batteries. After Li insertion/extraction, no change was found in the chemistry and structure of the Si clusters. However, Li atoms were found to be trapped at the amorphous SiO phase after Li insertion/extraction, which may be attributed to the large capacity fade after the first charge/discharge cycle

  4. Observations of different core water cluster ions Y-(H2O)n (Y = O2, HOx, NOx, COx) and magic number in atmospheric pressure negative corona discharge mass spectrometry.

    Science.gov (United States)

    Sekimoto, Kanako; Takayama, Mitsuo

    2011-01-01

    Reliable mass spectrometry data from large water clusters Y(-)(H(2)O)(n) with various negative core ions Y(-) such as O(2)(-), HO(-), HO(2)(-), NO(2)(-), NO(3)(-), NO(3)(-)(HNO(3))(2), CO(3)(-) and HCO(4)(-) have been obtained using atmospheric pressure negative corona discharge mass spectrometry. All the core Y(-) ions observed were ionic species that play a central role in tropospheric ion chemistry. These mass spectra exhibited discontinuities in ion peak intensity at certain size clusters Y(-)(H(2)O)(m) indicating specific thermochemical stability. Thus, Y(-)(H(2)O)(m) may correspond to the magic number or first hydrated shell in the cluster series Y(-)(H(2)O)(n). The high intensity discontinuity at HO(-)(H(2)O)(3) observed was the first mass spectrometric evidence for the specific stability of HO(-)(H(2)O)(3) as the first hydrated shell which Eigen postulated in 1964. The negative ion water clusters Y(-)(H(2)O)(n) observed in the mass spectra are most likely to be formed via core ion formation in the ambient discharge area (760 torr) and the growth of water clusters by adiabatic expansion in the vacuum region of the mass spectrometers (≈1 torr). The detailed mechanism of the formation of the different core water cluster ions Y(-)(H(2)O)(n) is described. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Angular dependence of preferential sputtering and composition in aluminum--copper thin films

    International Nuclear Information System (INIS)

    Rudeck, P.J.; Harper, J.M.E.; Fryer, P.M.

    1989-01-01

    The copper concentration in aluminum--copper alloys can be altered by ion bombardment during film deposition. We have measured the sputtering yields of aluminum and copper in Al--Cu alloys as a function of the Cu concentration (5--13 at. %) and the angle of ion incidence (0--40 0 from normal). During deposition, the films were partially resputtered by 500-eV Ar + ion bombardment from a Kaufman ion source. We found that the Cu sputtering yield decreases by up to a factor of 10 in the alloy, relative to elemental Cu. The Al sputtering yield remains close to the elemental value. The net effect is a strong preferential sputtering of Al relative to Cu, which enhances the Cu concentration in an ion bombarded film. The Al/Cu sputtering yield ratio for normal incidence ion bombardment ranges from 3 to 5 as a function of Cu concentration. This ratio decreases with increasing angle of incidence to as low as 2 for 40 0 incident ions. However, since a higher fraction of the film is resputtered from a sloping surface, a higher Cu concentration is found on a sloping surface relative to a flat surface. These results show that in multicomponent film deposition under ion bombardment, the film composition will vary as a function of the surface topography. We will also show how the level of argon left trapped in the films varies inversely with respect to the ion flux

  6. Defect microstructure in copper alloys irradiated with 750 MeV protons

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Horsewell, A.; Singh, B.N.

    1994-01-01

    Transmission electron microscopy (TEM) disks of pure copper and solid solution copper alloys containing 5 at% of Al, Mn, or Ni were irradiated with 750 MeV protons to damage levels between 0.4 and 2 displacements per atom (dpa) at irradiation temperatures between 60 and 200 degrees C. The defect...... significant effect on the total density of small defect clusters, but they did cause a significant decrease in the fraction of defect clusters resolvable as SFT to similar to 20 to 25%. In addition, the dislocation loop density (> 5 nm diameter) was more than an order of magnitude higher in the alloys...

  7. Radiochemical and thermal studies of the copper(II)-exchanged form of synthetic zeolite linde sieve A

    International Nuclear Information System (INIS)

    Banerjee, S.P.

    1978-01-01

    Synthetic zeolite Linde Sieve A displays a double ion-sieve action. Only small cations can penetrate the single 6-rings into the beta cages. The radiochemical and thermal studies of copper(II)-exchanges form of 4A shows evidence of hydrated copper(II) ions in the zeolite structure. (author)

  8. [Biohydrometallurgical technology of a complex copper concentrate process].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T F

    2011-01-01

    Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 h, which allowed extraction of 40.6% of copper. As a result of subsequent chemical leaching at 80 degrees C during 7 h with a solution of sulphate ferric iron obtained after bio-oxidation by an association of microorganisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 h). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea of genus Ferroplasma acidiphilum, at 1.0 g/l h at 40 degrees C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A technological scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.

  9. A Facile Fabrication of Silver-Coated Copper Nanowires by Galvanic Replacement

    Directory of Open Access Journals (Sweden)

    Xin He

    2016-01-01

    Full Text Available We demonstrated a general strategy to fabricate silver-coated copper nanowires by a galvanic replacement, which is guided by the chemical principle that metal ions (silver ions with a relatively high reduction potential can galvanically etch nanostructure made from a less metal (copper. Well-dispersed and high-yielded copper nanowires were initially synthesized and then introduced into silver-ammonia solution for the growth of silver nanocrystals on the nanowire surfaces under vigorous oscillation. The results of X-ray diffraction, scanning electron microscope, and transmission electron microscope revealed that the silver nanocrystals were uniformly distributed on the copper nanowire surfaces to form Cu-Ag heterostructures. The concentration of silver-ammonia solution and the time of replacement reaction determine the size and density of the silver nanocrystals. Our investigation might pave the way to the synthesis of other bimetallic nanostructures via a facile, fast, and economical route.

  10. Development and test of ion emitter modules for the projects ASPOC/CLUSTER (8th project year) and EQUATOR-S (4th project year). Final report

    International Nuclear Information System (INIS)

    Fehringer, H.M.; Ruedenauer, F.G.; Steiger, W.

    1997-02-01

    Not only was the failure of flight V001 of the newly developed ARIANE-V rocket a disaster for the European space industry and a drawback in the highly competitive launcher business, with the loss of its payload, ESA's 4 scientific CLUSTER satellites, also the work and expectations of hundreds of scientists and engineers were buried in the swamps of French Guyana. The Austrian experiment ASPOC, for which ion emitters have been developed under the contract reported here, was one of the 12 instruments onboard. In a meeting following the launch failure ESA's Science Policy Committee (SPC) decided to immediately rebuild one CLUSTER satellite and use the instrument spare models as the payload. This new mission was called PHOENIX. Furthermore, the SPC initiated studies to look for options of a CLUSTER reflight. The final decision about the future of the CLUSTER project is now due in February 1997. Since ASPOC has been lost, this report only very shortly deals with the work done up to the launch date. More important are two aspects: First, the ion emitters, the product which has been developed within this long term project, are of such high quality that they survived both the explosion of the rocket and the subsequent free fall from 3.6 km height. Ten ion emitters have been recovered from the debris and all of them were still working well. Second, new applications both in the scientific and in the commercial area have been found for the indium ion sources. Under an ESA contract their potential use as ion thrusters has recently successfully been studied. A further contract now has been placed for the development of a prototype ion thruster. Furthermore, the indium ion source has been selected as the primary ion emitter for the time of flight mass spectrometer COSIMA, a key instrument of the ROSETTA mission. Concerning EQUATOR-S, a new set of ion emitter modules has to be built, as those originally foreseen for EQUATOR-S are now being used for PHOENIX. The respective

  11. Copper separation using modified active carbon before the polarographic determination of Pb, Cd, Ni, Zn and Fe in wastes

    International Nuclear Information System (INIS)

    Rubel, S.; Lada, Z.M.; Golimowski, J.

    1977-01-01

    The investigations on the selective separation of Pb 2+ , Cd 2+ , Ni 2+ , Zn 2+ and Fe 3+ ions from the excess of copper were carried out. For this purpose active carbon modified by Na-diethyldithiocarbamate was used. The manner of DDTK-Na deposition on active carbon has been elaborated. The influence of pH was investigated and it was found that at pH 1(HNO 3 ) copper ions are quantitavely bound on modified carbon whereas other ions (Pb 2+ , Cd 2+ , Ni 2+ , Zn 2+ and Fe 3+ ) remain in the solution and can be determined polarographically. The elaborated method was applied to the determination of mentioned ions in the samples of wastes containing even 100-fold excess of copper. The concentration of copper can not exceed 100 mg/dm 3 . (author)

  12. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Daisuke Watanabe

    2014-07-01

    Full Text Available The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1, which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

  13. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Watanabe, Daisuke; Kikushima, Rie; Aitoku, Miho; Nishimura, Akira; Ohtsu, Iwao; Nasuno, Ryo; Takagi, Hiroshi

    2014-07-07

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1 , which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper uptake. Furthermore, histidine did not affect cell growth under limited respiration conditions, suggesting that histidine cytotoxicity is involved in deficiency of mitochondrial copper.

  14. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  15. Surface modification and metallization of polycarbonate using low energy ion beam

    International Nuclear Information System (INIS)

    Reheem, A.M. Abdel; Maksoud, M.I.A. Abdel; Ashour, A.H.

    2016-01-01

    The low energy argon ion is used for irradiation polycarbonate samples using cold cathode ion source. The surface of the PC substrates is examined using SEM, UV-spectroscopy and FTIR. It was found that the energy band gap decrease by increase argon ion fluence. Copper films are deposited onto polycarbonate (PC) substrates after irradiation by argon ion beam. The structure, surface morphology and the optical band gap are investigated using XRD, SEM and UV spectroscopy. It can be seen that the intensity increases with deposition time and band gap decreases from 3.45 eV for the pristine PC to ∼1.7 eV for copper thin film. - Highlights: • The low energy argon ion is used for irradiation polycarbonate samples. • The surface roughness increase from 9 µm to 23.5 µm after argon ion irradiated. • Copper films are deposited onto polycarbonate (PC) substrates. • Energy band gap decreases from 3.45 eV for pristine to 1.7 eV for copper thin film.

  16. Electron induced formation and stability of molecular and cluster ions in gas phase and superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Aleem, M. A.

    2010-01-01

    The present PhD thesis represents a broad range study of electron induced formation and stability of positive and negative ions in gas phase and superfluid helium nanodroplets. The molecules studied are of industrial, environmental, plasma and biological relevance. The knowledge obtained from the study provides new insight for the proper understanding and control on energetics and dynamics of the reactions involved in the formation and fragmentation processes of the studied molecules and clusters. The experiments are accomplished and investigated using mass spectrometric techniques for the formation of molecular and cluster ions using different mass spectrometers available in our laboratory. One part of the work is focused on electron-induced reactions of the molecules in gas phase. Especially focus is laid to electron attachment to the isomers of mononitrotolouene used as an additive to explosives. The fragile nature and high internal energy of these molecules has lead to extensive fragmentation following the ionisation process. Dissociative electron attachment to the three different isomers has shown different resonances and therefore this process can be utilized to explicitly distinguish these isomers. Anion efficiency curves of the isomers have been studied using effusive molecular beam source in combination with a hemispherical electron monochromator as well as a Nier-type ion source attached to a sector field mass spectrometer. The outcome of the experiment is a reliable and effective detection method highly desirable for environmental and security reasons. Secondly, dissociative electron ionization of acetylene and propene is studied and their data is directly related to the plasma modelling for plasma fusion and processing reactors. Temperature effects for dissociative electron attachment to halo-hydrocarbons are also measured using a trochoidal electron monochromator. The second part of the work is concerned with the investigation of electron

  17. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  18. Performance of Grass Filter Strip in Copper and Zinc Removal in Surface and Subsurface Runoff

    Directory of Open Access Journals (Sweden)

    Huo Weijie

    2017-01-01

    Full Text Available Three filter strips were conducted on self-designed soil bins. Taking a filter strip with no vegetation as contrast, the effectiveness of vegetation and soil conditions on heavy metals (including copper and zinc removal efficiencies were investigated by simulated runoff experiment. The results showed that the adsorbed state is the main existing form of heavy metal. For surface runoff, most of total copper and total zinc are trapped in first 4m and it is ineffective to increase the distance beyond 4m for removal. Vegetation has no significant effect on total copper and total zinc removal, while the soil with higher content of organic matter is contributing to total Zn interception. For subsurface runoff, the removal efficiencies of total copper and total zinc can reach to above 95.38% and both vegetation and soil conditions have no significant effects. Vegetation is contributing to copper ion and zinc ion removal significantly. Soil condition is only a significant factor to zinc ion, with higher content of organic matter as a contributing factor.

  19. Multipath colourimetric assay for copper(II) ions utilizing MarR functionalized gold nanoparticles

    Science.gov (United States)

    Wang, Yulong; Wang, Limin; Su, Zhenhe; Xue, Juanjuan; Dong, Jinbo; Zhang, Cunzheng; Hua, Xiude; Wang, Minghua; Liu, Fengquan

    2017-02-01

    We use the multiple antibiotic resistance regulator (MarR), as a highly selective biorecognition elements in a multipath colourimetric sensing strategy for the fast detection of Cu2+ in water samples. The colourimetric assay is based on the aggregation of MarR-coated gold nanoparticles in the presence of Cu2+ ions, which induces a red-to-purple colour change of the solution. The colour variation in the gold nanoparticle aggregation process can be used for qualitative and quantitative detection of Cu2+ by the naked eye, and with UV-vis and smartphone-based approaches. The three analysis techniques used in the multipath colourimetric assay complement each other and provide greater flexibility for differing requirements and conditions, making the assay highly applicable for Cu2+ detection. Under optimal conditions, the Cu2+ concentration was quantified in less than 5 min with limits of detection for the naked eye, UV-vis and smartphone-based approaches of 1 μM, 405 nM and 61 nM, respectively. Moreover, the sensing system exhibited excellent selectivity and practical application for Cu2+ detection in real water samples. Thus, our strategy has great potential for application in on-site monitoring of Cu2+, and the unique response of MarR towards copper ions may provide a new approach to Cu2+ sensing.

  20. Direct write of copper-graphene composite using micro-cold spray

    Directory of Open Access Journals (Sweden)

    Sameh Dardona

    2016-08-01

    Full Text Available Direct write of a new class of composite materials containing copper and graphene in the powder phase is described. The composite was synthesized using batch electroless plating of copper for various times onto Nano Graphene Platelets (NGP to control the amount of copper deposited within the loosely aggregated graphene powder. Copper deposition was confirmed by both Focused Ion Beam (FIB and Auger electron spectroscopic analysis. A micro-cold spray technique was used to deposit traces that are ∼230 μm wide and ∼5 μm thick of the formulated copper/graphene powder onto a glass substrate. The deposited traces were found to have good adhesion to the substrate with ∼65x the copper bulk resistivity.