WorldWideScience

Sample records for coplanar waveguide fed

  1. Ultra-Wideband Notched Characteristic Fed by Coplanar Waveguide

    Directory of Open Access Journals (Sweden)

    Rastanto Hadinegoro

    2015-02-01

    Full Text Available In this paper, a novel Ultra-Wide Band (UWB notch patch antenna with co-planar waveguide (CPW fed is presented. This antenna only used one layer and the patch antenna is constructed on the first layer and back to back with CPW fed and bottom part is ground plane. The width notch is used to achieve the UWB characteristic. The results shown that the impedance bandwidth is 1130 MHz (1.662–2.792 GHz or about 50.7% for VSWR <2.

  2. CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

    Directory of Open Access Journals (Sweden)

    B. T. P. MADHAV

    2016-02-01

    Full Text Available Coplanar waveguide fed circularly polarized microstrip patch antenna performance evaluation is presented in this paper. The broadband characteristics are attained by placing open end slot at the lower side of the antenna. The proposed design has the return loss of less than -10dB and VSWR<2 in the desired band of operation. A gain of 3dB to 4dB is attained in the desired band with good radiation characteristics and a suitable axial ratio of less than 3 dB is attained in the prescribed band of operation. Proposed antenna is fabricated on the FR4 substrate with dielectric constant of 4.4. Parametric analysis with change in substrate permittivity also performed and the optimized dimensions are presented in this work.

  3. A Coplanar Waveguide Fed Hexagonal Shape Ultra Wide Band Antenna with WiMAX and WLAN Band Rejection

    Directory of Open Access Journals (Sweden)

    T. Mandal

    2014-12-01

    Full Text Available In this paper, a coplanar waveguide (CPW fed hexagonal shape planar antenna has been considered for ultra-wide band (UWB. This antenna is then modified to obtain dual band rejection. The Wireless Local Area Network (WLAN and Wireless Microwave Access (WiMAX band rejections are realized by symmetrically incorporating a pair of L-shape slots within the ground plane as well as a couple of I-shape stubs inserted on the bottom side of radiating patch. The proposed antenna has stop bands of 5.05-5.92 GHz and 3.19-3.7 GHz while maintaining the wideband performance from 2.88 - 13.71 GHz with reflection coefficient of ≤ -10 dB. The antenna exhibits satisfactory omni-directional radiation characteristics throughout its operating band. The peak gain varies from 2 dB to 6 dB in the entire UWB frequency regions except at the notch bands. Surface current distributions are used to analyze the effects of the L-slot and I-shape stub. The measured group delay has small variation within the operating band except notch bands and hence the proposed antenna may be suitable for UWB applications.

  4. A Compact Coplanar Waveguide (CPW)-Fed Zeroth-Order Resonant Filter for Bandpass Applications

    Science.gov (United States)

    Choudhary, Dilip Kumar; Chaudhary, Raghvendra Kumar

    2017-07-01

    A new CPW-fed bandpass filter based on zeroth order resonant (ZOR) technique is presented in this paper. Proposed filter structure is designed on a CPW single layer where via is not required, hence reduces fabrication complexity. The property of metamaterial of ZOR has been utilized to reduce the filter size. The proposed structure is symmetrically CPW-fed and contains tuning-fork stub, which connects patch to CPW ground plane. The metamaterial properties are characterized by plotting dispersion diagram of proposed structure. The experimental result of proposed filter design shows an insertion loss of 0.51 dB, return loss of 22.5 dB with fractional bandwidth 61.5 % at centre frequency 2.60 GHz. The size of the filter is 0.45 λg×0.36 λg (λg is the guided wavelength at centre frequency).

  5. Experimental investigations on channelized coplanar waveguide

    Science.gov (United States)

    Simons, Rainee N.; Ponchak, George E.; Martzaklis, Konstantinas S.; Romanofsky, Robert R.

    1990-01-01

    A new variant of coplanar waveguide (CPW) which was termed channelized coplanar waveguide (CCPW) is presented. Measured propagation characteristics for CCPW such as epsilon(eff) and unloaded Q as a function of geometrical parameters and frequency are presented. The measured and modeled epsilon(eff) are also compared. Equivalent circuit model element values are presented for a CCPW open circuit and a CCPW right angle bend. A CCPW matched T-junction, matched 1:3 junction, and a novel coax-to-CCPW in-phase, N-way, radial power divider are also demonstrated.

  6. Nanoscale constrictions in superconducting coplanar waveguide resonators

    International Nuclear Information System (INIS)

    Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando; Sesé, Javier; Atkinson, James; Barco, Enrique del; Sánchez-Azqueta, Carlos; Majer, Johannes

    2014-01-01

    We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.

  7. Nanoscale constrictions in superconducting coplanar waveguide resonators

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando, E-mail: fluis@unizar.es [Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza, 50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Sesé, Javier [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Atkinson, James; Barco, Enrique del [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Sánchez-Azqueta, Carlos [Dpto. de Ingeniería Electrónica y Telecomunicaciones, Universidad de Zaragoza, 50009 Zaragoza (Spain); Majer, Johannes [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna (Austria)

    2014-10-20

    We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.

  8. Ultra-Wideband Coplanar-Fed Monopoles: A Comparative Study

    Directory of Open Access Journals (Sweden)

    J. Jilkova

    2008-04-01

    Full Text Available The paper provides an experimental comparison of four types of ultra-wideband coplanar-fed planar monopole antennas. Parameters of the open stub completed by an L-shaped monopole and the cross monopole were adopted from the literature. The forked monopole and the coplanar monopole were fabricated and measured. Monopoles were compared from the viewpoint of the impedance bandwidth, gain, directivity patterns and dimensions.

  9. Optimized coplanar waveguide resonators for a superconductor–atom interface

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M. A., E-mail: mabeck2@wisc.edu; Isaacs, J. A.; Booth, D.; Pritchard, J. D.; Saffman, M.; McDermott, R. [Department of Physics, University Of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-08-29

    We describe the design and characterization of superconducting coplanar waveguide cavities tailored to facilitate strong coupling between superconducting quantum circuits and single trapped Rydberg atoms. For initial superconductor–atom experiments at 4.2 K, we show that resonator quality factors above 10{sup 4} can be readily achieved. Furthermore, we demonstrate that the incorporation of thick-film copper electrodes at a voltage antinode of the resonator provides a route to enhance the zero-point electric fields of the resonator in a trapping region that is 40 μm above the chip surface, thereby minimizing chip heating from scattered trap light. The combination of high resonator quality factor and strong electric dipole coupling between the resonator and the atom should make it possible to achieve the strong coupling limit of cavity quantum electrodynamics with this system.

  10. A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

    Directory of Open Access Journals (Sweden)

    K. C. Pan

    2012-01-01

    Full Text Available A novel printed antenna with a frequency reconfigurable feed network is presented. The antenna consists of a bowtie structure patch radiating element in the inner space of an annulus that is on a nongrounded substrate with a ferroelectric (FE Barium Strontium Titanate (BST thin film. The bowtie patch is fed by a coplanar waveguide (CPW transmission line that also includes a CPW-based BST shunt varactor. Reconfiguration of the compact 8 mm × 8 mm system has been demonstrated by shifting the antenna system’s operating frequency 500 MHz in the 7–9 GHz band by applying a DC voltage bias.

  11. Rectangular waveguide-to-coplanar waveguide transitions at U-band using e-plane probe and wire bonding

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    This paper presents rectangular waveguide-to-coplanar waveguide (CPW) transitions at U-band (40–60 GHz) using E-plane probe and wire bonding. The designs of CPWs based on quartz substrate with and without aluminum cover are explained. The single and double layer rectangular waveguide......-to-CPW transitions using E-plane probe and wire bonding are designed. The proposed rectangular waveguide-to-CPW transition using wire bonding can provide 10 GHz bandwidth at U-band and does not require extra CPWs or connections between CPWs and chips. A single layer rectangular waveguide-to-CPW transition using E...

  12. SOI-based trapezoidal waveguide with 45-degree microreflector for non-coplanar light bending

    Science.gov (United States)

    Shen, Po-Kuan; Chang, Chia-Chi; Chen, Chin-Ta; Hsiao, Hsu-Liang; Lee, Yun-Chih; Wu, Mount-Learn

    2012-01-01

    SOI-based trapezoidal waveguide with 45° reflector for non-coplanar light bending is proposed and demonstrated. The proposed structures include 45° micro-reflector and silicon trapezoidal waveguide. Due to the SOI-based trapezoidal waveguide with 45° reflector, light wave can be coupled into silicon waveguide easily and have higher coupling efficiency. All of structures are fabricated using a single-step wet etching process. The RMS roughness of waveguide sidewall and 45° micro-reflector is about 30 nm. The coupling efficiency of proposed structure is -4.51 dB, and misalignment tolerance are 42 μm at horizontal direction and 41 μm at vertical direction. The multi-channel trapezoidal waveguide is also demonstrated. This device can transfer the light wave at the same time, and its cross talk is about -50 dB.

  13. Measuring the complex permittivity tensor of uniaxial biological materials with coplanar waveguide transmission line

    Science.gov (United States)

    A simple and accurate technique is described for measuring the uniaxial permittivity tensor of biological materials with a coplanar waveguide transmission-line configuration. Permittivity tensor results are presented for several chicken and beef fresh meat samples at 2.45 GHz....

  14. Design and modeling of inductors, capacitors and coplanar waveguides at tens of GHz frequencies

    CERN Document Server

    Aryan, Naser Pour

    2015-01-01

    This book describes the basic principles of designing and modelling inductors, MIM capacitors and coplanar waveguides at frequencies of several tens of GHz. The author explains the design and modelling of key, passive elements, such as capacitors, inductors and transmission lines that enable high frequency MEMS operating at frequencies in the orders of tens of GHz.

  15. Design and VNA-measurement of coplanar waveguide (CPW) on benzocyclobutene (BCB) at THz frequencies

    Science.gov (United States)

    Cao, Lei; Grimault-Jacquin, Anne-Sophie; Zerounian, Nicolas; Aniel, Frédéric

    2014-03-01

    The low permittivity and the low loss tangent of the benzocyclobutene polymer (BCB) offers to coplanar waveguides (CPW) a low dispersive propagation properties at THz frequency. These transmission lines have been designed, modeled with a three dimensional (3D) solver of Maxwell equations based on finite element method (FEM) from 20 to 1000 GHz at various characteristic impedances (Zc). Their dispersion and losses (radiation, conduction and dielectric) have been investigated separately versus the waveguide size, the nature of the substrate (dielectric or semiconductor) to optimize the THz signal propagation. Monomode CPW on BCB numerically designed for various Zc were realized and measured with vector network analyzer (VNA). S-parameters of CPW are de-embedded by optimization of the accesses' model. A good agreement is found between experimental and numerical results with low attenuation constants of 2.7 dB/mm and 3.5 dB/mm at 400 GHz and 500 GHz, respectively.

  16. Ultra wideband coplanar waveguide fed spiral antenna for humanitarian demining

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen

    2000-01-01

    to 1 bandwidth with a return loss better than 10 dB from 0.4 to 3.8 GHz is presented. A wideband balun covering the frequency range of the antenna was developed. The constructed spiral antenna is very useful in a stepped frequency ground penetrating radar for humanitarian demining due to the very...

  17. Coupling Between Waveguide-Fed Slot Arrays

    Science.gov (United States)

    Rengarajan, Sembiam

    2011-01-01

    Coupling between two waveguide-fed planar slot arrays has been investigated using full-wave analysis. The analysis employs the method-of-moments solution to the pertinent coupled integral equations for the aperture electric field of all slots. In order to compute coupling between two arrays, the input port of the first array is excited with a TE(sub 10) mode wave while the second one is match-terminated. After solving the moment method matrix equations, the aperture fields of all slots are obtained and thereby the TE(sub 10) mode wave received at the input port of the second array is determined. Coupling between two arrays is the ratio of the wave amplitude arriving in the second array port to the incident wave amplitude at the first array port. The coupling mechanism has been studied as a function of spacing between arrays in different directions, e.g. the electric field plane, the magnetic field plane, and the diagonal plane. Computed coupling values are presented for different array geometries. This work is novel since it provides a good understanding of coupling between waveguide-fed slot arrays as a function of spacing and orientation for different aperture distributions and array architectures. This serves as a useful tool for antenna design engineers and system engineers.

  18. Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators

    Science.gov (United States)

    Calusine, G.; Melville, A.; Woods, W.; Das, R.; Stull, C.; Bolkhovsky, V.; Braje, D.; Hover, D.; Kim, D. K.; Miloshi, X.; Rosenberg, D.; Sevi, A.; Yoder, J. L.; Dauler, E.; Oliver, W. D.

    2018-02-01

    Improving the performance of superconducting qubits and resonators generally results from a combination of materials and fabrication process improvements and design modifications that reduce device sensitivity to residual losses. One instance of this approach is to use trenching into the device substrate in combination with superconductors and dielectrics with low intrinsic losses to improve quality factors and coherence times. Here, we demonstrate titanium nitride coplanar waveguide resonators with mean quality factors exceeding two million and controlled trenching reaching 2.2 μm in the silicon substrate. Additionally, we measure sets of resonators with a range of sizes and trench depths and compare these results with finite-element simulations to demonstrate quantitative agreement with a model of interface dielectric loss. We then apply this analysis to determine the extent to which trenching can improve resonator performance.

  19. Neural Models for the Broadside-Coupled V-Shaped Microshield Coplanar Waveguides

    Science.gov (United States)

    Guney, K.; Yildiz, C.; Kaya, S.; Turkmen, M.

    2006-09-01

    This article presents a new approach based on multilayered perceptron neural networks (MLPNNs) to calculate the odd-and even-mode characteristic impedances and effective permittivities of the broadside-coupled V-shaped microshield coplanar waveguides (BC-VSMCPWs). Six learning algorithms, bayesian regulation (BR), Levenberg-Marquardt (LM), quasi-Newton (QN), scaled conjugate gradient (SCG), resilient propagation (RP), and conjugate gradient of Fletcher-Powell (CGF), are used to train the MLPNNs. The neural results are in very good agreement with the results reported elsewhere. When the performances of neural models are compared with each other, the best and worst results are obtained from the MLPNNs trained by the BR and CGF algorithms, respectively.

  20. Design and analysis of coplanar waveguide triple-band antenna based on defected ground structure

    Science.gov (United States)

    Lv, Hong; Chen, Wanli; Xia, Xinsheng; Qi, Peng; Sun, Quanling

    2017-11-01

    A kind of coplanar waveguide triple-band antenna based on defected ground structure is proposed, which has novel structure. Three batches with different frequency band are constructed by utilizing line combination, overlapping, and symmetry method. Stop band signals among three frequency bands are effectively suppressed by slots with different structures. More satisfactory impedance matching is realized by means of changing slot structure and improving return-loss. The presented antenna can operates simultaneously in various systems such as 3G / 4G wireless communication, Bluetooth, Worldwide Interoperability for Microwave Access, Wireless LAN. Test results show that the antenna has good radiation and gain in its working frequency band, and that it has great application potentials.

  1. Ka-Band, MEMS Switched Line Phase Shifters Implemented in Finite Ground Coplanar Waveguide

    Science.gov (United States)

    Scardelletti, Maximilian C.; Ponchak, George E.; Varaljay, Nicholas C.

    2005-01-01

    Ka-band MEMS switched line phase shifters implemented in finite ground coplanar waveguide are described in this paper. The phase shifters are constructed of single-pole double-throw (SPDT) switches with additional reference and phase offset transmission line lengths. The one- and two-bit phase shifters are fabricated on high resistivity (HR) silicon with a dielectric constant, Epsilon(sub T) = 11.7 and a substrate thickness, t = 500microns. The switching architectures integrated within the phase shifters consist of MEMS switches that are doubly anchored cantilever beam capacitive switches with additional high inductive sections (MEMS LC device). The SPDT switch is composed of a T-junction with a MEMS LC device at each output port. The one-bit phase shifter described in this paper has an insertion loss (IL) and return loss (RL) of 0.9 dB and 30 dB while the two-bit described has an IL and RL of 1.8 dB and 30 dB respectively. The one-bit phase shifter's designed offset phase is 22.5deg and actual measured phase shift is 21.8deg. The two-bit phase shifter's designed offset phase is 22.5deg, 45deg, and 67.5deg and the actual measured phase shifts are 21.4deg, 44.2deg, and 65.8deg, respectively.

  2. High-speed electro-optic switch based on nonlinear polymer-clad waveguide incorporated with quasi-in-plane coplanar waveguide electrodes

    Science.gov (United States)

    Jiang, Ming-Hui; Wang, Xi-Bin; Xu, Qiang; Li, Ming; Niu, Dong-Hai; Sun, Xiao-Qiang; Wang, Fei; Li, Zhi-Yong; Zhang, Da-Ming

    2018-01-01

    Nonlinear optical (NLO) polymer is a promising material for active waveguide devices that can provide large bandwidth and high-speed response time. However, the performance of the active devices is not only related to the waveguide materials, but also related to the waveguide and electrode structures. In this paper, a high-speed Mach-Zehnder interferometer (MZI) type of electro-optic (EO) switch based on NLO polymer-clad waveguide was fabricated. The quasi-in-plane coplanar waveguide electrodes were also introduced to enhance the poling and modulating efficiency. The characteristic parameters of the waveguide and electrode were carefully designed and simulated. The switches were fabricated by the conventional micro-fabrication process. Under 1550-nm operating wavelength, a typical fabricated switch showed a low insertion loss of 10.2 dB, and the switching rise time and fall time were 55.58 and 57.98 ns, respectively. The proposed waveguide and electrode structures could be developed into other active EO devices and also used as the component in the polymer-based large-scale photonic integrated circuit.

  3. Reconfigurable Coplanar Waveguide (CPW and Half-Mode Substrate Integrated Waveguide (HMSIW Band-Stop Filters Using a Varactor-Loaded Metamaterial-Inspired Open Resonator

    Directory of Open Access Journals (Sweden)

    Juan Hinojosa

    2017-12-01

    Full Text Available An open ring resonator (ORR loaded with a varactor diode is designed and implemented in order to achieve high-performance tunable band-stop filters in planar technology with a compact size. This varactor-loaded ORR (VLORR is versatile. It allows a shunt connection with different planar waveguide sections. In this paper, it has been connected to a coplanar waveguide (CPW and a half-mode substrate integrated waveguide (HMSIW. As a reverse bias voltage is applied to the VLORR, a continuous tuning over the resulting stop-band can be achieved. To illustrate the possibilities of the VLORR, three prototypes have been designed, fabricated, and characterized. The three prototypes show an outstanding performance, with a rejection level at the resonant frequency and a tuning range greater than 12 dB and 85%, respectively. This VLORR has high potential value in microwave communication systems to eliminate unwanted signals.

  4. Reconfigurable Coplanar Waveguide (CPW) and Half-Mode Substrate Integrated Waveguide (HMSIW) Band-Stop Filters Using a Varactor-Loaded Metamaterial-Inspired Open Resonator.

    Science.gov (United States)

    Hinojosa, Juan; Saura-Ródenas, Adrián; Alvarez-Melcon, Alejandro; Martínez-Viviente, Félix L

    2017-12-28

    An open ring resonator (ORR) loaded with a varactor diode is designed and implemented in order to achieve high-performance tunable band-stop filters in planar technology with a compact size. This varactor-loaded ORR (VLORR) is versatile. It allows a shunt connection with different planar waveguide sections. In this paper, it has been connected to a coplanar waveguide (CPW) and a half-mode substrate integrated waveguide (HMSIW). As a reverse bias voltage is applied to the VLORR, a continuous tuning over the resulting stop-band can be achieved. To illustrate the possibilities of the VLORR, three prototypes have been designed, fabricated, and characterized. The three prototypes show an outstanding performance, with a rejection level at the resonant frequency and a tuning range greater than 12 dB and 85%, respectively. This VLORR has high potential value in microwave communication systems to eliminate unwanted signals.

  5. Characterisation and optimisation of a coplanar waveguide fed logarithmic spiral antenna

    DEFF Research Database (Denmark)

    Thaysen, Jesper; Jakobsen, Kaj Bjarne; Appel-Hansen, Jørgen

    2000-01-01

    pattern, due to the absorbing material. Only half of the input power is transformed into radiated power due to the presence of the absorber. The simulated performance of the spiral antenna is very promising. The simulations indicated that the antenna has a radiation efficiency of more than 70...

  6. A design procedure for a slotted waveguide with probe-fed slots radiating into plasma

    International Nuclear Information System (INIS)

    Colborn, J.A.

    1989-11-01

    A design procedure is developed for slotted-waveguide antennas with probe-fed slots. Radiation into a gyrotropic, plane-stratified medium is considered, nonzero waveguide wall thickness is assumed, and noncosinusoidal slot fields and arbitrary slot length up to about one free-space wavelength are allowed. External mutual coupling is taken into account by matching the tangential fields at the antenna surface. The particular case of longitudinal slots in the broad face of rectangular guide is analyzed. The motivation for this work is the design of such radiators for plasma heating and current-drive on thermonuclear fusion experiments, but some of the analysis is applicable to the probeless slotted waveguide used for avionics and communications. 20 refs., 5 figs

  7. A New Dual Circularly Polarized Feed Employing a Dielectric Cylinder-Loaded Circular Waveguide Open End Fed by Crossed Dipoles

    Directory of Open Access Journals (Sweden)

    Jae-Hoon Bang

    2016-01-01

    Full Text Available This paper presents a new dual circularly polarized feed that provides good axial ratio over wide angles and low cross-polarized radiation in backward direction. A circular waveguide open end is fed with two orthogonally polarized waves in phase quadrature by a pair of printed crossed dipoles and a compact connectorized quadrature hybrid coupler. The waveguide aperture is loaded with a dielectric cylinder to reduce the cross-polarization beyond 90 degrees off the boresight. The fabricated feed has, at 5.5 GHz, 6.33-dBic copolarized gain, 3-dB beamwidth of 106°, 10-dB beamwidth of 195°, 3-dB axial ratio beamwidth of 215°, maximum cross-polarized gain of −21.4 dBic, and 27-dB port isolation. The reflection coefficient of the feed is less than −10 dB at 4.99–6.09 GHz.

  8. Analysis of some coplanar transmission lines: coplanar coupled lines, coplanar coupled striplines, and coplanar coupled lines with rectangular microshield

    Science.gov (United States)

    Yuan, Naichang; He, Jianguo; Yao, Demiao; Dai, Qin; Lin, Weigan

    1995-06-01

    Two types of coplanar transmission lines, rectangular microshield coplanar coupled lines (RMCCL) and coplanar coupled rectangular microshield lines (CCRML), are proposed for MMIC applications. These are developed from coplanar coupled lines (CCL) and coplanar coupled strip lines (CCS). Analytic formulas are presented for calculating the quasistatic TEM parameters of these coupled lines by means of exact conformal mapping techniques. Numerical results are also presented to illustrate the properties of these coplanar transmission lines.

  9. FEDS

    DEFF Research Database (Denmark)

    Venable, John; Pries-Heje, Jan; Baskerville, Richard

    2016-01-01

    Evaluation of design artefacts and design theories is a key activity in Design Science Research (DSR), as it provides feedback for further development and (if done correctly) assures the rigour of the research. However, the extant DSR literature provides insufficient guidance on evaluation...... to enable Design Science Researchers to effectively design and incorporate evaluation activities into a DSR project that can achieve DSR goals and objectives. To address this research gap, this research paper develops, explicates, and provides evidence for the utility of a Framework for Evaluation in Design...... Science (FEDS) together with a process to guide design science researchers in developing a strategy for evaluating the artefacts they develop within a DSR project. A FEDS strategy considers why, when, how, and what to evaluate. FEDS includes a two-dimensional characterisation of DSR evaluation episodes...

  10. Design and Measurement of Metallic Post-Wall Waveguide Components

    NARCIS (Netherlands)

    Coenen, T.J.; Bekers, D.J.; Tauritz, J.L.; Vliet, F.E. van

    2009-01-01

    Abstract—In this paper we discuss the design and measurement of a set of metallic post-wall waveguide components for antenna feed structures. The components are manufactured on a single layer printed circuit board and excited by a grounded coplanar waveguide. For a straight transmission line, a 90°

  11. A Novel CPW-Fed UWB Antenna with Band-Stop Function

    Directory of Open Access Journals (Sweden)

    Huaming Chen

    2014-01-01

    Full Text Available A novel coplanar waveguide-fed (CPW ultrawideband (UWB antenna with band-stop function is presented in this paper. The proposed antenna comprises a CPW-fed slot rectangular patch with an open stub ground plane, and two inverted L-shaped strip conductors are fabricated on the back plane. The overall size of the antenna is 25 × 25 × 1.6 mm2, and it achieves good impedance matching and radiation gain. Simulated and measured results show that the designed antenna operates at 2.9 GHz–13.08 GHz with band rejection in the frequency band of 7.7 GHz–9.05 GHz for satellite applications, and the proposed antenna is suitable for UWB wireless communication applications.

  12. Photon-induced thermal effects in superconducting coplanar waveguide resonators

    Science.gov (United States)

    Wang, Yiwen; Zhou, Pinjia; Wei, Lianfu; Li, Haijie; Zhang, Beihong; Zhang, Miao; Wei, Qiang; Fang, Yurong; Cao, Chunhai

    2013-10-01

    We experimentally investigated the optical responses of a superconducting niobium resonator. It was found that, with increasing radiation power, the resonance frequency increases monotonically below around 500 mK, decreases monotonically above around 1 K, and exhibits a nonmonotonic behavior at around 700 mK. These observations show that one can operate the irradiated resonator in three temperature regimes, depending on whether two-level system (TLS) effects or kinetic inductance effects dominate. Furthermore, we found that the optical responses at ultra-low temperatures can be qualitatively regarded as a photon-induced thermalization effect of TLSs, which could be utilized to achieve thermal sensitive photon detections.

  13. Triple-Notched Band CPW fed UWB Antenna with Metallic Reflector for High Gain Performance

    Directory of Open Access Journals (Sweden)

    K. G. Jangid

    2017-10-01

    Full Text Available This paper exhibits the design and performance of a coplanar waveguide (CPW fed triple notched band ultra-wide band (UWB antenna. Proposed prototype has two U-shaped slots on the patch and an inverted U slot in feed line with a metal reflector beneath the radiating element. Proposed structure renders wider impedance bandwidth extended between frequencies 2.71GHz to 12.92 GHz for VSWR 2. The utmost simulated gain of proposed antenna with reflector is close to 9.9dBi at 7.4GHz. A sharp reduction observed in the efficiency values of the proposed structure at stop bands. Perhaps, this structure proved as a useful tool for various applications in modern communication systems including UWB.

  14. Circularly Polarized Antenna Array Fed by Air-Bridge Free CPW-Slotline Network

    Directory of Open Access Journals (Sweden)

    Yilin Liu

    2017-01-01

    Full Text Available A novel design of 1×2 and 2×2 circularly polarized (CP microstrip patch antenna arrays is presented in this paper. The two CP antenna arrays are fed by sequentially rotated coplanar waveguide (CPW to slotline networks and are processed on 1 mm thick single-layer FR4 substrates. Both of the two arrays are low-profile and lightweight. An air-bridge free CPW-slotline power splitter is appropriately designed to form the feeding networks and realize the two CP antenna arrays. The mechanism of circular polarization in this design is explained. The simulated and measured impedance bandwidths as well as the 3 dB axial ratio bandwidths and the radiation patterns of the two proposed antenna arrays are presented. This proposed design can be easily extended to form a larger plane array with good performance owing to its simple structure.

  15. Coplanar stripline components for high frequency application

    Science.gov (United States)

    Goverdhanam, Kavita; Simons, Rainee N.; Dib, Nihad; Katehi, Linda P. B.

    1996-01-01

    In this paper, coplanar stripline discontinuities such as a slit, a right angle bend and a T-junction are characterized and their performance is parameterized with respect to frequency and geometry. Lumped equivalent circuits are presented for some of them. The element values are obtained from the measured discontinuity scattering (S) parameters. The experimental results are compared with theoretical data obtained using the Finite Difference Time Domain (FD-TD) technique for validation and show very good agreement.

  16. Lung stereotactic body radiotherapy using a coplanar versus a non-coplanar beam technique: a comparison of clinical outcomes

    Science.gov (United States)

    Stauder, Michael C.; Miller, Robert C.; Garces, Yolanda I.; Foote, Robert L.; Sarkaria, Jann N.; Bauer, Heather J.; Mayo, Charles S.; Olivier, Kenneth R.

    2013-01-01

    Objectives To determine if lung stereotactic body radiotherapy (SBRT) using a coplanar beam technique was associated with similar outcomes as lung SBRT using a non-coplanar beam technique. Methods A retrospective review was performed of patients undergoing lung SBRT between January 2008 and April 2011. SBRT was initially delivered with multiple non-coplanar, non-overlapping beams; however, starting in December 2009, SBRT was delivered predominantly with all coplanar beams in order to reduce treatment time and complexity. Results This analysis included 149 patients; the median follow-up was 21 months. SBRT was delivered for primary (n = 90) or recurrent (n = 17) non-small cell lung cancer, or lung oligometastasis (n = 42). The most common dose (Gy)/fraction (fx) regimens were 48 Gy/4 fx (39%), 54 Gy/3 fx (37%), and 50 Gy/5 fx (17%). The beam arrangement was coplanar in 61 patients (41%) and non-coplanar in 88 patients (59%). In patients treated with 54 Gy/3 fx, the mean treatment times per fraction for the coplanar and non-coplanar cohorts were 10 and 14 minutes (p < 0.0001). Kaplan-Meier 2-year estimates of overall survival (OS), progression-free survival, and local control (LC) for the coplanar and non-coplanar cohorts were 65% vs. 56% (p = 0.30), 47% vs. 39% (p = 0.71), and 92% and 92% (p = 0.94), respectively. The 1-year estimates of grade 2-5 pulmonary toxicity for the coplanar and non-coplanar cohorts were 11% and 17%, respectively (p = 0.30). On multivariate analysis, beam arrangement was not significantly associated with OS, LC or pulmonary toxicity. Conclusions Patients treated with lung SBRT using a coplanar technique had similar outcomes as those treated with a non-coplanar technique. PMID:29296365

  17. Design and construction of CPW fed circular microstrip patch antennas

    Science.gov (United States)

    Vyas, Kirti; Singhal, P. K.; Sharma, A. K.; Pal, Manisha

    2013-01-01

    In this paper, we present feeding approaches of coplanar waveguide fed (CPW) circular microstrip patch antennas, with and without defected ground structure (DGS)`. The antenna feeding impedance is proposed as 50 ohms, built over FR4, a high dielectric constant substrate to obtain broad impedance bandwidth along with stability of the radiation patterns. The antenna with defected ground structure is designed to have band-notched characteristics at 3.5 GHz (for Wi-MAX band-3.3 to 3.7 GHz), at 8.2 GHz (for ITU band-8.025 GHz to 8.4 GHz) so as to avoid interference from these. The FR4 is used as dielectric with value of dielectric loss tangent constant as 0.002 and relative permittivity with 4.4. After applying DGS in ground of the proposed antenna there were improvements concerning bandwidth, and also a small increase in gain was noticed. These antennas are of small sizes with dimensions; 30 mm X 43 mm X 1.6 mm, cheap, compact and easy to fabricate, and achieve good radiation characteristics with higher return loss. This first antenna can have wide application in a great variety of wireless communication and second can operate well as UWB antenna with band notched characteristics. The performance of two antennas is compared in respect to gain, VSWR, return loss and impedance matching.

  18. A Waveguide Transverse Broad Wall Slot Radiating Between Baffles

    DEFF Research Database (Denmark)

    Dich, Mikael; Rengarajan, S.R.

    1997-01-01

    An analysis of the self impedance of waveguide-fed transverse slots radiating between baffles is presented. The region exterior to the slot is treated as a parallel plate (PP) waveguide which radiates into half space through an aperture in an infinite ground plane. The slot problem is analyzed...

  19. Waveguide gas laser

    Science.gov (United States)

    Zedong, C.

    1982-05-01

    Waveguide gas lasers are described. Transmission loss of hollow tube light waveguides, coupling loss, the calculation of output power, and the width of the oscillation belt are discussed. The structure of a waveguide CO2 laser is described.

  20. Optimal trajectories for aeroassisted, coplanar orbital transfer

    Science.gov (United States)

    Miele, A.; Basapur, V. K.; Lee, W. Y.

    1987-01-01

    Classical and minimax optimal control problems arising in the study of aeroassisted coplanar orbit transfer from a high planetary orbit to a low one are considered. Attention is given to (1) the minimization of the energy required for the maneuver; (2) minimization of the time integral of the heating rate; (3) minimization of the time of flight during the atmospheric portion of the trajectory; (4) maximization of the time of flight during the atmospheric portion of the trajectory; (5) minimization of the time integral of the path inclination; and (6) minimization of the sum of the squares of the entry and exit path inclinations.

  1. Coplanar UHF RFID tag antenna with U-shaped inductively coupled feed for metallic applications.

    Directory of Open Access Journals (Sweden)

    Karrar Naji Salman

    Full Text Available In this paper, we present a novel compact, coplanar, tag antenna design for metallic objects. Electrically small antenna has designed for a UHF RFID (860-960 MHz based on a proximity-coupled feed through. Furthermore, two symmetrical Via-loaded coplanar grounds fed by a U-shaped inductively coupled feed through an embedded transmission line. This configuration results in an antenna with dimensions of 31 × 19.5 × 3.065 mm3 at 915 MHz, and the total gain for the antenna is 0.12 dBi. The Via-loaded coplanar and U-shaped inductively coupled feeds allow the antenna to provide flexible tuning in terms of antenna impedance. In addition, a figure of merit is applied for the proposed tag antenna, and the results are presented. The read range is measured to be 4.2 m, which is very close to simulated values. This antenna measurement shows very good agreement with simulations.

  2. MXene-on-Paper Coplanar Microsupercapacitors

    KAUST Repository

    Kurra, Narendra

    2016-09-05

    A simple and scalable direct laser machining process to fabricate MXene-on-paper coplanar microsupercapacitors is reported. Commercially available printing paper is employed as a platform in order to coat either hydrofluoric acid-etched or clay-like 2D Ti3C2 MXene sheets, followed by laser machining to fabricate thick-film MXene coplanar electrodes over a large area. The size, morphology, and conductivity of the 2D MXene sheets are found to strongly affect the electrochemical performance due to the efficiency of the ion-electron kinetics within the layered MXene sheets. The areal performance metrics of Ti3C2 MXene-on-paper microsupercapacitors show very competitive power-energy densities, comparable to the reported state-of-the-art paper-based microsupercapacitors. Various device architectures are fabricated using the MXene-on-paper electrodes and successfully demonstrated as a micropower source for light emitting diodes. The MXene-on-paper electrodes show promise for flexible on-paper energy storage devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Millimeter Wave Fabry-Perot Resonator Antenna Fed by CPW with High Gain and Broadband

    Directory of Open Access Journals (Sweden)

    Xue-Xia Yang

    2016-01-01

    Full Text Available A novel millimeter wave coplanar waveguide (CPW fed Fabry-Perot (F-P antenna with high gain, broad bandwidth, and low profile is reported. The partially reflective surface (PRS and the ground form the F-P resonator cavity, which is filled with the same dielectric substrate. A dual rhombic slot loop on the ground acts as the primary feeding antenna, which is fed by the CPW and has broad bandwidth. In order to improve the antenna gain, metal vias are inserted surrounding the F-P cavity. A CPW-to-microstrip transition is designed to measure the performances of the antenna and extend the applications. The measured impedance bandwidth of S11 less than −10 dB is from 34 to 37.7 GHz (10.5%, and the gain is 15.4 dBi at the center frequency of 35 GHz with a 3 dB gain bandwidth of 7.1%. This performance of the antenna shows a tradeoff among gain, bandwidth, and profile.

  4. The treatment of extensive scalp lesions using coplanar and non-coplanar photon IMRT: a single institution experience

    International Nuclear Information System (INIS)

    Ostheimer, Christian; Janich, Martin; Hübsch, Patrick; Gerlach, Reinhard; Vordermark, Dirk

    2014-01-01

    This clinical study compared four different cases of extensive scalp malignancies treated by intensity-modulated radiation therapy. The merits of coplanar and non-coplanar Step-and-shoot total scalp irradiation techniques were evaluated against the background of the literature. Four patients (angiosarcoma, n=2, cutaneous B-cell non-Hodgkin lymphoma, B-NHL, n=1, mycosis fungoides, n=1) treated between 2008 and 2012 at our institution were retrospectively analyzed. For every patient with executed coplanar plan, a non-coplanar plan and vice versa has been calculated additionally for direct comparison. Three patients underwent limited surgery before radiotherapy. Individual adapted bolus material was used for every patient (helmet). Total scalp dose was 30 Gy (B-NHL, mycosis fungoides) and 50 Gy (angiosarcoma) with fractional doses of 2.0-2.5 Gy (without sequential local boost in three patients). Conformity and homogeneity indexes and dose volume histograms were used for treatment plan comparison. Dose hot spots were higher in coplanar plans (110-128% Dmax). Non-coplanar plans showed a more homogeneous dose distribution (HI = .12 - .17) and superior PTV coverage (88 - 96%). Target dose coverage was 81-117% in non-coplanar and 30-128% in coplanar plans. Coplanar plans yielded a stronger dose gradient across the target (.7-1.6 Gy/mm) compared to non-coplanar plans (.8-1.3 Gy/mm). The most conformal plan was a non-coplanar plan (CI = .7). Mean and maximum brain doses were comparable and showed an almost linear decrease between min. and max. dose. The optic chiasm and brain stem was spared most with non-coplanar plans, mean doses to the lenses ranged between 4 and 8 Gy and were higher in non-coplanar plans as were doses to the optic nerves. Radiotherapy tolerance was acceptable and acute side effects included erythema, scalp pain, alopecia and radiodermatitis which all spontaneously resolved. Two patients accomplished partial response, two patients showed complete response

  5. Quantitative study of rectangular waveguide behavior in the THz.

    Energy Technology Data Exchange (ETDEWEB)

    Rowen, Adam M.; Nordquist, Christopher Daniel; Wanke, Michael Clement

    2009-10-01

    This report describes our efforts to quantify the behavior of micro-fabricated THz rectangular waveguides on a configurable, robust semiconductor-based platform. These waveguides are an enabling technology for coupling THz radiation directly from or to lasers, mixers, detectors, antennas, and other devices. Traditional waveguides fabricated on semiconductor platforms such as dielectric guides in the infrared or co-planar waveguides in the microwave regions, suffer high absorption and radiative losses in the THz. The former leads to very short propagation lengths, while the latter will lead to unwanted radiation modes and/or crosstalk in integrated devices. This project exploited the initial developments of THz micro-machined rectangular waveguides developed under the THz Grand Challenge Program, but instead of focusing on THz transceiver integration, this project focused on exploring the propagation loss and far-field radiation patterns of the waveguides. During the 9 month duration of this project we were able to reproduce the waveguide loss per unit of length in the waveguides and started to explore how the loss depended on wavelength. We also explored the far-field beam patterns emitted by H-plane horn antennas attached to the waveguides. In the process we learned that the method of measuring the beam patterns has a significant impact on what is actually measured, and this may have an effect on most of the beam patterns of THz that have been reported to date. The beam pattern measurements improved significantly throughout the project, but more refinements of the measurement are required before a definitive determination of the beam-pattern can be made.

  6. Electrode design for coplanar-grid detectors

    International Nuclear Information System (INIS)

    Luke, P.N.; Amman, M.

    1996-11-01

    The coplanar-grid charge sensing technique provides a method for improving the spectral response of gamma-ray detectors based on compound semiconductors, which typically have poor charge transport properties. The technique functions by effectively modifying the charge induction characteristics of the detector such that the dependence of detector signal on the depth of radiation interaction is minimized. The effectiveness of this technique however can be compromised by non-uniform charge induction characteristics across the detector. This paper examines such non-uniformity due to fringe effects near the detector edges. Alternate electrode configurations are studied that provide effective compensation for such effects. Results from experimental measurements and computer simulations are presented

  7. Quantum waveguides

    CERN Document Server

    Exner, Pavel

    2015-01-01

    This monograph explains the theory of quantum waveguides, that is, dynamics of quantum particles confined to regions in the form of tubes, layers, networks, etc. The focus is on relations between the confinement geometry on the one hand and the spectral and scattering properties of the corresponding quantum Hamiltonians on the other. Perturbations of such operators, in particular, by external fields are also considered. The volume provides a unique summary of twenty five years of research activity in this area and indicates ways in which the theory can develop further. The book is fairly self-contained. While it requires some broader mathematical physics background, all the basic concepts are properly explained and proofs of most theorems are given in detail, so there is no need for additional sources. Without a parallel in the literature, the monograph by Exner and Kovarik guides the reader through this new and exciting field.

  8. LHC data and cosmic ray coplanarity at superhigh energies

    Directory of Open Access Journals (Sweden)

    Mukhamedshin R.A.

    2017-01-01

    Full Text Available A new phenomenological model FANSY 2.0 is designed, which makes it possible to simulate hadron interactions via traditional and coplanar generation of most energetic particles as well as to reproduce a lot of LHC (ALICE, ATLAS, CMS, TOTEM, LHCf data. Features of the model are compared with LHC data. Problems of coplanarity are considered and a testing experiment is proposed.

  9. Microfabricated Waveguide Atom Traps.

    Energy Technology Data Exchange (ETDEWEB)

    Jau, Yuan-Yu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    A nanoscale , microfabricated waveguide structure can in - principle be used to trap atoms in well - defined locations and enable strong photon-atom interactions . A neutral - atom platform based on this microfabrication technology will be prealigned , which is especially important for quantum - control applications. At present, there is still no reported demonstration of evanescent - field atom trapping using a microfabricated waveguide structure. We described the capabilities established by our team for future development of the waveguide atom - trapping technology at SNL and report our studies to overcome the technical challenges of loading cold atoms into the waveguide atom traps, efficient and broadband optical coupling to a waveguide, and the waveguide material for high - power optical transmission. From the atomic - physics and the waveguide modeling, w e have shown that a square nano-waveguide can be utilized t o achieve better atomic spin squeezing than using a nanofiber for first time.

  10. Unidirectional Dual-Band CPW-Fed Antenna Loaded with an AMC Reflector

    Directory of Open Access Journals (Sweden)

    Qun Luo

    2013-01-01

    Full Text Available A unidirectional dual-band coplanar waveguide fed antenna (DB-CPWFA loaded with a reflector is presented in this paper. The reflector is made of an electric ground plane, a dielectric substrate, and artificial magnetic conductor (AMC which shows an effective dual operational bandwidth. Then, the closely spaced AMC reflector is employed under the DB-DPWFA for performance improvement including unidirectional radiation, low profile, gain enhancement, and higher front-to-back (F/B ratio. The final antenna design exhibits an 8% and 13% impedance bandwidths for 2.45 GHz and 5.8 GHz frequency regions, respectively. The overall gain enhancement of about 4 dB is achieved. The F/B ratio is approximate to 20 dB with a 16 dB improvement. The measured results are inconsistent with the numerical values. The presented design is a suitable candidate for radio frequency identification (RFID reader application.

  11. A CPW-Fed Rectangular Ring Monopole Antenna for WLAN Applications

    Directory of Open Access Journals (Sweden)

    Sangjin Jo

    2014-01-01

    Full Text Available We present a simple coplanar waveguide- (CPW- fed rectangular ring monopole antenna designed for dual-band wireless local area network (WLAN applications. The antenna is based on a simple structure composed of a CPW feed line and a rectangular ring. Dual-band WLAN operation can be achieved by controlling the distance between the rectangular ring and the ground plane of the CPW feed line, as well as the horizontal vertical lengths of the rectangular ring. Simulated and measured data show that the antenna has a compact size of 21.4×59.4 mm2, an impedance bandwidths of 2.21–2.70 GHz and 5.04–6.03 GHz, and a reflection coefficient of less than −10 dB. The antenna also exhibits an almost omnidirectional radiation pattern. This simple compact antenna with favorable frequency characteristics therefore is attractive for applications in dual-band WLAN.

  12. An Experimental Investigation of Microstrip Transmission Line and Coplanar Waveguide on Ferrite Substrate

    Science.gov (United States)

    1976-06-01

    on perturbation theory . Also, the DD ,^ 1473 (Page 1) EDITION OF 1 NOV 68 IS OBSOLETE S/N 0102-014-6601 | Unclassified SECURITY CLASSIFICATION OF...based on perturbation theory . Also, the experimental results were compared with the existing work conducted by different authors. ACKNOWLEDGMENT The...RETURN LOSS 29 E. DISPERSION AND ATTENUATION WITH A BIASING FIELD 29 1. Transverse Magnetic Field of 1730 Oersteds — 29 a. Dispersion Diagram 29 b

  13. Waveguide disturbance detection method

    Science.gov (United States)

    Korneev, Valeri A.; Nihei, Kurt T.; Myer, Larry R.

    2000-01-01

    A method for detection of a disturbance in a waveguide comprising transmitting a wavefield having symmetric and antisymmetric components from a horizontally and/or vertically polarized source and/or pressure source disposed symmetrically with respect to the longitudinal central axis of the waveguide at one end of the waveguide, recording the horizontal and/or vertical component or a pressure of the wavefield with a vertical array of receivers disposed at the opposite end of the waveguide, separating the wavenumber transform of the wavefield into the symmetric and antisymmetric components, integrating the symmetric and antisymmetric components over a broad frequency range, and comparing the magnitude of the symmetric components and the antisymmetric components to an expected magnitude for the symmetric components and the antisymmetric components for a waveguide of uniform thickness and properties thereby determining whether or not a disturbance is present inside the waveguide.

  14. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  15. SU-F-BRB-04: Comparison of Coplanar VMAT, Non-Coplanar VMAT, and 4π Treatment Plans

    International Nuclear Information System (INIS)

    Woods, K; Nguyen, D; Tran, A; Yu, V; Cao, M; Sheng, K

    2015-01-01

    Purpose: The 4π non-coplanar radiotherapy delivery technique has demonstrated significantly better normal tissue sparing and dose conformality than the clinically used volumetric modulated arc therapy (VMAT). It is unclear whether this is a fundamental limitation of VMAT delivery or the coplanar nature of its typical clinical plans. The non-coplanar basis of 4π is incorporated into VMAT treatment planning to compare its effect on plan quality. Methods: Clinical stereotactic body radiation therapy plans for 9 liver patients treated with 30–60 Gy using coplanar VMAT (cVMAT) were re-planned using non-coplanar VMAT (nVMAT) with 3 arcs and 4 π with 20 intensity-modulated non-coplanar fields. All plans were optimized to deliver 100% of the prescribed dose to 95% of the planning target volume (PTV), and nVMAT and 4π plans were tailored to match the maximum and mean PTV dose from the clinical plan. The conformality index (CI), 50% dose spillage volume (R50), normal liver volume receiving >15 Gy (VL>15), and doses to organs at risk (OARs) were compared for all three treatment plans. Results: Compared to cVMAT, the nVMAT and 4π plans reduced VL>15 by an average of 30.6 cm3 and 96.3 cm3, respectively. The average CI was also reduced from 1.22 (cVMAT) to 1.17 (nVMAT) and 1.14 (4π), indicating higher conformality in the same order. Similarly, R50 was reduced from 3.87 (cVMAT) to 3.58 (nVMAT) and 2.74 (4π). With the exception of the mean right kidney dose, which increased by an average of only 0.6 Gy for nVMAT, the dose differences to OARs were not statistically significant between the two VMAT plans. 4π plans either significantly decreased or maintained OAR doses. Conclusion: While the manual selection of intuitive non-coplanar arcs does show some improvement over coplanar VMAT, the automated beam selection for 4π still results in superior plan quality. This project is supported in part by Varian Medical Systems and NIH R43 CA183390

  16. A Nafion -based co-planar electrode amperometric sensor for ...

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan ... A co-planar electrode device, fabricated with all electrodes (working, counter and reference) on the same face of a Nafion. ® polymer electrolyte membrane, is proposed for the amperometric detection of gaseous methanol using Pt as the working electrode.

  17. Co-sputtered Mo/Re superconducting coplanar resonators compatible with carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Blien, Stefan; Stiller, Peter L.; Goetz, Karl; Vavra, Ondrej; Huber, Thomas; Mayer, Thomas; Strunk, Christoph; Huettel, Andreas K. [Institute for Experimental and Applied Physics, University of Regensburg, 93040 Regensburg (Germany)

    2016-07-01

    Carbon nanotubes are simultaneously prototypical single electron tunneling devices and nano-electromechanical resonators. In particular for ''ultraclean'' devices, where the nanotube is grown in a last fabrication step over pre-existing chip structures, highly regular quantum spectra and high mechanical quality factors emerge. Targeting optomechanical experiments, a coupling of these devices to on-chip superconducting coplanar waveguide resonators is highly desirable. The conditions for in-situ growth of carbon nanotubes over metal contacts are quite detrimental to most superconductors: the CVD growth process takes place in a hydrogen/methane atmosphere heated up to 900 {sup circle} C. We present data on transmission line resonators fabricated of a co-sputtered molybdenum rhenium alloy that withstand CVD and remain superconducting with critical temperatures up to 8K after growth. Resonant operation at cryogenic temperatures is demonstrated, and the behaviour is highly consistent with a combination of Mattis-Bardeen theory and two-level systems in the substrate.

  18. Dielectric Waveguide lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Orlovic, V.A.; Pachenko, V.; Scherbakov, I.A.

    2007-01-01

    Our recent results on planar and channel waveguide fabrication and lasers in the dielectric oxide materials Ti:sapphire and rare-earth-ion-doped potassium yttrium double tungstate (KYW) are reviewed. We have employed waveguide fabrication methods such as liquid phase epitaxy and reactive ion etching

  19. SU-F-T-339: Comparison Between Coplanar and Non-Coplanar RapidArc Approach of Hippocampal-Sparing Whole Brain Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B; Kim, J [City of Hope Foundation, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To compare the dosimetry of coplanar and non-coplanar RapidArc whole brain plans for hippocampal sparing Methods: We studied the RapidArc plans of patient with brain metastases, with the prescription of 3750 cGy in 15 fractions. The coplanar approach used a full clockwise (CW) arc and a full counterclockwise (CCW) arc, with the couch angle to be 0°. The non-coplanar approach used a full arc with a couch angle of 0°, and a partial arc with a couch angle of 90°. Treatment planning system is Eclipse Ver. 11. Constraints for eyes, lens, brainstem, optical nerves and chiasm are employed in the optimization so that these OARs’ dose are below tolerance. Constraints for hippocampus are employed so that they receive dose as low as possible while maintain good coverage to whole brain. The beam delivery machine is Varian 21 IX. T1-weighted MRI images were used for hippocampus contouring. Results: The target coverage index for coplanar and non-coplanar RapidArc plans are 94.9% and 95.4%, respectively, with homogeneity index of 0.223 vs 0.226, which is defined as (D2% – D98%)/Dmean of target volume. V95 and V100 are 99.0% and 94.8% for coplanar plan, vs 99.1% and 95.4% for non-coplanar plan, while the mean dose of hippocampus are 1244.5 cGy for coplanar plan vs 1212.3 cGy for non-coplanar plan. Dose for eyes, lens, optical nerves, optical chiasm and brainstem are all below tolerance. Conclusion: Coplanar RapidArc plan provides good target coverage while achieves good hippocampal sparing, and there is no benefit to use non-coplanar approach.

  20. Exact equivalent straight waveguide model for bent and twisted waveguides

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry

    2008-01-01

    Exact equivalent straight waveguide representation is given for a waveguide of arbitrary curvature and torsion. No assumptions regarding refractive index contrast, isotropy of materials, or particular morphology in the waveguide cross section are made. This enables rigorous full-vector modeling...... of in-plane curved or helically wound waveguides with use of available simulators for straight waveguides without the restrictions of the known approximate equivalent-index formulas....

  1. A CPW-fed circular wide-slot UWB antenna with wide tunable and flexible reconfigurable dual notch bands.

    Science.gov (United States)

    Li, Yingsong; Li, Wenxing; Ye, Qiubo

    2013-01-01

    A coplanar waveguide (CPW)-fed circular slot antenna with wide tunable dual band-notched function and frequency reconfigurable characteristic is designed, and its performance is verified experimentally for ultra-wideband (UWB) communication applications. The dual band-notched function is achieved by using a T-shaped stepped impedance resonator (T-SIR) inserted inside the circular ring radiation patch and by etching a parallel stub loaded resonator (PSLR) in the CPW transmission line, while the wide tunable bands can be implemented by adjusting the dimensions of the T-SIR and the PSLR. The notch band reconfigurable characteristic is realized by integrating three switches into the T-SIR and the PSLR. The numerical and experimental results show that the proposed antenna has a wide bandwidth ranging from 2.7 GHz to 12 GHz with voltage standing wave ratio (VSWR) less than 2, except for the two notch bands operating at 3.8-5.9 GHz and 7.7-9.2 GHz, respectively. In addition, the proposed antenna has been optimized to a compact size and can provide omnidirectional radiation patterns, which are suitable for UWB communication applications.

  2. Loss Optimization of Coplanar Strips for CMOS RFICs

    OpenAIRE

    Arif, Muhammad S; Peroulis, Dimitrios

    2009-01-01

    An optimization scheme for minimizing substrate losses in coplanar strips (CPS) transmission line on CMOS grade low resistivity silicon substrate with SU-8 polymer as dielectric interface layer, is presented. It is shown that through careful selection of CPS linewidth, the substrate losses can be sufficiently reduced for a given dielectric layer thickness. For a 100 Omega CPS line with SU-8 polymer as dielectric, the optimized linewidth has been found to be around three times the SU-8 layer t...

  3. A secondary, coplanar design Ni/MCM-41/Zn microbattery

    Science.gov (United States)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    A secondary Ni/Zn microbattery (∼200 µm thick) has been developed in a coplanar electrode configuration. The cell is essentially of a circular shape (∼30 mm in diameter) consisting of a fine circular ring (cathode) and a circle (anode) split apart (~800 µm). Unlike the stacking cell architecture, coplanar configuration offers simple design, ease of fabrication and eventually cost saving. The use of MCM-41 mesoporous silica as the membrane separator cum electrolyte reservoir enables the successful implementation of coplanar configuration. The fabrication of Ni/Zn microbattery first begins with electrodeposition of zinc (Zn) and nickel hydroxide (Ni(OH)2) thin films onto patterned FR4 printed circuit board, followed by deposition of zinc oxide (ZnO) slurry onto the zinc active layer, and finally ends by multiple drop-coating procedures of MCM-41 from its precursor solution at ambient temperature. Once a potassium hydroxide (6 M KOH)/MCM-41 electrolyte-separator mixture is incorporated, the cell is sealed with an acrylic sheet and epoxy adhesive. The fabricated microbatteries were capable to sustain around 130 deep charge-discharge cycles. When rated at 0.1 mA, the energy density of the microbattery was around 3.82 Wh l-1 which is suitable for low rate applications and storage for micro energy harvesters such as piezoelectric generators.

  4. Waveguides in colloidal nanosuspensions

    Science.gov (United States)

    López-Peña, Luis A.; Salazar-Romero, Yadira; Terborg, Roland A.; Hernández-Cordero, Juan; Torres, Juan P.; Volke-Sepúlveda, K.

    2014-09-01

    We present and discuss a set of experiments based on the application of the nonlinear properties of colloidal nanosuspensions to induce waveguides with a high-power CW laser beam (wavelength 532nm) and its use for controlling an additional probe beam. The probe is a CW laser of a different wavelength (632nm), whose power is well below the critical value to induce nonlinear effects in the colloidal medium. We also discuss a technique for the characterization of the induced waveguides.

  5. Peptide Optical waveguides.

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Shostak, Tamar; Rosenman, Gil

    2017-02-01

    Small-scale optical devices, designed and fabricated onto one dielectric substrate, create integrated optical chip like their microelectronic analogues. These photonic circuits, based on diverse physical phenomena such as light-matter interaction, propagation of electromagnetic waves in a thin dielectric material, nonlinear and electro-optical effects, allow transmission, distribution, modulation, and processing of optical signals in optical communication systems, chemical and biological sensors, and more. The key component of these optical circuits providing both optical processing and photonic interconnections is light waveguides. Optical confinement and transmitting of the optical waves inside the waveguide material are possible due to the higher refractive index of the waveguides in comparison with their surroundings. In this work, we propose a novel field of bionanophotonics based on a new concept of optical waveguiding in synthetic elongated peptide nanostructures composed of ordered peptide dipole biomolecules. New technology of controllable deposition of peptide optical waveguiding structures by nanofountain pen technique is developed. Experimental studies of refractive index, optical transparency, and linear and nonlinear waveguiding in out-of-plane and in-plane diphenylalanine peptide nanotubes have been conducted. Optical waveguiding phenomena in peptide structures are simulated by the finite difference time domain method. The advantages of this new class of bio-optical waveguides are high refractive index contrast, wide spectral range of optical transparency, large optical nonlinearity, and electro-optical effect, making them promising for new applications in integrated multifunctional photonic circuits. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  6. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously be con...

  7. Silicon microphotonic waveguides

    International Nuclear Information System (INIS)

    Ta'eed, V.; Steel, M.J.; Grillet, C.; Eggleton, B.; Du, J.; Glasscock, J.; Savvides, N.

    2004-01-01

    Full text: Silicon microphotonic devices have been drawing increasing attention in the past few years. The high index-difference between silicon and its oxide (Δn = 2) suggests a potential for high-density integration of optical functions on to a photonic chip. Additionally, it has been shown that silicon exhibits strong Raman nonlinearity, a necessary property as light interaction can occur only by means of nonlinearities in the propagation medium. The small dimensions of silicon waveguides require the design of efficient tapers to couple light to them. We have used the beam propagation method (RSoft BeamPROP) to understand the principles and design of an inverse-taper mode-converter as implemented in several recent papers. We report on progress in the design and fabrication of silicon-based waveguides. Preliminary work has been conducted by patterning silicon-on-insulator (SOI) wafers using optical lithography and reactive ion etching. Thus far, only rib waveguides have been designed, as single-mode ridge-waveguides are beyond the capabilities of conventional optical lithography. We have recently moved to electron beam lithography as the higher resolutions permitted will provide the flexibility to begin fabricating sub-micron waveguides

  8. Nanoporous polymer liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Christiansen, Mads Brøkner; Ndoni, Sokol

    2010-01-01

    We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented.......We demonstrate liquid core waveguides defined by UV to enable selective water infiltration in nanoporous polymers, creating an effective refractive index shift Δn=0.13. The mode confinement and propagation loss in these waveguides are presented....

  9. Plasmonic waveguides, circuits, and systems

    NARCIS (Netherlands)

    Charbon, E.; Karami, M.A.

    2011-01-01

    Waveguide structure for propagating a surface plasmon polariton,comprising an inter- metal plasmonic waveguide (1). The waveguide structure has two metal strip like structures (2, 3)positioned parallel to each other and an isolating material structure (4) positioned between the two metal strip like

  10. Optimization and guidance of trajectories for coplanar, aeroassisted orbital transfer

    Science.gov (United States)

    Miele, A.; Wang, T.; Lee, W. Y.

    1990-01-01

    Guidance trajectories for coplanar aeroassisted orbital transfer (AOT) from high earth orbit to LEO are presently optimized under the assumption of trajectory control during its endoatmospheric phase by alpha-dependent lift coefficient. Optimal trajectories are first computed by minimizing the total velocity impulse required for AOT; attention is then given to guidance trajectories capable of approximating such key properties of the optimal trajectories as minimum altitude, exit velocity, and exit path inclination, in real time. A switch is made from target-altitude guidance to target path inclination-guidance according to the velocity depletion required for optimum flight.

  11. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... crystal semiconductor optical amplier. As a step towards such a component, photonic crystal waveguides with a single quantum well, 10 quantum wells and three layers of quantum dots are fabricated and characterized. An experimental study of the amplied spontaneous emission and a implied transmission...... are presented in this thesis. A variation of photonic crystal design parameters are used leading to a spectral shift of the dispersion, it is veried that the observed effects shift accordingly. An enhancement of the amplified spontaneous emission was observed close to the band edge, where light is slowed down...

  12. Elevated CPW-Fed Slotted Microstrip Antenna for Ultra-Wideband Application

    Directory of Open Access Journals (Sweden)

    Chandan Kumar Ghosh

    2012-01-01

    Full Text Available Elevated-coplanar-waveguide- (ECPW- fed microstrip antenna with inverted “G” slots in the back conductor is presented. It is modeled and analyzed for the application of multiple frequency bands. The changes in radiation and the transmission characteristics are investigated by the introduction of the slots in two different positions at the ground plane (back conductor. The proposed antenna without slots exhibits a stop band from 2.55 GHz to 4.25 GHz while introducing two slots on the back conductor, two adjacent poles appear at central frequencies of 3.0 GHz and 3.9 GHz, respectively, and the antenna shows the ultra-wideband (UWB characteristics. The first pole appears at the central frequency of 3.0 GHz and covers the band width of 950 MHz, and the second pole exists at a central frequency of 3.90 GHz covering a bandwidth of 750 MHz. Experimental result shows that impedance bandwidth of 129% (S11<-10 dB is well achieved when the antenna is excited with both slots. Compared to most of the previously reported ECPW structures, the impedance bandwidth of this antenna is increased and also the size of the antenna becomes smaller and more suitable for many wireless applications like PCS (1850–1990 MHz, WLAN (2.4–2.484 GHz, WiMAX (2.5–2.69 GHz and 5.15–5.85 GHz, and also X-band communication.

  13. Radiation from waveguide arrays

    International Nuclear Information System (INIS)

    Brambilla, M.

    1977-07-01

    The theory of phased waveguide arrays (the 'Grill'), developed in view of Lower Hybrid Heating of toroidal plasmas, is applied to two simple cases, in order to gain insight on field distributions and power flow. First, the far-field radiation pattern of the Grill towards an empty half-space is evaluated. Next, the excitation of a passive waveguide by a Grill mounted in a T configuration is considered. These results constitue two examples of exact solutions of Maxwell's equations in relatively complex geometry

  14. Progress in planar optical waveguides

    CERN Document Server

    Wang, Xianping; Cao, Zhuangqi

    2016-01-01

    This book provides a comprehensive description of various slab waveguide structures ranged from graded-index waveguide to symmetrical metal-cladding waveguide. In this book, the transfer Matrix method is developed and applied to analyze the simplest case and the complex generalizations. A novel symmetrical metal-cladding waveguide structure is proposed and systematically investigated for several issues of interest, such as biochemical sensing, Goos-Hänchen shift and the slow light effect, etc. Besides, this book summarizes the authors’ research works on waveguides over the last decade. The readers who are familiar with basic optics theory may find this book easy to read and rather inspiring.

  15. Nanoscale waveguiding methods

    Directory of Open Access Journals (Sweden)

    Wang Chia-Jean

    2007-01-01

    Full Text Available AbstractWhile 32 nm lithography technology is on the horizon for integrated circuit (IC fabrication, matching the pace for miniaturization with optics has been hampered by the diffraction limit. However, development of nanoscale components and guiding methods is burgeoning through advances in fabrication techniques and materials processing. As waveguiding presents the fundamental issue and cornerstone for ultra-high density photonic ICs, we examine the current state of methods in the field. Namely, plasmonic, metal slot and negative dielectric based waveguides as well as a few sub-micrometer techniques such as nanoribbons, high-index contrast and photonic crystals waveguides are investigated in terms of construction, transmission, and limitations. Furthermore, we discuss in detail quantum dot (QD arrays as a gain-enabled and flexible means to transmit energy through straight paths and sharp bends. Modeling, fabrication and test results are provided and show that the QD waveguide may be effective as an alternate means to transfer light on sub-diffraction dimensions.

  16. Waveguide-based optofluidics

    DEFF Research Database (Denmark)

    Karnutsch, Christian; Tomljenovic-Hanic, Snjezana; Monat, Christelle

    2010-01-01

    blocks in many applications, from microlasers and biomedical sensor systems to optical switches and integrated circuits. In this paper, we show that PhC microcavities can be formed by infusing a liquid into a selected section of a uniform PhC waveguide and that the optical properties of these cavities...

  17. Fuel-optimal trajectories for aeroassisted coplanar orbital transfer problem

    Science.gov (United States)

    Naidu, Desineni Subbaramaiah; Hibey, Joseph L.; Charalambous, Charalambos D.

    1990-01-01

    The optimal control problem arising in coplanar orbital transfer employing aeroassist technology is addressed. The maneuver involves the transfer from high to low earth orbit via the atmosphere, with the object of minimizing the total fuel consumption. Simulations are carried out to obtain the fuel-optimal trajectories for flying the spacecraft through the atmosphere. A highlight is the application of an efficient multiple-shooting method for treating the nonlinear two-point boundary value problem resulting from the optimizaion procedure. The strategy for the atmospheric portion of the minimum-fuel transfer is to fly at the maximum lift-to-drag ratio L/D initially in order to recover from the downward plunge, and then to fly at a negative L/D to level off the flight so that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.

  18. The waveguide laser - A review

    Science.gov (United States)

    Degnan, J. J.

    1976-01-01

    The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.

  19. Waveguide optical microscopy

    Science.gov (United States)

    Egorov, Alexandre A.

    1997-08-01

    The theoretical aspects of the light scattering on the statistical irregularities of the planar optical waveguide are described. The analysis of direct and inverse light scattering problems is accomplished. The theoretical investigation predicts: the lateral resolution can attain approximately 20 nm and the vertical resolution (in rms height) can attain approximately 1 angstrom. The limiting lateral resolution is a approximately 15-times less than Abbe's diffraction limit. Thus the superresolution may be accomplished by the waveguide optical microscopy (WOM). The increasing of WOM's resolution depends on a-priori information of the irregularities and on a sufficiently high signal-to-noise ratio. A possible using of WOM for bioecological researchers has been mentioned.

  20. Plasmonic waveguides cladded by hyperbolic metamaterials.

    Science.gov (United States)

    Ishii, Satoshi; Shalaginov, Mikhail Y; Babicheva, Viktoriia E; Boltasseva, Alexandra; Kildishev, Alexander V

    2014-08-15

    Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged from a hyperbolic metamaterial (HMM) in a HMM-Insulator-HMM (HIH) structure. We show that HMM claddings give flexibility in designing the properties of HIH waveguides. Our comparative study on 1D PWs reveals that HIH-type waveguides can have a higher performance than MIM or IMI waveguides.

  1. Photonic Waveguide Choke Joint with Absorptive Loading

    Science.gov (United States)

    Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)

    2016-01-01

    A photonic waveguide choke includes a first waveguide flange member having periodic metal tiling pillars, a dissipative dielectric material positioned within an area between the periodic metal tiling pillars and a second waveguide flange member disposed to be coupled with the first waveguide flange member and in spaced-apart relationship separated by a gap. The first waveguide flange member has a substantially smooth surface, and the second waveguide flange member has an array of two-dimensional pillar structures formed therein.

  2. Cup Cylindrical Waveguide Antenna

    Science.gov (United States)

    Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.

    2008-01-01

    The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).

  3. Metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, Nina

    by Qi et al [Zm Qi et al, Sens. Actuators B 81, 2002] before, however the sensing principle we present results in a broad detection range from gasses to solid materials and is different from the principle suggested by Qi et al with a highlylimited detection range. Metal-clad waveguide sensors......, where single cell detection isshown by use of the metal-clad waveguide sensors.......This work concerns planar optical waveguide sensors for biosensing applications, with the focus on deep-probe sensing for micron-scale biological objects like bacteria and whole cells. In the last two decades planar metal-clad waveguides have been brieflyintroduced in the literature applied...

  4. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  5. Hollow waveguide cavity ringdown spectroscopy

    Science.gov (United States)

    Dreyer, Chris (Inventor); Mungas, Greg S. (Inventor)

    2012-01-01

    Laser light is confined in a hollow waveguide between two highly reflective mirrors. This waveguide cavity is used to conduct Cavity Ringdown Absorption Spectroscopy of loss mechanisms in the cavity including absorption or scattering by gases, liquid, solids, and/or optical elements.

  6. Low energy (e,2e) measurements of Xe in the symmetric non-coplanar geometry

    International Nuclear Information System (INIS)

    Nixon, K L; Murray, A J

    2012-01-01

    Low energy (e,2e) measurements from the valence state of xenon will be presented. Symmetric non-coplanar kinematics were utilized. Incident energies range from 5 to 40eV above the ionization potential with outgoing electron angles from 30-140°. Geometries from coplanar to perpendicular were investigated for each energy regime. These measurements show significant difference to those from helium and other noble gases, particularly at high incident electron angles.

  7. Properties of the optimal trajectories for coplanar, aeroassisted orbital transfer

    Science.gov (United States)

    Miele, A.; Wang, T.; Deaton, A. W.

    1991-01-01

    The optimization of trajectories for coplanar, aeroassisted orbital transfer (AOT) from a high earth orbit (HEO) to a low earth orbit (LEO) is examined. In particular, HEO can be a geosynchronous earth orbit (GEO). During the atmospheric pass, the trajectory is controlled via the lift coefficient in such a way that the total characteristic velocity is minimized. First, an ideal optimal trajectory is determined analytically for lift coefficient unbounded. This trajectory is called a grazing trajectory. For the grazing trajectory, the lift coefficient varies in such a way that the lift, the contrifugal force due to the earth's curvature, the weight, and the Coriolis force due to the earth's rotation are in static balance. Also, the grazing trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, dynamic pressure, and heating rate. Next, starting from the grazing trajectory results, a real optimal trajectory is determined numerically for the lift coefficient bounded from both below and above. This trajectory is characterized by atmospheric penetration with the smallest possible entry angle, followed by flight at the lift coefficient lower bound. The real optimal trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.

  8. Optimization and experimental verification of coplanar interdigital electroadhesives

    International Nuclear Information System (INIS)

    Guo, J; Bamber, T; Chamberlain, M; Justham, L; Jackson, M

    2016-01-01

    A simplified and novel theoretical model for coplanar interdigital electroadhesives has been presented in this paper. The model has been verified based on a mechatronic and reconfigurable testing platform, and a repeatable testing procedure. The theoretical results have shown that, for interdigital electroadhesive pads to achieve the maximum electroadhesive forces on non-conductive substrates, there is an optimum electrode width/space between electrodes (width/space) ratio, approximately 1.8. On conductive substrates, however, the width/space ratio should be as large as possible. The 2D electrostatic simulation results have shown that, the optimum ratio is significantly affected by the existence of the air gap and substrate thickness variation. A novel analysis of the force between the electroadhesive pad and the substrate has highlighted the inappropriateness to derive the normal forces by the division of the measured shear forces and the friction coefficients. In addition, the electroadhesive forces obtained in a 5 d period in an ambient environment have highlighted the importance of controlling the environment when testing the pads to validate the models. Based on the confident experimental platform and procedure, the results obtained have validated the theoretical results. The results are useful insights for the investigation into environmentally stable and optimized electroadhesives. (paper)

  9. Coplanar capacitance sensors for detecting water intrusion in composite structures

    International Nuclear Information System (INIS)

    Nassr, Amr A; El-Dakhakhni, Wael W; Ahmed, Wael H

    2008-01-01

    Composite materials are becoming more affordable and widely used for retrofitting, rehabilitating and repairing reinforced concrete structures designed and constructed under older specifications. However, the mechanical properties and long-term durability of composite materials may degrade severely in the presence of water intrusion. This study presents a new non-destructive evaluation (NDE) technique for detecting the water intrusion in composite structures by evaluating the dielectric properties of different composite system constituent materials. The variation in the dielectric signatures was employed to design a coplanar capacitance sensor with high sensitivity to detect such defects. An analytical model was used to study the effect of the sensor geometry on the output signal and to optimize sensor design. A finite element model was developed to validate analytical results and to evaluate other sensor design-related parameters. Experimental testing of a concrete specimen wrapped with composite laminate and containing a series of pre-induced water intrusion defects was conducted in order to validate the concept of the new technique. Experimental data showed excellent agreement with the finite element model predictions and confirmed sensor performance

  10. Limits of dose escalation in lung cancer: a dose-volume histogram analysis comparing coplanar and non-coplanar techniques

    Energy Technology Data Exchange (ETDEWEB)

    Derycke, S.; Van Duyse, B.; Schelfhout, J.; De Neve, W.

    1995-12-01

    To evaluate the feasibility of dose escalation in radiotherapy of inoperable lung cancer, a dose-volume histogram analysis was performed comparing standard coplanar (2D) with non-coplanar (3D) beam arrangements on a non-selected group of 20 patients planned by Sherouse`s GRATISTM 3D-planning system. Serial CT-scanning was performed and 2 Target Volumes (Tvs) were defined. Gross Tumor Volume (GTV) defined a high-dose Target Volume (TV-1). GTV plus location of node stations with > 10% probability of invasion (Minet et al.) defined an intermediate-dose Target Volume (TV-2). However, nodal regions which are incompatible with cure were excluded from TV-2. These are ATS-regions 1, 8, 9 and 14 all left and right as well as heterolateral regions. For 3D-planning, Beam`s Eye View selected (by an experienced planner) beam arrangements were optimised using Superdot, a method of target dose-gradient annihilation developed by Sherouse. A second 3D-planning was performed using 4 beam incidences with maximal angular separation. The linac`s isocenter for the optimal arrangement was located at the geometrical center of gravity of a tetraheder, the tetraheder`s comers being the consecutive positions of the virtual source. This ideal beam arrangement was approximated as close as possible, taking into account technical limitations (patient-couch-gantry collisions). Criteria for tolerance were met if no points inside the spinal cord exceeded 50 Gy and if at least 50% of the lung volume received less than 20Gy. If dose regions below 50 Gy were judged acceptable at TV-2, 2D- as well as 3D-plans allow safe escalation to 80 Gy at TV-1. When TV-2 needed to be encompassed by isodose surfaces exceeding 50Gy, 3D-plans were necessary to limit dose at the spinal cord below tolerance. For large TVs dose is limited by lung tolerance for 3D-plans. An analysis (including NTCP-TCP as cost functions) of rival 3D-plans is being performed.

  11. Conductor backed and shielded multi-layer coplanar waveguide designs on LTCC for RF carrier boards for packaging PICs

    Science.gov (United States)

    Marraccini, Philip J.; Jezzini, Moises A.; Peters, Frank H.

    2016-05-01

    Designing photonic integrated circuits (PICs) with packaging in mind is important since this impacts the performance of the final product. In coherent optical communication applications there are a large number of DC and RF lines that need routed to connect the PIC to the outer packaging. These RF lines should be impedance matched to the devices, isolated from each other, low loss and protected against electromagnetic interference (EMI) over the frequency range of interest to achieve the performance required for the application. Multilevel low temperature co-fired ceramic (LTCC) boards can be used as a carrier board connecting the PIC to the packaging due to its good RF performance, machinability, compatibility with hermetic sealing, and ability to integrate drivers into the board. Flexibility with layer numbers enables additional layers for shielding against electromagnetic interference or increased space for routing electrical connections. In this paper the design, simulations, and measured results for a set of 4 phase matched transmission lines in LTCC that would be used with an IQ MZM are presented. The measured 3dB bandwidth for a set of four phase matched transmission lines for an IQ MZM was measured to be 19.8 GHz.

  12. Integrated optic waveguide devices

    Science.gov (United States)

    Ramer, O. G.

    1980-01-01

    Integrated optic waveguide circuits with a phase bias and modulator on the same chip were designed, fabricated, and tested for use in a fiber-optic rotation sensor (gyro) under development. Single mode fiber-optic pigtails were permanently coupled to the four ports of the chip. The switch format was based on coherent coupling between waveguides formed in Z-cut LiNbO3. The control of the coupling was achieved by electro-optically varying the phase propagation constants of each guide. Fiber-to-chip interfacing required the development of appropriate fixturing and manipulation techniques to achieve the close tolerance needed for high coupling efficiency between a fiber with an approximately 5 micron m core and a channel guide with a roughly 2 micron m by 5 micron m cross section. Switch and chip performance at 0.85 micron m is discussed as well as potential improvements related to insertion loss reduction, switching voltages, and suppression of Li2O out-diffusion.

  13. The ideal imaging AR waveguide

    Science.gov (United States)

    Grey, David J.

    2017-06-01

    Imaging waveguides are a key development that are helping to create the Augmented Reality revolution. They have the ability to use a small projector as an input and produce a wide field of view, large eyebox, full colour, see-through image with good contrast and resolution. WaveOptics is at the forefront of this AR technology and has developed and demonstrated an approach which is readily scalable. This paper presents our view of the ideal near-to-eye imaging AR waveguide. This will be a single-layer waveguide which can be manufactured in high volume and low cost, and is suitable for small form factor applications and all-day wear. We discuss the requirements of the waveguide for an excellent user experience. When enhanced (AR) viewing is not required, the waveguide should have at least 90% transmission, no distracting artifacts and should accommodate the user's ophthalmic prescription. When enhanced viewing is required, additionally, the waveguide requires excellent imaging performance, this includes resolution to the limit of human acuity, wide field of view, full colour, high luminance uniformity and contrast. Imaging waveguides are afocal designs and hence cannot provide ophthalmic correction. If the user requires this correction then they must wear either contact lenses, prescription spectacles or inserts. The ideal imaging waveguide would need to cope with all of these situations so we believe it must be capable of providing an eyebox at an eye relief suitable for spectacle wear which covers a significant range of population inter-pupillary distances. We describe the current status of our technology and review existing imaging waveguide technologies against the ideal component.

  14. Global pollution monitoring of polychlorinated dibenzo-p-dioxins (PCDDs), furans (PCDFs) and coplanar polychlorinated biphenyls (coplanar PCBs) using skipjack tuna as bioindicator

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Daisuke [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Watanabe, Mafumi [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Subramanian, Annamalai [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan); Tanaka, Hiroyuki [National Research Institute of Fisheries and Environment of Inland Sea (Japan); Fillmann, Gilberto [Fundacao Universidade Federal do Rio Grande (Brazil); Lam, Paul K.S. [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong (China); Zheng, Gene J. [Department of Biology and Chemistry, City University of Hong Kong, Hong Kong (China); Muchtar, Muswerry [Research and Development Center for Oceanology, Indonesian Institute of Sciences (Indonesia); Razak, Hamidah [Research and Development Center for Oceanology, Indonesian Institute of Sciences (Indonesia); Prudente, Maricar [Science Education Department, De La Salle University (Philippines); Chung, Kyu-Hyuck [College of Pharmacy, Sungkyunkwan University (Korea, Republic of); Tanabe, Shinsuke [Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577 (Japan)]. E-mail: shinsuke@agr.ehime-u.ac.jp

    2005-07-15

    In order to elucidate the global distribution of dioxins and related compounds, such as PCDDs, PCDFs and coplanar PCBs, levels of these compounds were determined in the muscle of skipjack tuna (Katsuwonus pelamis) collected from the offshore waters and open seas near Japan, Taiwan, Philippines, Indonesia, Seychelles and Brazil, and the Japan Sea, the East China Sea, the South China Sea, the Indian Ocean and the North Pacific Ocean. PCDDs, PCDFs and coplanar PCBs were detected in almost all the specimens collected from all the locations surveyed, indicating widespread contamination by these compounds in the marine environment. Higher concentrations of dioxins and coplanar PCBs were detected in the samples from temperate Asian regions, plausibly due to larger usage and anthropogenic generation in highly industrialized countries around the East China Sea and the South China Sea, such as Japan, Korea, Taiwan, Hong Kong and coastal China. - Global pollution monitoring of PCDD/Fs and coplanar PCBs in offshore water and open sea were conducted using skipjack tuna as bioindicator.

  15. Global pollution monitoring of polychlorinated dibenzo-p-dioxins (PCDDs), furans (PCDFs) and coplanar polychlorinated biphenyls (coplanar PCBs) using skipjack tuna as bioindicator

    International Nuclear Information System (INIS)

    Ueno, Daisuke; Watanabe, Mafumi; Subramanian, Annamalai; Tanaka, Hiroyuki; Fillmann, Gilberto; Lam, Paul K.S.; Zheng, Gene J.; Muchtar, Muswerry; Razak, Hamidah; Prudente, Maricar; Chung, Kyu-Hyuck; Tanabe, Shinsuke

    2005-01-01

    In order to elucidate the global distribution of dioxins and related compounds, such as PCDDs, PCDFs and coplanar PCBs, levels of these compounds were determined in the muscle of skipjack tuna (Katsuwonus pelamis) collected from the offshore waters and open seas near Japan, Taiwan, Philippines, Indonesia, Seychelles and Brazil, and the Japan Sea, the East China Sea, the South China Sea, the Indian Ocean and the North Pacific Ocean. PCDDs, PCDFs and coplanar PCBs were detected in almost all the specimens collected from all the locations surveyed, indicating widespread contamination by these compounds in the marine environment. Higher concentrations of dioxins and coplanar PCBs were detected in the samples from temperate Asian regions, plausibly due to larger usage and anthropogenic generation in highly industrialized countries around the East China Sea and the South China Sea, such as Japan, Korea, Taiwan, Hong Kong and coastal China. - Global pollution monitoring of PCDD/Fs and coplanar PCBs in offshore water and open sea were conducted using skipjack tuna as bioindicator

  16. Fundamentals of optical waveguides

    CERN Document Server

    Okamoto, Katsunari

    2006-01-01

    Fundamentals of Optical Waveguides is an essential resource for any researcher, professional or student involved in optics and communications engineering. Any reader interested in designing or actively working with optical devices must have a firm grasp of the principles of lightwave propagation. Katsunari Okamoto has presented this difficult technology clearly and concisely with several illustrations and equations. Optical theory encompassed in this reference includes coupled mode theory, nonlinear optical effects, finite element method, beam propagation method, staircase concatenation method, along with several central theorems and formulas. Since the publication of the well-received first edition of this book, planar lightwave circuits and photonic crystal fibers have fully matured. With this second edition the advances of these fibers along with other improvements on existing optical technologies are completely detailed. This comprehensive volume enables readers to fully analyze, design and simulate opti...

  17. Optical waveguide theory

    CERN Document Server

    Snyder, Allan W

    1983-01-01

    This text is intended to provide an in-depth, self-contained, treatment of optical waveguide theory. We have attempted to emphasize the underlying physical processes, stressing conceptual aspects, and have developed the mathematical analysis to parallel the physical intuition. We also provide comprehensive supplementary sections both to augment any deficiencies in mathematical background and to provide a self-consistent and rigorous mathematical approach. To assist in. understanding, each chapter con­ centrates principally on a single idea and is therefore comparatively short. Furthermore, over 150 problems with complete solutions are given to demonstrate applications of the theory. Accordingly, through simplicity of approach and numerous examples, this book is accessible to undergraduates. Many fundamental topics are presented here for the first time, but, more importantly, the material is brought together to give a unified treatment of basic ideas using the simplest approach possible. To achieve such a goa...

  18. Glass Waveguides for Periodic Poling

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2005-01-01

    Planar silica-based waveguide devices have been developed for second-harmonic generation by poling with periodic electrodes. We show that detrimental charge transport can occur along interfaces, but with proper choice of fabrication, high-quality devices are obtained.......Planar silica-based waveguide devices have been developed for second-harmonic generation by poling with periodic electrodes. We show that detrimental charge transport can occur along interfaces, but with proper choice of fabrication, high-quality devices are obtained....

  19. Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate

    International Nuclear Information System (INIS)

    Ha, Jin Sook; Chung, Yoon Sun; Lee, Ik Jae; Shin, Dong Bong; Kim, Jong Dae; Kim, Sei Joon; Jeon, Mi Jin; Chok, Yoon Jin; Kim, Ki Kwang; Lee, Seul Bee

    2011-01-01

    Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector (√x 2 +√y 2 +√z 2 ) value for assessing overall movement. Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a mouthpiece was greater by 9.4% than the group

  20. Usefulness of Non-coplanar Helical Tomotherapy Using Variable Axis Baseplate

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jin Sook; Chung, Yoon Sun; Lee, Ik Jae; Shin, Dong Bong; Kim, Jong Dae; Kim, Sei Joon; Jeon, Mi Jin; Chok, Yoon Jin; Kim, Ki Kwang; Lee, Seul Bee [Dept. of Radiation Oncology, Gangnam Severance Hospital, Seoul (Korea, Republic of)

    2011-03-15

    Helical Tomotherapy allows only coplanar beam delivery because it does not allow couch rotation. We investigated a method to introduce non-coplanar beam by tilting a patient's head for Tomotherapy. The aim of this study was to compare intrafractional movement during Tomotherapy between coplanar and non-coplanar patient's setup. Helical Tomotherapy was used for treating eight patients with intracranial tumor. The subjects were divided into three groups: one group (coplanar) of 2 patients who lay on S-plate with supine position and wore thermoplastic mask for immobilizing the head, second group (non-coplanar) of 3 patients who lay on S-plate with supine position and whose head was tilted with Variable Axis Baseplate and wore thermoplastic mask, and third group (non-coplanar plus mouthpiece) of 3 patients whose head was tilted and wore a mouthpiece immobilization device and thermoplastic mask. The patients were treated with Tomotherapy after treatment planning with Tomotherapy Planning System. Megavoltage computed tomography (MVCT) was performed before and after treatment, and the intrafractional error was measured with lateral(X), longitudinal(Y), vertical(Z) direction movements and vector ({radical}x{sup 2}+{radical}y{sup 2}+{radical}z{sup 2}) value for assessing overall movement. Intrafractional error was compared among three groups by taking the error of MVCT taken after the treatment. As the correction values (X, Y, Z) between MVCT image taken after treatment and CT-simulation image are close to zero, the patient movement is small. When the mean values of movement of each direction for non-coplanar setup were compared with coplanar setup group, X-axis movement was decreased by 13%, but Y-axis and Z-axis movement were increased by 109% and 88%, respectively. Movements of Y-axis and Z-axis with non-coplanar setup were relatively greater than that of X-axis since a tilted head tended to slip down. The mean of X-axis movement of the group who used a

  1. Transverse wakefield of waveguide damped structures and beam dynamics

    International Nuclear Information System (INIS)

    Lin, X.

    1995-08-01

    In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Q ext of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Q ext of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t -3/2 rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield

  2. Transverse wakefield of waveguide damped structures and beam dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xintian [Univ. of California, San Diego, CA (United States)

    1995-08-01

    In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Qext of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Qext of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t-3/2 rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield.

  3. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  4. MHD waveguides in space plasma

    International Nuclear Information System (INIS)

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-01-01

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  5. Foetal uptake of coplanar polychlorinated biphenyl (PCB) congeners in mice

    International Nuclear Information System (INIS)

    Darnerud, P.O.; Sinjari, T.; Joensson, C.J.

    1996-01-01

    Earlier studies have shown that the Ah-receptor binding polychlorinated biphenyl (PCB) congener 3,3',4,4'-tetrachlorobiphenyl (IUPAC number CB-77) accumulated as hydroxy and methylsulphone metabolites in late gestational mice foetuses. In the present paper the foetal accumulation potential in mice of other dioxin-like PCB congeners was studied: 3,3'4,4',4-pentachlorobiphenyl, 3,3'4,4'5,5'-hexachlorobiphenyl and 2,3,3',4,4'-pentachlorobiphenyl (IUPAC numbers CB-126, CB-169, CB-105, to some extent dioxin-like) were compared to results of CB-77 (all congeners 14 C-labelled and in equimolar doses (2.0 μmol/kg body wt.)). CB-77 resulted in the comparatively strongest foetal 14 C-accumulation, when measured in plasma or whole body homogenate four days after administration (day 17 of pregnancy); the plasma 14 C-values (calculated as pmol/g wet wt.) were 760, 130, 60 and 40 for CB-77, -126, 105 and -169, respectively, and the CB-77 derived radioactivity in the foetal compartment was 3.6% of administered dose (i.e. a considerable portion of the remaining maternal body radioactivity). Thin-layer chromatography (TLC) results, suggesting extensive CB-77 metabolism and foetal metabolite uptake, support earlier findings. The effects of CB-77 and CB-169 on foetal 7-ethoxyresorufin-O-deethylase (EROD) activities (day 17 of gestation; two days after 5 mg/kg body wt. dose (14.0-17.0 μmol/kg body wt.)) was about 20 times lower than of CB-126. In the dam, high radioactivity levels were observed int he liver and fat (highest concentrations found in CB-126 and CB-105, respectively). Strain comparison - foetal 14 C-uptake (four days after administration of CB-77) in C57BL mice was almost five times higher than in NMRI - may be correlated to earlier observed differences in EROD activities between these strains. The present results indicate that congener and strain differences exist regarding both foetal and maternal distribution patterns of coplanar PCB congeners and point out the

  6. Optical waveguide tamper sensor technology

    Energy Technology Data Exchange (ETDEWEB)

    Carson, R.F.; Butler, M.A.; Sinclair, M.B. [and others

    1997-03-01

    Dielectric optical waveguides exhibit properties that are well suited to sensor applications. They have low refractive index and are transparent to a wide range of wavelengths. They can react with the surrounding environment in a variety of controllable ways. In certain sensor applications, it is advantageous to integrate the dielectric waveguide on a semiconductor substrate with active devices. In this work, we demonstrate a tamper sensor based on dielectric waveguides that connect epitaxial GaAs-GaAlAs sources and detectors. The tamper sensing function is realized by attaching particles of absorbing material with high refractive index to the surface of the waveguides. These absorbers are then attached to a lid or cover, as in an integrated circuit package or multi-chip module. The absorbers attenuate the light in the waveguides as a function of absorber interaction. In the tamper indicating mode, the absorbers are placed randomly on the waveguides, to form a unique attenuation pattern that is registered by the relative signal levels on the photodetectors. When the lid is moved, the pattern of absorbers changes, altering the photodetector signals. This dielectric waveguide arrangement is applicable to a variety of sensor functions, and specifically can be fabricated as a chemical sensor by the application of cladding layers that change their refractive index and/or optical absorption properties upon exposure to selected chemical species. An example is found in palladium claddings that are sensitive to hydrogen. A description of designs and a basic demonstration of the tamper sensing and chemical sensing functions is described herein.

  7. Coplanar-grid CdZnTe detector with three-dimensional position sensitivity

    CERN Document Server

    Luke, P N; Lee Jae Sik; Yaver, H

    2000-01-01

    A three-dimensional position-sensitive coplanar-grid detector design for use with compound semiconductors is described. This detector design maintains the advantage of a coplanar-grid detector in which good energy resolution can be obtained from materials with poor charge transport. Position readout in two dimensions is accomplished using proximity-sensing electrodes adjacent to the electron-collecting grid electrode of the detector. Additionally, depth information is obtained by taking the ratio of the amplitudes of the collecting grid signal and the cathode signal. Experimental results from a prototype CdZnTe detector are presented.

  8. Planar waveguide sensor of ammonia

    Science.gov (United States)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  9. Bending loss of terahertz pipe waveguides.

    Science.gov (United States)

    Lu, Jen-Tang; Hsueh, Yu-Chun; Huang, Yu-Ru; Hwang, Yuh-Jing; Sun, Chi-Kuang

    2010-12-06

    We present an experimental study on the bending loss of terahertz (THz) pipe waveguide. Bending loss of pipe waveguides is investigated for various frequencies, polarizations, core diameters, cladding thicknesses, and cladding materials. Our results indicate that the pipe waveguides with lower guiding loss suffer lower bending loss due to stronger mode confinement. The unexpected low bending loss in the investigated simple leaky waveguide structure promises variety of flexible applications.

  10. Fabrication of plasmonic waveguides for device applications

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Leosson, Kristjan; Rosenzveig, Tiberiu

    2007-01-01

    and thickness-modulated gold strips different waveguide components including reflecting gratings can be realized. For applications where polarization is random or changing, metal nanowire waveguides are shown to be suitable candidates for efficient guiding of arbitrary polarized light. Plasmonic waveguides...

  11. Functional planar thin film optical waveguide lasers

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav

    2012-01-01

    Roč. 9, č. 2 (2012), 91-99 ISSN 1612-2011 R&D Projects: GA ČR(CZ) GAP106/10/1477 Institutional research plan: CEZ:AV0Z10100522 Keywords : waveguide laser * planar waveguides * thin films * pulsed laser deposition * optical waveguides * laser materials Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.714, year: 2012

  12. Plasmonic waveguides cladded by hyperbolic metamaterials

    DEFF Research Database (Denmark)

    Ishii, Satoshi; Shalaginov, Mikhail Y.; Babicheva, Viktoriia E.

    2014-01-01

    Strongly anisotropic media with hyperbolic dispersion can be used for claddings of plasmonic waveguides (PWs). In order to analyze the fundamental properties of such waveguides, we analytically study 1D waveguides arranged from a hyperbolic metamaterial (HMM) in a HMM-Insulator-HMM (HIH) structur...

  13. Principal modes in multimode waveguides.

    Science.gov (United States)

    Fan, Shanhui; Kahn, Joseph M

    2005-01-15

    We generalize the concept of principal states of polarization and prove the existence of principal modes in multimode waveguides. Principal modes do not suffer from modal dispersion to first order of frequency variation and form orthogonal bases at both the input and the output ends of the waveguide. We show that principal modes are generally different from eigenmodes, even in uniform waveguides, unlike the special case of a single-mode fiber with uniform birefringence. The difference is most pronounced when different eigenmodes possess similar group velocities and when their field patterns vary as a function of frequency. This work may provide a new basis for analysis and control of dispersion in multimode fiber systems.

  14. SU-D-BRB-01: A Comparison of Learning Methods for Knowledge Based Dose Prediction for Coplanar and Non-Coplanar Liver Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A; Ruan, D; Woods, K; Yu, V; Nguyen, D; Sheng, K [UCLA School of Medicine, Los Angeles, CA (United States)

    2016-06-15

    Purpose: The predictive power of knowledge based planning (KBP) has considerable potential in the development of automated treatment planning. Here, we examine the predictive capabilities and accuracy of previously reported KBP methods, as well as an artificial neural networks (ANN) method. Furthermore, we compare the predictive accuracy of these methods on coplanar volumetric-modulated arc therapy (VMAT) and non-coplanar 4π radiotherapy. Methods: 30 liver SBRT patients previously treated using coplanar VMAT were selected for this study. The patients were re-planned using 4π radiotherapy, which involves 20 optimally selected non-coplanar IMRT fields. ANNs were used to incorporate enhanced geometric information including liver and PTV size, prescription dose, patient girth, and proximity to beams. The performance of ANN was compared to three methods from statistical voxel dose learning (SVDL), wherein the doses of voxels sharing the same distance to the PTV are approximated by either taking the median of the distribution, non-parametric fitting, or skew-normal fitting. These three methods were shown to be capable of predicting DVH, but only median approximation can predict 3D dose. Prediction methods were tested using leave-one-out cross-validation tests and evaluated using residual sum of squares (RSS) for DVH and 3D dose predictions. Results: DVH prediction using non-parametric fitting had the lowest average RSS with 0.1176(4π) and 0.1633(VMAT), compared to 0.4879(4π) and 1.8744(VMAT) RSS for ANN. 3D dose prediction with median approximation had lower RSS with 12.02(4π) and 29.22(VMAT), compared to 27.95(4π) and 130.9(VMAT) for ANN. Conclusion: Paradoxically, although the ANNs included geometric features in addition to the distances to the PTV, it did not perform better in predicting DVH or 3D dose compared to simpler, faster methods based on the distances alone. The study further confirms that the prediction of 4π non-coplanar plans were more accurate than

  15. Optical strip waveguide: an analysis.

    Science.gov (United States)

    Ogusu, K; Kawakami, S; Nishida, S

    1979-03-15

    An analysis of the strip waveguide is presented with special emphasis on reflection and transmission of a wave obliquely incident on the side of a strip. Mode conversion and the contribution of radiation modes are taken into account in the formulation. The numerical results of the mode conversion and attenuation constant of the fundamental leaky mode are presented and compared with the results of other authors. The numerical accuracy of our analysis is also checked by two different procedures. It is found that the radiation modes have considerable effects on the waveguide characteristics.

  16. A General Waveguide Circuit Theory.

    Science.gov (United States)

    Marks, Roger B; Williams, Dylan F

    1992-01-01

    This work generalizes and extends the classical circuit theory of electromagnetic waveguides. Unlike the conventional theory, the present formulation applies to all waveguides composed of linear, isotropic material, even those involving lossy conductors and hybrid mode fields, in a fully rigorous way. Special attention is given to distinguishing the traveling waves, constructed with respect to a well-defined characteristic impedance, from a set of pseudo-waves, defined with respect to an arbitrary reference impedance. Matrices characterizing a linear circuit are defined, and relationships among them, some newly discovered, are derived. New ramifications of reciprocity are developed. Measurement of various network parameters is given extensive treatment.

  17. Hollow glass waveguides: New variations

    Science.gov (United States)

    Gibson, Daniel Joseph

    This study is an effort to develop new variations on the infrared silver-silver iodide hollow glass waveguide (HGW) with application specific properties. Four variations are presented: a HGW with a long, gradual taper, a HGW with a rectangular cross-section, curved HGW tips and a new all-dielectric hollow waveguide based on photonic bandgap guidance principles. A hollow glass waveguide tapered over its entire length offers ease of coupling at the proximal end and excellent flexibility at the distal end. Waveguides tapered from 1000 to 500 mum and 700 to 500 mum over 1.5 m were fabricated in this study. Compared to similarly sized non-tapered waveguides, laser losses for the tapered guides were high but decreased when bent. This behavior is contrary to that of non-tapered guides and an iterative ray tracing model was also developed to explain the observed loss characteristics of tapered hollow waveguides. Hollow glass waveguides with round profiles do not maintain the polarization state of the delivered radiation to any appreciable degree. HGWs with large- and small-aspect ratio rectangular cross sections were developed and shown to preserve polarization up to 96%, even when bent. The large aspect ratio guide was able to effectively rotate the transmitted polarization when twisted along its axis. Curved distal tips for medical and dental laser applications were developed by removing the low-OH silica fiber from commercially available stainless steel dental tips, and inserting HGWs of various sizes. The optical performances and heating profiles of the various configurations indicate the tips are suitable for certain medical applications, but the minimum bending radius is limited by the mechanical properties of the glass substrate. A small radii bending loss study confirms that propagating modes periodically couple as the radius of curvature is reduced. Through the application of the photonic bandgap (PBG) guidance, hollow waveguides can be made entirely from

  18. Experiments on the interaction between long Josephson junctions and a coplanar strip resonator

    DEFF Research Database (Denmark)

    Davidson, A.; Pedersen, Niels Falsig

    1992-01-01

    incorporated directly as part of a coplanar strip half-wave resonator, with fundamental mode of about 34 GHz. Both the current density and oscillation frequency are higher than in previous experiments. Evidence for phase locking of multiple junctions is presented. Applied Physics Letters is copyrighted...... by The American Institute of Physics....

  19. Low-temperature hydrogenation of diamond nanoparticles using diffuse coplanar surface barrier discharge at atmospheric pressure

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Čech, J.; Kozak, Halyna; Artemenko, Anna; Ižák, Tibor; Čermák, Jan; Rezek, Bohuslav; Černák, M.

    2015-01-01

    Roč. 252, č. 11 (2015), s. 2602-2607 ISSN 0370-1972 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : atmospheric plasma * diamond nanoparticles * diffuse coplanar surface barrier discharge * FTIR * XPS Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.522, year: 2015

  20. Coplanar transitions based on aluminum nitride interposer substrate for terabit transceivers

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2017-01-01

    . The effects of absorber layer and wire bonding bridges are described. Two types of coplanar transitions are designed and simulated in back-to-back configuration with wire bonding bridges. When driven by differential signal pair, the proposed CCPW-to-coupled line transition in back-to-back configuration...

  1. Quercetin blocks caveolae-dependent proinflammatory responses induced by coplanar PCBs

    Science.gov (United States)

    Choi, Yean Jung; Arzuaga, Xabier; Kluemper, Chase T.; Caraballo, Adelka; Toborek, Michal; Hennig, Bernhard

    2009-01-01

    Polychlorinated biphenyls (PCBs) are widespread environmental contaminants, and co-planar PCBs can induce oxidative stress and activation of pro-inflammatory signaling cascades which are associated with atherosclerosis. The majority of the toxicological effects elicited by co-planar PCB exposure are associated to activation of the aryl hydrocarbon receptor (AHR) and subsequent induction of responsive genes. Previous studies from our group have shown that quercetin, a nutritionally relevant flavonoid can significantly reduce PCB77 induction of oxidative stress and expression of the AHR responsive gene cytochrome P450 1A1 (CYP1A1). We also have evidence that membrane domains called caveolae may regulate PCB-induced inflammatory parameters. Thus, we hypothesized that quercetin can modulate PCB-induced endothelial inflammationassociated with caveolae. To test this hypothesis, endothelial cells were exposed to co-planar PCBs in combination with quercetin, and expression of pro-inflammatory genes was analyzed by real time PCR. Quercetin co-treatment significantly blocked both PCB77 and PCB126 induction of CYP1A1, vascular cell adhesion molecule 1 (VCAM-1), E-selectin and P-selectin. Exposure to PCB77 also induced caveolin-1 protein expression, which was reduced by cotreatment with quercetin. Our results suggest that inflammatory pathways induced by co-planar PCBs can be down-regulated by the dietary flavonoid quercetin through mechanisms associated with functional caveolae. PMID:19608276

  2. Coplanar (e, 3e) differential cross-section of He atom

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 60; Issue 6. Coplanar (, 3) ... We present in this paper the results of our calculation of five-fold differential cross-section (FDCS) for (, 3) process on He atom in low momentum transfer and high electron impact energy in shake-off mechanism. The formalism has ...

  3. Systematic Design of Slow Light Waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen

    Light can propagate much slower in photonic crystal waveguides and plasmonic waveguides than in vacuum. Slow light propagation in waveguides shows broad prospects in the terabit communication systems. However, it causes severe signal distortions and displays large propagation loss. Moreover...... the same bandwidth. The first optimization formulation is further employed to design slow light metal- dielectric-metal plasmonic waveguides. It is shown that dispersionless slow light propagation is achieved in the optimized plasmonic waveguide. Further study reveals that the loss in metal can...

  4. Dynamic intensity-modulated non-coplanar arc radiotherapy (INCA) for head and neck cancer

    International Nuclear Information System (INIS)

    Krayenbuehl, Jerome; Davis, J. Bernard; Ciernik, I. Frank

    2006-01-01

    Background and purpose: To define the potential advantages of intensity-modulated radiotherapy (IMRT) applied using a non-coplanar dynamic arc technique for the treatment of head and neck cancer. Materials and methods: External beam radiotherapy (EBRT) was planned in ten patients with head and neck cancer using coplanar IMRT and non-coplanar arc techniques, termed intensity modulated non-coplanar arc EBRT (INCA). Planning target volumes (PTV1) of first order covered the gross tumor volume and surrounding clinical target volume treated with 68-70 Gy, whereas PTV2 covered the elective lymph nodes with 54-55 Gy using a simultaneous internal boost. Treatment plan comparison between IMRT and INCA was carried out using dose-volume histogram and 'equivalent uniform dose' (EUD). Results: INCA resulted in better dose coverage and homogeneity of the PTV1, PTV2, and reduced dose delivered to most of the organs at risk (OAR). For the parotid glands, a reduction of the mean dose of 2.9 (±2.0) Gy was observed (p 0.002), the mean dose to the larynx was reduced by 6.9 (±2.9) Gy (p 0.003), the oral mucosa by 2.4 (±1.1) Gy (p < 0.001), and the maximal dose to the spinal cord by 3.2 (±1.7) Gy (p = 0.004). The mean dose to the brain was increased by 3.0 (±1.4) Gy (p = 0.002) and the mean lung dose increased by 0.2 (±0.4) Gy (p = 0.87). The EUD suggested better avoidance of the OAR, except for the lung, and better coverage and dose uniformity were achieved with INCA compared to IMRT. Conclusion: Dose delivery accuracy with IMRT using a non-coplanar dynamic arc beam geometry potentially improves treatment of head and neck cancer

  5. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index...

  6. Waveguides with asymptotically diverging twisting

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David

    2015-01-01

    Roč. 46, AUG (2015), s. 7-10 ISSN 0893-9659 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguide * exploding twisting * Quasi-bounded * Quasi-cylindrical * discrete spectrum Subject RIV: BE - Theoretical Physics Impact factor: 1.659, year: 2015

  7. Glass Waveguides for Periodic Poling

    DEFF Research Database (Denmark)

    Fage-Pedersen, Jacob; Jacobsen, Rune Shim; Kristensen, Martin

    2005-01-01

    Planar silica-based waveguide devices have been developed for second-harmonic generation by poling with periodic electrodes. We show that detrimental charge transport can occur along interfaces, but with proper choice of fabrication, high-quality devices are obtained....

  8. Poling of Planar Silica Waveguides

    DEFF Research Database (Denmark)

    Arentoft, Jesper; Kristensen, Martin; Jensen, Jesper Bo

    1999-01-01

    UV-written planar silica waveguides are poled using two different poling techniques, thermal poling and UV-poling. Thermal poling induces an electro-optic coefficient of 0.067 pm/V. We also demonstrate simultaneous UV-writing and UV-poling. The induced electro-optic effect shows a linear dependence...

  9. Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling

    Science.gov (United States)

    Pulido-Mancera, Laura; Bowen, Patrick T.; Imani, Mohammadreza F.; Kundtz, Nathan; Smith, David

    2017-12-01

    We consider the design and modeling of metasurfaces that couple energy from guided waves to propagating wave fronts. To this purpose, we develop a comprehensive, multiscale dipolar interpretation for large arrays of complementary metamaterial elements embedded in a waveguide structure. Within this modeling technique, the detailed electromagnetic response of each metamaterial element is replaced by a polarizable dipole, described by means of an effective polarizability. In this paper, we present two methods to extract this effective polarizability. The first method invokes surface equivalence principles, averaging over the effective surface currents and charges induced in the element's surface in order to obtain the effective dipole moments, from which the effective polarizability can be inferred. The second method is based in the coupled-mode theory, from which a direct relationship between the effective polarizability and the amplitude coefficients of the scattered waves can be deduced. We demonstrate these methods on several variants of waveguide-fed metasurface elements (both one- and two-dimensional waveguides), finding excellent agreement between the two, as well as with the analytical expressions derived for circular and elliptical irises. With the effective polarizabilities of the metamaterial elements accurately determined, the radiated fields generated by a waveguide-fed metasurface can be found self-consistently by including the interactions between polarizable dipoles. The dipole description provides an effective perspective and computational framework for engineering metasurface structures such as holograms, lenses, and beam-forming arrays, among others.

  10. Global pollution monitoring of polychlorinated dibenzo-p-dioxins (PCDDs), furans (PCDFs) and coplanar polychlorinated biphenyls (coplanar PCBs) using skipjack tuna as bioindicator

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, D.; Watanabe, M.; Subraminian, A.N.; Tanabe, S. [Ehime Univ. (Japan); Tanaka, H. [National Research Inst. of Fisheries and Environment of Inland Sea (Japan); Fillmann, G. [Fundacao Univ. Federal do Rio Grande (Brazil); Lam, P.K.S.; Zheng, G.J. [City Univ. of Hong Kong (Hong Kong); Muchtar, M.; Razak, H. [Indonesian Inst. of Sciences (Indonesia); Prudente, M. [De La Salle Univ. (Philippines); Chung, K. [Sungkyunkwan Univ. (Korea)

    2004-09-15

    Worldwide contamination by dioxins and related compounds, such as polychlorinated dibenzop- dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and coplanar polychlorinated biphenyls (coplanar PCBs) representing persistent organic pollutants (POPs) have been of great concern due to their persistency in the environment, highly bioaccumulative nature and adverse effects on wildlife and humans. Several studies on air samples and marine organisms from open seas suggested a long range transport of these compounds through atomosphere. Although several investigators have monitored dioxins pollution in localized areas, information on the global distribution of dioxins which can explain their atomospheric transport, behavior and fate are still limited. Skipjack tuna is primarily distributed from offshore waters to open seas in tropical and temperate regions almost all over the world such as the Pacific, Atlantic and Indian Oceans6. This species is an important commercial fish and its ecology and biology has been well studied. Moreover, suitability of skipjack tuna for global monitoring of organic pollutants (DDTs, HCHs PBDEs, organotins, etc.) has been established in our previous report, indicating that migration pattern, growth stage and sex of these animals have no or little effect on the variations of POPs residue levels in their bodies. Hence this species reflected POPs pollution levels in seawater when and where they were collected, caused by the rapid equilibrium partitioning between seawater and body lipid. These facts made skipjack tuna a suitable bioindicator for monitoring the contamination status of dioxins and related compounds. The objectives of this study are to elucidate the global distribution of dioxins (PCDD/Fs and coplanar PCBs) in offshore waters and open seas, and to understand the transport and behaviour of these chemicals using skipjack tuna as bioindicator.

  11. Extraction film for optical waveguide and method of producing same

    Science.gov (United States)

    Tarsa, Eric J.; Durkee, John W.

    2017-05-16

    An optical waveguide includes a waveguide body and a film disposed on a surface of the waveguide body. The film includes a base and a plurality of undercut light extraction elements disposed between the base and the surface.

  12. Multilayer cladding with hyperbolic dispersion for plasmonic waveguides

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    We study the properties of plasmonic waveguides with a dielectric core and multilayer metal-dielectric claddings that possess hyperbolic dispersion. The waveguides hyperbolic multilayer claddings show better performance in comparison to conventional plasmonic waveguides. © OSA 2015....

  13. Co-planar deformation and thermal propagation behavior in a bundle burst test

    International Nuclear Information System (INIS)

    Uetsuka, Hiroshi; Koizumi, Yasuo; Kawasaki, Satoru

    1980-07-01

    The probability of the suggested feedback mechanism which could lead to co-planar deformation in a bundle burst test was assessed by the data of test and the calculation based on simplified model. Following four points were evaluated. (1) The probability of local deformation during early heat up stage. (2) The relation between the characteristic of heater and the feedback mechanism. (3) Thermal propagation behavior between two adjacent rods during heat up stage. (4) The propagation of ballooning in a bundle. The probability of suggested feedback mechanism was denied in all the evaluation. The feedback mechanism suggested by Burman could not be a controlling mechanism in co-planar deformation in a bundle burst test. (author)

  14. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity

    Directory of Open Access Journals (Sweden)

    Jiahao Guo

    2016-01-01

    Full Text Available An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ±40°. This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design.

  15. Analysis of a Segmented Annular Coplanar Capacitive Tilt Sensor with Increased Sensitivity.

    Science.gov (United States)

    Guo, Jiahao; Hu, Pengcheng; Tan, Jiubin

    2016-01-21

    An investigation of a segmented annular coplanar capacitor is presented. We focus on its theoretical model, and a mathematical expression of the capacitance value is derived by solving a Laplace equation with Hankel transform. The finite element method is employed to verify the analytical result. Different control parameters are discussed, and each contribution to the capacitance value of the capacitor is obtained. On this basis, we analyze and optimize the structure parameters of a segmented coplanar capacitive tilt sensor, and three models with different positions of the electrode gap are fabricated and tested. The experimental result shows that the model (whose electrode-gap position is 10 mm from the electrode center) realizes a high sensitivity: 0.129 pF/° with a non-linearity of <0.4% FS (full scale of ± 40°). This finding offers plenty of opportunities for various measurement requirements in addition to achieving an optimized structure in practical design.

  16. Optical waveguide switch through magnetic reflectance wall

    Science.gov (United States)

    Fang, Yuntuan; Ni, Zhiyao; Yang, Lixia

    2016-04-01

    We propose a new design to achieve optical waveguide switch. We construct a photonic crystal waveguide with one yttrium iron garnet (YIG) rod array on the two sides of the waveguide. Through the mode analysis, we find in special frequency range a few YIG rods under magnetic field can form the magnetic reflectance wall that blocks the light flow. Removing the magnetic field will delete the reflection wall and let the blocked light to be switched on.

  17. CLIC Waveguide Damped Accelerating Structure Studies

    CERN Document Server

    Dehler, M; Wuensch, Walter

    1996-01-01

    Studies of waveguide damped 30 GHz accelerating structures for multibunching in CLIC are described. Frequency discriminated damping using waveguides with a lowest cutoff frequency above the fundamental but below the higher order modes was considered. The wakefield behavior was investigated using time domain MAFIA computations over up to 20 cells and for frequencies up to 150 GHz. A configuration consisting of four T-cross-sectioned waveguides per cell reduces the transverse wake below 1% at typical CLIC bunch spacings.

  18. Two-dimensional Kagome photonic bandgap waveguide

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo; Søndergaard, Thomas; Libori, Stig E. Barkou

    2000-01-01

    The transverse-magnetic photonic-bandgap-guidance properties are investigated for a planar two-dimensional (2-D) Kagome waveguide configuration using a full-vectorial plane-wave-expansion method. Single-moded well-localized low-index guided modes are found. The localization of the optical modes...... is investigated with respect to the width of the 2-D Kagome waveguide, and the number of modes existing for specific frequencies and waveguide widths is mapped out....

  19. Optical fiber having wave-guiding rings

    Science.gov (United States)

    Messerly, Michael J [Danville, CA; Dawson, Jay W [Livermore, CA; Beach, Raymond J [Livermore, CA; Barty, Christopher P. J. [Hayward, CA

    2011-03-15

    A waveguide includes a cladding region that has a refractive index that is substantially uniform and surrounds a wave-guiding region that has an average index that is close to the index of the cladding. The wave-guiding region also contains a thin ring or series of rings that have an index or indices that differ significantly from the index of the cladding. The ring or rings enable the structure to guide light.

  20. A triple origin for the lack of tight coplanar circumbinary planets around short-period binaries

    Science.gov (United States)

    Hamers, Adrian; Perets, Hagai B.; Portegies Zwart, Simon

    2015-12-01

    Detection of transiting circumbinary planets is more tractable around short-period binaries. However, sofar, no such binaries have been found with orbits shorter than 7 days. Short-period main sequence binaries have been suggested to form in triple systems, through a combination of secular Kozai-Lidov cycles and tidal friction (KLCTF). Here, we show that coplanar circumbinary transiting planets are unlikely to exist around short-period binaries, due to triple evolution. We use secular analysis, N-body simulations and analytic considerations as well as population synthesis models to characterize their overall properties. We find that the existence of a circumbinary planet in a triple is likely to produce one of the following outcomes. (1) Sufficiently massive planets in tight and/or coplanar orbits around the inner binary can partially or completely quench the KL evolution, `shielding' the inner binary from the secular effects of the tertiary, and not allowing the KLCTF process to take place. In this case, the inner binary will not shrink to become a short-period binary. (2) KL evolution is not quenched and it drives the planetary orbit into high eccentricities, giving rise to an unstable configuration, in which the planet is most likely ejected from the system. (3) KL evolution is not quenched, but the planet survives the KLCTF evolution and the formation of the short-period binary; the planet orbit is likely to be much wider than the currently observed inner binary orbit, and is likely to be inclined in respect to the binary orbit, as well as eccentric. These outcomes lead to two main conclusions: (1) it is unlikely to find a (massive) planet on a tight and coplanar orbit around a short-period main-sequence binary, and (2) the frequency, masses and orbits of non-coplanar circumbinary planets in short-period binaries are constrained by their secular evolution.

  1. RF window assembly comprising a ceramic disk disposed within a cylindrical waveguide which is connected to rectangular waveguides through elliptical joints

    Science.gov (United States)

    Tantawi, Sami G.; Dolgashev, Valery A.; Yeremian, Anahid D.

    2016-03-15

    A high-power microwave RF window is provided that includes a cylindrical waveguide, where the cylindrical waveguide includes a ceramic disk concentrically housed in a central region of the cylindrical waveguide, a first rectangular waveguide, where the first rectangular waveguide is connected by a first elliptical joint to a proximal end of the cylindrical waveguide, and a second rectangular waveguide, where the second rectangular waveguide is connected by a second elliptical joint to a distal end of the cylindrical waveguide.

  2. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng [Department of Physics, Institute of Astrophysics, and Center for Theoretical Sciences, National Taiwan University, Taipei 10617, Taiwan (China); Liu, Guo-Chin [Department of Physics, Tamkang University, 251-37 Tamsui, New Taipei City, Taiwan (China); Molnar, Sandor M. [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Yu-Yen, E-mail: ywliao@asiaa.sinica.edu.tw, E-mail: jhpw@phys.ntu.edu.tw [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2013-05-20

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  3. Conception and characterization of a virtual coplanar grid for a 11×11 pixelated CZT detector

    Energy Technology Data Exchange (ETDEWEB)

    Espagnet, Romain; Frezza, Andrea [Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec city, QC, Canada G1R 0A6 (Canada); Martin, Jean-Pierre; Hamel, Louis-André [Department of Physics, Université de Montréal, C.P. 6128 Montréal QC, Canada H3C 3J7 (Canada); Després, Philippe, E-mail: philippe.despres@phy.ulaval.ca [Department of Physics, Engineering Physics and Optics and Cancer Research Center, Université Laval, Quebec city, QC, Canada G1R 0A6 (Canada); Department of Radiation Oncology and Research Center of CHU de Québec - Université Laval, Quebec city, QC Canada G1R 2J6 (Canada)

    2017-07-11

    Due to the low mobility of holes in CZT, commercially available detectors with a relatively large volume typically use a pixelated anode structure. They are mostly used in imaging applications and often require a dense electronic readout scheme. These large volume detectors are also interesting for high-sensitivity applications and a CZT-based blood gamma counter was developed from a 20×20×15 mm{sup 3} crystal available commercially and having a 11×11 pixelated readout scheme. A method is proposed here to reduce the number of channels required to use the crystal in a high-sensitivity counting application, dedicated to pharmacokinetic modelling in PET and SPECT. Inspired by a classic coplanar anode, an implementation of a virtual coplanar grid was done by connecting the 121 pixels of the detector to form intercalated bands. The layout, the front-end electronics and the characterization of the detector in this 2-channel anode geometry is presented. The coefficients required to compensate for electron trapping in CZT were determined experimentally to improve the performance. The resulting virtual coplanar detector has an intrinsic efficiency of 34% and an energy resolution of 8% at 662 keV. The detector's response was linear between 80 keV and 1372 keV. This suggests that large CZT crystals offer an excellent alternative to scintillation detectors for some applications, especially those where high-sensitivity and compactness are required.

  4. PLATFORM DEFORMATION PHASE CORRECTION FOR THE AMiBA-13 COPLANAR INTERFEROMETER

    International Nuclear Information System (INIS)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Umetsu, Keiichi; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter; Proty Wu, Jiun-Huei; Cheng, Tai-An; Fu, Szu-Yuan; Wang, Fu-Cheng; Liu, Guo-Chin; Molnar, Sandor M.; Chang, Yu-Yen

    2013-01-01

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  5. Platform Deformation Phase Correction for the AMiBA-13 Coplanar Interferometer

    Science.gov (United States)

    Liao, Yu-Wei; Lin, Kai-Yang; Huang, Yau-De; Proty Wu, Jiun-Huei; Ho, Paul T. P.; Chen, Ming-Tang; Locutus Huang, Chih-Wei; Koch, Patrick M.; Nishioka, Hiroaki; Cheng, Tai-An; Fu, Szu-Yuan; Liu, Guo-Chin; Molnar, Sandor M.; Umetsu, Keiichi; Wang, Fu-Cheng; Chang, Yu-Yen; Han, Chih-Chiang; Li, Chao-Te; Martin-Cocher, Pierre; Oshiro, Peter

    2013-05-01

    We present a new way to solve the platform deformation problem of coplanar interferometers. The platform of a coplanar interferometer can be deformed due to driving forces and gravity. A deformed platform will induce extra components into the geometric delay of each baseline and change the phases of observed visibilities. The reconstructed images will also be diluted due to the errors of the phases. The platform deformations of The Yuan-Tseh Lee Array for Microwave Background Anisotropy (AMiBA) were modeled based on photogrammetry data with about 20 mount pointing positions. We then used the differential optical pointing error between two optical telescopes to fit the model parameters in the entire horizontal coordinate space. With the platform deformation model, we can predict the errors of the geometric phase delays due to platform deformation with a given azimuth and elevation of the targets and calibrators. After correcting the phases of the radio point sources in the AMiBA interferometric data, we recover 50%-70% flux loss due to phase errors. This allows us to restore more than 90% of a source flux. The method outlined in this work is not only applicable to the correction of deformation for other coplanar telescopes but also to single-dish telescopes with deformation problems. This work also forms the basis of the upcoming science results of AMiBA-13.

  6. A half millimeter thick coplanar flexible battery with wireless recharging capability.

    Science.gov (United States)

    Kim, Joo-Seong; Ko, Dongah; Yoo, Dong-Joo; Jung, Dae Soo; Yavuz, Cafer T; Kim, Nam-In; Choi, In-Suk; Song, Jae Yong; Choi, Jang Wook

    2015-04-08

    Most of the existing flexible lithium ion batteries (LIBs) adopt the conventional cofacial cell configuration where anode, separator, and cathode are sequentially stacked and so have difficulty in the integration with emerging thin LIB applications, such as smart cards and medical patches. In order to overcome this shortcoming, herein, we report a coplanar cell structure in which anodes and cathodes are interdigitatedly positioned on the same plane. The coplanar electrode design brings advantages of enhanced bending tolerance and capability of increasing the cell voltage by in series-connection of multiple single-cells in addition to its suitability for the thickness reduction. On the basis of these structural benefits, we develop a coplanar flexible LIB that delivers 7.4 V with an entire cell thickness below 0.5 mm while preserving stable electrochemical performance throughout 5000 (un)bending cycles (bending radius = 5 mm). Also, even the pouch case serves as barriers between anodes and cathodes to prevent Li dendrite growth and short-circuit formation while saving the thickness. Furthermore, for convenient practical use wireless charging via inductive electromagnetic energy transfer and solar cell integration is demonstrated.

  7. Guided modes in silicene-based waveguides

    Science.gov (United States)

    Yu, Mengzhuo; He, Ying; Yang, Yanfang; Zhang, Huifang

    2018-02-01

    Silicene is a new Dirac-type electron system similar to graphene. A monolayer silicene sheet forms a quantum well induced by an electrostatic potential, which acts as an electron waveguide. The guided modes in the silicene waveguide have been investigated. Electron waves can propagate in the silicene-based waveguide in the cases of Klein tunneling and classical motion. The behavior of the wave function depends on the spin and valley indices. The amplitude of the electron wave function in the silicene waveguide can be controlled by the external electric field. These phenomena may be helpful for the potential applications of silicene-based electronic devices.

  8. Near-field characterization of plasmonic waveguides

    DEFF Research Database (Denmark)

    Zenin, Volodymyr

    2014-01-01

    ) it is believed to bridge naturally optical and electronic circuits; 2) it looks natural and most efficient for active applications due to the presence of the metal inside the core of the plasmonic mode; 3) the mode size and correspondent field confinement of plasmonic waveguides can be tuned in a vast range...... and their imaging techniques is included additionally to the main research of plasmonic waveguides (channel plasmon polariton, long-range dielectric-loaded surface plasmon polariton, and plasmonic slot waveguides) and waveguide components (antennas, S-bends, and directional couplers) included as a reprint of papers....

  9. Improved optical planar waveguides for lasers

    Data.gov (United States)

    National Aeronautics and Space Administration — Planar Waveguides (PWGs) are extremely versatile and have demonstrated excellent performance but are difficult to manufacture. We will demonstrate a new, simpler,...

  10. Practical microstructured and plasmonic terahertz waveguides

    Science.gov (United States)

    Markov, Andrey

    The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated

  11. OPTICAL PHENOMENA IN FIBER WAVEGUIDES: Determination of the optical characteristics of infrared fiber-optic waveguides

    Science.gov (United States)

    Vasil'ev, A. V.; Plotnichenko, V. G.

    1987-04-01

    A description is given of the features distinguishing determination of the optical characteristics of fiber-optic waveguides in the middle infrared region. The spectral dependences are given of the overall optical losses for single-crystal two-layer fiber-optic waveguides utilizing cesium bromide and single-layer waveguides made of a chalcogenide glass of the Ge-As-Se system in an F-42 fluoroplastic polymer cladding. In the case of the latter waveguides, a study was made of the angular dependences of the radiation power distribution inside the waveguide when CO laser radiation was coupled in at different angles.

  12. Hyperentangled photon sources in semiconductor waveguides

    DEFF Research Database (Denmark)

    Kang, Dongpeng; Helt, L. G.; Zhukovsky, Sergei

    2014-01-01

    We propose and analyze the performance of a technique to generate mode and polarization hyperentangled photons in monolithic semiconductor waveguides using two concurrent type-II spontaneous parametric down-conversion (SPDC) processes. These two SPDC processes are achieved by waveguide engineering...

  13. A hybrid semiconductor-glass waveguide laser

    NARCIS (Netherlands)

    Fan, Y.; Oldenbeuving, R.M.; Klein, E.J.; Lee, C.J.; Song, H.; Khan, M.R.H.; Offerhaus, H.L.; Van der Slot, P.J.M.; Boller, K.J.

    2014-01-01

    We report on a novel type of laser in which a semiconductor optical amplifier (SOA) receives frequency-selective feedback from a glass-waveguide circuit. The laser we present here is based on InP for operation in the 1.55 µm wavelength range. The Si3N4/SiO2 glass waveguide circuit comprises two

  14. A hybrid semiconductor-glass waveguide laser

    NARCIS (Netherlands)

    Fan, Youwen; Oldenbeuving, Ruud; Klein, E.J.; Lee, Christopher James; Song, H.; Khan, M.R.H.; Offerhaus, Herman L.; van der Slot, Petrus J.M.; Boller, Klaus J.; Mackenzie, J.I.; Jelinkova, H.; Taira, T.; Ahmed, M.A.

    2014-01-01

    abstract .We report on a novel type of laser in which a semiconductor optical amplifier (SOA) receives frequency-selective feedback from a glass-waveguide circuit. The laser we present here is based on InP for operation in the 1.55 μm wavelength range. The Si3N4/SiO2 glass waveguide circuit

  15. Topology optimization of two-dimensional waveguides

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2003-01-01

    In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss.......In this work we use the method of topology optimization to design two-dimensional waveguides with low transmission loss....

  16. Bends and splitters in graphene nanoribbon waveguides

    DEFF Research Database (Denmark)

    Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger

    2013-01-01

    We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...

  17. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission is h...

  18. Novel concepts for terahertz waveguide spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In the recent years there has been a tremendous interest in various waveguides for the THz range. A waveguide offers strong confinement of the field as well as low-loss propagation over significant distances, properties which are important for sensitive spectroscopy. The confinement of the field ...

  19. Discontinuities during UV writing of waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Andersen, Marc

    2005-01-01

    UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour.......UV writing of waveguides can be hampered by discontinuities where the index change process suddenly shuts down. We show that thermal effects may account for this behaviour....

  20. Silicon waveguides produced by wafer bonding

    DEFF Research Database (Denmark)

    Poulsen, Mette; Jensen, Flemming; Bunk, Oliver

    2005-01-01

    X-ray waveguides are successfully produced employing standard silicon technology of UV photolithography and wafer bonding. Contrary to theoretical expectations for similar systems even 100 mu m broad guides of less than 80 nm height do not collapse and can be used as one dimensional waveguides...

  1. Reverse-symmetry waveguides: Theory and fabrication

    DEFF Research Database (Denmark)

    Horvath, R.; Lindvold, Lars René; Larsen, N.B.

    2002-01-01

    We present an extensive theoretical analysis of reverse-symmetry waveguides with special focus on their potential application as sensor components in aqueous media and demonstrate a novel method for fabrication of such waveguides. The principle of reverse symmetry is based on making the refractive...

  2. Numerical studies of (partial-) waveguide FELs

    CERN Document Server

    Tecimer, M

    2002-01-01

    We investigate two different approaches to analyze the excitation of 3D-time dependent fields by short electron bunches in parallel-plate waveguide FELs. In the first approach the Lienard-Wiechert solution of the four vector electromagnetic wave equation is adopted to the waveguide-FEL problem by means of image currents method. The second approach is based on the commonly used method of solving paraxial wave equation for the amplitudes of the excited waveguide modes in time and axial dimension. The loss mechanism in a partially waveguided cavity with toroidal mirrors is incorporated into the latter formalism accounting for the outcoupling of the radiation fields through a hole, mode conversion and clipping-off due to the waveguide apertures.

  3. Photonic waveguides theory and applications

    CERN Document Server

    Boudrioua, Azzedine

    2009-01-01

    This book presents the principles of non-linear integrated optics. The first objective is to provide the reader with a thorough understanding of integrated optics so that they may be able to develop the theoretical and experimental tools to study and control the linear and non-linear optical properties of waveguides.The potential use of these structures can then be determined in order to realize integrated optical components for light modulation and generation. The theoretical models are accompanied by experimental tools and their setting in order to characterize the studied phenomenon. Th

  4. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex......-valued parameters which allows us to analyze the dispersion properties also in presence of finite Q factors for the coupled resonator states. Near the band-edge the group velocity saturates at a finite value vg/c µ p1/Q while in the band center, the group velocity is unaffected by a finite Q factor as compared...

  5. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  6. Inkjet printed ferrite-filled rectangular waveguide X-band isolator

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-06-01

    For the first time, a rectangular waveguide (RWG) isolator realized through inkjet printing on a ferrite substrate is presented. Yttrium iron garnet (YIG) substrate is used for the realization of the ferrite-filled isolator. Contrary to the substrate integrated waveguide (SIW) approach, all four walls of the waveguide have been inkjet printed on the YIG substrate demonstrating the utility of inkjet printing process for realizing non-planar microwave components. The isolation is achieved by applying an anti-symmetrical DC magnetic bias to the ferrite-filled waveguide which then exhibits a unidirectional mode of operation. The isolator is fed by a microstrip to RWG transition and demonstrates an isolation figure-of-merit (IFM) of more than 51 dB in the operating band from 9.95 GHz to 11.73 GHz with a very high peak IFM of 69 dB. The minimum insertion loss in the operating band is 2.73 dB (including losses from the transitions). The isolator measures 33 mm × 8 mm × 0.4 mm. This work introduces an inkjet printed non-planar microwave device which is easy to fabricate showing the ability of inkjet printing for fabricating complex microwave systems. © 2014 IEEE.

  7. Coplanar VMAT vs. noncoplanar VMAT in the treatment of sinonasal cancer

    International Nuclear Information System (INIS)

    Ning, Zhong-Hua; Mu, Jin-Ming; Mo, Jun-Chong; Gao, Ming; Li, Qi-Lin; Gu, Wen-Dong; Pei, Hong-Lei; Jiang, Jing-Ting; Li, Xiao-Dong; Chen, Lu-Jun; Jin, Jian-Xue

    2015-01-01

    Previous studies showed that noncoplanar intensity-modulated radiotherapy (NC-IMRT) for sinonasal cancer is superior to coplanar intensity-modulated radiotherapy (IMRT). Volumetric-modulated arc therapy (VMAT) is a newly introduced treatment modality, and the performance of noncoplanar VMAT for sinonasal cancer has not been well described to date. To compare the dosimetry difference of noncoplanar VMAT (NC-VMAT), coplanar VMAT (co-VMAT), and NC-IMRT for sinonasal cancer. Ten postoperative patients with sinonasal cancer were randomly selected for planning with NC-VMAT, co-VMAT, and NC-IMRT. Two planning target volumes (PTVs) were contoured representing high-risk and low-risk regions set to receive a median absorbed dose (D 50 % ) of 68 Gy and 59 Gy, respectively. The homogeneity index (HI), conformity index (CI), dose-volume histograms (DVHs), and delivery efficiency were all evaluated. Both NC-VMAT and co-VMAT showed superior dose homogeneity and conformity in PTVs compared with NC-IMRT. There was no significant difference between NC-VMAT and co-VMAT in PTV coverage. Both VMAT plans provided a better protection for organs at risk (OARs) than NC-IMRT plans, and NC-VMAT showed a small improvement over co-VMAT in sparing of OARs. For peripheral doses, the doses to breast, thyroid, and larynx in the NC-IMRT plans were significantly higher than those in both VMAT plans. Compared to NC-VMAT, co-VMAT significantly reduced peripheral doses. NC-VMAT and co-VMAT reduced the average delivery time by 63.2 and 64.2 %, respectively, in comparison with NC-IMRT. No differences in delivery efficiency were observed between the two VMAT plans. Compared to NC-VMAT, co-VMAT showed similar PTV coverage and comparable OAR sparing but significantly reduced peripheral doses and positioning uncertainty. We propose to give priority to coplanar VMAT in the treatment of sinonasal cancer. (orig.) [de

  8. SU-E-T-436: Fluence-Based Trajectory Optimization for Non-Coplanar VMAT

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, G; Bamber, JC; Bedford, JL [Joint Department of Physics at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London (United Kingdom); Evans, PM [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford (United Kingdom); Saran, FH; Mandeville, HC [The Royal Marsden NHS Foundation Trust, Sutton (United Kingdom)

    2015-06-15

    Purpose: To investigate a fluence-based trajectory optimization technique for non-coplanar VMAT for brain cancer. Methods: Single-arc non-coplanar VMAT trajectories were determined using a heuristic technique for five patients. Organ at risk (OAR) volume intersected during raytracing was minimized for two cases: absolute volume and the sum of relative volumes weighted by OAR importance. These trajectories and coplanar VMAT formed starting points for the fluence-based optimization method. Iterative least squares optimization was performed on control points 24° apart in gantry rotation. Optimization minimized the root-mean-square (RMS) deviation of PTV dose from the prescription (relative importance 100), maximum dose to the brainstem (10), optic chiasm (5), globes (5) and optic nerves (5), plus mean dose to the lenses (5), hippocampi (3), temporal lobes (2), cochleae (1) and brain excluding other regions of interest (1). Control point couch rotations were varied in steps of up to 10° and accepted if the cost function improved. Final treatment plans were optimized with the same objectives in an in-house planning system and evaluated using a composite metric - the sum of optimization metrics weighted by importance. Results: The composite metric decreased with fluence-based optimization in 14 of the 15 plans. In the remaining case its overall value, and the PTV and OAR components, were unchanged but the balance of OAR sparing differed. PTV RMS deviation was improved in 13 cases and unchanged in two. The OAR component was reduced in 13 plans. In one case the OAR component increased but the composite metric decreased - a 4 Gy increase in OAR metrics was balanced by a reduction in PTV RMS deviation from 2.8% to 2.6%. Conclusion: Fluence-based trajectory optimization improved plan quality as defined by the composite metric. While dose differences were case specific, fluence-based optimization improved both PTV and OAR dosimetry in 80% of cases.

  9. Undulator radiation in a waveguide

    International Nuclear Information System (INIS)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2007-03-01

    We propose an analytical approach to characterize undulator radiation near resonance, when the presence of the vacuum-pipe considerably affects radiation properties. This is the case of the far-infrared undulator beamline at the Free-electron LASer (FEL) in Hamburg (FLASH), that will be capable of delivering pulses in the TeraHertz (THz) range. This undulator will allow pump-probe experiments where THz pulses are naturally synchronized to the VUV pulse from the FEL, as well as the development of novel electron-beam diagnostics techniques. Since the THz radiation diffraction-size exceeds the vacuum-chamber dimensions, characterization of infrared radiation must be performed accounting for the presence of a waveguide.We developed a theory of undulator radiation in a waveguide based on paraxial and resonance approximation. We solved the field equation with a tensor Green's function technique, and extracted figure of merits describing in a simple way the influence of the vacuum-pipe on the radiation pulse as a function of the problem parameters. Our theory, that makes consistent use of dimensionless analysis, allows treatment and physical understanding of many asymptotes of the parameter space, together with their region of applicability. (orig.)

  10. Factorized distorted wave approximation for the (e,2e) reaction on atoms : coplanar symmetric

    International Nuclear Information System (INIS)

    Fuss, I.; McCarthy, I.E.; Noble, C.J.; Weigold, E.

    1977-02-01

    The coplanar symmetric (e,2e) cross section has been studied in the intermediate energy region for the valence states of the inert gases He, Ar and Ne. Experimental measurements at 200, 400, 800, and 1200eV for He, and at 400, 800 and 1200eV for Ne and Ar, are compared with calculations based on the factorized half-off-shell distorted-wave impulse approximation. Calculations are carried out using partial wave expanded optical model wave functions which describe elastic scattering for the distorted waves, the eikonal approximation, and the plane wave approximation. (Author)

  11. Vertebral coplanar alignment technique: a surgical option for correction of adult thoracic idiopathic scoliosis.

    Science.gov (United States)

    He, Shouyu; Bao, Hongda; Zhu, Zezhang; Qiu, Yong; Zhu, Feng; Zhou, Hengcai; Sun, Xu; Wang, Bin

    2016-02-01

    Previous studies have demonstrated vertebral coplanar alignment (VCA) as an effective surgical option for adolescent idiopathic scoliosis (AIS). The purpose of this study is to analyze the outcome of VCA for the surgical correction of adult idiopathic scoliosis (AdIS). 35 AdIS patients (mean age: 24.2 years) undergoing VCA-instrumentation were reviewed. The main thoracic curve and thoracic kyphosis (TK, T5-T12) were evaluated preoperatively, immediate postoperatively, and at the final follow-up (>1 year). All patients were stratified by the TK modifier before surgery: "+" (TK, >40°), "-" (TK, scoliosis with sagittal malalignment.

  12. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Skands, Gustav Erik; Bertelsen, Christian Vinther

    2015-01-01

    This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested...... and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 mu m beads from 1 mu m as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes...... of the new electrode layout. Good agreement was observed between the model and the obtained experimental results....

  13. Waveguide-Based Biosensors for Pathogen Detection

    Directory of Open Access Journals (Sweden)

    Nile Hartman

    2009-07-01

    Full Text Available Optical phenomena such as fluorescence, phosphorescence, polarization, interference and non-linearity have been extensively used for biosensing applications. Optical waveguides (both planar and fiber-optic are comprised of a material with high permittivity/high refractive index surrounded on all sides by materials with lower refractive indices, such as a substrate and the media to be sensed. This arrangement allows coupled light to propagate through the high refractive index waveguide by total internal reflection and generates an electromagnetic wave—the evanescent field—whose amplitude decreases exponentially as the distance from the surface increases. Excitation of fluorophores within the evanescent wave allows for sensitive detection while minimizing background fluorescence from complex, “dirty” biological samples. In this review, we will describe the basic principles, advantages and disadvantages of planar optical waveguide-based biodetection technologies. This discussion will include already commercialized technologies (e.g., Corning’s EPIC® Ô, SRU Biosystems’ BIND™, Zeptosense®, etc. and new technologies that are under research and development. We will also review differing assay approaches for the detection of various biomolecules, as well as the thin-film coatings that are often required for waveguide functionalization and effective detection. Finally, we will discuss reverse-symmetry waveguides, resonant waveguide grating sensors and metal-clad leaky waveguides as alternative signal transducers in optical biosensing.

  14. Doubly fed induction machine

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2005-10-11

    An electro-mechanical energy conversion system coupled between an energy source and an energy load including an energy converter device having a doubly fed induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer coupled to the energy converter device to control the flow of power or energy through the doubly fed induction machine.

  15. Guided modes of elliptical metamaterial waveguides

    International Nuclear Information System (INIS)

    Halterman, Klaus; Feng, Simin; Overfelt, P. L.

    2007-01-01

    The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide

  16. Optical planar waveguide for cell counting

    Science.gov (United States)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  17. Nanofocusing in a tapered graphene plasmonic waveguide

    DEFF Research Database (Denmark)

    Dai, Yunyun; Zhu, Xiaolong; Mortensen, N. Asger

    2015-01-01

    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying...... physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing...... of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions....

  18. Comparison of a new noncoplanar intensity-modulated radiation therapy technique for craniospinal irradiation with 3 coplanar techniques

    DEFF Research Database (Denmark)

    Hansen, Anders T; Lukacova, Slavka; Lassen-Ramshad, Yasmin A.

    2015-01-01

    When standard conformal x-ray technique for craniospinal irradiation is used, it is a challenge to achieve satisfactory dose coverage of the target including the area of the cribriform plate, while sparing organs at risk. We present a new intensity-modulated radiation therapy (IMRT), noncoplanar...... patient using the noncoplanar IMRT-based technique, a coplanar IMRT-based technique, and a coplanar volumetric-modulated arch therapy (VMAT) technique. Dosimetry data for all patients were compared with the corresponding data from the conventional treatment plans. The new noncoplanar IMRT technique...... substantially reduced the mean dose to organs at risk compared with the standard radiation technique. The 2 other coplanar techniques also reduced the mean dose to some of the critical organs. However, this reduction was not as substantial as the reduction obtained by the noncoplanar technique. Furthermore...

  19. SU-F-T-649: Dosimetric Evaluation of Non-Coplanar Arc Therapy Using a Novel Rotating Gamma Ray System

    Energy Technology Data Exchange (ETDEWEB)

    Eldib, A; Chibani, O; Jin, L; Fan, J; Veltchev, I; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States); Mora, G [Universidade de Lisboa, Codex, Lisboa (Portugal); Li, J [Cyber Medical Inc, Xian, Shaanxi (China)

    2016-06-15

    Purpose: Stereotactic intra and extra-cranial body radiation therapy has evolved with advances in treatment accuracy, effective radiation dose, and parameters necessary to maximize machine capabilities. Novel gamma systems with a ring type gantry were developed having the ability to perform oblique arcs. The aim of this study is to explore the dosimetric advantages of this new system. Methods: The rotating Gamma system is named CybeRay (Cyber Medical Corp., Xian, China). It has a treatment head of 16 cobalt-60 sources focused to the isocenter, which can rotate 360° on the ring gantry and swing 35° in the superior direction. Treatment plans were generated utilizing our in-house Monte Carlo treatment planning system. A cylindrical phantom was modeled with 2mm voxel size. Dose inside the cylindrical phantom was calculated for coplanar and non-coplanar arcs. Dosimetric differences between CybeRay cobalt beams and CyberKnife 6MV beams were compared in a lung phantom and for previously treated SBRT patients. Results: The full width at half maxima of cross profiles in the S-I direction for the coplanar setup matched the cone sizes, while for the non-coplanar setup, FWHM was larger by 2mm for a 10mm cone and about 5mm for larger cones. In the coronal and sagittal view, coplanar beams showed elliptical shaped isodose lines, while non-coplanar beams showed circular isodose lines. Thus proper selection of the oblique angle and cone size can aid optimal dose matching to the target volume. Comparing a single 5mm cone from CybeRay to that from CyberKnife showed similar penumbra in a lung phantom but CybeRay had significant lower doses beyond lung tissues. Comparable treatment plans were obtained with CybeRay as that from CyberKnife.ConclusionThe noncoplanar multiple source arrangement of CybeRay will be of great clinical benefits for stereotactic intra and extra-cranial radiation therapy.

  20. SU-F-BRB-10: A Statistical Voxel Based Normal Organ Dose Prediction Model for Coplanar and Non-Coplanar Prostate Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Tran, A; Yu, V; Nguyen, D; Woods, K; Low, D; Sheng, K [UCLA, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Knowledge learned from previous plans can be used to guide future treatment planning. Existing knowledge-based treatment planning methods study the correlation between organ geometry and dose volume histogram (DVH), which is a lossy representation of the complete dose distribution. A statistical voxel dose learning (SVDL) model was developed that includes the complete dose volume information. Its accuracy of predicting volumetric-modulated arc therapy (VMAT) and non-coplanar 4π radiotherapy was quantified. SVDL provided more isotropic dose gradients and may improve knowledge-based planning. Methods: 12 prostate SBRT patients originally treated using two full-arc VMAT techniques were re-planned with 4π using 20 intensity-modulated non-coplanar fields to a prescription dose of 40 Gy. The bladder and rectum voxels were binned based on their distances to the PTV. The dose distribution in each bin was resampled by convolving to a Gaussian kernel, resulting in 1000 data points in each bin that predicted the statistical dose information of a voxel with unknown dose in a new patient without triaging information that may be collectively important to a particular patient. We used this method to predict the DVHs, mean and max doses in a leave-one-out cross validation (LOOCV) test and compared its performance against lossy estimators including mean, median, mode, Poisson and Rayleigh of the voxelized dose distributions. Results: SVDL predicted the bladder and rectum doses more accurately than other estimators, giving mean percentile errors ranging from 13.35–19.46%, 4.81–19.47%, 22.49–28.69%, 23.35–30.5%, 21.05–53.93% for predicting mean, max dose, V20, V35, and V40 respectively, to OARs in both planning techniques. The prediction errors were generally lower for 4π than VMAT. Conclusion: By employing all dose volume information in the SVDL model, the OAR doses were more accurately predicted. 4π plans are better suited for knowledge-based planning than

  1. Be discs in coplanar circular binaries: Phase-locked variations of emission lines

    Science.gov (United States)

    Panoglou, Despina; Faes, Daniel M.; Carciofi, Alex C.; Okazaki, Atsuo T.; Baade, Dietrich; Rivinius, Thomas; Borges Fernandes, Marcelo

    2018-01-01

    In this paper, we present the first results of radiative transfer calculations on decretion discs of binary Be stars. A smoothed particle hydrodynamics code computes the structure of Be discs in coplanar circular binary systems for a range of orbital and disc parameters. The resulting disc configuration consists of two spiral arms, and this can be given as input into a Monte Carlo code, which calculates the radiative transfer along the line of sight for various observational coordinates. Making use of the property of steady disc structure in coplanar circular binaries, observables are computed as functions of the orbital phase. Some orbital-phase series of line profiles are given for selected parameter sets under various viewing angles, to allow comparison with observations. Flat-topped profiles with and without superimposed multiple structures are reproduced, showing, for example, that triple-peaked profiles do not have to be necessarily associated with warped discs and misaligned binaries. It is demonstrated that binary tidal effects give rise to phase-locked variability of the violet-to-red (V/R) ratio of hydrogen emission lines. The V/R ratio exhibits two maxima per cycle; in certain cases those maxima are equal, leading to a clear new V/R cycle every half orbital period. This study opens a way to identifying binaries and to constraining the parameters of binary systems that exhibit phase-locked variations induced by tidal interaction with a companion star.

  2. Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity

    KAUST Repository

    Chen, Mark S.

    2013-10-22

    Controlling solid-state order of π-conjugated polymers through macromolecular design is essential for achieving high electronic device performance; yet, it remains a challenge, especially with respect to polymer-packing orientation. Our work investigates the influence of backbone coplanarity on a polymer\\'s preference to pack face-on or edge-on relative to the substrate. Isoindigo-based polymers were synthesized with increasing planarity by systematically substituting thiophenes for phenyl rings in the acceptor comonomer. This increasing backbone coplanarity, supported by density functional theory (DFT) calculations of representative trimers, leads to the narrowing of polymer band gaps as characterized by ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and cyclic voltammetry. Among the polymers studied, regiosymmetric II and TII polymers exhibited the highest hole mobilities in organic field-effect transistors (OFETs), while in organic photovoltaics (OPVs), TBII polymers that display intermediate levels of planarity provided the highest power conversion efficiencies. Upon thin-film analysis by atomic force microscropy (AFM) and grazing-incidence X-ray diffraction (GIXD), we discovered that polymer-packing orientation could be controlled by tuning polymer planarity and solubility. Highly soluble, planar polymers favor face-on orientation in thin films while the less soluble, nonplanar polymers favor an edge-on orientation. This study advances our fundamental understanding of how polymer structure influences nanostructural order and reveals a new synthetic strategy for the design of semiconducting materials with rationally engineered solid-state properties. © 2013 American Chemical Society.

  3. Performance of CdZnTe coplanar-grid gamma-ray detectors

    International Nuclear Information System (INIS)

    Luke, P.N.; Eissler, E.E.

    1995-11-01

    CdZnTe crystals grown using the high-pressure Bridgman method exhibit many properties that are desirable for radiation detector fabrication, such as high resistivity, stable operation, relative ease of processing, and the availability of large volume crystals. However, as is common with other compound semi-conductor materials, currently available CdZnTe crystals have poor charge transport characteristics. This seriously the spectral performance of detectors, especially in gamma-ray detection. The coplanar-grid detection technique was recently developed to address such charge collection problems. This technique was first demonstrated using a 5 mm cube CdZnTe detector, and a dramatic improvement in spectral response has been achieved. These early results verified the effectiveness of this technique and suggested that large-volume gamma-ray detectors with high energy resolution can be realized. To further the development of such detectors, it is important to understand the various factors that affect detector performance. The purpose of this paper is to examine the effects of material properties on the spectral performance of CdZnTe coplanar-grid detectors. Theoretical spectral response is to show the level of performance that can be achieved given the typical carrier mobility-lifetime (μτ) properties of present-day materials. Nonuniformity in the charge transport properties of the material, which could limit the energy resolution of the detectors, has been studied experimentally and some of the results are presented here

  4. Instrument configuration for dual-Doppler lidar coplanar scans: METCRAX II

    Science.gov (United States)

    Cherukuru, Nihanth Wagmi; Calhoun, Ronald; Lehner, Manuela; Hoch, Sebastian W.; Whiteman, C. David

    2015-01-01

    The second Meteor Crater Experiment (METCRAX II) was designed to study downslope-windstorm-type flows occurring at the Barringer Meteorite Crater in Arizona. Two Doppler wind lidars were deployed to perform a coplanar dual-Doppler lidar analysis to capture the two-dimensional (2-D) vertical structure of these flows in the crater basin. This type of analysis allows the flow to be resolved on a 2-D Cartesian grid constructed in the range height indicator scan overlap region. Previous studies have shown that the dominant error in the coplanar dual-Doppler analysis mentioned above is due to the under sampling of radial velocities. Hence, it is necessary to optimize the setup and choose a scan strategy that minimizes the under sampling of radial velocities and provides a good spatial as well as temporal coverage of these short-lived events. A lidar simulator was developed using a large Eddy simulation wind field to optimize the lidar parameters for METCRAX II field experiment. A retrieval technique based on the weighted least squares technique with weights calculated based on the relative location of the lidar range gate centers to the grid intersection point was developed. The instrument configuration was determined by comparing the simulator retrievals to the background wind field and taking into account the limitations of commercially available lidars.

  5. Buoyancy effects in vertical rectangular duct with coplanar magnetic field and single sided heat load

    Science.gov (United States)

    Kostichev, P. I.; Poddubnyi, I. I.; Razuvanov, N. G.

    2017-11-01

    In some DEMO blanket designs liquid metal flows in vertical ducts of rectangular cross-section between ceramic breeder units providing their cooling. Heat exchange in these conditions is governed by the influence of magnetic field (coplanar) and by buoyancy effects that depend on the flow orientation to the gravity vector (downward and upward flow). Magnetohydrodynamic and heat transfer of liquid metal in vertical rectangular ducts is not well researched. Experimental study of buoyancy effects in rectangular duct with coplanar magnetic field for one-sided heat load and downward and upward flowsis presented in this paper. The detail research with has been done on mercury MHD close loop with using of the probe technique allow to discover several advantageous and disadvantageous effects. The intensive impact of buoyancy force has been observed in a few regime of downward flow which has been laminarized by magnetic field. Due to the development in the flow of the secondary large-scale vortices heat transfer improved and the temperature fluctuations of the abnormally high intensity have been fixed. On the contrary, in the upward flow the buoyancy force stabilized the flow which lead to decreasing of the turbulence heat transfer ratio and, consequently, deterioration of heat transfer.

  6. Waveguides having patterned, flattened modes

    Science.gov (United States)

    Messerly, Michael J.; Pax, Paul H.; Dawson, Jay W.

    2015-10-27

    Field-flattening strands may be added to and arbitrarily positioned within a field-flattening shell to create a waveguide that supports a patterned, flattened mode. Patterning does not alter the effective index or flattened nature of the mode, but does alter the characteristics of other modes. Compared to a telecom fiber, a hexagonal pattern of strands allows for a three-fold increase in the flattened mode's area without reducing the separation between its effective index and that of its bend-coupled mode. Hexagonal strand and shell elements prove to be a reasonable approximation, and, thus, to be of practical benefit vis-a-vis fabrication, to those of circular cross section. Patterned flattened modes offer a new and valuable path to power scaling.

  7. Silica suspended waveguide splitter-based biosensor

    Science.gov (United States)

    Harrison, M. C.; Hawk, R. M.; Armani, A. M.

    2012-03-01

    Recently, a novel integrated optical waveguide 50/50 splitter was developed. It is fabricated using standard lithographic methods, a pair of etching steps and a laser reflow step. However, unlike other integrated waveguide splitters, the waveguide is elevated off of the silicon substrate, improving its interaction with biomolecules in solution and in a flow field. Additionally, because it is fabricated from silica, it has very low optical loss, resulting in a high signal-to-noise ratio, making it ideal for biosensing. By functionalizing the device using an epoxy-silane method using small samples and confining the protein solutions to the device, we enable highly efficient detection of CREB with only 1 μL of solution. Therefore, the waveguide coupler sensor is representative of the next generation of ultra-sensitive optical biosensors, and, when combined with microfluidic capabilities, it will be an ideal candidate for a more fully-realized lab-on-a-chip device.

  8. Holographic Waveguided See-Through Display Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for lightweight, space suit-mounted displays, Luminit proposes a novel Holographic Waveguided See-Through Display. Our proposed Holographic...

  9. Direct UV-writing of waveguides

    DEFF Research Database (Denmark)

    Færch, Kjartan Ullitz

    2003-01-01

    The research presented in this phd thesis is concerned about fabrication of waveguide structures in photosensitized germanosilica thin films by exposure to Ultra-violet (UV) radiation. Using a high pressure loading system and a waveguide fabrication setup, planar waveguiding structures with an UV...... induced refractive index change of more than 10-2 have been obtained. New insight, with respect to understanding the UV induced index change obtained by direct UV writing, has been provided, through experiments conducted with such high-pressure loaded germanosilica samples. This include measurements...... of the UV induced refractive index change, and spectroscopic measurements of the defect distribution, for various fabrication parameters. A method to measure the concentration of molecular hydrogen in thin film planar waveguide samples is established and validated for hydrogen loadign at up to 12 mole...

  10. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  11. Spatiotemporal light localization in infiltrated waveguide arrays

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Neshev, D.N-; Sukhorukov, A.A.

    2008-01-01

    We study light propagation in hexagonal waveguide arrays and show that simultaneous spatiotemporal localisation is possible by combination of engineered anomalous dispersion through selective excitation of Bloch-modes and spatial confinement in a nonlinear defect mode....

  12. Broadband luminescent materials in waveguide geometry

    NARCIS (Netherlands)

    Pollnau, Markus

    2003-01-01

    Our recent research toward the development of novel spectrally broadband, spatially coherent light sources based on transition-metal-ion-doped crystalline channel waveguides for applications in interferometry, specifically optical low coherence reflectometry and optical coherence tomography, is

  13. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  14. Sub-Millimeter Waveguide for Monolithic Circuits

    National Research Council Canada - National Science Library

    Dib, Nihad

    1997-01-01

    .... Three different sub-mm wave transitions to layered ridge dielectric waveguide (LRDW) are analyzed. These are found to be efficient over a wide sub-mm frequency band which makes them useful for a variety of applications...

  15. Minimum wakefield achievable by waveguide damped cavity

    International Nuclear Information System (INIS)

    Lin, X.E.; Kroll, N.M.

    1995-01-01

    The authors use an equivalent circuit to model a waveguide damped cavity. Both exponentially damped and persistent (decay t -3/2 ) components of the wakefield are derived from this model. The result shows that for a cavity with resonant frequency a fixed interval above waveguide cutoff, the persistent wakefield amplitude is inversely proportional to the external Q value of the damped mode. The competition of the two terms results in an optimal Q value, which gives a minimum wakefield as a function of the distance behind the source particle. The minimum wakefield increases when the resonant frequency approaches the waveguide cutoff. The results agree very well with computer simulation on a real cavity-waveguide system

  16. Highly efficient solid-state waveguide lasers

    NARCIS (Netherlands)

    Pollnau, Markus; Geskus, D.; Bernhardi, Edward; van Dalfsen, Koop; Worhoff, Kerstin; de Ridder, R.M.

    This paper reviews our recent results on highly efficient rare-earth-ion-doped planar and channel waveguide lasers in crystalline potassium double tungstates and amorphous aluminum oxide on silicon chips.

  17. High index contrast UV-written waveguides

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Færch, Kjartan Ullitz

    By increasing the concentration of molecular hydrogen in germanosilica samples, we show that buried channel waveguides with an index step of up to 0.02 can be fabricated using the directUV writing technique.......By increasing the concentration of molecular hydrogen in germanosilica samples, we show that buried channel waveguides with an index step of up to 0.02 can be fabricated using the directUV writing technique....

  18. Optimization of metal-clad waveguide sensors

    DEFF Research Database (Denmark)

    Skivesen, N.; Horvath, R.; Pedersen, H.C.

    2005-01-01

    The present paper deals with the optimization of metal-clad waveguides for sensor applications to achieve high sensitivity for adlayer and refractive index measurements. By using the Fresnel reflection coefficients both the angular shift and the width of the resonances in the sensorgrams are taken...... into account. Our optimization shows that it is possible for metal-clad waveguides to achieve a sensitivity improvement of 600% compared to surface-plasmon-resonance sensors....

  19. Accurate modelling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  20. Accurate modeling of UV written waveguide components

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure.......BPM simulation results of UV written waveguide components that are indistinguishable from measurements can be achieved on the basis of trajectory scan data and an equivalent step index profile that is very easy to measure....

  1. Schroedinger covariance states in anisotropic waveguides

    International Nuclear Information System (INIS)

    Angelow, A.; Trifonov, D.

    1995-03-01

    In this paper Squeezed and Covariance States based on Schroedinger inequality and their connection with other nonclassical states are considered for particular case of anisotropic waveguide in LiNiO 3 . Here, the problem of photon creation and generation of squeezed and Schroedinger covariance states in optical waveguides is solved in two steps: 1. Quantization of electromagnetic field is provided in the presence of dielectric waveguide using normal-mode expansion. The photon creation and annihilation operators are introduced, expanding the solution A-vector(r-vector,t) in a series in terms of the Sturm - Liouville mode-functions. 2. In terms of these operators the Hamiltonian of the field in a nonlinear waveguide is derived. For such Hamiltonian we construct the covariance states as stable (with nonzero covariance), which minimize the Schroedinger uncertainty relation. The evolutions of the three second momenta of q-circumflex j and p-circumflex j are calculated. For this Hamiltonian all three momenta are expressed in terms of one real parameters s only. It is found out how covariance, via this parameter s, depends on the waveguide profile n(x,y), on the mode-distributions u-vector j (x,y), and on the waveguide phase mismatching Δβ. (author). 37 refs

  2. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission into the...... quantum-dot-waveguide coupling. Such a structure is ideally suited for a number of applications in quantum information processing and among others we propose an on-chip spin-photon interface, a single photon transistor, and a deterministic cNOT gate.......This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...

  3. Linear and nonlinear properties of segmented waveguides

    International Nuclear Information System (INIS)

    Katz, M.

    1998-07-01

    This dissertation deals with Periodically Segmented Waveguides (PSW), which are applied on KTiOP0 4 (KTP) crystals, by chemical ion-exchange process. In these waveguides, the crystal polarity and refractive index are periodically modulated to obtain Quasi Phase Matching (QPM) between the fundamental and second-harmonic waves. PSW is a relatively new optical device which exhibits unique optical properties in comparison with a continuous waveguide. The possibility of utilizing the KTP-PSW as a compact, cw, blue-violet, source by doubling infra-red light, is the main motivation for studying the optical properties of KTP segmented waveguides. Nevertheless, much attention in this work is also given to the study of linear optical properties of KTP-PSW, most of which, to my best knowledge, has not been studied yet. Controlling and understanding the linear optical properties of KTP-PSW, are required, for applying the PSW as an optical device by its own, and for control and characterization of the non-linear optical properties of the waveguide. In this work the dependence of the linear optical properties of KTP-PSW on geometrical parameters (period size, duty cycle and waveguide width) were studied. The experimental measured parameters include the PSW near field and the Bragg reflections, which appear due lo the grating structure of the waveguide. The possibility of controlling the wavelength and intensity, of the segmented waveguide Bragg reflections of regular period and super-period, is shown theoretically and experimentally. An unexpected dependence was found, by the experimental measurement, between the index profile and the ion-exchanged segment area,. The segmented waveguide dispersion curve, n eff (λ) in the infra-red region was found, A main part of the research work is dedicated to the study of nonlinear characteristics of PSW. The different factors, which effect the Second Harmonic Generation (SHG), are measured experimentally and analyzed. The experimental

  4. Open waveguide cavity using a negative index medium.

    Science.gov (United States)

    Yan, Wei; Shen, Linfang

    2008-12-01

    An open waveguide cavity formed by a pair of planar waveguides, in which one guiding layer is a negative index medium and the other is a positive index medium, is theoretically demonstrated. For such a waveguide cavity the resonant frequency is independent of the total length of the waveguide system. With the coupled mode theory it is shown that energy flow circulation can be established through the special coupling between the waveguides at the resonant frequency, and thus the wave fields are localized. This phenomenon is further verified numerically with the finite-difference time-domain method. The quality factor of the open waveguide cavity is also discussed.

  5. On the Coplanar Integrable Case of the Twice-Averaged Hill Problem with Central Body Oblateness

    Science.gov (United States)

    Vashkov'yak, M. A.

    2018-01-01

    The twice-averaged Hill problem with the oblateness of the central planet is considered in the case where its equatorial plane coincides with the plane of its orbital motion relative to the perturbing body. A qualitative study of this so-called coplanar integrable case was begun by Y. Kozai in 1963 and continued by M.L. Lidov and M.V. Yarskaya in 1974. However, no rigorous analytical solution of the problem can be obtained due to the complexity of the integrals. In this paper we obtain some quantitative evolution characteristics and propose an approximate constructive-analytical solution of the evolution system in the form of explicit time dependences of satellite orbit elements. The methodical accuracy has been estimated for several orbits of artificial lunar satellites by comparison with the numerical solution of the evolution system.

  6. Coplanar Electrode Layout Optimized for Increased Sensitivity for Electrical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Casper Hyttel Clausen

    2014-12-01

    Full Text Available This work describes an improvement in the layout of coplanar electrodes for electrical impedance spectroscopy. We have developed, fabricated, and tested an improved electrode layout, which improves the sensitivity of an impedance flow cytometry chip. The improved chip was experimentally tested and compared to a chip with a conventional electrode layout. The improved chip was able to discriminate 0.5 μm beads from 1 μm as opposed to the conventional chip. Furthermore, finite element modeling was used to simulate the improvements in electrical field density and uniformity between the electrodes of the new electrode layout. Good agreement was observed between the model and the obtained experimental results.

  7. Planar self-aligned imprint lithography for coplanar plasmonic nanostructures fabrication

    KAUST Repository

    Wan, Weiwei

    2014-03-01

    Nanoimprint lithography (NIL) is a cost-efficient nanopatterning technology because of its promising advantages of high throughput and high resolution. However, accurate multilevel overlay capability of NIL required for integrated circuit manufacturing remains a challenge due to the high cost of achieving mechanical alignment precision. Although self-aligned imprint lithography was developed to avoid the need of alignment for the vertical layered structures, it has limited usage in the manufacture of the coplanar structures, such as integrated plasmonic devices. In this paper, we develop a new process of planar self-alignment imprint lithography (P-SAIL) to fabricate the metallic and dielectric structures on the same plane. P-SAIL transfers the multilevel imprint processes to a single-imprint process which offers higher efficiency and less cost than existing manufacturing methods. Such concept is demonstrated in an example of fabricating planar plasmonic structures consisting of different materials. © 2014 Springer-Verlag Berlin Heidelberg.

  8. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    DEFF Research Database (Denmark)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik

    2017-01-01

    concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water......The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm...... was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone...

  9. On the coplanar eccentric non-restricted co-orbital dynamics

    Science.gov (United States)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2018-03-01

    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

  10. On the Nonlinear Stability of Plane Parallel Shear Flow in a Coplanar Magnetic Field

    Science.gov (United States)

    Xu, Lanxi; Lan, Wanli

    2017-12-01

    Lyapunov direct method has been used to study the nonlinear stability of laminar flow between two parallel planes in the presence of a coplanar magnetic field for streamwise perturbations with stress-free boundary planes. Two Lyapunov functions are defined. By means of the first, it is proved that the transverse components of the perturbations decay unconditionally and asymptotically to zero for all Reynolds numbers and magnetic Reynolds numbers. By means of the second, it is showed that the other components of the perturbations decay conditionally and exponentially to zero for all Reynolds numbers and the magnetic Reynolds numbers below π ^2/2M, where M is the maximum of the absolute value of the velocity field of the laminar flow.

  11. UHF coplanar-slot antenna for aircraft-to-satellite data communications

    Science.gov (United States)

    Myhre, R. W.

    1979-01-01

    The initiative for starting the Aircraft-to-Satellite Data Relay (ASDAR) Program came from a recognition that much of the world's weather originates in the data sparse area of the tropics which are primarily ocean. The ASDAR system consists of (1) a data acquisition and control unit to acquire, store and format these data; (2) a clock to time the data sampling and transmission periods; and (3) a transmitter and low-profile upper hemisphere coverage antenna to relay the formatted data via satellite to the National Weather Service ground stations, as shown schematically. The low-profile antenna is a conformal antenna based on the coplanar-slot approach. The antenna is circular polarized and has an on-axis gain of nearly 2.5 dB and a HPBW greater than 90 deg. The discussion covers antenna design, radiation characteristics, flight testing, and system performance.

  12. Diffuse coplanar surface barrier discharge -- basic properties and its application in surface treatment of nonwovens

    Science.gov (United States)

    Kovacik, Dusan; Rahel, Jozef; Kubincova, Jana; Zahoranova, Anna; Cernak, Mirko

    2009-10-01

    In recent years, low temperature atmospheric pressure plasma surface treatments have become a hot topic because of the potential of fast and efficient in-line processing fabrication without expensive vacuum equipment. A major problem of atmospheric pressure treatment in air is insufficient treatment uniformity because, particularly at the higher plasma power densities, the air plasma has the tendency of filamentation and transition into an arc discharge. Diffuse coplanar surface barrier discharge (DCSBD) plasma source has been developed to overcome these problems. This type of discharge enables to generate macroscopically homogeneous thin (˜ 0.3 mm) plasma layer with power density of some 100 W/cm^3 practically in any gas without admixture of He. It was found that the ambient air plasma of DCSBD is capable to make lightweight polypropylene nonwoven fabrics permanently hydrophilic, without any pinholing and with low power consumption of some 1 kWh/kg.

  13. Three-dimensional x-ray stereometry from paired coplanar images: a progress report.

    Science.gov (United States)

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    More than fifty years ago, Broadbent reported the development of a three-dimensional cephalometric method which complexed information from pairs of x-ray images oriented in two planes at right angles to each other. Empirical problems have prevented the routine clinical use of this "biplanar" method, notwithstanding its obvious conceptual brilliance. The present article reports on recent work toward the development of an alternative method of three-dimensional cephalometry in which the two images of each x-ray pair are positioned in the same plane rather than being at right angles to each other. It is believed that this "coplanar" method avoids many of the technical problems that have limited the use of the Broadbent method.

  14. Effects of structurally different noncoplanar and coplanar PCBs on HELF cell proliferation, cell cycle, and potential molecular mechanisms.

    Science.gov (United States)

    Hashmi, Muhammad Zaffar; Zhang, Jingyu; Li, Binglu; Su, Xiaomei; Tariq, Muhammad; Ahmad, Najid; Malik, Riffat Naseem; Ullah, Kalim; Chen, Chen; Shen, Chaofeng

    2017-04-01

    Polychlorinated biphenyls (PCBs) are a group of chemicals that persist in the environment, indoors, and humans. Lung exposure to airborne and food contaminants, such as PCBs, may cause possible lung disorders, such as cancer. In the present study, we investigated the effects of structurally different lower chlorinated (≤4Cl), noncoplanar PCB40, and coplanar PCB77 on human lung fibroblast cell line (HELF) cell proliferation, cell cycle progression, and possible molecular mechanisms. Noncoplanar PCB40 and coplanar PCB77 exhibited concentration- and time-dependent biphasic dose-response effects on HELF cell proliferation. Noncoplanar PCB40 and coplanar PCB77 induced 23 and 45% cytotoxicity at higher concentrations than the control. The flow cytometry analysis showed that exposure to PCB40 caused a significant increase in time spent in the G1 phase but decreased length of the S phase in a concentration- and time-dependent manner, whereas PCB77 exposure decreased time spent in the G1 and S phases but increased time spent in the G2 phase. Western blot analysis indicated that PCB77 increased the expression of cyclin E, CDK2, p21, and caspase-9, while PCB40 decreased the expression of these proteins (except CDK2 and p21). An increase in CDK expression after exposure to PCB77 suggests that it may cause carcinogenic effects on HELF cells at higher doses. Our results also demonstrate that the different cytotoxic effects induced by coplanar and nonplanar PCBs were correlated with their structural characteristics; the coplanar congener was more cytotoxic than the nonplanar congener. The study elaborates threshold levels for these chemicals and suggests that the cytotoxicity mechanisms by which PCB congeners act on HELF cells depend on their planarity and chemical structures. Furthermore, the study will be important for developing antidotes to the adverse effects and risk assessment practices for PCBs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1183-1190, 2017.

  15. Low-loss fiber waveguide

    Science.gov (United States)

    Harrington, J. A.

    1980-10-01

    This report summarizes our efforts to fabricate low-loss fiber waveguides with potential loss near .001 dB/km. Specifically, our approach has been to use alkali and thallium halides because these crystalline materials have, in the case of KCl, some of the lowest bulk losses measured to date at IR wavelengths. The first method we used to fabricate KCl fiber was extrusion. Although this method had worked well for the thallium halides, it proved unsuccessful for KCl and other alkali halides. In every case, we found that extruded KCl (or CsI and PbCl2) fiber had an irregular, fish-scale surface, from which we concluded that extrusion techniques should be abandoned for the alkali halides. Based on these results, we began to develop new fiber-fabrication methods for KCl. The method chosen for study was hot rolling. The advantage of hot rolling over extrusion is that there is less friction between the fiber and forming surface (roller or die) and smaller reductions per pass. At this point, we have made one 50 c-long KCl fiber with improved surface quality (compared to extrusion).

  16. Evanescent Waveguide Apparatus and Method for Measurement of Dielectric Constant

    National Research Council Canada - National Science Library

    Tonn, David A

    2005-01-01

    .... In one embodiment, a metal septum is inserted between two samples of the unknown material to thereby reduce the cross-sectional area of the waveguide aperture by splitting width a of the rectangular waveguide in half...

  17. Finite-width plasmonic waveguides with hyperbolic multilayer cladding

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Shalaginov, Mikhail Y.; Ishii, Satoshi

    2015-01-01

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogeniz...

  18. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...... waveguide, where the number of modes is equal to the number of rows building the waveguide. The strong coupling between individual waveguides leads to the proposal of an ultrashort directional coupler based on nanopillar waveguides. We present a systematic analysis of the dispersion and transmission...... efficiency of nanopillar photonic crystal waveguides and directional couplers. Plane wave expansion and finite difference time domain methods were used to characterize numerically nanopillar photonic crystal structures both in two- and three-dimensional spaces....

  19. Interaction between negative and positive index medium waveguides

    OpenAIRE

    Yan, Wei; Shen, Linfang; Yuan, Yu; Yang, Tzong Jer

    2008-01-01

    The coupling between negative and positive index medium waveguides is investigated theoretically in this paper. A coupled mode theory is developed for such a waveguide system and its validity is verified. Interesting phenomena in the coupled waveguides are demonstrated, which occur in the case when the negative index medium waveguide in isolation guides its mode backward. A new type of coupled mode solution that varies exponentially with the coupling length is found in the special case when t...

  20. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Smolka, Stephan; Garcia, Pedro D.; Lodahl, Peter

    2010-01-01

    We prove Anderson localization in the slow-light regime of a photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the disordered photonic crystal waveguide.......We prove Anderson localization in the slow-light regime of a photonic crystal waveguide by measuring the ensemble-averaged localization length which is controlled by the dispersion of the disordered photonic crystal waveguide....

  1. Optical modulation of terahertz pulses in a parallel plate waveguide

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2008-01-01

    In this work we present a technique for optically modulating a terahertz pulse inside a parallel plate waveguide. A novel semiconductor filled waveguide is formed by coating both sides of a thin, high resistivity silicon slab with a transparent conducting oxide. While the waveguide is intrinsically...

  2. Improving plasmonic waveguides coupling efficiency using nanoantennas

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Bouillard, Jean-Sebastien

    2012-01-01

    . The classical dipole antenna scheme can be improved by changing the nanoantenna geometry, adding constructive elements such as reflecting bars and mirrors and using arrays of antennas. The modelling designates that the coupling efficiency from a vertical fiber to a plasmonic waveguide can be improved more than......Plasmonic waveguides bear a lot of potential for photonic applications. However, one of the challenges for implementing them in devices is the low coupling efficiency to and from optical fibers. We report on our approach to facilitate the coupling efficiency with the use of metallic nanoantennas...... in 180 times in comparison with a direct fiber-waveguide coupling. Pros and cons of each configuration are discussed. Fabrication and characterisation results are reported....

  3. Nanofocusing in a tapered graphene plasmonic waveguide

    International Nuclear Information System (INIS)

    Dai, Yunyun; Zi, Jian; Zhu, Xiaolong; Mortensen, N Asger; Xiao, Sanshui

    2015-01-01

    Gated or doped graphene can support plasmons making it a promising plasmonic material in the terahertz regime. Here, we show numerically that in a tapered graphene plasmonic waveguide mid- and far-infrared light can be focused in nanometer scales, far beyond the diffraction limit. The underlying physics lies in that when propagating along the direction towards the tip both the group and phase velocities of the plasmons supported by the tapered graphene waveguide are reduced accordingly, eventually leading to nanofocusing at the tip with a huge enhancement of optical fields. The nanofocusing of optical fields in tapered graphene plasmonic waveguides could be potentially exploited in the enhancement of light–matter interactions. (paper)

  4. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  5. High-Performance Flexible Waveguiding Photovoltaics

    Science.gov (United States)

    Chou, Chun-Hsien; Chuang, Jui-Kang; Chen, Fang-Chung

    2013-01-01

    The use of flat-plane solar concentrators is an effective approach toward collecting sunlight economically and without sun trackers. The optical concentrators are, however, usually made of rigid glass or plastics having limited flexibility, potentially restricting their applicability. In this communication, we describe flexible waveguiding photovoltaics (FWPVs) that exhibit high optical efficiencies and great mechanical flexibility. We constructed these FWPVs by integrating poly-Si solar cells, a soft polydimethylsiloxane (PDMS) waveguide, and a TiO2-doped backside reflector. Optical microstructures that increase the light harvesting ability of the FWPVs can be fabricated readily, through soft lithography, on the top surface of the PDMS waveguide. Our optimized structure displayed an optical efficiency of greater than 42% and a certified power conversion efficiency (PCE) of 5.57%, with a projected PCE as high as approximately 18%. This approach might open new avenues for the harvesting of solar energy at low cost with efficient, mechanically flexible photovoltaics. PMID:23873225

  6. Alpha Radiation Effects on Silicon Oxynitride Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Morichetti, Francesco; Grillanda, Stefano; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Kimerling, Lionel; Melloni, Andrea; Agarwal, Anuradha M.

    2016-09-21

    Photonic technologies are today of great interest for use in harsh environments, such as outer space, where they can potentially replace current communication systems based on radiofrequency components. However, very much alike to electronic devices, the behavior of optical materials and circuits can be strongly altered by high-energy and high-dose ionizing radiations. Here, we investigate the effects of alpha () radiation with MeV-range energy on silicon oxynitride (SiON) optical waveguides. Irradiation with a dose of 5×1015 cm-2 increases the refractive index of the SiON core by nearly 10-2, twice as much that of the surrounding silica cladding, leading to a significant increase of the refractive index contrast of the waveguide. The higher mode confinement induced by -radiation reduces the loss of tightly bent waveguides. We show that this increases the quality factor of microring resonators by 20%, with values larger than 105 after irradiation.

  7. Utilization of optical waveguides in dosimetry

    International Nuclear Information System (INIS)

    Darikova, A.; Vanickova, M.; Matejec, V.; Pospisilova, M.

    1994-01-01

    Some optical waveguides used for communication purposes are very sensitive to ionizing radiation.Ionizing radiation radiation affects the optical waveguides by creating color centers that are responsible for the transmission loss.This transmission loss is the function of wavelength of the passing light. The dose of ionizing radiation will manifest itself not only in the magnitude of the transmission loss value but even in changing the position of maximum of the transmission loss curve with respect to the wavelength. The position of the maximum is stable in time and temperature and independent of dose rate. The study of effects of ionizing radiation on the optical waveguides leads to the possibility of utilizing them not only as sensors of ionizing radiation but even as a dosimeters. 4 figs., 2 refs. (author)

  8. Assembly and performance of silicone polymer waveguides

    Science.gov (United States)

    Lostutter, Calob K.; Hodge, Malcolm H.; Marrapode, Thomas R.; Swatowski, Brandon W.; Weidner, W. Ken

    2016-03-01

    We report on the functionality and key performance properties of 50 μm x 50 μm flexible graded index silicone polymer waveguides. The materials show low optical propagation losses of < 0.04 dB/cm @ 850 nm over 1 m lengths as well as stability to 2000 hours 85°C/85% relative humidity and 5 cycles of 260°C solder wave reflow testing. Methods to fabricate large area panels are demonstrated for scaled manufacturing of polymer based optical printed wiring boards. The polymer waveguides are terminated with a passive direct fiber attach method. Fully MPO connectorized waveguide panels are realized and their optical performance properties assessed.

  9. Fractional delay waveguide modeling of acoustic tubes

    Science.gov (United States)

    Vaelimaeki, V.

    The theme of this work is computational modeling of acoustic tubes. The models are intended to be used in a sound synthesizer based on physical modeling. Such a synthesizer could be used producing realistic sounds of, e.g., woodwind instruments or the human voice. This work deals with digital waveguide modeling of acoustic tubes, such as bores of musical woodwind instruments or the human vocal tract. The acoustic tube systems considered in this work are those consisting of a straight cylindrical or conical tube or of concatenated cylindrical or conical tube sections. Also, the joint of three tube sections is studied. Of special interest for our application is a junction where a side branch is connected to a cylindrical tube as it is needed in the simulation of finger holes of wood-wind instruments. All of the cylindrical tube models are described for both pressure and volume velocity. In the case of conical bores, only pressure waves are considered as models for volume velocity waves are more complicated. The basic waveguide models are extended by employing the concept of fractional delay, which means a delay smaller than a unit delay. The fractional delays are implemented using bandlimited interpolation. Applying fractional delay filtering techniques, a spatially discretized waveguide model is turned into a spatially continuous one. This implies that the length of the digital waveguide can be adjusted as accurately as required, and a change of the impedance of a waveguide may occur at any desired point between sampling points. The authors call this kind of system a fractional delay waveguide filter (FDWF). It is a discrete-time structure but a spatially continuous model of a physical system.

  10. Circular waveguide bifurcation for asymmetric modes

    Science.gov (United States)

    Schilling, H. W.; Collin, R. E.

    1984-12-01

    An analytical solution for a circular waveguide bifurcation with incident TE(11)- and TM(11)-modes is presented using the residue calculus method. It is shown how the coupling between the TE(1n)- and TM(1n)-modes can be taken into account by expressing the coupling factor as a contour integral, which is the key step enabling the residue calculus method to be applied. Graphical results for the scattering matrix parameters of the junction are given for a range of waveguide radii of interest in the design of dual-mode coaxial prime focus feeds for paraboloidal antennas.

  11. Chaotic behavior of a quantum waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Aguilar, H., E-mail: hiperezag@yahoo.com [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Mendoza-Suárez, A.; Tututi, E.S. [Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Av. Francisco J. Mújica S/N 58030, Morelia, Michoacán (Mexico); Herrera-González, I.F. [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570 Puebla (Mexico)

    2013-02-15

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system.

  12. Chaotic behavior of a quantum waveguide

    International Nuclear Information System (INIS)

    Pérez-Aguilar, H.; Mendoza-Suárez, A.; Tututi, E.S.; Herrera-González, I.F.

    2013-01-01

    In this work we consider an infinite quantum waveguide composed of two periodic, hard walls, one-dimensional rippled surfaces. We find that, under certain conditions, the proposed system presents some traces of quantum chaos, when the corresponding classical limit has chaotic behavior. Thus, it is possible to obtain disordered probability densities in a system with smooth surfaces. When the system has chaotic behavior we show numerically that the correlation length of the autocorrelation function of the probability density goes to zero. To corroborate some properties obtained for infinite waveguide that are physically admissible, we study the corresponding finite version of this system

  13. Low-Loss Waveguides for Terahertz Frequencies

    Science.gov (United States)

    Siegel, Peter; Yeh, Cavour; Shimabukuro, Fred; Fraser, Scott

    2008-01-01

    Hollow-core, periodic bandgap (HCPBG) flexible waveguides have been proposed as a means of low-loss transmission of electromagnetic signals in the frequency range from about 300 GHz to 30 THz. This frequency range has been called the "terahertz gap" because it has been little utilized: Heretofore, there has been no way of low-loss guiding of terahertz beams other than by use of fixed-path optical beam guides with lenses and mirrors or multimode waveguides that cannot maintain mode purity around bends or modest discontinuities.

  14. Localization of nonlinear excitations in curved waveguides

    DEFF Research Database (Denmark)

    Gaididei, Yu. B.; Christiansen, Peter Leth; Kevrekidis, P. G.

    2005-01-01

    numerical simulations of the nonlinear problem and in this case localized excitations are found to persist. We found also interesting relaxational dynamics. Analogies of the present problem in context related to atomic physics and particularly to Bose–Einstein condensation are discussed.......Motivated by the examples of a curved waveguide embedded in a photonic crystal and cold atoms moving in a waveguide created by a spatially inhomogeneous electromagnetic field, we examine the effects of geometry in a 'quantum channel' of parabolic form. Starting with the linear case we derive exact...

  15. Nanoparticle sorting in silicon waveguide arrays

    Science.gov (United States)

    Zhao, H. T.; Zhang, Y.; Chin, L. K.; Yap, P. H.; Wang, K.; Ser, W.; Liu, A. Q.

    2017-08-01

    This paper presents the optical fractionation of nanoparticles in silicon waveguide arrays. The optical lattice is generated by evanescent coupling in silicon waveguide arrays. The hotspot size is tunable by changing the refractive index of surrounding liquids. In the experiment, 0.2-μm and 0.5-μm particles are separated with a recovery rate of 95.76%. This near-field approach is a promising candidate for manipulating nanoscale biomolecules and is anticipated to benefit the biomedical applications such as exosome purification, DNA optical mapping, cell-cell interaction, etc.

  16. Non-coplanar beam intensity modulation allows large dose escalation in stage III lung cancer

    International Nuclear Information System (INIS)

    Derycke, Sylvie; Van Duyse, Bart; De Gersem, Werner; De Wagter, Carlos; De Neve, Wilfried

    1997-01-01

    Purpose: To evaluate the feasibility of dose escalation in stage III non-small cell lung cancer, we compared standard coplanar (2D) with non-coplanar beam arrangements, without (3D) and with beam intensity modulation (3D-BIM). Materials and methods: This study was a planning effort performed on a non-selected group of 10 patients. Starting from a serial CT scan, treatment planning was performed using Sherouse's GRATIS TM 3D planning system. Two target volumes were defined; gross tumor volume (GTV) defined a high-dose target volume that had to receive a dose of at least 80 Gy and GTV plus the lymph node regions with >10% probability of invasion defined an intermediate-dose target volume (GTV+N). It was our intention to irradiate GTV+N up to 56 Gy or more. If the prescribed doses on GTV and GTV+N could not be reached with either the 2D or 3D technique, a 3D-BIM plan was performed. The 3D-BIM plan was a class solution involving identical gantry angles, segment arrangements and relative segment weights for all patients. Dose volume histograms for GTV, GTV+N, lung and spinal cord were calculated. Criteria for tolerance were met if no points inside the spinal cord exceeded 50 Gy and if at least 50% of the lung volume received less than 20 Gy. Under these constraints, maximal achievable doses to GTV and GTV+N were calculated. Results: In all 2D plans, spinal cord was the limiting factor and the prescribed doses for GTV and GTV+N could not be reached in any patient. The non-coplanar 3D plan resulted in a satisfying solution in 4 out of 10 patients under the same constraints. In comparison with 2D, the minimum dose in GTV+N was increased. Six patients had to be planned with the 3D-BIM technique. The theoretical minimum dose to GTV+N ranged between 56 and 98 Gy. The delivery of 80 Gy or more to GTV was possible in all patients. For a minimal dose of 80 Gy to GTV, the maximal dose to any point of the spinal cord varied between 27 and 46 Gy. The lung volume receiving more than

  17. Tuner-adjustable waveguide Coupler (TaCo)

    CERN Document Server

    Wegner, R; Giguet, J M; Ugena Tirado, P

    2011-01-01

    TaCo, the Tuner-adjustable waveguide Coupler, is a handy modification of the T-type waveguide coupler: A single slug tuner is integrated directly into the coupler to vary the cavity-to-waveguide coupling. The novel coupler design is analysed in detail and optimised for a WR2300 waveguide and 352 MHz cavities, offering significant advantages for production and RF tuning. Different simulation methods have been employed, among them a simple waveguide model suited for quick optimisation runs. A test coupler has been designed, measured and high power tested.

  18. Broadband high reflectivity in subwavelength-grating slab waveguides.

    Science.gov (United States)

    Tian, Hao; Cui, Xuan; Du, Yan; Tan, Peng; Shi, Guang; Zhou, Zhongxiang

    2015-10-19

    We computationally study a subwavelength dielectric grating structure, show that slab waveguide modes can be used to obtain broadband high reflectivity, and analyze how slab waveguide modes influence reflection. A structure showing interference between Fabry-Perot modes, slab waveguide modes, and waveguide array modes is designed with ultra-broadband high reflectivity. Owing to the coupling of guided modes, the region with reflectivity R > 0.99 has an ultra-high bandwidth (Δf / ̅f > 30%). The incident-angle region with R > 0.99 extends over a range greater than 40°. Moreover, an asymmetric waveguide structure with a semiconductor substrate is studied.

  19. Finite-width plasmonic waveguides with hyperbolic multilayer cladding.

    Science.gov (United States)

    Babicheva, Viktoriia E; Shalaginov, Mikhail Y; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2015-04-20

    Engineering plasmonic metamaterials with anisotropic optical dispersion enables us to tailor the properties of metamaterial-based waveguides. We investigate plasmonic waveguides with dielectric cores and multilayer metal-dielectric claddings with hyperbolic dispersion. Without using any homogenization, we calculate the resonant eigenmodes of the finite-width cladding layers, and find agreement with the resonant features in the dispersion of the cladded waveguides. We show that at the resonant widths, the propagating modes of the waveguides are coupled to the cladding eigenmodes and hence, are strongly absorbed. By avoiding the resonant widths in the design of the actual waveguides, the strong absorption can be eliminated.

  20. Optimization of optical losses in waveguide component manufacturing

    Science.gov (United States)

    Swatowski, Brandon W.; Hyer, Maynard G.; Shepherd, Debra A.; Weidner, W. Ken; Degroot, Jon V.

    2017-02-01

    We report on the development and optimization of key performance properties of multimode silicone polymer waveguides, manufactured for 850 nm optical propagation. These developments are based on photopatternable, mechanically flexible, low-loss, gradient index waveguides. Cross sectional waveguide core sizes ranging from 40 μm x 50 μm to greater than 60 μm x 60 μm are assessed with optical analysis of component losses such as crossings and coupling between OM4 fiber and waveguide. Assessments of these values, led to optimization of waveguide size and lower total optical system losses. Methods of manufacture, preparation, and analysis are discussed in detail along with performance results.

  1. Coaxial waveguide mode reconstruction and analysis with THz digital holography.

    Science.gov (United States)

    Wang, Xinke; Xiong, Wei; Sun, Wenfeng; Zhang, Yan

    2012-03-26

    Terahertz (THz) digital holography is employed to investigate the properties of waveguides. By using a THz digital holographic imaging system, the propagation modes of a metallic coaxial waveguide are measured and the mode patterns are restored with the inverse Fresnel diffraction algorithm. The experimental results show that the THz propagation mode inside the waveguide is a combination of four modes TE₁₁, TE₁₂, TM₁₁, and TM₁₂, which are in good agreement with the simulation results. In this work, THz digital holography presents its strong potential as a platform for waveguide mode charactering. The experimental findings provide a valuable reference for the design of THz waveguides.

  2. Integrated graphene waveguide modulators based on low-loss plasmonic slot waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    2017-01-01

    Graphene based electro-absorption modulators involving dielectric optical waveguides have been recently explored, suffering however from weak graphene-light interaction. Surface plasmon polaritons enable light concentration within subwavelength regions opening thereby new avenues for strengthening...... graphene-light interactions. I present novel integrated graphene plasmonic waveguide modulator showing high modulation depth and low insertion loss, thus giving a promising way to miniaturize the device without jeopardizing the performance of the device....

  3. Polychlorinated biphenyl residues in food and human milk: determination of co-planar and mono-ortho substituted congeners

    International Nuclear Information System (INIS)

    Boehm, V.; Schulte, E.; Thier, H.P.

    1993-01-01

    An analytical method is described for determining the residues of coplanar as well as mono-ortho substituted PCB congeners both exhibiting toxicological relevance, in foods of animal origin and in human milk. The unsophisticated procedure, convenient for routine analyses, includes the extraction of lipids, clean-up steps using liquid/liquid partition and column chromatography, fractionation of the congeners using HPLC on a special carbon column with an optimal gradient elution, and capillary column gas chromatography with electron capture or mass spectrometric detection. As preliminary results indicate, the low-chlorinated PCB technical products contribute more to the actual contamination of environment and foods than has been estimated so far. Obviously the co-planar congeners are accumulated during the food chain in a portion different from that found for the other congeners. (orig.)

  4. Planar optical waveguide sensor of ammonia

    Science.gov (United States)

    Sarkisov, Sergey S.; Curley, Michael J.; Boykin, Courtney; Diggs, Darnell E.; Grote, James G.; Hopkins, Frank K.

    2004-12-01

    We describe a novel sensor of ammonia based on a planar optical waveguide made of a thin film of polymer polyimide doped with indicator dye bromocresol purple. The film of dye-doped polyimide demonstrated reversible increase of absorption with a peak near 600 nm in response to presence of ammonia in ambient air. Coupling of input and output optic fibers with the waveguide was done by means of coupling prisms or coupling grooves. The latter configuration has the advantage of low cost, less sensitivity to temperature variation, and the possibility of coupling from both sides of the waveguide. Special experimental setup was built to test the sensor. It included test gas chamber with sealed optic fiber feed-throughs, gas filling line, laser source, photodetector, and signal processing hardware and software. The sensor was capable of detecting 100 ppm of ammonia in air within 8 seconds. Further increase of sensitivity can be achieved by adding more dye dopant to the polymer, increase of the length of the waveguide, and suppression of noise. Overexposure of the sensor to more than 5000 ppm of ammonia led to the saturation of the polymer film and, as a result, significant decrease of sensitivity and increase of the response time. The sensor can be used as low cost component of a distributed optical network of chemical sensors for monitoring presence of hazardous industrial pollutants in air.

  5. Photonic bandgap structures in planar waveguides

    Czech Academy of Sciences Publication Activity Database

    Čtyroký, Jiří

    2001-01-01

    Roč. 18, č. 2 (2001), s. 435-441 ISSN 0740-3232 Grant - others:EU COST(XE) OC 268.10 Institutional research plan: CEZ:AV0Z2067918 Keywords : photonic band gap * optical waveguide theory Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.521, year: 2001

  6. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Science.gov (United States)

    Anne, Marie-Laure; Keirsse, Julie; Nazabal, Virginie; Hyodo, Koji; Inoue, Satoru; Boussard-Pledel, Catherine; Lhermite, Hervé; Charrier, Joël; Yanakata, Kiyoyuki; Loreal, Olivier; Le Person, Jenny; Colas, Florent; Compère, Chantal; Bureau, Bruno

    2009-01-01

    Due to the remarkable properties of chalcogenide (Chg) glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (bio)sensors. PMID:22423209

  7. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  8. PLANAR OPTICAL WAVEGUIDES WITH PHOTONIC CRYSTAL STRUCTURE

    DEFF Research Database (Denmark)

    2003-01-01

    Planar optical waveguide comprising a core region and a cladding region comprising a photonic crystal material, said photonic crystal material having a lattice of column elements, wherein at least a number of said column elements are elongated substantially in an axial direction for said core...

  9. Optical touch screen based on waveguide sensing

    DEFF Research Database (Denmark)

    Pedersen, Henrik Chresten; Jakobsen, Michael Linde; Hanson, Steen Grüner

    2011-01-01

    We disclose a simple, optical touch screen technique based on a planar injection molded polymer waveguide, a single laser, and a small linear detector array. The solution significantly reduces the complexity and cost as compared to existing optical touch technologies. Force detection of a touching...

  10. Slow-light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states having...

  11. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Directory of Open Access Journals (Sweden)

    Bruno Bureau

    2009-09-01

    Full Text Available Due to the remarkable properties of chalcogenide (Chg glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (biosensors.

  12. Chaotic waveguide-based resonators for microlasers

    Czech Academy of Sciences Publication Activity Database

    Méndez-Bermúdez, J. A.; Luna-Acosta, G. A.; Šeba, Petr; Pichugin, K. N.

    2003-01-01

    Roč. 67, č. 16 (2003), 161104/1-161104/4 ISSN 0163-1829 Institutional research plan: CEZ:AV0Z1010914 Keywords : waveguide * laser * resonators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  13. Planar photonic crystal waveguides in silicon oxynitride

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Borel, Peter Ingo

    , at visible wavelengths they absorb light very strongly. In contrary, silicon oxynitride (SiON) glasses offer high transparency down to blue and ultraviolet wavelengths. Thus, SiON photonic crystal waveguides can open for new possibilities, e.g., within sensing and life sciences. We have fabricated Si...

  14. UV Defined Nanoporous Liquid Core Waveguides

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Gopalakrishnan, Nimi; Ndoni, Sokol

    2011-01-01

    Nanoporous liquid core waveguides, where both core and cladding are made from the same material, are presented. The nanoporous polymer used is intrinsically hydrophobic, but selective UV exposure enables it to infiltrate with an aqueous solution, thus raising the refractive index from 1.26 to 1...

  15. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity...

  16. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...... range can be adjusted in a post-fabrication thermal oxidation process....

  17. Multilayer Graphene for Waveguide Terahertz Modulator

    DEFF Research Database (Denmark)

    Khromova, I.; Andryieuski, Andrei; Lavrinenko, Andrei

    2014-01-01

    We study terahertz to infrared electromagnetic properties of multilayer graphene/dielectric artificial medium and present a novel concept of terahertz modulation at midinfrared wavelengths. This approach allows the realization of high-speed electrically controllable terahertz modulators based...... on hollow waveguide sections filled with multilayer graphene....

  18. Hardy Inequalities in Globally Twisted Waveguides

    Czech Academy of Sciences Publication Activity Database

    Briet, Ph.; Hammedi, H.; Krejčiřík, David

    2015-01-01

    Roč. 105, č. 7 (2015), s. 939-958 ISSN 0377-9017 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : quantum waveguides * twisted tubes * Dirichlet Laplacian * Hardy inequality Subject RIV: BE - Theoretical Physics Impact factor: 1.517, year: 2015

  19. Spatial solitons in nonlinear liquid waveguides

    Indian Academy of Sciences (India)

    Abstract. Spatial solitons are studied in a planar waveguide filled with nonlinear liquids. Spec- tral and spatial measurements for different geometries and input power of the laser beam show the influence of different nonlinear effects as stimulated scatterings on the soliton propagation and in particular on the beam ...

  20. Bandwidth engineering of photonic crystal waveguide bends

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders

    2004-01-01

    An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...

  1. Mathematical synthesis of the thickness profile of the waveguide Lüneburg lens using the adiabatic waveguide modes method

    Science.gov (United States)

    Ayryan, Edik; Dashitsyrenov, Genin; Laneev, Evgeniy; Lovetskiy, Konstantin; Sevastianov, Leonid; Sevastianov, Anton

    2017-04-01

    The paper describes the classical and generalized Luneburg lens in the 3D and planar waveguide implementation. We demonstrate the relation between the focusing inhomogeneity of the effective refractive index of waveguide Luneburg lens and the irregularity of the waveguide layer thickness generating this inhomogeneity. For the dispersion relation of the irregular thin-film waveguide in the model of adiabatic waveguide modes we solve the problem of mathematical synthesis and computer-aided design of the thickness profile of waveguide layer for the Luneburg thin-film generalized waveguide lens with a given focal length. The calculations are carried out in specially normalized coordinates convenient for computer calculations. The solution is compared with the one obtained using the cross-sections method.

  2. Template-stripped, ultraflat gold surfaces with coplanar, embedded titanium micropatterns.

    Science.gov (United States)

    Venkataraman, Nagaiyanallur V; Pei, Jia; Cremmel, Clément V M; Rossi, Antonella; Spencer, Nicholas D

    2013-08-06

    Ultraflat gold surfaces with coplanar, embedded titanium micropatterns, exhibiting extremely low roughness over the entire surface, have been obtained by a modified template-stripping procedure. Titanium is deposited onto photolithographically predefined regions of a silicon template. Following photoresist lift-off, the entire surface is backfilled with gold, template stripping is conducted, and an ultraflat micropatterned surface is revealed. Atomic force microscopy confirms a roughness of gold-titanium interface. Detailed surface-chemical maps of the patterned surfaces have been obtained by means of imaging X-ray photoelectron spectroscopy (i-XPS) as well as time-of-flight secondary-ion mass spectrometry (ToF-SIMS). They confirm the presence of well-separated Ti and Au regions, with a chemical contrast that is sharp (as determined by ToF-SIMS) and complete (as determined by i-XPS) across the Ti-Au interface. Thus, a surface has been fabricated that is physically homogeneous down to the nanoscale incorporating chemically distinct micropatterns consisting of two different metals, with totally contrasting surface chemistries.

  3. In vitro reduction of coplanar PCB congeners by ABTS oxidases from the culture of Trametes versicolor

    Energy Technology Data Exchange (ETDEWEB)

    Sonoki, S. [High-Tech Research Center, Azabu Univ., Kanagawa (Japan); Sue, T.; Hisamatsu, S. [Graduate School of Environmental Health, Azabu Univ., Kanagawa (Japan); Nagasaka, H. [Inst. of Environmental Ecology, Shin-Nippon Meteorological and Oceanographical Consultant Co., Ltd., Shizuoka (Japan)

    2004-09-15

    In recent years, the environmental contamination by the harmful polluted chemicals becomes more serious. Among them, especially, the dioxins such as coplanar PCBs (Co-PCBs) and PCDDs are hard to be decomposed due to their stability and hydrophobic nature, leading to the world-wide contamination. To clean up the polluted environment, bioremediation using a microorganism is expected to solve the environmental pollution problem because of cost-effective alternative to the more established engineering method. There are some reports on the biodegradation of dioxins using various organisms, in which basidiomycetes, so-called white-rot fungi, have been extensively studied in the process of lignin degradation. As a result unique extracellular oxidative lignindegrading enzymes, such as lignin peroxidase, manganese-dependent peroxidase and laccase were supposed to be responsible for degrading dioxins. Overall many studies on biodegradation of dioxins or other chlorinated aromatic hydrocarbons have focused on using white-rot fungi; however, few reports referred to the metabolism of these environmental pollutants in the in vitro reaction by use of lignin-degrading enzymes produced by white-rot fungi. In this study, we reported the reduction of levels of Co-PCBs in the in vitro incubation with the fractions which had the oxidase activity toward 2, 2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) in the culture fluid of white-rot fungus, Trametes versicolor.

  4. Electrical characterization of large volume CdZnTe coplanar detectors

    International Nuclear Information System (INIS)

    Gonzalez, R.; Perez, J.M.; Vela, O.; Burgos, E. de; Oller, J.C.; Gostilo, V.

    2005-01-01

    The electrical behaviors of two large volume CZT coplanar detectors in the voltage and temperature application range are presented in this work. Two different regions are treated: bulk and anode surface. I-V curves were acquired at different temperatures in these two regions. Experimental results were analyzed by treating the device as a metal-semiconductor Schottky barrier. Two different formulations were used for modeling this structure: the interfacial-layer thermionic-diffusion model, considered as a complete and general theory, and the diffusion model as a more specific approach. It will be shown that the diffusion model is sufficient to reproduce the results obtained for biases and temperatures normally used in operation. A detailed description of this model is provided. In the anode face, the diffusion model is compared with the space-charge-limited current theory. Differences found in the two regions studied are outlined in this paper. Finally, the influence of the electrical parameters in the design of future detectors is discussed

  5. A Strategy for Grasping unknown Objects based on Co-Planarity and Colour Information

    DEFF Research Database (Denmark)

    Popovic, Mila; Kraft, Dirk; Bodenhagen, Leon

    2010-01-01

    In this work, we describe and evaluate a grasping mechanism that does not make use of any specific object prior knowledge. The mechanism makes use of second-order relations between visually extracted multi-modal 3D features provided by an early cognitive vision system. More specifically, the algo......In this work, we describe and evaluate a grasping mechanism that does not make use of any specific object prior knowledge. The mechanism makes use of second-order relations between visually extracted multi-modal 3D features provided by an early cognitive vision system. More specifically......, the algorithm is based on two relations covering geometric information in terms of a co-planarity constraint as well as appearance based information in terms of co-occurrence of colour properties. We show that our algorithm, although making use of such rather simple constraints, is able to grasp objects...... with a reasonable success rate in rather complex environments (i.e., cluttered scenes with multiple objects). Moreover, we have embedded the algorithm within a cognitive system that allows for autonomous exploration and learning in different contexts. First, the system is able to perform long action sequences which...

  6. ARCHITECTURE OF PLANETARY SYSTEMS BASED ON KEPLER DATA: NUMBER OF PLANETS AND COPLANARITY

    International Nuclear Information System (INIS)

    Fang, Julia; Margot, Jean-Luc

    2012-01-01

    We investigated the underlying architecture of planetary systems by deriving the distribution of planet multiplicity (number of planets) and the distribution of orbital inclinations based on the sample of planet candidates discovered by the Kepler mission. The scope of our study included solar-like stars and planets with orbital periods less than 200 days and with radii between 1.5 and 30 Earth radii, and was based on Kepler planet candidates detected during Quarters 1-6. We created models of planetary systems with different distributions of planet multiplicity and inclinations, simulated observations of these systems by Kepler, and compared the properties of the transits of detectable objects to actual Kepler planet detections. Specifically, we compared with both the Kepler sample's transit numbers and normalized transit duration ratios in order to determine each model's goodness of fit. We did not include any constraints from radial velocity surveys. Based on our best-fit models, 75%-80% of planetary systems have one or two planets with orbital periods less than 200 days. In addition, over 85% of planets have orbital inclinations less than 3° (relative to a common reference plane). This high degree of coplanarity is comparable to that seen in our solar system. These results have implications for planet formation and evolution theories. Low inclinations are consistent with planets forming in a protoplanetary disk, followed by evolution without significant and lasting perturbations from other bodies capable of increasing inclinations.

  7. A 2×1 Coplanar Monopole Antenna Structure for Wireless RF Energy Harvesting

    Science.gov (United States)

    Mathur, Monika; Agarwal, Ankit; Singh, Ghanshyam; Bhatnagar, S. K.

    2018-03-01

    The objective of this paper is to design an efcient wireless energy harvesting (WEH) system to eliminate the problem to continuous charging of a battery operated electronics devices. Most of the devices are battery operated so charging of a battery time to time is serious issue. This WEH system receives the Radio Frequency (RF) and Microwave frequency signals present in the atmosphere and converting it into DC signal so that it can stores in Capacitor or charges a battery for utilize the power. For this RF energy harvesting purposes 21 antenna array structure of the coplanar monopole antenna is presented. This structure shows the gain of 10.2 dBi and 83% efciency. This structure is designed for resonating on multiple bands (Radio, GSM, ISM, and UWB). It is useful for this application because it covers almost all useful bands in the maximum capturing area. The antenna can be connected directly to an RF-DC converter module and it uses about 60% of the total PCB area. And RF to DC convertor circuit can be implemented in that remaining 40% area on the same substrate so it eliminates the need of port connectors and impedance matching circuit between them. This design is worked in receiving mode only when used for energy harvesting purposes. This may be useful for the biomedical and satellite applications.

  8. Organic Dyes Containing Coplanar Dihexyl-Substituted Dithienosilole Groups for Efficient Dye-Sensitised Solar Cells

    Directory of Open Access Journals (Sweden)

    Ciaran Lyons

    2017-01-01

    Full Text Available A chromophore containing a coplanar dihexyl-substituted dithienosilole (CL1 synthesised for use in dye-sensitised solar cells displayed an energy conversion efficiency of 6.90% under AM 1.5 sunlight irradiation. The new sensitiser showed a similar fill factor and open-circuit voltage when compared with N719. Impedance measurements showed that, in the dark, the charge-transfer resistance of a cell using CL1 in the intermediate-frequency region was higher compared to N719 (69.8 versus 41.3 Ω. Under illumination at AM 1.5G-simulated conditions, the charge-transfer resistances were comparable, indicative of similar recombination rates by the oxidised form of the redox couple. The dye showed instability in ethanol solution, but excellent stability when attached to TiO2. Classical molecular dynamics indicated that interactions between ethanol and the dye are likely to reduce the stability of CL1 in solution form. Time-dependent density functional theory studies were performed to ascertain the absorption spectrum of the dye and assess the contribution of various transitions to optical excitation, which showed good agreement with experimental results.

  9. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions

    Directory of Open Access Journals (Sweden)

    Ding Xu

    2016-08-01

    Full Text Available Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar.

  10. FDTD simulation of amorphous silicon waveguides for microphotonics applications

    Science.gov (United States)

    Fantoni, A.; Lourenço, P.; Pinho, P.; Vieira, M.,

    2017-05-01

    In this work we correlate the dimension of the waveguide with small variations of the refractive index of the material used for the waveguide core. We calculate the effective modal refractive index for different dimensions of the waveguide and with slightly variation of the refractive index of the core material. These results are used as an input for a set of Finite Difference Time Domain simulation, directed to study the characteristics of amorphous silicon waveguides embedded in a SiO2 cladding. The study considers simple linear waveguides with rectangular section for studying the modal attenuation expected at different wavelengths. Transmission efficiency is determined analyzing the decay of the light power along the waveguides. As far as near infrared wavelengths are considered, a-Si:H shows a behavior highly dependent on the light wavelength and its extinction coefficient rapidly increases as operating frequency goes into visible spectrum range. The simulation results show that amorphous silicon can be considered a good candidate for waveguide material core whenever the waveguide length is as short as a few centimeters. The maximum transmission length is highly affected by the a-Si:H defect density, the mid-gap density of states and by the waveguide section area. The simulation results address a minimum requirement of 300nm×400nm waveguide section in order to keep attenuation below 1 dB cm-1.

  11. Optical Waveguides in General Purpose Parallel Computers.

    Science.gov (United States)

    Davis, Martin H., Jr.

    1992-01-01

    This thesis examines how optics can be used in general purpose parallel computing systems. Two basic assumptions are made. First, optical waveguide communications technology will continue to mature and become more and more prevalent in smaller and smaller scale environments. Second, electronic computational capabilities will continue to increase for at least the next decade. Thus, this research explores ways in which optical waveguide communications can be combined with traditional electronic computing elements to support general purpose parallel computing. The specific question asked is, "How can the properties of optical waveguides give rise to architectural features useful for general purpose parallel computing?" The answers to this question are developed in the context of a distributed shared memory computing design called OBee. This work defines the OBee design, a specific implementation, based on optical waveguides, of a previously developed, more abstract architecture named Beehive. The basic building block of OBee's physical optical architecture is an Optical Broadcast Ring (OBR). The thesis defines how one or more waveguides (or wavelengths) are arranged in varying topologies; it also defines several different access protocols. Together, a particular combination of topology and access protocol define a given OBR's properties. The OBee design employs a particular OBR to define a specific implementation of Beehive's reader initiated cache coherency protocol. The OBee design uses two different OBRs to define two distinct implementations of Beehive's sole synchronization primitive, locks. As improvements to Beehive, OBee adds two more synchronization primitives, barriers and Fetch -and-OP. The OBee design uses two different OBRs to define two distinct implementations of barriers; similarly, it uses two different OBRs to define two distinct implementations of Fetch-and-OP. Analytical evaluations of the performance of the raw architectural primitives are

  12. Synthesis of the Thickness Profile of the Waveguide Layer of the Thin Film Generalized Waveguide Luneburg Lens

    Directory of Open Access Journals (Sweden)

    Ayryan E.A.

    2016-01-01

    Full Text Available A local variation in the thickness of the waveguide layer of integrated optics waveguide causes a local decrease of phase velocity, and hence bending of rays and of the wave front. The relationship of the waveguide layer thickness profile h (y, z with the distribution of the effective refractive index of the waveguide β (y, z is described in terms of a particular model of waveguide solutions of the Maxwell equations. In the model of comparison waveguides the support of the thickness irregularity of the waveguide layer Δh coincides with the support of inhomogeneity of the effective refractive index Δβ. A more adequate but more cumbersome model of the adiabatic waveguide modes allows them to mismatch supp Δh ⊃ supp Δβ. In this paper, we solve the problem of the Δh reconstruction on the base of given Δβ of the thin film generalized waveguide Luneburg lens in a model of adiabatic waveguide modes. The solution is found in the form of a linear combination of Gaussian exponential functions and in the form of a cubic spline for the cylindrically symmetric Δh (r and in the form of a cubic spline for Δβ (r.

  13. BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

    Directory of Open Access Journals (Sweden)

    Hamsakutty Vettikalladi

    2013-01-01

    Full Text Available A benzocyclobutene (BCB silicon (Si based wideband antenna for millimeter wave applications is presented. The antenna consists of multilayer with one layer of BCB and the remaining three layers of Si. A patch is etched on the Si substrate above the air gap, which is excited through a slot. This architecture of slot, air gap, and patch will produce wide bandwidth by merging each one of resonances. The simulated results show that the antenna provides an S11<-10 dB bandwidth of 9.7 GHz (17% starting from 51.5 GHz to 61.2 GHz around 57 GHz central frequency. The antenna provides a maximum gain of 8.9 dBi with an efficiency of 70%.

  14. Accuracy of cranial coplanar beam therapy using an oblique, stereoscopic x-ray image guidance system

    International Nuclear Information System (INIS)

    Vinci, Justin P.; Hogstrom, Kenneth R.; Neck, Daniel W.

    2008-01-01

    A system for measuring two-dimensional (2D) dose distributions in orthogonal anatomical planes in the cranium was developed and used to evaluate the accuracy of coplanar conformal therapy using ExacTrac image guidance. Dose distributions were measured in the axial, sagittal, and coronal planes using a CIRS (Computerized Imaging Reference Systems, Inc.) anthropomorphic head phantom with a custom internal film cassette. Sections of radiographic Kodak EDR2 film were cut, processed, and digitized using custom templates. Spatial and dosimetric accuracy and precision of the film system were assessed. BrainScan planned a coplanar-beam treatment to conformally irradiate a 2-cm-diameterx2-cm-long cylindrical planning target volume. Prior to delivery, phantom misalignments were imposed in combinations of ±8 mm offsets in each of the principal directions. ExacTrac x-ray correction was applied until the phantom was within an acceptance criteria of 1 mm/1 deg. (first two measurement sets) or 0.4 mm/0.4 deg. (last two measurement sets). Measured dose distributions from film were registered to the treatment plan dose calculations and compared. Alignment errors, displacement between midpoints of planned and measured 70% isodose contours (Δc), and positional errors of the 80% isodose line were evaluated using 49 2D film measurements (98 profiles). Comparison of common, but independent measurements of Δc showed that systematic errors in the measurement technique were 0.2 mm or less along all three anatomical axes and that random error averaged (σ±σ σ ) 0.29±0.06 mm for the acceptance criteria of 1 mm/1 deg. and 0.15±0.02 mm for the acceptance criteria of 0.4 mm/0.4 deg. . The latter was consistent with independent estimates that showed the precision of the measurement system was 0.3 mm (2σ). Values of Δc were as great as 0.9, 0.3, and 1.0 mm along the P-A, R-L, and I-S axes, respectively. Variations in Δc along the P-A axis were correlated to misalignments between laser

  15. Beam’s-eye-view imaging during non-coplanar lung SBRT

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen S. F., E-mail: syip@lroc.harvard.edu; Rottmann, Joerg; Berbeco, Ross I. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2015-12-15

    Purpose: Beam’s-eye-view (BEV) imaging with an electronic portal imaging device (EPID) can be performed during lung stereotactic body radiation therapy (SBRT) to monitor the tumor location in real-time. Image quality for each patient and treatment field depends on several factors including the patient anatomy and the gantry and couch angles. The authors investigated the angular dependence of automatic tumor localization during non-coplanar lung SBRT delivery. Methods: All images were acquired at a frame rate of 12 Hz with an amorphous silicon EPID. A previously validated markerless lung tumor localization algorithm was employed with manual localization as the reference. From ten SBRT patients, 12 987 image frames of 123 image sequences acquired at 48 different gantry–couch rotations were analyzed. δ was defined by the position difference of the automatic and manual localization. Results: Regardless of the couch angle, the best tracking performance was found in image sequences with a gantry angle within 20° of 250° (δ = 1.40 mm). Image sequences acquired with gantry angles of 150°, 210°, and 350° also led to good tracking performances with δ = 1.77–2.00 mm. Overall, the couch angle was not correlated with the tracking results. Among all the gantry–couch combinations, image sequences acquired at (θ = 30°, ϕ = 330°), (θ = 210°, ϕ = 10°), and (θ = 250°, ϕ = 30°) led to the best tracking results with δ = 1.19–1.82 mm. The worst performing combinations were (θ = 90° and 230°, ϕ = 10°) and (θ = 270°, ϕ = 30°) with δ > 3.5 mm. However, 35% (17/48) of the gantry–couch rotations demonstrated substantial variability in tracking performances between patients. For example, the field angle (θ = 70°, ϕ = 10°) was acquired for five patients. While the tracking errors were ≤1.98 mm for three patients, poor performance was found for the other two patients with δ ≥ 2.18 mm, leading to average tracking error of 2.70 mm. Only one

  16. Mammalian Cytochrome P450-Dependent Metabolism of Polychlorinated Dibenzo-p-dioxins and Coplanar Polychlorinated Biphenyls

    Directory of Open Access Journals (Sweden)

    Hideyuki Inui

    2014-08-01

    Full Text Available Polychlorinated dibenzo-p-dioxins (PCDDs and coplanar polychlorinated biphenyls (PCBs contribute to dioxin toxicity in humans and wildlife after bioaccumulation through the food chain from the environment. The authors examined human and rat cytochrome P450 (CYP-dependent metabolism of PCDDs and PCBs. A number of human CYP isoforms belonging to the CYP1 and CYP2 families showed remarkable activities toward low-chlorinated PCDDs. In particular, human CYP1A1, CYP1A2, and CYP1B1 showed high activities toward monoCDDs, diCDDs, and triCDDs but no detectable activity toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-tetraCDD. Large amino acids located at putative substrate-recognition sites and the F-G loop in rat CYP1A1 contributed to the successful metabolism of 2,3,7,8-tetraCDD. Rat, but not human, CYP1A1 metabolized 3,3',4,4',5-pentachlorobiphenyl (CB126 to two hydroxylated metabolites. These metabolites are probably less toxic than is CB126, due to their higher solubility. Homology models of human and rat CYP1A1s and CB126 docking studies indicated that two amino acid differences in the CB126-binding cavity were important for CB126 metabolism. In this review, the importance of CYPs in the metabolism of dioxins and PCBs in mammals and the species-based differences between humans and rats are described. In addition, the authors reveal the molecular mechanism behind the binding modes of dioxins and PCBs in the heme pocket of CYPs.

  17. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    Science.gov (United States)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen

    2017-11-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N2 gas, while the production of oxygen radicals was determined by ozone production in pure O2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness.

  18. Constrained customization of non-coplanar beam orientations in radiotherapy of brain tumours

    International Nuclear Information System (INIS)

    Rowbottom, C.G.; Oldham, M.; Webb, S.

    1999-01-01

    A methodology for the constrained customization of non-coplanar beam orientations in radiotherapy treatment planning has been developed and tested on a cohort of five patients with tumours of the brain. The methodology employed a combination of single and multibeam cost functions to produce customized beam orientations. The single-beam cost function was used to reduce the search space for the multibeam cost function, which was minimized using a fast simulated annealing algorithm. The scheme aims to produce well-spaced, customized beam orientations for each patient that produce low dose to organs at risk (OARs). The customized plans were compared with standard plans containing the number and orientation of beams chosen by a human planner. The beam orientation constraint-customized plans employed the same number of treatment beams as the standard plan but with beam orientations chosen by the constrained-customization scheme. Improvements from beam orientation constraint-customization were studied in isolation by customizing the beam weights of both plans using a dose-based downhill simplex algorithm. The results show that beam orientation constraint-customization reduced the maximum dose to the orbits by an average of 18.8 (±3.8, 1SD)% and to the optic nerves by 11.4 (±4.8, 1SD)% with no degradation of the planning target volume (PTV) dose distribution. The mean doses, averaged over the patient cohort, were reduced by 4.2 (±1.1, 1SD)% and 12.4 (±3.1 1SD)% for the orbits and optic nerves respectively. In conclusion, the beam orientation constraint-customization can reduce the dose to OARs, for few-beam treatment plans, when compared with standard treatment plans developed by a human planner. (author)

  19. Radical production efficiency and electrical characteristics of a coplanar barrier discharge built by multilayer ceramic technology

    International Nuclear Information System (INIS)

    Jõgi, Indrek; Erme, Kalev; Levoll, Erik; Stamate, Eugen

    2017-01-01

    The present study investigated the electrical characteristics and radical production efficiency of a coplanar barrier discharge (CBD) device manufactured by Kyocera by multilayer ceramic technology. The device consisted of a number of linear electrodes with electrode and gap widths of 0.75 mm, immersed into a ceramic dielectric barrier. A closed flow-through system necessary for the measurements was prepared by placing a quartz plate at a height of 3 mm from the ceramic barrier. The production of nitrogen radicals was determined from the removal of a trace amount of NO in pure N 2 gas, while the production of oxygen radicals was determined by ozone production in pure O 2 or synthetic air. The production efficiency of N and O radicals and NO oxidation in synthetic air was comparable with the efficiency of a volume barrier discharge device. The power density per unit of surface area of the CBD device was more than two times larger than that of a similar volume barrier discharge setup, which makes the CBD device a compact alternative for gas treatment. The production of ozone and different nitrogen oxides was also evaluated for the open system of the CBD which is usable for surface treatment. The ozone concentration of this system was nearly independent from the input power, while the concentration of nitrogen oxides increased with input power. The open system of the CBD was additionally tested for the treatment of a silicon surface. An increase of applied power decreased the time required to reduce the water contact angle below 10 degrees but also started to have an impact on the surface roughness. (paper)

  20. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    Science.gov (United States)

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-06-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  1. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    International Nuclear Information System (INIS)

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-01-01

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2 , using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass

  2. X-ray and gamma ray waveguide, cavity and method

    International Nuclear Information System (INIS)

    Vali, V.; Krogstad, R.S.; Willard, H.R.

    1978-01-01

    An x-ray and gamma ray waveguide, cavity, and method for directing electromagnetic radiation of the x-ray, gamma ray, and extreme ultraviolet wavelengths are described. A hollow fiber is used as the waveguide and is manufactured from a material having an index of refraction less than unity for these wavelengths. The internal diameter of the hollow fiber waveguide and the radius of curvature for the waveguide are selectively predetermined in light of the wavelength of the transmitted radiation to minimize losses. The electromagnetic radiation is obtained from any suitable source ad upon introduction into the waveguide is transmitted along a curvilinear path. The waveguide may be formed as a closed loop to create a cavity or may be used to direct the electromagnetic radiation to a utilization site

  3. Novel hard mask fabrication method for hybrid plasmonic waveguide and metasurfaces

    DEFF Research Database (Denmark)

    Choudhury, Sajid; Zenin, Vladimir A.; Saha, Soham

    2017-01-01

    A hybrid plasmonic waveguide fabrication technique has been developed and waveguides fabricated using this technique have been demonstrated experimentally. The developed technique can be utilized for creating similar hybrid waveguide structures and metasurfaces with an array of material platforms...

  4. Evaluation of Multilayered Waveguide Holographic Memory Media

    Science.gov (United States)

    Ishihara, Kei; Fujiwara, Tsuyoshi; Esaki, Akira

    2004-07-01

    A multilayered waveguide holographic memory media consists of a stack of single-mode slab waveguides. An UV embossing process has been developed for fabricating this structure. This process is suitable for mass production at low cost, but it is has a disadvantage of poor precision in the control of layer thickness and data position. The distribution of the core inclination and the error in data position alignment were checked, and the results showed that this process is sufficiently accurate for fabricating the above media. Also, the durability of the media fabricated by the UV embossing process was tested. The media was preserved under high-temperature and high-humidity conditions (80°C and 85%RH respectively). The results showed that this media has sufficient durability for practical use.

  5. The LHC Beam Pipe Waveguide Mode Reflectometer

    CERN Document Server

    Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R

    2007-01-01

    The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The â€ワAssembly” version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar â€ワIn Situ” version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.

  6. Shielding and synchrotron radiation in toroidal waveguide

    Directory of Open Access Journals (Sweden)

    G. V. Stupakov

    2003-03-01

    Full Text Available We develop a new approach to the calculation of the synchrotron radiation in a toroidal vacuum chamber. Using a small parameter ϵ=sqrt[a/R], where a is the characteristic size of the cross section of the toroid and R is the bending radius, we simplify Maxwell’s equations assuming that the characteristic frequency of the modes ω∼c/aϵ and neglect terms of higher order in ϵ. For a rectangular cross section of the waveguide, we find an analytical solution of the equations and analyze their asymptotics at very high frequency. We then obtain an equation which gives radiation into each synchronous mode. We demonstrate the flexibility of the new method by calculating the frequencies and the loss factors for the lowest modes in square and round waveguides.

  7. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...... dielectric function. This is analogous to semiconductors, where electronic bandgaps exist due to the periodic arrangement of atoms. As is also the case for semiconductor structures, photonic bandgap structures may become of even greater value when defects are introduced. In particular, point defects make...

  8. Cascaded Quadratic Soliton Compression in Waveguide Structures

    DEFF Research Database (Denmark)

    Guo, Hairun

    to further push such multi-cycle pulses into few-cycle and even single-cycle. In this thesis, we investigate the high order soliton compression in quadratic nonlinear waveguide structures, which is a one-step pulse compression scheme making use of the soliton regime -- with the spontaneous cancelation...... and self-defocusing Kerr effect so that the soliton is created and the soliton self-compression happens in the normal dispersion region. Meanwhile, the chromatic dispersion in the waveguide is also tunable, understood as the dispersion engineering with structural designs. Therefore, compared to commonly...... used two-step compression scheme with e.g. hollow-core photonic crystal fibers plus a dispersion compensation component, our scheme, called the cascaded quadratic soliton compression (CQSC), provides a simpler setup with larger tunability on the nonlinearity, and could avoid the problem with the self...

  9. Planar Silicon Optical Waveguide Light Modulators

    DEFF Research Database (Denmark)

    Leistiko, Otto; Bak, H.

    1994-01-01

    that values in the nanosecond region should be possible, however, the measured values are high, 20 microseconds, due to the large area of the injector junctions, 1× 10¿2 cm2, and the limitations imposed by the detection circuit. The modulating properties of these devices are impressive, measurements......The results of an experimental investigation of a new type of optical waveguide based on planar technology in which the liglht guiding and modulation are achieved by exploiting free carrier effects in silicon are presented. Light is guided between the n+ substrate and two p+ regions, which also...... serve as carrier injectors for controling absorption. Light confinement of single mode devices is good, giving spot sizes of 9 ¿m FWHM. Insertion loss measurements indicate that the absorption losses for these waveguides are extremely low, less 1 dB/cm. Estimates of the switching speed indicate...

  10. Design Procedure for Compact Folded Waveguide Filters

    DEFF Research Database (Denmark)

    Dong, Yunfeng; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    Waveguide filters are widely used in communication systems due to low losses and high power handling capabilities. One drawback of the conventional waveguide filters is their large size, especially for low-frequency and high-order realizations. It has been shown that the footprint of conventional....... The insertion loss in the pass-band (1.54 GHz – 1.56 GHz) is specified to be less than 1 dB while the return loss should be more than 18 dB. The isolation in the rejection-band (1.58 GHz – 1.60 GHz) is required to be more than 45 dB. The coupling matrix synthesis is introduced first and a two-layer realization...

  11. Integrating optical emitters into silicon photonic waveguides

    Science.gov (United States)

    Milgram, Joel

    This thesis reports work targeting the integration of Si light emitters with optical waveguides. Such integrated devices would find utility in a number of applications including telecommunications, optical interconnects, and biological and chemical sensors. Much research has been directed by others on how to improve the emission efficiency and achieve lasing in VLSI (very large scale integration) compatible sources. Here, the focus is on how such devices can be integrated with planar waveguides. Two enhancement techniques were selected for potential integration; defect engineering (DE), and Si nanocrystals (Si-nc) embedded in SOI2. Defect engineered light emitting diodes (LEDs) made on silicon-on-insulator (SOI) and emitting at 1.1 mum were successfully demonstrated. In addition, surface photoluminescence from SOI was analyzed to account for interference from the SOI cavity. However, it was determined that the emission efficiency of defect engineered LEDs studied during the course of this work is below that which was reported previously, and that the fabrication procedure thus suffers from irreproducibility. Barring an enormous advancement in the DE technique, it is concluded that the emission efficiency is too small to make use of its integration potential. A more successful approach was obtained from the Si-nc system fabricated using electron-cyclotron resonance plasma enhanced chemical vapor deposition (ECR-PECVD). Optically pumped edge emitting devices were designed, fabricated and characterized. The devices are comprised of Si-ncs emitting at 800 nm, integrated with slab silicon nitride waveguides. This work is the first report of edge emission from Si-ncs integrated with silicon nitride waveguides. Edge emission and waveguide properties were characterized in the ˜850 nm emission band of the Si-ncs, The edge emission was well described as a propagating mode, attenuated primarily by the Si-nc film. Propagation losses of a typical air/Si-nc/SiNx/SiO2 waveguide

  12. Figures of merit for surface plasmon waveguides

    Science.gov (United States)

    Berini, Pierre

    2006-12-01

    Three figures of merit are proposed as quality measures for surface plasmon waveguides. They are defined as benefit-to-cost ratios where the benefit is confinement and the cost is attenuation. Three different ways of measuring confinement are considered, leading to three figures of merit. One of the figures of merit is connected to the quality factor. The figures of merit were then used to assess and compare the wavelength response of hree popular 1-D surface plasmon waveguides: the single metal-dielectric interface, the metal slab bounded by dielectric and the dielectric slab bounded by metal. Closed form expressions are given for the figures of merit of the single metal-dielectric interface.

  13. Blood typing using microstructured waveguide smart cuvette.

    Science.gov (United States)

    Zanishevskaya, Anastasiya A; Shuvalov, Andrey A; Skibina, Yulia S; Tuchin, Valery V

    2015-04-01

    We introduce a sensitive method that allows one to distinguish positive and negative agglutination reactions used for blood typing and determination of Rh affinity with a high precision. The method is based on the unique properties of photonic crystal waveguides, i.e., microstructured waveguides (MSWs). The transmission spectrum of an MSW smart cuvette filled by a specific or nonspecific agglutinating serum depends on the scattering, refractive, and absorptive properties of the blood probe. This concept was proven in the course of a laboratory clinical study. The obtained ratio of the spectral-based discrimination parameter for positive and negative reactions (I+/I-) was found to be 16 for standard analysis and around 2 for used sera with a weak activity.

  14. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties....

  15. Designing large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Søndergaard, Thomas

    2002-01-01

    Our waveguide design is characterized by first of all a large bandwidth, and secondly it is characterized by a relatively high group velocity giving a better modal dispersion match with the modes of standard waveguides used for coupling light into the planar crystal waveguide (PCW). We consider t...... the dispersion properties for a PCW based on introducing a line defect in a photonic crystal with air-holes arranged periodically on a triangular lattice in silicon....

  16. Optical properties of silicon germanium waveguides at telecommunication wavelengths.

    Science.gov (United States)

    Hammani, Kamal; Ettabib, Mohamed A; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris; Brun, Mickael; Labeye, Pierre; Nicoletti, Sergio; Richardson, David J; Petropoulos, Periklis

    2013-07-15

    We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered. Finally, we comment on the comparative performance of the waveguides, when they are considered for nonlinear applications at telecommunications wavelengths.

  17. Photonic Choke-Joints for Dual Polarization Waveguides

    Science.gov (United States)

    Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)

    2014-01-01

    A waveguide structure for a dual polarization waveguide includes a first flange member, a second flange member, and a waveguide member disposed in each of the first flange member and second flange member. The first flange member and the second flange member are configured to be coupled together in a spaced-apart relationship separated by a gap. The first flange member has a substantially smooth surface, and the second flange member has an array of two-dimensional pillar structures formed therein.

  18. Forerunning mode transition in a continuous waveguide

    OpenAIRE

    Slepyan, Leonid; Ayzenberg-Stepanenko, Mark; Mishuris, Gennady

    2014-01-01

    We have discovered a new, forerunning mode transition as the periodic transition wave propagating in a uniform continuous waveguide. The latter is represented by an elastic beam separating from the elastic foundation under the action of sinusoidal waves. The critical displacement is the separation criterion. We show that the steady-state separation mode, where the separation front speed is independent of the wave amplitude, exists only in a bounded speed-dependent range of the wave amplitude....

  19. Nonlinear optical interactions in silicon waveguides

    Directory of Open Access Journals (Sweden)

    Kuyken B.

    2017-03-01

    Full Text Available The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.

  20. Constitutive Parameter Measurement Using Double Ridge Waveguide

    Science.gov (United States)

    2013-03-01

    56 4.8 FGM -125 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.9 Poorly Made Sample...methodology, • Coaxial cabling with SMA connectors to connect the measurement guides (2), 4 • Metal short plate for ends of waveguides for reflect...material, as seen in Figure 2.4. It is constructed of two plates with a conductor running lengthwise in the center. Also similar to coaxial cable, stripline

  1. Spectra of definite type in waveguide models

    Czech Academy of Sciences Publication Activity Database

    Lotoreichik, Vladimir; Siegl, Petr

    2017-01-01

    Roč. 145, č. 3 (2017), s. 1231-1246 ISSN 0002-9939 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : spectral points of definite and of type pi * weakly coupled bound states * pertrubations of essential spectrum * PT-symmetric waveguide Subject RIV: BE - Theoretical Physics OBOR OECD: Applied mathematics Impact factor: 0.679, year: 2016

  2. Field renormalization in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Colman, Pierre

    2015-01-01

    A novel strategy is introduced in order to include variations of the nonlinearity in the nonlinear Schro¨dinger equation. This technique, which relies on renormalization, is in particular well adapted to nanostructured optical systems where the nonlinearity exhibits large variations up to two...... Schro¨dinger equation is an occasion for physics-oriented considerations and unveils the potential of photonic crystal waveguides for the study of new nonlinear propagation phenomena....

  3. Developments in United Kingdom Waveguide Power Standards,

    Science.gov (United States)

    1980-04-01

    of the Division of Electrical Science at the National Physical Laboratory (NPL). Since 1969 traceability for micro- wave attenuation, impedance, noise...inside of the mount and also produces good electrical continuity between the short circuit terminat- ing the mount and the waveguide walls. The mounts...microcalorimeter is shown in fig 3. This is a develop- 6ment of a microcalorimeter design described by Engen , and originally copied WATER BATH CHOPPER

  4. RF waveguide phase-directed power combiners

    Energy Technology Data Exchange (ETDEWEB)

    Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.

    2017-05-02

    High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.

  5. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    is shown to increase from 3 − 7 um for no intentional disorder to 25 um for 6% disorder. A distribution of losses is seen to be necessary to explain the measured Q-factor distributions. Finally we have performed a cavity QED experiment between single quantum dots and an Anderson localized mode, where a β-factor......, a simultaneous increase in the average Q-factor and decrease in mode volume is observed, which leads to a large probability of observing strong coupling in disorder PhC waveguides. The effect of losses is shown to reduce the largest Q-factors in the distribution and drastically lower the strong coupling...... in the local density of states (LDOS) in PhC waveguides. From decay rate measurements on quantum dot lines temperature tuned in the vicinity of the waveguide band edge, a β-factor for a single quantum dot of more then 85% has been extracted. Finite difference time domain simulations (FDTD) for disordered Ph...

  6. Multifunctional logic gates based on silicon hybrid plasmonic waveguides

    Science.gov (United States)

    Cui, Luna; Yu, Li

    2018-01-01

    Nano-scale Multifunctional Logic Gates based on Si hybrid plasmonic waveguides (HPWGs) are designed by utilizing the multimode interference (MMI) effect. The proposed device is composed of three input waveguides, three output waveguides and an MMI waveguide. The functional size of the device is only 1000 nm × 3200 nm, which is much smaller than traditional Si-based all-optical logic gates. By setting different input signals and selecting suitable threshold value, OR, AND, XOR and NOT gates are achieved simultaneously or individually in a single device. This may provide a way for ultrahigh speed signal processing and future nanophotonic integrated circuits.

  7. Analysis of Waveguides on Lithium Niobate Thin Films

    Directory of Open Access Journals (Sweden)

    Yiwen Wang

    2018-04-01

    Full Text Available Waveguides formed by etching, proton-exchange (PE, and strip-loaded on single-crystal lithium niobate (LN thin film were designed and simulated by a full-vectorial finite difference method. The single-mode condition, optical power distribution, and bending loss of these kinds of waveguides were studied and compared systematically. For the PE waveguide, the optical power distributed in LN layer had negligible change with the increase of PE thickness. For the strip-loaded waveguide, the relationships between optical power distribution in LN layer and waveguide thickness were different for quasi-TE (q-TE and quasi-TM (q-TM modes. The bending loss would decrease with the increase of bending radius. There was a bending loss caused by the electromagnetic field leakage when the neff of q-TM waveguide was smaller than that of nearby TE planar waveguide. LN ridge waveguides possessed a low bending loss even at a relatively small bending radius. This study is helpful for the understanding of waveguide structures as well as for the optimization and the fabrication of high-density integrated optical components.

  8. Luminescence and Gain in Co-Sputtered Al2O3 Erbium-Doped Waveguides

    National Research Council Canada - National Science Library

    Johnson, Klein

    1996-01-01

    Rare earth doping of planar waveguides may potentially yield very compact optical amplifiers, lasers, and amplified spontaneous emission light sources, as well as zero insertion loss waveguide routers...

  9. Diffractive beam shaping, tracking and coupling for wave-guided optical waveguides (WOWs)

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Aabo, Thomas

    2014-01-01

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). The full strength of this structure-mediated paradigm can be harnessed by addressing multiple WOWs and manipulating them to work in tandem. We propose the use of diffractive...... techniques to create multiple focal spots that can be coupled into light manipulated WOWs. This is done by using a spatial light modulator to project the necessary phase to generate the multiple coupling light spots. We incorporate a diffractive setup in our Biophotonics Workstation (BWS) and demonstrate...... holographic shaping, tracking of light in 3D with the purpose of coupling light in the WOWs....

  10. Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides.

    Science.gov (United States)

    Yao, Yicun; Dong, Ningning; Chen, Feng; Pang, Lilong; Wang, Zhiguang; Lu, Qingming

    2011-11-21

    We report on the fabrication of planar waveguide in Nd:YVO(4) crystal by using swift Ar(8+) ion irradiation. At room temperature continuous wave (cw) laser oscillation at wavelength of ~1067 nm has been realized through the optical pump at 808 nm with a low threshold of 9.3 mW. The slope efficiency of the waveguide laser system is of 8.5%. The optical-to-optical conversion efficiency is 6.6%. © 2011 Optical Society of America

  11. Coplanar equal energy-sharing 64.6 eV e-He triple differential cross sections

    International Nuclear Information System (INIS)

    Bray, I.; Fursa, D. V.

    1996-11-01

    Electron impact ionization of the ground state of helium is measured and calculated for the case of 64.6 eV incident electrons with coplanar outgoing 20 eV electrons. Various geometries are considered: symmetric, fixed θ A and fixed θ B - θ A . The method of calculation is the convergent close-coupling theory. This theory is able to reproduce the angular profiles in essentially all of these geometries, yet it yields a constant factor of approximately two lower cross sections than experiment. 14 refs., 4 figs

  12. Viscous Effects on the Interaction between the Coplanar Decretion Disc and the Neutron Star in Be/X-Ray Binaries

    OpenAIRE

    Okazaki, A. T.; Bate, M. R.; Ogilvie, G. I.; Pringle, J. E.

    2002-01-01

    We study the viscous effects on the interaction between the coplanar Be-star disc and the neutron star in Be/X-ray binaries, using a three-dimensional, smoothed particle hydrodynamics code. For simplicity, we assume the Be disc to be isothermal at the temperature of half the stellar effective temperature. In order to mimic the gas ejection process from the Be star, we inject particles with the Keplerian rotation velocity at a radius just outside the star. Both Be star and neutron star are tre...

  13. Symmetry and coplanarity of organic molecules affect their packing and photovoltaic properties in solution-processed solar cells.

    Science.gov (United States)

    Lan, Shang-Che; Raghunath, Putikam; Lu, Yueh-Hsin; Wang, Yi-Chien; Lin, Shu-Wei; Liu, Chih-Ming; Jiang, Jian-Ming; Lin, Ming-Chang; Wei, Kung-Hwa

    2014-06-25

    In this study we synthesized three acceptor-donor-acceptor (A-D-A) organic molecules, TB3t-BT, TB3t-BTT, and TB3t-BDT, comprising 2,2'-bithiophene (BT), benzo[1,2-b:3,4-b':5,6-d″]trithiophene (BTT), and benzo[1,2-b;4,5-b']dithiophene (BDT) units, respectively, as central cores (donors), terthiophene (3t) as π-conjugated spacers, and thiobarbituric acid (TB) units as acceptors. These molecules display different degrees of coplanarity as evidenced by the differences in dihedral angles calculated from density functional theory. By using differential scanning calorimetry and X-ray diffractions for probing their crystallization characteristics and molecular packing in active layers, we found that the symmetry and coplanarity of molecules would significantly affect the melting/crystallization behavior and the formation of crystalline domains in the blend film with fullerene, PC61BM. TB3t-BT and TB3t-BDT, which each possess an inversion center and display high crystallinity in their pristine state, but they have different driving forces in crystallization, presumably because of different degrees of coplanarity. On the other hand, the asymmetrical TB3t-BTT behaved as an amorphous material even though it possesses a coplanar structure. Among our tested systems, the device comprising as-spun TB3t-BDT/PC61BM (6:4, w/w) active layer featured crystalline domains and displayed the highest power conversion efficiency (PCE) of 4.1%. In contrast, the as-spun TB3t-BT/PC61BM (6:4, w/w) active layer showed well-mixed morphology and with a device PCE of 0.2%; it increased to 3.9% after annealing the active layer at 150 °C for 15 min. As for TB3t-BTT, it required a higher content of fullerene in the TB3t-BTT/PC61BM (4:6, w/w) active layer to optimize its device PCE to 1.6%.

  14. Design and performance evaluation of a coplanar multimodality scanner for rodent imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lage, E; Vaquero, J J; Sisniega, A; Tapias, G; Abella, M; Rodriguez-Ruano, A; Desco, M [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Espana, S [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense, Madrid (Spain); Ortuno, J E [Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza (Spain); Udias, A [Departamento de Estadistica e Investigacion Operativa, Universidad Rey Juan Carlos, Fuenlabrada (Spain)], E-mail: elage@mce.hggm.es

    2009-09-21

    This work reports on the development and performance evaluation of the VrPET/CT, a new multimodality scanner with coplanar geometry for in vivo rodent imaging. The scanner design is based on a partial-ring PET system and a small-animal CT assembled on a rotatory gantry without axial displacement between the geometric centers of both fields of view (FOV). We report on the PET system performance based on the NEMA NU-4 protocol; the performance characteristics of the CT component are not included herein. The accuracy of inter-modality alignment and the imaging capability of the whole system are also evaluated on phantom and animal studies. Tangential spatial resolution of PET images ranged between 1.56 mm at the center of the FOV and 2.46 at a radial offset of 3.5 cm. The radial resolution varies from 1.48 mm to 1.88 mm, and the axial resolution from 2.34 mm to 3.38 mm for the same positions. The energy resolution was 16.5% on average for the entire system. The absolute coincidence sensitivity is 2.2% for a 100-700 keV energy window with a 3.8 ns coincident window. The scatter fraction values for the same settings were 11.45% for a mouse-sized phantom and 23.26% for a rat-sized phantom. The peak noise equivalent count rates were also evaluated for those phantoms obtaining 70.8 kcps at 0.66 MBq/cc and 31.5 kcps at 0.11 MBq/cc, respectively. The accuracy of inter-modality alignment is below half the PET resolution, and the image quality of biological specimens agrees with measured performance parameters. The assessment presented in this study shows that the VrPET/CT system is a good performance small-animal imager, while the cost derived from a partial ring detection system is substantially reduced as compared with a full-ring PET tomograph.

  15. Propagation losses in photonic crystal waveguides: Effects of band tail absorption and waveguide dispersion

    DEFF Research Database (Denmark)

    Rigal, F.; Joanesarson, Kristoffer Bitsch; Lyasota, A.

    2017-01-01

    Propagation losses in GaAs-based photonic crystal (PhC) waveguides are evaluated near the semiconductor band-edge by measuring the finesse of corresponding Ln cavities. This approach yields simultaneously the propagation losses and the mode reflectivity at the terminations of the cavities. We...... is important for the monolithic integration of light sources with such optical elements....

  16. Demonstration of reverse symmetry waveguide sensing in aqueous solutions

    DEFF Research Database (Denmark)

    Horvath, R.; Pedersen, H.C.; Larsen, N.B.

    2002-01-01

    A reverse symmetry waveguide is presented for evanescent wave sensing in aqueous solutions. The waveguide consists of a thin polystyrene film, supported by a thicker substrate layer of nanoporous silica on glass. The nanoporous substrate layer has a refractive index of n(S)=1.193, hence, with an ...

  17. Optical vortex propagation in few-mode rectangular polymer waveguides

    DEFF Research Database (Denmark)

    Lyubopytov, Vladimir S.; Chipouline, Arkadi; Zywietz, Urs

    2017-01-01

    We demonstrate that rectangular few-mode dielectric waveguides, fabricated with standard lithographic technique, can support on-chip propagation of optical vortices. We show that specific superpositions of waveguide eigenmodes form quasi-degenerate modes carrying light with high purity states of ...... of orbital angular momentum....

  18. Electromagnetic fields of ionospheric point dipoles in the earthionosphere waveguide

    International Nuclear Information System (INIS)

    Rybachek, S.T.

    1985-01-01

    This paper addresses the problem of excitation of the spherical earth-anisotropic ionosphere waveguide by ionospheric dipole sources. The solution obtained is based on a generalized reciprocity theorem which provides a relationship to the problem of finding electromagnetic fields in the ionosphere created by sources located in the waveguide. Some results of the calculations are presented

  19. On linear waveguides of square and triangular lattice strips: an ...

    Indian Academy of Sciences (India)

    Basant Lal Sharma

    communication technology, are historically more numerous. [18, 19] (see also, for example, [20, 21], and [22, Chap- ter 10]). These analyses play a pivotal role in, the so called, mode-matching techniques for wave propagation in struc- tured waveguides such as bifurcated waveguides, waveg- uides with discontinuities, etc.

  20. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  1. Basic structure of square and circle for defected waveguide structure

    Directory of Open Access Journals (Sweden)

    Chin Shu Jia

    2017-01-01

    Full Text Available Many existing waveguide designs focus on the application such as antenna and filter. Besides that, metamaterial used to design with waveguide is usually conducted by loading method. The configuration such as the walls or planes of waveguide is rarely proposed and designed. The motivation of this paper is to introduce the Defected Waveguide Structure (DWS in waveguide to operate in Ultrawideband (UWB frequency range. DWS is designed by using basic structure of square and circle. The square and circle are designed at all the walls of waveguide in patch. Hybrid design by mixing the square and circle is also proposed. The performance of DWS towards waveguide is analysed by using the transmission coefficient (S21 and reflection coefficient (S11. The filter circuit is constructed for modelling purpose to determine the value of inductance and capacitance. Copper waveguide acts as high pass filter at the frequency larger than cut off frequency 2.76GHz. The square DWS design works as band pass filter with narrowest bandwidth of 5.19GHz. The circle DWS design achieves the widest bandwidth of 6.55GHz for the pass band performance. Hybrid design improves the bandwidth slightly compare to square DWS design by 0.54GHz.

  2. Finite element and perturbative study of buffered leaky planar waveguides

    NARCIS (Netherlands)

    Uranus, H.P.; Hoekstra, Hugo; van Groesen, Embrecht W.C.

    2005-01-01

    The effects of the presence of a high-index medium in the proximity of planar waveguiding structures that makes up buffered leaky waveguides, were studied using a finite element method (FEM) leaky mode solver and a perturbation method. Various phenomena observed in the FEM results were interpreted

  3. Tailoring Dispersion properties of photonic crystal waveguides by topology optimization

    DEFF Research Database (Denmark)

    Stainko, Roman; Sigmund, Ole

    2007-01-01

    The paper describes a systematic method for the tailoring of dispersion properties of slab-based photonic crystal waveguides. The method is based on the topology optimization method which consists in repeated finite element frequency domain analyzes, analytical sensitivity analyzes and gradient...... curve and design of a wide bandwidth, constant low group velocity waveguide demonstrate the efficiency of the method....

  4. Experiments on Cascaded Quadratic Soliton Compression in Unpoled LN Waveguide

    DEFF Research Database (Denmark)

    Guo, Hairun; Zhou, Binbin; Zeng, Xianglong

    2014-01-01

    Experiments on cascaded quadratic soliton compression in unpoled phasemismatched lithium niobate waveguides are presented. Pulse self-phasemodulation dominated by an overall self-defocusing nonlinearity is observed, with an variation of pump wavelength and waveguide core width. © 2014 Optical...

  5. Array of planar waveguide lasers with 50 GHz frequency spacing

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Laurent-Lund, Christian; Sckerl, Mads W.

    1999-01-01

    Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask.......Waveguide laser arrays are demonstrated using planar silica-on-silicon technology. Excellent control over frequency separation is obtained with a single phase mask....

  6. Optical waveguide mode control by nanoslit-enhanced terahertz field

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zalkovskij, Maksim; Malureanu, Radu

    2012-01-01

    In this Letter we propose a scheme providing control over an optical waveguide mode by a terahertz (THz) wave. The scheme is based on an optimization of the overlap between the optical waveguide mode and the THz field, with the THz field strength enhanced by the presence of a metallic nanoslit...

  7. Direct mapping of light propagation in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Arentoft, J.

    2002-01-01

    Using near-field optical microscopy, we directly map the propagation of light in the wavelength range of 1510-1560 nm along bent photonic crystal waveguides formed by removing a single row of holes in the triangular 400-nm-period lattice and connected to access ridge waveguides, the structure being...

  8. Organic nanofiber-loaded surface plasmon-polariton waveguides

    DEFF Research Database (Denmark)

    Radko, Ilya; Fiutowski, Jacek; Tavares, Luciana

    2011-01-01

    We demonstrate the use of organic nanofibers, composed of self-assembled organic molecules, as a dielectric medium for dielectric-loaded surface plasmon polariton waveguides at near-infrared wavelengths. We successfully exploit a metallic grating coupler to excite the waveguiding mode and charact...

  9. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators.

    Science.gov (United States)

    Mizumoto, Tetsuya; Shoji, Yuya; Takei, Ryohei

    2012-05-24

    This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO₃. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI) waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  10. Direct Wafer Bonding and Its Application to Waveguide Optical Isolators

    Directory of Open Access Journals (Sweden)

    Ryohei Takei

    2012-05-01

    Full Text Available This paper reviews the direct bonding technique focusing on the waveguide optical isolator application. A surface activated direct bonding technique is a powerful tool to realize a tight contact between dissimilar materials. This technique has the potential advantage that dissimilar materials are bonded at low temperature, which enables one to avoid the issue associated with the difference in thermal expansion. Using this technique, a magneto-optic garnet is successfully bonded on silicon, III-V compound semiconductors and LiNbO3. As an application of this technique, waveguide optical isolators are investigated including an interferometric waveguide optical isolator and a semileaky waveguide optical isolator. The interferometric waveguide optical isolator that uses nonreciprocal phase shift is applicable to a variety of waveguide platforms. The low refractive index of buried oxide layer in a silicon-on-insulator (SOI waveguide enhances the magneto-optic phase shift, which contributes to the size reduction of the isolator. A semileaky waveguide optical isolator has the advantage of large fabrication-tolerance as well as a wide operation wavelength range.

  11. UV patterned nanoporous solid-liquid core waveguides

    DEFF Research Database (Denmark)

    Gopalakrishnan, Nimi; Sagar, Kaushal Shashikant; Christiansen, Mads Brøkner

    2010-01-01

    Nanoporous Solid-Liquid core waveguides were prepared by UV induced surface modification of hydrophobic nanoporous polymers. With this method, the index contrast (delta n = 0.20) is a result of selective water infiltration. The waveguide core is defined by UV light, rendering the exposed part...

  12. Adiabatic passage of light in coupled optical waveguides

    International Nuclear Information System (INIS)

    Longhi, Stefano

    2006-01-01

    Adiabatic passage of light in coupled optical waveguides with a curved axis is theoretically investigated and shown to bear a close connection with coherent population transfer among quantum states of atoms and molecules. In particular, the optical analog of stimulated Raman adiabatic passage can be realized in a three-waveguide optical directional coupler

  13. Magnetosonic Waveguide Model of Solar Wind Flow Tubes A. K. ...

    Indian Academy of Sciences (India)

    of plasma velocity or due to sudden variation of Alfvén or sound speed. Surface mag- netosonic wave is evanescent both inside and outside of waveguide, while the body magnetosonic wave is oscillatory inside the waveguide and evanescent outside. Both the wave modes are localized and non-leaky. Nakariakov et al.

  14. Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Friis, Peter; Hübner, Jörg

    2001-01-01

    . The applicability of these waveguides was demonstrated in a biochemical microsystem consisting of multimode buried-channel SiOxNy waveguides that were monolithically integrated with microfluidic channels. Absorption measurements of a beta -blocking agent, propranolol, at 212-215 nm were performed. The detection...

  15. Engineering sidewall angles of silica-on-silicon waveguides

    DEFF Research Database (Denmark)

    Haiyan, Ou

    2004-01-01

    Burned photoresist is used as etch mask when producing silica-onsilicon waveguides. The sidewall angle of the optical glass waveguides is engineered by varying photoresist thickness and etch selectivity. The principle for the formation of the angles is introduced and very promising experimental...

  16. Characterization of UV written waveguides with luminescence microscopy

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Harpøth, Anders; Rosbirk, Tue

    2005-01-01

    Luminescence microscopy is used to measure the refractive index profile and molecular defect distribution of UV written waveguides with a spatial resolution of ~0.4 mm and high signal-to-noise ratio. The measurements reveal comlex waveguide formation dynamics with significant topological changes...

  17. Slow Light at High Frequencies in an Amplifying Semiconductor Waveguide

    DEFF Research Database (Denmark)

    Öhman, Filip; Yvind, Kresten; Mørk, Jesper

    2006-01-01

    We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz.......We demonstrate slow-down of a modulated light signal in a semiconductor waveguide. Concatenated amplifying and absorbing sections simultaneously achieve both amplification and a controllable time delay at 15 GHz....

  18. Support assembly for cryogenically coolable low-noise choke waveguide

    Science.gov (United States)

    Mccrea, F. E. (Inventor)

    1980-01-01

    A compact cryogenically coolable choked waveguide for low-noise input coupling into a cryogenically cooled device, such as a maser or parametric amplifier, utilizes coaxial stainless steel support tubes surrounding the waveguide and connected in cascade to provide a folded low thermal conduction path. The edges of the tubes connected are welded.

  19. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  20. Analytical analysis of sensitivity of optical waveguide sensor

    African Journals Online (AJOL)

    user

    In this article, we carried out analytical analysis of sensitivity and mode field of optical waveguide structure by use of effective index method. This structures as predicted have extended ..... analysis, Antennas, Optical & Photonic Waveguide. She has widely worked with Microcontrollers, uses artificial intelligence techniques .

  1. Slow light in quantum dot photonic crystal waveguides

    DEFF Research Database (Denmark)

    Nielsen, Torben Roland; Lavrinenko, Andrei; Mørk, Jesper

    2009-01-01

    A theoretical analysis of pulse propagation in a semiconductor quantum dot photonic crystal waveguide in the regime of electromagnetically induced transparency is presented. The slow light mechanism considered here is based on both material and waveguide dispersion. The group index n...

  2. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

    KAUST Repository

    Wyatt-Moon, Gwenhivir

    2017-11-28

    Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5–3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device’s unique architecture, the detectors exhibit high responsivity (≈79 A W–1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm–2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm–2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

  3. Global contamination of coplanar polybrominated/chlorinated biphenyls (Co-PXBs) in the market fishes from Japan.

    Science.gov (United States)

    Ohta, Souichi; Tokusawa, Hidekazu; Nakao, Teruyuki; Aozasa, Osamu; Miyata, Hideaki; Alaee, Mehran

    2008-08-01

    Polybrominated chlorinated biphenyls (PXBs, X=Br, Cl) are a group of environmental contaminants that have not been studied previously. The introduction of the second halogen to the biphenyl backbone increases the number of possible congeners to more than 9000. Only a limited number of PXBs are commercially available. In order to determine the occurrence of these compounds in environmental matrices, an isotope dilution HRGC/HRMS method for determination of five co-planar polybrominated/chlorinated biphenyls (Co-PXBs) in biota was developed. The method detection limit for these compounds ranged between 0.05 and 0.5 pg/g for 4'-monobromo-3,3',4,5-tetrachlorobiphenyl and 3',4',5'-tribromo-3,4-dichlorobiphenyl, respectively. Concentrations of five co-planar polybrominated and chlorinated biphenyls in eighteen different fish fillets from Japanese markets ranged between 4 and 46 pg/g wet weight for mink whale and young yellow-tail fish. These values are substantially lower than those reported for Co-PCBs; however, it should be noted that due to the unavailability of standards, identification and quantification of all the isomers was not possible.

  4. Coplanar amorphous-indium-gallium-zinc-oxide thin film transistor with He plasma treated heavily doped layer

    International Nuclear Information System (INIS)

    Jeong, Ho-young; Lee, Bok-young; Lee, Young-jang; Lee, Jung-il; Yang, Myoung-su; Kang, In-byeong; Mativenga, Mallory; Jang, Jin

    2014-01-01

    We report thermally stable coplanar amorphous-indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with heavily doped n + a-IGZO source/drain regions. Doping is through He plasma treatment in which the resistivity of the a-IGZO decreases from 2.98 Ω cm to 2.79 × 10 −3 Ω cm after treatment, and then it increases to 7.92 × 10 −2 Ω cm after annealing at 300 °C. From the analysis of X-ray photoelectron spectroscopy, the concentration of oxygen vacancies in He plasma treated n + a-IGZO does not change much after thermal annealing at 300 °C, indicating thermally stable n + a-IGZO, even for TFTs with channel length L = 4 μm. Field-effect mobility of the coplanar a-IGZO TFTs with He plasma treatment changes from 10.7 to 9.2 cm 2 /V s after annealing at 300 °C, but the performance of the a-IGZO TFT with Ar or H 2 plasma treatment degrades significantly after 300 °C annealing

  5. Vector pulsing soliton of self-induced transparency in waveguide

    International Nuclear Information System (INIS)

    Adamashvili, G.T.

    2015-01-01

    A theory of an optical resonance vector pulsing soliton in waveguide is developed. A thin transition layer containing semiconductor quantum dots forms the boundary between the waveguide and one of the connected media. Analytical and numerical solutions for the optical vector pulsing soliton in waveguide are obtained. The vector pulsing soliton in the presence of excitonic and bi-excitonic excitations is compared with the soliton for waveguide TM-modes with parameters that can be used in modern optical experiments. It is shown that these nonlinear waves have significantly different parameters and shapes. - Highlights: • An optical vector pulsing soliton in a planar waveguide is presented. • Explicit form of the optical vector pulsing soliton are obtained. • The vector pulsing soliton and the soliton have different parameters and profiles

  6. Resonant-state expansion of light propagation in nonuniform waveguides

    Science.gov (United States)

    Lobanov, S. V.; Zoriniants, G.; Langbein, W.; Muljarov, E. A.

    2017-05-01

    A rigorous approach for precise and efficient calculation of light propagation along nonuniform waveguides is presented. Resonant states of a uniform waveguide, which satisfy outgoing-wave boundary conditions, form a natural basis for expansion of the local electromagnetic field. Using such an expansion at fixed frequency, we convert the wave equation for light propagation in a nonuniform waveguide into an ordinary second-order matrix differential equation for the expansion coefficients depending on the coordinate along the waveguide. We illustrate the method on several examples of nonuniform planar waveguides and evaluate its efficiency compared to the aperiodic Fourier modal method and the finite element method, showing improvements of one to four orders of magnitude. A similar improvement can be expected also for applications in other fields of physics showing wave phenomena, such as acoustics and quantum mechanics.

  7. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    Science.gov (United States)

    Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo

    2011-01-01

    Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020

  8. On the use of slow light for enhancing waveguide properties

    DEFF Research Database (Denmark)

    Mørk, Jesper; Nielsen, Torben Roland

    2010-01-01

    On the basis of a general analysis of waveguides containing a dispersive material, we identify conditions under which slow-light propagation may enhance the gain, absorption, or phase change. The enhancement is shown to depend on the slow-light mechanism and the translational symmetry of the wave...... of the waveguide. A combination of material and waveguide dispersion may strongly enhance the control of light speed, e.g., using electromagnetically induced transparency in quantum dots embedded in a photonic crystal waveguide.......On the basis of a general analysis of waveguides containing a dispersive material, we identify conditions under which slow-light propagation may enhance the gain, absorption, or phase change. The enhancement is shown to depend on the slow-light mechanism and the translational symmetry...

  9. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  10. Terahertz spoof surface-plasmon-polariton subwavelength waveguide

    KAUST Repository

    Zhang, Ying

    2017-12-11

    Surface plasmon polaritons (SPPs) with the features of subwavelength confinement and strong enhancements have sparked enormous interest. However, in the terahertz regime, due to the perfect conductivities of most metals, it is hard to realize the strong confinement of SPPs, even though the propagation loss could be sufficiently low. One main approach to circumvent this problem is to exploit spoof SPPs, which are expected to exhibit useful subwavelength confinement and relative low propagation loss at terahertz frequencies. Here we report the design, fabrication, and characterization of terahertz spoof SPP waveguides based on corrugated metal surfaces. The various waveguide components, including a straight waveguide, an S-bend waveguide, a Y-splitter, and a directional coupler, were experimentally demonstrated using scanning near-field terahertz microscopy. The proposed waveguide indeed enables propagation, bending, splitting, and coupling of terahertz SPPs and thus paves a new way for the development of flexible and compact plasmonic circuits operating at terahertz frequencies. (C) 2017 Chinese Laser Press

  11. General coupled mode theory in non-Hermitian waveguides.

    Science.gov (United States)

    Xu, Jing; Chen, Yuntian

    2015-08-24

    In the presence of loss and gain, the coupled mode equation on describing the mode hybridization of various waveguides or cavities, or cavities coupled to waveguides becomes intrinsically non-Hermitian. In such non-Hermitian waveguides, the standard coupled mode theory fails. We generalize the coupled mode theory with a properly defined inner product based on reaction conservation. We apply our theory to the non-Hermitian parity-time symmetric waveguides, and obtain excellent agreement with results obtained by finite element fullwave simulations. The theory presented here is typically formulated in space to study coupling between waveguides, which can be transformed into time domain by proper reformulation to study coupling between non-Hermitian resonators. Our theory has the strength of studying non-Hermitian optical systems with inclusion of the full vector fields, thus is useful to study and design non-Hermitian devices that support asymmetric and even nonreciprocal light propagations.

  12. Numerical analysis of mode conversion in coaxial waveguide components

    International Nuclear Information System (INIS)

    Hoechtl, O.

    1994-02-01

    An existing scattering matrix code for circular waveguides has been modified to include coaxial geometries. Starting with the analytical description by means of eigenwaves the mode coupling at a single waveguide step has been determined. The coupling between circular-circular, coaxial-coaxial and circular-coaxial waveguides is investigated. By using the scattering matrix formulation it is possible to combine several waveguide discontinuities which allows the approximation of a continuous radius variation. The work concludes with the application to some problems. In particular the mode purity of coaxial waveguide tapers, planned to be installed in gyrotrons with coaxial resonators, has been studied. In addition a converter between the TEM- and the TM 0,1 -mode has been optimized and the results have been compared to measurement. (orig./HP) [de

  13. Systematic design of loss-engineered slow-light waveguides

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Mørk, Jesper

    2012-01-01

    This paper employs topology optimization to systematically design free-topology loss-engineered slow-light waveguides with enlarged group index bandwidth product (GBP). The propagation losses of guided modes are evaluated by the imaginary part of eigenvalues in complex band structure calculations......, where the scattering losses due to manufacturing imperfections are represented by an edge-related effective dissipation. The loss engineering of slow-light waveguides is realized by minimizing the propagation losses of design modes. Numerical examples illustrate that the propagation losses of free......-topology dispersion-engineered waveguides can be significantly suppressed by loss engineering. Comparisons between fixed- and free-topology loss-engineered waveguides demonstrate that the GBP can be enhanced significantly by the free-topology loss-engineered waveguides with a small increase of the propagation losses....

  14. Slow light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states having...... non-vanishing phase velocity inside the Brillouin zone. We also demonstrate that presence of vortices can be linked to the absence of slow-light at the zone edge, and present calculations illustrating these general results....

  15. Quantum waveguide theory of a fractal structure

    International Nuclear Information System (INIS)

    Lin Zhiping; Hou Zhilin; Liu Youyan

    2007-01-01

    The electronic transport properties of fractal quantum waveguide networks in the presence of a magnetic field are studied. A Generalized Eigen-function Method (GEM) is used to calculate the transmission and reflection coefficients of the studied systems unto the fourth generation Sierpinski fractal network with node number N=123. The relationship among the transmission coefficient T, magnetic flux Φ and wave vector k is investigated in detail. The numerical results are shown by the three-dimensional plots and contour maps. Some resonant-transmission features and the symmetry of the transmission coefficient T to flux Φ are observed and discussed, and compared with the results of the tight-binding model

  16. Photonic crystal waveguides in PECVD glass

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Têtu, Amélie

    fabricated glasses with refractive indexup to approximately 1.75, with which value it is possible to fabricate photonic crystalwaveguides. These structures have the advantage of being transparent in the whole of thevisible region, which makes them different from photonic crystals made...... in semiconductormaterials, and attractive in, e.g., biological applications. For operation in the visibleregion, the photonic crystal waveguide must be realized with a 2D lattice of air holes thatare spaced with a period of ~ 300 nm. In this poster, we report on simulations of theoptical guiding in these structures...

  17. Ka-band waveguide rotary joint

    KAUST Repository

    Yevdokymov, Anatoliy

    2013-04-11

    The authors present a design of a waveguide rotary joint operating in Ka-band with central frequency of 33 GHz, which also acts as an antenna mount. The main unit consists of two flanges with a clearance between them; one of the flanges has three circular choke grooves. Utilisation of three choke grooves allows larger operating clearance. Two prototypes of the rotary joint have been manufactured and experimentally studied. The observed loss is from 0.4 to 0.8 dB in 1.5 GHz band.

  18. Plasmonic Waveguide-Integrated Nanowire Laser

    DEFF Research Database (Denmark)

    Bermudez-Urena, Esteban; Tutuncuoglu, Gozde; Cuerda, Javier

    2017-01-01

    technologies. Despite significant advances in their fundamental aspects, the integration within scalable photonic circuitry remains challenging. Here we report on the realization of hybrid photonic devices consisting of nanowire lasers integrated with wafer-scale lithographically designed V-groove plasmonic......Next-generation optoelectronic devices and photonic circuitry will have to incorporate on-chip compatible nanolaser sources. Semiconductor nanowire lasers have emerged as strong candidates for integrated systems with applications ranging from ultrasensitive sensing to data communication...... by a waveguide hybrid photonic-plasmonic mode. This work represents a major advance toward the realization of application-oriented photonic circuits with integrated nanolaser sources....

  19. Elastic Modes of an Anisotropic Ridge Waveguide

    Directory of Open Access Journals (Sweden)

    Ameya Galinde

    2012-01-01

    Full Text Available A semi-analytical method for finding the elastic modes propagating along the edge of an anisotropic semi-infinite plate is presented. Solutions are constructed as linear combinations of a finite number of the corresponding infinite plate modes with the constraint that they decay in the direction perpendicular to the edge and collectively satisfy the free boundary condition over the edge surface. Such modes that are confined to the edge can be used to approximate solutions of acoustic ridge waveguides whose supporting structures are sufficiently far away from the free edge. The semi-infinite plate or ridge is allowed to be oriented arbitrarily in the anisotropic crystal. Modifications to the theory to find symmetric and antisymmetric solutions for special crystal orientations are also presented. Accuracy of the solutions can be improved by including more plate modes in the series. Numerical techniques to find modal dispersion relations and orientation dependent modal behavior, are discussed. Results for ridges etched in single crystal Silicon are found to be in good agreement with Finite Element simulations. It is found that variations in modal phase velocity with respect to crystal orientation are not significant, suggesting that anisotropy may not be a critical issue while designing ridge waveguides in Silicon.

  20. Underwater Wireless Acousto-Optic Waveguide (UWAOW)

    Science.gov (United States)

    Giuliano, Giovanni; Kent, Lionel W. J.; Laycock, Leslie C.

    2017-10-01

    The present study originated in the lack of research into achieving underwater total internal reflection (TIR) via the acousto-optic effect. The uniqueness of this technique exists in the fact that it is based on a high sound pressure level which induces a localised change in refractive index of seawater sufficient to achieve total internal reflection within the communication channel. Different transducer systems for generating the pressure wave have been investigated and take the form of a wave which may be either a standing wave, or a novel beamforming technique. The former is based on an array of transducers and with an acoustic mirror at the receiver in order to establish the standing wave. The alternative approach relies on the high intrinsic directionality of a novel beamformer where an annular transducer array is examined as an acoustic source. In this paper, the main characteristics of the acoustic optic waveguide will be presented. This will include both sound and light propagation in the ocean, TIR, novel beam propagation, the refractive index of water as a function of the externally applied acoustic pressure, and the acoustic technology. The modelled results, the limitations imposed by the challenging medium, and the system requirements required to obtain an Underwater Wireless Acousto-Optic Waveguide (UWAOW) will be also addressed.

  1. Prism-coupled multimode waveguide refractometer

    Science.gov (United States)

    Qi, Zhi-Mei; Matsuda, Naoki; Santos, Jose H.; Takatsu, Akiko; Kato, Kenji

    2002-05-01

    A new refractometer has been developed based on changes in the effective refractive index (RI) of the highest-order TE (or TM) mode in a prism-coupled multimode planar waveguide induced by interaction between an evanescent field and a liquid sample. The waveguide was a 100-mum-thick quartz plate fixed on a poly (methyl methacrylate) support containing a flow cell. A pair of prism couplers contacted the quartz plate in the flow-cell region. Such an optical sensor can detect the RI of liquid in a wide range by monitoring the resonant angle of the highest-order mode that changes order number with changes in the sample's RI. When a highest-order mode corresponding to a given RI range is used as the sensor probe, a slight RI change in this range can be detected by measurement of the output light intensity. With this method the sensor was demonstrated to have a resolution of 3 x 10-5 for the RI of an aqueous solution. Combining this result with theoretical calculation indicates that the sensor can detect a 0.5-nm-thick monolayer adsorbed from an aqueous solution. Therefore, the sensor is suitable for real-time detection of biomolecular interactions.

  2. Radio frequency (RF) microwave components and subsystems using loaded ridge waveguide

    Science.gov (United States)

    Kang, Yoon W.

    2013-08-20

    A waveguide having a non-conductive material with a high permeability (.mu., .mu..sub.r for relative permeability) and/or a high permittivity (.di-elect cons., .di-elect cons..sub.r for relative permittivity) positioned within a housing. When compared to a hollow waveguide, the waveguide of this invention, reduces waveguide dimensions by .varies..mu. ##EQU00001## The waveguide of this invention further includes ridges which further reduce the size and increases the usable frequency bandwidth.

  3. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans

    International Nuclear Information System (INIS)

    Breedveld, Sebastiaan; Storchi, Pascal R. M.; Voet, Peter W. J.; Heijmen, Ben J. M.

    2012-01-01

    Purpose: To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. Methods: A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions between patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al.[Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Results: Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a

  4. iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans.

    Science.gov (United States)

    Breedveld, Sebastiaan; Storchi, Pascal R M; Voet, Peter W J; Heijmen, Ben J M

    2012-02-01

    To introduce iCycle, a novel algorithm for integrated, multicriterial optimization of beam angles, and intensity modulated radiotherapy (IMRT) profiles. A multicriterial plan optimization with iCycle is based on a prescription called wish-list, containing hard constraints and objectives with ascribed priorities. Priorities are ordinal parameters used for relative importance ranking of the objectives. The higher an objective priority is, the higher the probability that the corresponding objective will be met. Beam directions are selected from an input set of candidate directions. Input sets can be restricted, e.g., to allow only generation of coplanar plans, or to avoid collisions between patient/couch and the gantry in a noncoplanar setup. Obtaining clinically feasible calculation times was an important design criterium for development of iCycle. This could be realized by sequentially adding beams to the treatment plan in an iterative procedure. Each iteration loop starts with selection of the optimal direction to be added. Then, a Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes all so far selected directions, using a previously published algorithm for multicriterial optimization of fluence profiles for a fixed beam arrangement Breedveld et al. [Phys. Med. Biol. 54, 7199-7209 (2009)]. To select the next direction, each not yet selected candidate direction is temporarily added to the plan and an optimization problem, derived from the Lagrangian obtained from the just performed optimization for establishing the Pareto-optimal plan, is solved. For each patient, a single one-beam, two-beam, three-beam, etc. Pareto-optimal plan is generated until addition of beams does no longer result in significant plan quality improvement. Plan generation with iCycle is fully automated. Performance and characteristics of iCycle are demonstrated by generating plans for a maxillary sinus case, a cervical cancer patient, and a liver patient treated with

  5. Plasma treatment of detonation and HPHT nanodiamonds in diffuse coplanar surface barrier discharge in H.sub.2./sub./N.sub.2./sub. flow

    Czech Academy of Sciences Publication Activity Database

    Jirásek, Vít; Čech, J.; Kozak, Halyna; Artemenko, Anna; Černák, M.; Kromka, Alexander

    2016-01-01

    Roč. 213, č. 10 (2016), s. 2680-2686 ISSN 1862-6300 R&D Projects: GA ČR(CZ) GA14-04790S Institutional support: RVO:68378271 Keywords : amination * diamond * diffuse coplanar surface barrier discharge * nanomaterials * surface functionalization Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  6. Passive integrated circuits utilizing slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Yang, Lirong

    2006-01-01

    We report thorough investigations of photonic crystal waveguide properties in the slow light regime. The transmission and the group index near the cutoff wavelengths oscillate in phase in close analogy with the ID photonic crystal behavior. The influence of having a finite number of periods...... in the photonic crystal waveguide is addressed to explain the spiky character of both the transmission and group index spectra. The profile of the slow-light modes is stretched out into the first and second rows of the holes closest to the waveguide channel. One of our strategies to ameliorate the design...

  7. Photonic Choke-Joints for Dual-Polarization Waveguides

    Science.gov (United States)

    Wollack, Edward J.; U-yen, Kongpop; Chuss, David T.

    2010-01-01

    Photonic choke joint (PCJ) structures for dual-polarization waveguides have been investigated for use in device and component packaging. This interface enables the realization of a high performance non-contacting waveguide joint without degrading the in-band signal propagation properties. The choke properties of two tiling approaches, symmetric square Cartesian and octagonal quasi-crystal lattices of metallic posts, are explored and optimal PCJ design parameters are presented. For each of these schemes, the experimental results for structures with finite tilings demonstrate near ideal transmission and reflection performance over a full waveguide band.

  8. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    -clad waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved.......Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal...

  9. Ultraviolet transparent silicon oxynitride waveguides for biochemical microsystems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Friis, Peter; Hübner, Jörg

    2001-01-01

    The UV wavelength region is of great interest in absorption spectroscopy, which is employed for chemical analysis, since many organic compounds absorb in only this region. Germanium-doped silica, which is often preferred as the waveguide core material in optical devices for telecommunication....... The applicability of these waveguides was demonstrated in a biochemical microsystem consisting of multimode buried-channel SiOxNy waveguides that were monolithically integrated with microfluidic channels. Absorption measurements of a beta -blocking agent, propranolol, at 212-215 nm were performed. The detection...

  10. Compact silicon multimode waveguide spectrometer with enhanced bandwidth

    DEFF Research Database (Denmark)

    Piels, Molly; Zibar, Darko

    2017-01-01

    Compact, broadband, and high-resolution spectrometers are appealing for sensing applications, but difficult to fabricate. Here we show using calibration data a spectrometer based on a multimode waveguide with 2 GHz resolution, 250 GHz bandwidth, and a 1.6 mm × 2.1 mm footprint. Typically......, such spectrometers have a bandwidth limited by the number of modes supported by the waveguide. In this case, an on-chip mode-exciting element is used to repeatably excite distinct collections of waveguide modes. This increases the number of independent spectral channels from the number of modes to this number...

  11. Integrated polymer waveguides for absorbance detection in chemical analysis systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; El-Ali, Jamil; Wolff, Anders

    2003-01-01

    A chemical analysis system for absorbance detection with integrated polymer waveguides is reported for the first time. The fabrication procedure relies on structuring of a single layer of the photoresist SU-8, so both the microfluidic channel network and the optical components, which include planar...... waveguides and fiber-to-waveguide coupler structures, are defined in the same processing step. This results in self-alignment of all components and enables a fabrication and packaging time of only one day. The fabrication scheme has recently been presented elsewhere for fluorescence excitation of beads...

  12. Total reflection optical waveguide switching through dielectric chip motion.

    Science.gov (United States)

    Terui, H; Kobayashi, M

    1981-09-15

    An optical waveguide switch has been realized utilizing the total reflection critical angle controlled by the motion of a dielectric chip set on a waveguide surface. By the contact-noncontact of a GGG chip with the SiO(2)-Ta(2)O(5) waveguide film having a built-in low refractive-index channel, a switching angle of 22.5x and extincion ratio of 12-16 dB were obtained for the TE(0) mode at 0.633-microm wavelength. A 1 x 3 switch that includes two switching positions driven by 6-V electromagnets is demonstrated.

  13. Planar optical waveguides for civil and military applications

    International Nuclear Information System (INIS)

    Lavers, C R

    2009-01-01

    There is significant military and civil interest in being able to detect chemical species adsorbed from air or present in aqueous solutions. Planar optical waveguide transmission properties are sensitive to changes in parameters such as refractive index or absorption and to light-emitting processes such as fluorescence. These changes modulate light travelling in optical waveguides, and so may be used as sensors for detecting biological and chemical agents, non-ionizing and ionizing electromagnetic radiation. Several waveguide systems have been studied theoretically and experimentally, and their responses to basic influences such as alcohol and UV radiation, and gamma rays determined.

  14. FED pumped limiter configuration issues

    International Nuclear Information System (INIS)

    Haines, J.R.; Fuller, G.M.

    1983-01-01

    Impurity control in the Fusion Engineering Device (FED) is provided by a toroidal belt pumped limiter. Limiter design issues addressed in this paper are (1) poloidal location of the limiter belt, (2) shape of the limiter surface facing the plasma, and (3) whether the belt is pumped from one or both sides. The criteria used for evaluation of limiter configuration features were sensitivity to plasma edge conditions and ease of maintenance and fabrication. The evaluation resulted in the selection of a baseline FED limiter that is located at the bottom of the device and has a flat surface with a single leading edge

  15. A First-Order Analytical Theory for Optimal Low-Thrust Limited-Power Transfers between Arbitrary Elliptical Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2008-01-01

    Full Text Available A complete first-order analytical solution, which includes the short periodic terms, for the problem of optimal low-thrust limited-power transfers between arbitrary elliptic coplanar orbits in a Newtonian central gravity field is obtained through canonical transformation theory. The optimization problem is formulated as a Mayer problem of optimal control theory with Cartesian elements—position and velocity vectors—as state variables. After applying the Pontryagin maximum principle and determining the maximum Hamiltonian, classical orbital elements are introduced through a Mathieu transformation. The short periodic terms are then eliminated from the maximum Hamiltonian through an infinitesimal canonical transformation built through Hori method. Closed-form analytical solutions are obtained for the average canonical system by solving the Hamilton-Jacobi equation through separation of variables technique. For transfers between close orbits a simplified solution is straightforwardly derived by linearizing the new Hamiltonian and the generating function obtained through Hori method.

  16. Influence of residual ion polarization on the coplanar symmetric (e, 2e) cross sections for calcium and argon

    Science.gov (United States)

    Hu, Xiao-Qing; Chen, Zhan-Bin; Wang, Yang; Wang, Kai

    2017-03-01

    Detailed calculations using a modified distorted wave Born approximation (DWBA) are carried out for the triple differential cross section (TDCS) in the coplanar symmetric single ionization of calcium and argon atoms. The effects of residual ion polarization on the TDCS are investigated systematically. Our results show that the residual ion polarization, arising from the interaction between the target ion and the two outgoing electrons in the final state, may lead to a considerable change in the TDCS with a more pronounced effect in the large scattering angle region at intermediate energies. The present attempt significantly improves the agreement between theoretical and experimental results. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.

  17. Evaluation of electromechanical coupling parameters of piezoelectric materials by using piezoelectric cantilever with coplanar electrode structure in quasi-stasis.

    Science.gov (United States)

    Zheng, Xuejun; Zhu, Yuankun; Liu, Xun; Liu, Jing; Zhang, Yong; Chen, Jianguo

    2014-02-01

    Based on Timoshenko beam theory, a principle model is proposed to establish the relationship between electric charge and excitation acceleration, and in quasi-stasis we apply the direct piezoelectric effect of multilayer cantilever with coplanar electrode structure to evaluate the piezoelectric strain coefficient d15 and electromechanical coupling coefficient k15. They are measured as 678 pC/N and 0.74 for the commercial piezoelectric ceramic lead zirconate titanate (PZT-51) bulk specimen and 656 pC/N and 0.63 for the lead magnesium niobate (PMN) bulk specimen, and they are in agreement with the calibration and simulation values. The maximum of relative errors is less than 4.2%, so the proposed method is reliable and convenient.

  18. Second-order Born effects in the coplanar to perpendicular plane single ionization of Xe (5p)

    International Nuclear Information System (INIS)

    Singh, Prithvi; Purohit, G; Patidar, Vinod

    2013-01-01

    Differential cross section results for the coplanar to perpendicular plane ionization of xenon atoms at incident electron energies of 40 and 20 eV above ionization potential are reported. The cross sections have been calculated in the modified distorted wave Born approximation (DWBA) formalism including the second-order Born amplitude. Our present attempt verifies the role of second-order processes in the ionization of xenon atoms at low and intermediate energy ranges. We compare the (e, 2e) triple differential cross section results of our calculation with the very recent measurements of Nixon and Murray (2012 Phys. Rev. A 85 022716) and relativistic DWBA-G results of Illarionov and Stauffer (2012 J. Phys. B: At. Mol. Opt. Phys. 45 225202). Overall agreement with measurements has been improved by inclusion of a second-order term in the description of the collision process. (paper)

  19. Numerical and Analytical Study of Optimal Low-Thrust Limited-Power Transfers between Close Circular Coplanar Orbits

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2007-01-01

    Full Text Available A numerical and analytical study of optimal low-thrust limited-power trajectories for simple transfer (no rendezvous between close circular coplanar orbits in an inverse-square force field is presented. The numerical study is carried out by means of an indirect approach of the optimization problem in which the two-point boundary value problem, obtained from the set of necessary conditions describing the optimal solutions, is solved through a neighboring extremal algorithm based on the solution of the linearized two-point boundary value problem through Riccati transformation. The analytical study is provided by a linear theory which is expressed in terms of nonsingular elements and is determined through the canonical transformation theory. The fuel consumption is taken as the performance criterion and the analysis is carried out considering various radius ratios and transfer durations. The results are compared to the ones provided by a numerical method based on gradient techniques.

  20. SU-F-T-537: Prone Breast Accelerated Partial Breast Irradiation Using Non-Coplanar Volumetric Arc Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, G; Barbiere, J; Godfrey, L; Ndlovu, A [Hackensack University Medical Center, Hackensack, NJ (United States)

    2016-06-15

    Purpose: To demonstrate that Volumetric Modulated Arc Therapy (VMAT) can be an alternative technique to Brachytherapy Accelerated Partial Breast Irradiation (APBI) for treating large breasted women. The non-coplanar VMAT technique uses a commercially available couch and a small number of angles. This technique with the patient in the prone position can reduce high skin and critical structure doses in large breasted women, which are usually associated with Brachytherapy APBI. Methods: Philips Pinnacle treatment planning system with Smart Arc was used to plan a left sided laterally located excision cavity on a standard prone breast patient setup. Three thirty-degree arcs entered from the lateral side at respective couch angles of 345, 0, and 15 degrees. A fourth thirty degree arc beam entered from the medial side at a couch angle of 0 degrees. The arcs were selected to avoid critical structures as much as possible. A test run was then performed to verify that the beams did not collide with the patient nor support structures. NSABP B-39/RTOG 0413 protocol guidelines were used for dose prescription, normal tissue, and target definition. Results: Dose Volume Histogram analysis indicated that all parameters were equal or better than RTOG recommendations. Of particular note regarding the plan quality:1.(a) For a prescribed dose of 3850cGy the PTV-EVAL target volume receiving 100 percent of the dose(V100) was 93; protocol recommendation is V90 > 90 percent. (b) Maximum dose was 110 percent versus the allowed 120 percent .2. Uninvolved percentage of normal breast V100 and V50 were 17 and 47 versus allowed 35 and 60 percent respectively.3. For the skin, V100 was 5.7cc and the max dose to 0.1 cc was 4190cGy. Conclusion: Prone Breast non-coplanar VMAT APBI can achieve better skin cosmesis and lower critical structure doses than Brachytherapy APBI.

  1. Coupled-Mode Theory derivation of the formal equivalence between a three-mode waveguide and a set of three mutually coupled single-mode waveguides

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available The formal identification between a two-mode waveguide and a system of two mutually coupled single-mode waveguides stems from the symmetries of the evolution operator. When the gap tends to zero, the super-modes of the coupled system merge continuously into the modes of the multimode waveguide. For modelling purposes, it is very tempting to extend the analogy to three-mode waveguides (and beyond. But not without some precautions…

  2. Nonlinear waves in waveguides with stratification

    CERN Document Server

    Leble, Sergei B

    1991-01-01

    S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.

  3. Quantum Nonlinear Optics in Optomechanical Nanoscale Waveguides.

    Science.gov (United States)

    Zoubi, Hashem; Hammerer, Klemens

    2017-09-22

    We show that strong nonlinearities at the few photon level can be achieved in optomechanical nanoscale waveguides. We consider the propagation of photons in cm-scale one-dimensional nanophotonic structures where stimulated Brillouin scattering (SBS) is strongly enhanced by radiation pressure coupling. We introduce a configuration that allows slowing down photons by several orders of magnitude via SBS from sound waves using two pump fields. Slowly propagating photons can then experience strong nonlinear interactions through virtual off-resonant exchange of dispersionless phonons. As a benchmark we identify requirements for achieving a large cross-phase modulation among two counterpropagating photons applicable for photonic quantum gates. Our results indicate that strongly nonlinear quantum optics is possible in continuum optomechanical systems realized in nanophotonic structures.

  4. Polymer fiber waveguides for terahertz radiation

    DEFF Research Database (Denmark)

    Nielsen, Kristian

    profile, while the hollow core fibers hold the promise for lowest loss but at the cost of lower bandwidth. In both cases the fabrication and characterization of the fibers is presented. The fibers are also investigated numerically and the numerical results are held up against the experimental results......Terahertz radiation offers many exciting applications noticeably in spectroscopy and it is showing promising results in imaging, mainly for security applications. In this project the study of using structured polymer fibers for THz waveguiding is presented. The inspiration for the THz fiber...... is taken from microstructured polymer optical fibers (mPOFs) used at optical wavelengths for sensing and communication. The fibers investigated can be divided into two groups, the solid core fibers and the hollow core fibers. The solid core fibers offer the broadest bandwidth with the best dispersion...

  5. Advanced materials for integrated optical waveguides

    CERN Document Server

    Tong Ph D, Xingcun Colin

    2014-01-01

    This book provides a comprehensive introduction to integrated optical waveguides for information technology and data communications. Integrated coverage ranges from advanced materials, fabrication, and characterization techniques to guidelines for design and simulation. A concluding chapter offers perspectives on likely future trends and challenges. The dramatic scaling down of feature sizes has driven exponential improvements in semiconductor productivity and performance in the past several decades. However, with the potential of gigascale integration, size reduction is approaching a physical limitation due to the negative impact on resistance and inductance of metal interconnects with current copper-trace based technology. Integrated optics provides a potentially lower-cost, higher performance alternative to electronics in optical communication systems. Optical interconnects, in which light can be generated, guided, modulated, amplified, and detected, can provide greater bandwidth, lower power consumption, ...

  6. Subwavelength Plasmonic Waveguides and Plasmonic Materials

    Directory of Open Access Journals (Sweden)

    Ruoxi Yang

    2012-01-01

    Full Text Available With the fast development of microfabrication technology and advanced computational tools, nanophotonics has been widely studied for high-speed data transmission, sensitive optical detection, manipulation of ultrasmall objects, and visualization of nanoscale patterns. As an important branch of nanophotonics, plasmonics has enabled light-matter interactions at a deep subwavelength length scale. Plasmonics, or surface plasmon based photonics, focus on how to exploit the optical property of metals with abundant free electrons and hence negative permittivity. The oscillation of free electrons, when properly driven by electromagnetic waves, would form plasmon-polaritons in the vicinity of metal surfaces and potentially result in extreme light confinement. The objective of this article is to review the progress of subwavelength or deep subwavelength plasmonic waveguides, and fabrication techniques of plasmonic materials.

  7. A miniature magnetic waveguide for cold atoms

    International Nuclear Information System (INIS)

    Key, M.G.

    2000-09-01

    This thesis presents the first demonstration of a guide for cold atoms based on a miniature structure of four current-carrying wires. The four wires are embedded within a hollow silica fibre. Atoms are guided along the centre of a fifth hole on the axis of the fibre by the Stern-Gerlach force. A vapour cell Magneto Optical Trap (MOT), formed 1 cm above the mouth of the waveguide is the source of cold 85 Rb atoms. After cooling the atoms to 25 μK in optical molasses they fall under the influence of gravity through a magnetic funnel into the waveguide. After propagating for 2 cm, the atoms are reflected by the field of a small pinch coil wound around the base of the guide. The atoms then travel back up the fibre and out into the funnel, where they can be imaged either in fluorescence or by recapturing in the MOT. A video sequence of atoms falling into the guide and re-emerging after reflection from the pinch coil graphically illustrates the operation of the guide. The coupling efficiency and transverse temperature of the atoms is measured experimentally and in a Monte-Carlo simulation. We find an optimum coupling efficiency of 12% and we measure the spatial extent of the cloud within the fibre to be of order 100 μm. We find good agreement between experimental data and results from the numerical simulation. We have also been able to observe different thresholds for the reflection of different positive m F levels. In another experiment we are able to trap the atoms in an elongated Ioffe trap for up to two seconds, increasing the distance over which the atoms are guided. We are able to guide the atoms over distances of 40 cm with a loss rate indistinguishable from the free space loss rate. (author)

  8. Devices Based on Parallel-Plate Waveguides for Terahertz Applications

    Science.gov (United States)

    Reichel, Kimberly S.

    The promise of terahertz (THz) frequencies for technological applications is wide, spanning from wireless communications for faster downloads to non-destructive imaging for security screening. Although the potential is high, there is a lack of the basic devices necessary to make these prospects a reality. One essential component for any electromagnetic wave technology is a waveguide, which as the name implies can guide light waves, like a hose would direct water from the source to the desired target location. Several waveguide types have been introduced for THz frequencies, one of the most promising of which is the parallel-plate waveguide (PPWG). The PPWG is attractive based on its superior waveguiding performance of efficient input coupling and low losses, but additionally it serves as an excellent platform for other purposes. The projects presented in this dissertation highlight a few new functionalities incorporated into, and enabled by, a PPWG for sensing, filtering, and splitting. First, we characterize a high quality factor resonator integrated into a PPWG used for microfluidic sensing. Typically, the characterization of the frequency-dependent electric field profile inside a narrowband resonator is challenging, either due to limited optical access or to the perturbative effects of invasive probes. In our situation however, the geometry of the PPWG allows for direct access to the resonant cavity via the open sides of the waveguide and a novel implementation of the air-biased coherent detection (ABCD) method permits non-invasive probing. Through both experiment and simulation, we see the narrowband frequencies trapped in the resonator and also discover an unexpected broadband asymmetric field distribution due to the resonator inside the waveguide, yielding new information that is not available in the far field. Second, we investigate a narrowband tunable filter based on extraordinary optical transmission (EOT) through a 1D array of subwavelength holes inside

  9. Robust, Low Loss Approach for Fiber to Waveguide Coupling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA Phase I SBIR effort proposes to establish the feasibility of significantly improving coupling at fiber to waveguide interfaces for the manufacture of low...

  10. Design and testing of multi-standard waveguide couplers.

    Science.gov (United States)

    Beeson, S; Neuber, A

    2012-03-01

    Most applications that use waveguides are designed for a single frequency or single band of frequency, and thus the waveguide dimensions are chosen for single mode operation. In special cases where multiple frequencies across multiple bands are needed (i.e., probing the temporal response of decaying plasma using a cw source that is generated by a pulsed source), special techniques must be used in order to implement both sources into a single waveguide structure. This paper presents two types of couplers designed to implement x-band frequencies into an s-band system with a large coupling coefficient ( -10 dB) at the design frequency of 11 GHz. Along with a discussion on the design procedure, a detailed description on the parameter optimization and initial values estimation is presented. The custom waveguide structures were tested utilizing an Agilent E8364B PNA network analyzer, and showed reasonable agreement with the simulated performance over the frequency range of interest.

  11. Optical waveguides in lithium niobate: Recent developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bazzan, Marco, E-mail: marco.bazzan@unipd.it; Sada, Cinzia, E-mail: cinzia.sada@unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei,” Università di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2015-12-15

    The state of the art of optical waveguide fabrication in lithium niobate is reviewed, with particular emphasis on new technologies and recent applications. The attention is mainly devoted to recently developed fabrication methods, such as femtosecond laser writing, ion implantation, and smart cut waveguides as well as to the realization of waveguides with tailored functionalities, such as photorefractive or domain engineered structures. More exotic systems, such as reconfigurable and photorefractive soliton waveguides, are also considered. Classical techniques, such as Ti in-diffusion and proton exchange, are cited and briefly reviewed as a reference standpoint to highlight the recent developments. In all cases, the application-oriented point of view is preferred, in order to provide the reader with an up-to date panorama of the vast possibilities offered by lithium niobate to integrated photonics.

  12. An experimental study of the fabrication of polycarbonate optical waveguides

    Science.gov (United States)

    Chen, Jianguo; Zhang, Xiao-yang; Zhang, Tong; Zhu, Jing-song; Wu, Peng-qin; Zhou, Jing-lun; Fan, Jiang-feng; Yan, Hao-feng

    2008-12-01

    A novel polycarbonate (PC) was introduced to apply in the optical waveguide devices. PC has following distinct merits than common polycarbonate: good processability, high thermal stability up to 293 C° and high optical transparency. Optical properties of absorption behavior and propagation loss were investigated in slab waveguides, and low propagation losses of 0.335 dB/cm (@1550nm) and 0.197 dB/cm @632.8nm) have been achieved by using prismcoupler. Additionally, straight optical waveguide and MMI coupler of ring resonator were fabricated using ultraviolet (UV) cured resin Norland optical adhesive 61 (NOA61) as under or upper cladding layer and polycarbonate as waveguide core-layer material through conventional methods such as spin coating, photolithography and reactive ion etching (RIE). The process was studied in detail and the experimental results were given.

  13. Modulating light with graphene embedded into an optical waveguide

    Science.gov (United States)

    Ralević, Uroš; Isić, Goran; Vasić, Borislav; Gajić, Radoš

    2014-08-01

    We investigate the influence that an embedded graphene layer has on guided modes of optical waveguides using exact numerical calculations and a convenient perturbation theory. The latter is found to be highly accurate allowing the graphene-induced changes of modal propagation constants to be determined as the product of a numerical factor characterizing the modal properties of the bare waveguide and the optical conductivity of graphene. In this manner, the influence of the waveguide geometry and the electro-optical properties of graphene on the modulation efficiency can be considered and optimized separately. This result is then used to illustrate the basic electro-absorptive and electro-refractive modulator design principles on a planar waveguide toy model with realistic parameters.

  14. Silicon nitride waveguide platform for fluorescence microscopy of living cells.

    Science.gov (United States)

    Tinguely, Jean-Claude; Helle, Øystein Ivar; Ahluwalia, Balpreet Singh

    2017-10-30

    Waveguide chip-based microscopy reduces the complexity of total internal reflection fluorescence (TIRF) microscopy, and adds features like large field of view illumination, decoupling of illumination and collection path and easy multimodal imaging. However, for the technique to become widespread there is a need of low-loss and affordable waveguides made of high-refractive index material. Here, we develop and report a low-loss silicon nitride (Si 3 N 4 ) waveguide platform for multi-color TIRF microscopy. Single mode conditions at visible wavelengths (488-660 nm) were achieved using shallow rib geometry. To generate uniform excitation over appropriate dimensions waveguide bends were used to filter-out higher modes followed by adiabatic tapering. Si 3 N 4 material is finally shown to be biocompatible for growing and imaging living cells.

  15. Active composite waveguides with a suppressed competition of optical modes

    International Nuclear Information System (INIS)

    Vysotskii, D V; Elkin, N N; Napartovich, A P

    2008-01-01

    The possibilities of separating the fundamental optical mode in composite waveguides by selecting the structure of amplifying regions are analysed. Conditions are presented under which the fundamental mode preserves the highest gain at any saturation. (letters)

  16. Waveguidance by the photonic bandgap effect in optical fibres

    DEFF Research Database (Denmark)

    Broeng, Jes; Søndergaard, Thomas; Barkou, Stig Eigil

    1999-01-01

    technology for such photonic bandgap (PBG) waveguides is in optical fibre configurations. These new fibres can be classified in a fundamentally different way to all optical waveguides and possess radically different guiding properties due to PBG guidance, as opposed to guidance by total internal refelction....... In this paper we summarize and review our theoretical work demonstrating the underlying physical principles of PBG guiding optical fibres and discuss some of their unique waveguiding properties.......Photonic crystals form a new class of intriguing building blocks to be utilized in future optoelectronics and electromagnetics. One of the most exciting possiblilties offered by phtonic crystals is the realization of new types of electromagnetic waveguides. In the optical domain, the most mature...

  17. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm

    2002-01-01

    The subject of this ph.d. thesis is the fabrication of Bragg gratings in optical waveguides. During the study Bragg gratings were written in both planar waveguides and optical fibers using pulsed or continuous-wave lasers operating in the ultraviolet (UV) range. The main result is the development...... were then translated into a polarizer angle profile and the Bragg grating were written using a pulsed excimer laser. Only optical fibers were used in this part of the thesis. The high quality planar waveguides used during the study were produced in the cleanroom facility at the Microelectronic Center...... hence loaded at either 100 bar or 1800 bar prior to the UV exposure. Bragg gratings with uniform coupling strength throughout the grating and apodized gratings were realized by scanning the UV beam along the waveguide with a computer controlled velocity profile. The excellent agreement between simulated...

  18. Investigation into the phase effects in nonlinear hollow waveguides

    CSIR Research Space (South Africa)

    Litvin, IA

    2006-07-01

    Full Text Available Numerical calculations of the phase velocities of collective modes of a hollow waveguide at the Stokes frequency is carried out. The self- imaging of transverse structure of modes superposition (Talbot effect) is investigated. It is shown...

  19. Launching transverse-electric Localized Waves from a circular waveguide

    KAUST Repository

    Salem, Mohamed

    2011-07-01

    Axially symmetric transverse electric (TE) modes of a circular waveguide section are used to synthesize the vector TE Localized Wave (LW) field at the open end of the waveguide section. The necessary excitation coefficients of these modes are obtained by the method of matching, taking advantage of the modal power orthogonality relations. The necessary excitation of modes provided by a number of coaxial loop antennas inserted inside the waveguide section. The antennas currents are computed from the solution of the waveguide excitation inverse problem. The accuracy of the synthesized wave field (compared to the mathematical model) and the power efficiency of the generation technique are evaluated in order to practically realize a launcher for LWs in the microwave regime. © 2011 IEEE.

  20. Focussed MeV ion beam implanted waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Von Bibra, M.L.; Roberts, A.; Nugent, K.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    Single mode buried optical waveguides have been fabricated in fused silica by MeV proton implantation using a focussed hydrogen ion beam. The technique has the potential to direct write waveguide devices and produce multi-layered structures, without the need for intermediate steps such as mask fabrication or layered depositions. A micron resolution Confocal Raman Spectrometer has been used to map the distribution of atomic vacancies that forms the waveguiding region. The results are compared with theoretical calculations. Losses of 3 dB cm{sup -1} have been measured in unannealed samples, which decreases to less than 0.5 dB cm{sup -1} after annealing at 500 degrees Celsius. We describe methods for determining the refractive index distribution of single mode buried waveguides from their output intensity distributions via an inversion of the scalar wave equation. (authors). 5 figs.

  1. Compact cladding-pumped planar waveguide amplifier and fabrication method

    Science.gov (United States)

    Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.

    2003-10-28

    A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.

  2. Coherent perfect absorption and reflection in slow-light waveguides.

    Science.gov (United States)

    Gutman, Nadav; Sukhorukov, Andrey A; Chong, Y D; de Sterke, C Martijn

    2013-12-01

    We identify a family of unusual slow-light modes occurring in lossy multimode grating waveguides, for which either the forward or backward mode components, or both, are degenerate. In the fully degenerate case, the response can be modulated between coherent perfect absorption (zero reflection) and perfect reflection by varying the wave amplitudes in a uniform input waveguide. The perfectly absorbed wave has anomalously short absorption length, scaling as the inverse one-third power of the absorptivity.

  3. Adjustable subwavelength localization in a hybrid plasmonic waveguide

    OpenAIRE

    Belan, S. A.; Vergeles, S. S.; Vorobev, P. E.

    2012-01-01

    The hybrid plasmonic waveguide consists of a high-permittivity dielectric nanofiber embedded in a low-permittivity dielectric near a metal surface. This architecture is considered as one of the most perspective candidates for long-range subwavelength guiding. We present qualitative analysis and numerical results which reveal advantages of the special waveguide design when dielectric constant of the cylinder is greater than the absolute value of the dielectric constant of the metal. In this ca...

  4. ICRF waveguide couplers. Progress report, February 1983-Aug 1983

    International Nuclear Information System (INIS)

    Scharer, J.E.

    1983-08-01

    Calculations were made for the reflection coefficient from a dielectric loaded TE 10 waveguide operating at 54.8 MHz to a plasma with a prescribed density profile. Optimum waveguide proportions are determined to minimize reflections and the proper match point for a coaxial feed to match the system is determined. Future plans call for fabrication and field measurements of a prototype design and the design of an all metal launcher

  5. Compact Spectrometer based on a silicon multimode waveguide

    DEFF Research Database (Denmark)

    Piels, Molly; Zibar, Darko

    2017-01-01

    A multimode waveguide spectrometer with 4 GHz resolution, 250 GHz usable range, and a 1.6 mm × 2.1 mm footprint is demonstrated. The operating range is greatly extended by including distinct mode-exciting elements on chip.......A multimode waveguide spectrometer with 4 GHz resolution, 250 GHz usable range, and a 1.6 mm × 2.1 mm footprint is demonstrated. The operating range is greatly extended by including distinct mode-exciting elements on chip....

  6. Time-resolved THz spectroscopy in a parallel plate waveguide

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    We demonstrate time-resolved terahertz spectroscopy inside a novel parallel plate waveguide where one of the metallic plates is replaced by a transparent conducting oxide. Considerable improvements to the waveguide loss coefficient are shown, with a power absorption coefficient of 4cm-1 at 0.5 THz....... The time resolution of the technique is shown to be limited by the spatial excitation profile, which for sharply focused beams can approach ~1 ps time scales....

  7. Second-harmonic scanning optical microscopy of poled silica waveguides

    DEFF Research Database (Denmark)

    Pedersen, Kjeld; Bozhevolnyi, Sergey I.; Arentoft, Jesper

    2000-01-01

    Second-harmonic scanning optical microscopy (SHSOM) is performed on electric-field poled silica-based waveguides. Two operation modes of SHSOM are considered. Oblique transmission reflection and normal reflection modes are used to image the spatial distribution of nonlinear susceptibilities...... and limitations of the two operation modes when used for SHSOM studies of poled silica-based waveguides are discussed. The influence of surface defects on the resulting second-harmonic images is also considered. ©2000 American Institute of Physics....

  8. Infrared surface phonon polariton waveguides on SiC Substrate

    Science.gov (United States)

    Yang, Yuchen; Manene, Franklin M.; Lail, Brian A.

    2015-08-01

    Surface plasmon polariton (SPP) waveguides harbor many potential applications at visible and near-infrared (NIR) wavelengths. However, dispersive properties of the metal in the waveguide yields weakly coupled and lossy plasmonic modes in the mid and long wave infrared range. This is one of the major reasons for the rise in popularity of surface phonon polariton (SPhP) waveguides in recent research and micro-fabrication pursuit. Silicon carbide (SiC) is a good candidate in SPhP waveguides since it has negative dielectric permittivity in the long-wave infrared (LWIR) spectral region, indicative that coupling to surface phonon polaritons is realizable. Introducing surface phonon polaritons for waveguiding provides good modal confinement and enhanced propagation length. A hybrid waveguide structure at long-wave infrared (LWIR) is demonstrated in which an eigenmode solver approach in Ansys HFSS was applied. The effect of a three layer configuration i.e., silicon wire on a benzocyclobutene (BCB) dielectric slab on SiC, and the effects of varying their dimensions on the modal field distribution and on the propagation length, is presented.

  9. Sub-wavelength grating mode transformers in silicon slab waveguides.

    Science.gov (United States)

    Bock, Przemek J; Cheben, Pavel; Schmid, Jens H; Delâge, André; Xu, Dan-Xia; Janz, Siegfried; Hall, Trevor J

    2009-10-12

    We report on several new types of sub-wavelength grating (SWG) gradient index structures for efficient mode coupling in high index contrast slab waveguides. Using a SWG, an adiabatic transition is achieved at the interface between silicon-on-insulator waveguides of different geometries. The SWG transition region minimizes both fundamental mode mismatch loss and coupling to higher order modes. By creating the gradient effective index region in the direction of propagation, we demonstrate that efficient vertical mode transformation can be achieved between slab waveguides of different core thickness. The structures which we propose can be fabricated by a single etch step. Using 3D finite-difference time-domain simulations we study the loss, polarization dependence and the higher order mode excitation for two types (triangular and triangular-transverse) of SWG transition regions between silicon-on-insulator slab waveguides of different core thicknesses. We demonstrate two solutions to reduce the polarization dependent loss of these structures. Finally, we propose an implementation of SWG structures to reduce loss and higher order mode excitation between a slab waveguide and a phase array of an array waveguide grating (AWG). Compared to a conventional AWG, the loss is reduced from -1.4 dB to < -0.2 dB at the slab-array interface.

  10. Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays

    Science.gov (United States)

    Popovic, Milos

    2011-03-08

    Low-loss waveguide structures may comprise a multimode waveguide supporting a periodic light intensity pattern, and attachments disposed at the waveguide adjacent low-intensity regions of the light intensity pattern.

  11. Non-coplanar polychlorinated biphenyls (PCBs) are direct agonists for the human pregnane-X receptor and constitutive androstane receptor, and activate target gene expression in a tissue-specific manner

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salman, Fadheela; Plant, Nick, E-mail: N.Plant@Surrey.ac.uk

    2012-08-15

    The polychlorinated biphenyl group possesses high environmental persistence, leading to bioaccumulation and a number of adverse effects in mammals. Whilst coplanar PCBs elicit their toxic effects through agonism of the aryl hydrocarbon receptor; however, non-coplanar PCBs are not ligands for AhR, but may be ligands for members of the nuclear receptor family of proteins. To better understand the biological actions of non-coplanar PCBs, we have undertaken a systematic analysis of their ability to activate PXR and CAR-mediated effects. Cells were exposed to a range of non-coplanar PCBs (99, 138, 153, 180 and 194), or the coplanar PCB77: Direct activation of PXR and CAR was measured using a mammalian receptor activation assay in human liver cells, with rifampicin and CITCO used as positive controls ligands for PXR and CAR, respectively; activation of target gene expression was examined using reporter gene plasmids for CYP3A4 and MDR1 transfected into liver, intestine and lung cell lines. Several of the non-coplanar PCBs directly activated PXR and CAR, whilst the coplanar PCB77 did not. Non-coplanar PCBs were also able to activate PXR/CAR target gene expression in a substitution- and tissue-specific manner. Non-coplanar PCBs act as direct activators for the nuclear receptors PXR and CAR, and are able to elicit transcriptional activation of target genes in a substitution- and tissue-dependent manner. Chronic activation of PXR/CAR is linked to adverse effects and must be included in any risk assessment of PCBs. -- Highlights: ► Several Non-coplanar PCBs are able to directly activate both PXR and CAR in vitro. ► PCB153 is the most potent direct activator of PXR and CAR nuclear receptors. ► Non-coplanar PCB activation of CYP3A4/MDR1 reporter genes is structure-dependent. ► Non-coplanar PCB activate CYP3A4/MDR1 reporter genes in a tissue-dependent. ► PCB153 is the most potent activator of PXR/CAR target gene in all tissues.

  12. Amplified spontaneous emission and optical gain measurements from pyrromethene 567--doped polymer waveguides and quasi-waveguides.

    Science.gov (United States)

    Costela, A; García, O; Cerdán, L; García-Moreno, I; Sastre, R

    2008-05-12

    Amplified spontaneous emission from planar waveguides and quasi-waveguides based on Pyrromethene 567-doped poly(methyl methacrylate) thin films deposited onto quartz and glass substrates is investigated. Films with different thickness were prepared and pumped optically at 532 nm with pulses of up to 8 MW/cm(2). Pump thresholds for the onset of ASE emission, optical gains and losses were assessed. Net gain coefficients were estimated by fitting the data provided by variable stripe length measurements with a theoretical expression which takes into account saturation. In this way, net gain coefficients of up to 56 +/- 9 cm(-1) at a pump intensity of 5.3 MW/cm(2) for quasi-waveguides and up to 20.6 +/- 2.7 cm(-1) at a pump intensity of 3.4 MW/cm2 for waveguides, were obtained. Loss coefficients in the waveguides were estimated to be 3.8 +/- 0.4 cm-1 and 6.1 +/- 1.3 cm(-1) for 15 microm and 5 microm thick films, respectively. The results obtained seem to indicate a stronger self-mode-restriction capability in the quasiwaveguides than in conventional total internal-reflection waveguides.

  13. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    Science.gov (United States)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  14. Wave-guided Optical Waveguides tracked and coupled using dynamic diffractive optics

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Villangca, Mark Jayson; Bañas, Andrew Rafael

    With light’s miniscule momentum, shrinking robotics down to the micro- and nano-scale regime creates opportunities for exploiting optical forces and near-field light delivery in advanced actuation and control atthe smallest physical dimensions. Advancing light-driven nano- or micro......-actuation requires the optimization of optical forces and optical torques that, in turn, requires the optimization of the underlying light-matter interaction [1]. We have previously proposed and demonstrated micro-targeted light-delivery and the opto-mechanical capabilities of so-called wave-guided optical...

  15. TU-CD-304-05: 4Ï€ Non-Coplanar Radiotherapy: From Mathematical Modeling to Clinical Implementation

    International Nuclear Information System (INIS)

    Yu, V; Nguyen, D; Tran, A; Ruan, D; Cao, M; Kaprealian, T; Kupelian, P; Low, D; Sheng, K

    2015-01-01

    Purpose: To develop and clinically implement 4π radiotherapy, an inverse optimization platform that maximally utilizes non-coplanar intensity modulated radiotherapy (IMRT) beams to significantly improve critical organ sparing. Methods: A 3D scanner was used to digitize the human and phantom subject surfaces, which were positioned in the computer assisted design (CAD) model of a TrueBeam machine to create a virtual geometrical model, based on which, the feasible beam space was calculated for different tumor locations. Beamlets were computed for all feasible beams using convolution/superposition. A column generation algorithm was employed to optimize patient specific beam orientations and fluence maps. Optimal routing through all selected beams were calculated by a level set method. The resultant plans were converted to XML files and delivered to phantoms in the TrueBeam developer mode. Finally, 4π plans were recomputed in Eclipse and manually delivered to recurrent GBM patients. Results: Compared to IMRT utilizing manually selected beams and volumetric modulated arc therapy plans, markedly improved dosimetry was observed using 4π for the brain, head and neck, liver, lung, and prostate patients. The improvements were due to significantly improved conformality and reduced high dose spillage to organs mediolateral to the PTV. The virtual geometrical model was experimentally validated. Safety margins with 99.9% confidence in collision avoidance were included to the model based model accuracy estimates determined via 300 physical machine to phantom distance measurements. Automated delivery in the developer mode was completed in 10 minutes and collision free. Manual 4 π treatment on the GBM cases resulted in significant brainstem sparing and took 35–45 minutes including multiple images, which showed submillimeter cranial intrafractional motion. Conclusion: The mathematical modeling utilized in 4π is accurate to create and guide highly complex non-coplanar IMRT

  16. TU-CD-304-05: 4Ï€ Non-Coplanar Radiotherapy: From Mathematical Modeling to Clinical Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Yu, V; Nguyen, D; Tran, A; Ruan, D; Cao, M; Kaprealian, T; Kupelian, P; Low, D; Sheng, K [Department of Radiation Oncology, UCLA, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To develop and clinically implement 4π radiotherapy, an inverse optimization platform that maximally utilizes non-coplanar intensity modulated radiotherapy (IMRT) beams to significantly improve critical organ sparing. Methods: A 3D scanner was used to digitize the human and phantom subject surfaces, which were positioned in the computer assisted design (CAD) model of a TrueBeam machine to create a virtual geometrical model, based on which, the feasible beam space was calculated for different tumor locations. Beamlets were computed for all feasible beams using convolution/superposition. A column generation algorithm was employed to optimize patient specific beam orientations and fluence maps. Optimal routing through all selected beams were calculated by a level set method. The resultant plans were converted to XML files and delivered to phantoms in the TrueBeam developer mode. Finally, 4π plans were recomputed in Eclipse and manually delivered to recurrent GBM patients. Results: Compared to IMRT utilizing manually selected beams and volumetric modulated arc therapy plans, markedly improved dosimetry was observed using 4π for the brain, head and neck, liver, lung, and prostate patients. The improvements were due to significantly improved conformality and reduced high dose spillage to organs mediolateral to the PTV. The virtual geometrical model was experimentally validated. Safety margins with 99.9% confidence in collision avoidance were included to the model based model accuracy estimates determined via 300 physical machine to phantom distance measurements. Automated delivery in the developer mode was completed in 10 minutes and collision free. Manual 4 π treatment on the GBM cases resulted in significant brainstem sparing and took 35–45 minutes including multiple images, which showed submillimeter cranial intrafractional motion. Conclusion: The mathematical modeling utilized in 4π is accurate to create and guide highly complex non-coplanar IMRT

  17. Design of a CPW-Fed Band-Notched UWB Antenna Using a Feeder-Embedded Slotline Resonator

    Directory of Open Access Journals (Sweden)

    Amin M. Abbosh

    2008-01-01

    Full Text Available A complete design method for a compact uniplanar ultra-wideband antenna with subband rejection capability is presented. A slotline resonator is incorporated in the coplanar waveguide feeder of the antenna to act as a bandstop filter, hence enabling the rejection of any undesired band within the passband of the antenna. Two samples of the proposed antenna were designed and manufactured. One of the developed antennas does not contain a resonator, whereas the other contains a slotline resonator. The designed antennas feature a compact size of 27 mm × 27 mm. Results of the simulation and measurement show that the designed antennas have a bandwidth from 3 GHz to more than 11 GHz. The results also reveal that the use of the resonator in the feeder of the antenna efficiently rejects any undesired subband, such as the 4.9–5.9 GHz band assigned for IEEE802.11a and HIPERLAN/2. The gain of the antennas with the resonator is about 2.2 dBi at the passband, while it is less than −8 dBi at the rejected subband.

  18. Elliptical acoustic particle motion in underwater waveguides.

    Science.gov (United States)

    Dall'Osto, David R; Dahl, Peter H

    2013-07-01

    Elliptical particle motion, often encountered in acoustic fields containing interference between a source signal and its reflections, can be quantified by the degree of circularity, a vector quantity formulated from acoustic particle velocity, or vector intensity measurements. Acoustic analysis based on the degree of circularity is expected to find application in ocean waveguides as its spatial dependence relates to the acquisition geometry, water column sound speed, surface conditions, and bottom properties. Vector sensor measurements from a laboratory experiment are presented to demonstrate the depth dependence of both the degree of circularity and an approximate formulation based on vertical intensity measurements. The approximation is applied to vertical intensity field measurements made in a 2006 experiment off the New Jersey coast (in waters 80 m deep) to demonstrate the effect of sediment structure on the range dependence of the degree of circularity. The mathematical formulation presented here establishes the framework to readily compute the degree of circularity from experimental measurements; the experimental examples are provided as evidence of the spatial and frequency dependence of this fundamental vector property.

  19. Pascal Liquid Phase in Electronic Waveguides

    Science.gov (United States)

    Tomczyk, M.; Briggeman, M.; Tylan-Tyler, A.; Huang, M.; Tian, B.; Pekker, D.; Lee, J.-W.; Lee, H.; Eom, C.-B.; Levy, J.

    Clean one-dimensional electron transport has been observed in very few material systems. The development of exceptionally clean electron waveguides formed at the interface between complex oxides LaAlO3 and SrTiO3 enables low-dimensional transport to be explored with newfound flexibility. This material system not only supports ballistic 1D transport, but possesses a rich phase diagram and strong attractive electron-electron interactions which are not present in other solid-state systems. Here we report an unusual phenomenon in which quantized conductance increases by steps that themselves increase sequentially in multiples of e2 / h . The overall conductance exhibits a Pascal-like sequence: 1, 3, 6, 10... e2 / h , which we ascribe to ballistic transport of 1, 2, 3, 4 ... bunches of electrons. We will discuss how subband degeneracies can occur in non-interacting models that have carefully tuned parameters. Strong attractive interactions are required, however, for these subbands to lock together. This Pascal liquid phase provides a striking example of the consequences of strong attractive interactions in low-dimensional environments. We gratefully acknowledge financial support from AFOSR (FA9550-12-1- 0057 (JL) and FA9550-12-1-0342 (CBE)), ONR N00014-15-1-2847 (JL), and NSF DMR-1234096 (CBE).

  20. Optical properties of microcavities and patterned waveguides

    CERN Document Server

    Culshaw, I S

    2000-01-01

    electromagnetic fields. The theoretical and measured spectra are shown to be in excellent agreement. The fitting process enabled the full set of structural parameters to be determined. The photonic dispersions of the modes of the PWGs are shown to be closely related to the calculated band structure of an idealised photonic crystal waveguide (PCW) model, namely a PC of finite thickness clad on either side by perfectly reflecting walls. The photonic bands of the ideal 2-D PCW are of mixed polarisation character owing to TE-TM/TM-TE scattering processes. Strong evidence is found to support this in the reflectivity of the 2-D PWG. Polarisation mixing leads to an anti-crossing of photonic bands of the ideal 2-D PCW, and hence the appearance of heavy photon states, away from the boundaries of the 2-D Brillouin zone. Theoretically, the coupling of external radiation to such heavy photon states is shown to occur for the 2-D PWG. A series of new PWG structures employing thin metallic films are proposed in order to all...

  1. Efficient Multiphoton Generation in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    González-Tudela, A.; Paulisch, V.; Kimble, H. J.; Cirac, J. I.

    2017-05-01

    Engineering quantum states of light is at the basis of many quantum technologies such as quantum cryptography, teleportation, or metrology among others. Though, single photons can be generated in many scenarios, the efficient and reliable generation of complex single-mode multiphoton states is still a long-standing goal in the field, as current methods either suffer from low fidelities or small probabilities. Here we discuss several protocols which harness the strong and long-range atomic interactions induced by waveguide QED to efficiently load excitations in a collection of atoms, which can then be triggered to produce the desired multiphoton state. In order to boost the success probability and fidelity of each excitation process, atoms are used to both generate the excitations in the rest, as well as to herald the successful generation. Furthermore, to overcome the exponential scaling of the probability of success with the number of excitations, we design a protocol to merge excitations that are present in different internal atomic levels with a polynomial scaling.

  2. Logarithmic Slots Antennas Using Substrate Integrated Waveguide

    Directory of Open Access Journals (Sweden)

    Jahnavi Kachhia

    2015-01-01

    Full Text Available This paper represents new generation of slotted antennas for satellite application where the loss can be compensated in terms of power or gain of antenna. First option is very crucial because it totally depends on size of satellite so we have proposed the high gain antenna creating number of rectangular, trapezoidal, and I shape slots in logarithm size in Substrate Integrated Waveguide (SIW structure. The structure consists of an array of various shape slots antenna designed to operate in C and X band applications. The basic structures have been designed over a RT duroid substrate with dielectric constant of 2.2 and with a thickness of 0.508 mm. Multiple slots array and shape of slot effects have been studied and analyzed using HFSS (High Frequency Structure Simulator. The designs have been supported with its return loss, gain plot, VSWR, and radiation pattern characteristics to validate multiband operation. All the proposed antennas give gain more than 9 dB and return loss better than −10 dB. However, the proposed structures have been very sensitive to their physical dimensions.

  3. Broadband waveguide quantum memory for entangled photons.

    Science.gov (United States)

    Saglamyurek, Erhan; Sinclair, Neil; Jin, Jeongwan; Slater, Joshua A; Oblak, Daniel; Bussières, Félix; George, Mathew; Ricken, Raimund; Sohler, Wolfgang; Tittel, Wolfgang

    2011-01-27

    The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100 megahertz to 5 gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.

  4. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  5. Optical realization of multilevel adiabatic population transfer in curved waveguide arrays

    International Nuclear Information System (INIS)

    Longhi, S.

    2006-01-01

    Adiabatic transfer of light in tunneling-coupled waveguide arrays made of an odd number of waveguides with curved axis is proposed to mimic multilevel adiabatic population transfer of atoms or molecules driven by a counterintuitive pulse sequence

  6. Engineering spin-wave channels in submicrometer magnonic waveguides

    Directory of Open Access Journals (Sweden)

    XiangJun Xing

    2013-03-01

    Full Text Available Based on micromagnetic simulations and model calculations, we demonstrate that degenerate well and barrier magnon modes can exist concurrently in a single magnetic waveguide magnetized perpendicularly to the long axis in a broad frequency band, corresponding to copropagating edge and centre spin waves, respectively. The dispersion relations of these magnon modes clearly show that the edge and centre modes possess much different wave characteristics. By tailoring the antenna size, the edge mode can be selectively activated. If the antenna is sufficiently narrow, both the edge and centre modes are excited with considerable efficiency and propagate along the waveguide. By roughening the lateral boundary of the waveguide, the characteristics of the relevant channel can be easily engineered. Moreover, the coupling of the edge and centre modes can be conveniently controlled by scaling the width of the waveguide. For a wide waveguide with a narrow antenna, the edge and centre modes travel relatively independently in spatially-separate channels, whereas for a narrow strip, these modes strongly superpose in space. These discoveries might find potential applications in emerging magnonic devices.

  7. Corrugated Waveguide Mode Content Analysis Using Irradiance Moments.

    Science.gov (United States)

    Jawla, Sudheer K; Shapiro, Michael A; Idei, Hiroshi; Temkin, Richard J

    2014-10-21

    We present a novel, relatively simple method for determining the mode content of the linearly polarized modes of a corrugated waveguide using the moments of the intensity pattern of the field radiated from the end of the waveguide. This irradiance moment method is based on calculating the low-order irradiance moments, using measured intensity profiles only, of the radiated field from the waveguide aperture. Unlike the phase retrieval method, this method does not use or determine the phase distribution at the waveguide aperture. The new method was benchmarked numerically by comparison with sample mode mixtures. The results predict less than ±0.7% error bar in the retrieval of the mode content. The method was also tested using high-resolution experimental data from beams radiated from 63.5 mm and 19 mm corrugated waveguides at 170 and 250 GHz, respectively. The results showed a very good agreement of the mode content retrieved using the irradiance moment method versus the phase retrieval technique. The irradiance moment method is most suitable for cases where the modal power is primarily in the fundamental HE 11 mode, with <8% of the power in high-order modes.

  8. Nano-optical conveyor belt with waveguide-coupled excitation.

    Science.gov (United States)

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  9. Controlling guided modes in plasmonic metal/dielectric multilayer waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Wickremasinghe, N.; Wang, X.; Wagner, H. P. [Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Thompson, J. [Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Department of Physics, Xavier University, Cincinnati, Ohio 45207 (United States); Schmitzer, H. [Department of Physics, Xavier University, Cincinnati, Ohio 45207 (United States)

    2015-06-07

    We investigate the mode properties of planar dielectric aluminum-quinoline (Alq{sub 3}) multilayer waveguides comprising one single or three equally spaced embedded nanometer-thin (∼10 nm thick) Alq{sub 3}-Mg{sub 0.9}:Ag{sub 0.1} composite metal-island layers. The plasmonic waveguides were fabricated by organic molecular beam deposition. Transverse magnetic (TM) and transverse electric (TE) modes were selectively excited using the m-line method. The symmetric plasmonic TM{sub 0} mode was launched in all waveguides and—in addition—two higher order plasmonic TM{sub 1} and TM{sub 2} modes were generated in waveguides comprising three metal layers. Other TM modes have hybrid dielectric-plasmonic characters, showing an increased effective refractive index when one electric field antinode is close to a metallic layer. TM modes which have all their antinode(s) in the dielectric layers propagate essentially like dielectric modes. TE modes with antinode(s) at the position of the metal layer(s) are strongly damped while the losses are low for TE modes comprising a node at the position of the composite metal film(s). The possibility to control the effective refractive index and the losses for individual hybrid plasmonic-dielectric TM and dielectric TE modes opens new design opportunities for mode selective waveguides and TM-TE mode couplers.

  10. Fluorescence based fiber optic and planar waveguide biosensors. A review

    Energy Technology Data Exchange (ETDEWEB)

    Benito-Peña, Elena [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Valdés, Mayra Granda [Department of Analytical Chemistry, Faculty of Chemistry, University of La Habana, 10400 La Habana (Cuba); Glahn-Martínez, Bettina [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain); Moreno-Bondi, Maria C., E-mail: mcmbondi@quim.ucm.es [Department of Analytical Chemistry, Faculty of Chemistry, Complutense University, 28040 Madrid (Spain)

    2016-11-02

    The application of optical biosensors, specifically those that use optical fibers and planar waveguides, has escalated throughout the years in many fields, including environmental analysis, food safety and clinical diagnosis. Fluorescence is, without doubt, the most popular transducer signal used in these devices because of its higher selectivity and sensitivity, but most of all due to its wide versatility. This paper focuses on the working principles and configurations of fluorescence-based fiber optic and planar waveguide biosensors and will review biological recognition elements, sensing schemes, as well as some major and recent applications, published in the last ten years. The main goal is to provide the reader a general overview of a field that requires the joint collaboration of researchers of many different areas, including chemistry, physics, biology, engineering, and material science. - Highlights: • Principles, configurations and fluorescence techniques using fiber optic and planar waveguide biosensors are discussed. • The biorecognition elements and sensing schemes used in fiber optic and planar waveguide platforms are reviewed. • Some major and recent applications of fiber optic and planar waveguide biosensors are introduced.

  11. Silicon Nitride Background in Nanophotonic Waveguide Enhanced Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ashim Dhakal

    2017-02-01

    Full Text Available Recent studies have shown that evanescent Raman spectroscopy using a silicon nitride (SiN nanophotonic waveguide platform has higher signal enhancement when compared to free-space systems. However, signal-to-noise ratio from the waveguide at a low analyte concentration is constrained by the shot-noise from the background light originating from the waveguide itself. Hence, understanding the origin and properties of this waveguide background luminescence (WGBL is essential to developing mitigation strategies. Here, we identify the dominating component of the WGBL spectrum composed of a broad Raman scattering due to momentum selection-rule breaking in amorphous materials, and several peaks specific to molecules embedded in the core. We determine the maximum of the Raman scattering efficiency of the WGBL at room temperature for 785 nm excitation to be 4.5 ± 1 × 10−9 cm−1·sr−1, at a Stokes shift of 200 cm−1. This efficiency decreases monotonically for higher Stokes shifts. Additionally, we also demonstrate the use of slotted waveguides and quasi-transverse magnetic polarization as some mitigation strategies.

  12. Coplanar surface barrier discharge ignited in water vapor—a selective source of OH radicals proved by (TA)LIF measurement

    Science.gov (United States)

    Procházka, V.; Tučeková, Z.; Dvořák, P.; Kováčik, D.; Slavíček, P.; Zahoranová, A.; Voráč, J.

    2018-01-01

    Coplanar dielectric barrier discharge (DBD) was ignited in pure water vapor at atmospheric pressure in order to generate highly oxidizing plasma with one specific type of reactive radicals. In order to prevent water condensation the used plasma reactor was heated to 120 {}\\circ C. The composition of the radical species in the discharge was studied by methods based on laser-induced fluorescence (LIF) and compared with analogous measurements realized in the same coplanar DBD ignited in air. Fast collisional processes and laser-surface interaction were taken into account during LIF data processing. It was found that coplanar DBD ignited in water vapor produces hydroxyl (OH) radicals with concentration in the order of 1020 m-3, which is 10× higher than the value measured in discharge in humid air (40% relative humidity at 21 {}\\circ C). The concentration of atomic hydrogen radicals in the DBD ignited in water vapor was below the detection limit, which proves that the generation of oxidizing plasma with dominance of one specific type of reactive radicals was achieved. The temporal evolution, spatial distribution, power dependence and rotational temperature of the OH radicals was determined in the DBD ignited in both water vapor and air.

  13. Dioxin, dibenzofuran, and coplanar PCB levels in Laotian blood and milk from agent orange-sprayed and nonsprayed areas, 2001.

    Science.gov (United States)

    Schecter, Arnold; Pavuk, Marian; Päpke, Olaf; Ryan, John Jake

    2003-11-14

    Agent Orange, a phenoxyherbicide contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), was used by American military forces during the United States-Vietnam war between 1962 and 1971 primarily as a defoliant to destroy forests where enemy troops might find cover. Agent Orange was used mainly in Vietnam, but also to a lesser extent in Laos and Cambodia. In Laos, there have been no prior studies of TCDD contamination from Agent Orange, despite known defoliation and documented records of Agent Orange spraying. This article presents findings of TCDD in human blood and milk from two geographic areas in Laos: Vientiane, a nonsprayed area, and Sepone, an Agent Orange-sprayed area. German and Canadian laboratories used high-resolution gas chromatography-mass spectrometry to measure 7 dioxin, 10 dibenzofuran, and 4 non-ortho or coplanar polychlorinated biphenyls in Laotian blood and milk samples. Most subjects tested in this Laos Ministry of Health Study showed low dioxin and dibenzofuran levels, consistent with what would be expected in a primarily rural nonindustrial country. These findings are consistent with relatively low dioxin and dibenzofuran levels recently found in food from these same areas. The chemically and toxicologically related non-ortho PCBs were measured but were found at low levels compared to specimens from other countries, presumably because of less industrialization and industrial pollution in Laos.

  14. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    Energy Technology Data Exchange (ETDEWEB)

    Morley, Neil B. [Univ. of California, Los Angeles, CA (United States)

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along {rvec B}. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization.

  15. Template-assisted selective epitaxy of III–V nanoscale devices for co-planar heterogeneous integration with Si

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, H., E-mail: sih@zurich.ibm.com; Borg, M.; Moselund, K.; Cutaia, D.; Riel, H. [IBM Research – Zurich, 8803 Rüschlikon (Switzerland); Gignac, L.; Breslin, C. M.; Bruley, J. [IBM Research – T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2015-06-08

    III–V nanoscale devices were monolithically integrated on silicon-on-insulator (SOI) substrates by template-assisted selective epitaxy (TASE) using metal organic chemical vapor deposition. Single crystal III–V (InAs, InGaAs, GaAs) nanostructures, such as nanowires, nanostructures containing constrictions, and cross junctions, as well as 3D stacked nanowires were directly obtained by epitaxial filling of lithographically defined oxide templates. The benefit of TASE is exemplified by the straightforward fabrication of nanoscale Hall structures as well as multiple gate field effect transistors (MuG-FETs) grown co-planar to the SOI layer. Hall measurements on InAs nanowire cross junctions revealed an electron mobility of 5400 cm{sup 2}/V s, while the alongside fabricated InAs MuG-FETs with ten 55 nm wide, 23 nm thick, and 390 nm long channels exhibit an on current of 660 μA/μm and a peak transconductance of 1.0 mS/μm at V{sub DS} = 0.5 V. These results demonstrate TASE as a promising fabrication approach for heterogeneous material integration on Si.

  16. Fabrication of Buried Co-Planar Metal-Insulator-Metal Nanojunctions with a Gap Lower than 10nm

    Science.gov (United States)

    Rousset, V.; Joachim, C.; Itoua, S.; Rousset, B.; Fabre, N.

    1995-12-01

    An improvement of a process to fabricate co-planar metal-insulator-metal nanojunctions is presented to reach a gap length much lower than 10 nm using a 20 keV e-beam and an AuPd lift-off. The electrodes of the nanojunction are less than 100 nm in width and are buried in the SiO2 substrate. For the 8 nm nanojunctions, the gap is still filled with SiO2 if care is taken about the SiO2 etching step of the process. Un procédé de fabrication est proposé pour obtenir des nanojonctions métal-isolant-métal co-planaires d'une largeur d'isolant bien inférieure à 10nm en utilisant un masqueur électronique à 20keV et un “lift-off” à l'or-palladium. Les électrodes de la nanojonction enterrées dans la silice ont une largeur de moins de 100nm et sont distantes de 8nm. En optimisant l'étape de sous gravure, il est possible de conserver de la silice comme isolant entre les électrodes.

  17. Numerical and experimental modeling of liquid metal thin film flows in a quasi-coplanar magentic field

    International Nuclear Information System (INIS)

    Morley, N.B.

    1994-01-01

    Liquid metal film protection of plasma-facing surfaces in fusion reactors is proposed in an effort to counter the adverse effects of high heat and particle fluxes from the burning plasma. Concerns still exist about establishing the required flow in presence of strong magnetic fields and plasma momentum flux typical of a reactor environment. In this work, the flow behavior of the film is examined under such conditions. Analysis of MHD equations as they apply to liquid metal flows with a free surface in the fully-developed limit was undertaken. Solution yields data for velocity profiles and uniform film heights vs key design parameters (channel size, magnetic field magnitude/orientation, channel slope, wall conductivity). These results are compared to previous models to determine accuracy of simplifying assumptions, in particular Hartmann averaging of films along rvec B. Effect of a plasma momentum flux on the thin films is also analyzed. The plasma momentum is strong enough in the cases examined to seriously upset the film, especially for lighter elements like Li. Ga performed much better and its possible use is bolstered by calculations. In an experiment in the MeGA-loop MHD facility, coplanar, wide film flow was found to be little affected by the magnetic field due to the elongated nature of the film. Both MHD drag and partial laminarization are observed, supporting the fully- developed film model predictions of the onset of MHD drag and duct flow estimations for flow laminarization

  18. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Science.gov (United States)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu; Gong, Lijun; He, Wei

    2017-07-01

    The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O2sbnd CF4 low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of Csbnd O, Osbnd Cdbnd O, Cdbnd O and sbnd NO2 by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  19. Improving wettability of photo-resistive film surface with plasma surface modification for coplanar copper pillar plating of IC substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jing; Wang, Chong; Chen, Yuanming; Wang, Shouxu; Hong, Yan; Zhang, Huaiwu [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Gong, Lijun [Research and Development Department, Guangzhou Fastprint Circuit Tech Co., Ltd., Guangzhou 510663 (China); He, Wei, E-mail: heweiz@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research and Development Department, Guangdong Guanghua Sci-Tech Co., Ltd., Shantou 515000 (China)

    2017-07-31

    Highlights: • Air atmosphere plasmacould generatehydrophilic groups of photo-resistive film. • Better wettability of photo-resistive filmled tohigher plating uniformity of copper pillars. • New flow isreduced cost, simplified process and elevated productivity. - Abstract: The wettability of the photo-resistive film (PF) surfaces undergoing different pretreatments including the O{sub 2}−CF{sub 4} low-pressure plasma (OCLP) and air plasma (AP), is investigated by water contact angle measurement instrument (WCAMI) before the bottom-up copper pillar plating. Chemical groups analysis performed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectra (XPS) shows that after the OCLP and wash treatment, the wettability of PF surface is attenuated, because embedded fluorine and decreased oxygen content both enhance hydrophobicity. Compared with OCLP treatment, the PF surface treatment by non-toxic air plasma displays features of C−O, O−C=O, C=O and −NO{sub 2} by AIR-FTIR and XPS, and a promoted wettability by WCAM. Under the identical electroplating condition, the surface with a better wettability allows electrolyte to spontaneously soak all the places of vias, resulting in improved copper pillar uniformity. Statistical analysis of metallographic data shows that more coplanar and flat copper pillars are achieved with the PF treatment of air plasma. Such modified copper-pillar-plating technology meets the requirement of accurate impedance, the high density interconnection for IC substrates.

  20. Pressure-independent point in current-voltage characteristics of coplanar electrode microplasma devices operated in neon

    Science.gov (United States)

    Meng, Lingguo; Xing, Jianping; Liang, Zhihu; Liu, Chunliang; Lin, Zhaojun

    2010-05-01

    We introduce the idea of a pressure-independent point (PIP) in a group of current-voltage curves for the coplanar electrode microplasma device (CEMPD) at neon pressures ranging from 15 to 95 kPa. We studied four samples of CEMPDs with different sizes of the microcavity and observed the PIP phenomenon for each sample. The PIP voltage depends on the area of the microcavity and is independent of the height of the microcavity. The PIP discharge current, IPIP, is proportional to the volume (Vol) of the microcavity and can be expressed by the formula IPIP=IPIP0+D×Vol. For our samples, IPIP0 (the discharge current when Vol is zero) is about zero and D (discharge current density) is about 3.95 mA mm-3. The error in D is 0.411 mA mm-3 (less than 11% of D). When the CEMPD operates at VPIP, the discharge current is quite stable under different neon pressures.

  1. Effect of Pre-Fatigue on the Monotonic Deformation Behavior of a Coplanar Double-Slip-Oriented Cu Single Crystal

    Directory of Open Access Journals (Sweden)

    Xiao-Wu Li

    2016-11-01

    Full Text Available The [ 2 ¯ 33 ] coplanar double-slip-oriented Cu single crystals were pre-fatigued up to a saturation stage and then uniaxially tensioned or compressed to fracture. The results show that for the specimen pre-fatigued at a plastic strain amplitude γpl of 9.2 × 10−4, which is located within the quasi-plateau of the cyclic stress-strain (CSS curve, its tensile strength and elongation are coincidently improved, showing an obvious strengthening effect by low-cycle fatigue (LCF training. However, for the crystal specimens pre-fatigued at a γpl lower or higher than the quasi-plateau region, due to a low pre-cyclic hardening or the pre-induction of fatigue damage, no marked strengthening effect by LCF training occurs, and even a weakening effect by LCF damage takes place instead. In contrast, the effect of pre-fatigue deformation on the uniaxial compressive behavior is not so significant, since the compressive deformation is in a stress state more beneficial to the ongoing plastic deformation and it is insensitive to the damage induced by pre-cycling. Based on the observations and comparisons of deformation features and dislocation structures in the uniaxially deformed [ 2 ¯ 33 ] crystal specimens which have been pre-fatigued at different γpl, the micro-mechanisms for the effect of pre-fatigue on the static mechanical behavior are discussed.

  2. Break up of bound-N-spatial-soliton in a ramp waveguide

    NARCIS (Netherlands)

    Suryanto, A.; van Groesen, Embrecht W.C.

    2002-01-01

    We present an analytical and numerical investigation of the propagation of spatial solitons in a nonlinear waveguide with ramp linear refractive index profile (ramp waveguide). For the propagation of a single soliton beam in a ramp waveguide, the particle theory shows that the soliton beam follows a

  3. Conical reflection of light during free-space coupling into a symmetrical metal-cladding waveguide.

    Science.gov (United States)

    Zheng, Yuanlin; Cao, Zhuangqi; Chen, Xianfeng

    2013-09-01

    Novel conical reflection of light by a thick three-layered metal-clad optical waveguide is observed. A symmetrical metal-cladding optical waveguide is used, which exhibits extraordinary conical reflection during free-space coupling of light to the waveguide. The phenomenon is attributed to the leakage of excited ultrahigh-order guided modes and their inter- and intramode coupling interaction.

  4. Nonclassical statistics of intracavity coupled chi((2)) waveguides: The quantum optical dimer

    DEFF Research Database (Denmark)

    Bache, Morten; Gaididei, Yuri Borisovich; Christiansen, Peter Leth

    2003-01-01

    A model is proposed where two chi((2)) nonlinear waveguides are contained in a cavity suited for second-harmonic generation. The evanescent wave coupling between the waveguides is considered as weak, and the interplay between this coupling and the nonlinear interaction within the waveguides gives...

  5. Coaxial end-launched and microstrip to partial H-plane waveguide transitions

    CSIR Research Space (South Africa)

    Kloke, KH

    2015-08-01

    Full Text Available -plane waveguide has previously been proposed that has only one quarter of the cross sectional area of a conventional waveguide. However, only limited information relating to the feeding of such waveguides is available. This paper presents two types of transitions...

  6. TXRF spectrometer on base of the waveguide-resonator with specific design

    Science.gov (United States)

    Lukianchenko, E.; Egorov, V.; Rudenko, V.; Egorov, E.

    2016-07-01

    This work presents original scheme of the X-ray total reflection spectrometer with the planar X-ray waveguide-resonator (PXWR) with arranged specimen inside of the flux of the waveguide-resonator. Experiment show this X-ray optical scheme gives more effective using the planar waveguide-resonator for purpose of TXRF.

  7. Monitoring of DNA molecules in a lab on a chip with femtosecond laser written waveguides

    NARCIS (Netherlands)

    Pollnau, Markus; Dongre, C.; Dekker, R; Dekker, R.; Hoekstra, Hugo; Martinez-Vazquez, R.; Osellame, R.; Ramponi, R.; Cerullo, G.; van Weeghel, R.; Besselink, G.A.J.; van den Vlekkert, H.H.

    Using femtosecond laser writing, optical waveguides were monolithically integrated into a commercial microfluidic lab-on-a-chip device, with the waveguides intersecting a microfluidic channel. Continuous-wave laser excitation through these optical waveguides confines the excitation window to a width

  8. Multimode polymer waveguides for high-speed optical interconnects

    Science.gov (United States)

    Bamiedakis, N.; Ingham, J. D.; Penty, R. V.; White, I. H.; DeGroot, J. V.; Clapp, T. V.

    2017-11-01

    Polymeric multimode waveguides are of particular interest for optical interconnections in short-reach data links. In some applications, for example in space-borne systems, the use of advanced materials with outstanding performance in extreme environments is required (temperature and radiation). In this paper therefore, we present novel siloxane polymers suitable for these applications. The materials are used to form straight, 90° bent and spiral polymer waveguides by low-cost conventional photolithographic techniques on FR4 substrates. The samples have been tested to investigate their propagation characteristics and demonstrate their potential for high-speed data links. Overall, there is strong evidence that these multimode waveguides can be successfully employed as high-speed short-reach data links. Their excellent thermal properties, their low cost and the simple fabrication process indicate their suitability for a wide range of space applications.

  9. Highly efficient optical parametric generation in proton exchanged PPLN waveguides

    CERN Document Server

    Chanvillard, L; Baldi, P; De Micheli, M; Ostrowsky, D B; Huang, L; Bamford, G

    1999-01-01

    Summary form only given. Parametric fluorescence, amplification, and oscillation in PPLN waveguides have already been demonstrated. In all previous experiments, the measured efficiencies were smaller than the theoretically predicted values since the waveguide fabrication process utilized, annealed proton exchange (APE) can reduce or even destroy the nonlinear coefficient and/or the periodic domain orientation in a portion of the guiding structure. In the experiment reported here, we used a 2 cm long, Z-cut PPLN with a 18 mu m domain inversion period. The waveguides are created using a direct proton exchange process in a highly diluted melt, which induces no crystallographic phase transition. This allows preserving both the nonlinear coefficient and the domain orientation while fully benefiting from the power confinement associated with the guided wave configuration. (4 refs).

  10. A broadband waveguide for protein crystallography under intense microwave fields

    Science.gov (United States)

    Weissenborn, R.; Reinhardt, T.; Hansen, V.; Maret, G.; Gisler, T.

    2004-12-01

    We present a slab-line waveguide whose geometry is optimized for wide-angle x-ray diffraction (XRD) experiments on protein crystals during irradiation with intense microwave fields. Characterization of the waveguide transmission and reflectivity (using time-domain reflectometry) and of the electric field distribution inside the waveguide (using finite-difference time-domain calculations) shows that the present device has a broad bandwidth from below 0.5 to 18 GHz, allowing one to perform frequency-dependent XRD studies with a well-defined transverse mode structure and negligible reflection losses. As shown with a specific example, our device provides a simple way to couple microwave irradiation experiments with high-resolution x-ray diffraction measurements from millimeter-size crystalline samples. The present design might prove useful for systematic studies of microwave effects on protein structure and dynamics.

  11. Waveguide volume probe for magnetic resonance imaging and spectroscopy

    DEFF Research Database (Denmark)

    2015-01-01

    The present disclosure relates to a probe for use within the field of nuclear magnetic resonance, such as magnetic resonance imaging (MRI), and magnetic resonance spectroscopy (MRS)). One embodiment relates to an RF probe for magnetic resonance imaging and/or spectroscopy comprising a conductive...... non-magnetic hollow waveguide having an internal volume and at least one open end, one or more capacitors and at least a first conductive non-magnetic wire, wherein said first conductive wire connects at least one of said one or more capacitors to opposite walls of one open end of the waveguide...... and wherein said first conductive wire and said one or more capacitors are located outside of said internal volume, wherein the internal volume of the hollow waveguide defines an imaging volume or sample volume....

  12. Proton beam writing of erbium-doped waveguide amplifiers

    International Nuclear Information System (INIS)

    Sum, T.C.; Bettiol, A.A.; Liu, K.; Ren, M.Q.; Pun, E.Y.B.; Venugopal Rao, S.; Kan, J.A. van; Watt, F.

    2005-01-01

    Buried channel waveguide amplifiers in Er 3+ -Yb 3+ co-doped phosphate glasses were fabricated by proton beam writing using a focused sub-micron beam of 2.0 MeV protons with a fluence ranging from 0.5-6.0 x 10 15 particles/cm 2 . The waveguides were located at a depth of ∼38 μm beneath the surface. Above a threshold fluence of 3.0 x 10 15 particles/cm 2 , a negative refractive index change occurs, preventing any light confinement in the channel. A peak net gain of ∼1.57 dB/cm was measured for waveguides fabricated with a fluence of ∼0.9 x 10 15 particles/cm 2 . These measurements were performed at 1.534 μm signal wavelength, with 100 mW pump power at 975 nm wavelength

  13. Distributed temperature sensing using a SPIRAL configuration ultrasonic waveguide

    Science.gov (United States)

    Periyannan, Suresh; Balasubramaniam, Krishnan

    2017-02-01

    Distributed temperature sensing has important applications in the long term monitoring of critical enclosures such as containment vessels, flue gas stacks, furnaces, underground storage tanks and buildings for fire risk. This paper presents novel techniques for such measurements, using wire in a spiral configuration and having special embodiments such a notch for obtaining wave reflections from desired locations. Transduction is performed using commercially available Piezo-electric crystal that is bonded to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes were employed. Time of fight (TOF) differences between predefined reflectors located on the waveguides are used to infer temperature profile in a chamber with different temperatures. The L(0,1) wave mode (pulse echo approach) was generated/received in a spiral waveguide at different temperatures for this work. The ultrasonic measurements were compared with commercially available thermocouples.

  14. Electromagnetic waves in uniaxial anisotropic chiral waveguides in magnetized plasma

    Science.gov (United States)

    Ghaffar, A.; Alkanhal, Majeed A. S.

    2015-07-01

    The characteristics of guided modes in circular waveguides of a uniaxial anisotropic chiral core and a cladding filled with anisotropic plasma are presented. The cladding region is assumed to be infinitely extended with an external applied magnetic field oriented along the direction of propagation in the waveguide. The characteristics equation for the modes in this waveguide are obtained. The variations of the propagation properties with the plasma parameters, chiral parameters, and the cyclotron frequency of plasma have been investigated. Particularly, the effects of the chirality and the cyclotron frequency of plasma on the magnitude and orientation of the energy flux of the guided modes for three kinds of uniaxial anisotropic chiral media have been numerically investigated. Comparisons of the computed results of the presented formulations with published results for some special cases confirm the accuracy of the presented analyses.

  15. Mini-stop bands in single heterojunction photonic crystal waveguides

    KAUST Repository

    Shahid, N.

    2013-01-01

    Spectral characteristics of mini-stop bands (MSB) in line-defect photonic crystal (PhC) waveguides and in heterostructure PhC waveguides having one abrupt interface are investigated. Tunability of the MSB position by air-fill factor heterostructure PhC waveguides is utilized to demonstrate different filter functions, at optical communication wavelengths, ranging from resonance-like to wide band pass filters with high transmission. The narrowest filter realized has a resonance-like transmission peak with a full width at half maximum of 3.4 nm. These devices could be attractive for coarse wavelength selection (pass and drop) and for sensing applications. 2013 Copyright 2013 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License.

  16. Wet-etched phononic crystal waveguiding on GaAs

    Science.gov (United States)

    Muzar, Edward; Azodi Aval, Golnaz; Stotz, James A. H.

    2018-01-01

    A wet-etched phononic crystal waveguide in GaAs with approximately two micron deep inclusions is studied both numerically and experimentally for controlled surface acoustic wave propagation. Numerically, the phononic crystal was modelled using the finite element method (FEM) with COMSOL Multiphysics, and the surface displacement of the acoustic waves was measured using optical interferometry. The computed filter response of the phononic crystal confirmed that the phononic crystal was an effective stop band filter in the interval of 400 MHz and 450 MHz. An L1 linear defect waveguide with a stepped funnel entrance design is shown to perform well at a surface acoustic wave frequency of 410.344 MHz and in agreement to simulated results. The phononic crystal waveguide system shows promise for use in acoustic control of GaAs-based quantum nanostructures.

  17. Attenuation Coefficient of Single-Mode Periodic Waveguides

    Science.gov (United States)

    Baron, A.; Mazoyer, S.; Smigaj, W.; Lalanne, P.

    2011-10-01

    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient α=-⟨ln⁡(T)⟩/L. In this Letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming at measuring α, is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviors.

  18. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  19. Controlling Anderson localization in disordered photonic crystal waveguides

    DEFF Research Database (Denmark)

    Garcia-Fernández, David; Smolka, Stephan; Stobbe, Søren

    2010-01-01

    In most experiments on Anderson localization so far, only completely random systems without any long-range correlation between the scattering sites have been used, meaning that the Anderson localized modes cannot be controlled. Strongly confined modes were recently observed in the slow-light regime...... of a disordered photonic crystal waveguide and attributed to Anderson localization. We have tested this hypothesis by measuring the light localization length, ξloc, in a disordered photonic crystal waveguide and checked explicitly the criterion of one dimensional Anderson localization that ξloc is shorter than...... the waveguide length LS. Our measurements demonstrate for the first time the close relation between light localization and density of states, which can be used ultimately for controlling Anderson localized modes....

  20. Analysis and optimization of waveguide multiapplicator hyperthermia systems.

    Science.gov (United States)

    Boag, A; Leviatan, Y; Boag, A

    1993-09-01

    A method is proposed for determining the excitation coefficients of an antenna array operating in a large rectangular waveguide and used as a hyperthermia system. The excitation coefficients of the array elements are optimized for attaining an improved specific absorption rate (SAR) distribution around a deep-seated tumor. The method is applied to a two-dimensional problem of a piecewise homogeneous post in a waveguide representing a section of the human torso. The array is operating below the cutoff frequency of the dominant mode of the waveguide. Numerical simulations have been performed to check the effectiveness of this approach. The results show that by using the proposed optimization method, SAR distributions can be improved.

  1. Miniaturized ultra-low loss subwavelength waveguide at terahertz frequency

    Science.gov (United States)

    Baradaran Ghasemi, Amir H.; Latifi, Hamid

    2016-04-01

    Compact low-loss terahertz waveguides are crucial in integrating the terahertz devices in the newly emerging field of terahertz photonics. One of the promising structures used for this purpose are photonic crystal waveguides. However, device compactness is limited due to diffraction. This study deals with the possibility of going beyond the diffraction-limited property of a photonic crystal. We demonstrate, numerically, terahertz wave-guiding with up to subwavelength confinement factor of λ 2/ (mode surface)  =  306 in a 2D structure consisting of square lattice of ionic cylinders in an air matrix. The total loss can be further mitigated due to an increase of spectral width of photonic band gap in a dispersive structure compared to that of an otherwise non-dispersive structure. According to the results, the square-lattice geometry supports TE-polarized guided modes with higher confinement factor compared with that of TM-polarized guided modes.

  2. FED baseline engineering studies report

    Energy Technology Data Exchange (ETDEWEB)

    Sager, P.H.

    1983-04-01

    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcing between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept.

  3. FED baseline engineering studies report

    International Nuclear Information System (INIS)

    Sager, P.H.

    1983-04-01

    Studies were carried out on the FED Baseline to improve design definition, establish feasibility, and reduce cost. Emphasis was placed on cost reduction, but significant feasibility concerns existed in several areas, and better design definition was required to establish feasibility and provide a better basis for cost estimates. Design definition and feasibility studies included the development of a labyrinth shield ring concept to prevent radiation streaming between the torus spool and the TF coil cryostat. The labyrinth shield concept which was developed reduced radiation streaming sufficiently to permit contact maintenance of the inboard EF coils. Various concepts of preventing arcing between adjacent shield sectors were also explored. It was concluded that installation of copper straps with molybdenum thermal radiation shields would provide the most reliable means of preventing arcing. Other design studies included torus spool electrical/structural concepts, test module shielding, torus seismic response, poloidal conditions in the magnets, disruption characteristics, and eddy current effects. These additional studies had no significant impact on cost but did confirm the feasibility of the basic FED Baseline concept

  4. Evaluation of mitogen-induced responses in marine mammal and human lymphocytes by in-vitro exposure of butyltins and non-ortho coplanar PCBs

    International Nuclear Information System (INIS)

    Nakata, H.; Sakakibara, A.; Kanoh, M.; Kudo, S.; Watanabe, H.; Nagai, N.; Miyazaki, N.; Asano, Y.; Tanabe, S.

    2002-01-01

    Butyltins may affect the immune response in marine mammals. - The effects of exposure to butyltin compounds (BTs: tributyltin; TBT, dibutyltin; DBT and monobutyltin; MBT) and non-ortho coplanar PCBs (IUPAC 77, 126 and 169) on marine mammals and human lymphocyte were evaluated. Peripheral blood mononuclear cells (PBMCs) isolated from Dall's porpoises (Phocoenoides dalli), bottlenose dolphins (Tursiops truncatus), a California sealion (Zalophus californianus), a larga seal (Phoca largha) and humans (Homo sapiens) were exposed at varying concentrations of BTs and coplanar PCBs. Concanavalin A (Con A)-stimulated mitogenesis found significantly suppressed (P<0.01) when the cells were exposed at 300 nM (89 ng/ml) of TBT and 330 nM of DBT (77 ng/ml), while MBT showed little cytotoxicity at treatment levels of up to 3600 nM (620 ng/ml). BTs concentrations in the liver of Dall's porpoises from Japanese coastal waters ranged between 81-450 ng/g for TBT and 200-1100 ng/g (wet wt.) for DBTs, which is greater than the cytotoxic levels registered in this study. In contrast, non-ortho coplanar PCBs did not suppress cell proliferation at concentrations of up to 30 nM (10 ng/ml). The residue levels of coplanar PCBs in the blubber of Dall's porpoises were 0.12-1.3 ng/g, which were one order of lower than those levels that do cell proliferation. When cells were exposed to a mixture of TBT/DBTand coplanar PCBs, the proliferation was significantly reduced to 33 nM DBT plus 34 nM CB-77 and 33 nM DBT plus 28 nM CB-169 mixtures, respectively. The investigations relating the contaminant-induced immunosuppression in marine mammals have been focused on persistent organochlorines such as PCBs, pesticides and dioxin compounds. However, this study suggested the possibility of BTs could also pose a serious threat to the immune functions in free-ranging marine mammals and humans

  5. INVESTIGATION OF DYNAMIC STABILITY OF FLEXIBLE WAVEGUIDES FOR ULTRASONIC THROMBECTOMY

    Directory of Open Access Journals (Sweden)

    D. A. Stepanenko

    2011-01-01

    Full Text Available The paper presents results of mathematical modelling of dynamic stability of flexible ultrasonic waveguides applied in engineering and medicine, particularly, in minimally-invasive surgery. By means of the Bubnov-Galerkin method an equation of parametric flexural vibrations of a waveguide is reduced to the Mathieu equation. Stability of the equation solutions is determined by values of its coefficients and may be represented graphically by means of the Ince-Strutt diagram. Parameters of the Mathieu equation determining the stability of its solution are determined by means of finite element method using ANSYS software and APDL programming language. 

  6. Bragg Reflection Waveguide: Anti-Mirror Reflection and Light Slowdown

    OpenAIRE

    Kozlov, G. G.; Zapasskii, V. S.; Kapitonov, Yu. V.; Ovsyankin, V. V.

    2010-01-01

    The effect of the light group velocity reduction in dielectric Bragg reflection waveguide structures (SiO$_2$/TiO$_2$) in the vicinity of the cutoff frequency is studied experimentally. The effect of anti-mirror reflection, specific for the Bragg reflection waveguides, is described and employed for detection of "slow light". The experiments were performed with the use of the Ti:sapphire laser pulses ~ 100 fs in length. The group index $n_g \\sim$ 30 with a fractional pulse delay (normalized to...

  7. Mid infrared supercontinuum generation from chalcogenide glass waveguides and fibers

    DEFF Research Database (Denmark)

    Luther-Davies, Barry; Yu, Yi; Zhang, Bin

    2015-01-01

    I report work on mid-infrared super-continuum generation in chalcogenide fibers and waveguides pumped by 320fsec pulses at 21MHz in the 3-4.6µm range. Average powers of ≈20mW were produced with spectral coverage from <2µm to >11µm.......I report work on mid-infrared super-continuum generation in chalcogenide fibers and waveguides pumped by 320fsec pulses at 21MHz in the 3-4.6µm range. Average powers of ≈20mW were produced with spectral coverage from 11µm....

  8. Single-mode optical-waveguide fiber coupler.

    Science.gov (United States)

    Noda, J; Mikami, O; Minakata, M; Fukuma, M

    1978-07-01

    A single-mode fiber coupler to the Ti diffused LiNbO(3) strip waveguide has been devised. The influences of three axial displacements and two angular misalignments on the coupling efficiency have been investigated at 6328-A wavelength. The coupler has a special feature wherein coupling degradation caused by fiber displacement after connection can be recovered to the initial state. The total optical insertion loss is 3 dB after fixing the fiber to the LiNbO(3) strip waveguide, which is 4 microm wide and 8 mm long.

  9. 60-dB Bragg gratings in planar waveguides

    DEFF Research Database (Denmark)

    Jouanno, Jean-Marc; Hübner, Jörg; Kristensen, M.

    1997-01-01

    Bragg gratings are widely used as wavelength-selective elements in fiber devices. Integrated optics is a very attractive alternative for realizing such components. This way, multifunctional devices with high mechanical and thermal stability can be made using a technology with potential for mass-production....... The main limitation until now was the quality of the gratings written in planar waveguides. We report here 60-dB transmission dips obtained with 6-mm-long Bragg gratings written in Ge-doped planar waveguides...

  10. Penetration of internal gravity waveguide modes into the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Rudenko G.V.

    2016-03-01

    Full Text Available The paper describes internal gravity waveguide modes, using dissipative solutions above the source. We compare such a description with an accurate approach and a WKB approximation for dissipationless equations. For waveguide disturbances, dispersion relations calculated by any method are shown to be close to each other and to be in good agreement with observed characteristics of traveling ionospheric disturbances. Unlike other methods, dissipative solutions above the source allow us to adequately describe the spatial structure of disturbances in the upper atmosphere.

  11. Direct mapping of light propagation in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Arentoft, J.

    2002-01-01

    Using near-field optical microscopy, we directly map the propagation of light in the wavelength range of 1510-1560 nm along bent photonic crystal waveguides formed by removing a single row of holes in the triangular 400-nm-period lattice and connected to access ridge waveguides, the structure being...... fabricated on silicon-on-insulator wafers. Based on the near-field optical images measured, we determine the bend loss to be below 2 dB in the range of 1510-1530 nm, identify the associated loss channels, and obtain an upper limit of 930 nm for the guided mode width intensity distribution at 1510 nm....

  12. Simulation methods for multiperiodic and aperiodic nanostructured dielectric waveguides

    DEFF Research Database (Denmark)

    Paulsen, Moritz; Neustock, Lars Thorben; Jahns, Sabrina

    2017-01-01

    on Rudin–Shapiro, Fibonacci, and Thue–Morse binary sequences. The near-field and far-field properties are computed employing the finite-element method (FEM), the finite-difference time-domain (FDTD) method as well as a rigorous coupled wave algorithm (RCWA). The results show that all three methods......, a comparison of experimental results and simulation results obtained with three different simulation methods is presented. We fabricated and characterized multiperiodic nanostructured dielectric waveguides with two and three compound periods as well as deterministic aperiodic nanostructured waveguides based...

  13. An Electrochromatography Chip with Integrated Waveguides for UV Absorbance Detection

    DEFF Research Database (Denmark)

    Gustafsson, Omar; Mogensen, Klaus Bo; Ohlsson, Pelle Daniel

    2008-01-01

    A silicon-based microchip for electrochromatographic separations is presented. Apart from a microfluidic network, the microchip has integrated UV-transparent waveguides for detection and integrated couplers for optical fibers on the chip, yielding the most complete chromatography microchip to date...... of an octylsilane covalently bonded to the surfaces to provide chromatographic interaction. The chip features a 1 mm long U-shaped detection cell and planar silicon dioxide waveguides that couple light to and from the detection cell. Microfabricated on-chip fiber couplers assure perfect alignment of optical fibers...

  14. Optical image processing by using a photorefractive spatial soliton waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Bao-Lai, E-mail: liangbaolai@gmail.com [College of Physics Science & Technology, Hebei University, Baoding 071002 (China); Wang, Ying; Zhang, Su-Heng; Guo, Qing-Lin; Wang, Shu-Fang; Fu, Guang-Sheng [College of Physics Science & Technology, Hebei University, Baoding 071002 (China); Simmonds, Paul J. [Department of Physics and Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725 (United States); Wang, Zhao-Qi [Institute of Modern Optics, Nankai University, Tianjin 300071 (China)

    2017-04-04

    By combining the photorefractive spatial soliton waveguide of a Ce:SBN crystal with a coherent 4-f system we are able to manipulate the spatial frequencies of an input optical image to perform edge-enhancement and direct component enhancement operations. Theoretical analysis of this optical image processor is presented to interpret the experimental observations. This work provides an approach for optical image processing by using photorefractive spatial solitons. - Highlights: • A coherent 4-f system with the spatial soliton waveguide as spatial frequency filter. • Manipulate the spatial frequencies of an input optical image. • Achieve edge-enhancement and direct component enhancement operations of an optical image.

  15. High-Reliability Waveguide Vacuum/Pressure Window

    Science.gov (United States)

    Britcliffe, Michael J.; Hanson, Theodore R.; Long, Ezra M.; Montanez, Steven

    2013-01-01

    The NASA Deep Space Network (DSN) uses commercial waveguide windows on the output waveguide of Ka-band (32 GHz) low-noise amplifiers. Mechanical failure of these windows resulted in an unacceptable loss in tracking time. To address this issue, a new Ka-band WR-28 waveguide window has been designed, fabricated, and tested. The window uses a slab of low-loss, low-dielectric constant foam that is bonded into a 1/2-wave-thick waveguide/flange. The foam is a commercially available, rigid, closed-cell polymethacrylimide. It has excellent electrical properties with a dielectric constant of 1.04, and a loss tangent of 0.01. It is relatively strong with a tensile strength of 1 MPa. The material is virtually impermeable to helium. The finished window exhibits a leak rate of less than 3x10(exp -3)cu cm/s with helium. The material is also chemically resistant and can be cleaned with acetone. The window is constructed by fabricating a window body by brazing a short length of WR-28 copper waveguide into a standard rectangular flange, and machining the resulting part to a thickness of 4.6 mm. The foam is machined to a rectangular shape with a dimension of 7.06x3.53 mm. The foam is bonded into the body with a two-part epoxy. After curing, the excess glue and foam are knife-trimmed by hand. The finished window has a loss of less than 0.08 dB (2%) and a return loss of greater than 25 dB at 32 GHz. This meets the requirements for the DSN application. The window is usable for most applications over the entire 26-to-40-GHz waveguide band. The window return loss can be tuned to a required frequency by var y in g the thickness of the window slightly. Most standard waveguide windows use a thin membrane of material bonded into a recess in a waveguide flange, or sandwiched between two flanges with a polymer seal. Designs using the recessed window are prone to mechanical failure over time due to constraints on the dimensions of the recess that allow the bond to fail. Designs using the

  16. Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides

    DEFF Research Database (Denmark)

    Bæk, David; Willatzen, Morten

    2008-01-01

    A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...

  17. Waveguide Cavity Resonator as a Source of Optical Squeezing

    Science.gov (United States)

    Stefszky, M.; Ricken, R.; Eigner, C.; Quiring, V.; Herrmann, H.; Silberhorn, C.

    2017-04-01

    We present the generation of continuous-wave optical squeezing from a titanium-in-diffused lithium niobate waveguide resonator. We directly measure 2.9 ±0.1 dB of single-mode squeezing, which equates to a produced level of 4.9 ±0.1 dB after accounting for detection losses. This device showcases the current capabilities of this waveguide architecture and precipitates more complicated integrated continuous-wave quantum devices in the continuous-variable regime.

  18. Silicon waveguide based 320 Gbit/s optical sampling

    DEFF Research Database (Denmark)

    Ji, Hua; Galili, Michael; Pu, Minhao

    2010-01-01

    A silicon waveguide-based ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained.......A silicon waveguide-based ultra-fast optical sampling system is successfully demonstrated using a free-running fiber laser with a carbon nanotube-based mode-locker as the sampling source. A clear eye-diagram of a 320 Gbit/s data signal is obtained....

  19. THz plasmonic modes in metal-clad planar multilayer waveguides

    Science.gov (United States)

    Ghamsari, Behnood G.; Majedi, A. Hamed

    2009-05-01

    This paper studies the role of plasmonic modes for guided-wave propagation of THz/far infrared in metalclad planar waveguides, including metal-dielectric interfaces, dielectric-loaded metal slabs and parallel plate waveguides. The dispersion of modal characteristics of the plasmonic guided waves, such as the effective index, attenuation constant and the field confinement, as a function of geometrical features for different consisting materials and wavelengths are examined. Moreover, comparison is made between the THz plasmonic modes to their optical counterparts at visible/near infrared within the similar physical structures. Peculiar features of each structure are highlighted and regimes of interest are distinguished.

  20. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis.......We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  1. Ring cavity for a Raman capillary waveguide amplifier

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  2. Ring cavity for a Raman capillary waveguide amplifir

    Science.gov (United States)

    Kurnit, N.A.

    1981-01-27

    A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.

  3. Phase Radiation Characteristics of an Open-Ended Circular Waveguide

    DEFF Research Database (Denmark)

    Shishkova, A.V.; Pivnenko, Sergiy; Kim, O.S.

    2002-01-01

    Analytic expressions for phase radiation characteristics of a semi-infinite open-ended circular waveguide regardless of its aperture size and operating frequency have been obtained making use of the rigorous Weinstein's theory. The analysis of phase radiation patterns has been carried out...... for the dominant mode (TE11) as well as for the high order modes TM01 and TE01, both for a single and multimode propagation. The measurement of radiation characteristics of an open-ended circular waveguide has been carried out at the DTU-ESA Spherical Near-Field Antenna Test Facility. It is shown...

  4. Long-range plasmonic waveguides with hyperbolic cladding.

    Science.gov (United States)

    Babicheva, Viktoriia E; Shalaginov, Mikhail Y; Ishii, Satoshi; Boltasseva, Alexandra; Kildishev, Alexander V

    2015-11-30

    We study plasmonic waveguides with dielectric cores and hyperbolic multilayer claddings. The proposed design provides better performance in terms of propagation length and mode confinement in comparison to conventional designs, such as metal-insulator-metal and insulator-metal-insulator plasmonic waveguides. We show that the proposed structures support long-range surface plasmon modes, which exist when the permittivity of the core matches the transverse effective permittivity component of the metamaterial cladding. In this regime, the surface plasmon polaritons of each cladding layer are strongly coupled, and the propagation length can be on the order of a millimeter.

  5. Dual resonance in a waveguide-coupled ring microresonator

    Czech Academy of Sciences Publication Activity Database

    Čtyroký, Jiří; Richter, I.; Šiňor, M.

    2006-01-01

    Roč. 38, 9/11 (2006), s. 9-11 ISSN 0306-8919. [OWTNM 2006 - International Workshop on Optical Waveguide Theory and Numerical Modelling. Varese, 20.04.2006-21.04.2006] R&D Projects: GA ČR(CZ) GA102/05/0987; GA MŠk OC 288.001 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical waveguide theory * integrated optics * modelling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.644, year: 2006

  6. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian

    2016-01-15

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  7. Fiber-Drawn Metamaterial for THz Waveguiding and Imaging

    DEFF Research Database (Denmark)

    Atakaramians, Shaghik; Stefani, Alessio; Li, Haisu

    2017-01-01

    and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased...... single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28....

  8. Planar waveguide amplifiers and laser in erbium doped silica

    DEFF Research Database (Denmark)

    Guldberg-Kjær, Søren Andreas; Kristensen, Martin

    1999-01-01

    lightwave circuits, as well as provide the gain medium for integrated planar waveguide lasers. The work and the obtained results are presented in this thesis: The manufacturing of silica thin films is described and it is shown that the refractive index o fthe films can be controlled by germanium co...... fluorescence level. In addition the first measurement of the diffusion coefficient of erbim in silica is presented and it is shown that erbium rich precipitates are formed in areas of high erbium concentration. The manufacturing of planar waveguide structures using RIE (Reactive Ion Etching) is described...

  9. Bragg grating filters in plasmonic V-groove waveguides

    DEFF Research Database (Denmark)

    Smith, Cameron; Desiatov, Boris; Goykhmann, Ilya

    2012-01-01

    We demonstrate spectral filtering via Bragg gratings in plasmonic V-groove waveguides. Transmission spectra of wafer-scale fabricated devices exhibit 8.2 dB extinction ratio with 39.9 nm bandwidth. Near-field measurements verify spectral rejection.......We demonstrate spectral filtering via Bragg gratings in plasmonic V-groove waveguides. Transmission spectra of wafer-scale fabricated devices exhibit 8.2 dB extinction ratio with 39.9 nm bandwidth. Near-field measurements verify spectral rejection....

  10. Spin wave propagation in a uniformly biased curved magnonic waveguide

    Science.gov (United States)

    Sadovnikov, A. V.; Davies, C. S.; Kruglyak, V. V.; Romanenko, D. V.; Grishin, S. V.; Beginin, E. N.; Sharaevskii, Y. P.; Nikitov, S. A.

    2017-08-01

    Using Brillouin light scattering microscopy and micromagnetic simulations, we study the propagation and transformation of magnetostatic spin waves across uniformly biased curved magnonic waveguides. Our results demonstrate that the spin wave transmission through the bend can be enhanced or weakened by modifying the distribution of the inhomogeneous internal magnetic field spanning the structure. Our results open up the possibility of optimally molding the flow of spin waves across networks of magnonic waveguides, thereby representing a step forward in the design and construction of the more complex magnonic circuitry.

  11. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides.

    Science.gov (United States)

    Villangca, Mark; Bañas, Andrew; Palima, Darwin; Glückstad, Jesper

    2014-07-28

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements.

  12. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    Science.gov (United States)

    Rindorf, Lars; Glückstad, Jesper

    2013-03-01

    In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations that the nanoantenna can be made to operate in a bandstop mode around its resonant wavelength where there is a very high evanescent strong electrical probing field close to the antennas, and additionally the fluorescence or Raman excitations will be be unpolluted by stray light from the WOW due to the band-stop characteristic. We give geometrical parameters necessary for realizing functioning nanoantennas.

  13. Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Bañas, Andrew Rafael; Palima, Darwin

    2014-01-01

    We have previously proposed and demonstrated the targeted-light delivery capability of wave-guided optical waveguides (WOWs). As the WOWs are maneuvered in 3D space, it is important to maintain efficient light coupling through the waveguides within their operating volume. We propose the use...... of dynamic diffractive techniques to create diffraction-limited spots that will track and couple to the WOWs during operation. This is done by using a spatial light modulator to encode the necessary diffractive phase patterns to generate the multiple and dynamic coupling spots. The method is initially tested...... for a single WOW and we have experimentally demonstrated dynamic tracking and coupling for both lateral and axial displacements....

  14. Adapting an optical nanoantenna for high E-field probing applications to a waveguided optical waveguide (WOW)

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Glückstad, Jesper

    2013-01-01

    In the current work we intend to use the optical nano-antenna to include various functionalities for the recently demonstrated waveguided optical waveguide (WOW) by Palima et al. (Optics Express 2012). Specifically, we intend to study a WOW with an optical nano-antenna which can block the guiding...... light wavelength while admitting other wavelengths of light which address certain functionalities, e.g. drug release, in the WOW. In particular, we study a bow-tie optical nano-antenna to circular dielectric waveguides in aqueous environments. It is shown with finite element computer simulations...... that the nanoantenna can be made to operate in a bandstop mode around its resonant wavelength where there is a very high evanescent strong electrical probing field close to the antennas, and additionally the fluorescence or Raman excitations will be be unpolluted by stray light from the WOW due to the band...

  15. Dielectric waveguide with transverse index variation that support a zero group velocity mode at a non-zero longitudinal wavevector

    Science.gov (United States)

    Ibanescu, Mihai; Joannopoious, John D.; Fink, Yoel; Johnson, Steven G.; Fan, Shanhui

    2005-06-21

    Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.

  16. Cutoff-mesa isolated rib optical waveguide for III-V heterostructure photonic integrated circuits

    Science.gov (United States)

    Vawter, G.A.; Smith, R.E.

    1998-04-28

    A cutoff mesa rib waveguide provides single-mode performance regardless of any deep etches that might be used for electrical isolation between integrated electrooptic devices. Utilizing a principle of a cutoff slab waveguide with an asymmetrical refractive index profile, single mode operation is achievable with a wide range of rib widths and does not require demanding etch depth tolerances. This new waveguide design eliminates reflection effects, or self-interference, commonly seen when conventional rib waveguides are combined with deep isolation etches and thereby reduces high order mode propagation and crosstalk compared to the conventional rib waveguides. 7 figs.

  17. Diverse and controllable excitations of coupled modes of unidirectional air waveguides

    Science.gov (United States)

    Kong, Xiang-kun; Fang, Yun-tuan

    2016-09-01

    In order to obtain the waveguide of multiple functionalities, we design a coupled system of two unidirectional air waveguides and find it is a system of multiple modes through band calculations. Through numerical simulations, we also find that the mode excitation is dependent on the position of the source. With the same frequency the line source can excite either the even mode or the odd modes in one single waveguide or two waveguide just by changing the positions of the source. Such a system provides us the way to control the excitation of mode and obtain the waveguide modes with special applications.

  18. Planar waveguides and other confined geometries theory, technology, production, and novel applications

    CERN Document Server

    2015-01-01

    This book provides a comprehensive overview of the theoretical concepts and experimental applications of planar waveguides and other confined geometries, such as optical fibres. Covering a broad array of advanced topics, it begins with a sophisticated discussion of planar waveguide theory, and covers subjects including efficient production of planar waveguides, materials selection, nonlinear effects, and applications including species analytics down to single-molecule identification, and thermo-optical switching using planar waveguides. Written by specialists in the techniques and applications covered, this book will be a useful resource for advanced graduate students and researchers studying planar waveguides and optical fibers.

  19. 3D hole-transporting materials based on coplanar quinolizino acridine for highly efficient perovskite solar cells.

    Science.gov (United States)

    Zhang, Mingdao; Wang, Gang; Zhao, Danxia; Huang, Chengyan; Cao, Hui; Chen, Mindong

    2017-11-01

    Over the past five years, perovskite solar cells (PSCs) have gained intense worldwide attention in the photovoltaic community due to their low cost and high power conversion efficiencies (PCEs). One of the most significant issues in achieving high PCEs of PSCs is the development of suitable low-cost hole-transporting materials (HTMs). Here, we put forward a new concept of HTMs for PSCs: a 3D structure with a core of coplanar quinolizino acridine, derived from the conventional concept of 2D triphenylamine HTMs. A cheaper Ag nanolayer was utilized to replace Au as the counter electrodes, and the title HTM TDT-OMeTAD was synthesized via an easy four-step synthesis (total yield: 61%) to achieve the low cost and convenient manufacture of PSCs. Compared with the conventional 2D triphenylamine HTM, TTPA-OMeTPA, PSC devices based on the 3D HTM TDT-OMeTPA showed a significant improvement in PCE from 10.8% to 16.4%, even outperforming Spiro-OMeTAD (14.8%). TDT-OMeTAD's highest PCE mainly results from it having the highest open-circuit voltage ( V oc ) of 1.01 V in this work, which is proven to be due to the higher hole mobility, matching energy levels, higher hydrophobicity and the smaller dark current. Moreover, an incident photon-current conversion efficiency (IPCE) test and time-resolved photoluminescence (TRPL) have been carried out to observe the better hole injecting efficiency and photoelectric conversion capability of TDT-OMeTPA based PSCs than Spiro-OMeTAD. The TDT-OMeTPA based PSCs exhibited >75% reproducibility (PCE > 15%) and retained 93.2% of the initial PCE after >500 hours.

  20. Optical propagation of the HE11 mode and Gaussian beams in hollow circular waveguides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1993-05-01

    The propagation of the HE 11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered: hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE 11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed