WorldWideScience

Sample records for copolymer thin films

  1. Structural study of symmetric diblock copolymer thin films

    DEFF Research Database (Denmark)

    Gadegaard, Nikolaj

    2000-01-01

    Thin diblock copolymer film have been investigated by x-ray and neutron reflectivity as well as small angle x-ray and neutron scattering. Two model systems have been investigated. PS-PDMS (25 kg/mol-25 kg/mol), which has a glass transition temperature ofca. 100 deg.C for the PS-block. This means...

  2. STRUCTURE OF CRYSTALLINE DOMAINS IN SEMICRYSTALLINE BLOCK COPOLYMER THIN FILMS

    Institute of Scientific and Technical Information of China (English)

    Guo-dong Liang; Jun-ting Xu; Zhi-qiang Fan

    2006-01-01

    Thin film morphology of a symmetric semicrystalline oxyethylene/oxybutylene diblock copolymer (E76B38) on silicon was investigated by tapping mode atomic force microscopy (AFM). It is found that the nascent thin film is composed of multiple polymer layers having mixed thicknesses of L ≈ L0 and L ≈ L0/2 (L0 is the long period of the block copolymer in bulk) besides the first layer near the substrate. This shows that the crystalline domain in the block copolymer consists of double poly(oxyethylene) layers. Annealing leads to disappearance of the polymer layers with thickness L ≈ L0/2, indicating that such polymer layers are metastable.

  3. Thin Films of Polydimethylsiloxane-Containing Block Copolymers

    Science.gov (United States)

    Wadley, Maurice; Cavicchi, Kevin

    2009-03-01

    The self-assembly of block copolymers into ordered nanostructures such as spheres, cylinders, and lamellae in the range of 10-100 nm makes them interesting materials for patterning surfaces. Thin films of poly(dimethylsiloxane) (PDMS) containing block copolymers are attractive for patterning due to their high oxygen etch resistance compared to other polymers. The main disadvantage of these polymers for patterning is the low surface tension of PDMS. This causes the preferential migration of PDMS to the air/film interface driving the formation of domains parallel to the interface and surface wetting layers. In this work a series of AB block copolymers containing PDMS have been prepared via RAFT polymerization where the surface tension of the opposing block was varied. Using a macro chain transfer approach, it is possible to isolate the effect of changing the opposing block while keeping the PDMS the same in each different block copolymer. The effect of changing the surface tension mismatch between the blocks on the thin film morphology will be discussed.

  4. Surface Structure of Thin Films of Multifunctional Ionizable Copolymers

    Science.gov (United States)

    Wickramasinghe, Anuradhi; Perahia, Dvora

    Phase segregation results in a rich variety of structures in co-polymers where interfacial forces often dominate the structure of thin films. Introduction of ionizable segments often drives the formation of compounded structures with multiple blocks residing at the interfaces. Here we probe thin films, 40-50nm, of an A-B-C-B-A co-polymer where C is a randomly sulfonated polystyrene with sulfonation fractions of 0, 26 and 52 mole %, B is poly (ethylene-r-propylene), and A is poly (t-butyl styrene) as the sulfonation level and temperature are varied using Neutron Reflectivity AFM, and surface tension measurements. As cast films form layers with both hydrophobic blocks dominating the solid and air interfaces and the ionizable block segregating to the center. Following annealing at 1700C, above Tg of styrene sulfonate, the films coarsen, with surface aggregation dominating the structure, though interfacial regions remain dominated by the hydrophobic segments. We show that in contrast to non-ionic co-polymers, formation of micelles dominated the structure of these ionic structured films. Supported in part by DOE Grant No. DE-SC007908.

  5. Rapid ordering of block copolymer thin films

    Science.gov (United States)

    Majewski, Pawel W.; Yager, Kevin G.

    2016-10-01

    Block-copolymers self-assemble into diverse morphologies, where nanoscale order can be finely tuned via block architecture and processing conditions. However, the ultimate usage of these materials in real-world applications may be hampered by the extremely long thermal annealing times—hours or days—required to achieve good order. Here, we provide an overview of the fundamentals of block-copolymer self-assembly kinetics, and review the techniques that have been demonstrated to influence, and enhance, these ordering kinetics. We discuss the inherent tradeoffs between oven annealing, solvent annealing, microwave annealing, zone annealing, and other directed self-assembly methods; including an assessment of spatial and temporal characteristics. We also review both real-space and reciprocal-space analysis techniques for quantifying order in these systems.

  6. Basic Research of Vibration Energy Harvesting Micro Device using Vinylidene Fluoride / Trifluoroethylene Copolymer Thin Film

    Science.gov (United States)

    Takiguchi, T.; Sasaki, T.; Nakajima, T.; Yamaura, S.; Sekiguchi, T.; Shoji, S.

    2014-11-01

    Basic research of MEMS based micro devices for vibration energy harvesting using vinylidene fluoride / trifluoroethylene (VDF/TrFE) copolymer thin film was investigated. The VDF/TrFE copolymer thin film was formed by spin coating. Thickness of VDF/TrFE copolymer thin film was ranged from 375 nm to 2793 nm. Impedance of VDF/TrFE copolymer thin film was measured by LCR meter. Thin film in each thickness was fully poled by voltage based on C-V characteristics result. Generated power of the devices under applied vibration was observed by an oscilloscope. When the film thickness is 2793 nm, the generated power was about 0.815 μJ.

  7. Monte Carlo simulations of the phase separation of a copolymer blend in a thin film

    KAUST Repository

    Wang, Zhexiao

    2014-12-11

    Monte Carlo simulations were carried out to study the phase separation of a copolymer blend comprising an alternating copolymer and/or block copolymer in a thin film, and a phase diagram was constructed with a series of composed recipes. The effects of composition and segregation strength on phase separation were discussed in detail. The chain conformation of the block copolymer and alternating copolymer were investigated with changes of the segregation strength. Our simulations revealed that the segment distribution along the copolymer chain and the segregation strength between coarse-grained beads are two important parameters controlling phase separation and chain conformation in thin films of a copolymer blend. A well-controlled phase separation in the copolymer blend can be used to fabricate novel nanostructures.

  8. Thin Film Assembly of Spider Silk-like Block Copolymers

    Science.gov (United States)

    2011-01-01

    Film Assembly of Spider Silk -like Block Copolymers Sreevidhya T. Krishnaji,†,‡ Wenwen Huang,§ Olena Rabotyagova,†,‡ Eugenia Kharlampieva, ) Ikjun Choi...Received November 26, 2010 We report the self-assembly of monolayers of spider silk -like block copolymers. Langmuir isotherms were obtained for a series of...bioengineered variants of the spider silks , and stable monolayers were generated. Langmuir-Blodgett films were prepared by transferring the monolayers

  9. Morphology and Crystallization of Thin Films of Asymmetric Organic-Organometallic Diblock Copolymers of Isoprene and Ferrocenyldimethylsilane

    NARCIS (Netherlands)

    Lammertink, Rob G.H.; Hempenius, Mark A.; Vancso, G. Julius

    2000-01-01

    The morphology of thin films of asymmetric block copolymers of poly(isoprene-block-ferrocenyldimethylsilane) was studied using atomic force microscopy, transmission electron microscopy, and optical microscopy. Block copolymers with the organometallic (ferrocenylsilane) phase between 20 and 28 vol %

  10. Film thickness dependent ordering dynamics of lamellar forming diblock copolymer thin films.

    Science.gov (United States)

    Peters, Robert D; Dalnoki-Veress, Kari

    2012-12-01

    Ellipsometry is used in a novel way to study the ordering dynamics of symmetric poly(styrene-methyl methacrylate) diblock copolymer thin films. Ordered thin films form lamellae parallel to the substrate which can form islands or holes at the free surface to ensure commensurability of the layers. The sensitivity of ellipsometry provides the unique ability to probe morphological changes during the ordering process before the ultimate formation of islands or holes at the free surface. We observe three distinct stages in the ordering process: i) an ordering into an intermediate state, ii) an incubation time where the film structure remains constant and iii) the nucleation of islands or holes to achieve equilibrium lamellar morphology. The time-resolved measurement of an incubation period and initial ordering stage provides a means for studying the effect of thickness on the ordering kinetics. The dependence of incubation time on the commensurability of the initial film height is explained using strong segregation theory.

  11. Thin films from hydrophilic poly(N,N-dimethyl acrylamide) copolymers as optical indicators for humidity

    Science.gov (United States)

    Lazarova, K.; Todorova, L.; Christova, D.; Vasileva, M.; Georgiev, R.; Madjarova, V.; Babeva, T.

    2017-01-01

    In the present paper we study thin films from poly(N,N-dimethyl acrylamide)-poly(ethylene oxide) (PDMAA/PEO) copolymers of different composition and structure in order to implement them as sensitive media for optical indicators for humidity. PDMAA/PEO di- and triblock copolymers were synthesized via redox polymerization in aqueous media. Thin films were deposited on silicon substrates by spin coating method using polymers solutions with appropriate concentrations. Refractive index, extinction coefficient and thickness of the films are calculated from reflectance spectra of the films deposited on silicon substrates using non-linear curve fitting method. Sensing properties of the films were tested by films exposure to different humidity levels followed by in-situ monitoring of the changes in the optical properties. The influence of the polymer structure and postdeposition annealing on the optical and sensing properties of the films was investigated. The potential application of selected polymers for optical sensing of humidity were demonstrated and discussed.

  12. Crystallization in diblock copolymer thin films at different degrees of supercooling

    DEFF Research Database (Denmark)

    Darko, C.; Botiz, I.; Reiter, G.

    2009-01-01

    The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low...

  13. PHOTORESPONSIVE BEHAVIOR OF AZOBENZENE-BASED (METH)ACRYLIC (CO)POLYMERS IN THIN-FILMS

    NARCIS (Netherlands)

    HAITJEMA, HJ; VONMORGEN, GL; TAN, YY; CHALLA, G

    1994-01-01

    The reversible photoisomerization and the thermal isomerization of azobenzene-based (Az.b.) groups covalently bound to (meth)acrylic (co)polymers were investigated in thin films. For the amorphous polymers it was found that a broad range of the thermal cis --> trans isomerization rates could be obta

  14. Restructuring in block copolymer thin films: In situ GISAXS investigations during solvent vapor annealing

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.;

    2016-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP ...

  15. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP–β, in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scat...

  16. Controlled specific placement of nanoparticles into microdomains of block copolymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Joonwon, E-mail: joonwonbae@gmail.com [Department of Applied Chemistry, Dongduk Women' s University, Seoul 136-714 (Korea, Republic of); Kim, Jungwook [Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742 (Korea, Republic of); Park, Jongnam, E-mail: jnpark@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of)

    2014-07-01

    Conceptually attractive hybrid materials composed of nanoparticles and elegant block copolymers have become important for diverse applications. In this work, controlled specific placement of nanoparticles such as gold (Au) and titania (TiO{sub 2}) into microphase separated domains in poly(styrene)-b-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films was demonstrated. The effect of nanoparticle surface functionality on the spatial location of particles inside polymer film was observed by transmission electron microscopy. It was revealed that the location of nanoparticles was highly dependent on the surface ligand property of nanoparticle. In addition, the microphase separation behavior of thin block copolymer film was also affected by the nanoparticle surface functional groups. This study might provide a way to understand the properties and behaviors of numerous block copolymer/nanoparticle hybrid systems. - Highlights: • Controlled location of nanoparticles in the block copolymer matrix • Tailoring surface functionality of metal nanocrystals • Fabrication of homogeneous nanocomposites using organic inorganic components • Possibility for the preparation of nanohybrids.

  17. SELF ASSEMBLY OF ABC TRIBLOCK COPOLYMER THIN FILMS ON A BRUSH-COATED SUBSTRATE

    Institute of Scientific and Technical Information of China (English)

    Zhi-bin Jiang; Rong Wang; Gi Xue

    2009-01-01

    Self assemblies of ABC triblock copolymer thin films on a densely brush-coated substrate were investigated by using the self-consistent field theory. The middle block B and the coated polymer form one phase and the alternating phase A and phase C occur when the film is very thin either for the neutral or selective hard surface (which is opposite to the brush-coated substrate). The lamellar phase is stable on the hard surface when it is neutral and interestingly, the short block tends to stay on this hard surface. The rippled structure forms when the cylindrical phase exists near the surface between grafted polymers and ABC block copolymers. Due to the existence of the hydrophilic brush-coated surface serving as a soft surface of the film, the energy fluctuation existing in the film confined by two hard surfaces disappears. The results are helpful for designing the nanopattern of the film and realizing the functional thin film, such as adding the functional short block A to the BC diblock copolymer.

  18. Vertical vs Lateral Macrophase Separation in Thin Films of Block Copolymer Mixtures: Computer Simulations and GISAXS Experiments.

    Science.gov (United States)

    Berezkin, Anatoly V; Jung, Florian; Posselt, Dorthe; Smilgies, Detlef M; Papadakis, Christine M

    2017-03-20

    Mixtures of two diblock copolymers of very different lengths may feature both macro- and microphase separation; however, not much is known about the mechanisms of separation in diblock copolymer thin films. In the present work, we study thin films of mixtures of two compositionally symmetric block copolymers, both in the one-phase and in the two-phase state, combining coarse-grained molecular simulations (dissipative particle dynamics, DPD) with scattering experiments (grazing-incidence small-angle X-ray scattering, GISAXS). We reveal that the film thickness and selective adsorption of different blocks to the substrate control the distribution of macrophases within the film as well as the orientation of the lamellae therein. In thick films, the mixtures separate in the vertical direction into three layers: Two layers being rich in short copolymers are formed near the film interfaces, whereas a layer being rich in long copolymers is located in the film core. The lamellar orientation in the layers rich in short copolymers is dictated by the surface selectivity, and this orientation only weakly affects the vertical orientation of lamellae in the film core. This provides the opportunity to control the domain orientation in the copolymer films by mixing block copolymers with low-molecular additives instead of relying on a more complicated chemical modification of the substrate. In thinner films, a lateral phase separation appears.

  19. Surface Modification for Controlling the Orientation of Block Copolymers in thin film and in Cylindrical Nanopores

    Science.gov (United States)

    Lin, Xin-Guan; Lin, Feng-Cheng; Tung, Shih-Huang

    2012-02-01

    A series of benzocyclobutene-functionalized random copolymers of styrene and 4-vinylpyridine were synthesized by nitroxide-mediated controlled radical polymerization with BPO and TEMPO. Our research was to use these random copolymers of P(S-r-BCB-r-4VP) to control the orientation of microdomains in block copolymers(BCPs) of poly(styrene-b-4-vinylpyridine)(PS-b-P4VP) thin films and in cylindrical nanopores of anodized aluminum oxide (AAO) membranes. On P(S-r-BCB-r-4VP)-modified substrate,we found that in some particular compositions of random copolymer ,the parallel orientation of the microdomains is switched to be perpendicular in PS-b-P4VP thin film. We also introduced P(S-r-BCB-r-4VP) solution into the nanopores of the AAO and nanotubes formed after solvent evaporation and pyrolysis. And then BCPs of PS-b-P4VP were drawn into the P(S-r-BCB-r-4VP)-modified nanopores in the melt via capillary action to form P(S-r-BCB-r-4VP) coated nanorods of PS-b-P4VP.Similarly,in some particular compositions of random copolymer, we observed that the interactions of the blocks with the walls are not strong or if the interactions are balanced, then the orientation of the microdomains will change from being parallel to being perpendicular to the confining walls.

  20. Effects of Substrate Interactions on Out-of-Plane Order in Thin Films of Lamellar Copolymers

    Science.gov (United States)

    Mitra, Indranil; Mahadevapuram, Nikhila; Bozhchenko, Alona; Strzalka, Joseph; Stein, Gila E.

    2014-03-01

    Block copolymer (BCP) thin films are widely studied and applied for low cost, large area nanopatterning of semiconductor devices and has a very low tolerance for both in-plane or out of plane defects. Here we study, defects in lamellar diblock copolymers as a function of film thickness and the types of interactions at the substrate interface. Thin films of poly (styrene-b-methyl methacrylate) (PS-PMMA) with equilibrium periodicity 46nm were prepared and annealed on silicon substrates that were functionalized with a random copolymer P(s-r-MMA) brush. The resulting structures were evaluated with optical, scanning force and, scanning electron microscopy, along with grazing-incidence small-angle X-ray scattering (GISAXS). The in-plane correlation length (OCL) increased with brush grafting density, and increased with distance from the substrate interface. Out-of-plane order improved with brush grafting density, but thick films always contain a high density of misoriented domains. Based on these findings, we propose that (1) substrate pinning either induces or traps the mis-oriented domains, and (2) out-of-plane orientation defects are difficult to remove, from a thick film, because the energetic penalty for bending a ``tall'' domain is very low. Funding from NHARP and the Department of Chemical and Biomolecular Engineering, University of Houston.

  1. A new strategy to fabricate composite thin films with tunable micro- and nanostructures via self-assembly of block copolymers.

    Science.gov (United States)

    Zhao, Xingjuan; Wang, Qian; Lee, Yong-Ill; Hao, Jingcheng; Liu, Hong-Guo

    2015-12-04

    A new and facile strategy to fabricate composite thin films with tunable morphologies via self-assembly of block copolymer molecules at the air/liquid interface is first reported. The morphologies (parallel nanowires and foams) of these freestanding thin films can be tuned by varying the molecular structure or other experimental conditions.

  2. Controlled orientation and ordering of nanostructured thin films from degradable block copolymer.

    Science.gov (United States)

    Ho, Rong-Ming; She, Ming-Shiuan; Lo, Ting-Ya; Wu, Yi-Hsiu

    2014-03-01

    The fabrication of nanostructured thin films from the self-assembly of degradable block copolymers (BCPs) has attracted extensive attention. To create useful BCP thin films for practical uses, controlling the orientation of self-assembled nanostructures is essential. Here, we present a new method for forming well-ordered and oriented nanostructured thin films on a functionalized SiO2 surface, using homopolymers with hydroxyl group at the chain end to functionalize SiO2 surface, to give neutral substrate for the BCPs. To demonstrate the feasibility of suggested approaches, a series of degradable BCPs, polystyrene- b-poly(L-lactide) (PS-PLLA) with hexagonally packed cylinder and double gyroid phases, are used as model systems for creating nanostructured thin films with controlled orientation and ordering of BCP nanostructures. Different methods such as thermal and solvent annealing are utilized to exploit the fabricated neutral substrate for creating expected nanostructured thin films. By taking advantage of degradable character of PLLA, nanoporous PS thin film can be fabricated by hydrolysis and used as a template for synthesis of various nanohybrids and nanoporous materials.

  3. Morphology Control of Copolymer Thin Films by Nanoparticles

    OpenAIRE

    Shagolsem, Lenin Singh

    2014-01-01

    Diblock-Copolymers (DBCs), created by covalently joining two chemically distinct polymer blocks, spontaneously form various nanoscale morphologies such as lamellae, cylinders, spheres, etc. due to the chemical incompatibility of its constituent blocks. This effect is called microphase separation in the literature. Because of this self-organizing property DBCs find applications in many areas e.g. in creating selective membranes, and in polymer based modern electronic devices like organic photo...

  4. Mimicking conjugated polymer thin-film photophysics with a well-defined triblock copolymer in solution.

    Science.gov (United States)

    Brazard, Johanna; Ono, Robert J; Bielawski, Christopher W; Barbara, Paul F; Vanden Bout, David A

    2013-04-25

    Conjugated polymers (CPs) are promising materials for use in electronic applications, such as low-cost, easily processed organic photovoltaic (OPV) devices. Improving OPV efficiencies is hindered by a lack of a fundamental understanding of the photophysics in CP-based thin films that is complicated by their heterogeneous nanoscale morphologies. Here, we report on a poly(3-hexylthiophene)-block-poly(tert-butyl acrylate)-block-poly(3-hexylthiophene) rod-coil-rod triblock copolymer. In good solvents, this polymer resembles solutions of P3HT; however, upon the addition of a poor solvent, the two P3HT chains within the triblock copolymer collapse, affording a material with electronic spectra identical to those of a thin film of P3HT. Using this new system as a model for thin films of P3HT, we can attribute the low fluorescence quantum yield of films to the presence of a charge-transfer state, providing fundamental insights into the condensed phase photophysics that will help to guide the development of the next generation of materials for OPVs.

  5. Multiple Replicas of Block Copolymer Thin Films from a Brushless Organosilicate Substrate

    Science.gov (United States)

    Suh, Hyo Seon; Yoon, Hyunsik; Char, Kookheon

    2011-03-01

    The chain end-grafted polymer brushes or cross-linked polymer mats have typically been utilized as the surface modification layers to induce the perpendicular orientation of block copolymer (BCP) thin films. Instead of such polymer-based approaches, we have recently introduced a new concept to control the BCP orientation using the brushless organosilicate (OS) substrates, whose surface energy can be finely tuned with thermal treatment. In this brushless case, the BCP chains do not penetrate into the underlying hard OS substrates during thermal annealing of BCP films, therefore, the BCP chains at the interface have no entangled structure with fairly weak adhesion of BCP films against the substrate. Owing to such weak adhesion of BCP films against the OS substrate, the perpendicularly oriented BCP film on a neutral OS substrate could be easily peeled off and transferred to a UV-curable resin applied onto the BCP film. The OS substrate after the peel-off process of a BCP film could regenerate the perpendicularly oriented BCP films since the surface energy of the OS substrate remains intact during the peel-off process. Furthermore, the direct-assembled BCP films on chemically patterned OS substrates could also be peeled off and transferred on to a UV-curable resin, allowing us to produce multiple replicas of direct-assembled BCP thin films from a single chemically patterned OS substrate.

  6. Metal nanodot arrays fabricated via seed-mediated electroless plating with block copolymer thin film scaffolding.

    Science.gov (United States)

    Komiyama, Hideaki; Iyoda, Tomokazu; Sanji, Takanobu

    2015-10-02

    We present an alternative approach to fabricating hexagonally arranged nanodot arrays of various metals by seed-mediated electroless plating with a cylinder-forming block copolymer thin film, PEO-b-PMA(Az), as a scaffold. Metal ions were selectively incorporated into PEO cylinders, followed by their reduction to metal and the etching of the scaffold to obtain highly ordered seed arrays of Au, Pd, and Pt. Nanodot arrays of the target metals (Au, Ag, and Ni) were selectively grown on the seed with their highly ordered arrangement by electroless plating. We studied the fabrication processes' suitability for control of the nanodot array size, as well as the plasmonic properties thereof.

  7. Complex microstructures of ABC triblock copolymer thin films directed by polymer brushes based on self-consistent field theory.

    Science.gov (United States)

    Jiang, Zhibin; Xu, Chang; Qiu, Yu Dong; Wang, Xiaoliang; Zhou, Dongshan; Xue, Gi

    2014-01-01

    The morphology and the phase diagram of ABC triblock copolymer thin film directed by polymer brushes are investigated by the self-consistent field theory in three dimensions. The polymer brushes coated on the substrate can be used as a good soft template to tailor the morphology of the block copolymer thin films compared with those on the hard substrates. The polymer brush is identical with the middle block B. By continuously changing the composition of the block copolymer, the phase diagrams are constructed for three cases with the fixed film thickness and the brush density: identical interaction parameters, frustrated and non-frustrated cases. Some ordered complex morphologies are observed: parallel lamellar phase with hexagonally packed pores at surfaces (LAM3 (ll) -HFs), perpendicular lamellar phase with cylinders at the interface (LAM(⊥)-CI), and perpendicular hexagonally packed cylinders phase with rings at the interface (C2 (⊥)-RI). A desired direction (perpendicular or parallel to the coated surfaces) of lamellar phases or cylindrical phases can be obtained by varying the composition and the interactions between different blocks. The phase diagram of ABC triblock copolymer thin film wetted between the polymer brush-coated surfaces is very useful in designing the directed pattern of ABC triblock copolymer thin film.

  8. Direct solvent induced microphase separation, ordering and nano-particles infusion of block copolymer thin films

    Science.gov (United States)

    Modi, Arvind; Sharma, Ashutosh; Karim, Alamgir

    2013-03-01

    Kinetics of block copolymer (BCP) microphase separation by thermal annealing is often a challenge to low-cost and faster fabrication of devices because of the slow ordering. Towards the objective of rapid processing and accessing desired nanostructures, we are developing methods that enable a high degree of mobility of BCP phases while maintaining phase separation conditions via control of effective interaction parameter between the blocks in BCP thin films. We study the self-assembly of PS-P2VP thin films in various solvent mixtures. While non-solvent prevents dissolution of film into the bulk solution, the good solvent penetrates the film and makes polymer chains mobile. As a result of controlled swelling and mobility of BCP blocks, solvent annealing of pre-cast BCP thin films in liquid mixture of good solvent and non-solvent is a promising method for rapid patterning of nanostructures. Interestingly, we demonstrate simultaneous BCP microphase separation and infusion of gold nano-particles into selective phase offering a wide range of application from plasmonics to nanoelectronics. University of Akron Research Foundation (UARF)

  9. Structural rearrangements in a lamellar diblock copolymer thin film during treatment with saturated solvent vapor

    Science.gov (United States)

    Di, Zhenyu; Posselt, Dorthe; Smilgies, Detlef-M.; Papadakis, Christine M.

    2010-01-01

    We have investigated the structural changes in thin films of lamellar poly(styrene-b-butadiene) diblock copolymers during treatment with saturated cyclohexane vapor, a solvent slightly selective for polybutadiene. Using real-time, in-situ grazing-incidence small-angle X-ray scattering (GISAXS), the swelling and the rearrangement of the lamellae were investigated with a time resolution of a few seconds, and the underlying processes on the molecular level were identified. After a few minutes in vapor, a transient state with a more well-defined and more long-range ordered lamellar orientation was encountered. Additional parallel lamellae formed which we attribute to the increased degree of coiling of the polymers in the swollen state. Eventually, the film became disordered. These changes are attributed to the increased mobility of the swollen polymers and the gradually decreasing segment-segment interaction parameter in the film as solvent is absorbed. PMID:20305742

  10. Morphological Evolution of Gyroid-Forming Block Copolymer Thin Films with Varying Solvent Evaporation Rate.

    Science.gov (United States)

    Wu, Yi-Hsiu; Lo, Ting-Ya; She, Ming-Shiuan; Ho, Rong-Ming

    2015-08-05

    In this study, we aim to examine the morphological evolution of block copolymer (BCP) nanostructured thin films through solvent evaporation at different rates for solvent swollen polystyrene-block-poly(l-lactide) (PS-PLLA). Interesting phase transitions from disorder to perpendicular cylinder and then gyroid can be found while using a partially selective solvent for PS to swell PS-PLLA thin film followed by solvent evaporation. During the transitions, gyroid-forming BCP thin film with characteristic crystallographic planes of (111)G, (110)G, and (211)G parallel to air surface can be observed, and will gradually transform into coexisting (110)G and (211)G planes, and finally transforms to (211)G plane due to the preferential segregation of constituted block to the surface (i.e., the thermodynamic origin for self-assembly) that affects the relative amount of each component at the air surface. With the decrease on the evaporation rate, the disorder phase will transform to parallel cylinder and then directly to (211)G without transition to perpendicular cylinder phase. Most importantly, the morphological evolution of PS-PLLA thin films is strongly dependent upon the solvent removal rate only in the initial stage of the evaporation process due to the anisotropy of cylinder structure. Once the morphology is transformed back to the isotropic gyroid structure after long evaporation, the morphological evolution will only relate to the variation of the surface composition. Similar phase transitions at the substrate can also be obtained by controlling the ratio of PLLA-OH to PS-OH homopolymers to functionalize the substrate. As a result, the fabrication of well-defined nanostructured thin films with controlled orientation can be achieved by simple swelling and deswelling with controlled evaporation rate.

  11. Thin Film Morphology of Block Copolymers Containing Polydimethylsiloxane as a Function of the Surface Tension of the Opposing Block

    Science.gov (United States)

    Wadley, Maurice; Cavicchi, Kevin

    2008-03-01

    The self-assembly of block copolymers into ordered nanostructures such as spheres, cylinders, and lamellae in the range of 10-100 nm makes them interesting materials for patterning surfaces. Thin films of block copolymers containing poly(dimethylsiloxane) (PDMS) are attractive for patterning due to their high oxygen etch resistance compared to other polymers. The main disadvantage of these polymers for patterning is the low surface tension of PDMS. This causes the preferential migration of PDMS to the air/film interface driving the formation of domains parallel to the interface and surface wetting layers. In this work a series of AB block copolymers containing PDMS have been prepared where the surface tension of the opposing block was varied. The effect of changing the surface tension mismatch between the blocks on the thin film morphology will be discussed.

  12. Femtosecond study of exciton dynamics in polyfluorene statistical copolymers in solutions and thin films

    Science.gov (United States)

    Zhang, Jin Z.; Kreger, Melissa A.; Klaerner, Gerrit; Kreyenschmidt, M.; Miller, Robert D.; Scott, J. Campbell

    1997-12-01

    The formation and decay dynamics of photogenerated excitons in polyfluorene statistical co-polymers in solutions and in thin films have been studied using femtosecond transient absorption spectroscopy. In solution photoexcitation of the polymer generates primarily intrachain singlet excitons which are initially hot and then relax quickly (polaron pairs in films at low intensities. At high intensities, the possibility cannot be ruled out completely, especially in relation to the fast decay. If bound polaron pairs are formed as indicated by the fast decay, they must be generated as a result of interaction between excitons on different chains since they are absent at low power, an they must be created and then decay within about 1 ps.

  13. Surface functionalization of cyclic olefin copolymer (COC) with evaporated TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    El Fissi, Lamia, E-mail: lamia.elfissi@uclouvain.be [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium); Vandormael, Denis [SIRRIS Liege Science Park, 4102 Seraing (Belgium); Houssiau, Laurent [Research Centre in Physics of Matter and Radiation (PMR), University of Namur, Rue de Bruxelles 61, B-5000 Namur (Belgium); Francis, Laurent A. [ICTEAM Institute, Université catholique du Louvain, place de Levant 3, 1348 Louvain-la-Neuve (Belgium)

    2016-02-15

    Highlights: • TiO{sub 2}/COC (cyclic olefin copolymer) hybrid material for BioMEMS applications. • Thin layer of TiO{sub 2} was deposed on cyclic olefin copolymer using physical vapor deposition (PVD) technique. • The coating possess the highest level of adhesion with an excellent morphology of the hybrid material (TiO{sub 2}/COC). - Abstract: Cyclic olefin copolymer (COC) is a new class of thermoplastic polymers used for a variety of applications ranging from bio-sensing to optics. However, the hydrophobicity of native COC hampers the further development and application of this material [1]. In this work, we report the structural, morphological, and optical properties of the TiO{sub 2}/COC hybrid material, which provides a desirable substrate for optical devices and subsequent surface modifications. The TiO{sub 2} film on COC substrate was deposited by the evaporation method, and it was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), profilometry and atomic force microscope (AFM). Using an UV-vis spectrophotometer, we found that the transmittance of the TiO{sub 2}/COC hybrid material in the visible domain reached 80%. The TiO{sub 2}/COC hybrid appeared to be stable in most of the assessed polar solvents and acid/basic solutions. The new TiO{sub 2}/COC hybrid material and the robust fabrication method are expected to enable a variety of BioMEMS applications.

  14. Complex Macrophase-Separated Nanostructure Induced by Microphase Separation in Binary Blends of Lamellar Diblock Copolymer Thin Films

    DEFF Research Database (Denmark)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M.

    2014-01-01

    The nanostructures of thin films spin-coated from binary blends of compositionally symmetric polystyrene-b-polybutadiene (PS-b-PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing-incidence small-angle X-ray scattering (GISAXS)...

  15. Effect of film thickness on the phase behaviors of diblock copolymer thin film.

    Science.gov (United States)

    Jung, Jueun; Park, Hae-Woong; Lee, Sekyung; Lee, Hyojoon; Chang, Taihyun; Matsunaga, Kazuyuki; Jinnai, Hiroshi

    2010-06-22

    A phase diagram was constructed for a polystyrene-block-polyisoprene (PS-b-PI, M(W) = 32 700, f(PI) = 0.670) in thin films on Si wafer as a function of film thickness over the range of 150-2410 nm (7-107L(0) (L(0): domain spacing)). The PS-b-PI exhibits a variety of ordered phases from hexagonally perforated lamellar (HPL) via double gyroid (DG) to hexagonally packed cylinder (HEX) before going to the disordered (DIS) phase upon heating. The morphology of the PS-b-PI in thin film was investigated by grazing incidence small-angle X-ray scattering, transmission electron microscopy, and transmission electron microtomography. In thin film, the phase transition temperature is difficult to be determined unequivocally with in situ heating processes since the phase transition is slow and two phases coexist over a wide temperature range. Therefore, in an effort to find an "equilibrium" phase, we determined the long-term stable phase formed after cooling the film from the DIS phase to a target temperature and annealing for 24 h at the temperature. The temperature windows of stable ordered phases are strongly influenced by the film thickness. As the film thickness decreases, the temperature window of layer-like structures such as HPL and HEX becomes wider, whereas that of the DG stable region decreases. For the films thinner than 160 nm (8L(0)), only the HPL phase was found. In the films exhibiting DG phase, a perforated layer structure at the free surface was found, which gradually converts to the internal DG structure. The relief of interfacial tension by preferential wetting appears to play an important role in controlling the morphology in very thin films.

  16. Controlling domain orientation of liquid crystalline block copolymer in thin films through tuning mesogenic chemical structures

    Energy Technology Data Exchange (ETDEWEB)

    Xie, He-Lou [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Li, Xiao [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Ren, Jiaxing [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Bishop, Camille [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Arges, Christopher G. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge Louisiana 70803 USA; Nealey, Paul F. [Institute for Molecular Engineering, The University of Chicago, Chicago Illinois 60637; Materials Science Division, Argonne National Laboratory, Argonne Illinois 60439

    2017-01-24

    Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of the PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.

  17. Inner Stucture of Thin Films of Lamellar Poly(styrene-b-butadiene) Diblock Copolymers as revealed by Grazing-Incidence Small-Angle Scattering

    DEFF Research Database (Denmark)

    Busch, Peter; Posselt, Dorthe; Smilgies, Detlef-Matthias

    2007-01-01

    The lamellar orientation in supported, thin films of poly(styrene-b-butadiene) (P(S-b-B)) depends on block copolymer molar mass. We have studied films from nine block copolymer samples with molar masses between 13.9 and 183 kg/mol using grazing-incidence small-angle X-ray scattering (GISAXS) and ...

  18. Nanoporous membrane based on block copolymer thin film for protein drug delivery

    Science.gov (United States)

    Yang, Seung Yun; Yang, Jeong-A.; Kim, Eung-Sam; Jeon, Gumhye; Oh, Eun Ju; Choi, Kwan Yong; Hahn, Sei Kwang; Kim, Jin Kon

    2010-03-01

    We studied long term and controlled release of protein drugs by using nanoporous membranes with various pore sizes. Nanoporous membrane consists of the separation layer prepared by polystyrene-block-poly(methylmethacrylate) copolymer thin film and conventional microfiltration membrane as a support. We demonstrate a long-term constant in vitro release of bovine serum albumin (BSA)and human growth hormone ) (hGH) without their denaturation up to 2 months. A nearly constant serum concentration of hGH was maintained up to 3 weeks in SD rats. The long-term constant delivery based on this membrane for protein drugs within the therapeutic range can be highly appreciated for the patients with hormone- deficiency.

  19. Complex macrophase-separated nanostructure induced by microphase separation in binary blends of lamellar diblock copolymer thin films.

    Science.gov (United States)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M; Perlich, Jan; Kyriakos, Konstantinos; Jaksch, Sebastian; Papadakis, Christine M

    2014-09-01

    The nanostructures of thin films spin-coated from binary blends of compositionally symmetric polystyrene-b-polybutadiene (PS-b-PB) diblock copolymer having different molar masses are investigated by means of atomic force microscopy (AFM) and grazing-incidence small-angle X-ray scattering (GISAXS) after spin-coating and after subsequent solvent vapor annealing (SVA). In thin films of the pure diblock copolymers having high or low molar mass, the lamellae are perpendicular or parallel to the substrate, respectively. The as-prepared binary blend thin films feature mainly perpendicular lamellae in a one-phase state, indicating that the higher molar mass diblock copolymer dominates the lamellar orientation. The lamellar thickness decreases linearly with increasing volume fraction of the low molar mass diblock copolymer. After SVA, well-defined macrophase-separated nanostructures appear, which feature parallel lamellae near the film surface and perpendicular ones in the bulk. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing

    DEFF Research Database (Denmark)

    Sepe, Alessandro; Zhang, Jianqi; Perlich, Jan

    2016-01-01

    Solvent vapor annealing (SVA) is frequently used to improve the ordering in diblock copolymer thin films. An important question is which SVA protocol should be chosen to ensure thermodynamic equilibrium. Here, we investigate two thin films from a low molar-mass, lamellae-forming polystyrene-block-p...

  1. Structural Evolution of Low-Molecular-Weight Poly(ethylene oxide)-block-polystyrene Diblock Copolymer Thin Film

    Science.gov (United States)

    Huang, Xiaohua

    2013-01-01

    The structural evolution of low-molecular-weight poly(ethylene oxide)-block-polystyrene (PEO-b-PS) diblock copolymer thin film with various initial film thicknesses on silicon substrate under thermal annealing was investigated by atomic force microscopy, optical microscopy, and contact angle measurement. At film thickness below half of the interlamellar spacing of the diblock copolymer (6.2 nm), the entire silicon is covered by a polymer brush with PEO blocks anchored on the Si substrate due to the substrate-induced effect. When the film is thicker than 6.2 nm, a dense polymer brush which is equal to half of an interlamellar layer was formed on the silicon, while the excess material dewet this layer to form droplets. The droplet surface was rich with PS block and the PEO block crystallized inside the bigger droplet to form spherulite. PMID:24302862

  2. The impact of substrate interaction in directed self-assembly of symmetric diblock copolymer thin films

    Science.gov (United States)

    Seidel, Robert

    Block copolymers (BCP) are a class of materials that have attracted significant attention due to their ability to self-assemble into dense arrays of nanoscale features. These materials are being investigated for their use in applications such as nanolithography, but for commercial implementation require the ability to control or direct the self-assembly process. Chemoepitaxial directed self-assembly (DSA) is one avenue to achieving this control, where a BCP thin film self-assembles in the presence of precisely defined chemical boundary conditions. In such a process, the equilibrium structure of the BCP film and the kinetic pathways it evolves along to reach equilibrium are both a function of the thermodynamic landscape, which is in turn controlled by the chemical pattern. This thesis contributes to the significant body of work attempting to detail the relationship between chemical pattern parameters and the thermodynamics of assembly (both kinetic and equilibrium). We restrict our investigation to the assembly of lamellae-forming diblock copolymers on line/space chemical patterns that employ density multiplication, with a focus on developing technology for nanopatterning beyond the resolution limit of traditional lithography. In the first chapter we introduce the fundamental ideas of BCP DSA and develop the concepts of free energy balance that are crucial to framing the discussion in the following chapters. The second chapter explores using poly(methyl methacrylate) as a guide material and shows how the greater strength of guiding interaction for this system has the ability to guide complex, frustrated non-bulk morphologies. The third chapter develops a novel concept of using process conditions to generate so-called 'three-tone' chemical patterns with multiple guiding regions per patterned stripe. The fourth chapter looks at how guide stripe strength impacts and affects assembly kinetics, equilibrium structure, and process metrics such as line edge roughness (LER

  3. Origin of thermally stable ferroelectricity in a porous barium titanate thin film synthesized through block copolymer templating

    Directory of Open Access Journals (Sweden)

    Norihiro Suzuki

    2017-07-01

    Full Text Available A porous barium titanate (BaTiO3 thin film was chemically synthesized using a surfactant-assisted sol-gel method in which micelles of amphipathic diblock copolymers served as structure-directing agents. In the Raman spectrum of the porous BaTiO3 thin film, a peak corresponding to the ferroelectric tetragonal phase was observed at around 710 cm−1, and it remained stable at much higher temperature than the Curie temperature of bulk single-crystal BaTiO3 (∼130 °C. Measurements revealed that the ferroelectricity of the BaTiO3 thin film has high thermal stability. By analyzing high-resolution transmission electron microscope images of the BaTiO3 thin film by the fast Fourier transform mapping method, the spatial distribution of stress in the BaTiO3 framework was clearly visualized. Careful analysis also indicated that the porosity in the BaTiO3 thin film introduced anisotropic compressive stress, which deformed the crystals. The resulting elongated unit cell caused further displacement of the Ti4+ cation from the center of the lattice. This displacement increased the electric dipole moment of the BaTiO3 thin film, effectively enhancing its ferro(piezoelectricity.

  4. Vertically oriented hexagonal mesoporous zirconia thin films by block copolymer templating

    OpenAIRE

    Miko, Annamaria ; Demirel, A. Levent ; Somer, Mehmet

    2012-01-01

    We report the synthesis of vertically oriented, long-range ordered hexagonal mesoporous zirconia thin ?lms. The orientation of hexagonally ordered cylindrical mesopores in thin ?lms was effectively controlled by taking advantage of the temperature dependent hydrophobicity of the templating block copolymer PEO–PPO–PEO. Vertical orientation was obtained when temperature was 30 C or above throughout the process. Dehydration and enhanced chemical incompatibility between the PEO and PPO b...

  5. Nanocomposite copolymer thin-film sensor for detection of escherichia coli

    Science.gov (United States)

    Mathur, Prafull; Misra, S. C. K.; Yadav, Maneesha; Bawa, S. S.; Gupta, A. K.

    2006-01-01

    The majority of human diseases associated with microbial contaminated water are infectious in nature and the associated pathogen includes bacteria, fungi, viruses and protozoa. Water contaminated with bacteria can cause a number of food-borne and water-borne diseases. The waterborne transmission is highly effective means of spreading infectious agents to a large portion of population; this includes water and milk too. Waterborne infections are recognized as resulting either from ingestion of contaminated water or ice, food items, which have, came into contact with microbial contaminated water (occurring through bathing and recreational activities) etc. The detection of E. coli in food and water is normally carried out by culturing methods, which normally take 3-6 days, These methods are complicated and time-consuming in spite of their correctness, and cannot easily meet inspection demands on E. coli. Hence, an establishment of rapid detection methods for E. coli is strongly required. We have developed highly sensitive and cost effective solid sate sensors prepared from vacuum evaporated thin films of nanocomposite copolymer detection of presence of E. coli vapors in the air within 20 seconds. These sensors operate at room temperature. The preparation, optical, electrical, and structural characterization and behavioral acceptance test on the microorganism sensing properties of these sensors are reported here.

  6. Effect of the Molecular Weight of AB Diblock Copolymers on the Lamellar Orientation in Thin Films

    DEFF Research Database (Denmark)

    Potemkin, Igor I.; Busch, Peter; Smilgies, Detlef-M;

    2007-01-01

    We propose a theoretical explanation of the parallel and perpendicular lamellar orientations in free surface films of symmetric polystyrene-block-polybutadiene diblock copolymers on silicon substrates (with a native SiOx layer). Two approaches are developed: A correction to the strong segregation...

  7. Structural Changes in Lamellar Diblock Copolymer Thin Films upon Swelling in Nonselective Solvents

    DEFF Research Database (Denmark)

    Rudov, Andrey A.; Patyukova, Elena S.; Neratova, Irina V.

    2013-01-01

    common effect, which is also valid for perpendicular lamellae, and is due to shrinkage of the diblock copolymers due to the shielding of unfavorable AB contacts by the solvent molecules. The film swelling leads to an increase of the number of perpendicular lamellae as well. However, such an increase...

  8. Assessing the Local Nanomechanical Properties of Self-Assembled Block Copolymer Thin Films by Peak Force Tapping.

    Science.gov (United States)

    Lorenzoni, Matteo; Evangelio, Laura; Verhaeghe, Sophie; Nicolet, Célia; Navarro, Christophe; Pérez-Murano, Francesc

    2015-10-27

    The mechanical properties of several types of block copolymer (BCP) thin films have been investigated using PeakForce quantitative nanomechanical mapping. The samples consisted of polystyrene/poly(methylmethacrylate) (PS/PMMA)-based BCP thin films with different pitches both randomly oriented and self-assembled. The measured films have a critical thickness below 50 nm and present features to be resolved of less than 22 nm. Beyond measuring and discriminate surface elastic modulus and adhesion forces of the different phases, we tuned the peak force parameters in order to reliably image those samples, avoiding plastic deformation. The method is able to detect the changes in mechanical response associated with the orientation of the PMMA cylinders with respect to the substrate (parallel versus vertical). The nanomechanical investigation is also capable of recognizing local stiffening due to the preferential growth of alumina deposited by atomic layer deposition on BCP samples, opening up new possibilities in the field of hard mask materials characterization.

  9. Low-dielectric, nanoporous polyimide thin films prepared from block copolymer templating

    Directory of Open Access Journals (Sweden)

    C. Wang

    2013-08-01

    Full Text Available In this paper, a new method to the preparation of low-dielectric nanoporous polyimide (PI films was addressed, based on the self-assembly structures of PS-b-P4VP/poly(amic acid (PAA, precursor of PI blends. It is found the microphase-separation structure of PS-b-P4VP/PAA is a precondition of the formation of nanoporous structures, which could be achieved by solvent annealing. Nanoporous PI films with spherical pore size of ~11 nm were obtained by thermal imidization followed by the removal of the PS-b-P4VP block copolymer. The porosity of the nanoporous PI films could be controlled by the weight fraction of the PS-b-P4VP block copolymer. The dielectric properties of the nanoporous PI films were studied, and it was found that the introduction of nanopores could effectively reduce the dielectric constant from 3.60 of dense PI films to 2.41 of nanoporous PI films with a porosity of 26%, making it promising in microelectronic devices. The fabrication method described here could be extended to other polymer systems.

  10. Co-assembly of cyclic peptide nanotubes and block copolymers in thin films: controlling the kinetic pathway

    Science.gov (United States)

    Zhang, Chen; Xu, Ting

    2015-09-01

    Directed co-assembly of polymer-conjugated cyclic peptide nanotubes (CPNs) and block copolymers in thin films is a viable approach to fabricate sub-nanometer porous membranes without synthesizing nanotubes with identical length and vertical alignment. Here we show that the process is pathway dependent and successful co-assembly requires eliminating CPNs larger than 100 nm in solution. Optimizing polymer-solvent interactions can improve conjugate dispersion to a certain extent, but this limits thin film fabrication. Introduction of a trace amount of hydrogen-bond blockers, such as trifluoroacetic acid by vapor absorption, is more effective to reduce CPN aggregation in solution and circumvents issues of solvent immiscibility. This study provides critical insights into guided assemblies within nanoscopic frameworks toward sub-nanometer porous membranes.Directed co-assembly of polymer-conjugated cyclic peptide nanotubes (CPNs) and block copolymers in thin films is a viable approach to fabricate sub-nanometer porous membranes without synthesizing nanotubes with identical length and vertical alignment. Here we show that the process is pathway dependent and successful co-assembly requires eliminating CPNs larger than 100 nm in solution. Optimizing polymer-solvent interactions can improve conjugate dispersion to a certain extent, but this limits thin film fabrication. Introduction of a trace amount of hydrogen-bond blockers, such as trifluoroacetic acid by vapor absorption, is more effective to reduce CPN aggregation in solution and circumvents issues of solvent immiscibility. This study provides critical insights into guided assemblies within nanoscopic frameworks toward sub-nanometer porous membranes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03915k

  11. Anthradithiophene-Containing Copolymers for Thin-Film Transistors and Photovoltaic Cells

    KAUST Repository

    Jiang, Ying

    2010-08-10

    We synthesized anthradithiophene-cyclopentadithiophene conjugated copolymers via Stille coupling. The anthradithiophene core was verified to be superior in stability compared to pentacene toward Diels-Alder cycloaddition and therefore more compatible with fullerenes, acceptor material commonly used in bulk heterojunction (BHJ) photovoltaic cells. The polymers exhibit high film absorption coefficients of 105 cm-1, an order of magnitude higher than previously reported anthradithiophene-dialkylfluorene copolymers. Short-circuit currents exceeding 5 mA/cm2 and a BHJ device efficiency close to 1% were achieved when device morphology was improved with diiodooctane as a solvent additive. This is the highest power conversion efficiency achieved by an acene-containing polymer so far. © 2010 American Chemical Society.

  12. Photoreactive and Metal-Platable Copolymer Inks for High-Throughput, Room-Temperature Printing of Flexible Metal Electrodes for Thin-Film Electronics.

    Science.gov (United States)

    Yu, You; Xiao, Xiang; Zhang, Yaokang; Li, Kan; Yan, Casey; Wei, Xiaoling; Chen, Lina; Zhen, Hongyu; Zhou, Hang; Zhang, Shengdong; Zheng, Zijian

    2016-06-01

    Photoreactive and metal-platable copolymer inks are reported for the first time to allow high-throughput printing of high-performance flexible electrodes at room temperature. This new copolymer ink accommodates various types of printing technologies, such as soft lithography molding, screen printing, and inkjet printing. Electronic devices including resistors, sensors, solar cells, and thin-film transistors fabricated with these printed electrodes show excellent electrical performance and mechanical flexibility.

  13. Mushroom-shaped Morphology Formed in Thin Films of Cylinder-forming Block Copolymer

    Institute of Scientific and Technical Information of China (English)

    GONG Yu-mei; SONG Jing-chuan; ZHANG Gui-xia

    2011-01-01

    The morphology of the film of polystyrene-block-poly(methyl methacrylate)(PS-b-PMMA) block copolymer having polystyrene(PS) cylinder forming composition spin-coated on a neutral brush modified silicon substrate has been investigated in this report. A mushroom-shaped morphology formed in the film with one period to two periods(L0-2L0) in thickness, which was spin-coated under a low humidity condition(RH ca.13%) and then thermally annealed at an extreme high temperature(230 ℃). The results suggest that the spin-coating condition together with the confinement conditions plays a crucial role in the interesting morphology formation.

  14. New poly(dimethylsiloxane)/poly(perfluorooctylethyl acrylate) block copolymers: structure and order across multiple length scales in thin films

    KAUST Repository

    Martinelli, Elisa

    2011-01-01

    Three sets of a new class of low surface tension block copolymers were synthesized consisting of a poly(dimethylsiloxane) (PDMS) block and a poly(perfluorooctylethyl acrylate) (AF8) block. The polymers were prepared using a bromo-terminated PDMS macroinitiator, to which was attached an AF8 block grown using atom transfer radical polymerization (ATRP) in such a designed way that the molecular weight and composition of the two polymer blocks were regularly varied. The interplay of both the phase separated microstructure and the mesomorphic character of the fluorinated domains with their effect on surface structure was evaluated using a suite of analytical tools. Surfaces of spin-coated and thermally annealed films were assessed using a combination of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) studies. Both atomic force microscopy (AFM) measurements and grazing incidence small angle X-ray scattering (GISAXS) studies were carried out to evaluate the microstructure of the thin films. Even in block copolymers in which the PDMS block was the majority component, a significant presence of the lower surface energy AF8 block was detected at the film surface. Moreover, the perfluorooctyl helices of the AF8 repeat units were highly oriented at the surface in an ordered, tilted smectic structure, which was compared with those of the bulk powder samples using wide-angle X-ray powder diffraction (WAXD) studies. © 2011 The Royal Society of Chemistry.

  15. Systematic study on the effect of solvent removal rate on the morphology of solvent vapor annealed ABA triblock copolymer thin films.

    Science.gov (United States)

    Albert, Julie N L; Young, Wen-Shiue; Lewis, Ronald L; Bogart, Timothy D; Smith, Jasmine R; Epps, Thomas H

    2012-01-24

    Nanoscale self-assembly of block copolymer thin films has garnered significant research interest for nanotemplate design and membrane applications. To fulfill these roles, control of thin film morphology and orientation is critical. Solvent vapor annealing (SVA) treatments can be used to kinetically trap morphologies in thin films not achievable by traditional thermal treatments, but many variables affect the outcome of SVA, including solvent choice, total solvent concentration/swollen film thickness, and solvent removal rate. In this work, we systematically examined the effect of solvent removal rate on the final thin film morphology of a cylinder-forming ABA triblock copolymer. By kinetically trapping the film morphologies at key points during the solvent removal process and then using successive ultraviolet ozone (UVO) etching steps followed by atomic force microscopy (AFM) imaging to examine the through-film morphologies of the films, we determined that the mechanism for cylinder reorientation from substrate-parallel to substrate-perpendicular involved the propagation of changes at the free surface through the film toward the substrate as a front. The degree of reorientation increased with successively slower solvent removal rates. Furthermore, the AFM/UVO etching scheme permitted facile real-space analysis of the thin film internal structure in comparison to cross-sectional transmission electron microscopy.

  16. Fabrication of Highly Ordered Polymeric Nanodot and Nanowire Arrays Templated by Supramolecular Assembly Block Copolymer Nanoporous Thin Films

    Directory of Open Access Journals (Sweden)

    Liu Xikui

    2009-01-01

    Full Text Available Abstract Realizing the vast technological potential of patternable block copolymers requires both the precise controlling of the orientation and long-range ordering, which is still a challenging topic so far. Recently, we have demonstrated that ordered nanoporous thin film can be fabricated from a simple supramolecular assembly approach. Here we will extend this approach and provide a general route to fabricate large areas of highly ordered polymeric nanodot and nanowire arrays. We revealed that under a mixture solvent annealing atmosphere, a near-defect-free nanoporous thin film over large areas can be achieved. Under the direction of interpolymer hydrogen bonding and capillary action of nanopores, this ordered porous nanotemplate can be properly filled with phenolic resin precursor, followed by curation and pyrolysis at middle temperature to remove the nanotemplate, a perfect ordered polymer nanodot arrays replication was obtained. The orientation of the supramolecular assembly thin films can be readily re-aligned parallel to the substrate upon exposure to chloroform vapor, so this facile nanotemplate replica method can be further extend to generate large areas of polymeric nanowire arrays. Thus, we achieved a successful sub-30 nm patterns nanotemplates transfer methodology for fabricating polymeric nanopattern arrays with highly ordered structure and tunable morphologies.

  17. Lamellar Diblock Copolymer Thin Films during Solvent Vapor Annealing Studied by GISAXS: Different Behavior of Parallel and Perpendicular Lamellae.

    Science.gov (United States)

    Zhang, Jianqi; Posselt, Dorthe; Smilgies, Detlef-M; Perlich, Jan; Kyriakos, Konstantinos; Jaksch, Sebastian; Papadakis, Christine M

    2014-08-26

    The reorientation of lamellae and the dependence of the lamellar spacing, Dlam, on polymer volume fraction, ϕP, Dlam ∝ ϕP(-β), in diblock copolymer thin films during solvent vapor annealing (SVA) are examined by combining white light interferometry (WLI) and grazing-incidence small-angle X-ray scattering (GISAXS). A thin film of lamellae-forming poly(styrene-b-butadiene) prepared by spin-coating features lamellae of different orientations with the lamellar spacing depending on orientation. During annealing with ethyl acetate (EAC) vapor, it is found that perpendicular lamellae behave differently from parallel ones, which is due to the fact that their initial lamellar thicknesses differ strongly. Quantitatively, the swelling process is composed of three regimes and the drying process of two regimes. The first two regimes of swelling are associated with a significant structural rearrangement of the lamellae; i.e., the lamellae first become thicker, and then perpendicular and randomly oriented lamellae vanish, which results in a purely parallel orientation at the end of the swelling process. The rearrangement is attributed to the increase of mobility of the polymer chains imparted by the solvent and to a decrease of total free energy of the thin film. In the third regime of swelling, the scaling exponent is found to be β = -0.32. During drying, the deswelling is nonaffine which may be a consequence of the increase of nonfavorable segmental interactions as the solvent is removed.

  18. Atomic layer deposition assisted pattern transfer technology for ultra-thin block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wenhui; Luo, Jun; Meng, Lingkuan; Li, Junjie; Xiang, Jinjuan; Li, Junfeng; Wang, Wenwu; Chen, Dapeng; Ye, Tianchun; Zhao, Chao

    2016-08-31

    As an emerging developing technique for next-generation lithography, directed self-assembly (DSA) of block copolymer (BCP) has attracted numerous attention and has been a potential alternative to supplement the intrinsic limitations of conventional photolithography. In this work, the self-assembling properties of a lamellar diblock copolymer poly(styrene-b-methylmethacrylate) (PS-b-PMMA, 22k-b-22k, L{sub 0} = 25 nm) on Si substrate and an atomic layer deposition (ALD)-assisted pattern transfer technology for the application of DSA beyond 16/14 nm complementary metal oxide semiconductor (CMOS) technology nodes, were investigated. Firstly, two key processing parameters of DSA, i.e. annealing temperatures and durations of BCP films, were optimized to achieve low defect density and high productivity. After phase separation of BCP films, self-assembling patterns of low defect density should be transferred to the substrate. However, due to the nano-scale thickness and the weak resistance of BCP films to dry etching, it is nearly impossible to transfer the BCP patterns directly to the substrate. Therefore, an ALD-based technology was explored in this work, in which deposited Al{sub 2}O{sub 3} selectively reacts with PMMA blocks thus hardening the PMMA patterns. After removing PS blocks by plasma etching, hardened PMMA patterns were left and transferred to underneath SiO{sub 2} hard mask layer. Using this patterned hard mask, nanowire array of 25 nm pitch were realized on Si substrate. From this work, a high-throughput DSA baseline flow and related ALD-assisted pattern transfer technique were developed and proved to have good capability with the mainstream CMOS technology. - Highlights: • Optimization on self-assembly process for high productivity and low defectivity • Enhancement of etching ratio and resistance by atomic layer deposition (ALD) • A hard mask was used for pattern quality improvement and contamination control.

  19. Directed self-assembly of block copolymer films on atomically-thin graphene chemical patterns

    Science.gov (United States)

    Chang, Tzu-Hsuan; Xiong, Shisheng; Jacobberger, Robert M.; Mikael, Solomon; Suh, Hyo Seon; Liu, Chi-Chun; Geng, Dalong; Wang, Xudong; Arnold, Michael S.; Ma, Zhenqiang; Nealey, Paul F.

    2016-08-01

    Directed self-assembly of block copolymers is a scalable method to fabricate well-ordered patterns over the wafer scale with feature sizes below the resolution of conventional lithography. Typically, lithographically-defined prepatterns with varying chemical contrast are used to rationally guide the assembly of block copolymers. The directed self-assembly to obtain accurate registration and alignment is largely influenced by the assembly kinetics. Furthermore, a considerably broad processing window is favored for industrial manufacturing. Using an atomically-thin layer of graphene on germanium, after two simple processing steps, we create a novel chemical pattern to direct the assembly of polystyrene-block-poly(methyl methacrylate). Faster assembly kinetics are observed on graphene/germanium chemical patterns than on conventional chemical patterns based on polymer mats and brushes. This new chemical pattern allows for assembly on a wide range of guiding periods and along designed 90° bending structures. We also achieve density multiplication by a factor of 10, greatly enhancing the pattern resolution. The rapid assembly kinetics, minimal topography, and broad processing window demonstrate the advantages of inorganic chemical patterns composed of hard surfaces.

  20. Neutral wetting brush layers for block copolymer thin films using homopolymer blends processed at high temperatures.

    Science.gov (United States)

    Ceresoli, M; Palermo, M; Ferrarese Lupi, F; Seguini, G; Perego, M; Zuccheri, G; Phadatare, S D; Antonioli, D; Gianotti, V; Sparnacci, K; Laus, M

    2015-10-16

    Binary homopolymer blends of two hydroxyl-terminated polystyrene (PS-OH) and polymethylmethacrylate (PMMA-OH) homopolymers (Mn ∼ 16000 g mol(-1)) were grafted on SiO2 substrates by high-temperature (T > 150 °C), short-time (t layer was tested to screen preferential interactions of the SiO2 substrate with the different symmetric and asymmetric PS-b-PMMA block copolymers deposited on top of the grafted molecules. By properly adjusting the blend composition and the processing parameters, an efficient surface neutralization path was identified, enabling the formation, in the block copolymer film, of homogeneous textures of lamellae or cylinders perpendicularly oriented with respect to the substrate. A critical interplay between the phase segregation of the homopolymer blends and their grafting process on the SiO2 was observed. In fact, the polar SiO2 is preferential for the PMMA-rich phase that forms a homogeneous layer on the substrate, while the PS-rich phase is located at the polymer-air interface. During the thermal treatment, phase segregation and grafting proceed simultaneously. Complete wetting of the PS rich phase on the PMMA rich phase leads to the formation of a PS/PMMA bilayer. In this case, the progressive diffusion of PS chains toward the polymer-SiO2 interface during the thermal treatment allows tuning of the brush layer composition.

  1. NEXAFS Depth Profiling of Surface Segregation in Block Copolymer Thin Films

    Science.gov (United States)

    2010-01-01

    scanning probe microscope was used in the tapping mode for AFM measurements. Dynamicwater contact angle values were determined using the sessile drop ...analysis (NRA), and dynamic secondary ionmass spectrometry (SIMS) have the advantage of a direct, model-independent determination of depth profiles, and...of eq 8 drops out, resulting in the equation that we derived previously.7 4. Results and Discussion 4.1. Homopolymer Thin Films. Figure 3 shows the

  2. Synthesis of Acenaphthyl and Phenanthrene Based Fused-Aromatic Thienopyrazine Co-Polymers for Photovoltaic and Thin Film Transistor Applications

    KAUST Repository

    Mondal, Rajib

    2009-08-11

    Dithiophene and fluorene co-polymers containing fused aromatic thieno[3,4-b]pyrazine moieties were synthesized for organic thin film transistor (OTFT) and organic photovoltaic (OPV) applications. Suzuki and Stille polycondensation reactions were used for the polymerization. The band gap (Eg) of the polymers was tuned in the range of 1.15-1.6 eV to match the solar spectrum. Density functional theory calculations were carried out to rationalize the low band gaps. These polymers showed field effect mobility (μ) as high as 0.2 cm2/(V.s) with an on/off ratio as high as 106 in OTFT devices. Interestingly, one polymer in this class also showed ambipolar charge transport. Power conversion efficiency (PCE) up to 1.3% was achieved in bulk heterojunction solar cells, indicating that these materials are promising for OPV applications. © 2009 American Chemical Society.

  3. Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer.

    Science.gov (United States)

    Xu, Wenya; Dou, Junyan; Zhao, Jianwen; Tan, Hongwei; Ye, Jun; Tange, Masayoshi; Gao, Wei; Xu, Weiwei; Zhang, Xiang; Guo, Wenrui; Ma, Changqi; Okazaki, Toshiya; Zhang, Kai; Cui, Zheng

    2016-02-28

    Two innovative research studies are reported in this paper. One is the sorting of semiconducting carbon nanotubes and ink formulation by a novel semiconductor copolymer and second is the development of CMOS inverters using not the p-type and n-type transistors but a printed p-type transistor and a printed ambipolar transistor. A new semiconducting copolymer (named P-DPPb5T) was designed and synthesized with a special nonlinear structure and more condensed conjugation surfaces, which can separate large diameter semiconducting single-walled carbon nanotubes (sc-SWCNTs) from arc discharge SWCNTs according to their chiralities with high selectivity. With the sorted sc-SWCNTs ink, thin film transistors (TFTs) have been fabricated by aerosol jet printing. The TFTs displayed good uniformity, low operating voltage (±2 V) and subthreshold swing (SS) (122-161 mV dec(-1)), high effective mobility (up to 17.6-37.7 cm(2) V(-1) s(-1)) and high on/off ratio (10(4)-10(7)). With the printed TFTs, a CMOS inverter was constructed, which is based on the p-type TFT and ambipolar TFT instead of the conventional p-type and n-type TFTs. Compared with other recently reported inverters fabricated by printing, the printed CMOS inverters demonstrated a better noise margin (74% 1/2 Vdd) and was hysteresis free. The inverter has a voltage gain of up to 16 at an applied voltage of only 1 V and low static power consumption.

  4. Electric field effects on alignment of lamellar structures in diblock copolymer thin films studied by neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiuli

    2006-12-07

    We investigated the lamellar orientation in thin films of a diblock copolymer P(S-b-MMA), under competing effects of surface interactions and an electric field applied perpendicular to the substrate. The surface effects tend to align the lamellae parallel to the substrate while the electric field tends to align the lamellae perpendicular to the substrate. Using neutron reflectivity, neutron diffuse scattering, and neutron small-angle scattering, we achieved a quantitative analysis of the internal structure of the films. Film thickness was found to play a non-trivial role in determining the structure of the films. A complete alignment by the surface effects was observed in the thinner films by annealing. The parallel orientation remains stable even if an electric field as strong as 40 V/{mu}m is applied. In the thicker films, a mixed orientation with boundary layers parallel and the central part partially perpendicular to the substrate was observed after annealing. The mixed orientation becomes unstable under a small compressive stress, and will be converted into a completely parallel orientation. The parallel orientation induced by the compressive stress remains stable as long as the electric field is weaker than several ten V/{mu}m. Only a field of about 40 V/{mu}m is able to stabilize the above mentioned mixed orientation. A fully perpendicular orientation was never observed in our experiments. Diffuse scattering shows a mosaic structure in the absence of an electric field, whose mosaicity will be increased by the torque exerted by an electric field. The lateral correlation length of the lamellar domains is estimated as 1-2 {mu}m. Limited by the small q{sub x}-range we have used, a clear statement on the existence of the electric-field-induced structural undulations predicted by the Onuki's theory cannot be made from our experiments. (orig.)

  5. Characterization of solution structure and its importance in thin film ordering of conjugated block copolymers for organic semiconductor devices

    Science.gov (United States)

    Brady, Michael; Ku, Sung-Yu; Cochran, Justin; Wang, Cheng; Hawker, Craig; Kramer, Edward; Chabinyc, Michael

    2014-03-01

    Fully conjugated diblock copolymers (CBCPs) form intriguing materials alternatives to polymer-small molecule blends for their control of mesoscopic order in low-cost organic semiconductor devices. In both bulk heterojunction (BHJ) photovoltaics, consisting of an interpenetrating network with high donor-acceptor interfacial area, and ambipolar transistors, the transport of charge carriers through continuous p- and n-type paths in thin films is a controlling factor in device performance. AFM, GIWAXS, NEXAFS spectroscopy, and RSoXS are used to probe the structure of films of CBCPs with a p-type P3HT block and an n-type DPP block. Thermal annealing in the P3HT melt after casting creates ordered domains with ~ 50 nm in-plane lamellar spacings, as confirmed with GISAXS and RSoXS. GIWAXS diffraction from the (h00) alkyl-stacking and (010) pi-stacking planes shows primarily edge-on orientation for crystals of both P3HT and DPP blocks. In addition, temperature-dependent solution SAXS and UV-Vis spectroscopy are used to probe the size and conformation of casting solution aggregates. Fibrillar DPP aggregates direct the crystallization of P3HT- b-DPP following film casting and enable the formation of wormlike domains after annealing and thus ideal morphologies for transport in organic devices.

  6. Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zalakain, Inaki; Ramos, Jose Angel; Fernandez, Raquel; Etxeberria, Haritz; Mondragon, Inaki, E-mail: inaki.mondragon@ehu.e

    2011-01-03

    Highly oriented pyrolitic graphite (HOPG) is a useful substrate to visualize epitaxial formation due to its crystallographic structure. The morphology of a poly(styrene-b-isoprene-b-styrene) block copolymer thin film on a HOPG substrate was investigated by atomic force microscopy. Block copolymer domains generated a morphology with triangular regularity. This arrangement was induced by the HOPG substrate structure due to van der Waals attraction between the HOPG {pi}-conjugated system and aromatic ring of polystyrene domains. However, increasing the film thickness, the substrate effect on the surface morphology decreased. As a consequence, film surfaces showed the coexistence of different structures such as highly aligned cylinders and perforated lamellae. When film thickness exceeded a threshold value, the substrate did not have effect in the surface arrangements and the surface showed a similar morphology to that existing in bulk.

  7. Chemical Interactions and Their Role in the Microphase Separation of Block Copolymer Thin Films

    Directory of Open Access Journals (Sweden)

    Richard A. Farrell

    2009-08-01

    Full Text Available The thermodynamics of self-assembling systems are discussed in terms of the chemical interactions and the intermolecular forces between species. It is clear that there are both theoretical and practical limitations on the dimensions and the structural regularity of these systems. These considerations are made with reference to the microphase separation that occurs in block copolymer (BCP systems. BCP systems self-assemble via a thermodynamic driven process where chemical dis-affinity between the blocks driving them part is balanced by a restorative force deriving from the chemical bond between the blocks. These systems are attracting much interest because of their possible role in nanoelectronic fabrication. This form of self-assembly can obtain highly regular nanopatterns in certain circumstances where the orientation and alignment of chemically distinct blocks can be guided through molecular interactions between the polymer and the surrounding interfaces. However, for this to be possible, great care must be taken to properly engineer the interactions between the surfaces and the polymer blocks. The optimum methods of structure directing are chemical pre-patterning (defining regions on the substrate of different chemistry and graphoepitaxy (topographical alignment but both centre on generating alignment through favourable chemical interactions. As in all self-assembling systems, the problems of defect formation must be considered and the origin of defects in these systems is explored. It is argued that in these nanostructures equilibrium defects are relatively few and largely originate from kinetic effects arising during film growth. Many defects also arise from the confinement of the systems when they are ‘directed’ by topography. The potential applications of these materials in electronics are discussed.

  8. Chemical interactions and their role in the microphase separation of block copolymer thin films.

    Science.gov (United States)

    Farrell, Richard A; Fitzgerald, Thomas G; Borah, Dipu; Holmes, Justin D; Morris, Michael A

    2009-08-25

    The thermodynamics of self-assembling systems are discussed in terms of the chemical interactions and the intermolecular forces between species. It is clear that there are both theoretical and practical limitations on the dimensions and the structural regularity of these systems. These considerations are made with reference to the microphase separation that occurs in block copolymer (BCP) systems. BCP systems self-assemble via a thermodynamic driven process where chemical dis-affinity between the blocks driving them part is balanced by a restorative force deriving from the chemical bond between the blocks. These systems are attracting much interest because of their possible role in nanoelectronic fabrication. This form of self-assembly can obtain highly regular nanopatterns in certain circumstances where the orientation and alignment of chemically distinct blocks can be guided through molecular interactions between the polymer and the surrounding interfaces. However, for this to be possible, great care must be taken to properly engineer the interactions between the surfaces and the polymer blocks. The optimum methods of structure directing are chemical pre-patterning (defining regions on the substrate of different chemistry) and graphoepitaxy (topographical alignment) but both centre on generating alignment through favourable chemical interactions. As in all self-assembling systems, the problems of defect formation must be considered and the origin of defects in these systems is explored. It is argued that in these nanostructures equilibrium defects are relatively few and largely originate from kinetic effects arising during film growth. Many defects also arise from the confinement of the systems when they are 'directed' by topography. The potential applications of these materials in electronics are discussed.

  9. Thermotropic Phase Transition of Benzodithiophene Copolymer Thin Films and Its Impact on Electrical and Photovoltaic Characteristics

    KAUST Repository

    Ko, Sangwon

    2015-02-24

    © 2015 American Chemical Society. We observed a thermotropic phase transition in poly[3,4-dihexyl thiophene-2,2′:5,6′-benzo[1,2-b:4,5-b′]dithiophene] (PDHBDT) thin films accompanied by a transition from a random orientation to an ordered lamellar phase via a nearly hexagonal lattice upon annealing. We demonstrate the effect of temperature-dependent molecular packing on charge carrier mobility (μ) in organic field-effect transistors (OFETs) and photovoltaic characteristics, such as exciton diffusion length (LD) and power conversion efficiency (PCE), in organic solar cells (OSCs) using PDHBDT. The μ was continuously improved with increasing annealing temperature and PDHBDT films annealed at 270 °C resulted in a maximum μ up to 0.46 cm2/(V s) (μavg = 0.22 cm2/(V s)), which is attributed to the well-ordered lamellar structure with a closer - stacking distance of 3.5 Å as shown by grazing incidence-angle X-ray diffraction (GIXD). On the other hand, PDHBDT films with a random molecular orientation are more effective in photovoltaic devices than films with an ordered hexagonal or lamellar phase based on current-voltage characteristics of PDHBDT/C60 bilayer solar cells. This observation corresponds to an enhanced dark current density (JD) and a decreased LD upon annealing. This study provides insight into the dependence of charge transport and photovoltaic characteristics on molecular packing in polymer semiconductors, which is crucial for the management of charge and energy transport in a range of organic optoelectronic devices.

  10. Synthesis, Thermal Processing, and Thin Film Morphology of Poly(3-hexylthiophene)-Poly(styrenesulfonate) Block Copolymers

    NARCIS (Netherlands)

    Erothu, Harikrishna; Kolomanska, Joanna; Johnston, Priscilla; Schumann, Stefan; Deribew, Dargie; Toolan, Daniel T. W.; Gregori, Alberto; Dagron-Lartigau, Christine; Portale, Giuseppe; Bras, Wim; Arnold, Thomas; Distler, Andreas; Hiorns, Roger C.; Mokarian-Tabari, Parvaneh; Collins, Timothy W.; Howse, Jonathan R.; Topham, Paul D.

    2015-01-01

    A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This

  11. Synthesis, Thermal Processing, and Thin Film Morphology of Poly(3-hexylthiophene)-Poly(styrenesulfonate) Block Copolymers

    NARCIS (Netherlands)

    Erothu, Harikrishna; Kolomanska, Joanna; Johnston, Priscilla; Schumann, Stefan; Deribew, Dargie; Toolan, Daniel T. W.; Gregori, Alberto; Dagron-Lartigau, Christine; Portale, Giuseppe; Bras, Wim; Arnold, Thomas; Distler, Andreas; Hiorns, Roger C.; Mokarian-Tabari, Parvaneh; Collins, Timothy W.; Howse, Jonathan R.; Topham, Paul D.

    2015-01-01

    A series of novel block copolymers, processable from single organic solvents and subsequently rendered amphiphilic by thermolysis, have been synthesized using Grignard metathesis (GRIM) and reversible addition-fragmentation chain transfer (RAFT) polymerizations and azide-alkyne click chemistry. This

  12. Electrochromic response of WO3 and WO3-TiO2 thin films prepared from water-soluble precursors and a block copolymer template

    Directory of Open Access Journals (Sweden)

    Takashi Kuroki

    2016-12-01

    Full Text Available Electrochromic tungsten trioxide (WO3 thin films are attracting renewed attention as transmittance-controllable windows for use in automobile, aircraft, and building applications. In order to achieve high electrochromic performance, high cycle stability, and high reliability, the microstructure and compositional homogeneity of WO3 thin films have to be optimized. In this study, non-doped WO3 and TiO2-doped WO3 thin films were fabricated from water-soluble precursors of tungsten and titanium, and their electrochromic response was investigated. Amorphous WO3 and TiO2-doped WO3 thin films were fabricated by calcining the spin-coated films at 573 K. The use of a PEO-PPO-PEO block copolymer as a porogen facilitated the redox reactions occurring on the thin film/electrolyte interface. Although the effect of TiO2-doping on the cycle stability of WO3 thin films has not been fully elucidated, this study demonstrated that TiO2 doping up to 15 mol% effectively enhanced the cycle stability.

  13. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    Science.gov (United States)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; Sweat, Daniel P.; Wang, Xudong; Gopalan, Padma

    2016-06-01

    In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and

  14. Towards developing an efficient sensitive element for trinitrotoluene detection: TiO{sub 2} thin films functionalized with molecularly imprinted copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lazau, Carmen [National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, 1 P. Andronescu Street, 300224 Timisoara (Romania); Iordache, Tanta-Verona [National Research and Development Institute for Chemistry and Petrochemistry INCDCP-ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021 Bucharest (Romania); Florea, Ana-Mihaela [National Research and Development Institute for Chemistry and Petrochemistry INCDCP-ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021 Bucharest (Romania); University Politehnica of Bucharest, The Faculty of Applied Chemistry and Materials Science, Bioresources and Polymer Science Department, 1-7 Polizu, 011061 Bucharest (Romania); Orha, Corina [National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, 1 P. Andronescu Street, 300224 Timisoara (Romania); Bandas, Cornelia, E-mail: cornelia.bandas@gmail.com [National Institute for Research and Development in Electrochemistry and Condensed Matter, Condensed Matter Department, 1 P. Andronescu Street, 300224 Timisoara (Romania); Radu, Anita-Laura; Sarbu, Andrei [National Research and Development Institute for Chemistry and Petrochemistry INCDCP-ICECHIM, Advanced Polymer Materials and Polymer Recycling, 202 Splaiul Independentei, 060021 Bucharest (Romania); Rotariu, Traian [Technical Military Academy, Chemistry Department, Bucharest (Romania)

    2016-10-30

    Highlights: • A new concept for creating reusable and more sensitive sensors for trinitrotoluene. • Titanium oxide thin films as transducers deposited by a new hydrothermal process. • Trinitrotoluene-molecularly imprinted receptors obtained by a two-step procedure. - Abstract: In this study, TiO{sub 2} films were successfully grown in-situ onto a FTO substrate by a hydrothermal method, using TiCl{sub 4} as Ti precursor, and further on functionalized with a 2,4,6-trinitrotoluene-molecularly imprinted polymer (TNT-MIP) film as a preliminary step in developing a trinitrotoluene (TNT) reusable sensor to overcome the international security issues. For investigating the TiO{sub 2} film thickness, crystalline structure and morphology, the films were autoclaved at 200 °C at different times. The X-ray diffraction showed that TiO{sub 2} films possessed a rutile structure, with no cracks visible by atomic force microscopy (AFM), and the films morphology observed by scanning electron microscopy (SEM) was highly dependent upon the hydrothermal treatment time. Yet, the TiO{sub 2} films with a more porous surface were more suitable for TNT-MIP film deposit. Rheology of precursor polymer film solutions, based on poly (acrylonitrile-co-acrylic acid), poly (acrylonitrile-co-methacrylic acid) or poly (acrylonitrile- co-itaconic acid), and the structure and adherence of TNT-MIP films were investigated in order to establish the correct recipe of the MIP. The removal yield of TNT from the imprinted films, the thickness, the porosity and the compatibility with the inorganic TiO{sub 2} film were adequate for the poly (acrylonitrile-co-acrylic acid) system with an acrylonitrile: acrylic acid practical ratio of 86.1:13.9 (wt./wt.). Farmore, AFM morphology corroborated with SEM results highlighted the effect of TNT imprinting in the copolymer matrix as the surface of the imprinted layer was quite different from that of the non-imprinted layer.

  15. Surface morphology of PS-PDMS diblock copolymer films

    DEFF Research Database (Denmark)

    Andersen, T.H.; Tougaard, S.; Larsen, N.B.

    2001-01-01

    Spin coated thin films (∼400 Å) of poly(styrene)–poly(dimethylsiloxane) (PS–PDMS) diblock copolymers have been investigated using X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. Surface segregation of the poly(dimethylsiloxane) blocks was studied for five diblock copolymers which...

  16. Effect of annealing and UV-radiation time over micropore architecture of self-assembled block copolymer thin film

    Directory of Open Access Journals (Sweden)

    G. del C. Pizarro

    2015-06-01

    Full Text Available Block copolymers have been recognized as versatile materials to prepare nanoporous polymer films or membranes, but their potential has not been completely explored. This study focuses on the formation and characterization of nanoporous polymer films based on poly(styrene-block-(methylmethacrylate/methacrylic acid; (PS-b-MMA/MAA were obtained through atom transfer radical polymerization (ATRP, by using two different protocols: annealing and annealingirradiation; for improving the formation of microporous surface. The composition, crystallinity and structural order of the films were studied by Raman spectroscopy. The film polymer thickness was obtained through very high resolution ellipsometry (VHRE. Finally, atomic force microcopy (AFM and scanning electron microscopy (SEM techniques were used to detect changes in the porous-structure. These results show that the morphological properties of the block copolymer were affected via the modification of two variables, UV-radiation time and annealing. SEM and AFM micrographs showed that the morphology exhibit a porous ordered structure. Contact angle measurement suggests additional interactions between hydrophilic functional groups that influence the film wettability.

  17. Effect of Grafting Density of Random Copolymer Brushes on Perpendicular Alignment in PS-b-PMMA Thin Films

    KAUST Repository

    Lee, Wooseop

    2017-07-18

    We modulated the grafting density (σ) of a random copolymer brush of poly(styrene-r-methyl methacrylate) on substrates to probe its effect on the formation of perpendicularly aligned lamellae of polystyrene-b-poly(methyl methacrylate) (PS-b-PMMA). Supported by coarse-grained simulation results, we hypothesized that an increase in σ will allow us to systematically tune the block copolymer interfacial interactions with the substrates from being preferential to one of the blocks to being neutral toward both blocks and will thereby facilitate enhanced regimes of perpendicularly aligned lamellae. We verified such a hypothesis by using a simple grafting-to approach to modify the substrates and characterized the thickness window for perpendicular lamellae as a function of brush thickness (or σ) on the grafted substrates using scanning force microscopy (SFM) images and grazing incidence small-angle X-ray scattering (GISAXS) measurements. The experimental results validated our hypothesis and suggested that the σ of random copolymer brushes can be used as an additional versatile parameter to modulate the interfacial interactions and the resulting alignment of block copolymer films.

  18. The lamellar period in symmetric diblock copolymer thin films studied by neutron reflectivity and AFM

    DEFF Research Database (Denmark)

    Gadegaard, N.; Almdal, K.; Larsen, N.B.

    1999-01-01

    experimental results are compared to theoretical predictions on the scaling behavior of the lamella period as a function of temperature. The morphology of the surface was investigated by atomic force microscopy. Holes were found around defects in the films. The cross-section of the holes revealed the lamellar...... structure with a periodicity comparable to what was found by neutron reflectivity. (C) 1999 Elsevier Science B.V. All rights reserved....

  19. Selective and Sequential Re-Assembly of Patterned Block Copolymer Thin Film for Fabricating Polymeric, Inorganic, and Their Composite Nanostructured Arrays.

    Science.gov (United States)

    Zu, Xihong; Gong, Jian; Tu, Weiping; Deng, Yulin

    2011-10-04

    We report that the nanostructures of poly(styrene-block-4-vinylpyridine) block copolymer (PS-b-P4VP) thin film on a wafer substrate can be re-assembled by sequential vapor treatment using selected solvents. Metal or other inorganic nanoparticles that were randomly pre-loaded inside or on the surface of PS-b-P4VP thin film could be pulled to the rim of PS and P4VP along with the movements of PS and P4VP blocks during the treatment. As a result, the patterned polymeric or inorganic/polymer composite nanoisland and nanoring arrays were fabricated. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. The effect of heat treatment on the internal structure of nanostructured block copolymer films

    DEFF Research Database (Denmark)

    Sepe, Alessandro; Hoppe, E T; Jaksch, S

    2011-01-01

    We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular to the subs......We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular...

  1. Mesoporous sol-gel WO{sub 3} thin films via poly(styrene-co-allyl-alcohol) copolymer templates

    Energy Technology Data Exchange (ETDEWEB)

    Ozkan Zayim, Esra [Department of Physics, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul 80626 (Turkey); Liu, Ping; Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland; Deb, Satyen K. [National Renewable Energy Laboratory, Golden, CO 80401 (United States); Turner, John A.

    2003-12-01

    In this study a copolymer poly(styrene-co-allyl-alcohol), [-CH{sub 2}CH(C{sub 6}H{sub 5})-]{sub x}[-CH{sub 2}CH-(CH{sub 2}OH)-]{sub y} has been employed as a novel template in a sol-gel synthesis process to direct the formation of mesoporous tungsten oxide. The copolymer, due to its rigid hydrophobic block of polystyrene, is a more effective surfactant in an alcohol solution than polypropylene oxide-polyethylene oxide based compounds. The films have been prepared by a spin-coating technique from an ethanol solution of tungsten hexachloride. At room temperature, ultraviolet illumination method has been found to be very suitable for removing the polymer template, leading to the formation of a high-quality mesoporous structure. The electrochromic and optical properties of the mesoporous films are described and compared to standard sol-gel tungsten oxide films. Mesoporous materials exhibit superior high-rate ion-insertion performance when used as electrochromic layers.

  2. Nanopatterned articles produced using surface-reconstructed block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2016-06-07

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  3. Nanopatterned articles produced using reconstructed block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.; Park, Soojin; Wang; , Jia-Yu; Kim, Bokyung

    2017-05-02

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  4. Towards developing an efficient sensitive element for trinitrotoluene detection: TiO2 thin films functionalized with molecularly imprinted copolymer films

    Science.gov (United States)

    Lazau, Carmen; Iordache, Tanta-Verona; Florea, Ana-Mihaela; Orha, Corina; Bandas, Cornelia; Radu, Anita-Laura; Sarbu, Andrei; Rotariu, Traian

    2016-10-01

    In this study, TiO2 films were successfully grown in-situ onto a FTO substrate by a hydrothermal method, using TiCl4 as Ti precursor, and further on functionalized with a 2,4,6-trinitrotoluene-molecularly imprinted polymer (TNT-MIP) film as a preliminary step in developing a trinitrotoluene (TNT) reusable sensor to overcome the international security issues. For investigating the TiO2 film thickness, crystalline structure and morphology, the films were autoclaved at 200 °C at different times. The X-ray diffraction showed that TiO2 films possessed a rutile structure, with no cracks visible by atomic force microscopy (AFM), and the films morphology observed by scanning electron microscopy (SEM) was highly dependent upon the hydrothermal treatment time. Yet, the TiO2 films with a more porous surface were more suitable for TNT-MIP film deposit. Rheology of precursor polymer film solutions, based on poly (acrylonitrile-co-acrylic acid), poly (acrylonitrile-co-methacrylic acid) or poly (acrylonitrile- co-itaconic acid), and the structure and adherence of TNT-MIP films were investigated in order to establish the correct recipe of the MIP. The removal yield of TNT from the imprinted films, the thickness, the porosity and the compatibility with the inorganic TiO2 film were adequate for the poly (acrylonitrile-co-acrylic acid) system with an acrylonitrile: acrylic acid practical ratio of 86.1:13.9 (wt./wt.). Farmore, AFM morphology corroborated with SEM results highlighted the effect of TNT imprinting in the copolymer matrix as the surface of the imprinted layer was quite different from that of the non-imprinted layer.

  5. An Alternating 5,5-Dimethylcyclopentadiene-based Copolymer prepared at Room Temperature for High Performance Organic Thin Film Transistors

    KAUST Repository

    Fei, Zhuping

    2017-06-05

    We report that the inclusion of non-aromatic 5,5-dimethylcyclopentadiene monomer into a conjugated backbone is an attractive strategy to high performance semiconducting polymers. The use of this monomer enables a room temperature Suzuki copolymerization with a diketopyrrolopyrrole comono-mer to afford a highly soluble, high molecular weight material. The resulting low band gap polymer exhibits excellent photo and thermal stability, and despite a large π-π stacking distance of 4.26 Å, it demonstrates excellent performance in thin-film transistor devices.

  6. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  7. Fabrication of Highly Ordered Polymeric Nanodot and Nanowire Arrays Templated by Supramolecular Assembly Block Copolymer Nanoporous Thin Films

    National Research Council Canada - National Science Library

    Liu, Xikui; Stamm, Manfred

    2009-01-01

    Realizing the vast technological potential of patternable block copolymers requires both the precise controlling of the orientation and long-range ordering, which is still a challenging topic so far...

  8. Fabrication of composite thin films with microstructures of honeycomb, foam, and nanosphere arrays through adsorption and self-assembly of block copolymers at the liquid/liquid interface.

    Science.gov (United States)

    Liu, Yanan; Chen, Lifang; Geng, Yuanyuan; Lee, Yong-Ill; Li, Ying; Hao, Jingcheng; Liu, Hong-Guo

    2013-10-01

    The adsorption and self-organization behaviors of two kinds of block copolymers, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and poly(4-vinylpyridine)-block-polystyrene-block-poly(4-vinylpyridine) (P4VP-b-PS-b-P4VP), at planar liquid/liquid interfaces were investigated. A gel film decorating with honeycomb-like microstructures forms at the liquid/liquid interface between PS-b-P4VP chloroform solution and chloroauric acid aqueous solution. However, foam films were developed when the chloroauric acid aqueous solution was replaced by a chloroplatinic acid solution or a silver nitrate solution. Furthermore, a free-standing film containing the ordered arrays of nanospheres appeared at the liquid/liquid interface between P4VP-b-PS-b-P4VP chloroform solution and chloroauric acid aqueous solution. The formation of these microstructures was attributed to the adsorption of polymer molecules, combining with inorganic ions and the self-assembly of the composite species at the interface. The doped metal ions and complex ions were transformed to metal nanoparticles after further treatment. This is a facile and convenient method to prepare polymer/inorganic nanoparticle composites. These results also indicate the great influences of the polymer structures and the inorganic species in the aqueous phases on the self-assembly behaviors of the polymers at the interfaces, the final morphology, and structure of the composites. In addition, the formed thin composite films doped with well-dispersed, homogeneous small noble metal nanoparticles exhibit great and durable catalytic activities for the reduction of 4-nitrophenol (4-NP) by potassium borohydride.

  9. Enzymatic degradation processes of lamellar crystals in thin films for poly[(R)-3-hydroxybutyric acid] and its copolymers revealed by real-time atomic force microscopy.

    Science.gov (United States)

    Numata, Keiji; Hirota, Takuya; Kikkawa, Yoshihiro; Tsuge, Takeharu; Iwata, Tadahisa; Abe, Hideki; Doi, Yoshiharu

    2004-01-01

    Enzymatic degradation processes of flat-on lamellar crystals in melt-crystallized thin films of poly[(R)-3-hydroxybutyric acid] (P(3HB)) and its copolymers were characterized by real-time atomic force microscopy (AFM) in a phosphate buffer solution containing PHB depolymerase from Ralstonia pickettii T1. Fiberlike crystals with regular intervals were generated along the crystallographic a axis at the end of lamellar crystals during the enzymatic degradation. The morphologies and sizes of the fiberlike crystals were markedly dependent on the compositions of comonomer units in the polyesters. Length, width, interval, and thickness of the fiberlike crystals after the enzymatic degradation for 2 h were measured by AFM, and the dimensions were related to the solid-state structures of P(3HB) and its copolymers. The width and thickness decreased at the tip of fiberlike crystals, indicating that the enzymatic degradation of crystals takes place not only along the a axis but also along the b and c axes. These results from AFM measurement were compared with the data on crystal size by wide-angle X-ray diffraction, and on lamellar thickness and long period by small-angle X-ray scattering. In addition, the enzymatic erosion rate of flat-on lamellar crystals along the a axis was measured from real-time AFM height images. A schematic glacier model for the enzymatic degradation of flat-on lamellar crystals of P(3HB) by PHB depolymerase has been proposed on the basis of the AFM observations.

  10. Interfacial Effects on Pentablock Ionomer Thin Films

    Science.gov (United States)

    Etampawala, Thusitha; Ratnaweera, Dilru; Osti, Naresh; Shrestha, Umesh; Perahia, Dvora; Majewski, Jaroslaw

    2011-03-01

    The interfacial behavior of multi block copolymer thin films results from a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interactions of the individual blocks with the interfaces. Here in we report a study of thin films of ABCBA penta block copolymers, anionically synthesized, comprising of centered randomly sulfonated polystyrene block to which rubbery poly-ethylenebutalene is connected, terminated by blocks of poly-t-butylstyrene, kindly provided by Kraton. AFM and neutron reflectometry studies have shown that the surface structure of pristine films depends on film thickness and ranges from trapped micelles to thin layered films. Annealing above Tg for the styrene block results in rearrangements into relatively featureless air interface. Neutron reflectivity studies have shown that annealed films forms layers whose plane are parallel to the solid substrate with the bulky block at the air interface and the ionic block at the solid interface.

  11. Poly(styrene-co-butadiene) random copolymer thin films and nanostructures on a mica surface: morphology and contact angles of nanodroplets.

    Science.gov (United States)

    McClements, Jake; Buffone, Cosimo; Shaver, Michael P; Sefiane, Khellil; Koutsos, Vasileios

    2017-09-20

    The self-assembly of poly(styrene-co-butadiene) random copolymers on mica surfaces was studied by varying solution concentrations and polymer molecular weights. Toluene solutions of the poly(styrene-co-butadiene) samples were spin coated onto a mica surface and the resulting polymer morphology was investigated by atomic force microscopy. At higher concentrations, thin films formed with varying thicknesses; some dewetting was observed which depended on the molecular weight. Total dewetting did not occur despite the polymer's low glass transition temperature. Instead, partial dewetting was observed suggesting that the polymer was in a metastable equilibrium state. At lower concentrations, spherical cap shaped nanodroplets formed with varying sizes from single polymer chains to aggregates containing millions of chains. As the molecular weight was increased, fewer aggregates were observed on the surface, albeit with larger sizes resulting from increased solution viscosities and more chain entanglements at higher molecular weights. The contact angles of the nanodroplets were shown to be size dependent. A minimum contact angle occurs for droplets with radii of 100-250 nm at each molecular weight. Droplets smaller than 100 nm showed a sharp increase in contact angle; attributed to an increase in the elastic modulus of the droplets, in addition, to a positive line tension value. Droplets larger than 250 nm also showed an increased contact angle due to surface heterogeneities which cannot be avoided for larger droplets. This increase in contact angle plateaus as the droplet size reaches the macroscopic scale.

  12. Controlled Architecture of Dual-Functional Block Copolymer Brushes on Thin-Film Composite Membranes for Integrated "Defending" and "Attacking" Strategies against Biofouling.

    Science.gov (United States)

    Ye, Gang; Lee, Jongho; Perreault, François; Elimelech, Menachem

    2015-10-21

    We report a new macromolecular architecture of dual functional block copolymer brushes on commercial thin-film composite (TFC) membranes for integrated "defending" and "attacking" strategies against biofouling. Mussel-inspired catechol chemistry is used for a convenient immobilization of initiator molecules to the membrane surface with the aid of polydopamine (PDA). Zwitterionic polymer brushes with strong hydration capacity and quaternary ammonium salt (QAS) polymer brushes with bactericidal ability are sequentially grafted on TFC membranes via activators regenerated by electron transfer-atom transfer radical polymerization (ARGET-ATRP), an environmentally benign and controlled polymerization method. Measurement of membrane intrinsic transport properties in reverse osmosis experiments shows that the modified TFC membrane maintains the same water permeability and salt selectivity as the pristine TFC membrane. Chemical force microscopy and protein/bacterial adhesion studies are carried out for a comprehensive evaluation of the biofouling resistance and antimicrobial ability, demonstrating low biofouling propensity and excellent bacterial inactivation for the modified TFC membrane. We conclude that this polymer architecture, with complementary "defending" and "attacking" capabilities, can effectively prevent the attachment of biofoulants and formation of biofilms and thereby significantly mitigate biofouling on TFC membranes.

  13. Islands and holes on the free surface of thin diblock copolymer films. I. Characteristics of formation and growth

    OpenAIRE

    Coulon, G.; Collin, B.; Ausserre, D.; Chatenay, D.; Russell, T.P.

    1990-01-01

    When deposited on a silicon substrate, symmetric polystyrene/polymethylmethacrylate P(S-b-MMA) diblock copolymers form, at equilibrium, a multilayer structure parallel to the substrate. If the top layer is incomplete, islands or holes are formed in this layer. The kinetics of formation and growth of islands or holes is investigated, here, by in situ interference microscopy. The present study is focused on dense systems (≃ 30 % of islands (or holes) in area coverage). In the early stage, the w...

  14. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  15. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  16. Photocontrol over the disorder-to-order transition in thin films of polystyrene-block-poly(methyl methacrylate) block copolymers containing photodimerizable anthracene functionality.

    Science.gov (United States)

    Chen, Wei; Wang, Jia-Yu; Zhao, Wei; Li, Le; Wei, Xinyu; Balazs, Anna C; Matyjaszewski, Krzysztof; Russell, Thomas P

    2011-11-02

    Reversible photocontrol over the ordering transition of block copolymers (BCPs) from a disordered state to an ordered state, namely the disorder-to-order transition (DOT), can be used to create long-range ordered nanostructures in self-assembled BCPs over macroscopic distances by photocombing, similar to the classic zone refining used to produce highly pure, large single crystals. Here, we have designed and synthesized an anthracene-functionalized tri-BCP containing deuterated polystyrene (d(8)-PS) and poly(methyl methacrylate) (PMMA) blocks, as well as a short middle block of poly(2-hydroxyethyl methacrylates) (PHEMA) that is randomly functionalized by anthracene. This tri-BCP maintains the order-to-disorder transition-type phase behavior of its parent d(8)-PS-b-PMMA di-BCPs. Under 365 nm UV irradiation, the junction between d(8)-PS and PMMA blocks is photocoupled through the anthracene photodimers, leading to a significant increase in the total molecular weight of the tri-BCP. As a consequence, when the tri-BCP is phase-mixed but close to the boundary of the ordering transition, it undergoes the DOT, as evidenced by small-angle neutron scattering and transmission electron microscopy. The tri-BCP could be reversibly brought through the DOT in thin films by taking advantage of photodimerization and thermal dissociation of anthracene. Currently, anthracene-functionalized d(8)-PS-b-PMMA BCP is one of the most promising candidates for the photocombing process to promote long-range laterally ordered nanostructures over macroscopic distances in a noninvasive manner.

  17. Ferroelectric Switching of Vinylidene and Trifluoroethylene Copolymer Thin Films on Au Electrodes Modified with Self-Assembled Monolayers

    Directory of Open Access Journals (Sweden)

    Naoto Tsutsumi

    2014-09-01

    Full Text Available The ferroelectric switching characteristics of a vinylidene fluoride and trifluoroethylene copolymer were significantly changed via the chemical modification of a gold electrode with an alkanethiol self-assembled monolayer (SAM. The alkanethiol SAM-Au electrode successfully suppressed the leakage current (dark current from the electrode to the bulk ferroelectric. Smaller leakage currents led to the formation of an effective electric field in the bulk ferroelectric. At switching cycles ranging from 10 to 100 kHz, significant changes in the ferroelectric properties were observed. At 100 kHz, a remanent polarization (Pr of 68 mC·m−2 was measured, whereas a very small Pr value of 2.4 mC·m−2 was measured for the sample without a SAM. The switching speed of the SAM-Au electrode is as twice as fast as that of the unmodified electrode. A large potential barrier was formed via the insertion of a SAM between the Au electrode and the ferroelectric, effectively changing the ferroelectric switching characteristics.

  18. Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) graft copolymer templated synthesis of mesoporous TiO{sub 2} thin films for quasi-solid-state dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Jung, Ye Eun; Kim, Dong Jun; Kim, Sang Jin; Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr

    2014-02-03

    An amphiphilic graft copolymer, poly(ethylene-co-acrylic acid)-graft-poly(ethylene glycol) (PEAA-g-PEG), consisting of a PEAA backbone and PEG side chains was synthesized via an esterification reaction. {sup 1}H nuclear magnetic resonance and Fourier-transformed infrared analysis demonstrated esterification between carboxylic acid of PEAA and hydroxyl group of PEG. Small angle X-ray scattering results revealed that the crystalline domain spacing of PEAA increased from 11.3 to 12.8 nm upon using a more polar solvent with a higher affinity for poly(acrylic acid), while the crystalline domain spacing of PEAA disappeared with PEG grafting, indicating structural change to an amorphous state. Mesoporous TiO{sub 2} thin films were synthesized via a sol–gel reaction using PEAA-g-PEG graft copolymer as a structure-directing agent. The hydrophilically-preformed TiO{sub 2} nanoparticles were selectively confined in the hydrophilic PEG domains of the graft copolymer, and mesoporous TiO{sub 2} thin films were formed, as confirmed by scanning electron microscopy. The morphology of TiO{sub 2} films was tunable by varying the concentrations of polymer solutions and the amount of preformed TiO{sub 2}. A quasi-solid-state dye-sensitized solar cell fabricated with PEAA-g-PEG templated TiO{sub 2} film exhibited an energy conversion efficiency of 3.8% at 100 mW/cm{sup 2}, which was greater than that of commercially-available paste (2.6%) at a similar film thickness (3 μm). The improved performance was due to the larger surface area for high dye loading and organized structure with good interconnectivity. - Highlights: • Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) (PEAA-g-PEG) graft copolymer is synthesized. • Amphiphilic PEAA-g-PEG acts as a structure directing agent. • Mesoporous TiO{sub 2} thin films are prepared by sol–gel reaction using PEAA-g-PEG template. • Efficiency of DSSC with templated TiO{sub 2} is greater than with commercial TiO{sub 2} paste.

  19. Poly(vinyl chloride)-g-poly(2-(dimethylamino)ethyl methacrylate) graft copolymers templated synthesis of mesoporous TiO{sub 2} thin films for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Ahn, Sung Hoon; Seo, Jin Ah; Kim, Sang Jin; Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr [Yonsei University, Department of Chemical and Biomolecular Engineering (Korea, Republic of)

    2012-07-15

    A poly(vinyl chloride) (PVC) main chain was grafted with poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) containing a quaternary amine group using atom transfer radical polymerization. The successful synthesis of a PVC-g-PDMAEMA graft copolymer was confirmed by Fourier transform infrared, nuclear magnetic resonance, thermogravimetric analysis, and transmission electron microscopy. The PVC-g-PDMAEMA graft copolymer was used as a structure-directing agent (SDA) for the fabrication of a mesoporous thin film containing a titanium dioxide (TiO{sub 2}) layer. To control the porosity of the resultant inorganic layer, the ratio of SDA to TTIP as well as the concentration of the sol-gel was varied. The structure and porosity of the mesoporous film were characterized by XRD and SEM analysis. The mesoporous TiO{sub 2} film fabricated on the FTO surface was used as a photoanode for the dye-sensitized solar cell (DSSC). DSSC performance was the greatest when using TiO{sub 2} film with a higher porosity and lower interfacial resistance. The highest energy conversion efficiency reached 3.2 % at 100 mW/cm{sup 2}, which was one of the highest reported values for a quasi-solid-state DSSC with 600-nm-thick TiO{sub 2} film.

  20. Worm-like mesoporous TiO2 thin films templated using comb copolymer for dye-sensitized solar cells with polymer electrolyte

    Science.gov (United States)

    Lee, Jae Hun; Park, Cheol Hun; Jung, Jung Pyo; Kim, Jong Hak

    2015-12-01

    A comb copolymer consisting of hydrophobic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate) (PBEM) and hydrophilic poly(oxyethylene methacrylate) (POEM) is synthesized via one-pot free radical polymerization. The PBEM-POEM comb copolymer is used as an agent to direct the structure toward one consisting of worm-like mesoporous TiO2 (WM-TiO2) films. The selective, preferential interaction between the titania precursor and the hydrophilic POEM chains is responsible for the formation of a well-organized worm-like mesostructure. The morphology of the WM-TiO2 films is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In particular, the effects of film thickness on the optical and electrochemical properties are systematically investigated. The introduction of the WM-TiO2 layer between the nanocrystalline TiO2 (NC-TiO2) layer and fluorine-doped tin oxide (FTO) glass results in increased transmittance of visible light due to an antireflective property, decreased interfacial resistance and suppressed charge recombination at the interfaces of NC-TiO2/FTO glass. As a result, the photovoltaic conversion efficiency of the dye-sensitized solar cell (DSSC) with a polymer electrolyte is improved from 5.3% to 6.6% at an optimum film thickness (310 nm). The obtained efficiency represents a higher efficiency for the N719-based DSSC with a solvent-free, polymer electrolyte.

  1. EVA thin film with thermo- and moisture-stable luminescent copolymer beads composed of Eu(III) complexes for improvement of energy conversion efficiency on silicon solar cell

    Science.gov (United States)

    Kataoka, Hisataka; Omagari, Shun; Nakanishi, Takayuki; Hasegawa, Yasuchika

    2015-04-01

    Luminescent beads composed of Eu(hfa)3(TPPO)2 (hfa: hexafluoroacetylacetonate, TPPO: triphenylphosphine oxide) in PMMA copolymer (polymethylmethacrylate- styrene and polymethylmethacrylate-trifluoromethylmethacrylate copolymers), PMMA-St-Eu and PMMA-TF-Eu have been reported for improvement of energy conversion efficiency on silicon solar cell. The PMMA-St-Eu and PMMA-TF-Eu beads are prepared using radical initiator AIBN (2,2-azobisisobutyronitrile) without BPO (Benzoyl peroxide) which promotes decomposition of Eu(hfa)3(TPPO)2. The emission properties of EVA (ethylene vinyl acetate) film with PMMA-St-Eu or PMMA-TF-Eu beads are characterized by the emission spectra and lifetimes. Thermo- and moisture-stabilities of the EVA films are performed under high temperature and high moisture condition (85°C85%RH). Increase percentage the solar cell short circuit current efficiency in the solar cell modulation using with EVA film containing PMMA-St-Eu beads with size in 70 μm was estimated to 1.2%. Thermo- and moisture-stable PMMA-St-Eu and PMMA-TF-Eu beads for solar sealing film are demonstrated for the first time.

  2. Wetting films stabilized by block-copolymers

    OpenAIRE

    Eliseeva, O.V.

    2006-01-01

    Thin aqueous films formed on a solid surface play an important role in adhesion, spreading, and colloidal stability. These phenomena are all relevant for paint systems. Measuring surface forces in these films is an experimental challenge, and over the years several techniques have been developed to measure the interaction forces as a function of the thickness of the film, the so-called disjoining pressure isotherms. A thin film balance technique (TFB) in combination with an ellipsometer offer...

  3. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  4. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  5. Bicontinuous Porous Carbon Films Templated with ABC Triblock Copolymers

    Science.gov (United States)

    Cavicchi, Kevin; Deng, Guodong; Vogt, Bryan

    2014-03-01

    Mesoporous carbons are useful for a range of applications such as separation and catalysis. A route to prepare porous materials is through cooperative self-assembly of a carbon precursor (e.g. phenolic resin) and a block copolymer, in which the precursor is selectively soluble, to drive mesophase formation. Typical soft templating uses AB or ABA block copolymers, which form classical morphologies, such as spheres, cylinders, and lamellae. Switching to an ABC type block copolymer provides greater flexibility in the design of the morphology potentially opening up larger processing windows for complex structures, such as bicontinuous morphologies. This presentation will discuss efforts to prepare bicontinuous porous carbon thin films using an ABC triblock copolymer of poly(ethylene oxide)-block-poly(ethyl acrylate)-block-polystyrene via spin-coating and a series of thermal annealing steps. It will be shown that direct thermal annealing can produce high porosity (~60%) carbon fiber networks. In addition, adding a solvent annealing step prior to the thermal annealing steps is able to produce longer range order structures with a small window of an ordered bicontinuous morphology. These high porosity films with organized fibers are promising for energy and separation applications.

  6. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  7. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  8. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  9. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  10. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  11. Structural and Luminescence Properties of Lu2O3:Eu3+ F127 Tri-Block Copolymer Modified Thin Films Prepared by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    María Luz Carrera Jota

    2013-02-01

    Full Text Available Lu2O3:Eu3+ transparent, high density, and optical quality thin films were prepared using the sol-gel dip-coating technique, starting with lutetium and europium nitrates as precursors and followed by hydrolysis in an ethanol-ethylene glycol solution. Acetic acid and acetylacetonate were incorporated in order to adjust pH and as a sol stabilizer. In order to increment the thickness of the films and orient the structure, F127 Pluronic acid was incorporated during the sol formation. Structural, morphological, and optical properties of the films were investigated for different F127/Lu molar ratios (0–5 in order to obtain high optical quality films with enhanced thickness compared with the traditional method. X-ray diffraction (XRD shows that the films present a highly oriented cubic structure beyond 1073 K for a 3-layer film, on silica glass substrates. The thickness, density, porosity, and refractive index evolution of the films were investigated by means of m-lines microscopy along with the morphology by scanning electron microscope (SEM and luminescent properties.

  12. Wetting films stabilized by block-copolymers

    NARCIS (Netherlands)

    Eliseeva, O.V.

    2006-01-01

    Thin aqueous films formed on a solid surface play an important role in adhesion, spreading, and colloidal stability. These phenomena are all relevant for paint systems. Measuring surface forces in these films is an experimental challenge, and over the years several techniques have been developed to

  13. Thin film superfluid optomechanics

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sachkou, Yauhen; He, Xin; Bowen, Warwick P

    2016-01-01

    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid $^4$He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates $g_0>2\\pi \\times 100$ kHz and single photon cooperativities $C_0>10$ are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as $g_0>\\Omega_M$ and opens the prospect of laser cooling a liquid into its quantum ground state.

  14. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  15. Biomimetic thin film deposition

    Science.gov (United States)

    Rieke, P. C.; Campbell, A. A.; Tarasevich, B. J.; Fryxell, G. E.; Bentjen, S. B.

    1991-04-01

    Surfaces derivatized with organic functional groups were used to promote the deposition of thin films of inorganic minerals. These derivatized surfaces were designed to mimic the nucleation proteins that control mineral deposition during formation of bone, shell, and other hard tissues in living organisms. By the use of derivatized substrates control was obtained over the phase of mineral deposited, the orientation of the crystal lattice and the location of deposition. These features are of considerable importance in many technically important thin films, coatings, and composite materials. Methods of derivatizing surfaces are considered and examples of controlled mineral deposition are presented.

  16. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  17. Thin films for material engineering

    Science.gov (United States)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  18. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  19. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  20. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  1. Zapping thin film transistors

    NARCIS (Netherlands)

    Golo-Tosic, N.; Kuper, F.G.; Mouthaan, A.J.

    2002-01-01

    It was expected that hydrogenated amorphous silicon thin film transistors (alpha-Si:H TFTs) behave similarly to crystalline silicon transistors under electrostatic discharge (ESD) stress. It will be disproved in this paper. This knowledge is necessary in the design of the transistors used in a ESD

  2. [Spectral emissivity of thin films].

    Science.gov (United States)

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  3. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  4. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  5. Carbon Superatom Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Canning, A. [Cray Research, PSE, EPFL, 1015 Lausanne (Switzerland); Canning, A.; Galli, G. [Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA), IN-Ecublens, 1015 Lausanne (Switzerland); Kim, J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    1997-06-01

    We report on quantum molecular dynamics simulations of C{sub 28} deposition on a semiconducting surface. Our results show that under certain deposition conditions C{sub 28} {close_quote}s act as building blocks on a nanometer scale to form a thin film of nearly defect-free molecules. The C{sub 28} {close_quote}s behave as carbon superatoms, with the majority of them being threefold or fourfold coordinated, similar to carbon atoms in amorphous systems. The microscopic structure of the deposited film supports recent suggestions about the stability of a new form of carbon, the hyperdiamond solid. {copyright} {ital 1997} {ital The American Physical Society}

  6. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  7. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  8. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  9. Thin film interconnect processes

    Science.gov (United States)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  10. Phase Transition Induced by Small Molecules in Confined Copolymer Films

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling

    2007-01-01

    We investigate the phase transition induced by small molecules in confined copolymer films by using density functional theory.It is found that the addition of small molecules can effectively promote the phase separation of copolymers.In a symmetric diblock copolymer film,the affinity and concentration of small molecules play an important role in the structure transjtions.The disordered-lamellar transitions lamellar-lamellar transitions and the re-entrant transitions of the same structures are observed.Our results have potential applications in the fabrication of new functional materials.

  11. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  12. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  13. Nonlinear optical thin films

    Science.gov (United States)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  14. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  15. First Thin Film Festival

    Science.gov (United States)

    Samson, Philippe

    2005-05-01

    The constant evolution of the satellite market is asking for better technical performances and reliability for a reduced cost. Solar array is in front line of this challenge. This can be achieved by present technologies progressive improvement in cost reduction or by technological breakthrough. To reach an effective End Of Live performance100 W/kg of solar array is not so easy, even if you suppose that the mass of everything is nothing! Thin film cells are potential candidate to contribute to this challenge with certain confidence level and consequent development plan validation and qualification on ground and flight. Based on a strong flight heritage in flexible Solar Array design, the work has allowed in these last years, to pave the way on road map of thin film technologies . This is encouraged by ESA on many technological contracts put in concurrent engineering. CISG was selected cell and their strategy of design, contributions and results will be presented. Trade-off results and Design to Cost solutions will discussed. Main technical drivers, system design constraints, market access, key technologies needed will be detailed in this paper and the resulting road-map and development plan will be presented.

  16. Thin Film Inorganic Electrochemical Systems.

    Science.gov (United States)

    1995-07-01

    determined that thin film cathodes of LiCoO2 can be readily performed by either spray pyrolysis or spin coating . These cathodes are electrochemically...active. We have also determined that thin film anodes of Li4Ti5O12 can be prepared by spray pyrolysis or spin coating . These anodes are also

  17. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  18. Stretchable, adhesive and ultra-conformable elastomer thin films.

    Science.gov (United States)

    Sato, Nobutaka; Murata, Atsushi; Fujie, Toshinori; Takeoka, Shinji

    2016-11-16

    Thermoplastic elastomers are attractive materials because of the drastic changes in their physical properties above and below the glass transition temperature (Tg). In this paper, we report that free-standing polystyrene (PS, Tg: 100 °C) and polystyrene-polybutadiene-polystyrene triblock copolymer (SBS, Tg: -70 °C) thin films with a thickness of hundreds of nanometers were prepared by a gravure coating method. Among the mechanical properties of these thin films determined by bulge testing and tensile testing, the SBS thin films exhibited a much lower elastic modulus (ca. 0.045 GPa, 212 nm thickness) in comparison with the PS thin films (ca. 1.19 GPa, 217 nm thickness). The lower elastic modulus and lower thickness of the SBS thin films resulted in higher conformability and thus higher strength of adhesion to an uneven surface such as an artificial skin model with roughness (Ra = 10.6 μm), even though they both have similar surface energies. By analyzing the mechanical properties of the SBS thin films, the elastic modulus and thickness of the thin films were strongly correlated with their conformability to a rough surface, which thus led to a high adhesive strength. Therefore, the SBS thin films will be useful as coating layers for a variety of materials.

  19. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  20. Spinodal dewetting of thin films

    Science.gov (United States)

    Jaiswal, Prabhat K.; Puri, S.

    2009-01-01

    Stable thin liquid films are of various scientific and technological applications, e.g., in optical coating, painting technologies, coating thin wires and fibers, lubricants, adhesives, etc. However, the instabilities in a thin film may lead to rupture, hole formation, and other morphological changes which amplify the nonuniformity in the thin film [1]. This morphological evolution in an unstable thin film is generally known as `dewetting' [2]. There have recently been a number of theoretical and experimental studies on dewetting in thin films [3-6]. The process of `spinodal dewetting' comes into the category of a general class of phenomena, spinodal decomposition [7]. The pattern formation taking place during dewetting can also be of great importance in nanotechnology, e.g., for preparing quantum dots [8], nanorings [9], etc. We numerically solve the nonlinear two-dimensional thin film equation [2] for a thin liquid film subjected to the long range van der Waals attraction and short range Born repulsion. The simulation results for the temporal evolution of domains and height profile along diagonal direction of the lattice show the `hills and valleys' short of structures which is the typical morphology obtained during the spinodal dewetting [10]. We obtain the dynamical correlation function and structure factor showing the existence of a characteristic length scale in the system at late time. We give the scaling arguments for the length scale of the drops to be proportional to t1/3 which is in agreement with our numerical results for the domain growth.

  1. Perpendicularly Aligned, Anion Conducting Nanochannels in Block Copolymer Electrolyte Films

    Energy Technology Data Exchange (ETDEWEB)

    Arges, Christopher G.; Kambe, Yu; Suh, Hyo Seon; Ocola, Leonidas E.; Nealey, Paul F.

    2016-03-08

    Connecting structure and morphology to bulk transport properties, such as ionic conductivity, in nanostructured polymer electrolyte materials is a difficult proposition because of the challenge to precisely and accurately control order and the orientation of the ionic domains in such polymeric films. In this work, poly(styrene-block-2-vinylpyridine) (PSbP2VP) block copolymers were assembled perpendicularly to a substrate surface over large areas through chemical surface modification at the substrate and utilizing a versatile solvent vapor annealing (SVA) technique. After block copolymer assembly, a novel chemical vapor infiltration reaction (CVIR) technique selectively converted the 2-vinylpyridine block to 2-vinyl n-methylpyridinium (NMP+ X-) groups, which are anion charge carriers. The prepared block copolymer electrolytes maintained their orientation and ordered nanostructure upon the selective introduction of ion moieties into the P2VP block and post ion-exchange to other counterion forms (X- = chloride, hydroxide, etc.). The prepared block copolymer electrolyte films demonstrated high chloride ion conductivities, 45 mS cm(-1) at 20 degrees C in deionized water, the highest chloride ion conductivity for anion conducting polymer electrolyte films. Additionally, straight-line lamellae of block copolymer electrolytes were realized using chemoepitaxy and density multiplication. The devised scheme allowed for precise and accurate control of orientation of ionic domains in nanostructured polymer electrolyte films and enables a platform for future studies that examines the relationship between polymer electrolyte structure and ion transport.

  2. Polyimide Aerogel Thin Films

    Science.gov (United States)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  3. Patterning Multicomponent Polymer Thin Films via Dynamic Thermal Processing

    Science.gov (United States)

    Singh, Gurpreet

    Bottom-up patterning is gaining increased importance owing to the physical limitations and rising costs of top-down patterning. One example of bottom-up patterning is self-assembling polymer thin films. Although there are several pathways to facilitate polymer thin film self-assembly, this presentation will focus on dynamic thermal field based processes for patterning multicomponent polymer thin films. Dynamic thermal field processing is an attractive roll­to­roll (R2R) amenable directed self­assembly (DSA) method for molecular level organization of multicomponent polymer systems such as block copolymer thin films over large areas without requiring guiding templates. The talk will first outline how parameters such as magnitude of the temperature gradient, velocity of annealing, thermal expansion, and molecular weight of the polymer can be optimized to finely tune the morphology of the block copolymer thin films and also elucidate their associated physical mechanisms. The second part of the talk will outline application of dynamic thermal field processes for fabricating functional nanomaterials and discuss the recent advancements achieved using these processes.

  4. Fabrication of hierarchically ordered crystalline titania thin films

    Energy Technology Data Exchange (ETDEWEB)

    Niedermeier, Martin; Kaune, Gunar; Rawolle, Monika; Koerstgens, Volker; Ruderer, Matthias; Mueller-Buschbaum, Peter [TU Muenchen, Physik-Department LS E13, Garching (Germany); Gutmann, Jochen S. [Max-Planck Institute for Polymer Research, Mainz (Germany)

    2010-07-01

    Thin films of nanostructured titania have received a lot of attention in various applications such as photovoltaics within the last years. Having a well defined morphology is crucial for the functionality and performance of these films because it defines the volume to surface ratio and thereby the surface being available for interface reactions. Increasing the total film thickness is a common approach in order to increase the surface area. The present work focuses on the fabrication of hierarchically structured titania thin films and their crystallinity. A layer-by-layer spin-coating approach is investigated. A solution based sol-gel process using diblock copolymers as a template to obtain nanocomposite films is followed by calcination to obtain crystalline titania structures. The obtained structures are investigated using several imaging techniques like SEM and AFM. The crystallinity and the thickness of the films are analyzed with XRD and XRR.

  5. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  6. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  7. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  8. Bandgap determination of P(VDF–TrFE) copolymer film by electron energy loss spectroscopy

    Indian Academy of Sciences (India)

    Dipankar Mandal; K Henkel; K Müller; D Schmeißer

    2010-08-01

    The ferroelectric of poly(vinylidene fluoride trifluoroethylene), P(VDF–TrFE) is confirmed for 100 nm thickness spin coated copolymer film. The homogeneous coverage of the copolymer film is investigated by the help of X-ray photoelectron spectroscopy (XPS). Most importantly, the existing bandgap in the crystalline phase of the copolymer is determined directly from the electron energy loss spectroscopy (EELS).

  9. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  10. Thin film corrosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raut, M.K.

    1980-06-01

    Corrosion of chromium/gold (Cr/Au) thin films during photolithography, prebond etching, and cleaning was evaluated. Vapors of chromium etchant, tantalum nitride etchant, and especially gold etchant were found to corrosively attack chromium/gold films. A palladium metal barrier between the gold and chromium layers was found to reduce the corrosion from gold etchant.

  11. Thin Film Deposition Techniques (PVD)

    Science.gov (United States)

    Steinbeiss, E.

    The most interesting materials for spin electronic devices are thin films of magnetic transition metals and magnetic perovskites, mainly the doped La-manganites [1] as well as several oxides and metals for passivating and contacting the magnetic films. The most suitable methods for the preparation of such films are the physical vapor deposition methods (PVD). Therefore this report will be restricted to these deposition methods.

  12. Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing.

    Science.gov (United States)

    Zhou, Zhengping; Liu, Guoliang

    2017-02-02

    Herein an approach to controlling the pore size of mesoporous carbon thin films from metal-free polyacrylonitrile-containing block copolymers is described. A high-molecular-weight poly(acrylonitrile-block-methyl methacrylate) (PAN-b-PMMA) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self-assembly behavior of PAN-b-PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as-spin-coated PAN-b-PMMA is microphase-separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN-b-PMMA into mesoporous carbon thin films, the pore size and center-to-center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions.

  13. Hierarchical pattern formation through photo-induced disorder in block copolymer/additive composite films

    Science.gov (United States)

    Yao, Li; Watkins, James

    2013-03-01

    Segregation strength in hybrid materials can be increased through selective hydrogen bonding between organic or nanoparticle additives and one block of weakly segregated block copolymers to generate well ordered hybrid materials. Here, we report the use of enantiopure tartaric acid as the additive to dramatically improve ordering in poly(ethylene oxide-block-tert-butyl acrylate) (PEO-b-PtBA) copolymers. Phase behavior and morphologies within both bulk and thin films were studied by TEM, AFM and X-ray scattering. Suppression of PEO crystallization by the interaction between tartaric acid and the PEO block enables the formation of well ordered smooth thin films. With the addition of a photo acid generator, photo-induced disorder in PEO-b-PtBA/tartaric acid composite system can be achieved upon UV exposure to deprotect PtBA block to yield poly(acrylic acid) (PAA), which is phase-miscible with PEO. Due to the strong interaction of tartaric acid with both blocks, the system undergoes a disordering transition within seconds during a post-exposure baking. With the assistance of trace-amounts of base quencher, high resolution, hierarchical patterns of sub-micron regions of ordered and disordered domains were achieved in thin films through area-selective UV exposure using a photo-mask. Funding from Center for Hierarchical Manufacturing (CHM); Facility support from Materials Research Science and Engineering Center at UMass Amherst and Cornell High Energy Synchrotron Source

  14. Thin-film metal hydrides.

    Science.gov (United States)

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  15. Birefringent non-polarizing thin film design

    Institute of Scientific and Technical Information of China (English)

    QI Hongji; HONG Ruijin; HE Hongbo; SHAO Jianda; FAN Zhengxiu

    2005-01-01

    In this paper, 2×2 characteristic matrices of uniaxially anisotropic thin film for extraordinary and ordinary wave are deduced at oblique incidence. Furthermore, the reflectance and transmittance of thin films are calculated separately for two polarizations, which provide a new concept for designing non-polarizing thin films at oblique incidence. Besides, using the multilayer birefringent thin films, non-polarizing designs, such as beam splitter thin film at single wavelength, edge filter and antireflection thin film over visible spectral region are obtained at oblique incidence.

  16. Drying of thin colloidal films

    Science.gov (United States)

    Routh, Alexander F.

    2013-04-01

    When thin films of colloidal fluids are dried, a range of transitions are observed and the final film profile is found to depend on the processes that occur during the drying step. This article describes the drying process, initially concentrating on the various transitions. Particles are seen to initially consolidate at the edge of a drying droplet, the so-called coffee-ring effect. Flow is seen to be from the centre of the drop towards the edge and a front of close-packed particles passes horizontally across the film. Just behind the particle front the now solid film often displays cracks and finally the film is observed to de-wet. These various transitions are explained, with particular reference to the capillary pressure which forms in the solidified region of the film. The reasons for cracking in thin films is explored as well as various methods to minimize its effect. Methods to obtain stratified coatings through a single application are considered for a one-dimensional drying problem and this is then extended to two-dimensional films. Different evaporative models are described, including the physical reason for enhanced evaporation at the edge of droplets. The various scenarios when evaporation is found to be uniform across a drying film are then explained. Finally different experimental techniques for examining the drying step are mentioned and the article ends with suggested areas that warrant further study.

  17. Thin-film forces in pseudoemulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, V.; Radke, C.J. [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  18. Responsive polymer/gold nanoparticle composite thin films fabricated by solvent-induced self-assembly and spin-coating.

    Science.gov (United States)

    Li, Dongxiang; Lee, Ji Yong; Kim, Dong Ha

    2011-02-15

    Self-assembled poly(4-vinylpyridine)-grafted gold (Au) nanoparticles (NPs) and polystyrene-b-poly(4-vinylpyridine) block copolymers were fabricated by the introduction of a selective solvent to a common solution. The assembled mixtures were spin-coated onto solid substrates to fabricate composite gold/polymer thin films composed of copolymer-hybridized Au NPs and independent copolymer micelles. The obtained composite Au thin films had variable localized surface plasmon resonance (LSPR) bands and microscopic morphologies upon vapor annealing with selective solvents because the adsorption and dissolving of solvent molecules into the films could rearrange the copolymer block. The hybrid nanostructured Au thin films may have potential in vapor sensing and organic assays. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  20. Thin films under chemical stress

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  1. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; Kuznetsov, V. I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  2. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; V. I. Kuznetsov

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  3. 21 CFR 175.365 - Vinylidene chloride copolymer coatings for polycarbonate film.

    Science.gov (United States)

    2010-04-01

    ... polycarbonate film. 175.365 Section 175.365 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH... chloride copolymer coatings for polycarbonate film. Vinylidene chloride copolymer coatings identified in this section and applied on polycarbonate film may be safely used as food-contact surfaces,...

  4. Defect-free Perpendicular Diblock Copolymer Films: The Synergistic Effect of Surface Topography and Chemistry

    CERN Document Server

    Man, Xingkun; Tang, Jiuzhou; Yan, Dadong; Andelman, David

    2016-01-01

    We propose a direct self-assembly mechanism towards obtaining defect-free perpendicular lamellar phases of diblock copolymer (BCP) thin films. In our numerical study, a thin BCP film having a flat top surface is casted on a uni-directional corrugated solid substrate. The substrate is treated chemically and has a weak preference toward one of the two BCP components. Employing self-consistent field theory (SCFT), we find that there is an enhanced synergy between two substrate characteristics: its topography (geometrical roughness) combined with a weak surface preference. This synergy produces the desired perpendicular lamellar phase with perfect inplane ordering. Defect-free BCP lamellar phases are reproducible for several random initial states, and are obtained for a range of substrate roughness and chemical characteristics, even for a uni-directional multi-mode substrate roughness. Our theoretical study suggests possible experiments that will explore the interplay between uni-directional substrate corrugation...

  5. The effect of heat treatment on the internal structure of nanostructured block copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Sepe, A; Hoppe, E T; Jaksch, S; Magerl, D; Zhong, Q; Papadakis, C M [Technische Universitaet Muenchen, Physikdepartment, Fachgebiet Physik weicher Materie/Lehrstuhl fuer funktionelle Materialien, James-Franck-Strasse 1, 85747 Garching (Germany); Perlich, J [HASYLAB at DESY, Notkestrasse 85, 22603 Hamburg (Germany); Posselt, D [IMFUFA, Department of Science, Systems and Models, Roskilde University, PO Box 260, 4000 Roskilde (Denmark); Smilgies, D-M, E-mail: papadakis@tum.de [Cornell High Energy Synchrotron Source (CHESS), Wilson Laboratory, Cornell University, Ithaca, NY 14853 (United States)

    2011-06-29

    We report on the temperature dependence of the nanostructure of thin block copolymer films, as studied using in situ grazing-incidence small-angle x-ray scattering (GISAXS). We focus on spin-coated poly(styrene-b-butadiene) diblock copolymer thin films featuring lamellae perpendicular to the substrate. In situ GISAXS measurements elucidate the structural changes during heat treatment at temperatures between 60 and 130 {sup 0}C. Thermal treatment below 100 {sup 0}C does not destroy the perpendicular lamellar order. In contrast, treatment between 105 and 120 {sup 0}C leads to a broad distribution of lamellar orientations which only partially recovers upon subsequent cooling. Treatment at 130 {sup 0}C leads to severe changes of the film structure. We attribute the change of behavior at 100 {sup 0}C to the onset of the glass transition of the polystyrene block and the related increase of long-range mobility. Our results indicate that the perpendicular lamellar orientation for high molar mass samples is not stable under all conditions.

  6. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  7. Thin Film Research. Volume 1

    Science.gov (United States)

    1985-05-30

    1928), and later by Coper, Frommer and Zocher (1931), followed. From that time, when thin film technology was in its early stages of evolution, we...personal communication (1983). Cau, Marcel, Comtes Rendues 186, 1293 (1928). Coper, H. K., Frommer , L., and Zocher, H., Ztschr. Elektrochem. 37, 571

  8. Ferroelectric Thin Film Development

    Science.gov (United States)

    2003-12-10

    less. The film temper- ature is monitored by thermocouple sensors. Process gases pass through the chamber during the process. An advantage of RTP is the...semiconductor InSe ,” J. Appl. Phys., vol. 86, pp. 5687–5691, November 1999. 37. R. Mollers and R. Memming Ber. Bunsenges. Phys. Chem., vol. 76, 1972. 38. M

  9. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins.

    Science.gov (United States)

    Kato, Katsuya; Nakamura, Hitomi; Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro

    2014-07-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol-gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO)20(PO)70(EO)20) or F127 ((EO)106(PO)70(EO)106), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A-IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors.

  10. Thin-Film Metamaterials called Sculptured Thin Films

    CERN Document Server

    Lakhtakia, Akhlesh

    2010-01-01

    Morphology and performance are conjointed attributes of metamaterials, of which sculptured thin films (STFs) are examples. STFs are assemblies of nanowires that can be fabricated from many different materials, typically via physical vapor deposition onto rotating substrates. The curvilinear--nanowire morphology of STFs is determined by the substrate motions during fabrication. The optical properties, especially, can be tailored by varying the morphology of STFs. In many cases prototype devices have been fabricated for various optical, thermal, chemical, and biological applications.

  11. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  12. 21 CFR 175.360 - Vinylidene chloride copolymer coatings for nylon film.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinylidene chloride copolymer coatings for nylon... coatings for nylon film. Vinylidene chloride copolymer coatings identified in this section and applied on nylon film may be safely used as food-contact surfaces, in accordance with the following...

  13. Mixing alternating copolymers containing fluorenyl groups with phospholipids to obtain Langmuir and Langmuir-Blodgett films.

    Science.gov (United States)

    Santos, Thays C F; Péres, Laura O; Wang, Shu H; Oliveira, Osvaldo N; Caseli, Luciano

    2010-04-20

    The control of molecular architectures may be essential to optimize materials properties for producing luminescent devices from polymers, especially in the blue region of the spectrum. In this Article, we report on the fabrication of Langmuir-Blodgett (LB) films of polyfluorene copolymers mixed with the phospholipid dimyristoyl phosphatidic acid (DMPA). The copolymers poly(9,9-dioctylfluorene)-co-phenylene (copolymer 1) and poly(9,9-dioctylfluorene)-co-quaterphenylene) (copolymer 2) were synthesized via Suzuki reaction. Copolymer 1 could not form a monolayer on its own, but it yielded stable films when mixed with DMPA. In contrast, Langmuir monolayers could be formed from either the neat copolymer 2 or when mixed with DMPA. The surface pressure and surface potential measurements, in addition to Brewster angle microscopy, indicated that DMPA provided a suitable matrix for copolymer 1 to form a stable Langmuir film, amenable to transfer as LB films, while enhancing the ability of copolymer 2 to form LB films with enhanced emission, as indicated by fluorescence spectroscopy. Because a high emission was obtained with the mixed LB films and since the molecular-level interactions between the film components can be tuned by changing the experimental conditions to allow for further optimization, one may envisage applications of these films in optical devices such as organic light-emitting diodes (OLEDs).

  14. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  15. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  16. Responsive copolymer films obtained by ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, G.; Bucio, E. [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Mexico 04510, D. F. (Mexico)], e-mail: burillo@nucleares.unam.mx

    2009-07-01

    The graft copolymerization of ph and/or thermo sensitive monomers onto polymeric films can be achieved by different radiation methods which have great advantages compared to conventional methods. Their ph and thermal sensitivity properties, as well as LCST and critical ph point, have been studied by DSC, UV, FTIR, water contact angle and swelling. Graft copolymerization can be carried out by pre-irradiation oxidative and direct methods, using {sup 6}0Co gamma radiation or a Van de Graaff electron beam accelerator. The influence of synthesis conditions, such as pre-irradiation or radiation doses, dose rate, reaction time, monomer concentration, and reaction temperature are being studied. Advances in the field of responsive polymeric systems synthesized by ionizing radiation, their applications and promising future research on radiation graft polymerization and crosslinking will be discussed. (Author)

  17. Photoconductivity of thin organic films

    Science.gov (United States)

    Tkachenko, Nikolai V.; Chukharev, Vladimir; Kaplas, Petra; Tolkki, Antti; Efimov, Alexander; Haring, Kimmo; Viheriälä, Jukka; Niemi, Tapio; Lemmetyinen, Helge

    2010-04-01

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 μm), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene ( PHT), fullerene ( C60), pyrelene tetracarboxylic diimide ( PTCDI) and copper phthalocyanine ( CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C60 and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 × 10 3 Ω m and 3 × 10 4 Ω m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 × 10 8 Ω m in dark to 3.1 × 10 6 Ω m under the light.

  18. Photoconductivity of thin organic films

    Energy Technology Data Exchange (ETDEWEB)

    Tkachenko, Nikolai V. [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere (Finland); Chukharev, Vladimir, E-mail: Vladimir.Chukharev@tut.fi [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere (Finland); Kaplas, Petra; Tolkki, Antti; Efimov, Alexander [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere (Finland); Haring, Kimmo; Viheriaelae, Jukka; Niemi, Tapio [Optoelectronics Research Centre, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere (Finland); Lemmetyinen, Helge [Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FIN-33101 Tampere (Finland)

    2010-04-01

    Thin organic films were deposited on silicon oxide surfaces with golden interdigitated electrodes (interelectrode gap was 2 {mu}m), and the film resistivities were measured in dark and under white light illumination. The compounds selected for the measurements include molecules widely used in solar cell applications, such as polythiophene (PHT), fullerene (C{sub 60}), pyrelene tetracarboxylic diimide (PTCDI) and copper phthalocyanine (CuPc), as well as molecules potentially interesting for photovoltaic applications, e.g. porphyrin-fullerene dyads. The films were deposited using thermal evaporation (e.g. for C{sub 60} and CuPc films), spin coating for PHT, and Langmuir-Schaeffer for the layer-by-layer deposition of porphyrin-fullerene dyads. The most conducting materials in the series are films of PHT and CuPc with resistivities 1.2 x 10{sup 3} {Omega} m and 3 x 10{sup 4} {Omega} m, respectively. Under light illumination resistivity of all films decreases, with the strongest light effect observed for PTCDI, for which resistivity decreases by 100 times, from 3.2 x 10{sup 8} {Omega} m in dark to 3.1 x 10{sup 6} {Omega} m under the light.

  19. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  20. Selective epitaxial growth for YBCO thin films

    NARCIS (Netherlands)

    Damen, C.A.J.; Smilde, H.-J.H.; Blank, D.H.A.; Rogalla, H.

    1998-01-01

    A novel selective epitaxial growth (SEG) technique for (YBCO) thin films is presented. The method involves the deposition of a thin (about 10 nm) metal layer, in the desired pattern, on a substrate before the deposition of the superconducting thin film. During growth the metal reacts with the YBCO,

  1. Thin film Ag superlens towards lab-on-a-chip integration

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Nielsen, Rasmus Bundgaard; Boltasseva, Alexandra

    2009-01-01

    A thin metal film near-field superlens, as originally suggested by Pendry and realized by Fang et al. and Melville et al., is investigated with emphasis on materials suitable for integration on a lab-on-a-chip platform. A chemically resistant cyclo-olefin copolymer (COC), mr-I-T85 from microresist...

  2. Preparation of mesoporous silica thin films by photocalcination method and their adsorption abilities for various proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsuya, E-mail: katsuya-kato@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Nakamura, Hitomi [National Institute of Advanced Industrial Science and Technology (AIST), 2266-98 Anagahora, Shimoshidami, Moriyama-ku, Nagoya 463-8560 (Japan); Yamauchi, Yoshihiro; Nakanishi, Kazuma; Tomita, Masahiro [Department of Chemistry for Materials, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8570 (Japan)

    2014-07-01

    Mesoporous silica (MPS) thin film biosensor platforms were established. MPS thin films were prepared from tetraethoxysilane (TEOS) via using sol–gel and spin-coating methods using a poly-(ethylene oxide)-block-poly-(propylene oxide)-block-poly-(ethylene oxide) triblock polymer, such as P123 ((EO){sub 20}(PO){sub 70}(EO){sub 20}) or F127 ((EO){sub 106}(PO){sub 70}(EO){sub 106}), as the structure-directing agent. The MPS thin film prepared using P123 as the mesoporous template and treated via vacuum ultraviolet (VUV) irradiation to remove the triblock copolymer had a more uniform pore array than that of the corresponding film prepared via thermal treatment. Protein adsorption and enzyme-linked immunosorbent assay (ELISA) on the synthesized MPS thin films were also investigated. VUV-irradiated MPS thin films adsorbed a smaller quantity of protein A than the thermally treated films; however, the human immunoglobulin G (IgG) binding efficiency was higher on the former. In addition, protein A–IgG specific binding on MPS thin films was achieved without using a blocking reagent; i.e., nonspecific adsorption was inhibited by the uniform pore arrays of the films. Furthermore, VUV-irradiated MPS thin films exhibited high sensitivity for ELISA testing, and cytochrome c adsorbed on the MPS thin films exhibited high catalytic activity and recyclability. These results suggest that MPS thin films are attractive platforms for the development of novel biosensors. - Highlights: • VUV-treated MPS thin films with removed polymer had uniform pore. • VUV-treated MPS thin films exhibited high sensitivity by ELISA. • Cytochrome c showed the catalytic activity and recyclability on synthesized films.

  3. Ultraporous films with uniform nanochannels by block copolymer micelles assembly

    KAUST Repository

    Nunes, Suzana Pereira

    2010-10-12

    Films with high pore density and regularity that are easy to manufacture by conventional large-scale technology are key components aimed for fabrication of new generations of magnetic arrays for storage media, medical scaffolds, and artificial membranes. However, potential manufacture strategies like the self-assembly of block copolymers, which lead to amazing regular patterns, could be hardly reproduced up to now using commercially feasible methods. Here we report a unique production method of nanoporous films based on the self-assembly of copper(II) ion-polystyrene-b-poly(4-vinylpyridine) complexes and nonsolvent induced phase separation. Extremely high pore densities and uniformity were achieved. Water fluxes of 890 L m-2 h-1 bar-1 were obtained, which are at least 1 order of magnitude higher than those of commercially available membranes with comparable pore size. The pores are also stimuli (pH)-responsive. © 2010 American Chemical Society.

  4. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    Science.gov (United States)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  5. Surface properties of latex film and solvent-borne film resulted from fluorinated acrylate copolymers prepared by emulsion polymerization

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available The fluorinated acrylate copolymer, poly (BMA-co-DFHMA, was prepared by emulsion polymerization using a preemulsified monomer addition process. The FTIR and 1H –NMR were used to characterize the copolymer structure. The contact angle of water on the solvent-borne film increased dramatically and reached an equilibrium value (103° when the PDFHMA content in the copolymer was only 0.97 mol%. However, the contact of water on the latex film increased slowly, and reached the equilibrium value of 99° until the fluorinated component content was as highly as 9 mol%. A similar result was observed for the oil contact angle on the two types of films. XPS results showed that when the F/C ratio on film surfaces reached equilibrium, the required content of fluorinated component in the copolymer for the solvent-borne film was much lower than that for the latex film.

  6. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  7. Thin film fuel cell electrodes.

    Science.gov (United States)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  8. Exotic thin films made from cobalt ferrite

    NARCIS (Netherlands)

    Lisfi, A.; Lisfi, A.; Williams, C.M.; Johnson, A.; Chang, P.; Corcoran, H.; Nguyen, L.T.; Lodder, J.C.; Morgan, W.; Soohoo, R.F.

    2005-01-01

    Epitaxial CoFe2O4 thin films have been grown by PLD on (100) MgO substrate. Two types of spin-reorientation have been observed in such films upon annealing or increasing the film-thickness. In the as-deposited layers and at low thickness the easy axis is confined to the normal to the film plane

  9. Polyether/Polyester Graft Copolymers

    Science.gov (United States)

    Bell, Vernon L., Jr.; Wakelyn, N.; Stoakley, D. M.; Proctor, K. M.

    1986-01-01

    Higher solvent resistance achieved along with lower melting temperature. New technique provides method of preparing copolymers with polypivalolactone segments grafted onto poly (2,6-dimethyl-phenylene oxide) backbone. Process makes strong materials with improved solvent resistance and crystalline, thermally-reversible crosslinks. Resulting graft copolymers easier to fabricate into useful articles, including thin films, sheets, fibers, foams, laminates, and moldings.

  10. Study of Low Temperature Fuel Cells Thin Films Morphology by GISAXS

    Science.gov (United States)

    Irita, Tomomi; Russell, Thomas

    2007-03-01

    Grazing incidence small angle x-ray scattering experiments were performed on thin films of Nafion solutions as a function of time as the solvent, methanol/water, evaporated. The development and orientation of the structure and morphology in the thin films, at the free surface and in the bulk of the film, was characterized by the scattering below and above the critical angle. The scattering profiles indicated that Nafion thin morphology was strongly influenced by the conformations of Nafion molecules in the solutions. In addition, the morphology in thin films of sulfonated block copolymers of polystyrene-b-poly(ethylene-o-butylene)-b-polystyrene, an alternative material for fuel cell applications, was characterized by GISAXS and scanning force microscopy using different solvents and under an applied electric field. Both the solvents used and the applied field was found to markedly influence the orientation of the ion conducting domains in the films.

  11. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  12. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  13. Characterization of maleic acid/anhydride copolymer films by low-rate dynamic liquid-fluid contact angle measurements using axisymmetric drop shape analysis.

    Science.gov (United States)

    Uhlmann, Petra; Skorupa, Sebastian; Werner, Carsten; Grundke, Karina

    2005-07-05

    Thin films of alternating maleic acid/anhydride copolymers (poly(octadecene-alt-maleic acid/anhydride), POMA; poly(propene-alt-maleic acid/anhydride), PPMA; poly(styrene-alt-maleic acid/anhydride), PSMA) were studied to unravel the influence of the comonomer characteristics in the backbone on the surface-energetic properties of the copolymer films in the dry state and in contact with aqueous solutions. Water contact angle measurements revealed a graduation of the wettability of the dry hydrolyzed and annealed copolymer films that was dependent on the comonomer unit. It ranged from moderately hydrophilic (PPMA, annealed gamma(sv) = 39.9 mJ/m2) to very hydrophobic (POMA, annealed, gamma(sv) = 18.4 mJ/m2) surfaces. Liquid-fluid contact angle measurements using captive air bubbles were performed in different aqueous media (pure water, phosphate-buffered saline, and 10(-)(3) M KCl of two different pH values (pH = 3 and pH = 10) to study the copolymer films in their hydrated states relevant for biointerfacial phenomena. It was found that the graduation of the wettability of the copolymer films in the dry state is overall maintained upon immersion in aqueous solutions. The dependence of the wettability on the pH value of the aqueous medium could be related to the (de)protonation of the carboxylic groups.

  14. Raman spectroscopy of thin films

    Science.gov (United States)

    Burgess, James Shaw

    Raman spectroscopy was used in conjunction with x-ray diffraction and x-ray photoelectron spectroscopy to elucidate structural and compositional information on a variety of samples. Raman was used on the unique La 2NiMnO6 mixed double perovskite which is a member of the LaMnO3 family of perovskites and has multiferroic properties. Raman was also used on nanodiamond films as well as some boron-doped carbon compounds. Finally, Raman was used to identify metal-dendrimer bonds that have previously been overlooked. Vibrational modes for La2NiMnO6 were ascribed by comparing spectra with that for LaMnO3 bulk and thin film spectra. The two most prominent modes were labeled as an asymmetric stretch (A g) centered around 535 cm-1 and a symmetric stretch (B g) centered around 678 cm. The heteroepitaxial quality of La2NiMnO 6 films on SrTiO3 (100) and LaAlO3 (100) substrates were examined using the Raman microscope by way of depth profile experiments and by varying the thickness of the films. It was found that thin films (10 nm) had much greater strain on the LaAlO3 substrate than on the SrTiO3 substrate by examining the shifts of the Ag and the Bg modes from their bulk positions. Changes in the unit cell owing to the presence of oxygen defects were also monitored using Raman spectroscopy. It was found that the Ag and Bg modes shifted between samples formed with different oxygen partial pressures. These shifts could be correlated to changes in the symmetry of the manganese centers due to oxygen defects. Raman spectroscopy was used to examine the structural and compositional characteristics of carbon materials. Nanocrystalline diamond coated cutting tools were examined using the Raman Microscope. Impact, abrasion, and depth profile experiments indicated that delamination was the primary cause of film failure in these systems. Boron doped material of interest as catalyst supports were also examined. Monitoring of the G-mode and intensities of the D- and G-modes indicated that

  15. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  16. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  17. A monolithic thin film electrochromic window

    Energy Technology Data Exchange (ETDEWEB)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. (Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center); Wei, G. (Mobil Solar Energy Corp., Billerica, MA (United States)); Yu, P.C. (PPG Industries, Inc., Monroeville, PA (United States))

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  18. A monolithic thin film electrochromic window

    Energy Technology Data Exchange (ETDEWEB)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. [Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center; Wei, G. [Mobil Solar Energy Corp., Billerica, MA (United States); Yu, P.C. [PPG Industries, Inc., Monroeville, PA (United States)

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  19. Magnetostrictive thin films for microwave spintronics.

    Science.gov (United States)

    Parkes, D E; Shelford, L R; Wadley, P; Holý, V; Wang, M; Hindmarch, A T; van der Laan, G; Campion, R P; Edmonds, K W; Cavill, S A; Rushforth, A W

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

  20. Carbon nanotube based transparent conductive thin films.

    Science.gov (United States)

    Yu, X; Rajamani, R; Stelson, K A; Cui, T

    2006-07-01

    Carbon nanotube (CNT) based optically transparent and electrically conductive thin films are fabricated on plastic substrates in this study. Single-walled carbon nanotubes (SWNTs) are chemically treated with a mixture of concentrated sulfuric acid and nitric acid before being dispersed in aqueous surfactant-contained solutions. SWNT thin films are prepared from the stable SWNT solutions using wet coating techniques. The 100 nm thick SWNT thin film exhibits a surface resistivity of 6 kohms/square nanometer with an average transmittance of 88% on the visible light range, which is three times better than the films prepared from the high purity as-received SWNTs.

  1. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  2. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  3. Thermal Expansion Coefficients of Thin Crystal Films

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The formulas for atomic displacements and Hamiltonian of a thin crystal film in phonon occupation number representation are obtained with the aid of Green's function theory. On the basis of these results, the formulas for thermal expansion coefficients of the thin crystal film are derived with the perturbation theory, and the numerical calculations are carried out. The results show that the thinner films have larger thermal expansion coefficients.

  4. BDS thin film damage competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  5. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  6. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  7. Preparation of polysilsesquioxane-urethaneacrylate copolymer film reinforced with chitin nanofibers.

    Science.gov (United States)

    Ifuku, Shinsuke; Ikuta, Akiko; Hosomi, Tetsuya; Kanaya, Shingo; Shervani, Zameer; Morimoto, Minoru; Saimoto, Hiroyuki

    2012-07-01

    Chitin nanofibers (CNFs) reinforced silsesquioxane-urethaneacrylate (SSQ-UA) copolymer films were prepared. CNFs-SSQ-UA nanocomposite films were highly transparent due to the filling of nanometer sized (10-20 nm) CNFs inside the hybrid organic-inorganic SSQ-UA copolymer. CNFs due to their crystalline structure drastically increased Young's moduli and the tensile strengths of the composite and decreased the thermal expansion. High thermal stability of polysilsesquioxane improved heat resistance of CNFs.

  8. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    Rachana Gupta; Mukul Gupta; Thomas Gutberlet

    2008-11-01

    Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The film prepared with only Ar gas shows reflections corresponding to the permalloy phase in X-ray diffraction (XRD) pattern. The addition of nitrogen during sputtering results in broadening of the peaks in XRD pattern, which finally leads to an amorphous phase. The - loop for the sample prepared with only Ar gas is matching well with the values obtained for the permalloy. For the samples prepared with increased nitrogen partial pressure the magnetic moment decreased rapidly and the values of coercivity increased. The polarized neutron reflectivity measurements (PNR) were performed in the sample prepared with only Ar gas and with nitrogen partial pressure of 5 and 10%. It was found that the spin-up and spin-down reflectivities show exactly similar reflectivity for the sample prepared with Ar gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity.

  9. Micromotors using magnetostrictive thin films

    Science.gov (United States)

    Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Betz, Jochen; MacKay, Ken; Givord, Dominique; Bouchilloux, Philippe

    1998-07-01

    This study deals with a micromotor based on the use of magnetostrictive thin films. This motor belongs to the category of the Standing Wave Ultrasonic Motors. The active part of the motor is the rotor, which is a 100 micrometers thick ring vibrating in a flexural mode. Teeth (300 micrometers high) are placed on special positions of the rotor and produce an oblique motion which can induce the relative motion of any object in contact with them. The magnetic excitation field is radial and uses the transverse coupling of the 4 micrometers thick magnetostrictive film. The film, deposited by sputtering on the ring, consists of layers of different rare-earth/iron alloys and was developed during a European Brite-Euram project. The finite element technique was used in order to design a prototype of the motor and to optimize the active rotor and the energizer coil. The prototype we built delivered a speed of 30 turns per minute with a torque of 2 (mu) N.m (without prestress applied on the rotor). Our experimental results show that the performance of this motor could easily be increased by a factor of 5. The main advantage of this motor is the fact that it is remotely powered and controlled. The excitation coil, which provides both power and control, can be placed away from the active rotor. Moreover, the rotor is completely wireless and is not connected to its support or to any other part. It is interesting to note that it would not be possible to build this type of motor using piezoelectric technology. Medical applications of magnetostrictive micromotors could be found for internal microdistributors of medication (the coil staying outside the body). Other applications include remote control micropositioning, micropositioning of optical components, and for the actuation of systems such as valves, electrical switches, and relays.

  10. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    Science.gov (United States)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  11. The formation of standing cylinders in block copolymer films by irreversibly adsorbed polymer layers on substrates

    Science.gov (United States)

    Shang, Jun; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori

    2013-03-01

    Block copolymers offer a simple and effective route to produce standing cylindrical nanostructures with regularity on the order of 10-100 nm, the length scale that is desirable for many advanced applications. However, these formations have been especially troublesome due to the fact that preferential interactions between one of the blocks and the surfaces will induce parallel alignment of the cylinders in order to minimize interfacial and surface energy. Here we introduce an alternative simple method utilizing an irreversibly adsorbed polymer layer (a ``Guiselin'' brush) as a neutral ``substrate'' formed on solid substrates for the arrangement of standing cylindrical nanostructures. The effect of polymer adsorbed layer on the long range ordering of asymmetric cylinder forming poly(styrene-block-ethylene/butylene-block-styrene) (SEBS) triblock copolymer thin films were investigated by using a combination of grazing incidence small angle x-ray scattering and atomic force microscopy techniques. We found that the SEBS, which forms cylinders lying parallel to the surface when prepared on silicon substrates, show standing cylindrical structures on selected Guiselin brush layers after prolong thermal annealing. The details will be discussed in the presentation. We acknowledges the financial support from NSF Grant No. CMMI-084626

  12. TiO2 thin film photocatalyst

    Institute of Scientific and Technical Information of China (English)

    YU Jiaguo

    2004-01-01

    It is well known that the photocatalytic activity of TiO2 thin films strongly depends on the preparing methods and post-treatment conditions, since they have a decisive influence on the chemical and physical properties of TiO2 thin films.Therefore, it is necessary to elucidate the influence of the preparation process and post-treatment conditions on the photocatalytic activity and surface microstructures of the films. This review deals with the preparation of TiO2 thin film photocatalysts by wet-chemical methods (such as sol-gel, reverse micellar and liquid phase deposition) and the comparison of various preparation methods as well as their advantage and disadvantage. Furthermore, it is discussed that the advancement of photocatalytic activity, super-hydrophilicity and bactericidal activity of TiO2 thin film photocatalyst in recent years.

  13. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  14. Acrylonitrile-methyl Methacrylate Copolymer Films Containing Microencapsulated n-Octadecane

    Institute of Scientific and Technical Information of China (English)

    LI Jun; HAN Na; ZHANG Xing-xiang

    2006-01-01

    Acrylonitrile-methyl methacrylate copolymer was synthesized in aqueous solution by Redox. The copolymer was mixed with 10 - 40 wt% of microencapsulated n-octadecane (MicroPCMs) in water. Copolymer films containing MicroPCMs were cast at room temperature in N, N-Dimethylformamide solution. The copolymer of acrylonitrile-methyl methacrylate and the copolymer films containing MicroPCMs were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analyzer (TG), X-ray Diffrac tion (XRD) and Scanning Electron Microscopy (SEM), etc.The microcapsules in the films are evenly distributed in the copolymer matrix. The heat-absorbing temperatures and heat-evolving temperatures of the films are almost the same as that of the MicroPCMs, respectively, and fluctuate in a slight range. In addition, the enthalpy efficiency of MicroPCMs rises with the contents of MicroPCMs increasing.The crystallinity of the film increases with the contents of MicroPCMs increasing.

  15. Stereocomplex Film Using Triblock Copolymers of Polylactide and Poly(ethylene glycol) Retain Paxlitaxel on Substrates by an Aqueous Inkjet System.

    Science.gov (United States)

    Ajiro, Hiroharu; Kuroda, Ayaka; Kan, Kai; Akashi, Mitsuru

    2015-09-29

    The stereocomplex formation of poly(L,L-lactide) (PLLA) and poly(D,D-lactide) (PDLA) using an inkjet system was expanded to the amphiphilic copolymers, using poly(ethylene glycol) (PEG) as a hydrophilic polymer. The diblock copolymers, which are composed of PEG and PLLA (MPEG-co-PLLA) and PEG and PDLA (MPEG-co-PDLA), were employed for thin-film preparation using an aqueous inkjet system. The solvent and temperature conditions were optimized for the stereocomplex formation between MPEG-co-PLLA and MPEG-co- PDLA. As a result, the stereocomplex was adequately formed in acetonitrile/water (1:1, v/v) at 40 °C. The aqueous conditions improved the stereocomplex film preparation, which have suffered from clogging when using the organic solvents in previous work. The triblock copolymers, PLLA-co-PEG-co-PLLA and PDLA-co-PEG-co-PDLA, were employed for square patterning with the inkjet system, which produced thin films. The amphiphilic polymer film was able to retain hydrophobic compounds inside. The present result contributed to the rapid film preparation by inkjet, retaining drugs with difficult solubility in water, such as paclitaxel within the films.

  16. Anisotropic Heisenberg model in thin film geometry

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit

    2014-01-01

    The effect of the anisotropy in the exchange interaction on the phase diagrams and magnetization behavior of the Heisenberg thin film has been investigated with effective field formulation in a two spin cluster using the decoupling approximation. Phase diagrams and magnetization behaviors have been obtained for several different cases, by grouping the systems in accordance with, whether the surfaces/interior of the film has anisotropic exchange interaction or not. - Highlights: • Phase diagrams of the anisotropic Heisenberg model on the thin film obtained • Dependence of the critical properties on the film thickness obtained • Effect of the anisotropy on the magnetic properties obtained.

  17. Insect thin films as solar collectors.

    Science.gov (United States)

    Heilman, B D; Miaoulis, L N

    1994-10-01

    A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 µm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

  18. A Novel Thin Film Resistive Humidity Sensor Based on Soluble Conjugated Polymer: (propionic acid)-co-(propargyl alcohol)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel soluble conjugated copolymer (propionic acid)-co-(propargyl alcohol) (PA-co-OHP) has been synthesized for the first time using a new palladium acetylide catalyst Pd(PPh3)2 (CoCC(CH3)2OH)2 (PPB). Thin film resistive humidity sensor based on the copolymer doped with HClO-4 was prepared. The impedance of the sensor changed from 103~107 W in 95%~30%RH, and the response of that is very quick (<6 sec.). Preliminary results show the copolymer is a promising humidity sensitive material.

  19. Ferromagnetic properties of fcc Gd thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, T. P., E-mail: tambauh@gmail.com; Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y. [Universidade Federal do Espírito Santo, Departamento de Física, Vitória/ES 29075-910 (Brazil); Pessoa, M. S. [Universidade Federal do Espírito Santo, Departamento de Ciências Naturais, São Mateus/ES 29932-540 (Brazil)

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  20. Synthesis and characterization of pure mesoporous zirconia thin film with two-dimensional hexagonal framework

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pure mesoporous ZrO2 thin film with two-dimensional hexagonal framework mesostructure has been successfully prepared by using a nonionic triblock copolymer as the structure-directing agent and ZrCl4 as the zirconia source through evaporation-induced self-assembly approach. The resulting materials were characterized by X-ray diffraction, scanning electron microscope, and nitrogen adsorption measurements. The obtained mesoporous ZrO2 thin film has a nanocrystalline inorganic framework (tetragonal zirconia) and narrowly distributed mesopore size (6. 7 nm in diameter).

  1. Thin films for geothermal sensing: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  2. Manganese ferrite thin films Part II: Properties

    NARCIS (Netherlands)

    Hulscher, W.S.

    1972-01-01

    Some properties of evaporated manganese ferrite thin films are investigated, e.g. resistivity, magnetization reversal, Curie temperature, Faraday rotation and optical absorption. The properties are partly related to the partial oxygen pressure present during a preceding annealing process.

  3. Thin Film Photovoltaics: Markets and Industry

    National Research Council Canada - National Science Library

    Jäger-Waldau, Arnulf

    2012-01-01

    ...% of worldwide production. Between 2005 and 2009, thin film production capacity and volume increased more than the overall industry but did not keep up in 2010 and 2011 due to the rapid price decline for solar modules...

  4. Highly stretchable wrinkled gold thin film wires

    Science.gov (United States)

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D.; Khine, Michelle

    2016-02-01

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  5. Highly stretchable wrinkled gold thin film wires

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Chu, Michael [Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States); Pegan, Jonathan D. [Department of Materials and Manufacturing Technology, University of California, Irvine, California 92697 (United States); Khine, Michelle, E-mail: mkhine@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States)

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  6. Thin solid-lubricant films in space

    Science.gov (United States)

    Roberts, E. W.

    Low-friction films of thickness as low as 1 micron, created through sputter-deposition of low shear strength materials, are required in spacecraft applications requiring low power dissipation, such as cryogenic devices, and low torque noise, such as precision-pointing mechanisms. Due to their thinness, these coatings can be applied to high precision-machined tribological components without compromising their functional accuracy. Attention is here given to the cases of thin solid films for ball bearings, gears, and journal bearings.

  7. Studies in thin film flows

    CERN Document Server

    McKinley, I S

    2000-01-01

    the general case of non-zero capillary number numerically. Using the lubrication approximation to the Navier-Stokes equations we investigate the evolution and stability of a thin film of incompressible Newtonian fluid on a planar substrate subjected to a jet of air blowing normally to the substrate. For the simple model of the air jet we adopt, the initially axisymmetric problems we study are identical to those of a drop spreading on a turntable rotating at constant angular velocity (the simplest model for spin coating). We consider both drops without a dry patch (referred to as 'non-annular') and drops with a dry patch at their centre (referred to as 'annular'). First, both symmetric two-dimensional and axisymmetric three-dimensional drops are considered in the quasi-static limit of small capillary number. The evolution of both non-annular and annular drops and the stability of equilibrium solutions to small perturbations with zero wavenumber are determined. Using a specially developed finite-difference code...

  8. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  9. Layered TiO2: PVK nano-composite thin films for photovoltaic applications. TiO2: PVK nano-composite thin films.

    Science.gov (United States)

    Kaune, G; Wang, W; Metwalli, E; Ruderer, M; Rossner, R; Roth, S V; Müller-Buschbaum, P

    2008-01-01

    The influence of the solvent used for spin-coating on the homogeneity of poly(N-vinylcarbazole) (PVK) films is investigated. Homogenous films are obtained only by the use of toluene, solution in tetrahydrofuran (THF) and chloroform results in radially oriented inhomogeneities and films prepared by use of N-methylpyrrolidone and dimethylacetamide show particle formation during spin-coating. Layered nano-composite thin films are prepared by spin-coating a PVK film on top of a nano-structured titanium dioxide ( TiO2) layer. The TiO2 thin films are prepared by a sol-gel process using an amphiphilic copolymer as structure-directing agent. Structural characterisation of the TiO2 :PVK nano-composite films is done by field emission scanning electron microscopy (FESEM) and grazing-incidence small-angle scattering (GISAXS). Bare TiO2 films are probed for comparison. Light is basically only absorbed in the ultraviolet regime and absorption slightly increases upon addition of PVK, which makes the layered TiO2 :PVK nano-composite thin films good candidates for UV photovoltaic devices. Furthermore, absorption remains stable over a period of several days.

  10. Printable CIGS thin film solar cells

    Science.gov (United States)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  11. Carbon Nanotube Thin-Film Antennas.

    Science.gov (United States)

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  12. Photophysical properties of Alq3 thin films

    Science.gov (United States)

    Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Łukasiak, Z.; Sahraoui, B.

    2013-11-01

    This work contains investigation results of the photophysical properties of aluminum (III) tris(8-hydroxyquinoline) thin films. The Alq3 thin films were successfully fabricated by Physical Vapor Deposition technique. The films were grown on transparent: (quartz and glass) and semiconductor (n-type silica) substrates kept at room temperature during the deposition process. Selected films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 100 °C and 150 °C. Morphology of the films was investigated by AFM technique. Photophysical properties were characterized via photoluminescence, transmission, second and third harmonic generation measurements. The thin films exhibit high structural quality regardless of the annealing process, but the stability of the film can be improved by using an appropriate temperature during the annealing process. Photoluminescence of Alq3 films obtained in air were efficient and stable. The measurements of transmission, SHG and THG spectra allowed us to determine optical constant of the films. We find that the photophysical properties were strictly connected with the morphology and the annealing process significantly changes the structural properties of the films.

  13. Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films

    KAUST Repository

    Hu, Weijin

    2014-04-24

    In this work, switching dynamics of poly(vinylidene fluoride- trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated over unprecedentedly wide ranges of temperature and electric field. Remarkably, domain switching of copolymer films obeys well the classical domain nucleation and growth model although the origin of ferroelectricity in organic ferroelectric materials inherently differs from the inorganic counterparts. A lower coercivity limit of 50 ...MV/m and 180 domain wall energy of 60 ...mJ/m 2 are determined for P(VDF-TrFE) films. Furthermore, we discover in copolymer films an anomalous temperature-dependent crossover behavior between two power-law scaling regimes of frequency-dependent coercivity, which is attributed to the transition between flow and creep motions of domain walls. Our observations shed new light on the switching dynamics of semi-crystalline ferroelectric polymers, and such understandings are critical for realizing their reliable applications.

  14. Liquid phase deposition of electrochromic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Thomas J.; Rubin, Michael D.

    2000-08-18

    Thin films of titanium, zirconium and nickel oxides were deposited on conductive SnO2:F glass substrates by immersion in aqueous solutions. The films are transparent, conformal, of uniform thickness and appearance, and adhere strongly to the substrates. On electrochemical cycling, TiO2, mixed TiO2-ZrO2, and NiOx films exhibited stable electrochromism with high coloration efficiencies. These nickel oxide films were particularly stable compared with films prepared by other non-vacuum techniques. The method is simple, inexpensive, energy efficient, and readily scalable to larger substrates.

  15. LEO resistant PI-B-PDMS block copolymer films for solar array applications

    NARCIS (Netherlands)

    Lonkhuyzen, H. van; Bongers, E.; Fischer, H.R.; Dingemans, T.J.; Semprimoschnig, C.

    2013-01-01

    Due to their low atomic oxygen erosion yields PI-b-PDMS block copolymer films have considerable potential for application onto space exposed surfaces of satellites in low earth orbit. On solar arrays these materials might be used as electrical electrical insulation film, flexprint outer layer, elect

  16. LEO resistant PI-B-PDMS block copolymer films for solar array applications

    NARCIS (Netherlands)

    Lonkhuyzen, H. van; Bongers, E.; Fischer, H.R.; Dingemans, T.J.; Semprimoschnig, C.

    2013-01-01

    Due to their low atomic oxygen erosion yields PI-b-PDMS block copolymer films have considerable potential for application onto space exposed surfaces of satellites in low earth orbit. On solar arrays these materials might be used as electrical electrical insulation film, flexprint outer layer,

  17. LEO resistant PI-B-PDMS block copolymer films for solar array applications

    NARCIS (Netherlands)

    Lonkhuyzen, H. van; Bongers, E.; Fischer, H.R.; Dingemans, T.J.; Semprimoschnig, C.

    2013-01-01

    Due to their low atomic oxygen erosion yields PI-b-PDMS block copolymer films have considerable potential for application onto space exposed surfaces of satellites in low earth orbit. On solar arrays these materials might be used as electrical electrical insulation film, flexprint outer layer, elect

  18. Thin-film crystalline silicon solar cells

    CERN Document Server

    Brendel, Rolf

    2011-01-01

    This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

  19. A thin-film magnetoresistive angle detector

    NARCIS (Netherlands)

    Eijkel, Kees J.M.; Wieberdink, Johan W.; Fluitman, Jan H.J; Popma, Theo J.A.; Groot, Peter; Leeuwis, Henk

    1990-01-01

    An overview is given of the results of our research on a contactless angle detector based on the anisotropic magnetoresistance effect (AMR effect) in a permalloy thin film. The results of high-temperature annealing treatment of the pemalloy film are discussed. Such a treatment suppresses the effects

  20. Adhesion and friction of thin metal films

    Science.gov (United States)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  1. Flexible Thin Metal Film Thermal Sensing System

    Science.gov (United States)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  2. NLO properties of functionalized DNA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Oksana [University d' Angers, Laboratoire POMA CNRS UMR 6136, France, 2 Bd. Lavoisier, 49045 (France)], E-mail: okrupka@mail.ru; El-ghayoury, Abdelkrim [University d' Angers, UFR Sciences, Laboratoire CIMMA UMR CNRS 6200, 2 Bd. Lavoisier, 49045 (France); Rau, Ileana; Sahraoui, Bouchta [University d' Angers, Laboratoire POMA CNRS UMR 6136, France, 2 Bd. Lavoisier, 49045 (France); Grote, James G. [Air Force Research Laboratory Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, 3005 Hobson Way, Dayton, OH 45433-7707 (United States); Kajzar, Francois [University d' Angers, Laboratoire POMA CNRS UMR 6136, France, 2 Bd. Lavoisier, 49045 (France)

    2008-10-31

    In this paper we investigate the third-order nonlinear optical properties of spin deposited thin films of DNA-based complexes using the optical third harmonic generation (THG) technique at a fundamental wavelength of 1064 nm. We found that the third-order susceptibility, {chi}{sup (3)}(- 3{omega};{omega},{omega},{omega}), of DNA-based films was about one order of magnitude larger than that of our reference, a pure silica slab. In thin films doped with 5% of the chromophore disperse red 1 (DR1), a two order of magnitude larger value of {chi}{sup (3)}(- 3{omega};{omega},{omega},{omega}) was observed.

  3. Thin Ice Films at Mineral Surfaces.

    Science.gov (United States)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood.

  4. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  5. Magnetoelectric thin film composites with interdigital electrodes

    Science.gov (United States)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.

    2013-07-01

    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  6. Study of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.

  7. Tungsten-doped thin film materials

    Science.gov (United States)

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  8. Thin aligned organic polymer films for liquid crystal devices

    CERN Document Server

    Foster, K E

    1997-01-01

    This project was designed to investigate the possibility of producing alignment layers for liquid crystal devices by cross-linking thin films containing anisotropic polymer bound chromophores via irradiation with polarised ultraviolet light. Photocross-linkable polymers find use in microelectronics, liquid crystal displays, printing and UV curable lacquers and inks; so there is an increasing incentive for the development of new varieties of photopolymers in general. The synthesis and characterisation of two new photopolymers that are suitable as potential alignment layers for liquid crystal devices are reported in this thesis. The first polymer contains the anthracene chromophore attached via a spacer unit to a methacrylate backbone and the second used a similarly attached aryl azide group. Copolymers of the new monomers with methyl methacrylate were investigated to establish reactivity ratios in order to understand composition drift during polymerisation.

  9. MOF thin films: existing and future applications.

    Science.gov (United States)

    Shekhah, O; Liu, J; Fischer, R A; Wöll, Ch

    2011-02-01

    The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).

  10. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  11. Sprayed lanthanum doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bouznit, Y., E-mail: Bouznit80@gmail.com [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Beggah, Y. [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Ynineb, F. [Laboratory of Thin Films and Interface, University Mentouri, Constantine 25000 (Algeria)

    2012-01-15

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  12. Sprayed lanthanum doped zinc oxide thin films

    Science.gov (United States)

    Bouznit, Y.; Beggah, Y.; Ynineb, F.

    2012-01-01

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  13. Thermal conductivity of nanoscale thin nickel films

    Institute of Scientific and Technical Information of China (English)

    YUAN Shiping; JIANG Peixue

    2005-01-01

    The inhomogeneous non-equilibrium molecular dynamics (NEMD) scheme is applied to model phonon heat conduction in thin nickel films. The electronic contribution to the thermal conductivity of the film is deduced from the electrical conductivity through the use of the Wiedemann-Franz law. At the average temperature of T = 300 K, which is lower than the Debye temperature ()D = 450 K,the results show that in a film thickness range of about 1-11 nm, the calculated cross-plane thermal conductivity decreases almost linearly with the decreasing film thickness, exhibiting a remarkable reduction compared with the bulk value. The electrical and thermal conductivities are anisotropic in thin nickel films for the thickness under about 10 nm. The phonon mean free path is estimated and the size effect on the thermal conductivity is attributed to the reduction of the phonon mean free path according to the kinetic theory.

  14. Self-assembled antimicrobial and biocompatible copolymer films on titanium.

    Science.gov (United States)

    Pfaffenroth, Cornelia; Winkel, Andreas; Dempwolf, Wibke; Gamble, Lara J; Castner, David G; Stiesch, Meike; Menzel, Henning

    2011-11-10

    Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate self-assemble to form ultrathin layers on titanium surfaces that show antimicrobial activity, and biocompatibility. The copolymer layers are characterized by contact angle measurements, ellipsometry and XPS. Antibacterial activity is assessed by investigation of adherence of S. mutans. Biocompatibility is rated based on human gingival fibroblast adhesion and proliferation. By balancing the opposing effects of the chemical composition on biocompatibility and antimicrobial activity, copolymer coatings are fabricated that are able to inhibit the growth of S. mutans on the surface but still show attachment of gingival fibroblasts, and therefore might prevent biofilm formation on implants.

  15. EFFECT OF MOLECULAR WEIGHT AND FILM THICKNESS ON THE CRYSTALLIZATION AND MICROPHASE SEPARATION IN POLYSTYRENE BLOCK-POLY(L-LACTIC ACID) THIN FILMS AT THE EARLY STAGE

    Institute of Scientific and Technical Information of China (English)

    Yu-han Wei; Cai-yuan Pan; Bin-yao Li; Xin-hong Yu; Yan-chun Han

    2011-01-01

    We investigated the effects of molecular weight and film thickness on the crystallization and microphase separation in semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) (PS-b-PLLA) thin films, at the early stage of film evolution (when Ts < T < TODT) by in situ hot stage atomic force microscopy. For PS-b-PLLA 1 copolymer which had lower molecular weight and higher PLLA fraction, diffusion-controlled break-out crystallization started easily.For PS-b-PLLA 2 with higher molecular weight, crystallization in nanometer scales occurs in local area. After melting of the two copolymer films, islands were observed at the film surface: PS-b-PLLA 1 film was in a disordered phase mixed state while PS-b-PLLA 2 film formed phase-separated lamellar structure paralleling to the substratc. Crystallization-melting and van der Waals forces drove the island formation in PS-b-PLLA 1 film. Film thickness affected the crystallization rate. Crystals grew very slowly in much thinner film ofPS-b-PLLA 1 and remained almost unchanged at long time annealing. The incompatibility between PS and PLLA blocks drove the film fluctuation which subsequently evolved into spinodal-like morphology.

  16. Magnetowetting of Ferrofluidic Thin Liquid Films

    Science.gov (United States)

    Tenneti, Srinivas; Subramanian, Sri Ganesh; Chakraborty, Monojit; Soni, Gaurav; Dasgupta, Sunando

    2017-03-01

    An extended meniscus of a ferrofluid solution on a silicon surface is subjected to axisymmetric, non-uniform magnetic field resulting in significant forward movement of the thin liquid film. Image analyzing interferometry is used for accurate measurement of the film thickness profile, which in turn, is used to determine the instantaneous slope and the curvature of the moving film. The recorded video, depicting the motion of the film in the Lagrangian frame of reference, is analyzed frame by frame, eliciting accurate information about the velocity and acceleration of the film at any instant of time. The application of the magnetic field has resulted in unique changes of the film profile in terms of significant non-uniform increase in the local film curvature. This was further analyzed by developing a model, taking into account the effect of changes in the magnetic and shape-dependent interfacial force fields.

  17. Microdomain orientation dependence on thickness in thin films of cylinder-forming PS-b-PMMA.

    Science.gov (United States)

    Zucchi, I A; Poliani, E; Perego, M

    2010-05-07

    The self-assembly of block-copolymer thin films in periodic nanostructures has received considerable attention during the last decade due to their potential applications in nanofabrication and nanolithography. We followed the morphologies developed in thin films of a cylinder-forming diblock copolymer polystyrene-b-poly(methylmethacrylate) ((PS-b-PMMA), PS 46.1 kg mol( - 1), PMMA 21.0 kg mol( - 1), lattice spacing L(0) = 36 nm), as a function of the film thickness (t), analyzing the effect of thickness commensurability on domain orientation in respect to the substrate. The study was circumscribed to the unexplored range of thickness below L(0). Two thickness windows with perpendicular orientation of the PMMA domains were identified: a well-known window at t approximately L(0) and a new window at t approximately L(0)/2. A half-parallel cylinder morphology was observed for [Formula: see text] with a progressive change in morphology [Formula: see text] when thickness increases from L(0)/2 to L(0). This experimental evidence provides new insights on the mechanism of block copolymers self-organization and indicates the possibility to tune the thickness of the nanostructured polymeric film below L(0), allowing the fabrication of ultrathin soft masks for advanced lithographic processes.

  18. Optical Constants of Cadmium Telluride Thin Film

    Science.gov (United States)

    Nithyakalyani, P.; Pandiaraman, M.; Pannir, P.; Sanjeeviraja, C.; Soundararajan, N.

    2008-04-01

    Cadmium Telluride (CdTe) is II-VI direct band gap semiconductor compound with potential application in Solar Energy conversion process. CdTe thin film of thickness 220 mn was prepared by thermal evaporation technique at a high vacuum better than 10-5 m.bar on well cleaned glass substrates of dimensions (l cm×3 cm). The transmittance spectrum and the reflectance spectrum of the prepared CdTc thin film was recorded using UV-Vis Spectrophotometer in the wavelength range between 300 nm and 900 nm. These spectral data were analyzed and the optical band and optical constants of CdTe Thin film have been determined by adopting suitable relations. The optical band gap of CdTe thin film is found to be 1.56 eV and this value is also agreeing with the published works of CdTe thin film prepared by various techniques. The absorption coefficient (α) has been higher than 106 cm-1. The Refractive index (n) and the Extinction Coefficient (k) are found to be varying from 3.0 to 4.0 and 0.1 Cm-1 to 0.5 Cm-1 respectively by varying the energy from l.0 eV to 4.0 eV. These results are also compared with the literature.

  19. Pulsed laser deposition of ferroelectric thin films

    Science.gov (United States)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  20. Photoluminescence Study of Copper Selenide Thin Films

    Science.gov (United States)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.

    2011-10-01

    Thin films of Copper Selenide of composition of composition Cu7Se4 with thickness 350 nm are deposited on glass substrate at a temperature of 498 K±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%) and Selenium (99.99%) as the elemental starting material. The deposited film is characterized structurally using X-ray Diffraction. The structural parameters such as lattice constant, particle size, dislocation density; number of crystallites per unit area and strain in the film are evaluated. Photoluminescence of the film is analyzed at room temperature using Fluoro Max-3 Spectrofluorometer.

  1. Thin film calorimetry of polymer films

    Science.gov (United States)

    Zhang, Wenhua; Rafailovich, Miriam; Sokolov, Jonathan; Salamon, William

    2000-03-01

    Polystryene and polymethylmethacrylate films for thicknesses ranging from 50nm to 500nm using a direct calorimetric technique (Lai et al, App. Phys. Lett. 67, p9(1995)). Samples were deposited on Ni foils(2-2.5um) and placed in a high vacuum oven. Calibrated heat pulses were input to the polymer films by current pulses to the Ni substrate and temperature changes were determined from the change in Ni resistance. Pulses producing temperature jumps of 3-8K were used and signal averaging over pulses reduced noise levels enough to identify glass transitions down to 50nm. Molecular weight dependence of thick films Tg was used as a temperature calibration.

  2. Self-Assembled Antimicrobial and biocompatible copolymer films on Titanium

    OpenAIRE

    2011-01-01

    Biofilm formation on biomedical devices such as dental implants can result in serious infections and finally in device failure. Polymer coatings which provide antimicrobial action to surfaces without compromising the compatibility with human tissue are of great interest. Copolymers of 4-vinyl-N-hexylpyridinium bromide and dimethyl(2-methacryloyloxyethyl) phosphonate are interesting candidates in this respect. These copolymers form ultrathin polycationic layers on titanium surfaces. As the cop...

  3. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  4. STRUCTURE EVOLUTION OF THE CYLINDRICAL PHASE OF DIBLOCK COPOLYMERS IN FILMS

    Institute of Scientific and Technical Information of China (English)

    Hong-ge Tan; Zi-yu Wang; Wen-fang Zhu; Qing-gong Song; Hui Li; Cui-qin Bai

    2008-01-01

    In the weak segregation limit,the structure evolution of the hexagonal cylindrical phase of diblock copolymers in films was investigated.Employing the Landau-Brazovskii mean field theory,we obtained three amplitude parameters as functions of temperature,surface field strength and film thickness.By controlling confinement size and surface field strength,lamellae and undulated lamellae appear in the cylindrical bulk phase of diblock copolymers."Phase diagrams" of confinement-induced structures are constructed at different surface field strengths.The obtained theoretical results are in agreement with relevant theoretical and experimental results.

  5. Crystallization of zirconia based thin films.

    Science.gov (United States)

    Stender, D; Frison, R; Conder, K; Rupp, J L M; Scherrer, B; Martynczuk, J M; Gauckler, L J; Schneider, C W; Lippert, T; Wokaun, A

    2015-07-28

    The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours. Above 325 °C these films transform nearly instantaneously with a high degree of micro-strain when crystallized below 500 °C. In these films the t'' phase crystallizes which transforms at T > 600 °C to the t' phase upon relaxation of the micro-strain. Furthermore, the crystallization of 8YSZ thin films grown by PLD, spray pyrolysis and dc-sputtering are characterized by in situ XRD measurements. At a constant heating rate of 2.4 K min(-1) crystallization is accomplished after reaching 800 °C, while PLD grown thin films were completely crystallized already at ca. 300 °C.

  6. Antimicrobial films obtained from latex particles functionalized with quaternized block copolymers.

    Science.gov (United States)

    Alvarez-Paino, Marta; Juan-Rodríguez, Rafael; Cuervo-Rodríguez, Rocío; Tejero, Rubén; López, Daniel; López-Fabal, Fátima; Gómez-Garcés, José L; Muñoz-Bonilla, Alexandra; Fernández-García, Marta

    2016-04-01

    New amphiphilic block copolymers with antimicrobial properties were obtained by atom transfer radical polymerization (ATRP) and copper catalyzed cycloaddition following two approaches, a simultaneous strategy or a two-step synthesis, which were proven to be very effective methods. These copolymers were subsequently quaternized using two alkyl chains, methyl and butyl, to amplify their antimicrobial properties and to investigate the effect of alkyl length. Antimicrobial experiments in solution were performed with three types of bacteria, two gram-positive and one gram-negative, and a fungus. Those copolymers quaternized with methyl iodide showed better selectivities on gram-positive bacteria, Staphylococcus aureus and Staphylococcus epidermidis, against red blood cells, demonstrating the importance of the quaternizing agent chosen. Once the solution studies were performed, we prepared poly(butyl methacrylate) latex particles functionalized with the antimicrobial copolymers by emulsion polymerization of butyl methacrylate using such copolymers as surfactants. The characterization by various techniques served to test their effectiveness as surfactants. Finally, films were prepared from these emulsions, and their antimicrobial activity was studied against the gram-positive bacteria. The results indicate that the antimicrobial efficiency of the films depends not only on the copolymer activity but also on other factors such as the surface segregation of the antimicrobial agent to the interface.

  7. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  8. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  9. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  10. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  11. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  12. Multifractal characteristics of titanium nitride thin films

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2015-09-01

    Full Text Available The study presents a multi-scale microstructural characterization of three-dimensional (3-D micro-textured surface of titanium nitride (TiN thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α. Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.

  13. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  14. Magnetically actuated peel test for thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowicki, G.T.; Sitaraman, S.K., E-mail: suresh.sitaraman@me.gatech.edu

    2012-03-30

    Delamination along thin film interfaces is a prevalent failure mechanism in microelectronic, photonic, microelectromechanical systems, and other engineering applications. Current interfacial fracture test techniques specific to thin films are limited by either sophisticated mechanical fixturing, physical contact near the crack tip, or complicated stress fields. Moreover, these techniques are generally not suitable for investigating fatigue crack propagation under cyclical loading. Thus, a fixtureless and noncontact experimental test technique with potential for fatigue loading is proposed and implemented to study interfacial fracture toughness for thin film systems. The proposed test incorporates permanent magnets surface mounted onto micro-fabricated released thin film structures. An applied external magnetic field induces noncontact loading to initiate delamination along the interface between the thin film and underlying substrate. Characterization of the critical peel force and peel angle is accomplished through in situ deflection measurements, from which the fracture toughness can be inferred. The test method was used to obtain interfacial fracture strength of 0.8-1.9 J/m{sup 2} for 1.5-1.7 {mu}m electroplated copper on natively oxidized silicon substrates. - Highlights: Black-Right-Pointing-Pointer Non-contact magnetic actuation test for interfacial fracture characterization. Black-Right-Pointing-Pointer Applied load is determined through voltage applied to the driving electromagnet. Black-Right-Pointing-Pointer Displacement and delamination propagation is measured using an optical profiler. Black-Right-Pointing-Pointer Critical peel force and peel angle is measured for electroplated Cu thin-film on Si. Black-Right-Pointing-Pointer The measured interfacial fracture energy of Cu/Si interface is 0.8-1.9 J/m{sup 2}.

  15. Capillary instabilities in thin films. I. Energetics

    Energy Technology Data Exchange (ETDEWEB)

    Srolovitz, D.J.; Safran, S.A.

    1986-07-01

    A stability theory is presented which describes the conditions under which thin films rupture. It is found that holes in the film will either grow or shrink, depending on whether their initial radius is larger or smaller than a critical value. If the holes grow large enough, they impinge to form islands; the size of which are determined by the surface energies. The formation of grooves where the grain boundary meets the free surface is a potential source of holes which can lead to film rupture. Equilibrium grain boundary groove depths are calculated for finite grain sizes. Comparison of groove depth and film thickness yields microstructural conditions for film rupture. In addition, pits which form at grain boundary vertices, where three grains meet, are another source of film instability.

  16. Tailoring electronic structure of polyazomethines thin films

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2010-09-01

    Full Text Available Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic devices.Findings: The method used allow for pure pristine polymer thin films to be prtepared without any unintentional doping taking place during prepoaration methods. This is a method based on polycondensation process, where polymer chain developing is running directly due to chemical reaction between molecules of bifunctional monomers. The method applied to prepare thin films of polyazomethines takes advantage of monomer transporting by mreans of neutral transport agent as pure argon is.Research limitations/implications: The main disadvantage of alternately conjugated polymers seems to be quite low mobility of charge carrier that is expected to be a consequence of their backbone being built up of sp2 hybridized carbon and nitrogen atoms. Varying technological conditions towards increasing reagents mass transport to the substrate is expected to give such polyazomethine thin films organization that phenylene rin stacking can result in special π electron systems rather than linear ones as it is the case.Originality/value: Our results supply with original possibilities which can be useful in ooking for good polymer materials for optoelectronic and photovoltaic applications. These results have been gained on polyazomethine thin films but their being isoelectronic counterpart to widely used poly p-phenylene vinylene may be very convenient to develop high efficiency polymer solar cells

  17. Magnetite thin films: A simulational approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazo-Zuluaga, J. [Grupo de Estado Solido y Grupo de Instrumentacion Cientifica y Microelectronica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)]. E-mail: jomazo@fisica.udea.edu.co; Restrepo, J. [Grupo de Estado Solido y Grupo de Instrumentacion Cientifica y Microelectronica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)

    2006-10-01

    In the present work the study of the magnetic properties of magnetite thin films is addressed by means of the Monte Carlo method and the Ising model. We simulate LxLxd magnetite thin films (d being the film thickness and L the transversal linear dimension) with periodic boundary conditions along transversal directions and free boundary conditions along d direction. In our model, both the three-dimensional inverse spinel structure and the interactions scheme involving tetrahedral and octahedral sites have been considered in a realistic way. Results reveal a power-law dependence of the critical temperature with the film thickness accordingly by an exponent {nu}=0.81 and ruled out by finite-size scaling theory. Estimates for the critical exponents of the magnetization and the specific heat are finally presented and discussed.

  18. Thin Film Electrodes for Rare Event Detectors

    Science.gov (United States)

    Odgers, Kelly; Brown, Ethan; Lewis, Kim; Giordano, Mike; Freedberg, Jennifer

    2017-01-01

    In detectors for rare physics processes, such as neutrinoless double beta decay and dark matter, high sensitivity requires careful reduction of backgrounds due to radioimpurities in detector components. Ultra pure cylindrical resistors are being created through thin film depositions onto high purity substrates, such as quartz glass or sapphire. By using ultra clean materials and depositing very small quantities in the films, low radioactivity electrodes are produced. A new characterization process for cylindrical film resistors has been developed through analytic construction of an analogue to the Van Der Pauw technique commonly used for determining sheet resistance on a planar sample. This technique has been used to characterize high purity cylindrical resistors ranging from several ohms to several tera-ohms for applications in rare event detectors. The technique and results of cylindrical thin film resistor characterization will be presented.

  19. Feasibility Study of Thin Film Thermocouple Piles

    Science.gov (United States)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  20. Micro-sensor thin-film anemometer

    Science.gov (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  1. Optimisation of superconducting thin films by TEM

    NARCIS (Netherlands)

    Bals, S.; van Tendeloo, G.; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Leca, V.; Salluzzo, M.

    2002-01-01

    High-resolution electron microscopy is used to study the initial growth of different REBa2Cu3O7−δ thin films. In DyBa2Cu3O7−δ ultra-thin films, deposited on TiO2 terminated SrTiO3, two different types of interface arrangements occur: bulk–SrO–TiO2–BaO–CuO–BaO–CuO2–Dy–CuO2–BaO–bulk and bulk–SrO–TiO2–

  2. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  3. Emittance Theory for Thin Film Selective Emitter

    Science.gov (United States)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  4. Environmentally stable sputter-deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, D.J.

    1978-03-01

    Accelerated corrosion data are presented for the titanium-silver and chrome-gold thin film metallization systems presently used at Sandia Laboratories. Improvements in corrosion, hence reliability, as a result of interposing a thin intermediate layer of either platinum or palladium are shown. Potentiometric measurements showing the alteration of corrosion potential with the use of palladium for the titanium-silver system are also presented.

  5. Electrical analysis of niobium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Graça, M.P.F., E-mail: mpfg@ua.pt [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Saraiva, M. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Freire, F.N.A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Valente, M.A.; Costa, L.C. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-06-30

    In this work, a series of niobium oxide thin films was deposited by reactive magnetron sputtering. The total pressure of Ar/O{sub 2} was kept constant at 1 Pa, while the O{sub 2} partial pressure was varied up to 0.2 Pa. The depositions were performed in a grounded and non-intentionally heated substrate, resulting in as-deposited amorphous thin films. Raman spectroscopy confirmed the absence of crystallinity. Dielectric measurements as a function of frequency (40 Hz–110 MHz) and temperature (100 K–360 K) were performed. The dielectric constant for the film samples with thickness (d) lower than 650 nm decreases with the decrease of d. The same behaviour was observed for the conductivity. These results show a dependence of the dielectric permittivity with the thin film thickness. The electrical behaviour was also related with the oxygen partial pressure, whose increment promotes an increase of the Nb{sub 2}O{sub 5} stoichiometry units. - Highlights: • Niobium oxide thin films were deposited by reactive magnetron sputtering. • XRD showed a phase change with the increase of the P(O{sub 2}). • Raman showed that increasing P(O{sub 2}), Nb{sub 2}O{sub 5} amorphous increases. • Conductivity tends to decrease with the increase of P(O{sub 2}). • Dielectric analysis indicates the inexistence of preferential grow direction.

  6. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  7. Transport properties of nanoperforated Nb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Trezza, M., E-mail: trezza@sa.infn.i [Laboratorio Regionale SuperMat, CNR-INFM Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Baronissi I-84081 (Italy); Cirillo, C. [Laboratorio Regionale SuperMat, CNR-INFM Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Baronissi (Saudi Arabia) I-84081 (Italy); Prischepa, S.L. [State University of Informatics and RadioElectronics, P. Brovka Street 6, Minsk 220013 (Belarus); Attanasio, C. [Laboratorio Regionale SuperMat, CNR-INFM Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Baronissi I-84081 (Italy)

    2010-10-01

    Porous silicon, obtained by electrochemical etching, has been used as a substrate for the growth of nanoperforated Nb thin films. The films, deposited by UHV magnetron sputtering, inherited from the Si substrates their structure, made of holes of 10 nm diameter and of 20 and 40 nm spacing, which provide an artificial pinning lattice. Commensurability effects between the Abrikosov vortex lattice and the artificial array of holes were investigated by transport measurements.

  8. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  9. Perovskite thin films via atomic layer deposition.

    Science.gov (United States)

    Sutherland, Brandon R; Hoogland, Sjoerd; Adachi, Michael M; Kanjanaboos, Pongsakorn; Wong, Chris T O; McDowell, Jeffrey J; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J; Sargent, Edward H

    2015-01-01

    A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

  10. Infrared spectroscopy of thin organic films on metal surfaces

    Science.gov (United States)

    Boerio, F. J.; Boerio, J. P.; Bozian, R. C.

    1988-01-01

    The principles of external reflection infrared spectroscopy for obtaining spectra of thin films on surfaces by reflecting infrared radiation from the surface at large, almost grazing angles, were reviewed and new applications were described. Infrared spectra of monomolecular films formed by myristic acid adsorbed from dilute solutions in nitrobenzene onto aluminum and chromium were obtained. Adsorption onto both substrates involved dissociation of the acid groups to form carboxylate species but undissociated monomer was retained in the films formed on aluminum. Myristic acid was adsorbed onto aluminum with a vertical conformation in which the twofold symmetry axes of the carboxylate groups were nearly perpendicular to the surface of the substrate. The twofold axes of the carboxylate groups were more inclined with respect to the normal to the surface for the chromium substrates. Terephthalic acid and terephthalic acid-d 4 were adsorbed onto aluminum from dilute solutions in ethanol with a vertical conformation in which one acid group was dissociated to form a salt with a metal ion in the substrate while the other acid group may have formed hydrogen bonds with neighboring molecules. When thin films of ethylene/vinyl acetate copolymers were applied to the aluminized back sides of silicon solar cells which were then immersed in boiling water for a few minutes, the hydrated oxide pseudoboehmite rapidly formed at the interface. A primer containing γ-methacryoxypropyltrimethoxysilane (γ-MPS) inhibited the formation of pseudoboehmite from the rough aluminized back sides of crystalline silicon cells but not from the smooth aluminized back sides of amorphous cells.

  11. YBCO thin films in ac and dc films

    CERN Document Server

    Shahzada, S

    2001-01-01

    We report studies on the dc magnetization of YBCO thin films in simultaneously applied dc and ac fields. The effect of the ac fields is to decrease the irreversible magnetization drastically leading to complete collapse of the hysteresis loops for relatively small ac fields (250e). The magnitude of the decrease depends on the component of the ac field parallel to the c-axis. The decrease is non-linear with ac amplitude and is explained in the framework of the critical state response of ultra thin films in perpendicular geometry. The ac fields increase the relaxation rapidly at short times while the long time response appears unaffected. (author)

  12. Workshop on thin film thermal conductivity measurements

    Science.gov (United States)

    Feldman, Albert; Balzaretti, Naira M.; Guenther, Arthur H.

    1998-04-01

    On a subject of considerable import to the laser-induced damage community, a two day workshop on the topic, Thin Film Thermal Conductivity Measurement was held as part of the 13th Symposium on Thermophysical Properties at the University of Colorado in Boulder CO, June 25 and 26, 1997. The Workshop consisted of 4 sessions of 17 oral presentations and two discussion sessions. Two related subjects of interest were covered; 1) methods and problems associated with measuring thermal conductivity ((kappa) ) of thin films, and 2) measuring and (kappa) of chemical vapor deposited (CVD) diamond. On the subject of thin film (kappa) measurement, several recently developed imaginative techniques were reviewed. However, several authors disagreed on how much (kappa) in a film differs from (kappa) in a bulk material of the same nominal composition. A subject of controversy was the definition of an interface. In the first discussion session, several questions were addressed, a principal one being, how do we know that the values of (kappa) we obtain are correct and is there a role for standards in thin film (kappa) measurement. The second discussion session was devoted to a round-robin interlaboratory comparison of (kappa) measurements on a set of CVD diamond specimens and several other specimens of lower thermal conductivity. Large interlaboratory differences obtained in an earlier round robin had been attributed to specimen inhomogeneity. Unfortunately, large differences were also observed in the second round robin even though the specimens were more homogenous. There was good consistency among the DC measurements, however, the AC measurements showed much greater variability. There was positive feedback from most of the attenders regarding the Workshop with nearly all respondents recommending another Workshop in three or fewer years. There was general recognition that thin film thermal conductivity measurements are important for predicting the resistance of optical coating

  13. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Study of iron mononitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil, E-mail: mgupta@csr.res.in; Gupta, Mukul, E-mail: mgupta@csr.res.in; Phase, D. M., E-mail: mgupta@csr.res.in; Reddy, V. R., E-mail: mgupta@csr.res.in; Gupta, Ajay, E-mail: mgupta@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore,-452001 (India)

    2014-04-24

    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  15. Epitaxy of layered semiconductor thin films

    Science.gov (United States)

    Brahim Otsmane, L.; Emery, J. Y.; Jouanne, M.; Balkanski, M.

    1993-03-01

    Epilayers of InSe on InSe(00.1) and GaSe(00.1) have been grown by the molecular beam epitaxy (MBE) technique. Raman spectroscopy was used for a characterization of the structure and crystallinity in InSe/InSe(00.1) (homoepitaxy) and InSe/GaSe(00.1) (heteroepitaxy). The Raman spectra of the InSe thin films are identical to those of polytype γ-InSe. An activation of the E(LO) mode at 211 cm -1 is observed in these films here. Scanning electron microscopy (SEM) is also used to investigate surfaces of these films.

  16. The radiation response of mesoporous nanocrystalline zirconia thin films

    Science.gov (United States)

    Manzini, Ayelén M.; Alurralde, Martin A.; Giménez, Gustavo; Luca, Vittorio

    2016-12-01

    The next generation of nuclear systems will require materials capable of withstanding hostile chemical, physical and radiation environments over long time-frames. Aside from its chemical and physical stability, crystalline zirconia is one of the most radiation tolerant materials known. Here we report the first ever study of the radiation response of nanocrystalline and mesoporous zirconia and Ce3+-stabilized nanocrystalline zirconia (Ce0.1Zr0.9O2) thin films supported on silicon wafers. Zirconia films prepared using the block copolymer Brij-58 as the template had a thickness of around 60-80 nm. In the absence of a stabilizing trivalent cation they consisted of monoclinic and tetragonal zirconia nanocrystals with diameters in the range 8-10 nm. Films stabilized with Ce3+ contained only the tetragonal phase. The thin films were irradiated with iodine ions of energies of 70 MeV and 132 keV at low fluences (1013 - 1014 cm-2) corresponding to doses of 0.002 and 1.73 dpa respectively, and at 180 keV and high fluences (2 × 1016 cm-2) corresponding to 82.4 dpa. The influence of heavy ion irradiation on the nanocrystalline structure was monitored through Rietveld analysis of grazing incidence X-ray diffraction (GIXRD) patterns recorded at angles close to the critical angle to ensure minimum contribution to the diffraction pattern from the substrate. Irradiation of the mesoporous nanocrystalline zirconia thin films with 70 MeV iodine ions, for which electronic energy loss is dominant, resulted in slight changes in phase composition and virtually no change in crystallographic parameters as determined by Rietveld analysis. Iodine ion bombardment in the nuclear energy loss regime (132-180 keV) at low fluences did not provoke significant changes in phase composition or crystallographic parameters. However, at 180 keV and high fluences the monoclinic phase was totally eliminated from the GIXRD pattern of films prepared at both 350 and 500 °C implying either a monoclinic

  17. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  18. Thin films for micro solid oxide fuel cells

    Science.gov (United States)

    Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U. P.; Prestat, M.; Rupp, J. L. M.; Gauckler, L. J.

    Thin film deposition as applied to micro solid oxide fuel cell (μSOFC) fabrication is an emerging and highly active field of research that is attracting greater attention. This paper reviews thin film (thickness ≤1 μm) deposition techniques and components relevant to SOFCs including current research on nanocrystalline thin film electrolyte and thin-film-based model electrodes. Calculations showing the geometric limits of μSOFCs and first results towards fabrication of μSOFCs are also discussed.

  19. ARTICLES: Dissipative Particle Dynamics Simulation of Microscopic Properties in Diblock Copolymer Films

    Science.gov (United States)

    Xu, Yi; Song, Xiao-yu; Zhang, Zhang; Wang, Yong; Chen, Jie; Zhu, Xian

    2010-06-01

    Mean-square bond length, root-mean-square end-to-end distance and gyration radius in diblock copolymer films have been studied by dissipative particle dynamics simulations. Results show evident linear trends of any property separately with the thickness of film, the interaction between particles of different types, the repulsion between particle and boundary, except for the dependence of the variations of mean-square bond length on the thickness of film, which exhibits as a wave trend. What's more, the varying trends of mean-square bond length and root-mean-square end-to-end distance can correspond to each other. The density distribution of either component in diblock copolymer film can be controlled and adjusted effectively through its interaction with boundary.

  20. Alkylated selenophene-based ladder-type monomers via a facile route for high performance thin-film transistor applications

    KAUST Repository

    Fei, Zhuping

    2017-05-26

    We report the synthesis of two new selenophene containing ladder-type monomers, cyclopentadiselenophene (CDS) and indacenodiselenophene (IDSe), via a twofold and fourfold Pd catalyzed coupling with a 1,1-diborylmethane derivative. Co-polymers with benzothiadiazole (BT) were prepared in high yield by Suzuki polymerization to afford co-polymers which exhibited excellent solubility in a range of non-chlorinated solvents. The CDS co-polymer exhibited a band gap of just 1.18 eV, which is amongst the lowest reported for donor-acceptor polymers. Thin-film transistors were fabricated using environmentally benign, non-chlorinated solvents with the CDS and IDSe co-polymers exhibiting hole mobility up to 0.15 and 6.4 cm2 /Vs, respectively. This high performance was achieved without the undesirable peak in mobility often observed at low gate voltages due to parasitic contact resistance.

  1. Ternary compound thin film solar cells

    Science.gov (United States)

    Kazmerski, L. L.

    1975-01-01

    A group of ternary compound semiconductor (I-III-VI2) thin films for future applications in photovoltaic devices is proposed. The consideration of these materials (CuInSe2, CuInTe2 and especially CuInS2) for long range device development is emphasized. Much of the activity to date has been concerned with the growth and properties of CuInX2 films. X-ray and electron diffraction analyses, Hall mobility and coefficient, resistivity and carrier concentration variations with substrate and film temperature as well as grain size data have been determined. Both p- and n-type films of CuInS2 and CuInSe2 have been produced. Single and double source deposition techniques have been utilized. Some data have been recorded for annealed films.

  2. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    G V Kunte; S A Shivashankar; A M Umarji

    2008-11-01

    Thin films of the hydrated phase of tungsten oxide, hydrotungstite (H2WO4.H2O), have been grown on glass substrates using a dip-coating technique. The -axis oriented films have been characterized by X-ray diffraction and scanning electron microscopy. The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations and on conductivity measurements, a novel sensing mechanism based on protonic conduction within the surface layers adsorbed onto the hydrotungstite film is proposed.

  3. Correlated dewetting patterns in thin polystyrene films

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Chiara [Department of Applied Physics, University of Ulm, Albert Einstein Allee 11, D-89069 Ulm (Germany); Jacobs, Karin [Department of Applied Physics, University of Ulm, Albert Einstein Allee 11, D-89069 Ulm (Germany); Seemann, Ralf [Department of Applied Physics, University of Ulm, Albert Einstein Allee 11, D-89069 Ulm (Germany); Blossey, Ralf [Centre for Bioinformatics, Saarland University, PO Box 151150, D-66041 Saarbruecken (Germany); Becker, Juergen [Institute of Applied Mathematics, University of Bonn, Beringstr. 6, D-53115 Bonn (Germany); Gruen, Guenther [Institute of Applied Mathematics, University of Bonn, Beringstr. 6, D-53115 Bonn (Germany)

    2003-01-15

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  4. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  5. Direct synthesis of inverse hexagonally ordered diblock copolymer/polyoxometalate nanocomposite films

    NARCIS (Netherlands)

    Lunkenbein, T.; Kamperman, M.M.G.; Li, Z.; Bojer, C.; Drechsler, M.; Forster, S.; Wiesner, U.; Muller, A.; Breu, J.

    2012-01-01

    Nanostructured inverse hexagonal polyoxometalate composite films were cast directly from solution using poly(butadiene-block-2-(dimethylamino)ethyl methacrylate) (PB-b-PDMAEMA) diblock copolymers as structure directing agents for phosphomolybdic acid (H(3)[PMo(12)O(40)], H(3)PMo). H(3)PMo units are

  6. Gas plasma etching of PEO/PBT segmented block copolymer films

    NARCIS (Netherlands)

    Olde riekerink, M.B.; Claase, M.B.; Engbers, G.H.M.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    A series of poly(ethylene oxide)/poly(butylene terephthalate) (PEO/PBT) segmented block copolymer films was treated with a radio-frequency carbon dioxide (CO2) or with argon (Ar) plasma. The effects of (preferential) etching on surface structure, topography, chemistry, and wettability were studied

  7. Amorphous silicon for thin-film transistors

    NARCIS (Netherlands)

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and addres

  8. Electrostatic Discharge Effects in Thin Film Transistors

    NARCIS (Netherlands)

    Golo, Natasa

    2002-01-01

    Although amorphous silicon thin film transistors (α-Si:H TFT’s) have a very low electron mobility and pronounced instabilities of their electrical characteristics, they are still very useful and they have found their place in the semiconductors industry, as they possess some very good properties: th

  9. Thin-Film Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  10. Welding Wires To Thin Thermocouple Films

    Science.gov (United States)

    Holanda, Raymond; Kim, Walter S.; Danzey, Gerald A.; Pencil, Eric; Wadel, Mary

    1993-01-01

    Parallel-gap resistance welding yields joints surviving temperatures of about 1,000 degrees C. Much faster than thermocompression bonding. Also exceeds conductive-paste bonding and sputtering thin films through porous flame-sprayed insulation on prewelded lead wires. Introduces no foreign material into thermocouple circuit and does not require careful control of thickness of flame-sprayed material.

  11. Intelligent Processing of Ferroelectric Thin Films

    Science.gov (United States)

    1994-05-31

    unsatisfactory. To detect the electroopic effects of thin films deposited on opaque substrates a waveguide refractometry of category 3 was reported. An advantage...of the waveguide refractometry is its capability of resolving the change in ordinary index from the change in the extraordinary index. Some successes

  12. Recent progress in thin film organic photodiodes

    NARCIS (Netherlands)

    Inganäs, Olle; Roman, Lucimara S.; Zhang, Fengling; Johansson, D.M.; Andersson, M.R.; Hummelen, J.C.

    2001-01-01

    We review current developments in organic photodiodes, with special reference to multilayer thin film optics, and modeling of organic donor-acceptor photodiodes. We indicate possibilities to enhance light absorption in devices by nanopatterning as well as by blending, and also discuss materials

  13. Recent progress in thin film organic photodiodes

    NARCIS (Netherlands)

    Inganäs, Olle; Roman, Lucimara S.; Zhang, Fengling; Johansson, D.M.; Andersson, M.R.; Hummelen, J.C.

    2001-01-01

    We review current developments in organic photodiodes, with special reference to multilayer thin film optics, and modeling of organic donor-acceptor photodiodes. We indicate possibilities to enhance light absorption in devices by nanopatterning as well as by blending, and also discuss materials scie

  14. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and prem

  15. Polarization Fatigue in Ferroelectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    王忆; K.H.WONG; 吴文彬

    2002-01-01

    The fatigue problem in ferroelectric thin films is investigated based on the switched charge per unit area versus switching cycles. The temperature, dielectric permittivity, voltage bias, frequency and defect valence dependent switching polarization properties are calculated quantitatively with an extended Dawber-Scott model. The results are in agreement with the recent experiments.

  16. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic inst

  17. Rechargeable Thin-film Lithium Batteries

    Science.gov (United States)

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  18. Bilaterally Microstructured Thin Polydimethylsiloxane Film Production

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Yu, Liyun; Hassouneh, Suzan Sager;

    2015-01-01

    Thin PDMS films with complex microstructures are used in the manufacturing of dielectric electro active polymer (DEAP) actuators, sensors and generators, to protect the metal electrode from large strains and to assure controlled actuation. The current manufacturing process at Danfoss Polypower A/...

  19. Flexible thin-film NFC tags

    NARCIS (Netherlands)

    Myny, K.; Tripathi, A.K.; Steen, J.L. van der; Cobb, B.

    2015-01-01

    Thin-film transistor technologies have great potential to become the key technology for leafnode Internet of Things by utilizing the NFC protocol as a communication medium. The main requirements are manufacturability on flexible substrates at a low cost while maintaining good device performance char

  20. Bauschinger effect in unpassivated freestanding thin films

    NARCIS (Netherlands)

    Shishvan, S.S.; Nicola, L.; Van der Giessen, E.

    2010-01-01

    Two-dimensional (2D) discrete dislocation plasticity simulations are carried out to investigate the Bauschinger effect (BE) in freestanding thin films. The BE in plastic flow of polycrystalline materials is generally understood to be caused by inhomogeneous deformation during loading, leading to res

  1. Quasifree Mg–H thin films

    NARCIS (Netherlands)

    Baldi, A.; Palmisano, V.; Gonzalez-Silveira, M.; Pivak, Y.; Slaman, M.; Schreuders, H.; Dam, B.; Griessen, R.

    2009-01-01

    The thermodynamics of hydrogen absorption in Pd-capped Mg films are strongly dependent on the magnesium thickness. In the present work, we suppress such dependency by inserting a thin Ti layer between Mg and Pd. By means of optical measurements, we show that the surface energy contribution to the de

  2. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  3. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c. depos...

  4. Resistance contact thin-film resistor

    Directory of Open Access Journals (Sweden)

    Spirin V. G.

    2008-10-01

    Full Text Available The analytical model of the calculation of the contact resistance of the thin-film resistor is Offered. The Explored dependency of the contact resistance from wedge of the pickling. The Considered influence adhesive layer on warm-up stability of the resistor. They Are Received formulas of the calculation systematic and casual inaccuracy contributed by contact resistance.

  5. Electrical characterization of thin film ferroelectric capacitors

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D.; Keur, W.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon

  6. Surface roughness evolution of nanocomposite thin films

    NARCIS (Netherlands)

    Turkin, A; Pei, Y.T.; Shaha, K.P.; Chen, C.Q.; Vainchtein, David; Hosson, J.Th.M. De

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growin

  7. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  8. Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films

    OpenAIRE

    2013-01-01

    Electrodeposition technique was employed to deposit cuprous oxide Cu2O thin films. In this work, Cu2O thin films have been grown on fluorine doped tin oxide (FTO) transparent conducting glass as a substrate by potentiostatic deposition of cupric acetate. The effect of deposition time on the morphologies, crystalline, and optical quality of Cu2O thin films was investigated.

  9. Monte Carlo simulation of magnetic nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu

    2004-01-01

    @@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.

  10. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  11. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  12. Nonlocal thin films in calculations of the Casimir force

    NARCIS (Netherlands)

    Esquivel-Sirvent, R.; Svetovoy, V.B.

    2005-01-01

    The Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than th

  13. Review of Zinc Oxide Thin Films

    Science.gov (United States)

    2014-12-23

    the increase in ionized impurity scattering.       Figure 1.48: Resistivity versus %Ga [125]  ZnO:Ga films were also  deposited  by  spray   pyrolysis ...Ilican  [137]  deposited   In‐doped  ZnO  thin  films  onto  glass  substrates  by  the  spray   pyrolysis   method at 350 oC substrate temperature. The...structure  of  ZnO  presented  the  following  findings:     The Polycrystalline ZnO  thin  films were  deposited  on a glass  substrate by a  spray

  14. MISSE 5 Thin Films Space Exposure Experiment

    Science.gov (United States)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  15. Controlling the morphology of thin titania films for applications in hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rawolle, Monika; Ruderer, Matthias A.; Prams, Stefan; Zhong, Qi; Mueller-Buschbaum, Peter [TU Muenchen, Physik-Department LS E13, Garching (Germany); Memesa, Mine; Gutmann, Jochen S. [Max-Planck Institute for Polymer Research, Mainz (Germany)

    2010-07-01

    Nanostructured thin films of titania have a variety of applications. For applications in photovoltaics a high absorption coefficient and a large surface area are desirable. A sponge structure is a promising morphology for titania to meet these demands. Block copolymers can be used in a good-poor solvent pair induced phase separation process coupled with sol-gel chemistry to create structured titania films in a reproducible way. We use the amphiphilic diblock copolymer Poly(dimethyl siloxane)-block-methyl methacrylate poly(ethylene oxide)[PDMS-b-MA(PEO)] as templating agent. Different well defined mixing procedures of sol-gel components (Tetrahydrofuran, 2-Propanol, HCl and titania precursor in addition to the PDMS-b-MA(PEO)) of same weight fractions result in small changes in the morphology of the film. The thin films are prepared via spin-coating on silicon substrates. The surface structure is studied with SEM. Information on the morphology in the volume of the film is gained from GISAXS. The layer thickness and structure are studied with XRR, the optical properties with UV/Vis spectroscopy.

  16. Structure and Luminescence Properties of Eu3+-Doped Cubic Mesoporous Silica Thin Films

    Directory of Open Access Journals (Sweden)

    Lu Qingshan

    2010-01-01

    Full Text Available Abstract Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol–gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration.

  17. Structure and luminescence properties of eu3+-doped cubic mesoporous silica thin films.

    Science.gov (United States)

    Lu, Qingshan; Wang, Zhongying; Wang, Peiyu; Li, Jiangong

    2010-02-11

    Eu3+ ions-doped cubic mesoporous silica thin films with a thickness of about 205 nm were prepared on silicon and glass substrates using triblock copolymer as a structure-directing agent using sol-gel spin-coating and calcination processes. X-ray diffraction and transmission electron microscopy analysis show that the mesoporous silica thin films have a highly ordered body-centered cubic mesoporous structure. High Eu3+ ion loading and high temperature calcination do not destroy the ordered cubic mesoporous structure of the mesoporous silica thin films. Photoluminescence spectra show two characteristic emission peaks corresponding to the transitions of5D0-7F1 and 5D0-7F2 of Eu3+ ions located in low symmetry sites in mesoporous silica thin films. With the Eu/Si molar ratio increasing to 3.41%, the luminescence intensity of the Eu3+ ions-doped mesoporous silica thin films increases linearly with increasing Eu3+ concentration.

  18. Thin blend films of cellulose and polyacrylonitrile

    Science.gov (United States)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  19. Thin-film semiconductor rectifier has improved properties

    Science.gov (United States)

    1966-01-01

    Cadmium selenide-zinc selenide film is used as a thin film semiconductor rectifier. The film is vapor-deposited in a controlled concentration gradient into a glass substrate to form the required junctions between vapor-deposited gold electrodes.

  20. Thin Film Electrochemical Power Cells

    Science.gov (United States)

    1991-01-01

    Anion Intercalating Polymer Cathode", proceedings of symposium on Lithium Batteries, The Electrochemical Society , Hollywood, Florida. K. Naoi, W.H...of symposium on Lithium Batteries, The Electrochemical Society , Hollywood, Florida. M. Lien and W.H. Smyrl, "An Impedance Study of Polyvinylferrocene...Films", in Transient Techniques in Corrosion Science and Engineering, eds. W.H. Smyrl, et al., Electrochemical Society , 1989. K, Naoi, M.M. Lien and

  1. Thin film bismuth iron oxides useful for piezoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  2. Polycrystalline thin film materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  3. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  4. When are thin films of metals metallic?

    Science.gov (United States)

    Plummer, E. W.; Dowben, P. A.

    1993-04-01

    There is an increasing body of experimental information suggesting that very thin films of materials, normally considered to be metals, exhibit behavior characteristic of a nonmetal. In almost all cases, there is a nonmetal-to-metal transition as a function of film density or thickness, frequently accompanied by a structural transition. Amazingly, this behavior seems to occur for metal films on metal substrates, as well as for metals on semiconductors. The identification of this phenomena and the subsequent explanation has been slow in developing, due to the inability to directly measure the conductivity of a submonolayer film. This paper will discuss the evidence accumulated from variety of spectroscopic experimental techniques for three systems: a Mott-Hubbard transition, a Peierls-like distortion, and a Wilson transition.

  5. Energetic deposition of thin metal films

    CERN Document Server

    Al-Busaidy, M S K

    2001-01-01

    deposited films. The primary aim of this thesis was to study the physical effect of energetic deposition metal thin films. The secondary aim is to enhance the quality of the films produced to a desired quality. Grazing incidence X-ray reflectivity (GIXR) measurements from a high-energy synchrotron radiation source were carried out to study and characterise the samples. Optical Profilers Interferometery, Atomic Force Microscope (AFM), Auger electron spectroscopy (AES), Medium energy ion spectroscopy (MEIS), and the Electron microscope studies were the other main structural characterisation tools used. AI/Fe trilayers, as well as multilayers were deposited using a Nordico planar D.C. magnetron deposition system at different voltage biases and pressures. The films were calibrated and investigated. The relation between energetic deposition variation and structural properties was intensely researched. Energetic deposition refers to the method in which the deposited species possess higher kinetic energy and impact ...

  6. Cathodoluminescence degradation of PLD thin films

    Science.gov (United States)

    Swart, H. C.; Coetsee, E.; Terblans, J. J.; Ntwaeaborwa, O. M.; Nsimama, P. D.; Dejene, F. B.; Dolo, J. J.

    2010-12-01

    The cathodoluminescence (CL) intensities of Y2SiO5:Ce3+, Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+ phosphor thin films that were grown by pulsed laser deposition (PLD) were investigated for possible application in low voltage field emission displays (FEDs) and other infrastructure applications. Several process parameters (background gas, laser fluence, base pressure, substrate temperature, etc.) were changed during the deposition of the thin films. Atomic force microscopy (AFM) was used to determine the surface roughness and particle size of the different films. The layers consist of agglomerated nanoparticle structures. Samples with good light emission were selected for the electron degradation studies. Auger electron spectroscopy (AES) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of the thin films. AES and CL spectroscopy were done with 2 keV energy electrons. Measurements were done at 1×10-6 Torr oxygen pressure. The formation of different oxide layers during electron bombardment was confirmed with X-ray photoelectron spectroscopy (XPS). New non-luminescent layers that formed during electron bombardment were responsible for the degradation in light intensity. The adventitious C was removed from the surface in all three cases as volatile gas species, which is consistent with the electron stimulated surface chemical reaction (ESSCR) model. For Y2SiO5:Ce3+ a luminescent SiO2 layer formed during the electron bombardment. Gd2O3 and SrO thin films formed on the surfaces of Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+, respectively, due to ESSCRs.

  7. Thin Films for Coating Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    S.M.Mukhopadhyay; P.Joshi; R.V.Pulikollu

    2005-01-01

    For nano-structured solids (those with one or more dimensions in the 1-100 nm range), attempts of surface modification can pose significant and new challenges. In traditional materials, the surface coating could be several hundreds nanometers in thickness, or even microns and millimeters. In a nano-structured material, such as particle or nanofibers, the coating thickness has to be substantially smaller than the bulk dimensions (100 nm or less), yet be durable and effective. In this paper, some aspects of effective nanometer scale coatings have been discussed. These films have been deposited by a non-line of sight (plasma)techniques; and therefore, they are capable of modifying nanofibers, near net shape cellular foams, and other high porosity materials. Two types of coatings will be focused upon: (a) those that make the surface inert and (b) those designed to enhance surface reactivity and bonding. The former has been achieved by forming 1-2 nm layer of -CF2- (and/or CF3) groups on the surface, and the latter by creating a nanolayer of SiO2-type compound. Nucleation and growth studies of the plasma-generated film indicate that they start forming as 2-3 nm high islands that grow laterally, and eventually completely cover the surface with 2-3nm film. Contact angle measurements indicate that these nano-coatings are fully functional even before they have achieved complete coverage of 2-3 nm. They should therefore be applicable to nano-structural solids.This is corroborated by application of these films on vapor grown nanofibers of carbon, and on graphitic foams. Coated and uncoated materials are infiltrated with epoxy matrix to form composites and their microstructure, as well as mechanical behaviors are compared. The results show that the nano-oxide coating can significantly enhance bond formation between carbon and organic phases, thereby enhancing wettability,dispersion, and composite behavior. The fluorocarbon coating, as expected, reduces bond formation, and

  8. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  9. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dongsook [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Huang, Aaron [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Olsen, Bradley D. [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA

    2016-11-04

    The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  10. Deposition and characterization of CuInS2 thin films deposited over copper thin films

    Science.gov (United States)

    Thomas, Titu; Kumar, K. Rajeev; Kartha, C. Sudha; Vijayakumar, K. P.

    2015-06-01

    Simple, cost effective and versatile spray pyrolysis method is effectively combined with vacuum evaporation for the deposition of CuIns2 thin films for photovoltaic applications. In the present study In2s3 was spray deposited over vacuum evaporated Cu thin films and Cu was allowed to diffuse in to the In2S3 layer to form CuInS2. To analyse the dependence of precursor volume on the formation of CuInS2 films structural, electrical and morphological analzes are carried out. Successful deposition of CuInS2thin films with good crystallinity and morphology with considerably low resistivity is reported in this paper.

  11. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  12. Electrochromism in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  13. Thin film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  14. Magnetic Thin Films of Inorganic Nanosheets

    Science.gov (United States)

    Yamamoto, Takashi; Namba, Hiroaki; Einaga, Yasuaki

    2012-02-01

    Molecule-based magnets have been fascinating materials because of the potential applications in information storage, electronic and spintronic devices. However, such applications would require arraying the active materials on a substrate or interfacing with other components. Here, we focus on fabricating multi-functional magnetic films using inorganic nanosheets as a building block. The thin films could be prepared by the modified Langmuir-Blodgett, LB, technique or the layer-by-layer, LbL, method, which are representative wet-processings for film preparation. As the magnetic LB film, we chose semiconductive titania nanosheets and magnetic Prussian Blue. Upon band gap excitation of titania nanosheets, electron injection into Prussian Blue was achieved with scavenging interlayer water molecules, leading to photoreduction to Prussian White. As the magnetic LbL film, we chose magnetic layered double hydroxide, LDH, nanosheets and non-magnetic smectite nanosheets. In powdered LDH, a coercivity increased with expanding the interlayer spacing. On the other hand, despite the larger interlayer spacing for the LbL film, a coercivity was less than that of the comparative powdered LDH. It is indicated LDH nanosheets are integrated in an anisotropic manner in the LbL films.

  15. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...... is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally...

  16. INVESTIGATION OF PHOTOELECTROCHROMIC THIN FILM AND DEVICE

    Institute of Scientific and Technical Information of China (English)

    M.J. Chen; H. Shen

    2005-01-01

    Photoelectrochromic device is a combination of dye-sensitized solar cells and electrochromic WO3 layers. Ectrochroelmic WO3 layer and TiO2 layer had been prepared by the sol-gel process, then be assembled to pohotoelectrochromic device. The effects of heating temperature on photoelectrochromic were investigated. The results showed that thin films prepared by dip-coating and spin-coating had good film quality and the device made by the method mentioned in the paper had good photoelectrochromie properties.

  17. Electrostatic Discharge Effects on Thin Film Resistors

    Science.gov (United States)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  18. Multiferroic oxide thin films and heterostructures

    Science.gov (United States)

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tom

    2015-06-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  19. Multiferroic oxide thin films and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chengliang, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Hu, Weijin; Wu, Tom, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Tian, Yufeng [School of Physics, Shandong University, Jinan 250100 (China)

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  20. Triboelectric Nanogenerator Using Lithium Niobate Thin Film

    Science.gov (United States)

    Geng, Juan; Zhang, Xinzheng; Kong, Yongfa; Xu, Jingjun

    2017-06-01

    We present a triboelectric nanogenerator (TENG) using a lithium niobate thin film, as one of the triboelectric pairs which was grown on a silicon substrate by laser molecule beam epitaxy (LMBE). The designed TENG has the advantages of simple structure, easy fabrication, small size (1.1*1.0*0.15 cm3). An open-circuit voltage of 136 V and a short-circuit current of 8.40 μA have been achieved. The maximum output power is 307.5μW under the load resistance of 10MΩ. This is the first time to use lithium niobate thin film as one of the friction pair, which may make it possible to expand the application of triboelectric nanogenerator to optical field.

  1. Thin Films of Polypyrrole on Particulate Aluminum

    Science.gov (United States)

    2009-02-01

    C H R I S T O P H E R V E T T E R , X I A O N I N G Q I , S U B R A M A N Y A M V . K A S I S O M A Y A J U L A , A N D Thin Films of Polypyrrole on...1. REPORT DATE FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Thin Films of Polypyrrole on...layer 3 Why Polypyrrole /Flake? Polypyrrole  Poor mechanical properties  Poor adhesion  Solubility issues  Continuous layer needed 4 Polypyrrole Coated

  2. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [ed.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  3. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. (ed.)

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  4. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  5. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    Science.gov (United States)

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased.

  6. Porosity and mechanical properties of mesoporous thin films assessed by environmental ellipsometric porosimetry.

    Science.gov (United States)

    Boissiere, Cédric; Grosso, David; Lepoutre, Sophie; Nicole, Lionel; Bruneau, Aline Brunet; Sanchez, Clément

    2005-12-20

    Mesoordered silica thin films with cubic structures were prepared by evaporation induced self-assembly (EISA) with two types of structuring agent (CTAB and block copolymer F127). A complete and accurate description of these films was obtained by combining 2D-SAXS analyses, variable angle spectroscopic ellipsometry, and a specially designed environmental ellipsometric porosimetry (EEP) experiment. The EEP analysis is rapid and cheap and operates at ambient pressure and temperature. This latter experiment was performed with water and produced a set of water adsorption-desorption isotherms. A modified Kelvin equation, coupled with a modelisation of pores contraction, enabled the determination of the structural parameters of films porous networks: ellipsoidal pore diameters, porous volume, and surface area. Young moduli of films in the direction perpendicular to the substrates were calculated from these parameters.

  7. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  8. Rechargeable thin-film lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6-{mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin-film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin-film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin-film lithium batteries.

  9. Incoherent and Laser Photodeposition on Thin Films.

    Science.gov (United States)

    1980-09-01

    mixing system. Both a carbon dioxide and dry chemical fire extinguisher were on hand in case a fire was initiated by the compounds. The dimethvlzinc was...summarizes three months of experimental effort devoted toward the production of thin films by the photodissociation of organometallic molecules containing the...that the threshold wavelength for the photodissociation of both Zn- 0 and Se- (CH3 )2 was approximately 2420A. Consequently, these laser photodeposition

  10. Quantized Nanocrystalline CdTe Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline CdTe thin films were prepared by asymmetric rectangular pulse electrodeposition in organic solution at 110°C. STM image shows a porous network morphology constructed by interconnected spherical CdTe crystallites with a mean diameter of 4.2 nm. A pronounced size quantization was indicated in the action and absorption spectra. Potentials dependence dual conductive behavior was revealed in the photocurrent-potential (I-V) curves.

  11. Surface morphology of thin films polyoxadiazoles

    OpenAIRE

    J. Weszka; M.M. Szindler; M. Chwastek-Ogierman; BRUMA M.; P. Jarka; Tomiczek, B.

    2011-01-01

    urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used....

  12. Additives to silane for thin film silicon photovoltaic devices

    Science.gov (United States)

    Hurley, Patrick Timothy; Ridgeway, Robert Gordon; Hutchison, Katherine Anne; Langan, John Giles

    2013-09-17

    Chemical additives are used to increase the rate of deposition for the amorphous silicon film (.alpha.Si:H) and/or the microcrystalline silicon film (.mu.CSi:H). The electrical current is improved to generate solar grade films as photoconductive films used in the manufacturing of Thin Film based Photovoltaic (TFPV) devices.

  13. Design and characterization of thin film microcoolers

    Science.gov (United States)

    LaBounty, Chris; Shakouri, Ali; Bowers, John E.

    2001-04-01

    Thin film coolers can provide large cooling power densities compared to bulk thermoelectrics due to the close spacing of hot and cold junctions. Important parameters in the design of such coolers are investigated theoretically and experimentally. A three-dimensional (3D) finite element simulator (ANSYS) is used to model self-consistently thermal and electrical properties of a complete device structure. The dominant three-dimensional thermal and electrical spreading resistances acquired from the 3D simulation are also used in a one-dimensional model (MATLAB) to obtain faster, less rigorous results. Heat conduction, Joule heating, thermoelectric and thermionic cooling are included in these models as well as nonideal effects such as contact resistance, finite thermal resistance of the substrate and the heat sink, and heat generation in the wire bonds. Simulations exhibit good agreement with experimental results from InGaAsP-based thin film thermionic emission coolers which have demonstrated maximum cooling of 1.15 °C at room temperature. With the nonideal effects minimized, simulations predict that single stage thin film coolers can provide up to 20-30 °C degrees centigrade cooling with cooling power densities of several 1000 W/cm2.

  14. Surface segregation of fluorinated moieties on random copolymer films controlled by random-coil conformation of polymer chains in solution.

    Science.gov (United States)

    Xue, Dongwu; Wang, Xinping; Ni, Huagang; Zhang, Wei; Xue, Gi

    2009-02-17

    The relationship between solution properties, film-forming methods, and the solid surface structures of random copolymers composed of butyl methacrylate and dodecafluorheptyl methylacrylate (DFHMA) was investigated by contact angle measurements, X-ray photoelectron spectroscopy, sum frequency generation vibrational spectroscopy, and surface tension measurements. The results, based on thermodynamic considerations, demonstrated that the random copolymer chain conformation at the solution/air interface greatly affected the surface structure of the resulting film, thereby determining the surface segregation of fluorinated moieties on films obtained by various film-forming techniques. When the fluorinated monomer content of the copolymer solution was low, entropic forces dominated the interfacial structure, with the perfluoroalkyl groups unable to migrate to the solution/air interface and thus becoming buried in a random-coil chain conformation. When employing this copolymer solution for film preparation by spin-coating, the copolymer chains in solution were likely extended due to centrifugal forces, thereby weakening the entropy effect of the polymer chains. Consequently, this resulted in the segregation of the fluorinated moieties on the film surface. For the films prepared by casting, the perfluoroalkyl groups were, similar to those in solution, incapable of segregating at the film surface and were thus buried in the random-coil chains. When the copolymers contained a high content of DFHMA, the migration of perfluoroalkyl groups at the solution/air interface was controlled by enthalpic forces, and the perfluoroalkyl groups segregated at the surface of the film regardless of the film-forming technique. The aim of the present work was to obtain an enhanced understanding of the formation mechanism of the chemical structure on the surface of the polymer film, while demonstrating that film-forming methods may be used in practice to promote the segregation of fluorinated

  15. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    Science.gov (United States)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  16. Titanium diffusion in gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, William E. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Gregori, Giuliano, E-mail: g.gregori@fkf.mpg.d [California NanoSystems Institute, University of California, Santa Barbara, CA 93106-5050 (United States); Mates, Thomas [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2010-03-01

    In the present study, diffusion phenomena in titanium/gold (Ti/Au) thin films occurring at temperatures ranging between 200 and 400 {sup o}C are investigated. The motivation is twofold: the first objective is to characterize Ti diffusion into Au layer as an effect of different heat-treatments. The second goal is to prove that the implementation of a thin titanium nitride (TiN) layer between Ti and Au can remarkably reduce Ti diffusion. It is observed that Ti atoms can fully diffuse through polycrystalline Au thin films (260 nm thick) already at temperatures as a low as 250 {sup o}C. Starting from secondary ion mass spectroscopy data, the overall diffusion activation energy {Delta}E = 0.66 eV and the corresponding pre-exponential factor D{sub 0} = 5 x 10{sup -11} cm{sup 2}/s are determined. As for the grain boundary diffusivity, both the activation energy range 0.54 < {Delta}E{sub gb} < 0.66 eV and the pre-exponential factor s{sub 0}D{sub gb0} = 1.14 x 10{sup -8} cm{sup 2}/s are obtained. Finally, it is observed that the insertion of a thin TiN layer (40 nm) between gold and titanium acts as an effective diffusion barrier up to 400 {sup o}C.

  17. Dynamic Characterization of Thin Film Magnetic Materials

    Science.gov (United States)

    Gu, Wei

    A broadband dynamic method for characterizing thin film magnetic material is presented. The method is designed to extract the permeability and linewidth of thin magnetic films from measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing fixture with or without samples loaded. An adaptive de-embedding method is applied to remove the parasitic noise of the housing. The measurements were carried out with frequency up to 10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step experimental procedures are described in detail. The complex permeability of a 330nm thick continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be induced dynamically in frequency-biasing magnetic field spectra and compared with a theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic materials investigated in this thesis.

  18. Thin film cadmium telluride photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bohn, R. (Toledo Univ., OH (United States))

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  19. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  20. Optical properties of thin polymer films

    Science.gov (United States)

    Kasarova, Stefka N.; Sultanova, Nina G.; Petrova, Tzveta; Dragostinova, Violeta; Nikolov, Ivan

    2009-10-01

    In this report three types of optical polymer thin films deposited on glass substrates are investigated. Transmission spectra of the polymer samples are obtained in the range from 400 nm to 1500 nm. A laser microrefractometer has been used to measure the refractive indices of the examined materials at 406, 656, 910 and 1320 nm. Dispersion properties of the polymer films are analyzed on the base of the Cauchy-Schott's and Sellmeier`s approximations. Dispersion coefficients are calculated and dispersion charts in the visible and near infrared spectral regions are presented and compared. Abbe numbers of mean and partial dispersion of the polymer films are obtained. Calculation of refractive indices at many laser emission wavelengths in the considered spectral range is accomplished.

  1. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  2. Inorganic and Organic Solution-Processed Thin Film Devices

    Institute of Scientific and Technical Information of China (English)

    Morteza Eslamian

    2017-01-01

    Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging tech-nologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials, conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique prop-erties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.

  3. [Prediction of Encapsulation Temperatures of Copolymer Films in Photovoltaic Cells Using Hyperspectral Imaging Techniques and Chemometrics].

    Science.gov (United States)

    Lin, Ping; Chen, Yong-ming; Yao, Zhi-lei

    2015-11-01

    A novel method of combination of the chemometrics and the hyperspectral imaging techniques was presented to detect the temperatures of Ethylene-Vinyl Acetate copolymer (EVA) films in photovoltaic cells during the thermal encapsulation process. Four varieties of the EVA films which had been heated at the temperatures of 128, 132, 142 and 148 °C during the photovoltaic cells production process were used for investigation in this paper. These copolymer encapsulation films were firstly scanned by the hyperspectral imaging equipment (Spectral Imaging Ltd. Oulu, Finland). The scanning band range of hyperspectral equipemnt was set between 904.58 and 1700.01 nm. The hyperspectral dataset of copolymer films was randomly divided into two parts for the training and test purpose. Each type of the training set and test set contained 90 and 10 instances, respectively. The obtained hyperspectral images of EVA films were dealt with by using the ENVI (Exelis Visual Information Solutions, USA) software. The size of region of interest (ROI) of each obtained hyperspectral image of EVA film was set as 150 x 150 pixels. The average of reflectance hyper spectra of all the pixels in the ROI was used as the characteristic curve to represent the instance. There kinds of chemometrics methods including partial least squares regression (PLSR), multi-class support vector machine (SVM) and large margin nearest neighbor (LMNN) were used to correlate the characteristic hyper spectra with the encapsulation temperatures of of copolymer films. The plot of weighted regression coefficients illustrated that both bands of short- and long-wave near infrared hyperspectral data contributed to enhancing the prediction accuracy of the forecast model. Because the attained reflectance hyperspectral data of EVA materials displayed the strong nonlinearity, the prediction performance of linear modeling method of PLSR declined and the prediction precision only reached to 95%. The kernel-based forecast models were

  4. A New Method of Fabricating NASICON Thin Film

    Institute of Scientific and Technical Information of China (English)

    WNGLing; SUNJialin; 等

    1998-01-01

    Nasicon thin films of 15 μm thick on YSZ sub-strates were prepared by means of solid state reaction at 1230℃ for 10 hours,Stuctural characteriza-tion of the films were performed by XRD ,SEM and EDX,A new tyype of CO2 gas sensor with Nasicon thin film as solid electrolyte was developed.

  5. Bismuth thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Flores, Teresa; Arronte, Miguel; Rodriguez, Eugenio; Ponce, Luis; Alonso, J. C.; Garcia, C.; Fernandez, M.; Haro, E.

    1999-07-01

    In the present work Bi thin films were obtained by Pulsed Laser Deposition, using Nd:YAG lasers. The films were characterized by optical microscopy. Raman spectroscopy and X-rays diffraction. It was accomplished the real time spectral emission characterization of the plasma generated during the laser evaporation process. Highly oriented thin films were obtained.

  6. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  7. Local photo-assisted poling of azo copolymer films by scanning probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chien, F S-S [Department of Physics, Tunghai University, Taichung, Taiwan (China); Lin, C Y; Hsu, C C [Department of Physics, National Chung-Cheng University, Chiayi, Taiwan (China)], E-mail: fsschien@thu.edu.tw

    2008-12-07

    Azo copolymers are nonlinear-optical materials, in which polar orientation can be induced by optical poling or electrical poling. We report a new efficient approach to performing photo-assisted poling (PAP) by atomic force microscopy (AFM) for azo copolymer films containing disperse-red-1 chromophores, and to characterize the polar orientation by electrostatic force microscopy (EFM) at the submicrometre scale. Both PAP and contact electrification effects can be generated by the physical interaction between the probes and the films. We demonstrated that these two effects can be distinguished by the relationship between the signs of the charges (bound charges and transferred charges) and the probe bias. Finally, we achieve local PAP far below the glass transition temperature by AFM operated in the tapping mode, and the response of the polar chromophores to local PAP can be studied by EFM.

  8. Functionalization of poly(dimethylsiloxane) surfaces with maleic anhydride copolymer films.

    Science.gov (United States)

    Cordeiro, Ana L; Zschoche, Stefan; Janke, Andreas; Nitschke, Mirko; Werner, Carsten

    2009-02-01

    Combining advantageous bulk properties of polymeric materials with surface-selective chemical conversions is required in numerous advanced technologies. For that aim, we investigate strategies to graft maleic anhydride (MA) copolymer films onto poly(dimethylsiloxane) (PDMS) precoatings. Amino groups allowing the covalent attachment of the MA copolymer films to the PDMS (Sylgard 184) surface were introduced either by low-pressure ammonia plasma treatment, or by attachment of 3-aminopropyltriethoxysilane (APTES) onto air plasma-treated PDMS. The resultant coatings were extensively characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), contact angle measurements, and atomic force microscopy (AFM). The results show that the impact of the plasma treatment on the physical properties on the topmost surface of the PDMS is critically important for the characteristics of the layered coatings.

  9. Mesoporous tin-doped indium oxide thin films: effect of mesostructure on electrical conductivity

    Directory of Open Access Journals (Sweden)

    Till von Graberg, Pascal Hartmann, Alexander Rein, Silvia Gross, Britta Seelandt, Cornelia Röger, Roman Zieba, Alexander Traut, Michael Wark, Jürgen Janek and Bernd M Smarsly

    2011-01-01

    Full Text Available We present a versatile method for the preparation of mesoporous tin-doped indium oxide (ITO thin films via dip-coating. Two poly(isobutylene-b-poly(ethyleneoxide (PIB-PEO copolymers of significantly different molecular weight (denoted as PIB-PEO 3000 and PIB-PEO 20000 are used as templates and are compared with non-templated films to clarify the effect of the template size on the crystallization and, thus, on the electrochemical properties of mesoporous ITO films. Transparent, mesoporous, conductive coatings are obtained after annealing at 500 °C; these coatings have a specific resistance of 0.5 Ω cm at a thickness of about 100 nm. Electrical conductivity is improved by one order of magnitude by annealing under a reducing atmosphere. The two types of PIB-PEO block copolymers create mesopores with in-plane diameters of 20–25 and 35–45 nm, the latter also possessing correspondingly thicker pore walls. Impedance measurements reveal that the conductivity is significantly higher for films prepared with the template generating larger mesopores. Because of the same size of the primary nanoparticles, the enhanced conductivity is attributed to a higher conduction path cross section. Prussian blue was deposited electrochemically within the films, thus confirming the accessibility of their pores and their functionality as electrode material.

  10. Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications

    KAUST Repository

    Yue, Wan

    2016-09-28

    Two new alternating copolymers, PAIIDBT and PAIIDSe have been prepared by incorporating a highly electron deficient azaisoindigo core. The molecular structure and packing of the monomer is determined from the single crystal X-ray diffraction. Both polymers exhibit high EAs and highly planar polymer backbones. When polymers are used as the semiconducting channel for solution-processed thin film transistor application, good properties are observed. A–A type PAIIDBT exhibits unipolar electron mobility as high as 1.0 cm2 V−1 s−1, D–A type PAIIDSe exhibits ambipolar charge transport behavior with predominately electron mobility up to 0.5 cm2 V−1 s−1 and hole mobility to 0.2 cm2 V−1 s−1. The robustness of the extracted mobility values are also commented on in detail. Molecular orientation, thin film morphology and energetic disorder of both polymers are systematically investigated.

  11. Intrinsic instability of thin liquid films on nanostructured surfaces

    Science.gov (United States)

    Rokoni, Arif; Hu, Han; Sun, Liyong; Sun, Ying

    2016-11-01

    The instability of a thin liquid film on nanostructures is not well understood but is important in liquid-vapor two-phase heat transfer (e.g., thin film evaporation and boiling), lubrication, and nanomanufacturing. In thin film evaporation, the comparison between the non-evaporating film thickness and the critical film breakup thickness determines the stability of the film: the film becomes unstable when the critical film breakup thickness is larger than the non-evaporating film thickness. In this study, a closed-form model is developed to predict the critical breakup thickness of a thin liquid film on 2D periodic nanostructures based on minimization of system free energy in the limit of a liquid monolayer. Molecular dynamics simulations are performed for water thin films on square nanostructures of varying depth and wettability and the simulations agree with the model predictions. The results show that the critical film breakup thickness increases with the nanostructure depth and the surface wettability. The model developed here enables the prediction of the minimum film thickness for stable thin film evaporation on a given nanostructure.

  12. Cerium Dioxide Thin Films Using Spin Coating

    Directory of Open Access Journals (Sweden)

    D. Channei

    2013-01-01

    Full Text Available Cerium dioxide (CeO2 thin films with varying Ce concentrations (0.1 to 0.9 M, metal basis were deposited on soda-lime-silica glass substrates using spin coating. It was found that all films exhibited the cubic fluorite structure after annealing at 500°C for 5 h. The laser Raman microspectroscopy and GAXRD analyses revealed that increasing concentrations of Ce resulted in an increase in the degree of crystallinity. FIB and FESEM images confirmed the laser Raman and GAXRD analyses results owing to the predicted increase in film thickness with increasing Ce concentration. However, porosity and shrinkage (drying cracking of the films also increased significantly with increasing Ce concentrations. UV-VIS spectrophotometry data showed that the transmission of the films decreased with increasing Ce concentrations due to the increasing crack formation. Furthermore, a red shift was observed with increasing Ce concentrations, which resulted in a decrease in the optical indirect band gap.

  13. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Samant, Saumil P.; Grabowski, Christopher A.; Kisslinger, Kim; Yager, Kevin G.; Yuan, Guangcui; Satija, Sushil K.; Durstock, Michael F.; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-04

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ~50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the “barrier effect”, where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  14. Electroless plating of thin gold films directly onto silicon nitride thin films and into micropores.

    Science.gov (United States)

    Whelan, Julie C; Karawdeniya, Buddini Iroshika; Bandara, Y M Nuwan D Y; Velleco, Brian D; Masterson, Caitlin M; Dwyer, Jason R

    2014-07-23

    A method to directly electrolessly plate silicon-rich silicon nitride with thin gold films was developed and characterized. Films with thicknesses plating free-standing ultrathin silicon nitride membranes, and we successfully plated the interior walls of micropore arrays in 200 nm thick silicon nitride membranes. The method is thus amenable to coating planar, curved, and line-of-sight-obscured silicon nitride surfaces.

  15. Gadolinium thin films as benchmark for magneto-caloric thin films

    Science.gov (United States)

    Helmich, Lars; Bartke, Marianne; Teichert, Niclas; Schleicher, Benjamin; Fähler, Sebastian; Hütten, Andreas

    2017-05-01

    We report on the preparation of Gadolinium thin films by means of sputter deposition on Silicon Oxide wafers. A series of samples with different buffer layers and various substrate temperatures has been produced. The film on an amorphous Tantalum buffer deposited at 773 K shows the highest increase of magnetization during the phase transition at the Curie temperature. Further detailed analysis of the magnetic properties has been conducted by VSM.

  16. Gas permeability measurement in polyethylene and its copolymer films

    Energy Technology Data Exchange (ETDEWEB)

    Gholizadeh, M. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)]. E-mail: Musavi@che.sharif.edu; Razavi, J. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, S.A. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2007-07-01

    In this research, low density polyethylene (LDPE) and poly(ethylene-co-vinyl acetate) (EVA) were used as polymeric materials. The methods used to produce LDPE and EVA was film blowing and thermal-dry phase inversion. The amount of permeability, diffusivity and solubility of O{sub 2} and CO{sub 2} through above polymers were obtained and also the effect of temperature, pressure and film thickness for LDPE was measured. To study film cross-section morphology in EVA, scanning electron microscopy (SEM) was applied. The results showed that the amount of permeability and solubility were decreased by increasing film thickness but diffusivity was increased. However, by increasing temperature, permeability, solubility, and diffusivity were increased. From the results for EVA, adding 28% of vinyl acetate groups to polyethylene chain increased permeability of O{sub 2} and CO{sub 2} through the film. Scanning electron microscopy (SEM) microphotograph for EVA film verified that the film cross-section structure was as dense as for polyethylene.

  17. Theoretical investigation of the thermodynamic properties of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Vu Van [Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi (Viet Nam); Phuong, Duong Dai [Hanoi National University of Education, 136 Xuan Thuy, Hanoi (Viet Nam); Hoa, Nguyen Thi [University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2015-05-29

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks.

  18. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  19. Thin-liquid-film evaporation at contact line

    Institute of Scientific and Technical Information of China (English)

    Hao WANG; Zhenai PAN; Zhao CHEN

    2009-01-01

    When a liquid wets a solid wall, the extended meniscus near the contact line may be divided into three regions: a nonevaporating region, where the liquid is adsorbed on the wall; a transition region or thin-film region, where effects of long-range molecular forces (disjoining pressure) are felt; and an intrinsic meniscus region, where capillary forces dominate. The thin liquid film, with thickness from nanometers up to micrometers, covering the transition region and part of intrinsic meniscus, is gaining interest due to its high heat transfer rates. In this paper, a review was made of the researches on thin-liquid-film evaporation. The major characteristics of thin film, thin-film modeling based on continuum theory, simulations based on molecular dynamics, and thin-film profile and temperature measurements were summarized.

  20. Development of flexible LEO-resistant PI films for space applications using a self-healing mechanism by surface-directed phase separation of block copolymers.

    Science.gov (United States)

    Fischer, Hartmut R; Tempelaars, Karin; Kerpershoek, Aat; Dingemans, Theo; Iqbal, M; Lonkhuyzen, Henk van; Iwanowsky, Boris; Semprimoschnig, Christopher

    2010-08-01

    Polimide-block-polydimethylsiloxane (PI-b-PDMS) block copolymers have been synthesized from commercially available amino-terminated polysiloxanes with different molecular weights, for use as polymeric materials resistant to the low earth orbit (LEO) space environment. A structural optimization with respect to maximum environmental protection has been performed by varying the PDMS block length as well as the architecture of the block copolymers spanning from multiblock to triblock and star-shaped morphologies. The synthesized polymers and casted films show good mechanical and thermal performance. For block copolymers with a load of 2% PDMS (in the case of the multiblock copolymers), a complete surface coverage of the PDMS has been found. It has been shown that the transfer of the surface enriched PDMS layer into a thin silica layer after atomic oxygen (AO) exposure results in a drastic decrease in AO erosion rate. The silica layer protects the underlying material from oxygen initiated erosion resulting in a drastic decrease of surface roughness. This phenomena is observable for loads as small as 6 wt % PDMS.

  1. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  2. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  3. Stripe glasses in ferromagnetic thin films

    Science.gov (United States)

    Principi, Alessandro; Katsnelson, Mikhail I.

    2016-02-01

    Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. For example, the magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film plane, thanks to the strong out-of-plane anisotropy, but its direction changes periodically, forming an alternating spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied. It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane magnetic anisotropy of the film is found to be beneficial for the formation of both stripe-ordered and glassy phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures. An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a moderate in-plane magnetic field of the order of 50 mT can lead to the formation of defects in the stripe pattern, which sets the onset of the glass transition.

  4. Nanomechanics of Ferroelectric Thin Films and Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.

    2016-08-31

    The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined. These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.

  5. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    Science.gov (United States)

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  6. 3D Field Simulation of Magnetic Thin Film Inductor

    OpenAIRE

    FUJIWARA, Toshiyasu; CHOI, Kyung-Ku; SATO, SHIGEKI

    2006-01-01

    The 3D magnetic field simulations with FEM (finite element method) have been performed to predictand understand the performance of Magnetic Thin Film Inductor (MTFl). Inductor structures of planar electroplated Cu spiralcoil, which are sandwiched and underlaid with magnetic thin films, are considered as the simulation models. The inductance increment of 300% compared to air-core inductor was predicted when the sandwiched 5μm thickness magnetic thin film with relative permeability of 600 was a...

  7. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  8. Crystal structure of fiber structured pentacene thin films

    OpenAIRE

    2007-01-01

    This PhD thesis presents a technique based on the grazing incidence crystal truncation rod (GI-CTR) X-ray diffraction method used to solve the crystal structure of substrate induced fiber structured organic thin films. The crystal structures of pentacene thin films grown on technologically relevant gate dielectric substrates are reported. It is widely recognized, that the intrinsic charge transport properties in organic thin film transistors (OTFTs) depend strongly on the crystal structur...

  9. Bioinspired catecholic copolymers for antifouling surface coatings.

    Science.gov (United States)

    Cho, Joon Hee; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2013-05-01

    We report here a synthetic approach to prepare poly(methyl methacrylate)-polydopamine diblock (PMMA-PDA) and triblock (PDA-PMMA-PDA) copolymers combining mussel-inspired catecholic oxidative chemistry and atom transfer radical polymerization (ATRP). These copolymers display very good solubility in a range of organic solvents and also a broad band photo absorbance that increases with increasing PDA content in the copolymer. Spin-cast thin films of the copolymer were stable in water and showed a sharp reduction (by up to 50%) in protein adsorption compared to those of neat PMMA. Also the peak decomposition temperature of the copolymers was up to 43°C higher than neat PMMA. The enhanced solvent processability, thermal stability and low protein adsorption characteristics of this copolymer makes it attractive for variety of applications including antifouling coatings on large surfaces such as ship hulls, buoys, and wave energy converters.

  10. Current-induced surface roughness reduction in conducting thin films

    Science.gov (United States)

    Du, Lin; Maroudas, Dimitrios

    2017-03-01

    Thin film surface roughness is responsible for various materials reliability problems in microelectronics and nanofabrication technologies, which requires the development of surface roughness reduction strategies. Toward this end, we report modeling results that establish the electrical surface treatment of conducting thin films as a physical processing strategy for surface roughness reduction. We develop a continuum model of surface morphological evolution that accounts for the residual stress in the film, surface diffusional anisotropy and film texture, film's wetting of the layer that is deposited on, and surface electromigration. Supported by linear stability theory, self-consistent dynamical simulations based on the model demonstrate that the action over several hours of a sufficiently strong and properly directed electric field on a conducting thin film can reduce its surface roughness and lead to a smooth planar film surface. The modeling predictions are in agreement with experimental measurements on copper thin films deposited on silicon nitride layers.

  11. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  12. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  13. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  14. Design and Simulation of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calculated. The main properties of the thin film transformer including the size,parallel inductance, Q value and turn ratio have been simulated and optimized. Simulation results show that the thin film transformer can be fairly operated in a frequency range of 0. 001~20 MHz.

  15. Non-local thin films in Casimir force calculations

    CERN Document Server

    Esquivel, R

    2005-01-01

    he Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than the mean free path for electrons, the difference between local and nonlocal calculations of the Casimir force is of the order of a few tenths of a percent. Thus the local description of thin metallic films is adequate within the current experimental precision and range of separations.

  16. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  17. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  18. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  19. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  20. Analysis on mechanism of thin film lubrication

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chaohui; LUO Jianbin; HUANG Zhiqiang

    2005-01-01

    It is an important concern to explore the properties and principles of lubrication at nano or molecularscale. For a long time, measurement apparatus for filmthickness of thin film lubrication (TFL) at nano scale havebeen devised on the basis of superthin interferometry technique. Many experiments were carried out to study the lubrication principles of TFL by taking advantages of aforementioned techniques, in an attempt to unveil the mechanism of TFL. Comprehensive experiments were conducted to explore the distinctive characteristics of TFL. Results show that TFL is a distinctive lubrication state other than any known lubrication ones, and serves as a bridge between elastohydrodynamic lubrication (EHL) and boundary lubrication (BL). Two main influence factors of TFL are the solid surface effects and the molecular properties of the lubricant, whose combination effects result in alignment of liquid molecules near the solid surfaces and subsequently lubrication with ordered film emerged. Results of theoretical analysis considering microstructure are consistent with experimental outcomes, thus validating the proposed mechanism.

  1. Electron impinging on metallic thin film targets

    Energy Technology Data Exchange (ETDEWEB)

    Rouabah, Z. [Laboratoire de Physique Moleculaire et des Collisions, ICPMB (FR CNRS 2843), Institut de Physique, Universite Paul Verlaine-Metz, Metz Cedex 3 (France); Laboratoire Materiaux et Systemes Electroniques, Centre Universitaire de Bordj-Bou-Arreridj, El-Anasser, 34265 Bordj-Bou-Arreridj (Algeria); Bouarissa, N., E-mail: N_Bouarissa@yahoo.fr [Department of Physics, Faculty of Science, King Khalid University, Abha, P.O.Box 9004 (Saudi Arabia); Champion, C. [Laboratoire de Physique Moleculaire et des Collisions, ICPMB (FR CNRS 2843), Institut de Physique, Universite Paul Verlaine-Metz, Metz Cedex 3 (France)

    2010-03-15

    Based on the Vicanek and Urbassek theory [M. Vicanek, H.M. Urbassek, Phys. Rev. B 44 (1991) 7234] combined to a home-made Monte Carlo simulation, the present work deals with backscattering coefficients, mean penetration depths and stopping profiles for 1-4 keV electrons normally incident impinging on Al and Cu thin film targets. The cross-sections used to describe the electron transport are calculated via the appropriate analytical expression given by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470] whose new improved version has been recently given [Z. Rouabah, N. Bouarissa, C. Champion, N. Bouaouadja, Appl. Surf. Sci. 255 (2009) 6217]. The behavior of the backscattering coefficient, mean penetration depth and stopping profiles versus the metallic film thickness at the nanometric scale and beyond is here analyzed and discussed.

  2. Electrical Resistance Tomography of Conductive Thin Films

    CERN Document Server

    Cultrera, Alessandro

    2016-01-01

    The Electrical Resistance Tomography (ERT) technique is applied to the measurement of sheet conductance maps of both uniform and patterned conductive thin films. Images of the sheet conductance spatial distribution, and local conductivity values are obtained. Test samples are tin oxide films on glass substrates, with electrical contacts on the sample boundary, some samples are deliberately patterned in order to induce null conductivity zones of known geometry while others contain higher conductivity inclusions. Four-terminal resistance measurements among the contacts are performed with a scanning setup. The ERT reconstruction is performed by a numerical algorithm based on the total variation regularization and the L-curve method. ERT correctly images the sheet conductance spatial distribution of the samples. The reconstructed conductance values are in good quantitative agreement with independent measurements performed with the van der Pauw and the four-point probe methods.

  3. Separation Efficiency of Thin-film Evaporators

    Institute of Scientific and Technical Information of China (English)

    R.Billet

    2004-01-01

    The recovery of contaminants and useful substances from liquid wastes, the purification of production effluents and the separation of thermally instable mixtures are some of the multivarious applications of thin-film distillors in many processes of the chemical and allied industries and of the food industries. In a study carried out in pilot plants with distillation test systems there was found a good agreement between the experimental separation results and those obtained by computing with a theorectical model; the latter is based on the assumption of phase equilibrium between the vapour formed on an infinitely small element of area in a liquid film of any given concentric periphery of the vertically arranged evaporator. These tests were perfomed under various phase loads.

  4. Performance Comparison of Thin and Thick Film Microstrip Rejection Filters

    OpenAIRE

    Mandhare, M. M.; S.A. Gangal; M. S. Setty; Karekar, R. N.

    1988-01-01

    A performance comparison of microstripline circuits using thin and thick film techniques has been studied, in which a Microstrip rejection filter, in the X-band of microwaves, is used as test circuit. A thick film technique is capable of giving good adhesive films with comparable d.c. sheet resistivity, but other parameters such as open area (porosity), particle size, and edge definition are inferior to thin-film microstrip filters. Despite this drawback, the average value of transmission, tr...

  5. Infrared control coating of thin film devices

    Science.gov (United States)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  6. Robust, Thin Optical Films for Extreme Environments

    Science.gov (United States)

    2006-01-01

    The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.

  7. Infrared control coating of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  8. Synthesis and Characterization of Thin Films.

    Science.gov (United States)

    1987-07-10

    j,k tinteger; freq comp % array CO..203 of integer; A, phase ~carg : array CC. .2CJ of realI begin woriteln(’enter numfourierpts’);N readln(num fourier...Thesis DTIG SELECTfE: rmas do~amaat hau s appvildlttb tol a.l e... . . .o fix paut reloc~e and 9010) Is . < " ,,.’. 5’ , , "" "’’"°"" % Is ViifmyI lr...URIP) grants. 2. THIN FILM FACILITY A 1983 DoD University Research Instrumentation Program Grant to ISU was used for construction of the first phase

  9. Birefringent thin films and polarizing elements

    CERN Document Server

    Hodgkinson, Ian J

    1997-01-01

    This book describes the propagation of light in biaxial media, the properties of biaxial thin films, and applications such as birefringent filters for tuning the wavelength of dye lasers.A novel feature of the first part is the parallel treatment of Stokes, Jones, and Berreman matrix formalisms in a chapter-by-chapter development of wave equations, basis vectors, transfer matrices, reflection and transmission equations, and guided waves. Computational tools for MATLAB are included.The second part focuses on an emerging planar technology in which anisotropic microstructures are formed by obliqu

  10. Vortex motion in YBCO thin films

    Science.gov (United States)

    Shapiro, V.; Verdyan, A.; Lapsker, I.; Azoulay, J.

    1999-09-01

    Hall resistivity measurements as function of temperature in the vicinity of Tc were carried out on a thin films YBCO superconductors. A sign reversal of Hall voltage with external magnetic field applied along c axis have been observed upon crossing Tc. Hall voltage in the mixed state was found to be insensitive to the external magnetic field inversion. These effects are discussed and explained in terms of vortex motion under the influence of Magnus force balanced by large damping force. It is argued that in this model the flux-line velocity has component opposite to the superfluid current direction thus yielding a negative Hall voltage.

  11. Thin-film optical shutter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  12. Phase transitions in pure and dilute thin ferromagnetic films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1983-10-01

    The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.

  13. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  14. Capillary instabilities in thin films. II. Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Srolovitz, D.J.; Safran, S.A.

    1986-07-01

    We consider the kinetic evolution of perturbations to thin films. Since all small (nonsubstrate intersecting) perturbations to the film surface decay, we consider the evolution of large perturbations, in the form of a single hole which exposes the substrate. For large holes, the hole radius increases at a constant rate under the assumption of evaporation/condensation kinetics. When the dominant transport mode is surface diffusion, large holes grow with a rate proportional to t/sup -3/4/ (log/sup 3/(t/ rho/sup 4//sub c/)). Small holes with a radii less than rho/sub c/ shrink, where rho/sub c/ is the film thickness divided by the tangent of the equilibrium wetting angle. The growth of these holes eventually leads to hole impingement which ruptures the film, creating a set of disconnected islands. The relaxation time for these islands to go to their equilibrium shape and size (rho/sub eq/) scales as rho/sup 2//sub eq/ or rho/sup 4//sub eq/ for evaporation/condensation or surface diffusion kinetics, respectively.

  15. Robust conductive mesoporous carbon-silica composite films with highly ordered and oriented orthorhombic structures from triblock-copolymer template co-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Song, Lingyan; Feng, Dan; Campbell, Casey G; Gu, Dong; Forster, Aaron M; Yager, Kevin G; Fredin, Nathaniel; Lee, Hae-Jeong; Jones, Ronald L; Zhao, Dongyuan; Vogt, Bryan D [AZU

    2012-07-11

    In this work, we describe a facile approach to improve the robustness of conductive mesoporous carbon-based thin films by the addition of silica to the matrix through the triconstituent organic-inorganic-organic co-assembly of resol (carbon precursor) and tetraethylorthosilicate (silica precursor) with triblock-copolymer Pluronic F127. The pyrolysis of the resol-silica-pluronic F127 film yields a porous composite thin film with well-defined mesostructure. X-Ray diffraction (XRD), grazing incidence small angle X-ray scattering (GISAXS), and electron microscopy measurements indicate that the obtained carbon-based thin films have a highly ordered orthorhombic mesostructure (Fmmm) with uniform large pore size (~3 nm). The orthorhombic mesostructure is oriented and the (010) plane is parallel to the silicon wafer substrate. The addition of silica to the matrix impacts the pore size, surface area, porosity, modulus and conductivity. For composite films with approximately 40 wt% silica, the conductivity is decreased by approximately an order of magnitude in comparison to a pure carbon mesoporous film, but the conductivity is comparable to typical printed carbon inks used in electrochemical sensing, {approx}10 S cm-1. The mechanical properties of these mesoporous silica-carbon hybrid films are similar to the pure carbon analogs with a Young's modulus between 10 GPa and 15 GPa, but the material is significantly more porous. Moreover, the addition of silica to the matrix appears to improve the adhesion of the mesoporous film to a silicon wafer. These mesoporous silica-carbon composite films have appropriate characteristics for use in sensing applications.

  16. Calculation of Specific Heat for Aluminium Thin Films

    Institute of Scientific and Technical Information of China (English)

    LU Yao; SONG Qing-Lin; XIA Shan-Hong

    2005-01-01

    @@ We employ Prasher's non-dimensional form to analyse the size effects on specific heat of Al thin films. Compared the calculation results of pure aluminium film with the experimental data, it is found that the reduction of phonon states is not the main reason of the size effect on the specific heat Al thin films with thickness from 10hm to 370nm. However, the Al thin film in air usually has an oxidation layer and the specific heat of the layer is smaller than Al. By including the contribution of the oxidation layer to the thin-film specific heat, the calculation results are much closer to the experimental data. This may be a possible reason of the size effects on specific heat of Al thin films.

  17. Thin nanostructured crystalline TiO{sub 2} films and their applications in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Yajun

    2007-06-15

    Research on thin nanostructured crystalline TiO{sub 2} films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO{sub 2} film plays an important role in the TiO{sub 2} based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO{sub 2} nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO{sub 2} morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO{sub 2} within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400 C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the

  18. Influence of Methacrylic-Acrylic Copolymer Composition on Plasticiser-free Optode Films for pH Sensors

    Directory of Open Access Journals (Sweden)

    Musa Ahmad

    2003-03-01

    Full Text Available In this work we have examined the use of plasticiser-free polymeric films incorporating a proton selective chromoionophore for optical pH sensor. Four types of methacrylic-acrylic copolymers containing different compositions of n-butyl acrylate (nBA and methyl methacrylate (MMA were synthesised for use as optical sensor films. The copolymers were mixed with appropriate amounts of chromoionophore (ETH5294 and a lipophilic salt before spin coated on glass slides to form films for the evaluation of pH response using spectrophotometry. Co-polymer films with high nBA content gave good response and the response time depended on the film thickness. A preliminary evaluation of the optical films of high nBA content with pHs from 2 - 14 showed distinguishable responses from pH 5 - 9. However, the adhesion of the pH sensitive film was good for copolymers with higher content of MMA but not for films with high nBA.

  19. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NARCIS (Netherlands)

    Martinez, D. Martinez; Nohava, Jiri; De Hosson, J. Th. M.

    2015-01-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond- like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the unc

  20. Rechargeable thin-film lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  1. Antimony selenide thin-film solar cells

    Science.gov (United States)

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  2. Immersion transmission ellipsometry (ITE): a new method for the precise determination of the 3D indicatrix of thin films

    Science.gov (United States)

    Jung, C. C.; Stumpe, J.

    2005-02-01

    The new method of immersion transmission ellipsometry (ITE) [1] has been developed. It allows the highly accurate determination of the absolute three-dimensional (3D) refractive indices of anisotropic thin films. The method is combined with conventional ellipsometry in transmission and reflection, and the thickness determination of anisotropic films solely by optical methods also becomes more accurate. The method is applied to the determination of the 3D refractive indices of thin spin-coated films of an azobenzene-containing liquid-crystalline copolymer. The development of the anisotropy in these films by photo-orientation and subsequent annealing is demonstrated. Depending on the annealing temperature, oblate or prolate orders are generated.

  3. Gas plasma etching of PEO/PBT segmented block copolymer films.

    Science.gov (United States)

    Olde Riekerink, M B; Claase, M B; Engbers, G H M; Grijpma, D W; Feijen, J

    2003-06-15

    A series of poly(ethylene oxide)/poly(butylene terephthalate) (PEO/PBT) segmented block copolymer films was treated with a radio-frequency carbon dioxide (CO(2)) or with argon (Ar) plasma. The effects of (preferential) etching on surface structure, topography, chemistry, and wettability were studied by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and contact angle measurements. In all cases, a granular-type nanostructure was formed after prolonged CO(2) plasma etching. Ar plasma etching generally did not lead to significant changes in surface structure. Regarding surface chemistry, CO(2) plasma treatment caused surface oxidation and oxidative degradation of the films while Ar plasma etching resulted mainly in the preferential removal of PEO blocks. The wettability of all films significantly increased after plasma treatment because of the creation of polar functional groups at the surface. Preliminary goat bone-marrow cell compatibility experiments have shown that all plasma-treated PEO/PBT films induced a greatly enhanced cell adhesion and/or growth compared to untreated biomaterials. This improvement was attributed to changes in surface chemistry during plasma etching rather than to changes in surface structure. These results show that plasma-treated PEO/PBT copolymers have a high potential as scaffolds for bone tissue regeneration. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 65A: 417-428, 2003

  4. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  5. Polyelectrolyte-assisted preparation and characterization of nanostructured ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shijun

    2005-05-15

    The present work focuses on the synthesis and characterization of nanostructured ZnO thin films onto silicon wafers modified by self-assembled-monolayers via chemical bath deposition. Two precursor solutions were designed and used for the film deposition, in which two different polymers were introduced respectively to control the growth of the ZnO colloidal particles in solution. ZnO films were deposited from an aqueous solution containing zinc salt and hexamethylenetetramine (HMTA) in the presence of a graft-copolymer (P (MAA{sub 0.50}-co(MAA-EO{sub 20}){sub 0.50}){sub 70}). A film-formation-diagram was established based on the results obtained by scanning electron microscopy (SEM) and atomic force microscopy (AFM), which describes the influence of the concentration of HMTA and copolymer on the ZnO film formation. According to the film morphology, film formation can be classified into three categories: (a) island-like films, (b) uniform films and (c) canyon-like films. The ZnO films annealed at temperatures of 450 C, 500 C, 600 C and 700 C were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). After annealing, the films are polycrystalline ZnO with wurtzite structure. XRD measurements indicate that with increasing annealing temperature, the average grain size increases accordingly and the crystallinity of the films is improved. Upon heating to 600 C, the ZnO films exhibit preferred orientation with c-axis normal to substrate, whereas the films annealed at 700 C even show a more explicit texture. By annealing at temperatures above 600 C the ZnO film reacts with the substrate to form an interfacial layer of Zn{sub 2}SiO{sub 4}, which grows thicker at elevated annealing temperatures. The ZnO films annealed at 600 C and 700 C show strong UV emission. Another non-aqueous solution system for ZnO thin film deposition was established, in which 2- propanol was used as a solvent and Zn(CH3COO){sub 2}.2H{sub 2}O as well as NaOH as reactants

  6. Use of thin films in high-temperature superconducting bearings.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.; Cansiz, A.

    1999-09-30

    In a PM/HTS bearing, locating a thin-film HTS above a bulk HTS was expected to maintain the large levitation force provided by the bulk with a lower rotational drag provided by the very high current density of the film. For low drag to be achieved, the thin film must shield the bulk from inhomogeneous magnetic fields. Measurement of rotational drag of a PM/HTS bearing that used a combination of bulk and film HTS showed that the thin film is not effective in reducing the rotational drag. Subsequent experiments, in which an AC coil was placed above the thin-film HTS and the magnetic field on the other side of the film was measured, showed that the thin film provides good shielding when the coil axis is perpendicular to the film surface but poor shielding when the coil axis is parallel to the surface. This is consistent with the lack of reduction in rotational drag being due to a horizontal magnetic moment of the permanent magnet. The poor shielding with the coil axis parallel to the film surface is attributed to the aspect ratio of the film and the three-dimensional nature of the current flow in the film for this coil orientation.

  7. Microstructural and mechanical characteristics of Ni–Cr thin films

    Energy Technology Data Exchange (ETDEWEB)

    Petley, Vijay [Gas Turbine Research Establishment, DRDO, Bangalore 93 (India); Sathishkumar, S.; Thulasi Raman, K.H.; Rao, G.Mohan [Department of Instrumentation and Applied Physics, IISc, Bangalore 12 (India); Chandrasekhar, U. [Gas Turbine Research Establishment, DRDO, Bangalore 93 (India)

    2015-06-15

    Highlights: • Ni–Cr thin films of varied composition deposited by DC magnetron co-sputtering. • Thin film with Ni–Cr: 80–20 at% composition exhibits most distinct behavior. • The films were tensile tested and exhibited no cracking till the substrate yielding. - Abstract: Ni–Cr alloy thin films have been deposited using magnetron co-sputtering technique at room temperature. Crystal structure was evaluated using GIXRD. Ni–Cr solid solution upto 40 at% of Cr exhibited fcc solid solution of Cr in Ni and beyond that it exhibited bcc solid solution of Ni in Cr. X-ray diffraction analysis shows formation of (1 1 1) fiber texture in fcc and (2 2 0) fiber texture in bcc Ni–Cr thin films. Electron microscopy in both in-plane and transverse direction of the film surface revealed the presence of columnar microstructure for films having Cr upto 40 at%. Mechanical properties of the films are evaluated using nanoindentation. The modulus values increased with increase of Cr at% till the film is fcc. With further increase in Cr at% the modulus values decreased. Ni–Cr film with 20 at% Ni exhibits reduction in modulus and is correlated to the poor crystallization of the film as reflected in XRD analysis. The Ni–Cr thin film with 80 at% Ni and 20 at% Cr exhibited the most distinct columnar structure with highest electrical resistivity, indentation hardness and elastic modulus.

  8. Structural and Optical Properties of Nanoscale Galinobisuitite Thin Films

    Directory of Open Access Journals (Sweden)

    Omar H. Abd-Elkader

    2014-01-01

    Full Text Available Galinobisuitite thin films of (Bi2S3(PbS were prepared using the chemical bath deposition technique (CBD. Thin films were prepared by a modified chemical deposition process by allowing the triethanolamine (TEA complex of Bi3+ and Pb2+ to react with S2− ions, which are released slowly by the dissociation of the thiourea (TU solution. The films are polycrystalline and the average crystallite size is 35 nm. The composition of the films was measured using the atomic absorption spectroscopy (AAS technique. The films are very adherent to the substrates. The crystal structure of Galinobisuitite thin films was calculated by using the X-ray diffraction (XRD technique. The surface morphology and roughness of the films were studied using scanning electron microscopes (SEM, transmission electron microscopes (TEM and stylus profilers respectively. The optical band gaps of the films were estimated from optical measurements.

  9. Bistability in doped organic thin film transistors.

    Science.gov (United States)

    Stricker, Jeffery T; Gudmundsdóttir, Anna D; Smith, Adam P; Taylor, Barney E; Durstock, Michael F

    2007-09-06

    Organic thin film transitors (TFTs) with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid), PEDOT:PSS, as the active layer and cross-linked, layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) multilayers as the gate dielectric layer were investigated. A combination of spectroscopic data and device performance characteristics was used to study the behavior of these TFT devices under a variety of controlled environmental test conditions. It was shown that depletion and recovery of the device can be induced to occur by a means that is consistent with the electrochemical oxidation and reduction of water contained in the film. In addition to acting as a reactant, moisture also acts as a plasticizer to control the mobility of other species contained in the film and thereby permits bistable operation of these devices. Raman spectroscopy was used to show that the observed device switching behavior is due to a change in the PEDOT doping level.

  10. Oxynitride Thin Film Barriers for PV Packaging

    Energy Technology Data Exchange (ETDEWEB)

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  11. Amorphous molybdenum silicon superconducting thin films

    Directory of Open Access Journals (Sweden)

    D. Bosworth

    2015-08-01

    Full Text Available Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1−x, though other amorphous superconductors such as molybdenum silicide (MoxSi1−x offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz, there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  12. Vertically aligned biaxially textured molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Rahul [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Riley, Michael [Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Lee, Sabrina [US Army Armament Research, Development and Engineering Center, Benet Labs, Watervliet, New York 12189 (United States); Lu, Toh-Ming [Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-09-15

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.

  13. Controlled nanostructuration of polycrystalline tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l' Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d' Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  14. Thermochemical Analysis of Molybdenum Thin Films on Porous Alumina.

    Science.gov (United States)

    Lee, Kyoungjin; de Lannoy, Charles-François; Liguori, Simona; Wilcox, Jennifer

    2017-01-12

    Molybdenum (Mo) thin films (thickness thin-film composites were stable below 300 °C but had no reactivity toward gases. Mo thin films showed nitrogen incorporation on the surface as well as in the subsurface at 450 °C, as confirmed by X-ray photoelectron spectroscopy. The reactivity toward nitrogen was diminished in the presence of CO2, although no carbon species were detected either on the surface or in the subsurface. The Mo thin films have a very stable native oxide layer, which may further oxidize to higher oxidation states above 500 °C due to the reaction with the porous anodized alumina substrate. The oxidation of Mo thin films was accelerated in the presence of oxidizing gases. At 600 °C in N2, the Mo thin film on anodized alumina was completely oxidized and may also have been volatilized. The results imply that choosing thermally stable and inactive porous supports and operating in nonoxidizing conditions below 500 °C will likely maintain the stability of the Mo composite. This study provides key information about the chemical and structural stability of a Mo thin film on a porous substrate for future membrane applications and offers further insights into the integrity of thin-film composites when exposed to harsh conditions.

  15. Tools to Synthesize the Learning of Thin Films

    Science.gov (United States)

    Rojas, Roberto; Fuster, Gonzalo; Slusarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase…

  16. High temperature superconducting thin films for microwave filters

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Xinjie(赵新杰); LI; Lin(李林); LEI; Chong(雷冲); TIAN; Ybngjun(田永军)

    2002-01-01

    YBa2Cu3O7-δ and Tl2Ba2CaCu2O8 thin films for microwave filters were synthesized by pulsed laser deposition and the two-step thalliation process. Substrate quality requirements and the relation of thin film morphology, microstructure with microwave surface resistance were discussed.

  17. A thin-film device for detecting hydrogen

    NARCIS (Netherlands)

    Westerwaal, R.J.; Szilagyi, P.A.; Dam, B.

    2014-01-01

    The present invention relates to a thin-film device, to a method for producing a thin-film device, to a protective layer for shielding an oxygen, moisture and/or carbon monoxide sensitive surface, to a method for shielding such a surface, to a method for forming a metal framework material, to a hydr

  18. Study of thin-film resistor resistance error

    Directory of Open Access Journals (Sweden)

    Spirin V. G.

    2009-10-01

    Full Text Available A relationship between a thin-film resistor resistance error and mask misalignment with a substrate conductive layer at the second photolithography stage for a thin-film resistor design in which the resistive element does not overlap conductor pads is studied. The error value is at a maximum when the resistor aspect ratio is equal to 1.0.

  19. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid d

  20. Determination of oxygen diffusion kinetics during thin film ruthenium oxidation

    NARCIS (Netherlands)

    Coloma Ribera, R.; van de Kruijs, Robbert Wilhelmus Elisabeth; Yakshin, Andrey; Bijkerk, Frederik

    2015-01-01

    In situ X-ray reflectivity was used to reveal oxygen diffusion kinetics for thermal oxidation of polycrystalline ruthenium thin films and accurate determination of activation energies for this process. Diffusion rates in nanometer thin RuO2 films were found to show Arrhenius behaviour. However, a

  1. Room temperature ferroelectricity in continuous croconic acid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Ahmadi, Zahra; Costa, Paulo S. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Zhang, Xiaozhe [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Department of Physics, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xiao; Yu, Le; Cheng, Xuemei [Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010 (United States); DiChiara, Anthony D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Gruverman, Alexei, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Enders, Axel, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Xu, Xiaoshan, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

    2016-09-05

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.

  2. Nanotwin hardening in a cubic chromium oxide thin film

    Directory of Open Access Journals (Sweden)

    Kazuma Suzuki

    2015-09-01

    Full Text Available NaCl-type (B1 chromium oxide (CrO has been expected to have a high hardness value and does not exist as an equilibrium phase. We report a B1-based Cr0.67O thin film with a thickness of 144 nm prepared by pulsed laser deposition as an epitaxial thin film on a MgO single crystal. The thin film contained a number of stacking faults and had a nanotwinned structure composed of B1 with disordered vacancies and corundum structures. The Cr0.67O thin film had a high indentation hardness value of 44 GPa, making it the hardest oxide thin film reported to date.

  3. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  4. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  5. Preface: Advanced Thin Film Developments and Nano Structures

    Institute of Scientific and Technical Information of China (English)

    Ray Y.Lin

    2005-01-01

    @@ In this special issue, we invited a few leading materials researchers to present topics in thin films, coatings, and nano structures. Readers will find most recent developments in topics, including recent advances in hard, tough, and low friction nanocomposite coatings; thin films for coating nanomaterials; electroless plating of silver thin films on porous Al2O3 substrate; CrN/Nano Cr interlayer coatings; nano-structured carbide derived carbon (CDC) films and their tribology; predicting interdiffusion in high-temperature coatings; gallium-catalyzed silica nanowire growth; and corrosion protection properties of organofunctional silanes. Authors are from both national laboratories and academia.

  6. Nonlinear optical microscopy for imaging thin films and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.

    1995-03-01

    We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.

  7. Thin films and coatings toughening and toughness characterization

    CERN Document Server

    Zhang, Sam

    2015-01-01

    Thin Films and Coatings: Toughening and Toughness Characterization captures the latest developments in the toughening of hard coatings and in the measurement of the toughness of thin films and coatings. Featuring chapters contributed by experts from Australia, China, Czech Republic, Poland, Singapore, Spain, and the United Kingdom, this first-of-its-kind book:Presents the current status of hard-yet-tough ceramic coatingsReviews various toughness evaluation methods for films and hard coatingsExplores the toughness and toughening mechanisms of porous thin films and laser-treated surfacesExamines

  8. Peculiarities of spin reorientation in a thin YIG film.

    Energy Technology Data Exchange (ETDEWEB)

    Bazaliy, Ya. B.; Tsymbal, L. T.; Linnik, A. I.; Dan' shin, N. K.; Izotov, A. I.; Wigen, P. E.

    2002-06-28

    The issue of magnetic orientation transitions in thin films combines interesting physics and importance for applications. We study the magnetic transition and phase diagram of a 0.1{micro}m thick (YLaGd){sub 3}(FeGa){sub 5}O{sub 12} films grown on GGG substrate by liquid phase epitaxy. Observed transitions are compared with those in BiGa:TmIG thin films, studied in previous work by one of the authors. A general picture of orientation transitions in thin films of substituted YIG is discussed.

  9. Peculiarities of spin reorientation in a thin YIG film

    Energy Technology Data Exchange (ETDEWEB)

    Bazaliy, Ya.B.; Tsymbal, L.T.; Linnik, A.I.; Dan' shin, N.K.; Izotov, A.I.; Wigen, P.E

    2003-05-01

    The issue of magnetic orientation transitions in thin films combines interesting physics and importance for applications. We study the magnetic transition and phase diagram of a 0.1 {mu}m thick (YLaGd){sub 3}(FeGa){sub 5}O{sub 12} films grown on GGG substrate by liquid phase epitaxy. Observed transitions are compared with those in BiGa:TmIG thin films, studied in previous work by one of the authors. A general picture of orientation transitions in thin films of substituted YIG is discussed.

  10. Electrochemical Intercalation of Sodium into Silicon Thin Film

    Institute of Scientific and Technical Information of China (English)

    Dong-Yeon Kim; Hyo-Jun Ahn; Gyu-Bong Cho; Jong-Seon Kim; Ho-Suk Ryu; Ki-Won Kim; Jou-Hyeon Ahn; Won-Cheol Shin

    2008-01-01

    In order to investigate the possibility of Si thin film as an anode for Na battery, we studied the electrochemical intercalation of sodium into the Si film. Amorphous Si thin film electrode was prepared using DC magnetron sputtering. Sodium ion could intercalate into Si thin film upto Na0.52Si, i.e. 530mAh · g-1-Si. The first discharge capacity was 80mAh.·g-1-Si, which meant reversible amount of sodium intercalation. The discharge capacity slightly decreased to 70mAh · g-1-Si after 10 cycles.

  11. Evaluation of residual stress in sputtered tantalum thin-film

    Energy Technology Data Exchange (ETDEWEB)

    Al-masha’al, Asa’ad, E-mail: asaad.al@ed.ac.uk; Bunting, Andrew; Cheung, Rebecca

    2016-05-15

    Highlights: • Tantalum thin-films have been deposited by DC magnetron sputtering system. • Thin-film stress is observed to be strongly influenced by sputtering pressure. • Transition towards the compressive stress is ascribed to the annealing at 300 °C. • Expose thin-film to air ambient or ion bombardment lead to a noticeable change in the residual stress. - Abstract: The influence of deposition conditions on the residual stress of sputtered tantalum thin-film has been evaluated in the present study. Films have been deposited by DC magnetron sputtering and curvature measurement method has been employed to calculate the residual stress of the films. Transitions of tantalum film stress from compressive to tensile state have been observed as the sputtering pressure increases. Also, the effect of annealing process at temperature range of 90–300 °C in oxygen ambient on the residual stress of the films has been studied. The results demonstrate that the residual stress of the films that have been deposited at lower sputtering pressure has become more compressive when annealed at 300 °C. Furthermore, the impact of exposure to atmospheric ambient on the tantalum film stress has been investigated by monitoring the variation of the residual stress of both annealed and unannealed films over time. The as-deposited films have been exposed to pure Argon energy bombardment and as result, a high compressive stress has been developed in the films.

  12. Phase Equilibria in Thin Polymer Films

    Science.gov (United States)

    Müller, M.; Binder, K.; Albano, E. V.

    Within self-consistent field theory and Monte Carlo simulations the phase behavior of a symmetrical binary AB polymer blend confined into a thin film is studied. The film surfaces interact with the monomers via short ranged potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to interface localization/delocalization transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter case the phase diagram exhibits two critical points which correspond to the prewetting critical points of the semi-infinite system. Only below a triple point there is a single two-phase coexistence region. The crossover between these qualitatively different limiting behaviors occurs gradually, however, the critical temperature and the critical composition exhibit a non-monotonic dependence on the surface field. The dependence of the phase behavior for antisymmetric boundaries is studied as a function of the film thickness and the strength of the surface interactions. Upon reducing the film thickness or decreasing the strength of the surface interactions we can change the order of the interface localization/delocalization transition from first to second. The role of fluctuations is explored via Monte Carlo simulations of a coarse grained lattice model. Close to the (prewetting) critical points we observe 2D Ising critical behavior. Also, there is a rich crossover behavior between Ising critical, tricritical and mean field behavior. At lower temperatures capillary waves of the AB interface lead to a pronounced dependence of the effective interface potential on the lateral system size.

  13. Thin Films for Advanced Glazing Applications

    Directory of Open Access Journals (Sweden)

    Ann-Louise Anderson

    2016-09-01

    Full Text Available Functional thin films provide many opportunities for advanced glazing systems. This can be achieved by adding additional functionalities such as self-cleaning or power generation, or alternately by providing energy demand reduction through the management or modulation of solar heat gain or blackbody radiation using spectrally selective films or chromogenic materials. Self-cleaning materials have been generating increasing interest for the past two decades. They may be based on hydrophobic or hydrophilic systems and are often inspired by nature, for example hydrophobic systems based on mimicking the lotus leaf. These materials help to maintain the aesthetic properties of the building, help to maintain a comfortable working environment and in the case of photocatalytic materials, may provide external pollutant remediation. Power generation through window coatings is a relatively new idea and is based around the use of semi-transparent solar cells as windows. In this fashion, energy can be generated whilst also absorbing some solar heat. There is also the possibility, in the case of dye sensitized solar cells, to tune the coloration of the window that provides unheralded external aesthetic possibilities. Materials and coatings for energy demand reduction is highly desirable in an increasingly energy intensive world. We discuss new developments with low emissivity coatings as the need to replace scarce indium becomes more apparent. We go on to discuss thermochromic systems based on vanadium dioxide films. Such systems are dynamic in nature and present a more sophisticated and potentially more beneficial approach to reducing energy demand than static systems such as low emissivity and solar control coatings. The ability to be able to tune some of the material parameters in order to optimize the film performance for a given climate provides exciting opportunities for future technologies. In this article, we review recent progress and challenges in

  14. Fabricating thin-film photovoltaic devices using ultra-sonic spray-coating (Presentation Recording)

    Science.gov (United States)

    Lidzey, David G.

    2015-10-01

    The scale-up of thin-film electronic devices requires a manufacture tool set that is capable of fabricating thin films at high speed over large areas. One such technique capable of such a task is ultra-sonic spray coating. Here, a target solution is fed onto a vibrating tip that breaks the solution up into very fine droplets, with such droplets being carried to a surface by a gas stream. Such ultra-sonic coating processes are already widely used in Electronics, Medical and Displays industries to create films having excellent smoothness and homogeneity. In this talk, I describe the use of ultra-sonic spray-coating to deposit a range of materials for thin-film optoelectronics. As our spray-coating system operates in air, it was first necessary to explore the relative sensitivity of various conjugated polymer / fullerene blends to an air-based process route. It is found that carbazole based co-polymers are particularly stable, and can be processed in air (by spin-coating) into organic photovoltaic devices (OPV) without any apparent loss in device efficiency. I then show that spray-coating can be used to deposit a range of semiconductor materials into smooth, thin-films, including PEDOT:PSS, MoOx (from a precursor) and a series of polymer:fullerene blends. Using such a technique, we are able to scale up an array of devices having an area of 7 cm2, and using a PBDTTT-EFT:PC70BM blend, obtain OPVs having a power conversion efficiency (PCE) of 8.7%. I then discuss spray-coating as a method to fabricate photovoltaic devices based on CH3NH3PbI(3-x)Clx perovskite films. Here, by optimization of deposition parameters, devices are created having a PCE of 11.1%.

  15. Mechanism and characters of thin film lubrication at nanometer scale

    Institute of Scientific and Technical Information of China (English)

    雒建斌; 温诗铸

    1996-01-01

    Thin film lubrication is a transition region between elastohydrodynamic lubrication and boundary lubrication, A technique of relative optical interference intensity with the resolution of 0.5 nm in the vertical direction and 1.5 nm in the horizontal direction is used in a pure rolling process to measure the film thickness with different lubricants, speeds, loads and substrate surface energy. Experimental data show that the characteristics of thin film lubrication are different from those of elastohydrodynamic lubrication and boundary lubrication. As the rolling speed decreases, a critical film thickness can be found to distinguish thin film lubrication from elastohydrodynamic lubrication. Such thickness is related to the substrate surface energy, atmospheric viscosity of lubricant, etc. A physical model of thin film lubrication with the fluid layer, the ordered liquid layer and the adsorbed layer is proposed and the functions of these different layers are discussed.

  16. Density of organic thin films in organic photovoltaics

    Science.gov (United States)

    Zhao, Cindy X.; Xiao, Steven; Xu, Gu

    2015-07-01

    A practical parameter, the volume density of organic thin films, found to affect the electronic properties and in turn the performance of organic photovoltaics (OPVs), is investigated in order to benefit the polymer synthesis and thin film preparation in OPVs. To establish the correlation between film density and device performance, the density of organic thin films with various treatments was obtained, by two-dimensional X-ray diffraction measurement using the density mapping with respect to the crystallinity of thin films. Our results suggest that the OPV of higher performance has a denser photoactive layer, which may hopefully provide a solution to the question of whether the film density matters in organic electronics, and help to benefit the OPV industry in terms of better polymer design, standardized production, and quality control with less expenditure.

  17. A versatile platform for magnetostriction measurements in thin films

    Science.gov (United States)

    Pernpeintner, M.; Holländer, R. B.; Seitner, M. J.; Weig, E. M.; Gross, R.; Goennenwein, S. T. B.; Huebl, H.

    2016-03-01

    We present a versatile nanomechanical sensing platform for the investigation of magnetostriction in thin films. It is based on a doubly clamped silicon nitride nanobeam resonator covered with a thin magnetostrictive film. Changing the magnetization direction within the film plane by an applied magnetic field generates a magnetoelastic stress and thus changes the resonance frequency of the nanobeam. A measurement of the resulting resonance frequency shift, e.g., by optical interferometry, allows to quantitatively determine the magnetostriction constants of the thin film. In a proof-of-principle experiment, we determine the magnetostriction constants of a 10 nm thick polycrystalline cobalt film, showing very good agreement with literature values. The presented technique aims, in particular, for the precise measurement of magnetostriction in a variety of (conducting and insulating) thin films, which can be deposited by, e.g., electron beam deposition, thermal evaporation, or sputtering.

  18. The Structure and Stability of Molybdenum Ditelluride Thin Films

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Molybdenum-tellurium alloy thin films were fabricated by electron beam evaporation and the films were annealed in different conditions in N2 ambient. The hexagonal molybdenum ditelluride thin films with well crystallization annealed at 470°C or higher were obtained by solid state reactions. Thermal stability measurements indicate the formation of MoTe2 took place at about 350°C, and a subtle weight-loss was in the range between 30°C and 500°C. The evolution of the chemistry for Mo-Te thin films was performed to investigate the growth of the MoTe2 thin films free of any secondary phase. And the effect of other postdeposition treatments on the film characteristics was also investigated.

  19. Na2Ti6O13 thin films as anode for thin film sodium ion batteries

    Science.gov (United States)

    Rambabu, A.; Kishore, B.; Munichandraiah, N.; Krupanidhi, S. B.; Barpanda, P.

    2017-05-01

    The pulsed laser deposition was employed to produce Na2Ti6O13 (NTO) thin films, which were applied as an anode material for Sodium-Ion batteries (SIBs). X-ray diffraction made it clear that the film is crystalline in single phase. Morphology and elemental composition studies were done using FESEM. Grain size and surface roughness was measured from atomic force microscopy. The electrochemical measurements were performed at 0.5 - 3V range and it exhibited the initial discharge capacity was 49.7 µAh/μm-cm2 with coulombic efficiency 69.8%.

  20. Characterization of reliability of printed indium tin oxide thin films.

    Science.gov (United States)

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments.

  1. An overview of thin film nitinol endovascular devices.

    Science.gov (United States)

    Shayan, Mahdis; Chun, Youngjae

    2015-07-01

    Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-profile medical devices (e.g., endovascular devices). Thin film nitinol-based devices can be collapsed and inserted in remarkably smaller diameter catheters for a wide range of catheter-based procedures; therefore, it can be easily delivered through highly tortuous or narrow vascular system. A high-quality thin film nitinol can be fabricated by vacuum sputter deposition technique. Micromachining techniques were used to create micro patterns on the thin film nitinol to provide fenestrations for nutrition and oxygen transport and to increase the device's flexibility for the devices used as thin film nitinol covered stent. In addition, a new surface treatment method has been developed for improving the hemocompatibility of thin film nitinol when it is used as a graft material in endovascular devices. Both in vitro and in vivo test data demonstrated a superior hemocompatibility of the thin film nitinol when compared with commercially available endovascular graft materials such as ePTFE or Dacron polyester. Promising features like these have motivated the development of thin film nitinol as a novel biomaterial for creating endovascular devices such as stent grafts, neurovascular flow diverters, and heart valves. This review focuses on thin film nitinol fabrication processes, mechanical and biological properties of the material, as well as current and potential thin film nitinol medical applications.

  2. Altering properties of cerium oxide thin films by Rh doping

    Energy Technology Data Exchange (ETDEWEB)

    Ševčíková, Klára, E-mail: klarak.sevcikova@seznam.cz [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); NIMS Beamline Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148 (Japan); Nehasil, Václav, E-mail: nehasil@mbox.troja.mff.cuni.cz [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Vorokhta, Mykhailo, E-mail: vorohtam@gmail.com [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Haviar, Stanislav, E-mail: stanislav.haviar@gmail.com [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Matolín, Vladimír, E-mail: matolin@mbox.troja.mff.cuni.cz [Faculty of Mathematics and Physics, Department of Surface and Plasma Science, Charles University in Prague, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  3. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  4. The Potentiostatic Electrodeposition of Indium doped Aluminium Selenide Thin Films

    Directory of Open Access Journals (Sweden)

    R.K. Pathak and Sipi Mohan

    2013-12-01

    Full Text Available The In containing AlSe thin films were electrosynthesized by electrochemical co-deposition technique. The morphological properties of thin films were studied through the Scanning Electron Micrograph (SEM while the structural features through X-Ray Diffraction technique (XRD. The deposition current along with the film thickness values, the charge carrier density, flat band potential, corrosion characteristics i.e., corrosion current, corrosion potential and corrosion rate were calculated.

  5. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A. [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  6. Thin film adhesion by nanoindentation-induced superlayers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, William W.; Volinsky, A.A.

    2001-06-01

    This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

  7. On Ginzburg-Landau Vortices of Superconducting Thin Films

    Institute of Scientific and Technical Information of China (English)

    Shi Jin DING; Qiang DU

    2006-01-01

    In this paper, we discuss the vortex structure of the superconducting thin films placed in a magnetic field. We show that the global minimizer of the functional modelling the superconducting thin films has a bounded number of vortices when the applied magnetic field hex < Hc1 + K log |log ε|where Hc1 is the lower critical field of the film obtained by Ding and Du in SIAM J. Math. Anal.,2002. The locations of the vortices are also given.

  8. The corrosion behavior of nanocrystalline nickel based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Danışman, Murat, E-mail: muratdan@gmail.com

    2016-03-01

    In this study, the effect of Cr addition on corrosion behavior of Ni thin films were investigated. Ni thin films and Ni films with three different Cr content were deposited on glass substrates by magnetron sputtering. After deposition process, thin films with different Cr content were thermally treated in a rapid thermal process system. Phase analysis and grain size calculations of the samples were carried out by X-ray diffraction analysis. In order to reveal corrosion properties, potentiodynamic tests were conducted on samples. Analysis revealed that, although Cr addition to pure-Ni thin films improved their corrosion resistance, occurrence of σ-Cr{sub 3}Ni{sub 2} phase at higher Cr contents increased corrosion rate. The corrosion properties of the samples were also investigated by electrochemical impedance spectroscopy and surface related parameters caused by corrosion reactions were calculated. The analysis revealed that at 55% wt. Cr, rapid ion exchange occurred and highest corrosion current, 23.4 nA cm{sup −2} was observed. - Highlights: • Thin film Ni–Cr samples were deposited on glass substrate. • Effect of Cr addition on corrosion behavior of Ni thin films were investigated. • Potentiodynamic tests and electrochemical impedance spectroscopy methods were used. • Cr content in Ni thin films plays and important role on corrosion. • Up to a certain Cr content, Cr addition reduces corrosion rate.

  9. Optical properties of aluminum oxide thin films and colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Koushki, E., E-mail: ehsan.koushki@yahoo.com [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mousavi, S.H. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Jafari Mohammadi, S.A. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Department of Chemistry, College of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Majles Ara, M.H. [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Oliveira, P.W. de [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany)

    2015-10-01

    In this work, we prepared thin films of aluminum oxide (Al{sub 2}O{sub 3}) with different thicknesses, using a wet chemical process. The Al{sub 2}O{sub 3} nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  10. Patterns and conformations in molecularly thin films

    Science.gov (United States)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn

  11. Photoluminescence studies in epitaxial CZTSe thin films

    Science.gov (United States)

    Sendler, Jan; Thevenin, Maxime; Werner, Florian; Redinger, Alex; Li, Shuyi; Hägglund, Carl; Platzer-Björkman, Charlotte; Siebentritt, Susanne

    2016-09-01

    Epitaxial Cu 2 ZnSnSe 4 (CZTSe) thin films were grown by molecular beam epitaxy on GaAs(001) using two different growth processes, one containing an in-situ annealing stage as used for solar cell absorbers and one for which this step was omitted. Photoluminescences (PL) measurements carried out on these samples show no dependence of the emission shape on the excitation intensity at different temperatures ranging from 4 K to 300 K . To describe the PL measurements, we employ a model with fluctuating band edges in which the density of states of the resulting tail states does not seem to depend on the excited charge carrier density. In this interpretation, the PL measurements show that the annealing stage removes a defect level, which is present in the samples without this annealing.

  12. Characterization of lithium phosphorous oxynitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohua; Bates, J.B.; Jellison, G.E. Jr.

    1996-01-01

    Electrical and electrochemical properties of an amorphous thin-film lithium electrolyte, lithium phosphorous oxynitride (Lipon), have been studied with emphasis on the stability window vs Li metal and the behavior of the Li/Lipon interface. Ion conductivity of Lipon exhibits Arrhenius behavior at {minus}26 to +140 C, with a conductivity of 1.7 {times} 10{sup {minus}6}S/cm at 25 C and an activity energy of 0.50 {plus_minus} 0.01 eV. A stability window of 5.5 V was observed with respect to a Li{sup +}/Li reference, and no detectable reaction or degradation was evident at the Li/Lipon interface upon lithium cycling.

  13. Nonlinear optics of astaxanthin thin films

    Science.gov (United States)

    Esser, A.; Fisch, Herbert; Haas, Karl-Heinz; Haedicke, E.; Paust, J.; Schrof, Wolfgang; Ticktin, Anton

    1993-02-01

    Carotinoids exhibit large nonlinear optical properties due to their extended (pi) -electron system. Compared to other polyenes which show a broad distribution of conjugation lengths, carotinoids exhibit a well defined molecular structure, i.e. a well defined conjugation length. Therefore the carotinoid molecules can serve as model compounds to study the relationship between structure and nonlinear optical properties. In this paper the synthesis of four astaxanthins with C-numbers ranging from 30 to 60, their preparation into thin films, wavelength dispersive Third Harmonic Generation (THG) measurements and some molecular modelling calculations will be presented. Resonant (chi) (3) values reach 1.2(DOT)10-10 esu for C60 astaxanthin. In the nonresonant regime a figure of merit (chi) (3)/(alpha) of several 10-13 esu-cm is demonstrated.

  14. Photodesorption from copper, beryllium, and thin films

    Science.gov (United States)

    Foerster, C. L.; Halama, H. J.; Korn, G.

    Ever increasing circulating currents in electron-positron colliders and light sources demand lower and lower photodesportion (PSD) from the surfaces of their vacuum chambers and their photon absorbers. This is particularly important in compact electron storage rings and B meson factories where photon power of several kw cm(exp -1) is deposited on the surfaces. Given the above factors, we have measured PSD from 1 m long bars of solid copper and solid beryllium, and TiN, Au and C thin films deposited on solid copper bars. Each sample was exposed to about 10(exp 23) photons/m with a critical energy of 500 eV at the VUV ring of the NSLS. PSD was recorded for two conditions: after a 200 C bake-out and after an Ar glow discharge cleaning. In addition, we also measured reflected photons, photoelectrons and desorption as functions of normal, 75 mrad, 100 mrad, and 125 mrad incident photons.

  15. Determination of magnetic properties of multilayer metallic thin films

    CERN Document Server

    Birlikseven, C

    2000-01-01

    and magnetization measurements were taken. In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the exper...

  16. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  17. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  18. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  19. Plasma synthesis of photocatalytic TiO x thin films

    Science.gov (United States)

    Sirghi, L.

    2016-06-01

    The development of efficient photocatalytic materials is promising technology for sustainable and green energy production, fabrication of self-cleaning, bactericidal, and super hydrophilic surfaces, CO2 photoreduction, and decomposition of toxic pollutants in air and water. Semiconductors with good photocatalytic activity have been known for four decades and they are regarded as promising candidates for these new technologies. Low-pressure discharge plasma is one of the most versatile technologies being used for the deposition of photocatalytic semiconductor thin films. This article reviews the main results obtained by the author in using low-pressure plasma for synthesis of TiO x thin films with applications in photocatalysis. Titanium dioxide thin films were obtained by radio frequency magnetron sputtering deposition, plasma enhanced chemical vapour deposition, and high power impulse magnetron sputtering deposition. The effects of the plasma deposition method, plasma parameters, film thickness and substrate on the film structure, chemical composition and photocatalytic activity are investigated. The photocatalytic activity of plasma synthesised TiO x thin films was estimated by UV light induced hydrophilicity. Measurements of photocurrent decay in TiO x thin films in vacuum and air showed that the photocatalytic activity is closely connected to the production, recombination and availability for surface reactions of photo-generated charge carriers. The photocatalytic activity of TiO x thin films was investigated at nanoscale by atomic force microscopy. Microscopic regions of different hydrophilicity on UV light irradiated films are discriminated by AFM atomic force microscopy measurements of adhesion and friction force.

  20. Reorientation of magnetic anisotropy in obliquely sputtered metallic thin films

    NARCIS (Netherlands)

    Lisfi, A.; Lodder, J.C.; Wormeester, H.; Poelsema, B.

    2002-01-01

    Reorientation in the magnetic anisotropy as a function of film thickness has been observed in Co-Ni and Co thin films, obliquely sputtered on a polyethylene terephthalate substrate at a large incidence angle (70°). This effect is a consequence of the low magnetocrystalline anisotropy of the films (f