WorldWideScience

Sample records for coordination polymers incorporating

  1. A first principles study of energetics and electronic structural responses of uranium-based coordination polymers to Np incorporation

    International Nuclear Information System (INIS)

    Saha, Saumitra; Becker, Udo

    2018-01-01

    Recently developed coordination polymers (CPs) and metal organic frameworks (MOFs) may find applications in areas such as catalysis, hydrogen storage, and heavy metal immobilization. Research on the potential application of actinide-based CPs (An-CP/MOFs) is not as advanced as transition metal-based MOFs. In order to modify their structures necessary for optimizing thermodynamic and electronic properties, here, we described how a specific topology of a particular actinide-based CP or MOF responds to the incorporation of other actinides considering their diverse coordination chemistry associated with the multiple valence states and charge-balancing mechanisms. In this study, we apply a recently developed DFT-based method to determine the relative stability of transuranium incorporated CPs in comparison to their uranium counterpart considering both solid and aqueous state sources and sinks to understand the mechanism and energetics of charge-balanced Np 5+ incorporation into three uranium-based CPs. The calculated Np 5+ + H + incorporation energies for these CPs range from 0.33 to 0.52 eV, depending on the organic linker, when using the solid oxide Np source Np 2 O 5 and U sink UO 3 . Incorporation energies of these CPs using aqueous sources and sinks increase to 2.85-3.14 eV. The thermodynamic and structural analysis in this study aides in determining, why certain MOF topologies and ligands are selective for some actinides and not for others. This means that once this method is extended across a variety of CPs with their respective linker molecules and different actinides, it can be used to identify certain CPs with certain organic ligands being specific for certain actinides. This information can be used to construct CPs for actinide separation. This is the first determination of the electronic structure (band structure, density of states) of these uranium- and transuranium-based CPs which may eventually lead to design CPs with certain optical or catalytic

  2. A first principles study of energetics and electronic structural responses of uranium-based coordination polymers to Np incorporation

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Saumitra [Melbourne Univ., VIC (Australia). Australian Research Council Centre of Excellence for Advanced Molecular Imaging; Becker, Udo [Michigan Univ., Ann Arbor, MI (United States). Dept. of Earth and Environmental Sciences

    2018-04-01

    Recently developed coordination polymers (CPs) and metal organic frameworks (MOFs) may find applications in areas such as catalysis, hydrogen storage, and heavy metal immobilization. Research on the potential application of actinide-based CPs (An-CP/MOFs) is not as advanced as transition metal-based MOFs. In order to modify their structures necessary for optimizing thermodynamic and electronic properties, here, we described how a specific topology of a particular actinide-based CP or MOF responds to the incorporation of other actinides considering their diverse coordination chemistry associated with the multiple valence states and charge-balancing mechanisms. In this study, we apply a recently developed DFT-based method to determine the relative stability of transuranium incorporated CPs in comparison to their uranium counterpart considering both solid and aqueous state sources and sinks to understand the mechanism and energetics of charge-balanced Np{sup 5+} incorporation into three uranium-based CPs. The calculated Np{sup 5+} + H{sup +} incorporation energies for these CPs range from 0.33 to 0.52 eV, depending on the organic linker, when using the solid oxide Np source Np{sub 2}O{sub 5} and U sink UO{sub 3}. Incorporation energies of these CPs using aqueous sources and sinks increase to 2.85-3.14 eV. The thermodynamic and structural analysis in this study aides in determining, why certain MOF topologies and ligands are selective for some actinides and not for others. This means that once this method is extended across a variety of CPs with their respective linker molecules and different actinides, it can be used to identify certain CPs with certain organic ligands being specific for certain actinides. This information can be used to construct CPs for actinide separation. This is the first determination of the electronic structure (band structure, density of states) of these uranium- and transuranium-based CPs which may eventually lead to design CPs with certain

  3. Luminescent lanthanide coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ma, L.; Evans, O.R.; Foxman, B.M.; Lin, W.

    1999-12-13

    One-dimensional lanthanide coordination polymers with the formula Ln(isonicotinate){sub 3}(H{sub 2}O){sub 2} (Ln = Ce, Pr, Nd, Sm, Eu, Tb; 1a-f) were synthesized by treating nitrate or perchlorate salts of Ln(III) with 4-pyridinecarboxaldehyde under hydro(solvo)thermal conditions. Single-crystal and powder X-ray diffraction studies indicate that these lanthanide coordination polymers adopt two different structures. While Ce(III), Pr(III), and Nd(III) complexes adopt a chain structure with alternating Ln-(carboxylate){sub 2}-Ln and Ln-(carboxylate){sub 4}-Ln linkages, Sm(III), Eu(III), and Tb(III) complexes have a doubly carboxylate-bridged infinite-chain structure with one chelating carboxylate group on each metal center. In both structures, the lanthanide centers also bind to two water molecules to yield an eight-coordinate, square antiprismatic geometry. The pyridine nitrogen atoms of the isonicotinate groups do not coordinate to the metal centers in these lanthanide(III) complexes; instead, they direct the formation of Ln(III) coordination polymers via hydrogen bonding with coordinated water molecules. Photoluminescence measurements show that Tb(isonicotinate){sub 3}(H{sub 2}O){sub 2} is highly emissive at room temperature with a quantum yield of {approximately}90%. These results indicate that highly luminescent lanthanide coordination polymers can be assembled using a combination of coordination and hydrogen bonds. Crystal data for 1a: monoclinic space group P2{sub 1}/c, a = 9.712(2) {angstrom}, b = 19.833(4) {angstrom}, c = 11.616(2) {angstrom}, {beta} = 111.89(3){degree}, Z = 4. Crystal data for 1f: monoclinic space group C2/c, a = 20.253(4) {angstrom}, b = 11.584(2) {angstrom}, c = 9.839(2) {angstrom}, {beta} = 115.64(3){degree}, Z = 8.

  4. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    Science.gov (United States)

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  5. Porphyrin coordination polymer nanospheres and nanorods

    Science.gov (United States)

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  6. Rare earth niobate coordination polymers

    Science.gov (United States)

    Muniz, Collin N.; Patel, Hiral; Fast, Dylan B.; Rohwer, Lauren E. S.; Reinheimer, Eric W.; Dolgos, Michelle; Graham, Matt W.; Nyman, May

    2018-03-01

    Rare-earth (RE) coordination polymers are infinitely tailorable to yield luminescent materials for various applications. Here we described the synthesis of a heterometallic rare-earth coordination compound ((CH3)2SO)3(RE)NbO(C2O4)3((CH3)2SO) = dimethylsulfoxide, DMSO, (C2O2= oxalate), (RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb). The structure was obtained from single crystal X-ray diffraction of the La analogue. The Nb˭O and DMSO terminal-bonding character guides assembly of an open framework structure with noncentrosymmetric RE-coordination geometry, and large spacing between the RE centers. A second structure was observed by PXRD for the smaller rare earths (Dy, Ho, Er, Yb); this structure has not yet been determined. The materials were further characterized using FTIR, and photoluminescence measurements. Characteristic excitation and emission transitions were observed for RE = Nd, Sm, Eu, and Tb. Quantum yield (QY) measurements were performed by exciting Eu and Tb analoges at 394 nm (QY 66%) and 464 nm (QY 71%) for Eu; and 370 nm (QY=40%) for Tb. We attribute the high QY and bright luminescence to two main structure-function properties of the system; namely the absence of water in the structure, and absence of concentration quenching.

  7. Coordination Polymer Gels by Electron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Ha; Cho, Young Je; Jung, Jong Hwa [Gyeongsang National Univ., Jinju (Korea, Republic of)

    2011-07-01

    Hydrogenation of a pyridine derivative possessing tetrazole moieties as end groups, without long alkyl chain groups, results in the formation of a Mg(NO{sub 3}){sub 2} coordination polymer gel. The polymer exhibits a strong fluorescence enhancement upon gel formation. 1 can also be gloated with a variety of magnesium anions such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Br{sup -} and I{sup -}, indicating that the coordination polymer gel formation of 1 does not strongly depends on anions. The Seam and ABM images of Mg{sup 2+} coordination polymer gel 1 display a flabbier network with several micrometers long, widths in the range 60-70 nm and thicknesses of about 3 nm. In addition, photophysical studies show that the hydrogel exhibits a typical {pi}-{pi} transition and gives rise to high fluorescence behavior. The coordination polymer hydrogel exhibits viscoelastic behavior as evidenced from the rheological studies.

  8. Incorporation and Effects of Nanoparticles in a Supramolecular Polymer

    Science.gov (United States)

    2016-05-01

    polymerizations and main-chain supramolecular polymers . Macromolecules. 2009;42:6823–6835. 17. Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond...ARL-TR-7687 ● MAY 2016 US Army Research Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by...Laboratory Incorporation and Effects of Nanoparticles in a Supramolecular Polymer by Alice M Savage Oak Ridge Institute of Science and Education

  9. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    International Nuclear Information System (INIS)

    Cui, Zhongping; Qi, Ji; Xu, Xinxin; Liu, Lu; Wang, Yi

    2013-01-01

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future

  10. Integrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials

    Directory of Open Access Journals (Sweden)

    Hyung-Jong Lee

    2011-06-01

    Full Text Available Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully commercialized polymeric integrated optic devices, variable optical attenuators and digital optical switches, are reviewed in this paper. Utilizing unique properties of optical polymers which are not available in other optical materials, novel polymeric optical devices are proposed including widely tunable external cavity lasers and integrated optical current sensors.

  11. Reversible Mechanochemistry of a PdII Coordination Polymer

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Sijbesma, Rint P.

    2004-01-01

    Breaking up and making up: The ultrasonic cleavage of high-molecular-weight linear coordination polymers of phosphane telechelic polytetrahydrofuran and palladium dichloride in dilute solution is a reversible process (see picture). Sonication for 1 h led to a decrease in the weight-averaged

  12. Strategies, linkers and coordination polymers for high-performance sorbents

    Science.gov (United States)

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  13. GDP-tubulin incorporation into growing microtubules modulates polymer stability.

    Science.gov (United States)

    Valiron, Odile; Arnal, Isabelle; Caudron, Nicolas; Job, Didier

    2010-06-04

    Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule "structural plasticity."

  14. Strategies for incorporation of polymer photovoltaics into garments and textiles

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Biancardo, M.; Winther-Jensen, B.

    2006-01-01

    device as a structural element. The total area of the device on PET was typically much smaller than the active area due to the decorative design of the aluminium electrode. Elaborate integration of the photovoltaic device into the textile material involved the lamination of a polyethylene (PE) film onto......The incorporation of polymer photovoltaics into textiles was demonstrated following two different strategies. Simple incorporation of a polyethyleneterphthalate (PET) substrate carrying the polymer photovoltaic device prepared by a doctor blade technique necessitated the use of the photovoltaic...... a suitably transparent textile material that was used as substrate. Plasma treatment of the PE-surface allowed the application of a PEDOT electrode that exhibited good adherence. Screen printing of a designed pattern of poly 1,4(2-methoxy-5-(2-ethylhexyloxy))phenylenevinylene (MEH-PPV) from chlorobenzene...

  15. A two-dimensional bilayered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating 1,2-bis(pyridin-4-yl)ethene and 2,2'-(diazenediyl)dibenzoic acid.

    Science.gov (United States)

    Liu, Lei-Lei; Zhou, Yan; Li, Ping; Tian, Jiang-Ya

    2014-02-01

    In poly[[μ2-1,2-bis(pyridin-4-yl)ethene-κ(2)N:N'][μ2-2,2'-(diazenediyl)dibenzoato-κ(3)O,O':O'']cadmium(II)], [Cd(C14H8N2O4)(C12H10N2)]n, the asymmetric unit contains one Cd(II) cation, one 2,2'-(diazenediyl)dibenzoate anion (denoted L(2-)) and one 1,2-bis(pyridin-4-yl)ethene ligand (denoted bpe). Each Cd(II) centre is six-coordinated by four O atoms of bridging/chelating carboxylate groups from three L(2-) ligands and by two N atoms from two bpe ligands, forming a distorted octahedron. The Cd(II) cations are bridged by L(2-) and bpe ligands to give a two-dimensional (4,4) layer. The layers are interlinked through bridging carboxylate O atoms from L(2-) ligands, generating a two-dimensional bilayered structure with a 3(6)4(13)6(2) topology. The bilayered structures are further extended to form a three-dimensional supramolecular architecture via a combination of hydrogen-bonding and aromatic stacking interactions.

  16. Design and characterization of metal-thiocyanate coordination polymers

    OpenAIRE

    Savard, Didier

    2018-01-01

    This thesis focuses on exploring the synthesis and chemical reactivity of thiocyanate-based building blocks of the type [M(SCN)x]y- for the synthesis of coordination polymers. A series of potassium, ammonium, and tetraalkylammonium metal isothiocyanate salts of the type Qy[M(SCN)x] were synthesized and structurally characterized. Most of the salts were revealed to be isostructural and classic Werner complexes, but for (Et4N)3[Fe(NCS)6] and (n-Bu4N)3[Fe(NCS)6], a solid-state size-dependent cha...

  17. coordination polymers derived from two different bis-pyridyl-bis-am

    Indian Academy of Sciences (India)

    Abstract. Three new Ni(II) coordination polymers exhibiting different 1D and 2D framework structures ... separation, magnetism, ion exchange and so on.5 8 ... of the coordination geometries of metal ions, which ... Cu(II)/Co(II)/Cd(II) coordination polymers containing ..... tion, the concentration of MB and RhB (C) versus reac-.

  18. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    International Nuclear Information System (INIS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-01-01

    earth-based coordination polymers were constructed from a semirigid cyclotriphosphazene-functionalized hexacarboxylate exhibiting different inorganic nodes as well as distinct ligand conformations relying on the metal ions, which presents the first example of such a ligand incorporated into alkaline earth–based coordination polymers. - Highlights: • Three alkaline earth-based coordination polymers were synthesized. • The three compounds exhibit different inorganic nodes and ligand conformations. • The three compounds are photoluminscent in the solid state.

  19. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    Science.gov (United States)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  20. Osmium and cobalt complexes incorporating facially coordinated N ...

    Indian Academy of Sciences (India)

    Administrator

    coordinated N,N,O donor azo-imine ligands: Redox and catalytic properties. Poulami Pattanayak, a. Debprasad Patra, a. Jahar Lal Pratihar, a. Andrew Burrows,. Mary F. Mahon b and Surajit Chattopadhyay* a a. Department of Chemistry, University of Kalyani, Kalyani-741235, India b. Department of Inorganic Chemistry, ...

  1. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    Science.gov (United States)

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  2. Redox-active porous coordination polymer based on trinuclear pivalate: Temperature-dependent crystal rearrangement and redox-behavior

    Energy Technology Data Exchange (ETDEWEB)

    Lytvynenko, Anton S. [L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028 (Ukraine); Kiskin, Mikhail A., E-mail: mkiskin@igic.ras.ru [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect 31, GSP-1, 119991 Moscow (Russian Federation); Dorofeeva, Victoria N.; Mishura, Andrey M.; Titov, Vladimir E.; Kolotilov, Sergey V. [L.V. Pisarzhevskii Institute of Physical Chemistry, National Academy of Sciences of Ukraine, Prospekt Nauki 31, Kiev 03028 (Ukraine); Eremenko, Igor L.; Novotortsev, Vladimir M. [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prospect 31, GSP-1, 119991 Moscow (Russian Federation)

    2015-03-15

    Linking of trinuclear pivalate Fe{sub 2}NiO(Piv){sub 6} (Piv=O{sub 2}CC(CH{sub 3}){sub 3}) by 2,6-bis(4-pyridyl)-4-(1-naphthyl)pyridine (L) resulted in formation of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)·Solv, which was characterized in two forms: DMSO solvate Fe{sub 2}NiO(Piv){sub 6}(L)(DMSO)·2.5DMSO (1) or water solvate Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) (2). X-ray structure of 1 was determined. Crystal lattice of 1 at 160 K contained open channels, filled by captured solvent, while temperature growth to 296 K led to the crystal lattice rearrangement and formation of closed voids. Redox-behavior of 2 was studied by cyclic voltammetry for a solid compound, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. The presence of pores in desolvated sample Fe{sub 2}NiO(Piv){sub 6}(L) was confirmed by the measurements of N{sub 2} and H{sub 2} adsorption at 77 K. Potential barriers of the different molecules diffusion through pores were estimated by the means of molecular mechanics. - Graphical abstract: Redox-behavior of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) was studied by cyclic voltammetry in thin film, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. Potential barriers of different molecules diffusion through pores were estimated by the means of molecular mechanics. - Highlights: • Porous 1D coordination polymer was synthesized. • Temperature growth led to pores closing due to crystal lattice rearrangement. • Redox-activity of ligand preserved upon incorporation into coordination polymer. • Redox-properties of solid coordination polymer were studied in thin film. • Diffusion barriers were evaluated by molecular mechanics.

  3. Reversible, high molecular weight palladium and platinum coordination polymers based on phosphorus ligands

    NARCIS (Netherlands)

    Paulusse, J.M.J.; Huijbers, J.P.J.; Sijbesma, R.P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  4. Reversible, High Molecular Weight Palladium and Platinum Coordination Polymers Based on Phosphorus Ligands

    NARCIS (Netherlands)

    Paulusse, Jos Marie Johannes; Huijbers, Jeroen P.J.; Sijbesma, Rint P.

    2005-01-01

    A general strategy for the preparation and characterization of high molecular weight coordination polymers based on bifunctional phosphorus ligands and palladium or platinum dichloride is described. Metal-to-ligand stoichiometry is of key importance for the formation of linear coordination polymers

  5. Supramolecular coordination polymer formed from artificial light-harvesting dendrimer.

    Science.gov (United States)

    Lee, Hosoowi; Jeong, Young-Hwan; Kim, Joo-Ho; Kim, Inhye; Lee, Eunji; Jang, Woo-Dong

    2015-09-30

    We report the formation of supramolecular coordination polymers formed from multiporphyrin dendrimers (PZnPM; M = FB or Cu), composed of the focal freebase porphyrin (PFB) or cupper porphyrin (PCu) with eight zinc porphyrin (PZn) wings, and multipyridyl porphyrins (PyPM; M = FB or Cu), PFB or PCu with eight pyridyl groups, through multiple axial coordination interactions of pyridyl groups to PZns. UV-vis absorption spectra were recorded upon titration of PyPFB to PZnPFB. Differential spectra, obtained by subtracting the absorption of PZnPFB without guest addition as well as the absorption of PyPFB, exhibited clear isosbestic points with saturation binding at 1 equiv addition of PyPFB to PZnPFB. Job's plot analysis also indicated 1:1 stoichiometry for the saturation binding. The apparent association constant between PZnPFB and PyPFB (2.91 × 10(6) M(-1)), estimated by isothermal titration calorimetry, was high enough for fibrous assemblies to form at micromolar concentrations. The formation of a fibrous assembly from PZnPFB and PyPFB was visualized by atomic force microscopy and transmission electron microscopy (TEM). When a 1:1 mixture solution of PZnPFB and PyPFB (20 μM) in toluene was cast onto mica, fibrous assemblies with regular height (ca. 2 nm) were observed. TEM images obtained from 1:1 mixture solution of PZnPFB and PyPFB (0.1 wt %) in toluene clearly showed the formation of nanofibers with a regular diameter of ca. 6 nm. Fluorescence emission measurement of PZnPM indicated efficient intramolecular energy transfer from PZn to the focal PFB or PCu. By the formation of supramolecular coordination polymers, the intramolecular energy transfer changed to intermolecular energy transfer from PZnPM to PyPM. When the nonfluorescent PyPCu was titrated to fluorescent PZnPFB, fluorescence emission from the focal PFB was gradually decreased. By the titration of fluorescent PyPFB to nonfluorescent PZnPCu, fluorescence emission from PFB in PyPFB was gradually increased

  6. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    International Nuclear Information System (INIS)

    Li, Xiu-Hua; Zhang, Qi; Hu, Ping

    2014-01-01

    A multifunctional homochiral coordination polymer, [Co(H 2 O)(BDC)(4,4′-BPY)]∙3H 2 O (1) (H 2 BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions

  7. Water linked 3D coordination polymers: Syntheses, structures and applications

    Science.gov (United States)

    Singh, Suryabhan; Bhim, Anupam

    2016-12-01

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H2O)(H2O)]n1, [Pb(OBA)(μ-H2O)]n2 [where OBA=4,4'-Oxybis(benzoate)] and [Pb(SDBA)(H2O)]n.1/4DMF 3 (SDBA=4,4'-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]n4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives.

  8. Wire Insulation Incorporating Self-Healing Polymers (WIISP), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen and Virginia Tech are developing a self-healing material for wire insulation using a class of ionomeric polymers. These ionomers exhibit self-healing...

  9. Conductivity hysteresis in polymer electrolytes incorporating poly(tetrahydrofuran)

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, Ozge; Taniguchi, Ikuo; Mayes, Anne M. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Kumar, Sundeep; Shao-Horn, Yang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States)

    2007-01-01

    Conductivity hysteresis and room temperature ionic conductivities >10{sup -3}S/cm were recently reported for electrolytes prepared from blends of an amphiphilic comb copolymer, poly[2,5,8,11,14-pentaoxapentadecamethylene (5-hexadecyloxy-1,3-phenylene)] (polymer I), and a linear multiblock copolymer, poly(oligotetrahydrofuran-co-dodecamethylene) (polymer II), following thermal treatment [F. Chia, Y. Zheng, J. Liu, N. Reeves, G. Ungar, P.V. Wright, Electrochim. Acta 43 (2003) 1939]. To investigate the origin of these effects, polymers I and II were synthesized in this work, and the conductivity and thermal properties of the individual polymers were investigated. AC impedance measurements were conducted on I and II doped with LiBF{sub 4} or LiClO{sub 4} during gradual heating to 110{sup o}C and slow cooling to room temperature. Significant conductivity hysteresis was seen for polymer II, and was similarly observed for poly(tetrahydrofuran) (PTHF) homopolymer at equivalent doping levels. From thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and {sup 1}H NMR spectroscopy, both polymer II and PTHF were found to partially decompose to THF during heat treatment, resulting in a self-plasticizing effect on conductivity. (author)

  10. Three-dimensional iron(ii) porous coordination polymer exhibiting carbon dioxide-dependent spin crossover.

    Science.gov (United States)

    Shin, Jong Won; Jeong, Ah Rim; Jeoung, Sungeun; Moon, Hoi Ri; Komatsumaru, Yuki; Hayami, Shinya; Moon, Dohyun; Min, Kil Sik

    2018-04-24

    We report a three-dimensional Fe(ii) porous coordination polymer that exhibits a spin crossover temperature change following CO2 sorption (though not N2 sorption). Furthermore, single crystals of the desolvated polymer with CO2 molecules at three different temperatures were characterised by X-ray crystallography.

  11. m-Carboranylphosphinate as Versatile Building Blocks To Design all Inorganic Coordination Polymers.

    Science.gov (United States)

    Oleshkevich, Elena; Viñas, Clara; Romero, Isabel; Choquesillo-Lazarte, Duane; Haukka, Matti; Teixidor, Francesc

    2017-05-15

    The first examples of coordination polymers of manganese(II) and a nickel(II) complex with a purely inorganic carboranylphosphinate ligand are reported, together with its exhaustive characterization. X-ray analysis revealed 1D polymeric chains with carboranylphosphinate ligands bridging two manganese(II) centers. The reactivity of polymer 1 with water and Lewis bases has also been studied.

  12. Novel Inorganic Coordination Polymers Based on Cadmium Oxalates

    Science.gov (United States)

    Prasad, P. A.; Neeraj, S.; Vaidhyanathan, R.; Natarajan, Srinivasan

    2002-06-01

    Three new cadmium oxalate coordination polymers, I-III, with extended layered structures have been synthesized in the presence of imidazole. While I was prepared by the reaction between imidazolium oxalate and Cd, II and III were synthesized from their constituents using hydrothermal methods. [Cd(C2O4)(C3N2H4)]∞ (I): monoclinic, space group P21/c (no. 14), a=8.7093(1) Å, b=9.9477(3) Å, c=8.4352 Å, β=93.796(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)]∞ (II): monoclinic, space group P21/c (no. 14), a=7.8614(2) Å, b=14.9332(3) Å, c=15.9153(4) Å β=94.587(1)°, Z=4; [Cd(C2O4)2(C3N2H4)3(H2O)]∞ (III): monoclinic, space group P21/c (no. 14), a=11.844(2) Å, b=9.066(1) Å, c=18.583(2) Å, β=103.84(2)°, Z=4. While the structure of I is made from CdO5N distorted octahedra linked with oxalate, II and III are built-up from CdO6N, CdO5N2 distorted pentagonal bi-pyramids connected to oxalate units. The framework formulas of II and III are identical and their structures closely related. In all the cases, the networking between the Cd-O/N polyhedra and oxalates give rise to layered architectures with the amine molecules pointing in a direction perpendicular to the layers (in the inter-lamellar region). The difference in the linkages between the oxalates and the Cd atoms in I-III, produces unusual Cd-O-Cd one-dimensional chains, which have been observed for the first time.

  13. Water linked 3D coordination polymers: Syntheses, structures and applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suryabhan, E-mail: sbs.bhu@gmail.com; Bhim, Anupam

    2016-12-15

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H{sub 2}O)(H{sub 2}O)]{sub n}1, [Pb(OBA)(μ-H{sub 2}O)]{sub n}2 [where OBA=4,4’-Oxybis(benzoate)] and [Pb(SDBA)(H{sub 2}O)]{sub n}.1/4DMF 3 (SDBA=4,4’-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]{sub n}4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH{sub 4} at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives. - Graphical abstract: Three new CPs based on Cd and Pb, have been synthesized and characterized. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol. Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives. - Highlights: • Three new CPs based on Cd and Pb, have been synthesized and characterized. • A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. • One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. • Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives.

  14. Anion-Dependent Exocyclic Mercury(II) Coordination Polymers of Bis-dithiamacrocycle

    Energy Technology Data Exchange (ETDEWEB)

    Siewe, Arlette Deukam; Kim, Seul Gi; Choi, Kyu Seong [Kyungnam University, Changwon (Korea, Republic of); Lee, Shim Sung [Gyeongsang National University, Jinju (Korea, Republic of)

    2014-09-15

    Synthesis and structural characterization of mercury(II) halides and perchlorate complexes of bis-OS{sub 2}-Synthesis and structural characterization of mercury(II) halides and perchlorate complexes of bis-OS{sub 2}- macrocycle (L) are reported. L reacts with mercury(II) chloride and bromide to yield an isostructural 2D coordination polymers with type [Hg(L)X{sub 2}]n (1: X = Cl and 2: X = Br). In 1, each Hg atom which lies outside the cavity is six-coordinate with a distorted octahedral geometry, being bound to four adjacent ligands via monodentate Hg-S bonds and two remaining sites are occupied by two terminal chlorido ligands to form a fishnet-like 2D structure. When reacting with mercury(II) iodide, L afforded a 1D coordination polymer [Hg{sub 2}(L)I{sub 4}]·CHCl{sub 3}n in which each exocyclic Hg atom is four-coordinate, being bound to two sulfur donors from different ligands doubly bridging the ligand molecules in a head-to-tail mode. The coordination sphere in 3 is completed by two iodo terminal ligands, adopting a distorted tetrahedral geometry. On reacting with mercury(II) perchlorate, L forms solvent-coordinated 1D coordination polymer ([Hg{sub 2}(L)(DMF){sub 6}](ClO{sub 4}){sub 4}·2DMF)n instead of the anion-coordination. In 4, the Hg atom is five-coordinate, being bound to two sulfur donors from two different ligands doubly bridging the ligand molecules in a side-by-side mode to form a ribbon-like 1D structure.. The three remaining coordination sites in 4 are completed by three DMF molecules in a monodentate manner. Consequently, the different structures and connectivity patterns for the observed exocyclic coordination polymers depending on the anions used are influenced not only by the coordination ability of the anions but also by anion sizes macrocycle (L) are reported. L reacts with mercury(II) chloride and bromide to yield an isostructural 2D coordination polymers with type [Hg(L)X{sub 2}]n (1: X = Cl and 2: X = Br). In 1, each Hg atom which lies

  15. Studies on dielectric properties of ferrocenylhydrazone coordinated polymers irradiated by γ-rays

    International Nuclear Information System (INIS)

    Lin Yun; Chen Jie; Lin Zhanru

    2007-01-01

    The three ferrocenylhydrazone coordinated metal polymers were synthesized (PZM). The effect of the 60 Co γ irradiation on microwave dielectric properties and their temperature-dielectric properties were studies. It has been found that the dielectric parameters (ε', tgδ) of coordinated polymers increase along with the absorbed doses and coordinated metals in order Cu, Co, Ni, However, the dependent curves of dielectric parameters on arise-down temperature are universal. On the other hand, the small changes in chemical structure before and after irradiation were confirmed by IR differential spectrometry and SEM. It is possible to make such coordinated polymers as a multifunctional polymeric material with optical, electric and magnetic properties, which may be potentially used in microwave communication. (authors)

  16. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, Alireza, E-mail: aabbasi@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Gharib, Maniya; Najafi, Mahnaz [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Janczak, Jan [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wrocław (Poland)

    2016-03-15

    A new one-dimensional (1D) coordination polymer, [Zn(4,4′-bpy)(H{sub 2}O){sub 4}](ADC)·4H{sub 2}O (1) (4,4′-bpy=4,4′-bipyridine and H{sub 2}ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles. - Graphical abstract: A new 1D coordination polymer as catalyst for the degradation of Bismarck brown aqueous solution. - Highlights: • A 1D coordination polymer has been synthesized at room temperature. • The prepared compound was utilized for color removal of Bismarck brown dye. • Good catalytic activity and stability in the dye decolorization has been found.

  17. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiu-Hua, E-mail: xhli.univ@gmail.com [College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, 350117 Fujian (China); Zhang, Qi [School of Life Science, Changchun Normal University, Changchun, 130032 Jilin (China); Hu, Ping [Southampton Management School, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2014-10-15

    A multifunctional homochiral coordination polymer, [Co(H{sub 2}O)(BDC)(4,4′-BPY)]∙3H{sub 2}O (1) (H{sub 2}BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions.

  18. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation

    International Nuclear Information System (INIS)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C.; Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M.

    2015-01-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  19. Recyclable Cu(II)-Coordination Crosslinked Poly(benzimidazolyl pyridine)s as High-Performance Polymers.

    Science.gov (United States)

    Wang, Cheng; Yang, Li; Chang, Guanjun

    2018-03-01

    Crosslinked high-performance polymers have many industrial applications, but are difficult to recycle or rework. A novel class of recyclable crosslinking Cu(II)-metallo-supramolecular coordination polymers are successfully prepared, which possess outstanding thermal stability and mechanical property. More importantly, the Cu 2+ coordination interactions can be further removed via external pyrophosphate to recover the linear polymers, which endow the crosslinking polymers with recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Meso-Helical Ag(I) Coordination Polymer Based on a Pyridylimidazole Ligand

    International Nuclear Information System (INIS)

    Kang, Youngjin; Kim, Jinho; Lee, Eunji; Park, Ki-Min; Moon, Suk-Hee

    2016-01-01

    In the fields of material science and metallosupramolecular chemistry, coordination polymers with various helical types have been extensively explored because of their charming structures, and their potential applications in material chemistry. Among them, meso-helical coordination polymers consisting of achiral 1D strands, which are generally constructed by a crystallographic inversion symmetry, are relatively rare. The coordination polymer 1 exhibits a rare one-dimensional meso-helical chain topology constructed by its internal inversion symmetry. The skeleton of this meso-helical chain is preserved up to 300°C. The complexation of silver(I) ion to the free pyim ligand give rise to the enhanced photoluminescence intensity and slightly blue-shifted emission maximum, originated from intraligand (IL) π[BOND]π* transition and rigidochromic effect. Further exploration of complexation of this ligand with other transition metal ions is currently in progress

  1. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    Science.gov (United States)

    Abbasi, Alireza; Gharib, Maniya; Najafi, Mahnaz; Janczak, Jan

    2016-03-01

    A new one-dimensional (1D) coordination polymer, [Zn(4,4‧-bpy)(H2O)4](ADC)·4H2O (1) (4,4‧-bpy=4,4‧-bipyridine and H2ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles.

  2. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Ling, E-mail: qinling@hfut.edu.cn [Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, Anhui (China); Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials (CEM), School of Environmental Sciences and Engineering, Nanjing University of Information Science and Technology (China); State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Qiao, Wen-Cheng; Zuo, Wei-Juan; Zeng, Si-Ying; Mei, Cao; Liu, Chang-Jiang [Department of Chemical Engineering and Food Processing, Xuancheng Campus, Hefei University of Technology, Xuancheng 242000, Anhui (China)

    2016-07-15

    Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymers have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.

  3. Incorporation of tritium contaminated oil in cement using an absorbent polymer

    International Nuclear Information System (INIS)

    Goes, Marcos Maciel de; Marumo, Julio Takehiro; Isiki, Vera Lucia Keiko

    2002-01-01

    This paper describes a study carried out to determine whether a absorbent polymer can be used to pretreat tritiated vacuum pump oils, before solidification in cement matrix. The experiments were conducted with samples prepared with simulated waste, absorbent polymer, portland cement and silica fume, in some cases, and evaluating the performance according to compressive strength, workability and bleeding. Despite the low quantity of oil incorporated, this study showed that it can be a feasible method, since it provided a stable product. (author)

  4. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Lang [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450002 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia)

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  5. Chiral and achiral helical coordination polymers of zinc and ...

    Indian Academy of Sciences (India)

    rality depends on formation of cis coordination geom- etry around the ..... lographic Data Centre via www.ccdc.cam.ac.uk/data_ .... 324; (b) Han L and Hong M 2005 Inorg. Chem. Com ... Kang Y, Chen S, Wang F, Zhang J and Bu X 2011 Chem.

  6. Crystal Structures and Physical Properties of Ag(I) Coordination Polymers with Unsymmetrical Dipyridyl Ligand

    International Nuclear Information System (INIS)

    Lee, Eunji; Ryu, Hyunsoo; Park, Kimin

    2013-01-01

    Three Ag(I) coordination polymers with the formula [Ag(L)]·(X)·(DMSO) n (X = ClO 4 (1), BF 4 (2), and PF 6 (3), and L = dipyridyl ligand) were prepared and characterized fully their structures. All three compounds are isostructures and stable 2-D honeycomb type coordination polymers, in which 1-D zigzag chains with -(Ag-L)- motif are linked by the argentophilic interactions and the π···π stacking interactions between pyridine rings. The investigation on photophysical properties of all compounds shows that the nature of emission can be attributed to the metal-to-ligand charge transfer as well as the formation of the polymeric structures with restriction of the flexibility of the free ligand. Based on the present solid state results, further investigation on the development and characterization of new coordination polymers using flexible unsymmetrical ligand is in progress. During last two decades, silver coordination polymers based on dipyridyl type ligands have attracted particular interest because of the various intriguing architectures caused by a variety of coordination geometry of Ag(I) ion as well as their potential applications as functional materials

  7. Rational Design of Coordination Polymers with Flexible Oxyethylene Side Chains

    International Nuclear Information System (INIS)

    Choi, Eun Young; Gao, Chunji; Lee, Suck Hyun; Kwon, O Pil

    2012-01-01

    We rationally designed and synthesized metallopolymers with organic 1,4-benzenedicarboxylic acid (BDC) linkers with different lengths of oxyethylene side chains in order to examine the influence of side chains on the coordination characteristics. While in a previous report the BDC linkers with alkyl side chains were found to form three-dimensional (3D) isoreticular metal-organic framework (IRMOF) structures or one-dimensional (1D) coordination polymeric structures with short -O(CH 2 ) 6 CH 3 or long -O(CH 2 ) 9 CH 3 side chains, respectively, new BDC linkers with oxyethylene side chains of the same lengths, -(OCH 2 CH 2 ) 2 CH 3 and -(OCH 2 CH 2 ) 3 CH 3 , form only 3D IRMOF structures. This result is attributed to the higher flexibility and smaller volume of oxyethylene side chains compared to alkyl side chains

  8. Natural Gas Purification Using a Porous Coordination Polymer with Water and Chemical Stability

    NARCIS (Netherlands)

    Duan, J.; Jin, W.; Krishna, R.

    2015-01-01

    Porous coordination polymers (PCPs), constructed by bridging the metals or clusters and organic linkers, can provide a functional pore environment for gas storage and separation. But the rational design for identifying PCPs with high efficiency and low energy cost remains a challenge. Here, we

  9. The iron member of the CPO-27 coordination polymer series: Synthesis, characterization, and intriguing redox properties

    DEFF Research Database (Denmark)

    Märcz, Matthias; Johnsen, Rune; Dietzel, Pascal D.C.

    2012-01-01

    The microporous coordination polymer CPO-27-Fe was synthesized from iron salts and 2,5-dihydroxyterephthalic acid by microwave assisted solvothermal synthesis. The crystal structures of the as-synthesized compounds were determined by Rietveld refinement from powder X-ray diffraction data using...

  10. A rational route to SCM materials based on a 1-D cobalt selenocyanato coordination polymer.

    Science.gov (United States)

    Boeckmann, Jan; Näther, Christian

    2011-07-07

    Thermal annealing of a discrete complex with terminal SeCN anions and monodentate coligands enforces the formation of a 1D cobalt selenocyanato coordination polymer that shows slow relaxation of the magnetization. Therefore, this approach offers a rational route to 1D materials that might show single chain magnetic behaviour. This journal is © The Royal Society of Chemistry 2011

  11. New twists and turns for actinide chemistry. Organometallic infinite coordination polymers of thorium diazide

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Marisa J.; Seaman, Lani A.; Goff, George S.; Michalczyk, Ryszard; Morris, David E.; Scott, Brian L.; Kiplinger, Jaqueline L. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-03-07

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge.

  12. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    Science.gov (United States)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  13. Polyacrylic acid polymer brushes as substrates for the incorporation of anthraquinone derivatives. Unprecedented application of decorated polymer brushes on organocatalysis

    Science.gov (United States)

    Ruiz-Muelle, Ana Belén; Contreras-Cáceres, Rafael; Oña-Burgos, Pascual; Rodríguez-Dieguez, Antonio; López-Romero, Juan Manuel; Fernández, Ignacio

    2018-01-01

    The synthesis of amino-terminated anthraquinone derivatives and their incorporation onto polymer brushes for the fabrication of silicon-based nanometric functional coatings are described for the first time. The general process involves the covalent grafting of anthraquinone 1 onto two different polymer-brushes by amidation reactions. They are composed by amino- and carboxy-terminated poly(acrylic acid) chains (PAA-NH2- and PAA-COOH, respectively) tethered by one end to an underlying silicon oxide (SiO2) substrate in a polymer brush configuration. A third substrate is fabricated by UV induced hydrosilylation reaction using undecenoic acid as adsorbate on hydrogen-terminated Si(111) surfaces. One- and two-dimensional nuclear magnetic resonance (NMR), FT-IR, MS and X-ray diffraction (XRD) were used to characterize anthraquinone 1. Ellipsometric and X-ray photoelectron spectroscopy (XPS) measurements demonstrated the presence of the polymer brushes on the silicon wafers, and atomic force microscopy (AFM) was used to study its surface morphology. The covalent linkage between anthraquinone and polymer brushes was proven by XPS and confocal fluorescence microscopy. The resulting surfaces were assayed in the heterogenous organocatalytic transformation of (1H)-indole into 3-benzyl indole with moderate yields but with high recyclability.

  14. Crystal Engineering: Synthesis and Structural Analysis of Coordination Polymers with Wavelike Properties

    Directory of Open Access Journals (Sweden)

    Matasebia T. Munie

    2011-10-01

    Full Text Available Supramolecular coordination polymers with wavelike structures have been synthesized by self-assembly and their structures analyzed using the sine trigonometric function. Slow evaporation of a methylene chloride-methanol solution of a 1:1 molar mixture of [M(tmhd2], where M = Co or Ni, and quinoxaline; a 1:2:1 molar mixture of [M(acac2], where M = Co or Ni, 2,2,6,6-tetramethyl-3,5-heptadione and quinoxaline; or a 1:2:1 molar mixture of [Co(acac2], dibenzoylmethane, and quinoxaline, yielded the crystalline coordination polymers. In the presence of the nitrogenous base, ligand scrambling occurs yielding the most insoluble product. The synthesis and structures of the following wavelike polymers are reported: trans-[Co(DBM2(qox]n·nH2O (2, trans-[Co(tmhd2(qox]n (3, trans-[Ni(tmhd2(qox]n (4, where DBM− = dibenzoylmethanate, tmhd− = 2,2,6,6-tetramethyl-3,5-heptadionate, and qox = quinoxaline. The wavelike structures are generated by intramolecular steric interactions and crystal packing forces between the chains. Some of the tert-butyl groups show a two-fold disorder. The sine function, φ = A sin 2πx/λ, where φ = distance (Ǻ along the polymer backbone, λ = wavelength (Ǻ, A = amplitude (Ǻ, x = distance (Ǻ along the polymer axis, provides a method to approximate and visualize the polymer structures.

  15. Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers.

    Science.gov (United States)

    Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia

    2013-03-21

    To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.

  16. Crystal structures of coordination polymers from CaI2 and proline

    Directory of Open Access Journals (Sweden)

    Kevin Lamberts

    2015-06-01

    Full Text Available Completing our reports concerning the reaction products from calcium halides and the amino acid proline, two different solids were found for the reaction of l- and dl-proline with CaI2. The enantiopure amino acid yields the one-dimensional coordination polymer catena-poly[[aqua-μ3-l-proline-tetra-μ2-l-proline-dicalcium] tetraiodide 1.7-hydrate], {[Ca2(C5H9NO25(H2O]I4·1.7H2O}n, (1, with two independent Ca2+ cations in characteristic seven- and eightfold coordination. Five symmetry-independent zwitterionic l-proline molecules bridge the metal sites into a cationic polymer. Racemic proline forms with Ca2+ cations heterochiral chains of the one-dimensional polymer catena-poly[[diaquadi-μ2-dl-proline-calcium] diiodide], {[Ca(C5H9NO22(H2O2]I2}n, (2. The centrosymmetric structure is built by one Ca2+ cation that is bridged towards its symmetry equivalents by two zwitterionic proline molecules. In both structures, the iodide ions remain non-coordinating and hydrogen bonds are formed between these counter-anions, the amino groups, coordinating and co-crystallized water molecules. While the overall composition of (1 and (2 is in line with other structures from calcium halides and amino acids, the diversity of the carboxylate coordination geometry is quite surprising.

  17. Anion-Controlled Architecture and Photochromism of Naphthalene Diimide-Based Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Jian-Jun Liu

    2018-02-01

    Full Text Available Three new cadmium coordination polymers, namely [Cd(NO32(DPNDI(CH3OH]·CH3OH (1, [Cd(SCN2(DPNDI] (2, and [Cd(DPNDI2(DMF2]·2ClO4 (3 (DPNDI = N,N-di(4-pyridyl-1,4,5,8-naphthalene diimide, DMF = N,N-dimethylformamide have been synthesized by reactions of DPNDI with Cd(NO32, Cd(SCN2, and Cd(ClO42, respectively. Compound 1 is a one-dimensional coordination polymer with strong lone pair-π interactions between the coordinated NO3− anions and the imide ring of DPNDI; while 2 is a two-dimensional network with a (4, 4 net topology. In the case of 3, due to the presence of uncoordinated perchlorate counter ions, it exhibits a non-interpenetrated square-grid coordination polymer containing one-dimensional rhomboid channels. The structural diversity in these compounds is attributed to different coordination abilities and geometries of counter anions. Due to the presence of electron-deficient NDI moiety, the photochromic behavior of these compounds was studied. Interestingly, only compounds 1 and 3 exhibit color changes under light irradiation. The influence of the anions on the photochromism process of the NDI-based materials has been discussed.

  18. Incorporating allylated lignin-derivatives in thiol-ene gel-polymer electrolytes.

    Science.gov (United States)

    Baroncini, Elyse A; Stanzione, Joseph F

    2018-07-01

    Growing environmental and economic concerns as well as the uncertainty that accompanies finite petrochemical resources contributes to the increase in research and development of bio-based, renewable polymers. Concurrently, industrial and consumer demand for smaller, safer, and more flexible technologies motivates a global research effort to improve electrolytic polymer separators in lithium-ion batteries. To incorporate the aromatic structural advantages of lignin, a highly abundant and renewable resource, into gel-polymer electrolytes, lignin-derived molecules, vanillyl alcohol and gastrodigenin are functionalized and UV-polymerized with multi-functional thiol monomers. The resulting thin, flexible, polymer films possess glass transition temperatures ranging from -42.1°C to 0.3°C and storage moduli at 25°C ranging from 1.90MPa to 10.08MPa. The crosslinked polymer films swollen with electrolyte solution impart conductivities in the range of 7.04×10 -7 to 102.73×10 -7 Scm -1 . Thiol molecular weight has the most impact on the thermo-mechanical properties of the resulting films while polymer crosslink density has the largest effect on conductivity. The conducting abilities of the bio-based gel-polymer electrolytes in this study prove the viability of lignin-derived feedstock for use in lithium-ion battery applications and reveal structurally and thermally desirable traits for future work. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Thermostability and photophysical properties of mixed-ligand carboxylate/benzimidazole Zn(II)-coordination polymers

    International Nuclear Information System (INIS)

    Barros, Bráulio Silva; Chojnacki, Jaroslaw; Macêdo Soares, Antonia Alice; Kulesza, Joanna; Lourenço da Luz, Leonis; Júnior, Severino Alves

    2015-01-01

    The reaction between Zn(NO 3 ) 2 ·6H 2 O or Zn(CH 3 COO) 2 ·2H 2 O and isophthalic acid (1,3-H 2 bdc) in the presence of benzimidazole (Hbzim) in dimethylformamide (DMF)/ethanol (EtOH)/H 2 O solvent mixture at room temperature yielded two structurally different coordination polymers: [Zn 2 (1,3-bdc) 2 (Hbzim) 2 ] (1) and [Zn 2 (1,3-bdc)(bzim) 2 ] (2). (1) is a 2D-layered framework with a molecule of benzimidazole coordinated to the Zn center, whereas (2) is a 3D framework with benzimidazolate species acting as a co-ligand and bridging two Zn(II) ions. Reactions performed at 90 °C led to the formation of coordination polymers structurally similar to (2), independently of the Zn(II) source used. In the absence of benzimidazole, the reaction between ZnAc 2 .2H 2 O and 1,3-H 2 bdc at 90 °C resulted in the formation of (3), a 3D coordination polymer Zn(HCOO) 3 (Me 2 NH 2 + ). It was observed that the thermostability and the photophysical properties of (1) and (2) are strongly dependent on the coordination modes and packing of benzimidazole in the solid state. These materials present photoluminescence in the wide range of the spectrum, from UV to IR. A full understanding of a physical process occurring in these intriguing systems, including complete energy level diagrams with possible transitions were provided. - Graphical abstract: Display Omitted - Highlights: • Structurally different Zn(II)-coordination polymers were prepared. • The formation of frameworks was counter anion and temperature dependent. • Photoluminescence in the wide range of the spectrum, from UV to IR was observed. • Thermostability and luminescence depended on bzim packing in the structure

  20. Porous coordination polymer with flexibility imparted by coordinatively changeable lithium ions on the pore surface.

    Science.gov (United States)

    Xie, Lin-Hua; Lin, Jian-Bin; Liu, Xiao-Min; Wang, Yu; Zhang, Wei-Xiong; Zhang, Jie-Peng; Chen, Xiao-Ming

    2010-02-01

    Solvothermal reactions of equimolar zinc acetate, lithium acetate, and 1,3,5-benzenetricarboxylic acid (H(3)btc) in different mixed solvents yielded isostructural three-dimensional frameworks [LiZn(btc)(cG)].lG [cG and lG denote coordinated and lattice guests, respectively; cG = (nmp)(0.5)(H(2)O)(0.5), lG = (EtOH)(0.5) (1a); cG = H(2)O, lG = EtOH (1b); nmp = N-methyl-2-pyrrolidone] with one-dimensional channels occupied by guest molecules and solvent-coordinated, extrusive Li(+) ions. Thermogravimetry analyses and powder X-ray diffraction measurements revealed that both 1a and 1b can lose all lattice and coordinated guests to form a desolvated phase [LiZn(btc)] (MCF-27, 1) and almost retains the original framework structure. Gas adsorption measurements on 1 confirmed its permanent porosity but suggested a structural transformation from 1a/1b to 1. It is noteworthy that only 1a can undergo a single-crystal to single-crystal (SCSC) transformation into 1 upon desolvation. The crystal structure of 1 revealed that the Li(+) ions were retracted into the channel walls via complementary coordination to the carboxylate oxygen atoms in the framework rather than being exposed on the pore surface. Single-crystal X-ray diffraction analyses were also performed for N(2)- and CO(2)-loaded samples of 1, revealing that the framework remained unchanged when the gases were adsorbed. Although the gas molecules could not be modeled, the residue electrons inside the channels demonstrated that the retracted Li(+) ions still behave as the primary interacting site for CO(2) molecules. Nevertheless, solvent molecules such as H(2)O can readily compete with the framework oxygen atom to retrieve the extrusive Li(+) ions, accompanying the reverse structural transformation, i.e., from 1 to 1a/1b.

  1. Uranium(VI) coordination polymers with pyromellitate ligand: Unique 1D channel structures and diverse fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhadbhade, Mohan [Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Karatchevtseva, Inna [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Price, Jason R. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Liu, Hao [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW 2007 (Australia); Zhang, Zhaoming; Kong, Linggen [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Čejka, Jiří [Department of Mineralogy, National Museum, Václavské náměstí, 68, Prague 1, 115 79-CZ (Czech Republic); Lu, Kim; Lumpkin, Gregory R. [Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2015-03-15

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.

  2. Improving the Bond Strength of Rice Husk Ash Concrete by Incorporating Polymer: A New Approach

    OpenAIRE

    Bangwar, Daddan Khan; Ali Soomro, Mohsin; Ali Laghari, Nasir; Ali Soomro, Mukhtiar; Ali Buriro, Ahsan

    2018-01-01

    This paper gives an insight of how to improve the bond strength of cement in which concrete is replaced with rice husk ash. A concrete mix was prepared and was used in different types of mixes i.e. Control Mix, 10% cement substituted concrete with rice husk ash and polymer modified concrete by incorporation different dosages of polymer in the 10% cement substituted concrete. A bar of 12mm diameter, 300mm in length was placed in the center of the cylindrical specimens for pull out test. It was...

  3. A General Model of Sensitized Luminescence in Lanthanide-Based Coordination Polymers and Metal-Organic Framework Materials.

    Science.gov (United States)

    Einkauf, Jeffrey D; Clark, Jessica M; Paulive, Alec; Tanner, Garrett P; de Lill, Daniel T

    2017-05-15

    Luminescent lanthanides containing coordination polymers and metal-organic frameworks hold great potential in many applications due to their distinctive spectroscopic properties. While the ability to design coordination polymers for specific functions is often mentioned as a major benefit bestowed on these compounds, the lack of a meaningful understanding of the luminescence in lanthanide coordination polymers remains a significant challenge toward functional design. Currently, the study of these compounds is based on the antenna effect as derived from molecular systems, where organic antennae are used to facilitate lanthanide-centered luminescence. This molecular-based approach does not take into account the unique features of extended network solids, particularly the formation of band structure. While guidelines for the antenna effect are well established, they require modification before being applied to coordination polymers. A series of nine coordination polymers with varying topologies and organic linkers were studied to investigate the accuracy of the antenna effect in coordination polymer systems. By comparing a molecular-based approach to a band-based one, it was determined that the band structure that occurs in aggregated organic solids needs to be considered when evaluating the luminescence of lanthanide coordination polymers.

  4. Application of a silver–olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymers

    International Nuclear Information System (INIS)

    Everitt, D T; Coope, T S; Trask, R S; Bond, I P; Wass, D F

    2015-01-01

    A silver–olefin based coordination polymer was prepared in a simple, one step process to act as an initiator to facilitate the ring-opening polymerization of epoxides. Thermal analysis found the complex to be capable of curing a range of commercially available epoxy resins used in the manufacture of conventional composite materials. Curing of the oligomeric diglycidyl ether bisphenol A resin, Epon 828, in combination with a non-toxic solvent, ethyl phenylacetate, was studied by differential scanning calorimetry. The mechanical characterization of the resultant cured polymers was conducted by single lap shear tests. Tapered double cantilever beam (TDCB) test specimens containing 2.5 pph of silver–olefin initiator, both with and without embedded microcapsules, were analyzed for their healing performance. Healing efficiency values were found to be strongly dependent on the applied healing temperature. A mean recovery of 74% fracture load was found in TDCB samples after being healed at 70 °C for 48 h. (paper)

  5. Incidental Polymorphism, Non-Isomorphic and Isomorphic Substitution in Calcium-Valine Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Kevin Lamberts

    2015-05-01

    Full Text Available Five coordination polymers with the stoichiometry CaX2(valine2(H2O2 (X = Cl, Br were obtained from the corresponding calcium halides and either racemic and enantiopure valine. In all cases the zwitterionic amino acid is exclusively O coordinated and the halides act as counteranions for the resulting one-dimensional cationic chains. The enantiopure chloride shows dimorphism; both forms differ in connectivity from the bromide. In contrast to this structural variability for L-valine, the derivatives of the racemic amino acid are isomorphous.

  6. Improving the Bond Strength of Rice Husk Ash Concrete by Incorporating Polymer: A New Approach

    Directory of Open Access Journals (Sweden)

    D. K. Bangwar

    2018-02-01

    Full Text Available This paper gives an insight of how to improve the bond strength of cement in which concrete is replaced with rice husk ash. A concrete mix was prepared and was used in different types of mixes i.e. Control Mix, 10% cement substituted concrete with rice husk ash and polymer modified concrete by incorporation different dosages of polymer in the 10% cement substituted concrete. A bar of 12mm diameter, 300mm in length was placed in the center of the cylindrical specimens for pull out test. It was observed that the bond strength between concrete and steel decreases with the replacement of cement with ash, conversely the bond strength improves with the addition of polymer dosages.

  7. A new three-dimensional bis(benzimidazole)-based cadmium(II) coordination polymer

    Science.gov (United States)

    Hao, Shao Yun; Hou, Suo Xia; Hao, Zeng Chuan; Cui, Guang Hua

    2018-01-01

    A new coordination polymer (CP), formulated as [Cd(L)(DCTP)]n (1) (L = 1,1‧-(1,4-butanediyl)bis(2-methylbenzimidazole), H2DCTP = 2,5-dichloroterephthalic acid), was synthesized under hydrothermal conditions and the performance as luminescent probe was also investigated. Single-crystal X-ray diffraction reveals CP 1 is a 3D 3-fold interpenetrated dia network with large well-defined pores. It is found that CP 1 revealed highly sensitive luminescence sensing for Fe3 + ions in acetonitrile solution with a high quenching efficiency of KSV = 2541.238 L·mol- 1 and a low detection limit of 3.2 μM (S/N = 3). Moreover, the photocatalytic efficiency of 1 for degradation of methylene blue could reach 82.8% after 135 min. Therefore, this coordination polymer could be viewed as multifunctional material for selectively sensing Fe3 + ions and effectively degrading dyes.

  8. Superconductivity in a copper(II)-based coordination polymer with perfect kagome structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xing; Liu, Liyao; Xu, Wei; Zhu, Daoben [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Zhang, Shuai [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); Yu, Lei [Department of Chemistry, University of Kentucky, Lexington, KY (United States); Chen, Genfu [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); University of Chinese Academy of Sciences, Beijing (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2018-01-02

    A highly crystalline copper(II) benzenehexathiolate coordination polymer (Cu-BHT) has been prepared. The two-dimensional kagome structure has been confirmed by powder X-ray diffraction, high-resolution transmission electron microscopy, and high-resolution scanning transmission electron microscopy. The as-prepared sample exhibits bulk superconductivity at about 0.25 K, which is confirmed by the zero resistivity, AC magnetic susceptibility, and specific heat measurements. Another diamagnetic transition at about 3 K suggests that there is a second superconducting phase that may be associated with a single layer or few layers of Cu-BHT. It is the first time that superconductivity has been observed in a coordination polymer. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Water molecule-enhanced CO2 insertion in lanthanide coordination polymers

    International Nuclear Information System (INIS)

    Luo Liushan; Huang Xiaoyuan; Wang Ning; Wu Hongyan; Chen Wenbin; Feng Zihao; Zhu Huiping; Peng Xiaoling; Li Yongxian; Huang Ling; Yue Shantang; Liu Yingliang

    2009-01-01

    Two new lanthanide coordination polymers H 2 N(CH 3 ) 2 .[Eu III 2 (L 1 ) 3 (L 2 )] (1, L 1 =isophthalic acid dianion, L 2 =formic acid anion) and [La III (2,5-PDC)(L 2 )](2, 2,5-PDC=2,5-pyridinedicarboxylate dianion) were synthesized under solvothermal conditions. It is of interest that the formic ligand (L 2 ) is not contained in the stating materials, but arises from the water molecule-enhanced CO 2 insertion during the solvothermal process. Both of the two compounds exhibit complicated three dimensional sandwich-like frameworks. - Graphical abstract: Two new lanthanide coordination polymers involving water molecule-enhanced CO 2 insertion resulting in the formation of formic anion and dimethylammonium cation were synthesized under solvothermal conditions.

  10. Neutron radiation shielding properties of polymer incorporated self compacting concrete mixes.

    Science.gov (United States)

    Malkapur, Santhosh M; Divakar, L; Narasimhan, Mattur C; Karkera, Narayana B; Goverdhan, P; Sathian, V; Prasad, N K

    2017-07-01

    In this work, the neutron radiation shielding characteristics of a class of novel polymer-incorporated self-compacting concrete (PISCC) mixes are evaluated. Pulverized high density polyethylene (HDPE) material was used, at three different reference volumes, as a partial replacement to river sand in conventional concrete mixes. By such partial replacement of sand with polymer, additional hydrogen contents are incorporated in these concrete mixes and their effect on the neutron radiation shielding properties are studied. It has been observed from the initial set of experiments that there is a definite trend of reductions in the neutron flux and dose transmission factor values in these PISCC mixes vis-à-vis ordinary concrete mix. Also, the fact that quite similar enhanced shielding results are recorded even when reprocessed HDPE material is used in lieu of the virgin HDPE attracts further attention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. New twists and turns for actinide chemistry: organometallic infinite coordination polymers of thorium diazide

    Energy Technology Data Exchange (ETDEWEB)

    Monreal, Marisa J.; Seaman, Lani A.; Goff, George S.; Michalczyk, Ryszard; Morris, David E.; Scott, Brian L.; Kiplinger, Jaqueline L. [Los Alamos National Laboratory, Los Alamos, NM (United States)

    2016-03-07

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Homochiral coordination polymers with helixes and metal clusters based on lactate derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhong-Xuan, E-mail: xuzhongxuan4201@163.com [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China); Ma, Yu-Lu [School of Chemical Science and Technology, Yunnan University, Kunming 650091 (China); Lv, Guo-ling [Department of Chemistry, Zunyi Normal College, Zunyi, Guizhou 563002 (China)

    2017-05-15

    Utilizing the lactic acid derivatives (R)-4-(1-carboxyethoxy)benzoic acid (denoted: (R)-H{sub 2}CBA) and (S)-4-(1-carboxyethoxy)benzoic acid (denoted: (S)-H{sub 2}CBA)as chiral linkers to self-assemble with 4, 4′-bipyridine (denoted: BIP) and Cd(II) ions, a couple of three-dimensional homochiral coordination polymers, namely [Cd{sub 3}((R)-CBA){sub 3} (BIP){sub 2}(H{sub 2}O)]·xGuest (1-D) and [Cd{sub 3}((S)-CBA){sub 3}(BIP){sub 2}(H{sub 2}O)]·xGuest (1-L), have been synthesized under solvothermal reaction condition. Single crystal X-ray diffraction analysis reveals the two complexes contain single helical chains based on enantiopure ligands and cadmium clusters. Moreover, some physical characteristics such as PXRD, thermal stability, solid-state circular dichroism (CD) and luminescent were also investigated. - Graphical abstract: Utilizing enantiomeric lactic acid derivatives (R)-H{sub 2}CBA and (S)-H{sub 2}CBA to assemble with Cd{sup 2+} ions and ancillary BIP ligands, a couple of 3D homochiral coordination polymers with metal clusters and helical chains have been prepared by hydrothermal reaction. - Highlights: • Chiral lactic acid derivative. • Enantiomeric coordination polymer. • Helical chain. • Trinuclear cadmium cluster.

  13. Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria

    Science.gov (United States)

    Reichmann, Nathalie T.; Cassona, Carolina Picarra

    2013-01-01

    Teichoic acids (TAs) are important for growth, biofilm formation, adhesion and virulence of Gram-positive bacterial pathogens. The chemical structures of the TAs vary between bacteria, though they typically consist of zwitterionic polymers that are anchored to either the peptidoglycan layer as in the case of wall teichoic acid (WTA) or the cell membrane and named lipoteichoic acid (LTA). The polymers are modified with d-alanines and a lack of this decoration leads to increased susceptibility to cationic antimicrobial peptides. Four proteins, DltA–D, are essential for the incorporation of d-alanines into cell wall polymers and it has been established that DltA transfers d-alanines in the cytoplasm of the cell onto the carrier protein DltC. However, two conflicting models have been proposed for the remainder of the mechanism. Using a cellular protein localization and membrane topology analysis, we show here that DltC does not traverse the membrane and that DltD is anchored to the outside of the cell. These data are in agreement with the originally proposed model for d-alanine incorporation through a process that has been proposed to proceed via a d-alanine undecaprenyl phosphate membrane intermediate. Furthermore, we found that WTA isolated from a Staphylococcus aureus strain lacking LTA contains only a small amount of d-alanine, indicating that LTA has a role, either direct or indirect, in the efficient d-alanine incorporation into WTA in living cells. PMID:23858088

  14. Role of N-Donor Sterics on the Coordination Environment and Dimensionality of Uranyl Thiophenedicarboxylate Coordination Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Thangavelu, Sonia G. [Department; Butcher, Ray J. [Department; Cahill, Christopher L. [Department

    2015-06-09

    Thiophene 2,5-dicarboxylic acid (TDC) was reacted with uranyl acetate dihydrate and one (or none) of six N-donor chelating ligands (2,2'-bipyridine (BPY), 4,4'-dimethyl-2,2'-bipyridine (4-MeBPY), 5,5'-dimethyl-2,2'-bipyridine (5-MeBPY), 6,6'-dimethyl-2,2'-bipyridine (6-MeBPY), 4,4',6,6'-tetramethyl-2,2'-bipyridine (4,6-MeBPY), and tetrakis(2-pyridyl)pyrazine (TPPZ) to result in the crystallization of seven uranyl coordination polymers, which were characterized by their crystal structures and luminescence properties. The seven coordination polymers, Na2[(UO2)2(C6H2O4S)3]·4H2O (1), [(UO2)4(C6H2O4S)5(C10H8N2)2]·C10H10N2·3H2O (2), [(UO2)(C6H2O4S)(C12H12N3)] (3), [(UO2)(C6H2O4S)(C12H12N3)]·H2O (4), [(UO2)2(C6H2O4S)3]·(C12H14N2)·5H2O (5), [(UO2)3(CH3CO2)(C6H2O4S)4](C14H17N2)3·(C14H16N2)·H2O (6), and [(UO2)2(C6H2O4S)3](C24H18N6) (7), consist of either uranyl hexagonal bipyramidal or pentagonal bipyramidal coordination geometries. In all structures, structural variations in the local and global structures of 1–7 are influenced by the positions (or number) of methyl groups or pyridyl rings on the N-donor species, thus resulting in a wide diversity of structures ranging from single chains, double chains, or 2-D sheets. Direct coordination of N-donor ligands to uranyl centers is observed in the chain structures of 2–4 using BPY, 4-MeBPY, and 5-MeBPY, whereas the N-donor species participate as guests (as either neutral or charge balancing species) in the chain and sheet structures of 5–7 using 6-MeBPY, 4,6-MeBPY, and TPPZ, respectively. Compound 1 is the only structure that does not contain any N-donor ligands and thus crystallizes as a 2-D interpenetrating sheet. The luminescent properties of 1–7 are influenced by the direct coordination or noncoordination of N-donor species to uranyl centers. Compounds 2–4 exhibit typical UO22+ emission upon direct coordination of N-donors, but its absence is observed in 1

  15. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    International Nuclear Information System (INIS)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox) 0.5 (H 2 O)] n ·2n(H 2 O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H 2 sfpip)(ox)(H 2 O) 4 ] n ·2n(H 2 O) (Ln=Nd (8) Sm (9)), [H 2 ox=oxalic acid, H 3 sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H 3 sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox 2− anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  16. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    Energy Technology Data Exchange (ETDEWEB)

    Peresypkina, Eugenia V. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Samsonenko, Denis G. [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Vostrikova, Kira E., E-mail: vosk@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation); LMI, Université Claude Bernard Lyon 1, 69622 Villeurbanne Cedex (France)

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  17. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-15

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox){sub 0.5}(H{sub 2}O)]{sub n}·2n(H{sub 2}O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H{sub 2}sfpip)(ox)(H{sub 2}O){sub 4}]{sub n}·2n(H{sub 2}O) (Ln=Nd (8) Sm (9)), [H{sub 2}ox=oxalic acid, H{sub 3}sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H{sub 3}sfpip resulted in two types of structures. Compounds 1–7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox{sup 2−} anions as linkers to bridge the adjacent layers. Compounds 8–9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1–9 were also investigated. - Graphical abstract: Nine new lanthanide coordination polymers have been synthesized under hydrothermal conditions. Compounds 1–7 exhibit a 3D tfz-d network. Compounds 8–9 display a 1D chain structure. The structural variation from compounds 1–7 to 8–9 can attribute to the pH effect on construction of lanthanide coordination polymers. - Highlights: • Nine lanthanide coordination polymers were prepared under hydrothermal conditions. • Their crystal structures have been determined. • The luminescence and thermal stabilities were studied in the solid state.

  18. Synthesis, structure and fluorescence properties of a novel 3D Sr(II) coordination polymer

    Science.gov (United States)

    Tan, Yu-Hui; Xu, Qing; Gu, Zhi-Feng; Gao, Ji-Xing; Wang, Bin; Liu, Yi; Yang, Chang-Shan; Tang, Yun-Zhi

    2016-09-01

    Solvothermal reaction of 2,2‧-bipyridine-5,5‧-dicarboxylic acid (H2bpdc) and SrCl2 affords a novel coordination polymer [Sr(Hbpdc)2]n1. X-ray structure determination shows that 1 exhibits a novel three-dimensional network. The unique Sr II cation sits on a two-fold axis and coordinated by four O-atom donors from four Hbptc- ligands and four N-atom donors from two Hbptc- ligands in distorted dodecahedral geometry. In 1 each Sr II cation connects to six different Hbptc- ligands and each Hbptc- ligand bridges three different Sr II cations which results in the formation of a three-dimensional polymeric structure. Corresponding to the free ligand, the fluorescent emission of complex 1 display remarkable "Einstain" shifts, which may be attributed to the coordination interaction of Sr atoms, thus reduce the rigidity of pyridyl rings.

  19. Syntheses, structural analyses and luminescent property of four alkaline-earth coordination polymers

    International Nuclear Information System (INIS)

    Zhang, Sheng; Qu, Xiao-Ni; Xie, Gang; Wei, Qing; Chen, San-Ping

    2014-01-01

    Four alkaline-earth coordination polymers, [Ba(Pzdc)(H 2 O)] n (1), [Ba(Pzdc)] n (2), [AgSr(Pzdc)(NO 3 )(H 2 O)] n (3), [Ag 2 Ca(Pzdc) 2 (H 2 O)] n (4) (H 2 Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized and characterized by single-crystal X-ray diffraction. Compounds 1 and 2 afford 2D layer networks generated by one-dimensional chains containing the [Ba 2 O 11 N] units. Compound 3 is of 2D mixed-metal coordination network formed by one-dimensional chain units, while 4 is of a 3D heterometallic framework. Interestingly, 1 and 2 can undergo reversible SCSC structural transformation upon dehydration/rehydration of coordinated water molecules. In addition, the π–π stacking interactions dominate fluorescent properties of compounds 1 and 2. - Graphical abstract: Four new coordination polymers [Ba(Pzdc)(H 2 O)] n (1), [Ba(Pzdc)] n (2), [AgSr(Pzdc)(NO 3 )(H 2 O)] n (3), [Ag 2 Ca(Pzdc) 2 (H 2 O)] n (4) (H 2 Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized. Compounds 1–3 display 2D topology structures and compound 4 exhibits a 3D topology structure. Fortunately, 1 and 2 undergo reversible dehydration/rehydration of coordinated water molecules. Display Omitted - Highlights: • All structures are generated by 1D chains. • 1 and 2 show reversible dehydration/rehydration of coordinated water molecules. • The π–π stacking interactions dominate fluorescent properties of compounds 1 and 2

  20. Syntheses, structural analyses and luminescent property of four alkaline-earth coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sheng; Qu, Xiao-Ni; Xie, Gang; Wei, Qing; Chen, San-Ping, E-mail: sanpingchen@126.com

    2014-02-15

    Four alkaline-earth coordination polymers, [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized and characterized by single-crystal X-ray diffraction. Compounds 1 and 2 afford 2D layer networks generated by one-dimensional chains containing the [Ba{sub 2}O{sub 11}N] units. Compound 3 is of 2D mixed-metal coordination network formed by one-dimensional chain units, while 4 is of a 3D heterometallic framework. Interestingly, 1 and 2 can undergo reversible SCSC structural transformation upon dehydration/rehydration of coordinated water molecules. In addition, the π–π stacking interactions dominate fluorescent properties of compounds 1 and 2. - Graphical abstract: Four new coordination polymers [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized. Compounds 1–3 display 2D topology structures and compound 4 exhibits a 3D topology structure. Fortunately, 1 and 2 undergo reversible dehydration/rehydration of coordinated water molecules. Display Omitted - Highlights: • All structures are generated by 1D chains. • 1 and 2 show reversible dehydration/rehydration of coordinated water molecules. • The π–π stacking interactions dominate fluorescent properties of compounds 1 and 2.

  1. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Qianqian; Han, Ying [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Lin, Hechun, E-mail: hclin@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Zhang, Yuanyuan; Duan, Chungang [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Peng, Hui, E-mail: hpeng@ee.ecnu.edu.cn [Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai (China); Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006 (China)

    2017-03-15

    One dimensional coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO{sub 4}{sup 2-} ions to generate a 1-D chain, and all oxygen atoms in SO{sub 4}{sup 2-} groups are connected to three nearest Gd atoms in µ{sup 3}:η{sup 1}:η{sup 1}:η{sup 2} fashion. Gd, S and N from SO{sub 4}{sup 2-} and NO{sub 3}{sup -} are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH=7 T. - Graphical abstract: Coordination polymer Gd[(SO{sub 4})(NO{sub 3})(C{sub 2}H{sub 6}SO){sub 2}] was obtained mediated by Bronsted acid Ionic Liquid, which presents a 1-D chains collected by SO{sub 4}{sup 2-} groups. Magnetic susceptibility of the polymer reveals weak antiferromagnetic interactions between the Gd(III) ions with the relatively large magneto-caloric effect of –ΔS{sub m}=28.8 J Kg{sup −1} K{sup −1} for ΔH= 7T.

  2. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei

    2012-01-01

    Solid-state nanocomposite polymer electrolytes based on poly(vinyl alcohol)(PVA) incorporating hyperbranched poly(amine-ester) (HBPAE) grafted nano-silica (denoted as SiO2-g-HBPAE) have been prepared and investigated. Through surface pretreatment of nanoparticles, followed by Michael-addition and a self-condensation process, hyperbranched poly(amine-ester) was directly polymerized from the surface of nano-silica. Then the hypergrafted nanoparticles were added to PVA matrix, and blended with lithium perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act as solid plasticizer, promoting lithium salt dissociation in the matrix as well as improving segmental motion of matrix. In addition, tensile testing shows that such materials are soft and tough even at room temperature. From the dielectric spectra of nanocomposite polymer electrolyte as the function of temperature, it can be deduced that Arrhenius behavior appears depending on the content of hypergrafted nano-silica and concentration of lithium perchlorate. At a loading of 15 wt% hypergrafted nano-silica and 54 wt% lithium perchlorate, promising ionic conductivities of PVA nanocomposite polymer electrolyte are achieved, about 1.51 × 10 -4 S cm-1 at 25 °C and 1.36 × 10-3 S cm-1 at 100 °C. © The Royal Society of Chemistry.

  3. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    Science.gov (United States)

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  4. Structure and performance of polymer-derived bulk ceramics determined by method of filler incorporation

    Science.gov (United States)

    Konegger, T.; Schneider, P.; Bauer, V.; Amsüss, A.; Liersch, A.

    2013-12-01

    The effect of four distinct methods of incorporating fillers into a preceramic polymer matrix was investigated with respect to the structural and mechanical properties of the resulting materials. Investigations were conducted with a polysiloxane/Al2O3/ZrO2 model system used as a precursor for mullite/ZrO2 composites. A quantitative evaluation of the uniformity of filler distribution was obtained by employing a novel image analysis. While solvent-free mixing led to a heterogeneous distribution of constituents resulting in limited mechanical property values, a strong improvement of material homogeneity and properties was obtained by using solvent-assisted methods. The results demonstrate the importance of the processing route on final characteristics of polymer-derived ceramics.

  5. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    International Nuclear Information System (INIS)

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-01-01

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1–3 contain four types of 2 1 helical chains. While the Nd(III) ions are bridged through μ 2 -HIDC 2− and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of solvent DMF to formate acid or oxalic acid under solvothermal conditions. The isostructural complexes 1–3 contain four types of different 2 1 helical chains in the 2D layer and 1 exhibits bright red solid-state phosphorescence upon UV radiation. - Highlights: • Four unexpected 2D lanthanide coordination compounds have been synthesized through in situ reactions under solvothermal conditions. • The complexes 1–3 contain four types of 2 1 helical chains in the layer. • Complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature

  6. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF

    Science.gov (United States)

    Lu, Jun; Kim, Sang-Gyun; Lee, Sunwoo; Oh, Il-Kwon

    2008-08-01

    In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on.

  7. Fabrication and actuation of electro-active polymer actuator based on PSMI-incorporated PVDF

    International Nuclear Information System (INIS)

    Lu, Jun; Oh, Il-Kwon; Kim, Sang-Gyun; Lee, Sunwoo

    2008-01-01

    In this study, an ionic networking membrane (INM) of poly(styrene-alt-maleimide) (PSMI)-incorporated poly(vinylidene fluoride) (PVDF) was applied to fabricate electro-active polymer. Based on the same original membrane of PSMI-incorporated PVDF, various samples of INM actuator were prepared for different reduction times with the electroless-plating technique. The as-prepared INM actuators were tested in terms of surface resistance, platinum morphology, resonance frequency, tip displacement, current and blocked force, and their performances were compared to those of the widely used traditional Nafion actuator. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that much smaller and more uniform platinum particles were formed on the surfaces of the INM actuators as well as within their polymer matrix. Although excellent harmonic responses were observed for the newly developed INM actuators, they were found to be sensitive to the applied reduction times during the fabrication. The mechanical displacement of the INM actuator fabricated after the optimum reduction times was much larger than that of its Nafion counterpart of comparable thickness under the stimulus of constant and alternating current voltage. The PSMI-incorporated PVDF actuator can become a promising smart material to be used in the fields of biomimetic robots, biomedical devices, sensors and actuator, haptic interfaces, energy harvesting and so on

  8. Two new coordination polymers based on tartaric acid ligand: Syntheses, crystal structure and thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-Yan; Lan, You-Zhao, E-mail: sky37@zjnu.cn; Han, Min-Min; Feng, Yun-Long, E-mail: lyzhao@zjnu.cn [Zhejiang Normal University, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry (China)

    2016-09-15

    Two new coordination polymers [Cd{sub 3}(D-Tar){sub 3}]{sub n} (1) and [Pb(meso-Tar)]{sub n} (2) (H{sub 2}Tar = tartaric acid) have been synthesized by hydrothermal reaction and characterized by single crystal X-ray diffraction analysis and IR spectra. 1 crystallizes in the C222{sub 1} chiral space group and shows a 3D (4,4)-connected net with the (4.6.8{sup 4}){sub 4}(4.6{sup 2}.8{sup 2}.10)(4.6{sup 2}.8{sup 3})(4.6{sup 3}.8{sup 2})(4.6{sup 3}.8{sup 2}){sub 4}(4.8{sup 5}){sub 2} topology. 2 possesses a 3D (4,4)-connected net with the (4{sup 3}.6{sup 2}.8) topology. In addition, the thermogravimetric analyses (TGA) results for polymers are discussed.

  9. Enhancing relative permittivity by incorporating PDMS-PEG multiblock copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxane (PDMS) elastomers are well-known to be soft and highly stretchable, yet they never achieve maximum elongation when utilised as dielectric elastomers, simply because their dielectric permittivity remains rather low. Conversely, polyethyleneglycols (PEG) are not stretchable......, but they do possess high permittivity. Combining two such polymers in a block copolymer allows for further crosslinking and presents the possibility of substantial improvements in the actuation response of the resulting dielectric elastomer – if carefully designed. The objective is to synthesise a PDMS......, the discontinuity in PEG can be acquired and the relative permittivity (ε’) is significantly enhanced (60%) with 5wt% of PDMS-PEG block copolymer incorporated into the silicone elastomer....

  10. Preparation and characterization of MWCNT nanofiller incorporated polymer composite for lithium battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepa, P.; Raj, S. Edwin; Selvakumar, K.; Sowmya, G.; Prabhu, M. Ramesh, E-mail: mkram83@gmail.com [School of Physics, Alagappa University, Karaikudi-630 003, Tamil Nadu (India)

    2015-06-24

    Poly (ethyl methacrylate) based polymer electrolyte films were prepared by solution casting technique incorporating multi-walled carbon nanotube (MWCNT) as filler and characterized using XRD and Ac impedance analysis. The electrical conductivity is increased with increasing filler concentration (upto 6wt %), which is attributed to the formation of charge transfer complexes. The maximum ionic conductivity value is found to be 1.171×10{sup −3} Scm{sup −1} at 303K for PEMA (19wt %) -LiClO{sub 4} (8wt %) -MWCNT (6wt %) -PC (67wt %) electrolyte system. The temperature dependent ionic conductivity plot seems to obey Vogel -Tamman-Fulcher relation.

  11. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    International Nuclear Information System (INIS)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E.; Chan, Benny C.; Lill, Daniel T. de

    2015-01-01

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C 6 H 2 O 5 )(C 6 H 3 O 5 )(H 2 O)] n (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted

  12. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E. [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States); Chan, Benny C. [Department of Chemistry, The College of New Jersey, 2000 Pennington Road, Ewing, NJ 08628 (United States); Lill, Daniel T. de, E-mail: ddelill@fau.edu [Department of Chemistry & Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 (United States)

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  13. Two multi-dimensional frameworks constructed from zinc coordination polymers with pyridine carboxylic acids

    International Nuclear Information System (INIS)

    Guo Yuanyuan; Ma Pengtao; Wang Jingping; Niu Jingyang

    2011-01-01

    Two novel zinc coordination polymers [Zn 2 (H 2 O)L(MoO 4 )] n (1) and [Zn 4 (PO 4 ) 2 L'(H 2 O)] n (2) (H 2 L=2,2'-bipyridine-6.6'-dicarboxylic acid, H 2 L'=2,2'-bipyridine-4,4'-dicarboxylic acid) have been hydrothermally synthesized and characterized by elemental analyses, IR spectra, UV spectra, single-crystal X-ray diffraction and thermogravimetric analyses. Structural analyses indicate that 1 represents a 2-D sheet structure built by dimeric [Zn 2 L(H 2 O)] 2+ units and MoO 4 2- groups whereas 2 displays an interesting 3-D framework constructed by tetranuclear zinc clusters, L' 2- ligands and PO 4 3- groups. Examination of UV spectra suggests that both 1 and 2 can stably exist in the pH range of 2.45-5.45 and 3.01-8.55 in aqueous solution, respectively. The room-temperature solid-state photoluminescence of 1 and 2 are derived from the intra-ligands π-π* transitions of H 2 L and H 2 L' ligands and the ligand-to-metal-charge-transfer transitions. - Graphical Abstract: Two new transition metal coordination polymers, namely, [Zn 2 (H 2 O)L 1 (MoO 4 )] n (1), [Zn 4 (PO 4 ) 2 L 2 (H 2 O)] n (2) (H 2 L 1 =2,2'-bipyridine-6,6'-dicarboxylic acid, H 2 L 2 =2,2'-bipyridine-4,4'-dicarboxylic acid) have been hydrothermally synthesized. 1 represents a 2-D sheet structure while 2 represents 3-D network. Highlights: →Two new transition metal coordination polymers have been hydrothermally synthesized. → The two compounds have been characterized by elemental analyses, IR, UV spectra, single-crystal X-ray diffraction, thermogravimetric analyses and photoluminescence. → Compound 1 represents a 2-D sheet structure while 2 represents 3-D network.

  14. Syntheses, crystal structures, and properties of new metal-5-bromonicotinate coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenjie [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052 (China); Li, Guoting [Department of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou 450011 (China); Lv, Lulu; Zhao, Hong [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052 (China); Wu, Benlai, E-mail: wbl@zzu.edu.cn [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-05-15

    Four metal–5-bromonicotinate (Brnic) coordination polymers [Fe(Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Ni(Brnic){sub 2}]{sub n} (2), [Ni(Brnic)(bpy)(H{sub 2}O){sub 2}]{sub n}·n(Brnic)·4.5nH{sub 2}O (3), and [Co{sub 2}(Brnic){sub 3}(bpy){sub 2}(OH)]{sub n}·nH{sub 2}O (4) have been synthesized and structurally characterized (bpy=4,4′-bipyridine). Complex 1 has corrugated (4,4) sheets formed by μ-Brnic ligands and planar nodes Fe(II). As for 2–4, they all built up from Brnic-bridged dinuclear subunits, but have very different structure features. Complex 2 is a twin-like polymer with (4,4) layers formed by twin paddle-wheel [Ni{sub 2}(Brnic){sub 4}] subunits. Through the bridge coordination of bpy ligands with dinuclear rings [Ni{sub 2}(Brnic){sub 2}] and trigons [Co{sub 2}(Brnic){sub 3}(OH)], 6{sup 3}-topological cationic layers with nanosized grids of 3 and chiral ladder-type double chains of 4 formed, respectively. Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules 1–4. The thermostabilities of all compounds have been discussed in detail. Moreover, the magnetic investigations of 2 and 4 indicate that there exist antiferromagnetic interactions in the paddle-wheel [Ni{sub 2}(Brnic){sub 4}] and trigon [Co{sub 2}(Brnic){sub 3}(OH)] cores, respectively. - Highlights: • Four novel metal–5-bromonicotinate coordination polymers have been synthesized. • Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules. • Antiferromagnetic interactions in nickel(II) paddle-wheel and cobalt(II) trigon cores were observed.

  15. A polythreaded Ag(I) coordination polymer: A rare three-dimensional Pseudo-polyrotaxana constructed from the same components

    Energy Technology Data Exchange (ETDEWEB)

    Im, Han Su; Lee, Eunji; Lee, Shim Sung; Kim, Tae Ho; Park, Ki Min [Research Institute of Natural Science and Dept. of Chemistry, Gyeongsang National University, Jinju (Korea, Republic of); Moon, Suk Hee [Dept. of Food and Nutrition, Kyungnam College of Information and Technology, Busan (Korea, Republic of)

    2017-01-15

    In supramolecular chemistry, a lot of mechanically poly-threaded coordination polymers, such as polyrotaxanes, based on self-assembly of organic ligands and transition metal ions have attracted great attention over the past two decades because of their fascinating architectures as well as their potential application in material science. Among them, 1D + 2D → 3D pseudo-polyrotaxane constructed by the penetration of 1D coordination polymer chains into 1D channels formed by parallel stacking of 2D porous coordination layers is a quite rare topology. Until now, only a few examples of 1D + 2D → 3D pseudo-polyrotaxanes have been reported.

  16. A polythreaded Ag(I) coordination polymer: A rare three-dimensional Pseudo-polyrotaxana constructed from the same components

    International Nuclear Information System (INIS)

    Im, Han Su; Lee, Eunji; Lee, Shim Sung; Kim, Tae Ho; Park, Ki Min; Moon, Suk Hee

    2017-01-01

    In supramolecular chemistry, a lot of mechanically poly-threaded coordination polymers, such as polyrotaxanes, based on self-assembly of organic ligands and transition metal ions have attracted great attention over the past two decades because of their fascinating architectures as well as their potential application in material science. Among them, 1D + 2D → 3D pseudo-polyrotaxane constructed by the penetration of 1D coordination polymer chains into 1D channels formed by parallel stacking of 2D porous coordination layers is a quite rare topology. Until now, only a few examples of 1D + 2D → 3D pseudo-polyrotaxanes have been reported

  17. Synthesis, crystal structure and luminescence properties of lanthanide coordination polymers with a new semirigid bridging thenylsalicylamide ligand

    International Nuclear Information System (INIS)

    Song, Xue-Qin; Wang, Li; Zhao, Meng-Meng; Wang, Xiao-Run; Peng, Yun-Qiao; Cheng, Guo-Quan

    2013-01-01

    Two new lanthanide coordination polymers based on a semirigid bridging thenylsalicylamide ligand ([Ln 2 L 3 (NO 3 ) 6 ]·(C 4 H 8 O 2 ) 2 ) ∞ were obtained and characterized by elemental analysis, X-ray diffraction, IR and TGA measurements. The two compounds are isostructure and possess one dimensional trapezoid ladder-like chain built up from the connection of isolated LnO 3 (NO 3 ) 3 polyhedra (distorted monocapped antisquare prism) through the ligand. The photoluminescence analysis suggest that there is an efficient ligand-to-Ln(III) energy transfer in Tb(III) complex and the ligand is an efficient “antenna” for Tb(III). From a more general perspective, the results demonstrated herein provide the possibility of controlling the formation of the desired lanthanide coordination structure to enrich the crystal engineering strategy and enlarge the arsenal for developing excellent luminescent lanthanide coordination polymers. - Graphical abstract: We present herein one dimensional lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display interesting structures but also possess strong luminescence properties. Display Omitted - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit interesting structures. • The luminescent properties of Tb(III) complexes are discussed in detail

  18. Lattice architecture effect on the cooperativity of spin transition coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chiruta, Daniel [Faculty of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Ştefan cel Mare University, Suceava 720229 (Romania); GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France); LISV, Université de Versailles Saint-Quentin-en-Yvelines, 78140 Velizy (France); Jureschi, Catalin-Maricel; Rotaru, Aurelian, E-mail: jorge.linares@uvsq.fr, E-mail: rotaru@eed.usv.ro [Faculty of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Ştefan cel Mare University, Suceava 720229 (Romania); Linares, Jorge, E-mail: jorge.linares@uvsq.fr, E-mail: rotaru@eed.usv.ro [GEMaC, Université de Versailles Saint-Quentin-en-Yvelines, CNRS-UVSQ (UMR 8635), 78035 Versailles Cedex (France); Garcia, Yann [Institute of Condensed Matter and Nanosciences, Molecules, Solids and Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur, 1, 1348 Louvain-la-Neuve (Belgium)

    2014-02-07

    We have investigated in the framework of the Ising-like model, by means of Monte Carlo Metropolis method with open boundary condition, the architecture effect on the cooperativity of spin transition coordination polymers. We have analyzed the influence of several physical parameters (size, pressure, and edge effects) on different lattice architectures which were in good agreement with reported experimental data. We show that the cooperativity of a spin crossover system, characterized by the same number of molecules and the same short- and long-range interaction parameters, is progressively enhanced when going from a 1D chain to a 1D ladder type lattice and to a 2D square lattice.

  19. Structural study on the gas adsorption phenomena in porous coordination polymers by synchrotron powder diffraction method

    International Nuclear Information System (INIS)

    Kubota, Yoshiki

    2017-01-01

    In situ synchrotron powder diffraction measurement of gas adsorption and crystal structure analysis for porous coordination polymers (PCPs) were performed. From the obtained accurate crystal structure in both atomic and charge density levels, not only the position and orientation of adsorbed gas molecules but also the interaction between the adsorbed gas molecule and host framework were found. The information enables us to understand the mechanism of gas adsorption phenomena and functions of PCPs. It will give us the guiding principles for the novel functional materials design. (author)

  20. Homo- and heterodinuclear coordination polymers based on a tritopic cyclam bis-terpyridine unit: Structure and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Li; Fan, Jiangxia; Ren, Yong; Xiong, Kun [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Yan, Minhao, E-mail: yanminhao@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010 (China); Tuo, Xianguo, E-mail: tuoxg@swust.edu.cn [Laboratory of National Defense for Radioactive Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010 (China); Terech, Pierre [SPrAM, UMR CEA/CNRS/UJF-Grenoble 1, INAC, Grenoble F-38054 (France); Royal, Guy [Université Joseph Fourier Grenoble I, Département de Chimie Moléculaire, UMR CNRS-5250, Institut de Chimie Moléculaire de Grenoble, FR CNRS-2607, BP 53, 38041 Grenoble Cedex 9 (France)

    2015-03-01

    An innovative coordination polymer based on a tritopic ligand having the bis-terpyridine cyclam (CHTT) unit is explored. Homo- or heteronuclear 1D coordination polymers can be formed with bivalent metal ions such as Co(II) and Ni(II) in solvent DMF. Creep-recovery curves of the (Co{sup II}){sub 2}CHTT gels formed from 1D coordination polymers were analyzed with the Burgers model and demonstrated an original self-healing property, unusual in the class of molecular gels. The influence of the metal type was studied through the structural features using small-angle neutron scattering (SANS) experiments. In gels, the corresponding network involves genuine fibers (R ≈ 35 Å), bundles of these fibers and also a fraction of finite size aggregates (rods with aspect ratio f ≈ 3–5). We found that the distribution of these latter structural components is sensitive to the metal ions type. Such tritopic 1D coordination polymers exhibit a range of original structural features and a facile control of the developed structures in solutions and gels by tuning their thermodynamic parameters. The versatility associated to the intrinsic dynamic ability of the systems should pave the way to original properties for molecular devices. - Graphical abstract: A tritopic ligand with a bis-terpyridine cyclam (CHTT) unit can form homo- and heterobinuclear coordination polymers with bivalent metal ions in DMF. Gels exhibit a remarkable self-healing property while structures of solutions and gels are studied by small-angle neutron scattering. - Highlights: • Homo- and heteronuclear coordination polymers based on innovative tritopic ligand. • The gels formed from the coordination polymers demonstrated self-healing property. • Influence of the metal type was studied through the structural properties by SANS. • Versatility of the singular system present original properties for molecular device.

  1. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Baoxia [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Huang, Yankai [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhu, Xu; Hao, Yuanqiang [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Ding, Yujie [College of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000 (China); Wei, Wei; Wang, Qi [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); Qu, Peng, E-mail: qupeng0212@163.com [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); Xu, Maotian, E-mail: xumaotian@sqnc.edu.cn [Henan Key Laboratory Cultivation Base of Nanobiological Analytical Chemistry, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000 (China); College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China)

    2016-03-17

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg{sup 2+} detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb{sup 3+} from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg{sup 2+} into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg{sup 2+}. As a kind of Hg{sup 2+} nanosensor, the probe exhibited excellent selectivity for Hg{sup 2+} and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg{sup 2+} in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg{sup 2+} was achieved based on time-resolved spectroscopy.

  2. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination

    International Nuclear Information System (INIS)

    Liu, Baoxia; Huang, Yankai; Zhu, Xu; Hao, Yuanqiang; Ding, Yujie; Wei, Wei; Wang, Qi; Qu, Peng; Xu, Maotian

    2016-01-01

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg"2"+ detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb"3"+ from the quenching effect of O–H vibration in water molecules. The subsequent addition of Hg"2"+ into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg"2"+. As a kind of Hg"2"+ nanosensor, the probe exhibited excellent selectivity for Hg"2"+ and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg"2"+ in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. - Highlights: • Lanthanide coordination polymer of Tb-CIP/AMP was synthesized via a simple self-assembly process. • AMP was employed as a bifunctional molecule for both fluorescence sensitization and target recognition. • Hypersensitive detection of Hg"2"+ was achieved based on time-resolved spectroscopy.

  3. Pyrolysis of Helical Coordination Polymers for Metal-Sulfide-Based Helices with Broadband Chiroptical Activity.

    Science.gov (United States)

    Hirai, Kenji; Yeom, Bongjun; Sada, Kazuki

    2017-06-27

    Fabrication of chiroptical materials with broadband response in the visible light region is vital to fully realize their potential applications. One way to achieve broadband chiroptical activity is to fabricate chiral nanostructures from materials that exhibit broadband absorption in the visible light region. However, the compounds used for chiroptical materials have predominantly been limited to materials with narrowband spectral response. Here, we synthesize Ag 2 S-based nanohelices derived from helical coordination polymers. The right- and left-handed coordination helices used as precursors are prepared from l- and d-glutathione with Ag + and a small amount of Cu 2+ . The pyrolysis of the coordination helices yields right- and left-handed helices of Cu 0.12 Ag 1.94 S/C, which exhibit chiroptical activity spanning the entire visible light region. Finite element method simulations substantiate that the broadband chiroptical activity is attributed to synergistic broadband light absorption and light scattering. Furthermore, another series of Cu 0.10 Ag 1.90 S/C nanohelices are synthesized by choosing the l- or d-Glu-Cys as starting materials. The pitch length of nanohelicies is controlled by changing the peptides, which alters their chiroptical properties. The pyrolysis of coordination helices enables one to fabricate helical Ag 2 S-based materials that enable broadband chiroptical activity but have not been explored owing to the lack of synthetic routes.

  4. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee; Melianas, Armantas; Zhuang, Wenliu; Bergqvist, Jonas; Diaz De Zerio Mendaza, Amaia; Steckler, Timothy T.; Yu, Liyang; Bradley, Siobhan J.; Musumeci, Chiara; Gedefaw, Desta; Nann, Thomas; Amassian, Aram; Mü ller, Christian; Inganä s, Olle; Andersson, Mats R.

    2015-01-01

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  5. Comparison of selenophene and thienothiophene incorporation into pentacyclic lactam-based conjugated polymers for organic solar cells

    KAUST Repository

    Kroon, Renee

    2015-09-08

    In this work, we compare the effect of incorporating selenophene versus thienothiophene spacers into pentacyclic lactam-based conjugated polymers for organic solar cells. The two cyclic lactam-based copolymers were obtained via a new synthetic method for the lactam moiety. Selenophene incorporation results in a broader and red-shifted optical absorption while retaining a deep highest occupied molecular orbital level, whereas thienothienophene incorporation results in a blue-shifted optical absorption. Additionally, grazing-incidence wide angle X-ray scattering data indicates edge- and face-on solid state order for the selenophene-based polymer as compared to the thienothiophene-based polymer, which orders predominantly edge-on with respect to the substrate. In polymer:PCBM bulk heterojunction solar cells both materials show a similar open-circuit voltage of ∼0.80-0.84 V, however the selenophene-based polymer displays a higher fill factor of ∼0.70 vs. ∼0.65. This is due to the partial face-on backbone orientation of the selenophene-based polymer, leading to a higher hole mobility, as confirmed by single-carrier diode measurements, and a concomitantly higher fill factor. Combined with improved spectral coverage of the selenophene-based polymer, as confirmed by quantum efficiency experiments, it offers a larger short-circuit current density of ∼12 mA cm. Despite the relatively low molecular weight of both materials, a very robust power conversion efficiency ∼7% is achieved for the selenophene-based polymer, while the thienothiophene-based polymer demonstrates only a moderate maximum PCE of ∼5.5%. Hence, the favorable effects of selenophene incorporation on the photovoltaic performance of pentacyclic lactam-based conjugated polymers are clearly demonstrated.

  6. Largely enhanced thermal and mechanical properties of polymer nanocomposites via incorporating C60@graphene nanocarbon hybrid

    International Nuclear Information System (INIS)

    Song, Ping’an; Liu, Lina; Yu, Youming; Huang, Guobo; Guo, Qipeng

    2013-01-01

    Although considerable progress has been achieved to create advanced polymer nanocomposites using nanocarbons including fullerene (C 60 ) and graphene, it remains a major challenge to effectively disperse them in a polymer matrix and to fully exert their extraordinary properties. Here we report a novel approach to fabricate the C 60 @graphene nanocarbon hybrid (C 60 : ∼47.9 wt%, graphene: ∼35.1%) via three-step reactions. The presence of C 60 on a graphene sheet surface can effectively prevent the aggregation of the latter which in turn helps the dispersion of the former in a polymer matrix during melt-processing. C 60 @graphene is found to be uniformly dispersed in a polypropylene (PP) matrix. Compared with pristine C 60 or graphene, C 60 @graphene further improves the thermal stability and mechanical properties of PP. The incorporation of 2.0 wt% C 60 @graphene (relative to PP) can remarkably increase the initial degradation temperature by around 59 ° C and simultaneously enhance the tensile strength and Young’s modulus by 67% and 76%, respectively, all of which are higher than those of corresponding PP/C 60 (graphene) nanocomposites. These significant performance improvements are mainly due to the free-radical-trapping effect of C 60 , and the thermal barrier and reinforcing effects of graphene nanosheets as well as the effective stress load transfer. This work provides a new methodology to design multifunctional nanohybrids for creating advanced materials. (paper)

  7. Stretchable supercapacitors based on highly stretchable ionic liquid incorporated polymer electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tamilarasan, P.; Ramaprabhu, S., E-mail: ramp@iitm.ac.in

    2014-11-14

    Mechanical stability of electrolyte in all-solid-state supercapacitor attains immense attention as it addresses safety aspects. In this study, we have demonstrated, the fabrication of stretchable supercapacitor based on stretchable electrolyte and hydrogen exfoliated graphene electrode. We synthesized ionic liquid incorporated stretchable Poly(methyl methacrylate) electrolyte which plays dual role as electrolyte and stretchable support for electrode material. The molecular vibration studies show composite nature of the electrolyte. At least four-fold stretchability has been observed along with good ionic conductivity (0.78 mS cm{sup −1} at 28 °C) for this polymer electrolyte. This stretchable supercapacitor shows a low equivalent series resistance (16 Ω) due to the compatibility at electrode–electrolyte interface. The performance of the device has been determined under strain as well. - Highlights: • A stretchable supercapacitor has been fabricated using stretchable electrolyte. • Here ionic liquid incorporated polymer plays dual role as electrolyte and stretchable support. • The developed device shows low equivalent series resistance. • The device has specific capacitance of 83 F g{sup −1}, at the specific current of 2.67 A g{sup −1}. • The energy density and power density of 25.7 Wh kg{sup −1} and 35.2 kW kg{sup −1}, respectively.

  8. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    International Nuclear Information System (INIS)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-01-01

    Three new metal-organic coordination polymers [Co(4-bbc) 2 (bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H 2 O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H 2 pdc=3,5-pyridinedicarboxylic acid, 1,4-H 2 ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co II ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3 2 ·4·5·6 2 ·7 4 ) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated

  9. Carbon fiber polymer-matrix structural composites tailored for multifunctionality by filler incorporation

    Science.gov (United States)

    Han, Seungjin

    This dissertation provides multifunctional carbon fiber polymer-matrix structural composites for vibration damping, thermal conduction and thermoelectricity. Specifically, (i) it has strengthened and stiffened carbon fiber polymer-matrix structural composites by the incorporation of halloysite nanotubes, carbon nanotubes and silicon carbide whiskers, (ii) it has improved mechanical energy dissipation using carbon fiber polymer-matrix structural composites with filler incorporation, (iii) it has increased the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation, and (iv) it has enhanced the thermoelectric behavior of carbon fiber polymer-matrix structural composites. Low-cost natural halloysite nanotubes (0.1 microm diameter) were effective for strengthening and stiffening continuous fiber polymer-matrix composites, as shown for crossply carbon fiber (5 microm diameter, ˜59 vol.%) epoxy-matrix composites under flexure, giving 17% increase in strength, 11% increase in modulus and 21% decrease in ductility. They were less effective than expensive multiwalled carbon nanotubes (0.02 microm diameter), which gave 25% increase in strength, 11% increase in modulus and 14% decrease in ductility. However, they were more effective than expensive silicon carbide whiskers (1 microm diameter), which gave 15% increase in strength, 9% increase in modulus and 20% decrease in ductility. Each filler, at ˜2 vol.%, was incorporated in the composite at every interlaminar interface by fiber prepreg surface modification. The flexural strength increase due to halloysite nanotubes incorporation related to the interlaminar shear strength increase. The measured values of the composite modulus agreed roughly with the calculated values based on the Rule of Mixtures. Continuous carbon fiber composites with enhanced vibration damping under flexure are provided by incorporation of fillers between the laminae

  10. Synthesis, Crystal Structure and Luminescent Property of A Novel Cd(II) Coordination Polymer with Bis-imidazole Ligand

    International Nuclear Information System (INIS)

    Zhou, Yong Hong

    2013-01-01

    The key to the successful design of metal-organic coordination polymers is the judicious selection of organic ligand. Recently, polydentate aromatic nitrogen heterocyclic ligands with five-membered rings have been well-studied in the construction of supramolecular structure for their N-coordinated sites apt to coordinating to transition metals. Similar to six-membered N-heterocyclic ligands, the azole-based five-membered N-heterocyclic ligands, such as imidazoles, triazoles and tetrazoles have been extensively employed in the construction of various coordination polymers with diverse topologies and interesting properties. The bis(azole) ligands in which N-donor azole rings (imidazole, triazole, or tetrazole) are separated by alkyl, (CH 2 ) n , spacers are good choices for flexible bridging ligands. The conformational flexibility of the spacers makes the ligands adaptable to various coordination networks with one-, two-, and three dimensional structures

  11. Enantiopure Chiral Coordination Polymers Based on Polynuclear Paddlewheel Helices and Arsenyl Tartrate

    Directory of Open Access Journals (Sweden)

    Ángela Valentín-Pérez

    2018-03-01

    Full Text Available Herein, we report the preparation of chiral, one-dimensional coordination polymers based on trinuclear paddlewheel helices [M3(dpa4]2+ (M = Co(II and Ni(II; dpa = the anion of 2,2′-dipyridylamine. Enantiomeric resolution of a racemic mixture of [M3(dpa4]2+ complexes was achieved by chiral recognition of the respective enantiomer by [Δ-As2(tartrate2]2− or [Λ-As2(tartrate2]2− in N,N-dimethylformamide (DMF, affording crystalline coordination polymers formed from [(Δ-Co3(dpa4(Λ-As2(tartrate2]·3DMF (Δ-1, [(Λ-Co3(dpa4(Δ-As2(tartrate2]·3DMF (Λ-1, [(Δ-Ni3(dpa4(Λ-As2(tartrate2]·(4 − nDMF∙nEt2O (Δ-2 or [(Λ-Ni3(dpa4(Δ-As2(tartrate2]·(4 − nDMF∙nEt2O (Λ-2 repeating units. UV-visible circular dichroism spectra of the complexes in DMF solutions demonstrate the efficient isolation of optically active species. The helicoidal [M3(dpa4]2+ units that were obtained display high stability towards racemization as shown by the absence of an evolution of the dichroic signals after several days at room temperature and only a small decrease of the signal after 3 h at 80 °C.

  12. Synthesis of f metal coordination polymers: properties and conversion into inorganic solids

    International Nuclear Information System (INIS)

    Demars, Thomas

    2012-01-01

    Coordination polymers (CP) are of great academic and industrial interest due to flexible structure and composition and offer prospects for original chemical (catalysis, soft-hard materials conversion..) and physical properties (magnetism, optics..). The major interest of these studies is to check the transfer of the structure, meso-structure and composition from the CP to the ceramic via a thermal treatment. In this context, this thesis describes studies on conversion of coordination polymers obtained by self-assembly of 4f and 5f metal ions with 2,5-dihydroxy-1,4-benzoquinone (DHBQ). Aqueous and anhydrous synthetic ways were developed, which yielded different kinds of CPs (4f, 4f-4f, 4f-5f); solid solutions were obtained with the mixed compounds. The products were characterized and their behaviour under thermal treatment was studied. The main results show that the DHBQ-based precursors obtained by aqueous way have a micrometric meso-structure, formed by the assembly of micro-crystalline subunits which all posses the same crystallographic structure. The study of the assembly of the meso-structure allowed controlling the morphology of the elementary grain (cylinder, cube, disk...) with very good size distribution. The implementation of anhydrous systems in a controlled atmosphere allowed yielded a wider range of micro-structural parameters (surface area, porosity...). For all CP-type compounds, the thermal conversion to ceramic has barely altered the morphology of the materials. The microstructural aspects could be controlled via the method of synthesis. (author) [fr

  13. Syntheses, structures and luminescent properties of lanthanide coordination polymers assembled from imidazophenanthroline derivative and oxalate ligands

    Science.gov (United States)

    Zhao, Hui; Sun, Xiao-Xia; Hu, Huai-Ming; An, Ran; Yang, Meng-Lin; Xue, Ganglin

    2017-01-01

    Nine new lanthanide coordination polymers, namely, [Ln(Hsfpip)(ox)0.5(H2O)]n·2n(H2O) ((Ln=Eu (1), Tb (2), Dy (3), Ho (4), Er (5), Yb (6), Y(7)), [Ln(H2sfpip)(ox)(H2O)4]n·2n(H2O) (Ln=Nd (8) Sm (9)), [H2ox=oxalic acid, H3sfpip=2-(2,4-disulfophenyl)imidazo(4,5-f)(1,10)-phenanthroline] have been synthesized under hydrothermal conditions and characterized by IR spectra, elemental analysis, powder X-ray diffraction and single crystal X-ray diffraction. When sodium oxalate is added, the reactions of lanthanide ions with H3sfpip resulted in two types of structures. Compounds 1-7 are obtained at pH 5.0 and exhibit 3D tfz-d networks with ox2- anions as linkers to bridge the adjacent layers. Compounds 8-9 are obtained at pH 2.0, and display a 1D chain which is further extended to a 3D supramolecular framework through intermolecular hydrogen bonds and π-π interactions. The structural variation from compounds 1-7 to 8-9 can attribute to the pH effect on construction of lanthanide coordination polymers. Moreover, the thermal stabilities and luminescence properties of 1-9 were also investigated.

  14. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    Science.gov (United States)

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  15. A New 1D Chained Coordination Polymer: Synthesis, Crystal Structure, Antitumor Activity and Luminescent Property

    Directory of Open Access Journals (Sweden)

    Xi-Shi Tai

    2015-11-01

    Full Text Available A new 1D chained coordination polymer of Zn(II, {[Zn(L2(4,4′-bipy]·(H2O}n(1 (HL = N-acetyl-l-phenylalanine; 4,4′-bipy = 4,4′-bipyridine has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction analysis. Theresults show that each asymmetric unit of Zn(II complex belongs to monoclinic, space group P21 with a = 11.421(2 Å, b = 9.2213(17 Å, c = 15.188(3 Å,β = 106.112(3°, V = 1536.7(5 Å3, Z = 2, Dc = 1.444 g·cm−3, µ = 0.857 mm−1, F(000 = 696, and final R1 = 0.0439, ωR2 = 0.1013. The molecules form one-dimensional chained structure by its the bridging 4,4′-bipyridine ligands. The antitumor activities and luminescent properties of Zn(II coordination polymer have also been investigated.

  16. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation

    Energy Technology Data Exchange (ETDEWEB)

    Meundaeng, Natthaya; Rujiwatra, Apinpus [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prior, Timothy J., E-mail: t.prior@hull.ac.uk [Chemistry, University of Hull, Kingston upon Hull HU6 7RX (United Kingdom)

    2017-01-15

    We have successfully prepared crystals of thiazole-5-carboxylic acid (5-Htza) (L) and three new thiazole-5-carboxylate-based Cu{sup 2+} coordination polymers with different dimensionality, namely, 1D [Cu{sub 2}(5-tza){sub 2}(1,10-phenanthroline){sub 2}(NO{sub 3}){sub 2}] (1), 2D [Cu(5-tza){sub 2}(MeOH){sub 2}] (2), and 3D [Cu(5-tza){sub 2}]·H{sub 2}O (3). These have been characterized by single crystal X-ray diffraction and thermogravimetry. Interestingly, the 2D network structure of 2 can directly transform into the 3D framework of 3 upon removal of methanol molecules at room temperature. 2 can also undergo structural transformation to produce the same 2D network present in the known [Cu(5-tza){sub 2}]·1.5H{sub 2}O upon heat treatment for 2 h. This 2D network can adsorb water and convert to 3 upon exposure to air. - Highlights: • Rare examples of coordination polymers of thiazole-5-carboxylic acid were prepared. • Non-covalent interactions play a key role on the assembly of the complexes in solid state. • Structural transformation of a 2D framework to a 3D upon removal of methanol is observed.

  17. Coordination polymers: trapping of radionuclides and chemistry of tetravalent actinides (Th, U) carboxylates

    International Nuclear Information System (INIS)

    Falaise, Clement

    2014-01-01

    The use of nuclear energy obviously raises the question of the presence of radionuclides in the environment. Currently, their mitigation is a major issue associated with nuclear chemistry. This thesis focuses on both the trapping of radionuclides by porous solids called Metal-Organic Frameworks (MOF) and the crystal chemistry of the carboxylate of tetravalent actinides (AnIV). The academic knowledge of the reactivity of carboxylate of AnIV could help the understanding of actinides speciation in environment. We focused on the sequestration of iodine by aluminum based MOF. The functionalization (electron-donor group) of the MOF drastically enhances the iodine capture capacity. The removal of light actinides (Th and U) from aqueous solution was also investigated as well as the stability of (Al)-MOF under γ radiation. More than twenty coordination polymers based on tetravalent actinides have been synthesized and characterized by single crystal X-ray diffraction. The use of controlled hydrolysis promotes the formation of coordination polymers exhibiting polynuclear cluster ([U 4 ], [Th 6 ], [U 6 ] and [U 38 ]). In order to understand the formation of the largest cluster, the ex-situ study of the solvo-thermal synthesis of compound {U 38 } has also been investigated. (author)

  18. Coordination Polymers and Metal Organic Frameworks Derived from 1,2,4-Triazole Amino Acid Linkers

    Directory of Open Access Journals (Sweden)

    Yann Garcia

    2011-10-01

    Full Text Available The perceptible appearance of biomolecules as prospective building blocks in the architecture of coordination polymers (CPs and metal-organic frameworks (MOFs are redolent of their inclusion in the synthon/tecton library of reticular chemistry. In this frame, for the first time a synthetic strategy has been established for amine derivatization in amino acids into 1,2,4-triazoles. A set of novel 1,2,4-triazole derivatized amino acids were introduced as superlative precursors in the design of 1D coordination polymers, 2D chiral helicates and 3D metal-organic frameworks. Applications associated with these compounds are diverse and include gas adsorption-porosity partitioning, soft sacrificial matrix for morphology and phase selective cadmium oxide synthesis, FeII spin crossover materials, zinc-b-lactamases inhibitors, logistics for generation of chiral/non-centrosymmetric networks; and thus led to a foundation of a new family of functional CPs and MOFs that are reviewed in this invited contribution.

  19. Preparation of PbS and PbO nanopowders from new Pb(II)(saccharine) coordination polymers

    International Nuclear Information System (INIS)

    Aslani, Alireza; Musevi, Seyid Javad; Şahin, Ertan; Yilmaz, Veysel T.

    2014-01-01

    Highlights: • The complex of compounds “[Pb(H 2 O)(μ-OAc)(μ-sac)] n ” are synthesized at nano and bulk size structurally diverse and show interesting three-dimensional coordination polymers. • Reduction of the particle size of the coordination polymers to a few dozen nanometers results in lower thermal stability when compared to the single crystalline samples. • This study demonstrates that the metal–organic framework may be suitable precursors for the preparation of nanoscale materials with interesting morphologies. - Abstract: Nanopowders and single crystal of new Pb(II) three-dimensional coordination polymer, [Pb(H 2 O)(μ-OAc)(μ-sac)] n “PASAC” were synthesized by a sonochemical and branched tube methods (Yılmaz et al., Z. Anorg. Allg. Chem. 629 (2003) 172). The new nano-structures of Pb(II) coordination polymer were characterized by X-ray crystallography analysis, scanning electron microscopy (SEM), X-ray powder diffraction (XRD), surface analysis (BET), and IR spectroscopy. The crystal structure of these compounds consists of three-dimensional polymeric units. The thermal stability of compounds was studied by thermal gravimetric analysis (TGA) and differential thermal analyses (DTA). PbS and PbO nano-structures were obtained by calcinations of the nano-structures of this coordination polymer at 600 °C

  20. Hybrid conducting polymer materials incorporating poly-oxo-metalates for extraction of actinides; Materiaux polymeres conducteurs hybrides incorporant des polyoxometallates pour l'extraction d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Racimor, D

    2003-09-15

    The preparation and characterization of hybrid conducting polymers incorporating poly-oxo-metalates for extracting actinides is discussed. A study of the coordination of various lanthanide cations (Ce(III), Ce(IV), Nd(III)) by the mono-vacant poly-oxo-metalate {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} showed significant differences according to the cation.. Various {alpha}-A-[PW{sub 9}O{sub 34}(RPO){sub 2}]{sup 5-} hybrids were synthesized and their affinity for actinides or lanthanides was demonstrated through complexation. The first hybrid poly-oxo-metallic lanthanide complexes were then synthesized, as was the first hybrid functionalized with a pyrrole group. The electro-polymerization conditions of this pyrrole remain still to be optimized. Poly-pyrrole materials incorporating {alpha}{sub 2}-[P{sub 2}W{sub 17}O{sub 61}]{sup 10-} or its neodymium or cerium complexes as doping agents proved to be the first conducting polymer incorporating poly-oxo-metalates capable of extracting plutonium from nitric acid. (author)

  1. Homochiral coordination polymers constructed from aminocarboxylate derivates: Effect of bipyridine on the amidation reaction

    International Nuclear Information System (INIS)

    Chen Jianshan; Sheng Tianlu; Hu Shengmin; Xiang Shengchang; Fu Ruibiao; Zhu Qilong; Wu Xintao

    2012-01-01

    Using aminocarboxylate derivates (S)-N-(4-cyanobenzoic)-glutamic acid (denoted as cbg, 1a) and (S)-N-(4-nitrobenzoic)-glutamic acid (denoted as nbg, 1b) as chiral ligands, five new homochiral coordination polymers formulated as [Cu(cbg)(H 2 O) 2 ] n (3), [Cu(cbop) 2 (4,4′-bipy)(H 2 O)] n (4) (cbop=(S)-N-(4-cyanobenzoic)-5-oxoproline, 4,4′-bipy=4,4′-bipyridine), {[Cu(nbop) 2 (4,4′-bipy)]·4H 2 O} n (5) (nbop=(S)-N-(4-nitrobenzoic)-5-oxoproline), {[Cd(nbop) 2 (4,4′-bipy)]·2H 2 O} n (6), and [Ni(nbop) 2 (4,4′-bipy)(H 2 O) 2 ] n (7) have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction study reveals that the original chirality of aminocarboxylate derivates is maintained in all these complexes. Complexes 3, 4, and 7 are one-dimensional infinite chain coordination polymers, while complexes 5 and 6 possess two-dimensional network structures. In situ cyclization of 1a and 1b was taken place in the formation of complexes 4–7, which may be due to the competition of 4,4′-bipyridine with chiral ligands during the coordination process. Preliminary optical behavior investigation indicates that ligands 1a, 1b, and complexes 6, 7 are nonlinear optical active. - Graphical abstract: Using aminocarboxylate derivates as chiral ligands, five new homochiral coordination polymers possessing second harmonic generation activities have been hydrothermally synthesized. Highlights: ► Two new chiral aminocarboxylate derivates were firstly synthesized. ► Five new homochiral metal organic complexes were obtained hydrothermally based on these ligands. ► Intramolecular amidation was taken place on the aminocarboxylate derivates during the formation of these complexes. ► In situ amidation may be due to the impact of 4,4′-bipyridine. ► The homochiral complexes are nonlinear optical active.

  2. A novel self-assembly with zinc porphyrin coordination polymer for enhanced photocurrent conversion in supramolecular solar cells

    International Nuclear Information System (INIS)

    Cao, Jing; Liu, Jia-Cheng; Deng, Wen-Ting; Li, Ren-Zhi; Jin, Neng-Zhi

    2013-01-01

    Graphical abstract: An innovative type of self-assembly based on acetohydrazide zinc porphyrin coordination polymer has been prepared in supramolecular solar cells. - Highlights: • A novel assembly with acetohydrazide porphyrin coordination polymer. • The assembly based on porphyrin is prepared as parallel sample. • Coordination polymer-based assembly shows enhanced photoelectronic behavior. • A series of different organic acid ligands as anchoring groups are prepared. - Abstract: In this work, a novel acetohydrazide zinc porphyrin-based coordination polymer (CP)-isonicotinic acid self-assembly by metal-ligand axial coordination to modify the nano-structured TiO 2 electrode surface has been investigated in photoelectrochemical device. Compared to the assembly based on corresponding zinc porphyrin combined with isonicotinic acid by metal-ligand axial coordination, CP-isonicotinic acid assembly exhibits a significantly enhanced photoelectronic behavior. In addition, a series of different organic acid ligands were prepared to probe the impact of their structures on the photoelectronic performances of their corresponding assemblies-sensitized cells. This study affords a novel type of self-assembly to functionalize the nanostructured TiO 2 electrode surface in supramolecular solar cells

  3. Three-Dimensional Cadmium(II Cyanide Coordination Polymers with Ethoxy-, Butoxy- and Hexyloxy-ethanol

    Directory of Open Access Journals (Sweden)

    Takeshi Kawasaki

    2016-08-01

    Full Text Available The three novel cadmium(II cyanide coordination polymers with alkoxyethanols, [Cd(CN2(C2H5OCH2CH2OH]n (I, [{Cd(CN2(C4H9OCH2CH2OH}3{Cd(CN2}]n (II and [{Cd(CN2(H2O2}{Cd(CN2}3·2(C6H13OCH2CH2OH]n (III, were synthesized and charcterized by structural determination. Three complexes have three-dimensional Cd(CN2 frameworks; I has distorted tridymite-like structure, and, II and III have zeolite-like structures. The cavities of Cd(CN2 frameworks of the complexes are occupied by the alkoxyethanol molecules. In I and II, hydroxyl oxygen atoms of alkoxyethanol molecules coordinate to the Cd(II ions, and the Cd(II ions exhibit slightly distort trigonal-bipyramidal coordination geometry. In II, there is also tetrahedral Cd(II ion which is coordinated by only the four cyanides. The hydroxyl oxygen atoms of alkoxyethanol connects etheric oxygen atoms of the neighboring alkoxyethanol by hydrogen bond in I and II. In III, hexyloxyethanol molecules do not coordinate to the Cd(II ions, and two water molecules coordnate to the octahedral Cd(II ions. The framework in III contains octahedral Cd(II and tetrahedral Cd(II in a 1:3 ratio. The Cd(CN2 framework structures depended on the difference of alkyl chain for alkoxyethanol molecules.

  4. In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers.

    Science.gov (United States)

    Ghani, Milad; Frizzarin, Rejane M; Maya, Fernando; Cerdà, Víctor

    2016-07-01

    Herein we report the use of cobalt porous coordination polymers (PCP) as intermediates to prepare advanced extraction media based on layered double hydroxides (LDH) supported on melamine polymer foam. The obtained dissolvable Ni-Co LDH composite sponges can be molded and used as sorbent for the in-syringe solid-phase extraction (SPE) of phenolic acids from fruit juices. The proposed sorbent is obtained due to the surfactant-assisted self-assembly of Co(II)/imidazolate PCPs on commercially available melamine foam, followed by the in situ conversion of the PCP into the final dissolvable LDH coating. Advantageous features for SPE are obtained by using PCPs with hierarchical porosity (HPCPs). The LDH-sponge prepared using intermediate HPCPs (HLDH-sponge) is placed in the headspace of a glass syringe, enabling flow-through extraction followed by analyte elution by the dissolution of the LDH coating in acidic conditions. Three phenolic acids (gallic acid, p-hydroxybenzoic acid and caffeic acid) were extracted and quantified using high performance liquid chromatography. Using a 5mL sample volume, the obtained detection limits were 0.15-0.35μgL(-1). The proposed method for the preparation of HLDH-sponges showed a good reproducibility as observed from the intra- and inter-day RSD's, which were <10% for all analytes. The batch-to-batch reproducibility for three different batches of HLDH-sponges was 10.6-11.2%. Enrichment factors of 15-21 were obtained. The HLDH-sponges were applied satisfactorily to the determination of phenolic acids in natural and commercial fruit juices, obtaining relative recoveries among 89.7-95.3%. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A two-dimensional Zn coordination polymer with a three-dimensional supra-molecular architecture.

    Science.gov (United States)

    Liu, Fuhong; Ding, Yan; Li, Qiuyu; Zhang, Liping

    2017-10-01

    The title compound, poly[bis-{μ 2 -4,4'-bis-[(1,2,4-triazol-1-yl)meth-yl]biphenyl-κ 2 N 4 : N 4' }bis-(nitrato-κ O )zinc(II)], [Zn(NO 3 ) 2 (C 18 H 16 N 6 ) 2 ] n , is a two-dimensional zinc coordination polymer constructed from 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn II cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligands, forming a distorted octa-hedral {ZnN 4 O 2 } coordination geometry. The linear 4,4'-bis-[(1 H -1,2,4-triazol-1-yl)meth-yl]-1,1'-biphenyl ligand links two Zn II cations, generating two-dimensional layers parallel to the crystallographic (132) plane. The parallel layers are connected by C-H⋯O, C-H⋯N, C-H⋯π and π-π stacking inter-actions, resulting in a three-dimensional supra-molecular architecture.

  6. A two-dimensional Zn coordination polymer with a three-dimensional supramolecular architecture

    Directory of Open Access Journals (Sweden)

    Fuhong Liu

    2017-10-01

    Full Text Available The title compound, poly[bis{μ2-4,4′-bis[(1,2,4-triazol-1-ylmethyl]biphenyl-κ2N4:N4′}bis(nitrato-κOzinc(II], [Zn(NO32(C18H16N62]n, is a two-dimensional zinc coordination polymer constructed from 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl units. It was synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The ZnII cation is located on an inversion centre and is coordinated by two O atoms from two symmetry-related nitrate groups and four N atoms from four symmetry-related 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligands, forming a distorted octahedral {ZnN4O2} coordination geometry. The linear 4,4′-bis[(1H-1,2,4-triazol-1-ylmethyl]-1,1′-biphenyl ligand links two ZnII cations, generating two-dimensional layers parallel to the crystallographic (132 plane. The parallel layers are connected by C—H...O, C—H...N, C—H...π and π–π stacking interactions, resulting in a three-dimensional supramolecular architecture.

  7. Surface grafting of a dense and rigid coordination polymer based on tri-para-carboxy-polychlorotriphenylmethyl radical and copper acetate

    KAUST Repository

    Mugnaini, Veró nica; Paradinas, Markos; Shekhah, Osama; Roques, Nans; Ocal, Carmen; Wö ll, Christof H.; Veciana, Jaume

    2013-01-01

    The step-by-step method is here presented as suitable to anchor on appropriately functionalized gold surfaces a metal-organic coordination polymer based on a non-planar trigonal tri-para-carboxy-polychlorotriphenylmethyl radical derivative and copper acetate. The structural characteristics of the grafted coordination polymer are derived during the step-wise growth from the real time changes in refractive index and oscillation frequency. The film thickness, as measured by scanning force microscopy, combined with the mass uptake value from the quartz crystal microbalance, are used to estimate an average density of the grafted metal-organic coordination polymer that suggests the formation of a dense and rather rigid thin film. This journal is © 2013 The Royal Society of Chemistry.

  8. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    International Nuclear Information System (INIS)

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

    2015-01-01

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu 4 (fph) 2 (bpe) 3 (H 2 O) 2 ]·2H 2 O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co 2 (fph)(bpa) 2 (H 2 O) 2 ]·3H 2 O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H 2 O)(H 2 oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu 2+ ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co 2+ ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated

  9. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023, Jilin (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Road 2699, Changchun 130012, Jilin (China); Yu, Jie-Hui, E-mail: jhyu@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023, Jilin (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Road 2699, Changchun 130012, Jilin (China); Zhang, Ping, E-mail: zhangping@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023, Jilin (China); Xu, Ji-Qing [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023, Jilin (China); State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Qianjin Road 2699, Changchun 130012, Jilin (China)

    2015-03-15

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.

  10. Coordination Polymer Modified Separator for Mitigating Polysulfide Shuttle Effect in Lithium-Sulfur Batteries

    KAUST Repository

    Wan, Yi

    2017-11-19

    The development of the new cathode and anode materials of Lithium-Ion Batteries (LIBs) with high energy density and outstanding electrochemical performance is of substantial technological importance due to the ever-increasing demand for economic and efficient energy storage system. Because of the abundance of element sulfur and high theoretical energy density, Lithium-Sulfur (Li-S) batteries have become one of the most promising candidates for the next-generation energy storage system. However, the shuttling effect of electrolyte-soluble polysulfides severely impedes the cell performance and commercialization of Li-S batteries, and significant progress have been made to mitigate this shuttle effect in the past two decades. Coordination polymers (CPs) or Metal-organic Frameworks (MOFs) have been attracted much attention by virtue of their controllable porosity, nanometer cavity sizes and high surface areas, which supposed to be an available material in suppressing polysulfide migration. In this thesis, we investigate different mechanisms of mitigating polysulfide diffusion by applying a layer of MOFs (including Y-FTZB, ZIF-7, ZIF-8, and HKUST-1) on a separator. We also fabricate a new free-standing 2D coordination polymer Zn2(Benzimidazolate)2(OH)2 with rich hydroxyl (OH-) groups by using a simple, scalable and low cost method at air/water surface. Our results suggest that the chemical stability, the cluster morphology and the surface function groups of MOFs shows a greater impact on minimizing the shuttling effect in Li-S batteries, other than the internal cavity size in MOFs. Meanwhile, the new design of 2D coordination polymer efficiently mitigate the shuttling effect in Li-S battery resulting in a largely promotion of the battery capacity to 1407 mAh g-1 at 0.1 C and excellent cycling performance (capacity retention of 98% after 200 cycles at 0.25C). Such excellent cell performance is mainly owing to the fancying physical and chemical structure controllability

  11. (1-Butyl-4-methyl-pyridinium)[Cu(SCN)2]: a coordination polymer and ionic liquid.

    Science.gov (United States)

    Spielberg, Eike T; Edengeiser, Eugen; Mallick, Bert; Havenith, Martina; Mudring, Anja-Verena

    2014-04-25

    The compound (C4C1py)[Cu(SCN)2], (C4C1py = 1-Butyl-4-methyl-pyridinium), which can be obtained from CuSCN and the ionic liquid (C4C1py)(SCN), turns out to be a new organic-inorganic hybrid material as it qualifies both, as a coordination polymer and an ionic liquid. It features linked [Cu(SCN)2](-) units, in which the thiocyanates bridge the copper ions in a μ1,3-fashion. The resulting one-dimensional chains run along the a axis, separated by the C4C1py counterions. Powder X-ray diffraction not only confirms the single-crystal X-ray structure solution but proves the reformation of the coordination polymer from an isotropic melt. However, the materials shows a complex thermal behavior often encountered for ionic liquids such as a strong tendency to form a supercooled melt. At a relatively high cooling rate, glass formation is observed. When heating this melt in differential scanning calorimetry (DSC) and temperature-dependent polarizing optical microscopy (POM), investigations reveal the existence of a less thermodynamically stable crystalline polymorph. Raman measurements conducted at 10 and 100 °C point towards the formation of polyanionic chain fragments in the melt. Solid-state UV/Vis spectroscopy shows a broad absorption band around 18,870 cm(-1) (530 nm) and another strong one below 20,000 cm(-1) (<500 nm). The latter is attributed to the d(Cu(I))→π*(SCN)-MLCT (metal-to-ligand charge transfer) transition within the coordination polymer yielding an energy gap of 2.4 eV. At room temperature and upon irradiation with UV light, the material shows a weak fluorescence band at 15,870 cm(-1) (630 nm) with a quantum efficiency of 0.90(2) % and a lifetime of 131(2) ns. Upon lowering the temperature, the luminescence intensity strongly increases. Simultaneously, the band around 450 nm in the excitation spectrum decreases. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Molecularly Imprinted Polymer with Incorporated Graphene Oxide for Electrochemical Determination of Quercetin

    Directory of Open Access Journals (Sweden)

    Xiwen He

    2013-04-01

    Full Text Available The molecularly imprinted polymer based on polypyrrole film with incorporated graphene oxide was fabricated and used for electrochemical determination of quercetin. The electrochemical behavior of quercetin on the modified electrode was studied in detail using differential pulse voltammetry. The oxidation peak current of quercetin in B-R buffer solution (pH = 3.5 at the modified electrode was regressed with the concentration in the range from 6.0 × 10−7 to 1.5 × 10−5 mol/L (r2 = 0.997 with a detection limit of 4.8 × 10−8 mol/L (S/N = 3. This electrode showed good stability and reproducibility. In the above mentioned range, rutin or morin which has similar structures and at the same concentration as quercetin did not interfere with the determination of quercetin. The applicability of the method for complex matrix analysis was also evaluated.

  13. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Gaser N.; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs, E-mail: szabolcs.beke@iit.it

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser.

  14. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles

    International Nuclear Information System (INIS)

    Schwarz, Florian P.

    2010-01-01

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  15. Photosensitive semiconducting polymer-incorporated nanofibers for promoting the regeneration of skin wound

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Guorui [Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 (Singapore); The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi' an Jiaotong University, School of Life Science and Technology, Xi' an 710049 (China); Li, Jun [Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 (Singapore); Department of Chemistry and Centre for Plastic Electronics, Imperial College London, London SW7 2AZ (United Kingdom); Li, Kai, E-mail: kai_li_cn@hotmail.com [Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, 138634 (Singapore); Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford School of Medicine, Stanford, 94305 (United States)

    2017-01-01

    Photosensitive semiconducting polymer (SP) combined with light stimulation has shown the capability in promoting the proliferation of human dermal fibroblasts (HDFs). However, the high cytotoxicity of the used SP hindered its further application in bioactive scaffolds. In this contribution, we designed and synthesized a SP, poly (N,N-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c] pyrrole-1,4-dione-alt-thieno[3,2-b]thiophene) (PDBTT) with low cytotoxicity and strong absorbance in red and near-infrared region (600–1200 nm). The photosensitive SP was then applied in electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold and evaluated its proliferative effect on HDFs under the illumination from red light-emitting diode (LED) with high tissue penetration. After 9 days of continuous stimulation, the hybrid electrospun PCL/PDBTT nanofibers with low cytotoxicity showed excellent support for HDFs adhesion, proliferation and collagen secretion than neat PCL nanofibers and HDFs on the stimulated PCL/PDBTT nanofibers gained typical spindle morphology, indicating the well cell spreading on the stimulated PCL/PDBTT nanofibers. The incorporation of functional materials within synthetic biomaterials could be a novel way in improving the performance of engineered tissue constructs by providing multiple cues (e.g. electrical stimulation) to the attached cells. - Highlights: • A photosensitive semiconducting polymer (SP) was applied in electrospun nanofibrous scaffold. • The SP-incorporated scaffold could promote cell proliferation upon light stimulation. • The designed photosensitive SP could be applied as functional material with low cost and high durability in skin tissue engineering.

  16. Highly effective synthesis of a cobalt(ii) metal-organic coordination polymer by using continuous flow chemistry.

    Science.gov (United States)

    Gong, Chunhua; Zhang, Junyong; Zeng, Xianghua; Xie, Jingli

    2016-12-20

    The coordination polymer [Co 2 L 4 (H 2 O) 2 ]·CH 3 CN·H 2 O (HL = (E)-2-[2-(4-chlorophenyl)vinyl]-8-hydroxyquinoline) has been achieved with 95% yield by using an Asia flow synthesis system (chip reactor). Compared with the conventional batch-type methods such as diffusion, reflux and solvothermal reactions, higher yielding reactions carried out in a flow reactor have demonstrated that this technique is a powerful strategy to obtain coordination compounds.

  17. Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer

    Science.gov (United States)

    Jureschi, Cătălin M.; Linares, Jorge; Rotaru, Aurelian; Ritti, Marie Hélène; Parlier, Michel; Dîrtu, Marinela M.; Wolff, Mariusz; Garcia, Yann

    2015-01-01

    We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2′-hydroxyethyl)-1,2,4-triazole)3]I2·H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P)-temperature (T) phase diagram calculated for this compound has been used to obtain the P-T bistability region. PMID:25621610

  18. A copper-based layered coordination polymer: synthesis, magnetic properties and electrochemical performance in supercapacitors.

    Science.gov (United States)

    Liu, Qi; Liu, Xiuxiu; Shi, Changdong; Zhang, Yanpeng; Feng, Xuejun; Cheng, Mei-Ling; Su, Seng; Gu, Jiande

    2015-11-28

    A copper-based layered coordination polymer ([Cu(hmt)(tfbdc)(H2O)]; hmt = hexamethylenetetramine, tfbdc = 2,3,5,6-tetrafluoroterephthalate; Cu-LCP) has been synthesized, and it has been structurally and magnetically characterized. The Cu-LCP shows ferromagnetic interactions between the adjacent copper(II) ions. Density functional theory calculations on the special model of Cu-LCP support the occurrence of ferromagnetic interactions. As an electrode material for supercapacitors, Cu-LCP exhibits a high specific capacitance of 1274 F g(-1) at a current density of 1 A g(-1) in 1 M LiOH electrolyte, and the capacitance retention is about 88% after 2000 cycles.

  19. Weak cooperativity in selected iron(II) 1D coordination polymers

    International Nuclear Information System (INIS)

    Dîrtu, Marinela M.; Gillard, Damien; Naik, Anil D.; Rotaru, Aurelian; Garcia, Yann

    2012-01-01

    The spin crossover behaviour of a new class of Fe II coordination polymers [Fe(phtptrz) 3 ]I 2 (1), [Fe(phtptrz) 3 ](ReO 4 ) 2 •CH 3 OH (2) and [Fe(phtptrz) 3 ]TaF 7 •6H 2 O (3) based on a novel ligand 4-(3 ′ -N-phtalimido-propyl)-1,2,4-triazole (phtptrz), were investigated by temperature dependent 57 Fe Mössbauer spectroscopy and magnetic susceptibility measurements. The adverse effect of bulky substituent on 1,2,4-triazole, favorable supramolecular interactions and influence of increasing anion size on spin crossover profile is discussed. 1 and 2 show thermally induced spin conversions of gradual and incomplete nature with associated thermochromism, and transition temperatures T 1/2 ∼ 163 K and 137 K, respectively. A spin state crossover is also identified for 3.

  20. A 1D coordination polymer of UF{sub 5} with HCN as a ligand

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Benjamin; Rudel, Stefan S.; Buchner, Magnus R.; Kraus, Florian [Fachbereich Chemie, Philipps-Universitaet Marburg (Germany); Karttunen, Antti J. [Department of Chemistry, Aalto University (Finland)

    2017-01-05

    β-Uranium(V) fluoride was reacted with liquid anhydrous hydrogen cyanide to obtain a 1D coordination polymer with the composition {sup 1}{sub ∞}[UF{sub 5}(HCN){sub 2}], {sup 1}{sub ∞}[UF{sub 4/1}F{sub 2/2}-(HCN){sub 2/1}], revealed by single-crystal X-ray structure determination. The reaction system was furthermore studied by means of vibrational and NMR spectroscopy, as well as by quantum chemical calculations. The compound presents the first described polymeric HCN Lewis adduct and the first HCN adduct of a uranium fluoride. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Coordination Nature of 4-Mercaptoaniline to Sn(II Ion: Formation of a One Dimensional Coordination Polymer and Its Decomposition to a Mono Nuclear Sn(IV Complex

    Directory of Open Access Journals (Sweden)

    Eon S. Burkett

    2014-12-01

    Full Text Available The coordination of the bifunctional ligand 4-mercaptoaniline with aqueo us tin(II metal ion was studied. A coordination polymer was synthesized when an aqueous solution of SnCl2 was treated with 4-MA. The crystalline material is stable under atmospheric conditions retaining its oxidation state. However, when submerged in a solution saturated with oxygen, the compound oxidizes to a mononuclear tin(IV complex. Both the compounds were characterized by single crystal X-ray diffraction studies. Although the structure of the tin(IV complex was previously reported, crystal structure of this compound was redetermined.

  2. One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles.

    Science.gov (United States)

    Agarwal, Rashmi A

    2017-10-16

    A variety of nanoparticles (NPs) including Ag, Au, Pd, Cr and mixed Cu/Fe have been synthesized in a non-activated (without solvent removal) one dimensional coordination polymer (CP) of Zn(II) via two different mechanisms, acid formation and redox activity of the framework. Main driving force to grow these NPs within the cavities of CP is the presence of free oxygens of one of the monodentate carboxylate groups of BDC ligand. These free oxygens act as anchoring sites for the metal ions of the metal precursors. Chemical and physical characteristics of the NPs within the framework have been evaluated by the high resolution transmission electron microscopic (HRTEM) images. Excluding Ag(0) and Pd(0) other NPs are present as combinations of their elemental as well as oxide forms (Au/Au 2 O 3 , Cr/Cr 2 O 3 /CrO 2 and Cu/Cu 2 O, Fe/FeO). Synthesized Ag NPs within the framework show remarkable antibacterial efficacy at extremely low concentrations. Ag, Au and Cu/Fe NPs show ferromagnetic properties within the framework at room temperature. This polymer has potential to sequester highly toxic Cr(VI) to non toxic Cr(0), Cr(III) and Cr(IV) species.

  3. Syntheses, structures and luminescence properties of lanthanide coordination polymers with helical character

    International Nuclear Information System (INIS)

    Zhou Ruisha; Cui Xiaobing; Song Jiangfeng; Xu Xiaoyu; Xu Jiqing; Wang Tiegang

    2008-01-01

    A series of lanthanide coordination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4), H 2 ip=isophthalic acid, im=imidazole] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been synthesized and characterized by elemental analyses, infrared (IR), ultraviolet-visible-near infrared (UV-Vis-NIR) and single-crystal X-ray diffraction analyses. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 features a 2-D network making of two different kinds of quadruple-helical chains. Compounds 2 and 3 present the characteristic emissions of Pr(III) and Nd(III) ions in NIR region, respectively. Compound 4 shows sensitized luminescence of Dy(III) ions in visible region. - Graphical abstract: A series of lanthanide coodination polymers, (Him) n [Ln(ip) 2 (H 2 O)] n [Ln=La(1), Pr(2), Nd(3) and Dy(4)] and [Y 2 (ip) 3 (H 2 O) 2 ] n .nH 2 O (5), have been reported. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 displays a 2-D network making of two kinds of quadruple-helical chains. Display Omitted

  4. An Unusual Pseudo-Coordination Polymer of Dithia-18-Crown-6 with Heavy Metal

    International Nuclear Information System (INIS)

    Kang, Gyeongchan; Park, Inhyeok; Lee, Shimsung

    2012-01-01

    The assembly reactions of 1,10-dithia-18-crown-6 (L) with mercury(II) and/or cadmium(II) salts provide metallosupramolecules with the unusual arrangement due to the formation of the mercury(II) halides (chloride and iodide) clusters which locate outside the macrocyclic cavity. In the reaction with mercury(II) chloride, we were able to isolate the 1D pseudo-coordination polymer 1 which resembles the ivy leaves. In 1, it is considered that the 1D zigzag array of Hg-Cl-Hg-Cl chain as a leaf-stem and the macrocyclic complexes as leaves. While, from the reaction of mercury(II) iodide and cadmium(II) iodide mixture, the discrete complex 2 with two macrocyclic cadmium(II) complex cation parts and one mercury(II) iodide cluster anion part was isolated. In both cases, each metal center is seven-coordinate, being bound to all the donors of L, with its seventh site being occupied by one halide atom, adopting a distorted monocapped trigonal prism

  5. An Unusual Pseudo-Coordination Polymer of Dithia-18-Crown-6 with Heavy Metal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gyeongchan [Yeosu High School, Yeosu (Korea, Republic of); Park, Inhyeok; Lee, Shimsung [Gyeongsang National Univ., Jinju (Korea, Republic of)

    2012-11-15

    The assembly reactions of 1,10-dithia-18-crown-6 (L) with mercury(II) and/or cadmium(II) salts provide metallosupramolecules with the unusual arrangement due to the formation of the mercury(II) halides (chloride and iodide) clusters which locate outside the macrocyclic cavity. In the reaction with mercury(II) chloride, we were able to isolate the 1D pseudo-coordination polymer 1 which resembles the ivy leaves. In 1, it is considered that the 1D zigzag array of Hg-Cl-Hg-Cl chain as a leaf-stem and the macrocyclic complexes as leaves. While, from the reaction of mercury(II) iodide and cadmium(II) iodide mixture, the discrete complex 2 with two macrocyclic cadmium(II) complex cation parts and one mercury(II) iodide cluster anion part was isolated. In both cases, each metal center is seven-coordinate, being bound to all the donors of L, with its seventh site being occupied by one halide atom, adopting a distorted monocapped trigonal prism.

  6. Dye-Incorporated Polynaphthalenediimide Acceptor for Additive-Free High-Performance All-Polymer Solar Cells.

    Science.gov (United States)

    Chen, Dong; Yao, Jia; Chen, Lie; Yin, Jingping; Lv, Ruizhi; Huang, Bin; Liu, Siqi; Zhang, Zhi-Guo; Yang, Chunhe; Chen, Yiwang; Li, Yongfang

    2018-04-16

    All-polymer solar cells (all-PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)-based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state-of-the-art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI-based polymer acceptor. Herein, a rhodanine-based dye molecule was introduced into the NDI-based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up-shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive-free all-PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all-PSCs to date. These results indicate that incorporating a dye into the n-type polymer gives insight into the precise design of high-performance polymer acceptors for all-PSCs. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Stereoselectivity in metallocene-catalyzed coordination polymerization of renewable methylene butyrolactones: From stereo-random to stereo-perfect polymers

    KAUST Repository

    Chen, Xia; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene You Xian

    2012-01-01

    Coordination polymerization of renewable α-methylene-γ-(methyl) butyrolactones by chiral C 2-symmetric zirconocene catalysts produces stereo-random, highly stereo-regular, or perfectly stereo-regular polymers, depending on the monomer and catalyst structures. Computational studies yield a fundamental understanding of the stereocontrol mechanism governing these new polymerization reactions mediated by chiral metallocenium catalysts. © 2012 American Chemical Society.

  8. Hexafluoridophosphate partial hydrolysis leading to the one-dimensional coordination polymer [{Cu(xantphos)(µ-PO2F2)}n

    OpenAIRE

    Keller, S.; Brunner, F.; Prescimone, A.; Constable, E. C.; Housecroft, C. E.

    2015-01-01

    The one-dimensional coordination polymer [{Cu(xantphos)(μ-PO2F2)}n] (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) is reported, the first extended structure in which copper(I) centres are linked by μ-PO2F2 units.

  9. Recovery of metals from simulant spent lithium-ion battery as organophosphonate coordination polymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emilie; Andre, Marie-Laure; Navarro Amador, Ricardo [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Hyvrard, François; Borrini, Julien [SARPI VEOLIA, Direction Technique et Innovations, Zone portuaire de Limay-Porcheville, 427 route du Hazay, 78520 Limay (France); Carboni, Michaël, E-mail: michael.carboni@cea.fr [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France); Meyer, Daniel [ICSM, Institut de Chimie Séparative de Marcoule, UMR 5257, CEA/CNRS/ENSCM/UM, Bât 426, BP 17171, 30207 Bagnols-sur-Cèze cedex (France)

    2016-11-05

    Highlights: • Original waste disposal strategies for battery. • Precipitation of metals as coordination polymers. • Organo-phosphonate coordination polymers. • Selective extraction of manganese or co-precipitation of manganese/cobalt. • The recycling process give a promising application on any waste solution. - Abstract: An innovative approach is proposed for the recycling of metals from a simulant lithium-ion battery (LIBs) waste aqueous solution. Phosphonate organic linkers are introduced as precipitating agents to selectively react with the metals to form coordination polymers from an aqueous solution containing Ni, Mn and Co in a hydrothermal process. The supernatant is analyzed by ICP-AES to quantify the efficiency and the selectivity of the precipitation and the materials are characterized by Scanning Electron Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Thermogravimetric Analyses (TGA) and nitrogen gas sorption (BET). Conditions have been achieved to selectively precipitate Manganese or Manganese/Cobalt from this solution with a high efficiency. This work describes a novel method to obtain potentially valuable coordination polymers from a waste metal solution that can be generalized on any waste solution.

  10. Stereoselectivity in metallocene-catalyzed coordination polymerization of renewable methylene butyrolactones: From stereo-random to stereo-perfect polymers

    KAUST Repository

    Chen, Xia

    2012-05-02

    Coordination polymerization of renewable α-methylene-γ-(methyl) butyrolactones by chiral C 2-symmetric zirconocene catalysts produces stereo-random, highly stereo-regular, or perfectly stereo-regular polymers, depending on the monomer and catalyst structures. Computational studies yield a fundamental understanding of the stereocontrol mechanism governing these new polymerization reactions mediated by chiral metallocenium catalysts. © 2012 American Chemical Society.

  11. Two coordination polymers based on semicarbazone Schiff base and azide: synthesis, crystal structure, electrochemistry, magnetic properties and biological activity

    Czech Academy of Sciences Publication Activity Database

    Shaabani, B.; Khandar, A.A.; Dušek, Michal; Pojarová, Michaela; Mahmoudi, F.; Feher, A.; Kajňaková, M.

    2013-01-01

    Roč. 66, č. 5 (2013), s. 748-762 ISSN 0095-8972 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : Schiff bases * semicarbazone * coordination polymer * structure analyses Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.224, year: 2013

  12. Modified resistivity-strain behavior through the incorporation of metallic particles in conductive polymer composite fibers containing carbon nanotubes

    NARCIS (Netherlands)

    Lin, L.; Deng, H.; Gao, X.; Zhang, S.M.; Bilotti, E.; Peijs, A.A.J.M.; Fu, Q.

    2013-01-01

    Eutectic metal particles and carbon nanotubes are incorporated into a thermoplastic polyurethane matrix through a simple but efficient method, melt compounding, to tune the resistivity-strain behavior of conductive polymer composite (CPC) fibers. Such a combination of conductive fillers is rarely

  13. Solvent-vapour-assisted pathways and the role of pre-organization in solid-state transformations of coordination polymers

    Directory of Open Access Journals (Sweden)

    James S. Wright

    2015-03-01

    Full Text Available A family of one-dimensional coordination polymers, [Ag4(O2C(CF22CF34(phenazine2(arenen]·m(arene, 1 (arene = toluene or xylene, have been synthesized and crystallographically characterized. Arene guest loss invokes structural transformations to yield a pair of polymorphic coordination polymers [Ag4(O2C(CF22CF34(phenazine2], 2a and/or 2b, with one- and two-dimensional architectures, respectively. The role of pre-organization of the polymer chains of 1 in the selectivity for formation of either polymorph is explored, and the templating effect of toluene and p-xylene over o-xylene or m-xylene in the formation of arene-containing architecture 1 is also demonstrated. The formation of arene-free phase 2b, not accessible in a phase-pure form through other means, is shown to be the sole product of loss of toluene from 1-tol·tol [Ag4(O2C(CF22CF34(phenazine2(toluene]·2(toluene, a phase containing toluene coordinated to Ag(I in an unusual μ:η1,η1 manner. Solvent-vapour-assisted conversion between the polymorphic coordination polymers and solvent-vapour influence on the conversion of coordination polymers 1 to 2a and 2b is also explored. The transformations have been examined and confirmed by X-ray diffraction, NMR spectroscopy and thermal analyses, including in situ diffraction studies of some transformations.

  14. Hazardous Waste Cleanup: El Paso Energy Corporation Polymers Incorporated in Flemington, New Jersey

    Science.gov (United States)

    The El Paso Energy Corporation Polymers, Inc. (EPEC Polymers, Inc.), formerly known as Tenneco Polymers, Inc., is located at 45 River Road, at the juncture of the South Branch of the Raritan River and Bushkill Brook in Flemington/Raritan Townships,

  15. Glutathione responsive micelles incorporated with semiconducting polymer dots and doxorubicin for cancer photothermal-chemotherapy

    Science.gov (United States)

    Cai, Zhixiong; Zhang, Da; Lin, Xinyi; Chen, Yunzhu; Wu, Ming; Wei, Zuwu; Zhang, Zhenxi; Liu, Xiaolong; Yao, Cuiping

    2017-10-01

    Nanoplatform integrated with photothermal therapy (PTT) and chemotherapy has been recognized a promising agent for enhancing cancer therapeutic outcomes, but still suffer from less controllability for optimizing their synergistic effects. We fabricated glutathione (GSH) responsive micelles incorporated with semiconducting polymer dots and doxorubicin (referred as SPDOX NPs) for combining PTT with chemotherapy to enhance cancer therapeutic efficiency. These micelles, with excellent water dispersibility, comprises of three distinct functional components: (1) the monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16), which forms the micelles, can render hydrophobic substances water-soluble and improve the colloidal stability; (2) disulfide linkages can be cleaved in a reductive environment for tumor specific drug release due to the high GSH concentrations of tumor micro-environment; (3) PCPDTBT dots and anti-cancer drug DOX that are loaded inside the hydrophobic core of the micelle can be applied to simultaneously perform PTT and chemotherapy to achieve significantly enhanced tumor killing efficiency both in vitro and in vivo. In summary, our studies demonstrated that our SPDOX NPs with simultaneous photothermal-chemotherapy functions could be a promising platform for a tumor specific responsive drug delivery system.

  16. N-(sulfoethyl) iminodiacetic acid-based lanthanide coordination polymers: Synthesis, magnetism and quantum Monte Carlo studies

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Guilin, E-mail: glzhuang@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Wulin [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Zheng Jun [Center of Modern Experimental Technology, Anhui University, Hefei 230039 (China); Yu Huiyou [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China); Wang Jianguo, E-mail: jgw@zjut.edu.cn [Institute of Industrial Catalysis, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032 (China)

    2012-08-15

    A series of lanthanide coordination polymers have been obtained through the hydrothermal reaction of N-(sulfoethyl) iminodiacetic acid (H{sub 3}SIDA) and Ln(NO{sub 3}){sub 3} (Ln=La, 1; Pr, 2; Nd, 3; Gd, 4). Crystal structure analysis exhibits that lanthanide ions affect the coordination number, bond length and dimension of compounds 1-4, which reveal that their structure diversity can be attributed to the effect of lanthanide contraction. Furthermore, the combination of magnetic measure with quantum Monte Carlo(QMC) studies exhibits that the coupling parameters between two adjacent Gd{sup 3+} ions for anti-anti and syn-anti carboxylate bridges are -1.0 Multiplication-Sign 10{sup -3} and -5.0 Multiplication-Sign 10{sup -3} cm{sup -1}, respectively, which reveals weak antiferromagnetic interaction in 4. - Graphical abstract: Four lanthanide coordination polymers with N-(sulfoethyl) iminodiacetic acid were obtained under hydrothermal condition and reveal the weak antiferromagnetic coupling between two Gd{sup 3+} ions by Quantum Monte Carlo studies. Highlights: Black-Right-Pointing-Pointer Four lanthanide coordination polymers of H{sub 3}SIDA ligand were obtained. Black-Right-Pointing-Pointer Lanthanide ions play an important role in their structural diversity. Black-Right-Pointing-Pointer Magnetic measure exhibits that compound 4 features antiferromagnetic property. Black-Right-Pointing-Pointer Quantum Monte Carlo studies reveal the coupling parameters of two Gd{sup 3+} ions.

  17. Radiation luminescence of polymers - emission behaviour of aromatic compounds incorporated in synthetic rubbers

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Hagiwara, Miyuki

    1986-01-01

    For a deep understanding of a radiation protection mechanism of some aromatic compounds on synthetic polymers, their optical emission behavior under electron irradiation was studied. The fluorescence light was led out of an irradiation room through a wave guide and detected by a photomultiplier so that less noisy spectrum was obtained. Acenaphthene or acenaphthylene was added to the synthetic rubbers such as ethylene propylene diene terpolymer, styrene butadiene rubber and cis-1,4-polybutadiene. The intensities of optical emission induced by electron beams changed from polymer to polymer, while those by ultraviolet lights were independent of the kind of polymers. The dependence of emission intensity on polymers under electron irradiation was estimated to show the fact that the radiation excited energy transfers occur from the polymer matrix to the additives and that an efficiency of the energy transfer is dependent on kinds of polymers. (author)

  18. Reversible and Topotactic Solvent Removal in a Magnetic Ni(NCS)2 Coordination Polymer.

    Science.gov (United States)

    Suckert, Stefan; Rams, Michał; Rams, Marek M; Näther, Christian

    2017-07-17

    Reaction of Ni(NCS) 2 with 4-(Boc-amino)pyridine in acetonitrile leads to the formation of a new coordination polymer with the composition Ni(NCS) 2 (4-(Boc-amino)pyridine) 2 ·MeCN (1-MeCN). In the crystal structure the Ni(II) cations are linked by the anionic ligands into chains that are further connected into layers by intermolecular N-H···O hydrogen bonding. These layers are stacked and channels are formed, in which acetonitrile molecules are located. Solvent removal leads to the ansolvate 1, which shows microporosity as proven by sorption measurements. Single crystal X-ray investigations reveal that the solvent removal leads to a change in symmetry from primitive to C-centered, which is reversible and which proceeds via a topotactic reaction leaving the network intact. The magnetic properties of 1-MeCN and 1 are governed by the ferromagnetic exchange between spins of Ni(II) forming chains. The susceptibility and specific heat for such a quantum Heisenberg chain of S = 1 spins with zero-field splitting are calculated using the DMRG method and compared with the experimental results.

  19. Weak cooperativity in selected iron(II) 1D coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Dirtu, Marinela M.; Gillard, Damien; Naik, Anil D. [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry (Belgium); Rotaru, Aurelian [' Stefan cel Mare' University, Department of Electrical Engineering and Computer Science (Romania); Garcia, Yann, E-mail: ann.garcia@uclouvain.be [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry (Belgium)

    2012-03-15

    The spin crossover behaviour of a new class of Fe{sup II} coordination polymers [Fe(phtptrz){sub 3}]I{sub 2} (1), [Fe(phtptrz){sub 3}](ReO{sub 4}){sub 2} Bullet CH{sub 3}OH (2) and [Fe(phtptrz){sub 3}]TaF{sub 7} Bullet 6H{sub 2}O (3) based on a novel ligand 4-(3{sup Prime} -N-phtalimido-propyl)-1,2,4-triazole (phtptrz), were investigated by temperature dependent {sup 57}Fe Moessbauer spectroscopy and magnetic susceptibility measurements. The adverse effect of bulky substituent on 1,2,4-triazole, favorable supramolecular interactions and influence of increasing anion size on spin crossover profile is discussed. 1 and 2 show thermally induced spin conversions of gradual and incomplete nature with associated thermochromism, and transition temperatures T{sub 1/2} {approx} 163 K and 137 K, respectively. A spin state crossover is also identified for 3.

  20. Fluorescent sensing of nitroaromatics by two coordination polymers having potential active sites

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lu [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Wang, Jun, E-mail: scwangjun2011@126.com [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Wu, Wei-Ping [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Ma, Aiqing, E-mail: maqandght@126.com [School of Pharmacy, Guangdong Medical University, Dongguan 523808 (China); Liu, Jian-Qiang [School of Pharmacy, Guangdong Medical University, Dongguan 523808 (China); Yadav, Reena [Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007 (India); Kumar, Abhinav, E-mail: abhinavmarshal@gmail.com [Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow 226 007 (India)

    2017-06-15

    Two new d{sup 10} based coordination polymers having formula [Cd(HL1)(L2)] (1) and [Zn(HL1)(L2)] (2) (H{sub 3}L1=5-(4-carboxyphenoxy)isophthalic acid and L2=3-(4-methyl-6-(pyridine-3-yl)pyridine-2-yl)pyridine) have been synthesized and characterized using IR, thermogravimetric analyses (TGA), photoluminescence and single-crystal X-ray diffraction techniques. The single-crystal X-ray investigation reveals that both of 1 and 2 show 2D layer architectures with square lattice topology. The photoluminescence investigation indicates that both 1 and 2 could be a prospective candidate for developing luminescence sensors for the highly sensing of nitroaromatic analytes. Furthermore, the luminescent property of 1 and 2 in different solvents analytes as well as nitrobenzene derivative have been investigated and the observed quenching in fluorescence have been corroborated by theoretical calculations. - Graphical abstract: Two new d{sup 10}-based luminescent MOFs synthesized and their sensing properties towards different nitroaromatics investigated.

  1. Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer

    Science.gov (United States)

    Ren, Ya-Nan; Xu, Wei; Zhou, Lin-Xia; Zheng, Yue-Qing

    2017-07-01

    Two mixed uranyl-cadmium malonate coordination polymers [(UO2)2Cd(H-bipy)2(mal)4(H2O)2]·4H2O 1 and [(UO2)Cd(bipy)(mal)2]·H2O 2 (H2mal = malonic acid, bipy =4,4‧-bipyridine) have been synthesized in room temperature. Compound 1 represents a one-dimensional (1D) chain assembly of Cd(II) ions, uranyl centers and malonate ligands. Compound 2 exhibits a two-dimensional (2D) 2D +2D → 3D polycatenated framework based on inclined interlocked 2D 44 sql grids. The two compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, thermal analysis, powder X-ray diffraction and photoluminescence spectroscopy. And the ferroelectric property of 2 also has been studied. Moreover, compound 2 exhibits good photocatalytic activity for dye degradation under UV light and is excellent adsorbent for removing tetracycline antibiotics in the aqueous solution.

  2. Two novel metal-organic coordination polymers based on diphosphonate and oxalate: Synthesis, structures and properties

    Science.gov (United States)

    Niu, Qing-Jun; Zheng, Yue-Qing; Zhou, Lin-Xia; Zhu, Hong-Lin

    2015-07-01

    Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H2en)[Co3(H2zdn)2(ox)(H2O)2] (1) and Cd2(H2zdn)(ox)0.5(H2O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H5zdn; oxalic acid=H2ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O-P-O units of H5zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property.

  3. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    Science.gov (United States)

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and characterization of the mixed ligand coordination polymer CPO-5

    International Nuclear Information System (INIS)

    Kongshaug, K.O.; FjellvAg, Helmer

    2003-01-01

    The synthesis and crystal structures of a novel coordination polymer and its high-temperature variant are described. The as-synthesized material (CPO-5-as), of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate)·3H 2 O, crystallizes in the triclinic space group P-1 (No. 2) with a=11.0197(2), b=14.2975(3), c=7.6586(1) A, α=95.9760(9) deg. , β=108.026(1) deg. , γ=91.373(1) deg. and V=1139.16(4) A 3 . CPO-5-as is composed of tetrahedral zinc centers that are connected by the organic linkers to give five independent, interpenetrating diamond networks. In the structure, there is additional space for channels that are filled with three water molecules. These water molecules can be removed, leading to an anhydrous variant at 130 o C. CPO-5-130, of composition Zn(4,4'-bipyridine)(4,4'-biphenyldicarboxylate), crystallizes in the triclinic space group P-1 (No. 2) with a=11.1844(6), b=14.0497(7), c=7.7198(3) A, α=96.917(2) deg. , β=109.527(2) deg. , γ=89.115(3) deg. and V=1134.6(1) A 3 . The structure of the five interpenetrating networks is virtually unchanged after the dehydration resulting in CPO-5-130 being a porous structure with an estimated free volume of 19.8%

  5. Detection of low-concentration ammonia using differential laser-induced fluorescence on vapochromic coordination polymers

    Science.gov (United States)

    Yin, Dawei; Chapman, Glenn H.; Stevens, David; Gray, Bonnie; Leznoff, Daniel

    2018-02-01

    The detection of ammonia in parts per millions range has been challenging in sensors research, and is of great importance for industrial applications. In previous literature, Vapochromic Coordination Polymers (VCP) were developed to achieve luminescence upon a targeted gas exposures. We investigate a specific VCP, Zn[Au(CN)2]2,as an ammonia sensing material. Upon high concentration ammonia exposure, the fluorescent peak under near-UV stimulation undergoes a spectral shift from 460nm to 520nm, while the intensity increases by 3 4X. However, at ammonia concentrations portable spectrometer (Photon Control SPM-002), and processed the data by separating the spectrum into two regions; (A) from 425 nm to 460 nm and (B) from 460nm to 500nm. Next, the integrated emissions under both regions were computed, and the value of shorter wavelength region (A) was subtracted from the longer wavelength one (B). When exposed to ammonia, region (A) reduces overall intensity while region (B) increases, resulting a signal starting from negative value and gradually increases to positive values, enabling the detection of 5ppm ammonia in less than 30 seconds gas exposure.

  6. Catalytic nanocrystalline coordination polymers as an efficient peroxidase mimic for labeling and optical immunoassays

    International Nuclear Information System (INIS)

    Čunderlová, Veronika; Hlaváček, Antonín; Horňáková, Veronika; Peterek, Miroslav; Němeček, Daniel; Skládal, Petr; Hampl, Aleš; Eyer, Luděk

    2016-01-01

    We report that nanocrystalline Prussian blue of the type Fe 4 [Fe(CN) 6 ] 3 is a powerful peroxidase mimic for use in labeling of biomolecules. The cubic nanocrystals typically have a diameter of 15 nm and are capable of catalyzing the oxidation of colorless 3,3′,5,5′-tetramethylbenzidine in the presence of H 2 O 2 to form an intensively colored product with an absorption maximum at 662 nm. The determined pseudo turnover number is ∼20,000 s −1 which is the highest value reported for nanoparticles of a size comparable to common proteins. We also present a method for the biotinylation of the surface of these nanocrystals, and show their use in competitive bioaffinity based assays of biotin and human serum albumin. The limits of detection are 0.35 and 0.27 μg mL −1 , respectively. The results prove the applicability of coordination polymers for signal amplification and also their compatibility with the format of enzyme linked immunosorbent assays. (author)

  7. Hydrothermal syntheses, crystal structures, and photophysical properties of two coordination polymers with mixed ligands

    Science.gov (United States)

    Yan, Li; Liu, Chun-Ling

    2017-10-01

    Two novel metal-organic coordination polymers [Cd(ipdt)(m-BDC)·3H2O]n (1) and [Pb(mip)2(NTC) ·2H2O]n (2) [ipdt = 2,6-Dimethoxy-4-(1H-1,3,7,8-tetraaza-cyclopenta[l]phenanthren-2-yl)-phenol, mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, m-BDC = isophthalic acid, NTC = nicotinic acid] have been synthesized by hydrothermal reactions and characterized by elemental analysis, thermogravimetric (TG) analysis, infrared spectrum (IR) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction reveals that 1 exhibits two-dimensional (2D) layer architecture, and 2 shows 1D chain architecture. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. The luminescent properties for the ligand ipdt, mip and complexes 1-2 are also discussed in detail, which should be acted as potential luminescent material.

  8. The effect of coumaryl alcohol incorporation on the structure and composition of lignin dehydrogenation polymers.

    Science.gov (United States)

    Harman-Ware, Anne E; Happs, Renee M; Davison, Brian H; Davis, Mark F

    2017-01-01

    Lignin dehydrogenation polymers (DHPs) are polymers generated from phenolic precursors for the purpose of studying lignin structure and polymerization processes. Here, DHPs were synthesized using a Zutropfverfahren method with horseradish peroxidase and three lignin monomers, sinapyl (S), coumaryl (H), and coniferyl (G) alcohols, in the presence of hydrogen peroxide. The H monomer was reacted with G and a 1:1 molar mixture of S:G monomers at H molar compositions of 0, 5, 10, and 20 mol% to study how the presence of the H monomer affected the structure and composition of the recovered polymers. At low H concentrations, solid-state NMR spectra suggest that the H and G monomers interact to form G:H polymers that have a lower average molecular weight than the solely G-based polymer or the G:H polymer produced at higher H concentrations. Solid-state NMR and pyrolysis-MBMS analyses suggest that at higher H concentrations, the H monomer primarily self-polymerizes to produce clusters of H-based polymer that are segregated from clusters of G- or S:G-based polymers. Thioacidolysis generally showed higher recoveries of thioethylated products from S:G or S:G:H polymers made with higher H content, indicating an increase in the linear ether linkages. Overall, the experimental results support theoretical predictions for the reactivity and structural influences of the H monomer on the formation of lignin-like polymers.

  9. Incorporating functionalized polyethylene glycol lipids into reprecipitated conjugated polymer nanoparticles for bioconjugation and targeted labeling of cells

    Science.gov (United States)

    Kandel, Prakash K.; Fernando, Lawrence P.; Ackroyd, P. Christine; Christensen, Kenneth A.

    2011-03-01

    We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG) lipids by reprecipitation. These nanoparticles retain the fundamental spectroscopic properties of conjugated polymer nanoparticles prepared without PEG lipid, but demonstrate greater hydrophilicity and quantum yield compared to unmodified conjugated polymer nanoparticles. The sizes of these nanoparticles, as determined by TEM, were 21-26 nm. Notably, these nanoparticles were prepared with several PEG lipid functional end groups, including biotin and carboxy moieties that can be easily conjugated to biomolecules. We have demonstrated the availability of these end groups for functionalization using the interaction of biotin PEG lipid conjugated polymer nanoparticles with streptavidin. Biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-linked magnetic beads, while carboxy and methoxy PEG lipid modified nanoparticles did not. Similarly, biotinylated PEG lipid conjugated polymer nanoparticles bound streptavidin-coated glass slides and could be visualized as diffraction-limited spots, while nanoparticles without PEG lipid or with non-biotin PEG lipid end groups were not bound. To demonstrate that nanoparticle functionalization could be used for targeted labelling of specific cellular proteins, biotinylated PEG lipid conjugated polymer nanoparticles were bound to biotinylated anti-CD16/32 antibodies on J774A.1 cell surface receptors, using streptavidin as a linker. This work represents the first demonstration of targeted delivery of conjugated polymer nanoparticles and demonstrates the utility of these new nanoparticles for fluorescence based imaging and sensing.We report a simple and rapid method to prepare extremely bright, functionalized, stable, and biocompatible conjugated polymer nanoparticles incorporating functionalized polyethylene glycol (PEG

  10. Coordination and Oxidation States of Iron Incorporated in Mesoporous MCM41

    International Nuclear Information System (INIS)

    Lazar, K.; Pal-Borbely, G.; Szegedi, A.; Beyer, H. K.

    2002-01-01

    Mesoporous Fe-MCM41 samples (Si/Fe=25) were synthesized and characterized under evacuation and reducing/oxidizing treatments by in situ FTIR and Moessbauer spectroscopies. Both Fe(II) and Fe(III) located in low coordination states in top layers of pore walls exhibit Lewis acidity and may participate in Fe(III) ↔ Fe(II) processes at low temperatures (570 K). Furthermore, Fe(III) ↔ Fe(II) cycles can be achieved and repeated with participation of the full amount of iron at higher temperatures (670 K). The accompanying formation of oxygen vacancies and restoration of the structure in the reverse process does not result in extended damages; the MCM41 structure retains its stability under the conditions applied.

  11. Four Novel Zn (II Coordination Polymers Based on 4′-Ferrocenyl-3,2′:6′,3′′-Terpyridine: Engineering a Switch from 1D Helical Polymer Chain to 2D Network by Coordination Anion Modulation

    Directory of Open Access Journals (Sweden)

    Lufei Xiao

    2017-11-01

    Full Text Available Four novel ZnII coordination polymers, [(ZnCl22(L2]n (1, [(ZnBr22(L2]n (2, and [(ZnI22(L2]n (3 and {[Zn(SCN2]1.5(L3}n (4, have been synthesized based on 4′-ferrocenyl-3,2′:6′,3′′-terpyridine with ZnII ions and different coordination anions under similar ambient conditions. Their structures have been confirmed using single crystal X-ray diffraction analysis, showing that complexes 1–3 are one-dimensional (1D double-stranded metal ion helical polymer chains and complex 4 is of a two-dimensional (2D network. The structural transformations of them from a 1D polymer chain to a 2D network under the influence of the coordination anions has been systematic investigated. Furthermore, the optical band gaps have been measured by optical diffuse reflectance spectroscopy, revealing that the ligand and the complexes should have semiconductor properties.

  12. Three coordination polymers constructed from 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid: Synthesis, crystal structure and properties

    Science.gov (United States)

    Zhai, Dandan; Sun, Wujuan; Fan, Fei; Liao, Xuzhao; Chen, Sanping; Yang, Xuwu

    2017-04-01

    Three new coordination polymers, namely, {[Co2(TPA)(μ3-O)3]·0.5DMA}n (1), {[Co(H2TPA)(bibp)(H2O)3]·H2O}n (2) and {[Cd3(TPA)2(phen)4]·4H2O}n (3), (H3TPA = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid, bibp = 4,4'-bis(imidazolyl)biphenyl, phen = 1,10-phenanthroline and DMA = N,N-dimethylacetamide), have been synthesized under solvothermal conditions and structurally characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction analysis. Polymer 1 exhibits a three-dimensional (3D) structure constructed from 5-connected secondary building units (SBUs) [Co3(μ3-O)] and 3-connected H3TPA ligands. Polymer 2 has a 1D zigzag polymer chain connected by H3TPA and bibp ligands. Polymer 3 features an unusual 3D framework with a (3,4,2)-connected {4; 6;8}{4; 62;83} topology. Moreover, the thermal stabilities of 1-3 and photoluminescence properties of 3 have been investigated. Magnetic susceptibility measurements indicate that polymers 1-2 display antiferromagnetic exchange properties.

  13. Coordination-induced formation of nanometer-scale infinite coordination polymer at room temperature and conversion to CuO nanoparticles

    Science.gov (United States)

    Mohammadikish, Maryam; Zafari, Zohreh

    2018-03-01

    In this work, the construction of CuO nanoparticles semiconductor utilizing infinite coordination polymers (ICPs) as precursor was investigated. After successful functionalization of salpn (salpn = N,N‧-Bis(salicylidene)-1,3-propanediamine) ligand with sodium thioglycolate, bi-thioglycolate functionalized salpn linker was obtained, which was further transformed into Cu-ICP nanoparticles by simple precipitation method in the presence of Cu2+ cations. The mechanism of morphology evolution was illustrated by systematic time dependent studies, which demonstrated the preparation of Cu-ICP nanoparticles in shortest possible time, 5 min. Photoluminescence spectra show the emission quenching of the bi-thioglycolate functionalized salpn linker due to coordination to copper ion. In addition, the copper oxide nanoparticles are fabricated by thermal decomposition of the Cu-ICP precursor which showed larger band gap compared to bulk counterpart.

  14. Incorporating Cs and Sr into blast furnace slag inorganic polymers and their effect on matrix properties

    Science.gov (United States)

    Vandevenne, Niels; Iacobescu, Remus Ion; Pontikes, Yiannis; Carleer, Robert; Thijssen, Elsy; Gijbels, Katrijn; Schreurs, Sonja; Schroeyers, Wouter

    2018-05-01

    Minimizing harmful effects to the environment in waste-management practices requires continuous innovation. This is especially important in the field of radioactive waste management. Alternatives to the commonly used ordinary Portland cement matrices are being increasingly studied for improved immobilisation purposes. The development of inorganic polymers (IP) from industrial residues has been successfully studied for the immobilisation of caesium (Cs+) and strontium (Sr2+). However, knowledge of the effect of these introduced elements on the IP-matrix is scarce, especially considering that studied effects are dependent on the IP-precursor characteristics and the form in which the Cs+ and Sr2+ are introduced. In this study, IPs containing varying amounts of CsNO3 and Sr(NO3)2 were developed to study the effect of the introduced elements on the IP-characteristics. IP-samples were developed from ground granulated blast furnace slag (GGBFS) and 6 M NaOH activating solution. Cs+ and Sr2+ were added to account for 0.5, 1 and 2 wt% of the total IP-mass. Throughout the entire study, Cs+-addition showed no significant effects on the studied parameters. Calorimetric results showed that Sr2+ severely affects reaction kinetics, consuming hydroxide ions necessary for the alkali activation reaction. Sr2+-addition also caused a severe decrease in compressive strength, increased calcium leaching, and decreased sodium and hydroxide leaching. Micro-chemical analyses showed that Cs+ is almost fully incorporated in the formed IP-matrix, while Sr2+ mainly precipitates as Sr(OH)2 in concentrated regions throughout the IP-structure. The findings presented in this paper give insights on the effect of contaminant elements on the immobilising matrix.

  15. Amino acid-incorporated polymer network by thiol-ene polymerization

    Directory of Open Access Journals (Sweden)

    R. Yokose

    2015-08-01

    Full Text Available Triallyl L-alanine (A3A and triallyl L-phenylalanine (A3F were synthesized by reactions of L-alanine and L-phenylalanine with allyl bromide in the presence of sodium hydroxide, respectively. Thiol-ene thermal polymerization of A3A or A3F with pentaerythritol-based primary tetrathiol (pS4P or pentaerythritol-based secondary tetrathiol (S4P at allyl/SH 1/1 in the presence of 2,2'-azobis(isobutyronitrile produced an amino acid-incorporated polymer network (A3ApS4P, A3A-S4P or A3F-S4P. Although the thermally cured resins were homogeneous and flat films, the corresponding thiol-ene photopolymerization did not give a successful result. Degree of swelling for each thermally cured film in N,Ndimethylformamide was much higher than that in water. The glass transition and 5% weight loss temperatures (Tg and T5 of A3F-pS4P and A3F-S4P were higher than those of A3A-pS4P and A3A-S4P, respectively. Also, A3F-pS4P and A3F-S4P exhibited much higher tensile strengths and moduli than A3A-pS4P and A3A-S4P did, respectively. Consequently, A3FpS4P displayed the highest Tg (38.7°C, T5 (282.0°C, tensile strength (9.5 MPa and modulus (406 MPa among all the thermally cured resins.

  16. Incorporation of ester groups into low band-gap diketopyrrolopyrrole containing polymers for solar cell applications

    DEFF Research Database (Denmark)

    Hu, Xiaolian; Zuo, Lijian; Fu, Weifei

    2012-01-01

    To increase the open circuit voltage (VOC) of polymer solar cells based on diketopyrrolopyrrole (DPP) containing polymers, the weakly electron-withdrawing thiophene-3,4-dicarboxylate unit was introduced into the polymer backbone. Two ester group functionalized DPP containing polymers, PCTDPP...... with a random structure and PDCTDPP with a regular structure, were designed and synthesized by the Stille coupling reaction. The resulting copolymers exhibit broad and strong absorption bands from 350 to 1000 nm with low optical band gaps below 1.40 eV. Through cyclic voltammetry measurements, it is found...

  17. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.; Beaujuge, Pierre M.; Holcombe, Thomas W.; Lee, Olivia P.; Fréchet, Jean M. J.

    2010-01-01

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  18. Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells

    KAUST Repository

    Woo, Claire H.

    2010-11-10

    The design, synthesis, and characterization of the first examples of furan-containing low band-gap polymers, PDPP2FT and PDPP3F, with substantial power conversion efficiencies in organic solar cells are reported. Inserting furan moieties in the backbone of the conjugated polymers enables the use of relatively small solubilizing side chains because of the significant contribution of the furan rings to overall polymer solubility in common organic solvents. Bulk heterojunction solar cells fabricated from furan-containing polymers and PC71BM as the acceptor showed power conversion efficiencies reaching 5.0%. © 2010 American Chemical Society.

  19. A new bismuth-based coordination polymer as an efficient visible light responding photocatalyst under white LED irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengyueqing@nbu.edu.cn; Wang, Jin-Jian; Zhou, Lin-Xia

    2017-02-15

    A new bismuth-based polymer, [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O (H{sub 2}pydc=pyridine-2,5-dicarboxylic acid, bpe=trans-bis(4-pyridyl) ethylene) has been hydrothermally synthesized. Transient photocurrent response and electrochemical impedance spectroscopy studies indicate that the synthesized polymer with efficient charge separation and transportation can be used as a potential photocatalyst. So we use it for the degradation of rhodamine B (RhB) dye wastewater under visible light. The comparative study on commercial Bi{sub 2}O{sub 3} shows [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O has the higher photocatalytic performance, with the degradation rate of 97% and 2% within 100 min for [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O and commercial Bi{sub 2}O{sub 3} respectively. Additionally, the five cycle reproducibility results of [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O implies that it can be used as a stable photocatalyst. - Graphical abstract: We report a new 1D coordination polymer [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O by a facile hydrothermal method. The Bi-CP shows good photoelectric property and photocatalytic activity for RhB degradation under visible white LED lamp irradiation. And the stability of the visible-light-responsive bismuth-based coordination polymer has also been examined. - Highlights: • A new Bi(III) coordination polymer is hydrothermally synthesized. • The Bi-CP shows good photoelectric and photocatalytic properties. • Bi-CP shows higher activity than the commercial Bi{sub 2}O{sub 3} for RhB degradation.

  20. Syntheses and structures of three heterometallic coordination polymers derived from 4-pyridin-3-yl-benzoic acid

    International Nuclear Information System (INIS)

    Fang, Wei-Hui; Yang, Guo-Yu

    2014-01-01

    Three lanthanide–transition-metal coordination polymers, namely, [Er 2 L 6 (H 2 O)][Cu 2 I 2 ] (1), [ErL 3 ][CuI] (2), and [Dy 2 L 6 (BPDC) 0.5 (H 2 O) 4 ][Cu 3 I 2 ] (3) (HL=4-pyridin-3-yl-benzoic acid, H 2 BPDC=4,4′-biphenyldicarboxylic acid) have been made by reacting Ln 2 O 3 and CuI with HL at different temperatures under hydrothermal conditions. All the complexes are characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction, respectively. 1–3 all construct from dimeric (Ln 2 ) and (Cu 2 ) units and exhibit two types of the structural features: 1 is a two-dimensional layer, 2–3 are three-dimensional frameworks. Interestingly, the in situ formation of the BPDC ligand is found in the structure of 3. The distinct architectures of these complexes indicated that the reaction temperature plays an important role in the formation of higher dimensional coordination polymers. - Graphical abstract: By hydrothermal reaction of lanthanide oxide, copper halide, and 4-pyridin-3-yl-benzoic ligand at different temperatures, a series of 1-D to 3-D 3d–4f coordination polymers, namely [ErL 3 (H 2 O) 2 ][CuI], [Er 2 L 6 (H 2 O)][Cu 2 I 2 ], [ErL 3 ][CuI], and [Dy 2 L 6 (BPDC) 0.5 (H 2 O) 4 ][Cu 3 I 2 ], have been made, respectively. - Highlights: • Three novel heterometallic coordination polymers derived from 4-pyridin-3-yl-benzoic acid have been hydrothermally synthesized. • Mixed dinuclear motifs of (Ln 2 ) and (Cu 2 ) serve as secondary building units to generate 2-D layer and 3-D frameworks. • It is proved that higher temperature is apt to permit construction of high dimensional architectures

  1. Systematic design and research on a series of cadmium coordination polymers assembled due to tetracarboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Lü, Lei; Mu, Bao; Li, Chang-Xia; Huang, Ru-Dan, E-mail: huangrd@bit.edu.cn

    2016-02-15

    A series of metal-organic frameworks (MOFs) have been prepared by tetracarboxylate ligands and Cd(II) ions under the hydrothermal or solvothermal conditions with the formulas of {[Cd_2(L_1)(H_2O)_4]·H_2O}{sub n} (1), {[(CH_3)_2NH_2]_2[Cd(L_1)]}{sub n} (2), [Cd(L{sub 2}){sub 0.5}(H{sub 2}O)]{sub n} (3), {[(CH_3)_2NH_2]_2 [Cd(L_2)]·2DMF}{sub n} (4), [Cd(L{sub 3}){sub 0.5}(H{sub 2}O)]{sub n} (5), {[Cd(L_3)_0_._5(H_2O)]·CH_3OH}{sub n} (6), {[(CH_3)_2NH_2]_2[Cd_3(L_4)_2]}{sub n} (7) (H{sub 4}L{sub 1}=[1,1′:4′,1″-terphenyl]-2,2″,5,5″-tetracarboxylic acid; H{sub 4}L{sub 2}=[1,1′:4′,1″-terphenyl]-2′,4,4″,5′-tetracarboxylic acid; H{sub 4}L{sub 3}=[1,1′:3′,1″-terphenyl]-2′,3,3″,5′-tetracarboxylic acid; H{sub 4}L{sub 4}=[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid), which are characterized by single-crystal X-ray diffraction, elemental analyses, IR, TGA and PXRD. Complex 1 exhibits a three-dimensional (3D) supramolecular framework based on two-dimensional (2D) coordination networks. Complexes 2 and 4 possess 3D framework based on the 1D right-handed helix channels. Complexes 3 and 7 are a 3D architecture containing two different channels. Isostructural complexes 5 and 6 display 3D framework. The different synthetic methods and coordination modes of the tetracarboxylates ligands have effect on formation of various MOFs. Moreover, the luminescent properties and N{sub 2} adsorption behaviors have been reported. - Graphical abstract: A series of cadmium(II) high-dimensional coordination polymers constructed from four different kinds of tetracarboxylate ligands have been successfully prepared under hydrothermal or solvothermal conditions. The effect of solvents, the coordination modes of the tetracarboxylates and positions of carboxylate groups on the architectures of complexes 1–7 have been investigated in detail. The luminescent properties of the part of complexes, N{sub 2} adsorption behaviors of complexes 2, 4–7 have

  2. Ionochromic effects and structures of metalated poly(p-phenylenevinylene) polymers incorporating 2,2'-bipyridines

    International Nuclear Information System (INIS)

    Chen, L.X.; Jager, W.J.H.; Gosztola, D.J.; Niemczyk, M.P.; Wasielewski, M.R.

    2000-01-01

    The effects of metal ion chelation to the 2,2'-bipyridine (bpy) groups on the photophysics and exciton dynamics of two conjugated polymers 1 and 2 in solution are investigated. The structures of polymers 1 and 2 have 2,2'-bipyridyl-5-vinylene units that alternate with one and three 2,5-bis(n-decyloxy)-1,4-phenylenevinylene monomer units, respectively. The photophysics and exciton dynamics of metalated polymers 1 and 2 are compared to those of the metal-free polymers (Chen et al. J. Phys. Chem. A 1999, 103, 4341-4351). The origins of ionochromic effects due the metal ion chelation were studied using both steady-state and transient optical spectroscopy, and the results indicate that both conformational flattening and participation of Jr electrons from the metal in the π-conjugation of the polymer backbone play important roles in metal ion binding induced red shifts in absorption and photoluminescence spectra. The photoluminescence properties of the metalated polymers are determined by the metal ion electronic structures, where the closed shell Zn 2+ -bound polymer 2 has an increased photoluminescence quantum yield and the corresponding open shell Ni 2+ - or Fe 3+ -bound polymers have quenched photoluminescence due to spin-orbit coupling. The dual character of metalated polymer 2 as a conjugated polymer and as a metal-bpy complex is discussed. In addition, the structures of metal ion binding sites are studied via X-ray absorption fine structure (XAFS) and are related to the photophysical properties of the metalated polymers

  3. A coordination polymer based magnetic adsorbent material for hemoglobin isolation from human whole blood, highly selective and recoverable

    Science.gov (United States)

    Zhang, Xiaoxing; Tan, Jipeng; Xu, Xinxin; Shi, Fanian; Li, Guanglu; Yang, Yiqiao

    2017-09-01

    A composite material has been obtained successfully through the loading of nanoscale coordination polymer on magnetic Fe3O4@SiO2 core-shell particle. In this composite material, coordination polymer nanoparticles distribute uniformly on Fe3O4@SiO2 and these two components are "tied" together firmly with chemical bonds. Adsorption experiments suggest this composite material exhibits very excellent selectivity to hemoglobin. But under the same condition, its adsorption to bovine serum albumin can almost be ignored. This selectivity can be attributed to the existence of hydrophobic interactions between coordination polymer nanoparticle and hemoglobin. For composite material, the hemoglobin adsorption process follows Langmuir model perfectly with high speed. The adsorbed hemoglobin can be eluted easily by sodium dodecyl sulfate stripping reagent with structure and biological activity of hemoglobin keeps well. The composite material was also employed to separate hemoglobin from human whole blood, which receives a very satisfactory result. Furthermore, magnetic measurement reveals ferromagnetic character of this composite material with magnetization saturation 3.56 emu g-1 and this guarantees its excellent magnetic separation performance from the treated solution.

  4. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    Science.gov (United States)

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  5. Two novel metal–organic coordination polymers based on diphosphonate and oxalate: Synthesis, structures and properties

    International Nuclear Information System (INIS)

    Niu, Qing-Jun; Zheng, Yue-Qing; Zhou, Lin-Xia; Zhu, Hong-Lin

    2015-01-01

    Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H 2 en)[Co 3 (H 2 zdn) 2 (ox)(H 2 O) 2 ] (1) and Cd 2 (H 2 zdn)(ox) 0.5 (H 2 O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H 5 zdn; oxalic acid=H 2 ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O–P–O units of H 5 zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property. - Graphical abstract: Linked by oxalate, two zoledronate-based metal–organic frameworks are synthesized, which exhibits the different frameworks. Magnetism and luminescent properties have been studied. The weak antiferromagnetic coupling is conducted in 1. - Highlights: • Compound 1 and 2 are first linked by oxalate anion based on zoledronic acid. • Compound 1 generates a classic “dia Diamond” (6 6 ) topology. • Compound 2 exhibits a (4 4 ·6 2 )(4 4 ·6 6 ) topology. • Magnetism and luminescent properties of 1 and 2 have been studied, respectively

  6. Synthesis of [Fe(Leq(Lax]n coordination polymer nanoparticles using blockcopolymer micelles

    Directory of Open Access Journals (Sweden)

    Christoph Göbel

    2017-06-01

    Full Text Available Spin-crossover compounds are a class of materials that can change their spin state from high spin (HS to low spin (LS by external stimuli such as light, pressure or temperature. Applications demand compounds with defined properties concerning the size and switchability that are maintained when the compound is integrated into composite materials. Here, we report the synthesis of [Fe(Leq(Lax]n coordination polymer (CP nanoparticles using self-assembled polystyrene-block-poly(4-vinylpyridine (PS-b-P4VP block copolymer (BCP micelles as template. Variation of the solvent (THF and toluene and the rigidity of the axial ligand Lax (Lax = 1,2-di(pyridin-4-ylethane (bpea, trans-1,2-di(pyridin-4-ylethene (bpee, and 1,2-di(pyridin-4-ylethyne (bpey; Leq = 1,2-phenylenebis(iminomethylidyne-bis(2,4-pentanedionato(2− allowed the determination of the preconditions for the selective formation of nanoparticles. A low solubility of the CP in the used solvent and a high stability of the Fe–L bond with regard to ligand exchange are necessary for the formation of composite nanoparticles where the BCP micelle is filled with the CP, as in the case of the [FeLeq(bpey]n@BCP. Otherwise, in the case of more flexible ligands or ligands that lead to high spin complexes, the formation of microcrystals next to the CP–BCP nanoparticles is observed above a certain concentration of [Fe(Leq(Lax]n. The core of the nanoparticles is about 45 nm in diameter due to the templating effect of the BCP micelle, independent of the used iron complex and [Fe(Leq(Lax]n concentration. The spin-crossover properties of the composite material are similar to those of the bulk for FeLeq(bpea]n@BCP while pronounced differences are observed in the case of [FeLeq(bpey]n@BCP nanoparticles.

  7. Anion-directed assembly of lanthanide coordination polymers with SMMs properties based on a dihydrazone ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lina [Henan Polytechnic Univ., Jiaozuo (China). College of Chemistry and Chemical Engineering; Zhengzhou Univ. (China). College of Chemistry and Molecular Engineering; Duan, Peigao; Zhao, Dan [Henan Polytechnic Univ., Jiaozuo (China). College of Chemistry and Chemical Engineering; Liu, Yang; Sun, Jingxian [Henan Polytechnic Univ., Jiaozuo (China). College of Materials Science and Engineering; Du, Chenxia [Zhengzhou Univ. (China). College of Chemistry and Molecular Engineering

    2018-04-01

    Four new Ln(III)-based coordination polymers (CPs), [Eu(HL)Cl{sub 2}(DMF){sub 2}] . (H{sub 2}L) (1), [Dy(HL)Cl{sub 2}(DMF){sub 2}] . (H{sub 2}L) (2), [Er(HL)Cl{sub 2}(DMF)(CH{sub 3}OH)] . (DMF) (3) and [Yb(HL)Cl{sub 2}(DMF)(H{sub 2}O)] . (DMF) (4) (H{sub 2}L=2,6-bis[(3-methoxysalicylidene)hydrazinocarbonyl]pyridine) have been synthesized through the reaction of Ln(III) chloride and H{sub 2}L by using the vapour diffusion method. Interestingly, Cl{sup -} as a template agent plays a vital role in the formation of the target complexes. Single-crystal X-ray diffraction studies indicate that 1 and 2 are isostructural and crystallize in triclinic space group P anti 1, while complexes 3 and 4 are isostructural and crystallize in monoclinic space group C2/c. Variable temperature magnetization measurement (χ{sub M}T-T) demonstrates possible antiferromagnetic interactions in complex 2. Alternating-current (ac) susceptibility measurement furthermore indicated frequency dependence for both the in-phase (χ{sup '}) and out-of-phase (χ'') components in 2, suggesting that there is a slow relaxation behavior of the magnetization, which is typical of single-molecule magnets (SMMs). This is the first time that Ln(III) CPs based on such a dihydrazone ligand has been reported so far.

  8. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Haji-Saeid, M. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, A-1400 Vienna (Austria)], E-mail: M.Haji-Saeid@iaea.org; Sampa, M.H.; Ramamoorthy, N. [International Atomic Energy Agency (IAEA), Wagramer Strasse 5, A-1400 Vienna (Austria); Gueven, O. [Hacettepe University, Department of Chemistry, Ankara (Turkey); Chmielewski, A.G. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warsaw (Poland)

    2007-12-15

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information.

  9. SYNTHESIS, CHARACTERIZATION AND ANTITUMOR ACTIVITY OF A Ca (II COORDINATION POLYMER BASED ON 3-AMINO-2-PYRAZINECARBOXYLIC ACID

    Directory of Open Access Journals (Sweden)

    XI-SHI TAI

    2015-10-01

    Full Text Available A new Ca(II coordination polymer has been obtained by reaction of Ca(ClO42·H2O with 3-amino-2-pyrazinecarboxylic acid in CH3CH2OH/H2O. It was characterized by IR, 1HNMR, thermal analysis and X-ray single crystal diffraction analysis. X-ray analysis reveals that each Ca(II center is seven-coordination with a N2O5 distorted pentagonal bipyramidal coordination environment. The Ca(II ions are linked through the O atoms of 3-amino-2-pyrazinecarboxylic acid ligands to form 1D chain structure. And then a 3D network structure is constructed by hydrogen bonds and π-π stacking. The antitumor activity of 3-amino-2-pyrazinecarboxylic acid ligand and its Ca(II coordination polymer against human intestinal adenocarcinoma HCT-8 cells, lung adenocarcinoma HCT-116 cells and human lung adenocarcinoma A549 cells line have been investigated.

  10. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    International Nuclear Information System (INIS)

    Haji-Saeid, M.; Sampa, M.H.; Ramamoorthy, N.; Gueven, O.; Chmielewski, A.G.

    2007-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information

  11. A new Pb{sup II}(ethylenediaminetetraacetate) coordination polymer with a two-dimensional layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, D., E-mail: iamzd@hpu.edu.cn; Zhang, R. H.; Li, F. F. [Henan Polytechnic University, Department of Physics and Chemistry (China)

    2016-12-15

    A new Pb{sup II}−edta{sup 4–} coordination polymer, Pb{sub 2}(edta)(H{sub 2}O){sub 0.76} (edta{sup 4–} = ethylenediaminetetraacetate) was synthesized under hydrothermal condition. Single crystal X-ray analysis reveals that it represents a novel two-dimensional (2D) Pb{sup 2+}–edta{sup 4–} layer structure with a (4,8{sup 2})-topology. Each edta{sup 4–} ligand employs its four carboxylate O and two N atoms to chelate one Pb{sup II} atom (hexa-coordinated) and connects five Pb{sup II} atoms (ennea-coordinated) via its four carboxylate groups to form 2D layer framework. Adjacent layers are packed into the overall structure through vander Waals interactions.

  12. Coordination Polymers of N, Nʼ-di-(8-Hydroxyquinolinolyl- 5-methyl-N, N-diethyl-1,3-propane diamine (QEPD

    Directory of Open Access Journals (Sweden)

    Asha D. Patel

    2010-01-01

    Full Text Available Coordination polymers containing a novel bis(oxine bidentate ligand, namely N,Nʼ-di(8-hydroxyquinolinolyl-5-methyl-N,Nʼ-diethyl-1,3-propane diamine (QEPD have been prepared with the metal ions Zn(II, Cu(II, Ni(II, Co(II and Mn(II. The novel bis-(bidentate ligand was synthesized by condensation of 5-chloromethyl-8-hydroxyquinoline hydrochloride with N,Nʼ-diethyl-1,2- propane diamine in the presence of a base catalyses. All of these coordination polymers and the parent ligand were characterized by elemental analyses, IR spectral and diffuse reflectance spectral studies. The thermal stability and number- average molecular weights (Mn¯ of all of the coordination polymers were determined by thermogravimetric analyses and non-aqueous conductometric titrations, respectively. In addition, all of the coordination polymers have been characterized by their magnetic susceptibilities.

  13. Structural diversity of a series of terpyridyl carboxylate coordination polymers: Luminescent sensor and magnetic properties

    Science.gov (United States)

    Yuan, Fei; Yuan, Chun-Mei; Hu, Huai-Ming; Wang, Ting-Ting; Zhou, Chun-Sheng

    2018-02-01

    Eleven new coordination polymers, [Zn2(ctpy)2(HCOO)2]n·3nH2O (1), [Zn2(ctpy)2(HCOO)2(H2O)2]n·nH2O (2), [Zn2(ctpy)2(H2O)4]n·2n(CH3COO)·nH2O (3), [Zn2(ctpy)2(CH3COO)2]n·nH2O (4), [Zn(ctpy)2]n·nH2O (5), [Zn2(ctpy)2(Hidc)(H2O)2]n(6), [Cd2(ctpy)4]n(7), [Cd2(ctpy)2(Hidc)]n(8), [Co2(ctpy)2(HCOO)2(H2O)2]n·nH2O (9), [Co(ctpy)(DMF)(ox)0.5]n(10), [Co(ctpy)(ox)0.5]n(11) and the closely related compound [Zn(ctpy)(ox)0.5]n·0.5nH2O (12) (Hctpy = 4‧-carboxy-4,2‧:6‧,4‧‧-terpyridine, H2ox = oxalic acid and H3idc = imidazole-4,5-dicarboxylic acid) have been synthesized by hydro(solvo)thermal reaction of 4‧-carboxy-4,2‧:6‧,4‧‧-terpyridine with divalent metal salts and characterized by elemental analysis, IR spectra, single crystal X-ray diffraction. Compounds 1 and 4 have similar structure which demonstrate a two-fold interpenetrating 3D framework with a 3-connected utp topological net, which contains the same number of left and right-handed 21 helical chains. Compounds 2 and 9 are isostructural 2D layer with a 3-connected hcb topological net. Similar to 2, compound 3 also displays a 3-connected 2D hcb topological net. Compounds 5 and 10 are a 2D layer with a 4-connected sql topological net. Compound 6 shows a chiral 2D layer based on a 1D left- or right-handed helical chains, which are further extended into an achiral 2D + 2D→3D supramolecular network by hydrogen bonds with alternately arrangement. Compound 7 features an unusual 2-fold interpenetrating 3D coordination network which exhibits a new intriguing (3,5)-connected binodal topological net with the Schläfli symbol of (52·6)(53·63·73·8). Compound 8 shows a 2D→3D supramolecular structure based on (3,4)-connected 2D bilayers with the Schläfli symbol of (44·62). Compound 11 displays an unusual three-dimensional coordination network which exhibits an intriguing (3,8)-connected binodal new topological net with Schläfli symbol (42·62)2(42·623·83). Compound 12 features a two

  14. Self-Compacting Concrete Incorporating Micro-SiO2 and Acrylic Polymer

    Directory of Open Access Journals (Sweden)

    Ali Heidari

    2014-01-01

    Full Text Available This study examined the effects of using acrylic polymer and micro-SiO2 in self-compacting concrete (SCC. Using these materials in SCC improves the characteristics of the concrete. Self-compacting samples with 1-2% of a polymer and 10% micro-SiO2 were made. In all cases, compressive strength, water absorption, and self-compacting tests were done. The results show that adding acrylic polymer and micro-SiO2 does not have a significant negative effect on the mechanical properties of self-compacting concrete. In addition using these materials leads to improving them.

  15. Self-Compacting Concrete Incorporating Micro-SiO2 and Acrylic Polymer

    OpenAIRE

    Heidari, Ali; Zabihi, Marzieh

    2014-01-01

    This study examined the effects of using acrylic polymer and micro-SiO2 in self-compacting concrete (SCC). Using these materials in SCC improves the characteristics of the concrete. Self-compacting samples with 1-2% of a polymer and 10% micro-SiO2 were made. In all cases, compressive strength, water absorption, and self-compacting tests were done. The results show that adding acrylic polymer and micro-SiO2 does not have a significant negative effect on the mechanical properties of self-compa...

  16. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica

    KAUST Repository

    Hu, Xian-Lei; Hou, Gao-Ming; Zhang, Ming-Qiu; Rong, Min-Zhi; Ruan, Wen-Hong; Giannelis, Emmanuel P.

    2012-01-01

    perchlorate via mold casting method to fabricate nanocomposite polymer electrolytes. By introducing hypergrafted nanoparticles, ionic conductivity of solid composite is improved significantly at the testing temperature. Hypergrafted nano-silica may act

  17. Recycled Glass Fiber Reinforced Polymer Composites Incorporated in Mortar for Improved Mechanical Performance

    Science.gov (United States)

    2017-12-11

    Glass fiber reinforced polymer (GFRP) recycled from retired wind turbines was implemented in mortar as a volumetric replacement of sand during the two phases of this study. In Phase I, the mechanically refined GFRP particle sizes were sieved for four...

  18. Synthesis, Structure and Properties of Two Novel 2D Zinc(II) Coordination Polymers based on Fluconazole and Benzene Carboxylic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ganghong; Tang, Jingniu; Xu, Wenjia; Liang, Peng; Huang, Zhongjing [Guangxi University for Nationalities, Nanning (China)

    2013-12-15

    The design and synthesis of coordination polymers have aroused great interest owing to their intriguing aesthetic structures and potential applications in nonlinear optics, gas storage, ion exchange, luminescence, magnetism and catalysis. Self-assembly of bridging organic ligands (connectors) and multi-connected metal ions can give rise to various types of interesting coordination polymers. Since metal ion Zn(II) with d{sup 10} electronic configuration permits a variety of coordination numbers and geometries which are not dependent on ligand field stabilization but on ligand size and charge, it is well suited for the construction of various coordination polymers. Its borderline hardness allows the coordination of N, O and S donor atoms.

  19. A strategy to synthesize graphene-incorporated lignin polymer composite materials with uniform graphene dispersion and covalently bonded interface engineering

    Science.gov (United States)

    Wang, Mei; Duong, Le Dai; Ma, Yifei; Sun, Yan; Hong, Sung Yong; Kim, Ye Chan; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    Graphene-incorporated polymer composites have been demonstrated to have excellent mechanical and electrical properties. In the field of graphene-incorporated composite material synthesis, there are two main obstacles: Non-uniform dispersion of graphene filler in the matrix and weak interface bonding between the graphene filler and polymer matrix. To overcome these problems, we develop an in-situ polymerization strategy to synthesize uniformly dispersed and covalently bonded graphene/lignin composites. Graphene oxide (GO) was chemically modified by 4,4'-methylene diphenyl diisocyanate (MDI) to introduce isocyanate groups and form the urethane bonds with lignin macromonomers. Subsequential polycondensation reactions of lignin groups with caprolactone and sebacoyl chloride bring about a covalent network of modified GO and lignin-based polymers. The flexible and robust lignin polycaprolactone polycondensate/modified GO (Lig-GOm) composite membranes are achieved after vacuum filtration, which have tunable hydrophilicity and electrical resistance according to the contents of GOm. This research transforms lignin from an abundant biomass into film-state composite materials, paving a new way for the utilization of biomass wastes.

  20. Selective high capacity adsorption of Congo red, luminescence and antibacterial assessment of two new cadmium(II) coordination polymers

    Science.gov (United States)

    Beheshti, Azizolla; Nozarian, Kimia; Ghamari, Narges; Mayer, Peter; Motamedi, Hossein

    2018-02-01

    Coordination polymers [CdCl(NCS)L]n (1) and {[Cd2I4(L)2]·H2O·DMF}n (2) (where L = 1, 1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione)) were synthesized and structurally characterized. Compounds 1 and 2 both possess a tetrahedral arrangement with CdS2NCl and CdS2I2 cores, respectively. In these structures, the flexible thione ligands adopt a μ- bridging coordination mode to form 1D chains along the b-axis. The 1D chains are join together by C-H--Cl hydrogen bonds (in 1) and water molecules (in 2) to create a 2D supramolecular framework with an ABAB…packing mode. Remarkably, compounds 1 and 2 in particular polymer 1 exhibit excellent capacity to adsorb Congo red (CR) with high selectivity. The experimental data demonstrate that the mechanism of sorption process can be described by the Elovich and pseudo second order kinetic models for 1 and 2, respectively. Furthermore, the possible mechanism of CR absorption was investigated by UV-Vis and solid state fluorescence spectra for the title polymers. In addition, the antibacterial assessment of these compounds have also been studied.

  1. Photo- and thermochromic and adsorption properties of porous coordination polymers based on bipyridinium carboxylate ligands.

    Science.gov (United States)

    Toma, Oksana; Mercier, Nicolas; Allain, Magali; Kassiba, Abdel Adi; Bellat, Jean-Pierre; Weber, Guy; Bezverkhyy, Igor

    2015-09-21

    The zwitterionic bipyridinium carboxylate ligand 1-(4-carboxyphenyl)-4,4'-bipyridinium (hpc1) in the presence of 1,4-benzenedicarboxylate anions (BDC(2-)) and Zn(2+) ions affords three porous coordination polymers (PCPs): [Zn5(hpc1)2(BDC)4(HCO2)2]·2DMF·EtOH·H2O (1), [Zn3(hpc1)(BDC)2(HCO2)(OH)(H2O)]·DMF·EtOH·H2O (2), and [Zn10(hpc1)4(BDC)7(HCO2)2(OH)4(EtOH)2]·3DMF·3H2O (3), with the formate anions resulting from the in situ decomposition of dimethylformamide (DMF) solvent molecules. 1 and 3 are photo- and thermochromic, turning dark green as a result of the formation of bipyridinium radicals, as shown by electron paramagnetic resonance measurements. Particularly, crystals of 3 are very photosensitive, giving an eye-detectable color change upon exposure to the light of the microscope in air within 1-2 min. A very nice and interesting feature is the regular discoloration of crystals from the "edge" to the "core" upon exposition to O2 (reoxidation of organic radicals) due to the diffusion of O2 inside the pores, with this discoloration being slower in an oxygen-poor atmosphere. The formation of organic radicals is explained by an electron transfer from the oxygen atoms of the carboxylate groups to pyridinium cycles. In the structure of 3', [Zn10(hpc1)4(BDC)7(OH)6(H2O)2], resulting from the heating of sample 3 (desolvation and loss of CO molecules due to the decomposition of formate anions), no suitable donor-acceptor interaction is present, and as a consequence, this compound does not exhibit any chromic properties. The presence of permanent porosity in desolvated 1, 2, and 3' is confirmed by methanol adsorption at 25 °C with the adsorbed amount reaching 5 wt % for 1, 10 wt % for 3', and 13 wt % for 2. The incomplete desorption of methanol at 25 °C under vacuum points to strong host-guest interactions.

  2. Design and construction of diverse structures of coordination polymers: Photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu, E-mail: wuyuhlj@163.com [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Lu, Lu [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Feng, Jianshen [Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Li, Yulong; Sun, Yanchun [College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Institute of Functional Materials, Sichuan University of Science & Engineering, Zigong 643000 (China); Ma, Aiqing, E-mail: maqandght@126.com [School of Pharmacy, Guangdong Medical University, Dongguan 523808 (China)

    2017-01-15

    The reaction of Cu(NO{sub 3}){sub 2}·3H{sub 2}O/Ni(NO{sub 3}){sub 2}·6H{sub 2}O with 4′-(4-(3,5-dicarboxylphenoxy)phenyl)-4,2′:6′,4′′-terpyridine (H{sub 2}dbp) gave [Cu{sub 0.5}(Hdbp)]{sub n} (1) and [Ni(dbp)(H{sub 2}O)]{sub n} (2), while the reactions of Co(NO{sub 3}){sub 2}·6H{sub 2}O with H{sub 2}dbp in the presence of 4,4′-bipy and 2,2′-bpy generated [Co(dbp)(4,4′-bipy)]{sub n} (3) and ([Co(dbp)(2,2′-bipy)]{sub n}·H{sub 2}O) (4), respectively (4,4′-bipy=4.4′-pyridine and 2,2′-bipy=2,2′-bipyridine). X-Ray single-crystal analyses reveal that 1 contains a 1D double chain. 2 possesses a 3D architecture with (4.6{sup 2}0.8{sup 3}){sub 2} topology that is interpenetrated with each other to form a 2-fold network. In 3, the 2D [Co(dbp)]n sheets are pillared by 4,4′-bpy to form a 3D framework with 1D open channel. Compound 4 consists of a 1D ladder-like chain. The results showed that the structural diversity of the coordination polymers resulted from the different geometries of metal ions and effect of assistant ligands. Furthermore, the photocatalytic properties of 1–4 for degradation of the methyl violet (MV) have been examined. - Graphical abstract: The photocatalytic activity and selectivity of complexes 1–4 prove that they may be good and stable photocatalysts for degradation of organic dyes.

  3. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation.

    Science.gov (United States)

    Saleh, H M; Annuar, M S M; Simarani, K

    2017-11-01

    Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm -2 , irradiation time 120min and 0.1gL -1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    Energy Technology Data Exchange (ETDEWEB)

    He, Tian [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Yue, Ke-Fen, E-mail: ykflyy@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Zhao, Yi-xing; Chen, San-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China); Zhou, Chun-sheng, E-mail: slzhoucs@126.com.cn [Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000 (China); Yan, Ni [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710069 (China)

    2016-07-15

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H_2O}{sub n} (1), {[Zn(bib)(atbip)]·H_2O}{sub n} (2), {[Zn(bib)(2,2′-tda)]}{sub n} (3) and {[Zn(bib)(5-tbipa)]·EtOH}{sub n} (4), (H{sub 2}atibdc=5-amino-2,4,6-triiodoisophthalic acid, H{sub 2}atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2′-H{sub 2}tad=2,2′-thiodiacetic acid, 5-H{sub 2}tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1–4. The fluorescent properties of complexes 1−4 were studied. In addition, the thermal decompositions properties of 1–4 were investigated by simultaneous TG/DTG–DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1–4 are calculated by the integral Kissinger's method and Ozawa–Doyle's method. The activation energy E (E{sub 1}=209.658 kJ·mol{sup −1}, E{sub 2}=250.037 kJ mol{sup −1}, E{sub 3}=225.300 kJ mol{sup −1}, E{sub 4}=186.529 kJ·mol{sup −1}) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH{sup ‡}, ΔG{sup ‡} and ΔS{sup ‡}) at the peak temperatures of the DTG curves were also calculated. ΔG{sup ‡}>0 indicates that the skeleton collapse is not spontaneous. ΔH{sub d}>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC

  5. Ionochromic 4,4 '-azobispyridinium salt-incorporated polymer: synthesis and optical properties

    Science.gov (United States)

    Lee, Taek Seung; Ahn, Heungki; Lee, Jin Kyun; Park, Won Ho

    2003-01-01

    Azobispyridinium-bearing polyelectrolyte linked with flexible alkyl chain was synthesized and characterized. The polymer showed absorption changes upon addition of hydroxide anion with an isobestic point in UV-visible spectrum. It is presumed that conformational change of the azo group in the main chain is responsible for the point. Transduction of physical information (hydroxide concentration) into an optical signal from azo group was related to the ionochromic effect. Electrostatic self-assembled multilayer of the polymer with appropriate polyanion was carried out via layer-by-layer deposition.

  6. Polymer complexes.. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes

    Science.gov (United States)

    El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  7. Structural diversification and photocatalytic properties of three Cd(II) coordination polymers decorated with different auxiliary ligands

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long; Cheng, Hong-Jian; Zhou, Li; Ma, Man-Hong; Wang, Hao; Tang, Xiao-Yan, E-mail: xytang@cslg.edu.cn; Ma, Yun-Sheng; Yuan, Rong-Xin, E-mail: yuanrx@cslg.edu.cn

    2016-03-15

    Three cadmium coordination polymers, [Cd(bismip)]{sub n} (1), {[Cd(bismip)(phen)]·H_2O}{sub n} (2) and {[Cd_2(bismip)_2(4,4′-bipy)]·2H_2O}{sub n} (3) (H{sub 2}bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4′-bipy=4,4′-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd{sub 4}(bismip){sub 3}] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·8{sup 2})(4{sup 2}·8{sup 4}) Schläfli symbol in which 2D layers are interlinked by 4,4′-bipy ligands. The diverse structures of compounds 1–3 indicate that the auxiliary ligands have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance. - Graphical abstract: Three cadmium coordination polymers with different architectures based on 5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid have been prepared. Their photoluminescent properties were also investigated. - Highlights: • Three new Cd(II) Cps were synthesized based on H{sub 2}bismip. • Compounds 1 and 3 show 3D networks and 2 exhibits a 1D chain. • Compoud 3 exhibits good catalytic activity of methylene blue photodegradation.

  8. Multifunctional fluorescent sensing of chemical and physical stimuli using smart riboflavin-5'-phosphate/Eu3+ coordination polymers.

    Science.gov (United States)

    Xue, Shi-Fan; Zhang, Jing-Fei; Chen, Zi-Han; Han, Xin-Yue; Zhang, Min; Shi, Guoyue

    2018-07-05

    A novel type of stimuli-responsive fluorescent polymers has been developed via the self-assembly of riboflavin-5'-phosphate (RiP) as ligand and europium (III) (Eu 3+ ) as central metal ion coordinated with the ligand. The as-prepared RiP/Eu 3+ coordination polymers (RiP/Eu 3+ CPs) are smart and multifunctional for respectively responding to chemical and physical stimuli, in which RiP acts as the stimuli-responsive fluorescent signal indicator. For sensing chemical stimuli, 2,6-pyridinedicarboxylic acid (DPA, an anthrax biomarker) having higher bonding force towards Eu 3+ can grab it from smart RiP/Eu 3+ CPs through competition reaction, resulting in the release of RiP for highly sensitive and selective DPA monitoring in a mix-and-read fluorescent enhancement format, and the detection limit is as low as 41.5 nM. Density functional theory (DFT) calculations has been also performed to verify the DPA sensing principle. For sensing physical stimuli, the smart RiP/Eu 3+ CPs can be acting as a novel sensory probe for the determination of temperature from 10 °C to 40 °C based on the thermal-induced disruption of the binding between Eu 3+ and RiP and the disassembly of the smart RiP/Eu 3+ CPs accompanying with the recovery of the fluorescence of RiP. This work establishes an effective platform for multifunctional sensing of chemical and physical stimuli utilizing both smart lanthanide nanoscale coordination polymers (LNCPs) and novel sensing strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Cost-effectiveness analysis of biodegradable polymer versus durable polymer drug-eluting stents incorporating real-world evidence.

    Science.gov (United States)

    Teng, Monica; Zhao, Ying Jiao; Khoo, Ai Leng; Ananthakrishna, Rajiv; Yeo, Tiong Cheng; Lim, Boon Peng; Chan, Mark Y; Loh, Joshua P

    2018-06-05

    Compared with second-generation durable polymer drug-eluting stents (DP-DES), the cost-effectiveness of biodegradable polymer drug-eluting stents (BP-DES) remains unclear in the real-world setting. We assessed the cost-effectiveness of BP-DES in patients with coronary artery disease undergoing percutaneous coronary intervention (PCI). We developed a decision-analytic model to compare the cost-effectiveness of BP-DES to DP-DES over one year and five years from healthcare payer perspective. Relative treatment effects during the first year post-PCI were obtained from a real-world population analysis while clinical event risks in the subsequent four years were derived from a meta-analysis of published studies. At one year, based on the clinical data analysis of 497 propensity-score matched pairs of patients, BP-DES were associated with an incremental cost-effectiveness ratio (ICER) of USD20,503 per quality-adjusted life-year (QALY) gained. At five years, BP-DES yielded an ICER of USD4,062 per QALY gained. At the willingness-to-pay threshold of USD50,400 (one gross domestic product per capita in Singapore in 2015), BP-DES were cost-effective. Sensitivity analysis showed that the cost of stents had a significant impact on the cost-effectiveness of BP-DES. Threshold analysis demonstrated that if the cost difference between BP-DES and DP-DES exceeded USD493, BP-DES would not be cost-effective in patients with one-year of follow-up. BP-DES were cost-effective compared with DP-DES in patients with coronary artery disease at one year and five years after PCI. It is worth noting that the cost of stents had a significant impact on the findings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. The Role of IAEA in Coordinating Research and Transferring Technology in Radiation Chemistry and Processing of Polymers

    International Nuclear Information System (INIS)

    Haji Saeid, M.

    2006-01-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through Technical Cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The CRP brings together typically 10 - 15 groups of participants to share and complement core competencies and work on specific areas of development needed to benefit from an emerging radiation technique and its applications. The technical cooperation (TC) programme helps Member States realize their development priorities through the application of appropriate radiation technology. TC builds national capacities through training, expert advice and delivery of equipment. The impact of the IAEA's efforts is visible by the progress noticeable in adoption of radiation technology and/or growth in the range of activities in several MS in different regions. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. A number of technical cooperation projects have been implemented in this field to strengthen the capability of developing Member States and to create awareness in the industries about the technical

  11. Building-up novel coordination polymer with Zn(II) porphyrin dimer ...

    Indian Academy of Sciences (India)

    mer with porphyrin dimer. Solution structures of the complexes along with binding studies in solution between ... porphyrin polymers by self-assembly is fascinating ..... ture determination. ..... J K M 2000 In The Porphyrin Handbook Kadish K M,.

  12. Incorporation of Znq2 complexes into mesoporous silica and their transparent polymer luminescent nanocomposites

    International Nuclear Information System (INIS)

    Du Yaying; Fu Yuqin; Shi Yongli; Lue Xiaodan; Lue Changli; Su Zhongmin

    2009-01-01

    Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent nanocomposites were prepared by in situ bulk polymerization. CMS nanoparticles or nanorods with hydroxyl-, mercapto- and sulfonic-functionalized interiors were obtained by different synthetic routes in the nanosize dimensions between 50 and 500 nm. The luminescent Znq 2 complex was successfully introduced in the pores of different mesoporous silicas by chemical adsorption as the driving force. The different internal circumstances of mesoporous silicas had an obvious effect on the luminescence and lifetime of Znq 2 complex. The transparent fluorescent nanocomposites were fabricated from different Znq 2 -CMS and suitable monomers. The Znq 2 -CMS were uniformly dispersed in the polymer matrix without evident aggregation. The photoluminescence properties of Znq 2 -CMS in the transparent matrix exhibited a dependence on the inner surrounding of CMS due to the interaction between Znq 2 -CMS and polymers. The maximum emission peak of the nanocomposites had a red-shift of 28 nm as compared to pure Znq 2 -CMS. - Graphical abstract: Znq 2 -functionalized colloidal mesoporous silicas (Znq 2 -CMS)/polymer transparent fluorescent nanocomposites were prepared by in situ bulk polymerization. The figure shows the synthetic scheme for the Znq 2 -CMS and their transparent bulk nanocomposites.

  13. Electrical conductivity studies on Ammonium bromide incorporated with Zwitterionic polymer blend electrolyte for battery application

    Science.gov (United States)

    Parameswaran, V.; Nallamuthu, N.; Devendran, P.; Nagarajan, E. R.; Manikandan, A.

    2017-06-01

    Solid polymer blend electrolytes are widely studied due to their extensive applications particularly in electrochemical devices. Blending polymer makes the thermal stability, higher mechanical strength and inorganic salt provide ionic charge carrier to enhance the conductivity. In these studies, 50% polyvinyl alcohol (PVA), 50% poly (N-vinyl pyrrolidone) (PVP) and 2.5% L-Asparagine mixed with different ratio of the Ammonium bromide (NH4Br), have been synthesized using solution casting technique. The prepared PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films have been characterized by various analytical methods such as FT-IR, XRD, impedance spectroscopy, TG-DSC and scanning electron microscopy. FT-IR, XRD and TG/DSC analysis revealed the structural and thermal behavior of the complex formation between PVA/PVP/L-Asparagine/doped-NH4Br. The ionic conductivity and the dielectric properties of PVA/PVP/L-Asparagine/doped-NH4Br polymer blend electrolyte films were examined using impedance analysis. The highest ionic conductivity was found to be 2.34×10-4 S cm-1 for the m.wt. composition of 50%PVA:50%PVP:2.5%L-Asparagine:doped 0.15 g NH4Br at ambient temperature. Solid state proton battery is fabricated and the observed open circuit voltage is 1.1 V and its performance has been studied.

  14. Incorporation of New Benzofulvene Derivatives Into Polymers to Give New NLO Materials

    Science.gov (United States)

    Bowens, Andrea D.; Bu, Xiu; Mintz, Eric A.; Zhang, Yue

    1996-01-01

    The need for fast electro-optic switches and modulators for optical communication, and laser frequency conversion has created a demand for new second-order non-linear optical materials. One approach to produce such materials is to align chromophores with large molecular hyperpolarizabilities in polymers. Recently fulvenes and benzofulvenes which contain electron donating groups have been shown to exhibit large second-order non-linear optical properties. The resonance structures shown below suggest that intramolecular charge transfer (ICT) should be favorable in omega - (hydroxyphenyl)benzofulvenes and even more favorable in omega-omega - (phenoxy)benzofulvenes because of the enhanced donor properties of the O group. This ICT should lead to enormously enhanced second-order hyperpolarizability. We have prepared all three new omega - (hydroxyphenyl)benzofulvenes by the condensation of indene with the appropriate hydroxyaryl aldehyde in MeOH or MeOH/H2O under base catalysis. In a similar fashion we have prepared substituted benzofulvenes with multipal donor groups. Preliminary studies show that some of our benzofulvene derivatives exhibit second order harmonic generation (SHG). Measurements were carried out by preparing host-guest polymers. The results of our work on benzofulvene derivatives in host-guest polymers when covalently bonded in the polymer will be described.

  15. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    International Nuclear Information System (INIS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-01-01

    Three new coordination polymers [Mn(hip)(phen) (H_2O)]_n (1), [Co(hip)(phen) (H_2O)]_n (2), and [Cd(hip) (phen) (H_2O)]_n (3) (H_2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H_2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl_2·4H_2O / CoCl_2·6H_2O / Cd(NO_3)_2·6H_2O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.

  16. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    Energy Technology Data Exchange (ETDEWEB)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz, E-mail: hnsheikh@rediffmail.com

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.

  17. Syntheses, structures and magnetic properties of four coordination polymers based on nitrobenzene dicarboxylate and various N-donor coligands

    International Nuclear Information System (INIS)

    Li, Gui-Lian; Yin, Wei-Dong; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2014-01-01

    Four new coordination polymers ([Ni(4-Nbdc)(bpa)(H 2 O)]) n (1), ([Co(4-Nbdc)(bpp) (H 2 O)]) n (2), ([Ni(4-Nbdc)(bpp)(H 2 O)]·H 2 O) n (3), and ([Mn 2 (3-Nbdc) 2 (bib) 3 ]·2H 2 O) n (4) (4-Nbdc=4-nitrobenzene-1,2-dicarboxylate, 3-Nbdc=3-nitrobenzene-1,2-dicarboxylate, bpa=1,2-bi(4-pyridyl)ethane, bpp=1,3-bis(4-pyridyl)propane, and bib=1,4-bis(1-imidazoly)benzene), were synthesized by hydrothermal reactions, and characterized by single-crystal X-ray diffractions, elemental analysis, FT-IR, PXRD, TGA and magnetic analysis. Complexes 1 and 2 display quasi-trapezoidal chain and brick-wall layer, and both of them contain metal–carboxylate binuclear units. Complexes 3 and 4 exhibit three-dimensional frameworks with the (6 6 ) dia topology and (4 4 .6 10 .8)(4 4 .6 2 ) fsc topology, and both of them contain metal–carboxylate chains. The carboxyl groups with syn-anti coordination mode mediate effectively the weak ferromagnetic coupling interaction within Ni(II)–carboxylate binuclear in 1 (J=1.27 cm −1 ) and Ni(II)–carboxylate chain in 3 (J=1.44 cm −1 ), respectively, and the carboxyl groups with anti-anti coordination mode leads to the classic antiferromagnetic coupling interaction within Mn(II)–carboxylate chain in 4 (J=−0.77 cm −1 ). - Highlights: • Four novel coordination polymers were hydrothermally synthesized. • 1 is 1D quasi-trapezoidal chain and 2 is brick-wall layer both with dinuclear units. • 3 and 4 show 3D frameworks both with 1D metal–carboxylate chains. • 1 and 3 exhibit ferromagnetic coupling, while 4 shows antiferromagnetic coupling

  18. Coordination Architectures of energetic Cd (II) coordination polymers constructed by the bifunctional substituted-tetrazole-carboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lei; Bai, Yu; Min, Yu-Ting; Jia, Tian-Tian; Wu, Qi; Wang, Jing; Geng, Fei; Cheng, Hong-Jian [Department of Chemistry & Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China); Zhu, Dun-Ru [College of Chemical Engineering, State Key Laboratory of Materials-oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Yang, Jie, E-mail: jieyang@cslg.edu.cn [Department of Chemistry & Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China); Yang, Gao-Wen, E-mail: ygwsx@126.com [Department of Chemistry & Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500 (China)

    2016-12-15

    Three different tetrazole-carboxylate ligands, monotetrazole-carboxylate H{sub 2}tza (H{sub 2}tza=1,5-tetrazole-diacetic acid), Hpztza (Hpztza=5-(2-pyrazinyl)tetrazole-2(1-methyl)acetic acid), ditetrazole-carboxylate H{sub 2}tzpha (H{sub 2}tzpha=1,3-di(tetrazole-5-yl)benzene-N2,N2′-diacetic acid) have been chosen to react with CdCl{sub 2}·6H{sub 2}O, resulting in the formation of three new compounds [Cd{sub 2}(tza){sub 2}] (1), [Cd(pztza){sub 2}] (2) and [Cd(tzpha)(CH{sub 3}OH){sub 2}] (3). The coordinate sites of the three ligands are major influenced by the different substituted group of tetrazole ring. These compounds have been characterized by elemental analysis, IR and single crystal X-ray diffraction. Compound 1 displays a complex 3D structure; compound 2 shows a 3D network and compound 3 features a 2D layer network. Furthermore, the luminescence properties investigated at room temperature in the solid state showed excellent ligand-centered luminescence. The obvious enhancement in luminescence makes these compounds potential materials for optical use. The differential scanning calorimetry (DSC) and thermogravimetric-differential thermogravimetric (TG-DTG) analyses were applied to evaluate the thermal decomposition behavior of such compounds, showing that compounds 2 and 3 can be used as potential energetic materials. The relevant thermodynamic parameters ΔH, ΔS and ΔG were calculated as well. - Graphical abstract: H{sub 2}tza, Hpztza and H{sub 2}tzpha have been prepared. Three novel Cd (II)compounds were synthesized by reactions of CdCl{sub 2}·6H{sub 2}O, namely three dimensional [Cd{sub 2}(tza){sub 2}] (1), three dimensional [Cd(pztza){sub 2}] (2), and two dimensional [Cd(tzpha)(CH{sub 3}O){sub 2}] (3). The luminescences were investigated. Furthermore, the DSC show compounds 1 and 3 can be used as potential explosive materials.

  19. Rare configuration of tautomeric benzimidazolecarboxylate ligands in cadmium(II) and copper(II) coordination polymers

    International Nuclear Information System (INIS)

    Wu, Jing-Yun; Yang, Ciao-Wei; Chen, Hui-Fang; Jao, Yu-Chen; Huang, Sheng-Ming; Tsai, Chiitang; Tseng, Tien-Wen; Lee, Gene-Hsiang; Peng, Shie-Ming; Lu, Kuang-Lieh

    2011-01-01

    Two Cd(HBimc)-based isomers, [Cd(HBimc N )(HBimc T )(H 2 O)].3.5H 2 O.EtOH (1a.3.5H 2 O.EtOH, H 2 Bimc=1H-benzimidazole-5-carboxylic acid) and [Cd(HBimc N )(HBimc T )(H 2 O)] (1b), and two Cu(HMBimc)-based coordination polymers, [Cu(HMBimc N ) 2 (H 2 O)].1/2H 2 O (2.1/2H 2 O, H 2 MBimc=2-methyl-1H-benzimidazole-5-carboxylic acid) and [Cu(HMBimc T ) 2 ].2THF.H 2 O (3.2THF.H 2 O), were self-assembled from Cd(ClO 4 ) 2 .6H 2 O/H 2 Bimc and Cu(ClO 4 ) 2 .6H 2 O/H 2 MBimc systems, respectively. Compound 1a adopts a ladder-like chain structure, comprised of a hydrogen-bond-stabilized Cd 2 (HBimc N ) 2 -metallocyclic stair and a 1D straight -(Cd-HBimc T ) n - edge, whereas compound 1b exhibits a 2D (4,4)-rhombus layered structure, intercrossed by 1D -(Cd-HBimc N ) n - chains and -(Cd-HBimc T ) n - chains. Compound 2 shows a 1D double-stranded wave-like chain from two single-stranded wave-like -(Cu-HMBimc N ) n - chains and compound 3 adopts a 2D (4,4)-topological layer structure, intercrossed by subunits of 1D -(Cu-HMBimc T ) n - chains. Interestingly, a pair of tautomeric HBimc building blocks-normal (N or HBimc N ) and tautomer (T or HBimc T )-is simultaneously included in the structures of 1a and 1b, whilst the N- and T-configured HMBimc building blocks are present as separate entities in Cu species, 2 and 3, respectively. The existence of only a tautomer (T) mode of the benzimidazolecarboxylate-based ligand in a Cu(II) network is observed for the first time. - Graphical abstract: A pair of tautomeric HBimc building blocks (normal (N) and tautomer (T)) is found simultaneously in two Cd(II) networks, whereas, the normal and tautomer modes of HMBimc are present as separate entities in two Cu(II) frameworks. The isolation of a Cu(II) network with only a tautomer (T) mode of the benzimidazolecarboxylate-based ligand is achieved for the first time. Highlights: →Benzimidazolecarboxylates could exhibit normal (N) and tautomer (T) configurations. → A pair of N- and T

  20. Lanthanide contraction effect on crystal structures of lanthanide coordination polymers with cyclohexanocucurbit[6]uril ligand

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Li-Mei [College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001 (China); Liu, Jing-Xin, E-mail: jxliu411@ahut.edu.cn [College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002 (China)

    2017-01-15

    A series of compounds based on the macrocyclic ligand cyclohexanocucurbit[6]uril (Cy6Q[6]) with formulas (Ln(H{sub 2}O){sub 6}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·xH{sub 2}O [isomorphous with Ln=La (1), Ce (2), Pr (3) and Nd (4), x=11 (1), 11 (2), 10 (3) and 11 (4)], (Sm(H{sub 2}O){sub 5}Cy6Q[6])·2(CdCl{sub 4})·H{sub 3}O·10H{sub 2}O (5) and (Ln(H{sub 2}O){sub 5}(NO{sub 3})@Cy6Q[6])·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with Ln=Gd (6), Tb (7) and Dy (8), x=8 (6), 6 (7) and 6 (8)], have been successfully synthesized by the self-assembly of Cy6Q[6] with the corresponding lanthanide nitrate under hydrochloric acid aqueous solution in the presence of CdCl{sub 2}. Single-crystal X-ray diffraction analyses revealed that compounds 1–8 all crystallize in monoclinic space group P2{sub 1}/c, and display 1D coordination polymer structures. The lanthanide contraction effect on the structures of 1–8 has also been investigated and discussed in detail. In contrast, the reaction of Cy6Q[6] with the Ho(NO){sub 3}, Tm(NO){sub 3}, Yb(NO){sub 3} under the same conditions resulted in the compounds 9–11 with formulas Cy6Q[6]·2(CdCl{sub 4})·2H{sub 3}O·xH{sub 2}O [isomorphous with x=10 (9), 10 (10), and 9 (11)], in which no lanthanide cations are observed. The structural difference of these compounds indicates that the Cy6Q[6] may be used in the separation of lanthanide cations. - Graphical abstract: The reaction of cyclohexanocucurbit[6]uril with lanthanide ions (La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, Nd{sup 3+}, Sm{sup 3+}, Gd{sup 3+}, Tb{sup 3+}, Dy{sup 3+}, Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+}) under hydrochloric acid in the presence of CdCl{sub 2} resulted in eleven compounds, which demonstrate interesting lanthanide contraction effect and provide a means of separating lanthanide ions. - Highlights: • Eleven compounds of the Ln{sup 3+} with the Cy6Q[6] were synthesized and described. • Compounds 1-8 demonstrate interesting lanthanide contraction effect.

  1. A kinematic wave model in Lagrangian coordinates incorporating capacity drop: Application to homogeneous road stretches and discontinuities

    Science.gov (United States)

    Yuan, Kai; Knoop, Victor L.; Hoogendoorn, Serge P.

    2017-01-01

    On freeways, congestion always leads to capacity drop. This means the queue discharge rate is lower than the pre-queue capacity. Our recent research findings indicate that the queue discharge rate increases with the speed in congestion, that is the capacity drop is strongly correlated with the congestion state. Incorporating this varying capacity drop into a kinematic wave model is essential for assessing consequences of control strategies. However, to the best of authors' knowledge, no such a model exists. This paper fills the research gap by presenting a Lagrangian kinematic wave model. "Lagrangian" denotes that the new model is solved in Lagrangian coordinates. The new model can give capacity drops accompanying both of stop-and-go waves (on homogeneous freeway section) and standing queues (at nodes) in a network. The new model can be applied in a network operation. In this Lagrangian kinematic wave model, the queue discharge rate (or the capacity drop) is a function of vehicular speed in traffic jams. Four case studies on links as well as at lane-drop and on-ramp nodes show that the Lagrangian kinematic wave model can give capacity drops well, consistent with empirical observations.

  2. Incorporating Graphene Oxide into Alginate Polymer with a Cationic Intermediate To Strengthen Membrane Dehydration Performance.

    Science.gov (United States)

    Guan, Kecheng; Liang, Feng; Zhu, Haipeng; Zhao, Jing; Jin, Wanqin

    2018-04-25

    Two-dimensional graphene oxide (GO) in hybrid membranes provides fast water transfer across its surface due to the abundant oxygenated functional groups to afford water sorption and the hydrophobic basal plane to create fast transporting pathways. To establish more compatible and efficient interactions for GO and sodium alginate (SA) polymer chains, cations sourced from lignin are employed to decorate GO (labeled as cation-functionalized GO (CG)) nanosheets via cation-π and π-π interactions, providing more interactive sites to confer synergetic benefits with polymer matrix. Cations from CG are also functional to partially interlock SA chains and intensify water diffusion. And with the aid of two-dimensional pathways of CG, fast selective water permeation can be realized through hybrid membranes with CG fillers. In dehydrating aqueous ethanol solution, the hybrid membrane exhibits considerable performance compared with bare SA polymer membrane (long-term stable permeation flux larger than 2500 g m -2 h -1 and water content larger than 99.7 wt %, with feed water content of 10 wt % under 70 °C). The effects of CG content in SA membrane were investigated, and the transport mechanism was correspondingly studied through varying operation conditions and membrane materials. In addition, such a membrane possesses long-term stability and almost unchanged high dehydration capability.

  3. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  4. Amorphous infinite coordination polymer microparticles: a new class of selective hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, You-Moon; Heo, Jungseok; Mirkin, Chad A [Department of Chemistry, International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL (United States); Armatas, Gerasimos S [Department of Chemistry, Northwestern University, Evanston, IL (United States); Kanatzidis, Mercouri G [Materials Science Division, Argonne National Laboratory, Argonne, IL (United States)

    2008-06-04

    A new class of micrometer-sized amorphous infinite coordination particles is selectively prepared from the coordination chemistry of a metallo-salen building block and Zn{sup 2+} ions. The particles show moderately high H{sub 2} uptake and almost no N{sub 2} adsorption, even though they are amorphous and do not have the well-defined channels typically used to explain such selectivity in metal-organic framework systems. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  5. A new one-dimensional NiII coordination polymer with a two-dimensional supramolecular architecture

    Directory of Open Access Journals (Sweden)

    Kai-Long Zhong

    2017-02-01

    Full Text Available A new one-dimensional NiII coordination polymer of 1,3,5-tris(imidazol-1-ylmethylbenzene, namely catena-poly[[aqua(sulfato-κOhemi(μ-ethane-1,2-diol-κ2O:O′[μ3-1,3,5-tris(1H-imidazol-1-ylmethylbenzene-κ3N3,N3′,N3′′]nickel(II] ethane-1,2-diol monosolvate monohydrate], {[Ni(SO4(C18H18N6(C2H6O20.5(H2O]·C2H6O2·H2O}n, was synthesized and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction. The NiII cation is coordinated by three N atoms of three different 1,3,5-tris(imidazol-1-ylmethylbenzene ligands, one O atom of an ethane-1,2-diol molecule, by a sulfate anion and a water molecule, forming a distorted octahedral NiN3O3 coordination geometry. The tripodal 1,3,5-tris(imidazol-1-ylmethylbenzene ligands link the NiII cations, generating metal–organic chains running along the [100] direction. Adjacent chains are further connected by O—H...O hydrogen bonds, resulting in a two-dimensional supermolecular architecture running parallel to the (001 plane. Another water molecule and a second ethane-1,2-diol molecule are non-coordinating and are linked to the coordinating sulfate ions via O—H...O hydrogen bonds.

  6. Assembly of three new POM-based Ag(I) coordination polymers with antibacterial and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xin-Xin; Luo, Yu-Hui [Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China (China); Lu, Chen [School of Pharmaceutical and Life Sciences,Changzhou University, Changzhou, Jiangsu 213164 (China); Chen, Xin, E-mail: xinchen@cczu.edu.cn [School of Pharmaceutical and Life Sciences,Changzhou University, Changzhou, Jiangsu 213164 (China); Zhang, Hong, E-mail: zhangh@nenu.edu.cn [Institute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China (China)

    2015-12-15

    Three new silver coordination polymers, namely, {Ag_3(bpy)_6[PW_1_2O_4_0]} (1), {Ag_5(H_2biim)_2(Hbiim-NO_2)_2[PW_1_2O_4_0]} (2), {Ag_7(pytz)_4[PW_1_2O_4_0]} (3) (bpy=2,2′-bipyridine, H{sub 2}biim=2,2′-biimidazole, pytz=4-(1H-tetrazol-5-yl)pyridine), have been synthesized under hydrothermal condition. Compound 1 shows a 3D supramolecular framework based on 0D moieties. Compound 2 exhibits an attractive 2D biologic screw axis. Compound 3 displays a 3D structure, which consists of Ag(I)···π interactions, π···π stacking and weak Ag···Ag interactions. It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. Through contrasting the antibacterial activities of gram negative and gram positive bacteria, we find compounds 1–3 have better antibacterial property in gram negative bacteria than gram positive bacteria. In addition, compounds 1–3 also exhibit efficiency of photocatalytic decomposition of organic dyes. Those compounds may be used as potential multifunctional materials in wastewater treatment, because they not only can kill bacteria but also degrade organic pollutants. - Highlights: • Three new silver coordination polymers have been synthesized under hydrothermal condition. • Due to different coordination modes of rigid N-donor ligands, structures of the title compounds vary from 0D to 3D frameworks. • It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. • In addition, these compounds exhibit efficiency of photocatalytic decomposition of dyes and antibacterial activities.

  7. Combination of SEDDS and Preactivated Thiomer Technology: Incorporation of a Preactivated Thiolated Amphiphilic Polymer into Self-Emulsifying Delivery Systems.

    Science.gov (United States)

    Hetényi, Gergely; Griesser, Janine; Nardin, Isabelle; Bernkop-Schnürch, Andreas

    2017-06-01

    The aim of the study was to create novel mucoadhesive drug delivery systems by incorporating amphiphilic hydrophobically modified, thiolated and preactivated polymers (preactivated thiomers) into self-emulsifying drug delivery systems (SEDDS). L-Cysteine methyl ester was covalently attached to the polymeric backbone of Pemulen TR-2 and preactivated using 2-mercaptonicotinic acid (2-MNA). These thiomers were incorporated in a concentration of 0.3% (w/v) into SEDDS. The size distribution and the zeta potential of the emulsions were evaluated by dynamic light scattering. Mucoadhesive properties of thiomers-SEDDS spiked with FDA (fluorescein diacetate) were examined utilizing rheological measurement, permeation studies and in vitro residence time study on porcine mucosa. Cell viability tests were additionally performed. 734 ± 58 μmol L-Cysteine methyl ester and 562 ± 71 μmol 2-MNA could be attached per gram polymer of Pemulen TR-2. Emulsions exhibited a droplet size range between 180 and 270 nm. Blank SEDDS possessed a zeta potential value between -5.7 and -8.6 mV, whereas thiomers-SEDDS between -14.6 and -17.2 mV. Viscous modulus of thiomer and preactivated thiomer containing SEDDS-mucus mixture was 8-fold and 11-fold increased in comparison to reference. The amount of FDA permeated the mucus layer was 2-fold lower in case of thiomers-SEDDS compared to blank SEDDS. A prolonged residence time was observed for thiomers-SEDDS over 45 min. During cell viability studies no severe toxic effects were detected. The novel developed SEDDS with incorporated thiomers might be a promising tool for mucoadhesive oral drug delivery.

  8. Aviation Fuel Gauging Sensor Utilizing Multiple Diaphragm Sensors Incorporating Polymer Optical Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Saez-Rodriguez, D.

    2016-01-01

    A high-performance fuel gauging sensor is described that uses five diaphragm-based pressure sensors, which are monitored using a linear array of polymer optical fiber Bragg gratings. The sensors were initially characterized using water, revealing a sensitivity of 98 pm/cm for four of the sensors...... of sensors manufactured with a polyurethane-based diaphragm showed no measurable deterioration over a three month period immersed in fuel. These sensors exhibited a sensitivity of 39 pm/cm, which is less than the silicone rubber devices due to the stiffer nature of the polyurethane material used....

  9. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    Science.gov (United States)

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tellurium rings as electron pair donors in cluster compounds and coordination polymers; Tellurringe als Elektronenpaardonoren in Clusterverbindungen und Koordinationspolymeren

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Anja

    2011-11-08

    In this dissertation novel and already known molecular tellurium rings are presented in cluster compounds and quasi-one-dimensional coordination polymers. The cyclic, homonuclear units are always stabilized by coordination to electron-rich transition metal atoms, with the coordinating tellurium atoms acting as two-electron donors. As a synthesis route, the solid-state reaction in quartz glass vials was used uniformly. In addition to structural determination, the focus was on the characterization of the resulting compounds. For this purpose, resistance measurements were carried out on selected compounds, the magnetic behavior and the thermal degradation reactions were investigated and accompanying quantum chemical calculations were carried out. [German] In dieser Dissertation werden neuartige sowie bereits bekannte molekulare Tellurringe in Clusterverbindungen und quasi-eindimensionalen Koordinationspolymeren vorgestellt. Die Stabilisierung der zyklischen, homonuklearen Einheiten erfolgt dabei stets durch die Koordination an elektronenreiche Uebergangsmetallatome, wobei die koordinierenden Telluratome gegenueber diesen als Zwei-Elektronendonoren fungieren. Als Syntheseroute wurde dabei einheitlich auf die Festkoerperreaktion in Quarzglasampullen zurueckgegriffen. Neben der Strukturaufklaerung stand die Charakterisierung der erhaltenden Verbindungen im Fokus der Arbeit. Dazu wurden an ausgewaehlten Verbindungen Widerstandsmessungen durchgefuehrt, das magnetische Verhalten sowie die thermischen Abbaureaktionen untersucht und begleitende quantenchemische Rechnungen durchgefuehrt.

  11. Enhancing relative permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends

    DEFF Research Database (Denmark)

    A Razak, Aliff Hisyam; Szabo, Peter; Skov, Anne Ladegaard

    Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts a possibil......Polydimethylsiloxanes (PDMS) are well-known to actuate with relatively large strains due to low modulus, but they possess lowpermittivity. Contrary, polyethyleneglycols (PEG) are not stretchable but possess high permittivity. Combination of the two polymers in a block copolymer depicts...... a possibility for substantial improvement of properties such as high permittivity, stretchability and non-conductivity – if carefully designed. The objective is to synthesize PDMS-PEG multiblock copolymer assembling into discontinuous morphologies in PEG based on variation of volume fractions of PDMS....... The utilized synthesis of PDMS-PEG multiblock copolymer is based on hydrosilylation reaction, which is amended from Klasner et al.1 and Jukarainen etal.2 Variation in the ratio between the two constituents introduces distinctive properties in terms of dielectric permittivity and rheological behaviour. PDMS...

  12. Polarization independent polymer waveguide tunable receivers incorporating a micro-optic circulator

    Science.gov (United States)

    Wu, Xiaoping; Park, Tae-Hyun; Park, Su-Hyun; Seo, Jun-Kyu; Oh, Min-Cheol

    2018-06-01

    In order to simplify the receiver configuration in a wavelength division multiplexed optical fiber network, compact wavelength tunable filters have long been expected to be used as channel selectors. Bragg reflector inherently has the most suitable reflection spectrum for filtering a single wavelength from the densely multiplexed wavelength signal. Polymer has high thermo-optic coefficient and good thermal insulation property compared to the other optical waveguide materials such as silicon and silica materials. This can be used to broadly tune the reflection spectrum of Bragg reflector using a simple micro-heater. In this work, a micro-optic circulator component and a polymeric Bragg reflector device are assembled to produce a small form factor tunable receiver. Compared to the integrated-optical versions, the micro-optics are based on well-developed manufacturing processes and can achieve competitive production yields. The device exhibits high reflectivity with a flat top passband, and a polarization dependence of 0.06 nm achieved by virtue of the low birefringence of LFR polymer, which make a significant contribution to the implementation of polarization independent tunable receiver. The wavelength tuning range of 40 nm is demonstrated by using a bottom located heater with a groove for heat isolation.

  13. One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability

    Science.gov (United States)

    Wang, Peng; Lou, Xiaobing; Li, Chao; Hu, Xiaoshi; Yang, Qi; Hu, Bingwen

    2018-06-01

    Nanowire coordination polymer cobalt-terephthalonitrile (Co-BDCN) was successfully synthesized using a simple solvothermal method and applied as anode material for lithium-ion batteries (LIBs). A reversible capacity of 1132 mAh g-1 was retained after 100 cycles at a rate of 100 mA g-1, which should be one of the best LIBs performances among metal organic frameworks and coordination polymers-based anode materials at such a rate. On the basis of the comprehensive structural and morphology characterizations including fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and scanning electron microscopy, we demonstrated that the great electrochemical performance of the as-synthesized Co-BDCN coordination polymer can be attributed to the synergistic effect of metal centers and organic ligands, as well as the stability of the nanowire morphology during cycling.[Figure not available: see fulltext.

  14. Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications

    Science.gov (United States)

    Kandanapitiye, Murthi S.

    The combination of nanotechnology with medicinal chemistry has developed into a burgeoning research area. Nanomaterials (NMs) could be seamlessly interfaced with various facets in biology, biochemistry, medicinal chemistry and environmental chemistry that may not be available to the same material in the bulk scale. This dissertation research has focused on the development of nanoparticulate coordination polymers for diagnostic and therapeutic applications. Modern imaging techniques include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET). We have successfully developed several types of nanoparticulate diagnostics and therapeutics that have some potential usefulness in biomedicine. Synthesis and characterization of nanoparticulate based PET (Positron emission tomography)/SPECT (Single photon emission computed tomography) are discussed in chapter 3. In chapter 4, preparation and potential utility of non-gadolinium based MRI contrast agent are reported for T1-weighted application. As far as the solely effectiveness of relaxation is concerned, Gd-based T 1-weighted MRI contrast agents have excellent enhancement of image contrast but they have risks of biological toxicity. Consequently, the search for T 1-weighted CAs with high efficacy and low toxicity has gained attention toward the Mn(II) and Fe(III). Fe(III) is considered to be more toxic to cells because free ferric or ferrous ions can catalyze the production of reactive oxygen species via the Fenton reactions. Paramagnetic chelates of Mn(II) could be employed as T1-weighted CAs. However, it is challenging to design and synthesize highly stable Mn(II) complexes that could maintain the integrity when administered to living system. Chapter 4 describes the synthesis and utility of nanoparticulate Mn analogue of Prussian blue (K2Mn 3[FeII(CN)6]2) as an effective T1 MRI contrast agent for cellular imaging X

  15. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Xiong, Zhi-Qiang [Center for Analysis and Testing, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China)

    2015-11-15

    Hydrothermal reactions of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn{sub 2}(μ{sub 2}-OH)(μ{sub 4}-O){sub 0.5}(L)]·0.5H{sub 2}O (1), [Zn(L)(2,2′-bipy)(H{sub 2}O)] (2), [Zn{sub 3}(L){sub 3}(phen){sub 2}]·H{sub 2}O (3) and [Zn{sub 2}(L){sub 2}(4,4′-bipy)] (4) (2,2′-bipy=2,2′-bipyridine; 4,4′-bipy=4,4′-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn{sub 4}(µ{sub 4}-O)(µ{sub 2}-OH){sub 2}]{sup 4+} clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}{sub 2}{3"4·4"4·5"2·6"6·7"1"0·8"2}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {4"4·6"2} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {4"4·6"2} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1–4 have been investigated. - Graphical abstract: Four new Zn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent properties have been investigated. - Highlights: • Four novel Zn(II) coordination polymers with V-shaped ligand were characterized. • Complexes 1–4 show diverse intriguing helical characters. • Fluorescence properties of complexes 1–4 were investigated.

  16. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Keskin, Seda [Department of Chemical and Biological Engineering, Koç University, İstanbul (Turkey); Şahin, Onur [Scientific and Technological Research Application and Research Center, Sinop University, 57010 Sinop (Turkey)

    2014-02-15

    Two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Thermal properties of the complexes showed that both complexes were stable over 320 °C. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. - Graphical abstract: In this study, two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. Display Omitted - Highlights: • Two new coordination polymers with 5-nitroisophthalate and 1,2-bis(4-pyridyl)ethane. • Atomically detailed simulation studies of the complexes. • Complex 2 can be proposed as molecular sieve to separate CO{sub 2} from CH{sub 4} at low pressures.

  17. A two-dimensional yttrium phthalate coordination polymer, [Y4(H2O ...

    Indian Academy of Sciences (India)

    Unknown

    polymer, [Y4(H2O)2(C8H4O4)6]∞, I. The Y ions in I are present in four different ... Co etc., the analogous lanthanide ions are also being investigated.2–10 The .... O(18). –237(3). –913(3). 7101(2). 37(1). O(19). –3693(3). –1348(3). 10459(3).

  18. Thiophene fused azacoronenes: regioselective synthesis, self organization, charge transport, and its incorporation in conjugated polymers

    Science.gov (United States)

    Liu, Yi; He, Bo

    2015-09-15

    A regioselective synthesis of an azacoronene fused with two peripheral thiophene groups has been realized through a concise synthetic route. The resulting thienoazacoronene (TAC) derivatives show high degree of self-organization in solution, in single crystals, in the bulk, and in spuncast thin films. Spuncast thin film field-effect transistors of the TACs exhibited mobilities up to 0.028 cm.sup.2V.sup.-1 S.sup.-1, which is among the top field effect mobilities for solution processed discotic materials. Organic photovoltaic devices using TAC-containing conjugated polymers as the donor material exhibited a high open-circuit voltage of 0.89 V, which was ascribable to TAC's low-lying highest occupied molecular orbital energy level.

  19. Synthesis, structural characterization and antitumor activity of a Ca(II) coordination polymer based on 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide ligands

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn [Weifang University, College of Chemistry and Chemical Engineering (China); Wang, Xin [Qinghai Normal University, Department of Chemistry (China)

    2017-03-15

    A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.

  20. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  1. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar; Cairns, Amy J.; Eddaoudi, Mohamed; Vittal, Jagadese J.

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal

  2. Synthesis, Structural Characterization, and Antitumor Activity of a Ca(II Coordination Polymer Based on 1,6-Naphthalenedisulfonate and 4,4′-Bipyridyl

    Directory of Open Access Journals (Sweden)

    Xishi Tai

    2013-08-01

    Full Text Available A novel Ca(II coordination polymer, [CaL(4,4′-bipyridyl(H2O4]n (L = 1,6-naphthalenedisulfonate, was synthesized by reaction of calcium perchlorate with 1,6-naphthalenedisulfonic acid disodium salt and 4,4′-bipyridyl in CH3CH2OH/H2O. It was characterized by elemental analysis, IR, molar conductivity and thermogravimetric analysis. X-ray crystallography reveals that the Ca(II coordination polymer belongs to the orthorhombic system, with space group P212121. The geometry of the Ca(II ion is a distorted CaNO6 pengonal bipyramid, arising from its coordination by four water molecules, one nitrogen atom of 4,4′-bipyridyl molecule, and two oxygen atoms from two L ligands. The complex molecules form a helical chain by self-assembly. The antitumor activity of 1,6-naphthalenedisulfonic acid disodium salt and the Ca(II coordination polymer against human hepatoma smmc-7721 cell line and human lung adenocarcinoma A549 cell line reveals that the Ca(II coordination polymer inhibits cell growth of human lung adenocarcinoma A549 cell line with IC50 value of 27 μg/mL, and is more resistive to human lung adenocarcinoma A549 cell line as compared to 1,6-naphthalenedisulfonic acid disodium salt.

  3. Syntheses, structures and magnetic properties of four coordination polymers based on nitrobenzene dicarboxylate and various N-donor coligands

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gui-Lian; Yin, Wei-Dong; Liu, Guang-Zhen; Ma, Lu-Fang [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, Henan (China); Wang, Li-Ya, E-mail: gzliuly@126.com [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, Henan (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, Henan (China)

    2014-12-15

    Four new coordination polymers ([Ni(4-Nbdc)(bpa)(H{sub 2}O)]){sub n} (1), ([Co(4-Nbdc)(bpp) (H{sub 2}O)]){sub n} (2), ([Ni(4-Nbdc)(bpp)(H{sub 2}O)]·H{sub 2}O){sub n} (3), and ([Mn{sub 2}(3-Nbdc){sub 2}(bib){sub 3}]·2H{sub 2}O){sub n} (4) (4-Nbdc=4-nitrobenzene-1,2-dicarboxylate, 3-Nbdc=3-nitrobenzene-1,2-dicarboxylate, bpa=1,2-bi(4-pyridyl)ethane, bpp=1,3-bis(4-pyridyl)propane, and bib=1,4-bis(1-imidazoly)benzene), were synthesized by hydrothermal reactions, and characterized by single-crystal X-ray diffractions, elemental analysis, FT-IR, PXRD, TGA and magnetic analysis. Complexes 1 and 2 display quasi-trapezoidal chain and brick-wall layer, and both of them contain metal–carboxylate binuclear units. Complexes 3 and 4 exhibit three-dimensional frameworks with the (6{sup 6}) dia topology and (4{sup 4}.6{sup 10}.8)(4{sup 4}.6{sup 2}) fsc topology, and both of them contain metal–carboxylate chains. The carboxyl groups with syn-anti coordination mode mediate effectively the weak ferromagnetic coupling interaction within Ni(II)–carboxylate binuclear in 1 (J=1.27 cm{sup −1}) and Ni(II)–carboxylate chain in 3 (J=1.44 cm{sup −1}), respectively, and the carboxyl groups with anti-anti coordination mode leads to the classic antiferromagnetic coupling interaction within Mn(II)–carboxylate chain in 4 (J=−0.77 cm{sup −1}). - Highlights: • Four novel coordination polymers were hydrothermally synthesized. • 1 is 1D quasi-trapezoidal chain and 2 is brick-wall layer both with dinuclear units. • 3 and 4 show 3D frameworks both with 1D metal–carboxylate chains. • 1 and 3 exhibit ferromagnetic coupling, while 4 shows antiferromagnetic coupling.

  4. Formulation of bi-layer matrix tablets of tramadol hydrochloride: Comparison of rate retarding ability of the incorporated hydrophilic polymers.

    Science.gov (United States)

    Arif, Hasanul; Al-Masum, Abdullah; Sharmin, Florida; Reza, Selim; Sm Islam, Sm Ashraful

    2015-05-01

    Bi-layer tablets of tramadol hydrochloride were prepared by direct compression technique. Each tablet contains an instant release layer with a sustained release layer. The instant release layer was found to release the initial dose immediately within minutes. The instant release layer was combined with sustained release matrix made of varying quantity of Methocel K4M, Methocel K15MCR and Carbomer 974P. Bi-layer tablets were evaluated for various physical tests including weight variation, thickness and diameter, hardness and percent friability. Drug release from bi-layer tablet was studied in acidic medium and buffer medium for two and six hours respectively. Sustained release of tramadol hydrochloride was observed with a controlled fashion that was characteristic to the type and extent of polymer used. % Drug release from eight-hour dissolution study was fitted with several kinetic models. Mean dissolution time (MDT) and fractional dissolution values (T25%, T50% and T80%) were also calculated as well, to compare the retarding ability of the polymers. Methocel K15MCR was found to be the most effective in rate retardation of freely water-soluble tramadol hydrochloride compared to Methocel K4M and Capbomer 974P, when incorporated at equal ratio in the formulation.

  5. Ionothermal Synthesis of a Novel 3D Cobalt Coordination Polymer with a Uniquely Reported Framework: [BMI]2[Co2(BTC2(H2O2

    Directory of Open Access Journals (Sweden)

    Il-Ju Ko

    2017-01-01

    Full Text Available The framework of [RMI]2[Co2(BTC2(H2O2] (RMI = 1-alkyl-3-methylimidazolium, alkyl; ethyl (EMI; propyl (PMI; butyl (BMI, which has uniquely occurred in ionothermal reactions of metal salts and H3BTC (1,3,5-benzenetricarboxylic acid, an organic ligand, reappeared in this work. Ionothermal reaction of cobalt acetate and H3BTC with [BMI]Br ionic liquid as the reaction medium yielded the novel coordination polymer [BMI]2[Co2(BTC2(H2O2] (compound B2. Similar ionothermal reactions with different [EMI]Br and [PMI]Br as the reaction media have been previously reported to produce [EMI]2[Co3(BTC2(OAc2] (compound A1 and [PMI]2[Co2(BTC2(H2O2] (compound B1, respectively. In contrast with the trinuclear secondary building unit of A1, the framework structure of B1 and B2 consists of dinuclear secondary building units in common, but with subtle distinction posed by the different size of the incorporated cations. These structural differences amidst the frameworks showed interesting aspects, including guest and void volume, and were used to explain the chemical trend observed in the system. Moreover, the physicochemical properties of the newly synthesized compound have been briefly discussed.

  6. Microwave-Assisted Synthesis of Nanoporous Aluminum-Based Coordination Polymers as Catalysts for Selective Sulfoxidation Reaction

    Directory of Open Access Journals (Sweden)

    Madhan Vinu

    2017-10-01

    Full Text Available A series of aluminum-based coordination polymers or metal–organic frameworks (Al–MOFs, i.e., DUT-4, DUT-5, MIL-53, NH2-MIL-53, and MIL-100, have been facile prepared by microwave (MW-assisted reactions and used as catalysts for selective sulfoxidation reactions. The MW-assisted synthesis drastically reduced the reaction time from few days to hours. The prepared MOFs have smaller and uniform particle sizes and better yield compared to conventional hydrothermal method. Furthermore, the Al–MOFs have been successfully demonstrated as catalysts in oxidation reaction of methyl phenyl sulfide with H2O2 as oxidant, even under mild conditions, with more than 95% conversion.

  7. High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes.

    Science.gov (United States)

    Wu, Meng-Ke; Zhou, Jiao-Jiao; Yi, Fei-Yan; Chen, Chen; Li, Yan-Li; Li, Qin; Tao, Kai; Han, Lei

    2017-12-12

    Electrode materials for supercapacitors with one-dimensional porous nanostructures, such as nanowires and nanotubes, are very attractive for high-efficiency storage of electrochemical energy. Herein, ultralong Cu-based porous coordination polymer nanowires (copper-l-aspartic acid) were used as the electrode material for supercapacitors, for the first time. The as-prepared material exhibits a high specific capacitance of 367 F g -1 at 0.6 A g -1 and excellent cycling stability (94% retention over 1000 cycles). Moreover, porous CuO nanotubes were successfully fabricated by the thermal decomposition of this nanowire precursor. The CuO nanotube exhibits good electrochemical performance with high rate capacity (77% retention at 12.5 A g -1 ) and long-term stability (96% retention over 1000 cycles). The strategy developed here for the synthesis of porous nanowires and nanotubes can be extended to the construction of other electrode materials for more efficient energy storage.

  8. Synthesis, Crystal Structure, and Luminescence Properties of a New Calcium(II Coordination Polymer Based on L-Malic Acid

    Directory of Open Access Journals (Sweden)

    Duraisamy Senthil Raja

    2013-01-01

    Full Text Available A new calcium coordination polymer [Ca(HL-MA]n (H3L-MA = L-malic acid has been solvothermally synthesized. The structure of the newly synthesized complex has been determined by single-crystal X-ray diffraction analysis and further characterized by elemental analysis, reflectance UV-Vis & IR spectra, powder X-ray diffraction (PXRD, and thermogravimetric analysis (TGA. The single crystal structure analysis showed that the complex forms three-dimensional framework. The new Ca(II complex has displayed very high thermal stability which was inferred from TGA and PXRD results. As far as the optical property of the new complex is concerned, the complex emitted its own characteristic sensitized luminescence.

  9. Monomers, dimers, and trimers of [Au(CN2]− in a Ba(diaza-18-crown-62+ coordination polymer

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The structure of the title compound, poly[triaquatetra-μ-cyanido-tetracyanidobis(1,4,10,13-tetraoxa-7,16-diazacyclooctadecanedibarium(IItetragold(I], [Au4Ba2(CN8(C12H26N2O42(H2O3]n, displays O—H...N hydrogen bonding between water molecules and cyano ligands and an unusual pattern of aurophilic interactions that yields a monomer, dimer, and trimer of [Au(CN2]− within the same crystal structure. In two of the five Au positions, the atom resides on a center of inversion. The overall arrangement is that of a coordination polymer assisted by aurophilic and hydrogen-bonded interactions.

  10. On-surface synthesis of covalent coordination polymers on micrometer scale

    Institute of Scientific and Technical Information of China (English)

    Mathieu Koudia; Elena Nardi; Olivier Siri; Mathieu Abel

    2017-01-01

    On-surface synthesis under ultrahigh vacuum provides a promising strategy to control matter at the atomic level,with important implications for the design of new two-dimensional materials having remarkable electronic,magnetic,or catalytic properties.This strategy must address the problem of limited extension of the domains due to the irreversible nature of covalent bonds,which prevents the ripening of defects.We show here that extended materials can be produced by a controlled co-deposition process.In particular,co-deposition of quinoid zwitterion molecules with iron atoms on a Ag(111) surface held at 570 K allows the formation of micrometer-sized domains based on covalent coordination bonds.This work opens up the construction of micrometer-scale single-layer covalent coordination materials under vacuum conditions.

  11. Diversity of coordination modes in the polymers based on 3,3',4,4'-biphenylcarboxylate ligand

    International Nuclear Information System (INIS)

    Du Xiaodi; Xiao Hongping; Zhou Xinhui; Wu Tao; You Xiaozeng

    2010-01-01

    Four new compounds [Ni 2 (4,4'-bpy)(3,4-bptc)(H 2 O) 4 ] n (1), [Ni(4,4'-bpy)(3,4-H 2 bptc)(H 2 O) 3 ] n (2), [Mn 2 (2,2'-bpy) 4 (3,4-H 2 bptc) 2 ] (3) and {[Mn(1,10-phen) 2 (3,4-H 2 bptc)].4H 2 O} n (4) (3,4-H 4 bptc=3,3',4,4'-biphenyltetracarboxylic acid, 4,4'-bpy=4,4'-bipyridine, 2,2'-bpy=2,2'-bipyridine, 1, 10-phen=1, 10-phenanthroline), have been prepared and structurally characterized. In all compounds, the derivative ligands of 3,4-H 4 bptc (3,4-bptc 4- and 3,4-H 2 bptc 2- ) exhibit different coordination modes and lead to the formation of various architectures. Compounds 1 and 2 display the three-dimensional (3D) framework: 1 shows a 3,4-connected topological network with (8 3 )(8 5 .10) topology symbol based on the coordination bonds while in 2, the hydrogen-bonding interactions are observed to connect the 1D linear chain generating a final 3D framework. 3 exhibits the 2D layer constructed from the hydrogen-bonding interactions between the dinuclear manganese units. Complex 4 shows the double layers motif through connecting the 1D zigzag chains with hydrogen-bonded rings. The thermal stability of 1-4 and magnetic property of 1 were also reported. - Graphical abstract: Four coordination compounds exhibiting four coordination modes of the 3,3',4,4'-biphenylcarboxylate ligand, with three of new in this system, are obtained showing diversified architectures.

  12. Hydrothermal synthesis and crystal structure of a new lanthanum(III coordination polymer with fumaric acid

    Directory of Open Access Journals (Sweden)

    Hayet Anana

    2015-05-01

    Full Text Available The title compound, poly[diaquatris(μ4-but-2-enedioato(μ2-but-2-enedioic aciddilanthanum(III], [La2(C4H2O43(C4H4O4(H2O2]n, was synthesized by the reaction of lanthanum chloride pentahydrate with fumaric acid under hydrothermal conditions. The asymmetric unit comprises an LaIII cation, one and a half fumarate dianions (L2−, one a half-molecule of fumaric acid (H2L and one coordinated water molecule. Each LaIII cation has the same nine-coordinate environment and is surrounded by eight O atoms from seven distinct fumarate moieties, including one protonated fumarate unit and one water molecule in a distorted tricapped trigonal–prismatic environment. The LaO8(H2O polyhedra centres are edge-shared through three carboxylate bridges of the fumarate ligand, forming chains in three dimensions to construct the MOF. The crystal structure is stabilized by O—H...O hydrogen-bond interactions between the coordinated water molecule and the carboxylate O atoms, and also between oxygen atoms of fumaric acid

  13. Semiconducting polymer-incorporated nanocrystalline TiO2 particles for photovoltaic applications

    International Nuclear Information System (INIS)

    Peng Fuguo; Wu Jihuai; Li Qingbei; Wang Yue; Yue Gentian; Xiao Yaoming; Li Qinghua; Lan Zhang; Fan Leqing; Lin Jianming; Huang Miaoliang

    2011-01-01

    Highlights: → A P3HT-PCBM/TiO 2 trinary hybrid solar cell has been fabricated. → P3HT-PCBM heterojunction replaces the dye and electrolyte in dye-sensitized cell, → Which simplifies preparation procedure and decreases the device cost. → The hybrid cell achieves a light-to-electric conversion efficiency of 2.61%. - Abstract: In this work, we study hybrid solar cells based on blends of the semiconducting polymer poly(3-octylthiophene-2,5-diyl)(P3OT) and [6,6]-phenyl C 61 butyric acid methyl (PCBM) coated titanium dioxide (TiO 2 ) nanocrystal film. The Fourier transform infrared spectra (FTIR), UV-vis absorption spectra and PL quenching researches show that the films had a stronger absorption in visible light range. The influence of the PCBM:P3OT ratio were researched and the optimized ratio of PCBM to P3OT (1:1.5) exhibit a short circuit current of 4.42 mA cm -2 , an open circuit voltage of 0.81 V, a fill factor of 0.73 and a light-to-electric conversion efficiency of 2.61% under a simulated solar light irradiation of 100 mW cm -2 .

  14. Structural variability in Cu(I) and Ag(I) coordination polymers with a flexible dithione ligand: Synthesis, crystal structure, microbiological and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Beheshti, Azizolla, E-mail: a.beheshti@scu.ac.ir [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Nozarian, Kimia; Babadi, Susan Soleymani; Noorizadeh, Siamak [Department of Chemistry, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Motamedi, Hossein [Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz (Iran, Islamic Republic of); Mayer, Peter [LMU München Department Chemie, Butenandtstr 5-13, D-81377 München (Germany); Bruno, Giuseppe [Dipartimento di Chimica Inorganica, Università di Messina, Vill. S. Agata, Salita Sperone 31, 98166 Messina (Italy); Rudbari, Hadi Amiri [Faculty of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of)

    2017-05-15

    Two new compounds namely [Cu(SCN)(µ-L)]{sub n} (1) and ([Ag (µ{sub 2}-L)](ClO{sub 4})){sub n} (2) have been synthesized at room temperature by one-pot reactions between the 1,1-(1,4-butanediyl)bis(1,3-dihydro-3-methyl-1H-imidazole- 2-thione) (L) and appropriate copper(I) and silver(I) salts. These polymers have been characterized by single crystal X-ray diffraction, XRPD, TGA, elemental analysis, infrared spectroscopy, antibacterial activity and scanning probe microscopy studies. In the crystal structure of 1, copper atoms have a distorted trigonal planar geometry with a CuS{sub 2}N coordination environment. Each of the ligands in the structure of 1 acting as a bidentate S-bridging ligand to form a 1D chain structure. Additionally, the adjacent 1D chains are interconnected by the intermolecular C-H…S interactions to create a 2D network structure. In contrast to 1, in the cationic 3D structure of 2 each of the silver atoms exhibits an AgS{sub 4} tetrahedral geometry with 4-membered Ag{sub 2}S{sub 2} rings. In the structure of 2, the flexible ligand adopts two different conformations; gauche-anti-gauche and anti-anti-anti. The antibacterial studies of these polymers showed that polymer 2 is more potent antibacterial agent than 1. Scanning probe microscopy (SPM) study of the treated bacteria was carried out to investigate the structural changes cause by the interactions between the polymers and target bacteria. Theoretical study of polymer 1 investigated by the DFT calculations indicates that observed transitions at 266 nm and 302 nm in the UV–vis spectrum could be attributed to the π→π* and MLCT transitions, respectively. - Graphical abstract: Two new Cu(I) and Ag(I) coordination polymers have been have been synthesized by one-pot reactions. Copper complex has a 2D non-covalent structure, but silver compound is a 3D coordination compound. These compounds have effective antibacterial activity. - Highlights: • Cu(I) and Ag(I) based coordination polymers

  15. Stable material modication with polymers incorporation for broad application in microfabrication

    DEFF Research Database (Denmark)

    Mednova, Olga

    The aim of this thesis is to improve SU-8 fracture resistance in order to eliminate micro crack formation during fabrication of microelectromechanical system (MEMS). An amphiphilic block copolymer incorporation, as an efficient method of material toughening without changing its original properties...... analytical techniques. The second part of the thesis describes modified SU-8 blends. Thermal stability, structural organization, components interaction, hardness and brittleness of the composites are described. Finally, lithographic properties of modified SU-8 blends have been tested. Commercial SU-8...... and the modified blends demonstrate identically patternability and high aspect ratio structures can be obtained regardless of PEE-b-P2VP content. In conclusion, a recommendation of SU-8 modification with as little as 5 wt.% of PEE30-b-P2VP69 is made in order to avoid micro crack formation and its growth during...

  16. DFT studies for three Cu(II) coordination polymers: Geometrical and electronic structures, g factors and UV-visible spectra

    Science.gov (United States)

    Ding, Chang-Chun; Wu, Shao-Yi; Xu, Yong-Qiang; Wu, Li-Na; Zhang, Li-Juan

    2018-05-01

    This work presents a systematic density functional theory (DFT) study for geometrical and electronic structures, g factors and UV-vis spectra of three Cu(II) coordination polymers (CPs) [Cu(XL)(NO3)2]n (1), {[Cu(XL)(4,4‧-bpy)(NO3)2]•CH3CN}n (2) and {[Cu(XL)3](NO3)2·3.5H2O}n (3) based on the ligand N,N‧-bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxdiimide bi(1,2,4-triazole) (XL) with the linker triazole coordinated with copper to construct the CPs. For three CPs with distinct ligands, the optimized molecular structures with PBE0 hybrid functional and the 6-311g basis set agree well with the corresponding XRD data. Meanwhile, the electronic properties are also analyzed for all the systems. The calculated g factors are found sensitive to the (Hartree-Fock) HF character due to the significant hybridization between copper and ligand orbitals. The calculated UV-visible spectra reveal that the main electronic transitions for CP 1 contain d-d and CT transitions, while those for CPs 2 and 3 largely belong to CT ones. The present CPs seem difficult to adsorb small molecules, e.g., CP 1 with H2O and NO2 exhibit unfavorable adsorption and deformation structures near the Cu2+ site.

  17. White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates.

    Science.gov (United States)

    Guo, Tzung-Fang; Wen, Ten-Chin; Huang, Yi-Shun; Lin, Ming-Wei; Tsou, Chuan-Cheng; Chung, Chia-Tin

    2009-11-09

    This study reports fabrication of white-emissive, tandem-type, hybrid organic/polymer light-emitting diodes (O/PLED). The tandem devices are made by stacking a blue-emissive OLED on a yellow-emissive phenyl-substituted poly(para-phenylene vinylene) copolymer-based PLED and applying an organic oxide/Al/molybdenum oxide (MoO(3)) complex structure as a connecting structure or charge-generation layer (CGL). The organic oxide/Al/MoO(3) CGL functions as an effective junction interface for the transport and injection of opposite charge carriers through the stacked configuration. The electroluminescence (EL) spectra of the tandem-type devices can be tuned by varying the intensity of the emission in each emissive component to yield the visible-range spectra from 400 to 750 nm, with Commission Internationale de l'Eclairage chromaticity coordinates of (0.33, 0.33) and a high color rendering capacity as used for illumination. The EL spectra also exhibit good color stability under various bias conditions. The tandem-type device of emission with chromaticity coordinates, (0.30, 0.31), has maximum brightness and luminous efficiency over 25,000 cd/m(2) and approximately 4.2 cd/A, respectively.

  18. Structures and Spectroscopy Studies of Two M(II-Phosphonate Coordination Polymers Based on Alkaline Earth Metals (M = Ba, Mg

    Directory of Open Access Journals (Sweden)

    Kui-Rong Ma

    2013-01-01

    Full Text Available The two examples of alkaline-earth M(II-phosphonate coordination polymers, [Ba2(L(H2O9]·3H2O (1 and [Mg1.5(H2O9]·(L-H21.5·6H2O (2 (H4L = H2O3PCH2N(C4H8NCH2PO3H2, N,N′-piperazinebis(methylenephosphonic acid, (L-H2 = O3PH2CHN(C4H8NHCH2PO3 have been hydrothermally synthesized and characterized by elemental analysis, FT-IR, PXRD, TG-DSC, and single-crystal X-ray diffraction. Compound 1 possesses a 2D inorganic-organic alternate arrangement layer structure built from 1D inorganic chains through the piperazine bridge, in which the ligand L−4 shows two types of coordination modes reported rarely at the same time. In 1, both crystallographic distinct Ba(1 and Ba(2 ions adopt 8-coordination two caps and 9-coordination three caps triangular prism geometry structures, respectively. Compound 2 possesses a zero-dimensional mononuclear structure with two crystallographic distinct Mg(II ions. Free metal cations   [MgO6]n2+ and uncoordinated anions (L-H2n2- are joined together by static electric force. Results of photoluminescent measurement indicate three main emission bands centered at 300 nm, 378.5 nm, and 433 nm for 1 and 302 nm, 378 nm, and 434.5 nm for 2 (λex=235 nm, respectively. The high energy emissions could be derived from the intraligand π∗-n transition stations of H4L (310 nm and 382 nm, λex=235 nm, while the low energy emission (>400 nm of 1-2 may be due to the coordination effect with metal(II ions.

  19. Cu(II) coordination polymers constructed by tetrafluoroterephthalic acid and varied imidazole-containing ligands: Syntheses, structures and properties

    Science.gov (United States)

    Liu, Kang; Sun, Yayong; Deng, Liming; Cao, Fan; Han, Jishu; Wang, Lei

    2018-02-01

    Six new copper(II) coordination polymers combining 2,3,5,6-tetrafluoroterephthalatic acid (H2tfBDC) and diverse imidazole-containing ligands, {[Cu(tfBDC)(1,2-bix)2]·2(H2O)}n (1), {Cu(tfBDC)(Im)2}n (2), {[Cu(1,4-bmimb)2(H2O)]·(tfBDC)·2(H2O)}n (3), {Cu(1,4-bimb)2(H2O)2·(tfBDC)}n (4), {[Cu(1,3-bix)2(H2O)2]·(tfBDC)·6(H2O)}n (5) and {[Cu(1,4-bix)2(H2O)2]·(tfBDC)·(1,4-bix)·4(H2O)}n (6) (1,2-bix = 1,2-bis(imidazole-1-ylmethyl)-benzene, Im = imidazole, 1,4-bmimb = 1,4-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,4-bimb = 1,4-bis(imidazol-1-yl)-butane, 1,3-bix = 1,3-bis(imidazole-1-ylmethyl)-benzene, 1,4-bix = 1,4-bis(imidazole-1-ylmethyl)-benzene), have been obtained and structurally verified by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD), elemental analyses and infrared spectroscopy (IR). Single crystal X-ray diffraction analysis revealed that 1 is 2D 4-connected sql topology (point symbol: {44·62}) based on a single metal ion node. Compound 2 is characterized as an infinite 1D chain structure, which is further extended into a 2D layer through N-H···O hydrogen bonds and then a 3D supramolecular architecture via π···π stacking interactions. Note that 2 was prepared through an in situ ligand reaction in which N,N'-carbonyldiimidazole (cdi) broke up into imidazole ligand. Compound 3 possesses a 3D 4-fold interpenetrated architecture with 4-connected dia topology (Schläfli symbol: {66}) in which tfBDC2- is stabilized in the channel by hydrogen bonds. Compounds 4-6 are all linear 1D coordination polymers. In 4, the free tfBDC2- ligand acts as a μ4-bridge to link four coordinated water molecules from the chain to construct a 2D structure via hydrogen bonds. While in 5 and 6, the uncoordinated tfBDC2- ligands and multimeric water clusters is responsible for the conversion of these 1D coordination polymers into 3D supramolecular assemblies through O-H⋯O hydrogen bonding interactions. Moreover

  20. Incorporating multislice imaging into x-ray CT polymer gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H., E-mail: holly.johnston@utsw.edu [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2 (Canada); Hilts, M. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada and Medical Physics, BC Cancer Agency, Vancouver Island Centre, Victoria, British Columbia V8R 6V5 (Canada); Jirasek, A. [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada and Department of Physics, University of British Columbia—Okanagan Campus, Kelowna, British Columbia V1V 1V7 (Canada)

    2015-04-15

    Purpose: To evaluate multislice computed tomography (CT) scanning for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD) and to establish a baseline assessment of image noise and uniformity in an unirradiated gel dosimeter. Methods: A 16-slice CT scanner was used to acquire images through a 1 L cylinder filled with water. Additional images were collected using a single slice machine. The variability in CT number (N{sub CT}) associated with the anode heel effect was evaluated and used to define a new slice-by-slice background subtraction artifact removal technique for CT PGD. Image quality was assessed for the multislice system by evaluating image noise and uniformity. The agreement in N{sub CT} for slices acquired simultaneously using the multislice detector array was also examined. Further study was performed to assess the effects of increasing x-ray tube load on the constancy of measured N{sub CT} and overall scan time. In all cases, results were compared to the single slice machine. Finally, images were collected throughout the volume of an unirradiated gel dosimeter to quantify image noise and uniformity before radiation is delivered. Results: Slice-by-slice background subtraction effectively removes the variability in N{sub CT} observed across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image noise was higher for the multislice system compared to the single slice scanner, but overall image quality was comparable between the two systems. Further study showed N{sub CT} was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thicknesses examined. In addition, the multislice system was found to eliminate variations in N{sub CT} due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to

  1. The Significance of Incorporating Nanoscale Fluctuations in a Constitutive Description of Glassy Polymers

    Science.gov (United States)

    Caruthers, James

    2015-03-01

    The current picture of the glass involves dynamic heterogeneity, where nanoscopic regions of the glass have order-of-magnitude differences in local mobility that evolve with time. Dynamic heterogeneity provides a critical challenge to the traditional nonlinear continuum models, where both temporal and spatial fluctuations are averaged as a result of the continuum postulate. In order to acknowledge dynamic heterogeneity, a Stochastic Constitutive Model (SCM) has been developed to describe the nonlinear viscoelastic behavior of polymeric glasses, where (i) temporal fluctuations are explicitly included and (ii) the local mobility depends upon the local state of the material (e.g. local stress and local entropy) vs. traditional viscoelastic/viscoelastic models where macroscopic mobility depends upon the macroscopic state. The SCM is able to describe a number of nonlinear relaxation phenomena that cannot be predicted by traditional nonlinear viscoelastic/viscoplastic models, including (i) post-yield stress softening and its dependence on annealing time, (ii) the inversion of the strain dependence of nonlinear stress relaxation with the loading rate, (iii) stress memory and (iv) tertiary creep and creep-recovery. This paper will argue that incorporation of nanoscopic fluctuations is a necessary component for a description of the thermomechanical behavior of polymeric glasses. Support from NSF Grant 1363326-CMMI.

  2. Two novel zinc(II) coordination polymers constructed from in situ amidation ligands

    Science.gov (United States)

    Yu, Xiao-Yang; Fu, Yao; Fu, Jian-Tao; Xu, Jia-Ning; Luo, Ya-Nan; Yang, Yan-Yan; Qu, Xiao-Shu; Zhang, Jing; Lu, Shu-Lai

    2018-04-01

    Two novel coordination compounds, [Zn(Hbimh) (H2O)]·H2O (1) and [Zn(Hbimh)]·(4,4ʹ-bpy)0.5 (2) (H3bimh = benzimidazole-5,6-hydrazide, 4,4ʹ-bpy = 4,4ʹ-bipyridine), have been prepared from the hydrothermal in situ amidation cyclization reactions of H3bimdc (H3bimdc = benzimidazole-5,6-dicarboxylic acid) and hydrazine hydrate (N2H4·H2O). Compound 1 exhibits a one-dimensional (1D) hexagon channel structure. Compound 2 is a three-dimensional (3D) framework structure, with 4,4ʹ-bpy fill the channels. We also obtained the ligand H3bimh. The compounds were characterized by IR, PXRD, TGA and elemental analysis. The fluorescence properties in the solid state at room temperature were also investigated.

  3. A series of silver(I) coordination polymers with saccarinate and flexible aliphatic diamines

    Energy Technology Data Exchange (ETDEWEB)

    Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Karamahmut, Bingül [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Semerci, Fatih [Department of Energy Systems Engineering, Faculty of Technology, Kırklareli University, 39000 Kırklareli (Turkey); Darcan, Cihan [Department of Molecular Biology and Genetic, Faculty of Arts and Sciences, Bilecik Şeyh Edebali University, Gülümbe-Bilecik (Turkey); Yılmaz, Filiz [Department of Chemistry, Faculty of Sciences, Anadolu University, Eskişehir (Turkey)

    2017-05-15

    /DTA) of the complexes were investigated. - Graphical abstract: In this study, six new silver coordination compounds were synthesized by using saccharinate and flexible aliphatic diamine derivatives. All the compounds were characterized by elemental analysis, IR and single-crystal X-ray analysis. TG/DTA. Furthermore, biological activities, luminescence properties and thermal analysis (TG/DTA) of the complexes have been investigated. Complexes 1–5a and 6 were synthesized with the same reactant ratio and room temperature by using a mixture of AgNO{sub 3}, sac and different length diamine derivatives. The complex 5b is also synthesized was similar to that of 1 at 80 °C. In the complexes, the diamine derivatives ligands show bis(bridging) coordination mode. The sac ligand exhibits a µ-bridging coordination mode in 1 and N-donor monodentate coordination mode in 2–6. Complexes 1–5 exhibit 1D chain structure while complex 6 are tetranuclear structure. In the crystal packing of complexes, 3D supramolecular frameworks are formed via C-H···Ag, Ag···π and Ag···Ag interactions.

  4. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    International Nuclear Information System (INIS)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-01-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln 2 (Hpdc) 2 (C 2 O 4 )(H 2 O) 4 ] n ·2nH 2 O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H 3 pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H 3 pdc was decomposed into (ox) 2− with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2 1 /c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H 3 pdc was decomposed into (ox) 2− with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence

  5. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-01-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL 2 (H 2 O) 2 ] n ·2nH 2 O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H 2 adbc), terephthalic acid (H 2 tpa), thiophene-2,5-dicarboxylic acid (H 2 tdc) and 1,4-benzenedithioacetic acid (H 2 bdtc), four 3D structures [Co 2 L 2 (adbc)] n ·nH 2 O (2), [Co 2 L 2 (tpa)] n (3), [Co 2 L 2 (tdc)] n (4), [Co 2 L 2 (bdtc)(H 2 O)] n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  6. Development of silica nanoparticles obtaintion process from renewable source waste and its incorporation in thermoplastic polymer for manufacturing a nanocomposite

    International Nuclear Information System (INIS)

    Ortiz, Angel Visentim

    2016-01-01

    The nanocomposite technology is applicable to a wide range of thermoplastic and thermoset polymers. The use of sugar cane byproducts has been extensively studied as a source of reinforcement for nanocomposites. The bagasse is widely used in cogeneration and as a result of the burning of this material, millions of tons of ash are produced. For this work, silica contained in the ashes of bagasse from sugarcane was extracted by chemical method and thermal method. The thermal method is more efficient leading to a purity of more than 93% of silica, while the chemical method generated silica contaminated with chlorine and sodium from the extraction reagents. The silica particles obtained were evaluated by dynamic light scattering (DSL) and presented an average size of 12 micrometers. These particles were submitted to grinding in a ball mill and then to a sonochemical treatment. Silica particles treated by the sonochemical process ( 20 kHz, 500 W and 90 minutes) had its dimensions reduced to nanometric scale of tenths of nanometers. The nanossílica obtained was then used as reinforcement in high density polyethylene (HDPE). Mechanical and thermo-mechanical properties were assessed and gains were shown for mechanical properties , except for the impact resistance. The distortion temperature (HDT) showed that the incorporation of the reinforcement in HDPE led to a small increase in this property compared to pure HDPE. The crystallinity of the nanocomposites generated was evaluated by differential scanning calorimetry (DSC) and it was observed a decrease of crystallinity in the material when the reinforcing incorporation was 3%. The material irradiated to 250 kGy with electron beam showed important property gains, mainly due to the high level of crosslinking of irradiated HDPE. (author)

  7. Hydrothermal synthesis and characteristics of 3-D hydrated bismuth oxalate coordination polymers with open-channel structure

    International Nuclear Information System (INIS)

    Chen Xinxiang; Cao Yanning; Zhang Hanhui; Chen Yiping; Chen Xuehuan; Chai Xiaochuan

    2008-01-01

    Two new 3-D porous bismuth coordination polymers, (C 5 NH 6 ) 2 [Bi 2 (H 2 O) 2 (C 2 O 4 ) 4 ].2H 2 O 1 and (NH 4 )[Bi(C 2 O 4 ) 2 ].3H 2 O 2, have been hydrothermally synthesized and characterized by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic symmetry, P2 1 /c space group with a=10.378(2) A, b=17.285(3) A, c=16.563(5) A, α=90 deg., β=119.66(2) deg., γ=90 deg., V=2581.8(10) A 3 , Z=4, R 1 =0.0355 and wR 2 =0.0658 for unique 4713 reflections I >2σ(I). Compound 2 crystallizes in the tetragonal symmetry, I4 1 /amd space group with a=11.7026(17) A, b=11.7026(17) A, c=9.2233(18) A, α=90 deg., β=90 deg., γ=90 deg., V=1263.1(4) A 3 , Z=32, R 1 =0.0208 and wR 2 =0.0518 for unique 359 reflections I> 2σ(I). Compounds 1 and 2 are 3-D open-framework structures with a 6 6 uniform net, which consist of honeycomb-like layers connected to each other by oxalate units. While different guest molecules fill in their cavities of honeycomb-like layers, study of ultrasonic treatment on 2 indicates the replacement of NH 4 + by K + on potassium ion exchange. Thermogravimetric analysis indicates that the open-channel frameworks are thermally stable up to 200 deg. C, and other characterizations are also described by elemental analysis, IR and ultraviolet-visible diffuse reflectionintegral spectrum (UV-Vis DRIS). - Graphical abstract: Two novel 3-D extended porous coordination polymers have been synthesized by hydrothermal method. Both compounds are 3-D open-framework structures with a 6 6 uniform net, which consist of honeycomb-like layers connected to each other by oxalate units. While different guest molecules fill in their cavities of honeycomb-like layers. Study of ultrasonic treatment on 2 indicates the replacement of NH 4 + by K + on potassium ion exchange

  8. An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt

    International Nuclear Information System (INIS)

    Gong, Xiaobo; Leng, Jinsong; Liu, Liwu; Liu, Yanju

    2016-01-01

    Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures. (paper)

  9. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando

    2016-07-07

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  10. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y.-X.

    2016-01-01

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  11. Soluble Electrochromic Polymers Incorporating Benzoselenadiazole and Electron Donor Units (Carbazole or Fluorene: Synthesis and Electronic-Optical Properties

    Directory of Open Access Journals (Sweden)

    Jianzhong Xu

    2018-04-01

    Full Text Available A series of π-conjugated polymers containing alternating benzoselenadiazole (BSe-bi(thiophene derivative-carbazole or benzoththiadiazole (BSe-bi(thiophene derivative-fluorene units were designed and synthesized. Thiophene derivatives, namely 3-hexylthiophene, 3,4-bihexyloxythiophene, and 3,4-bioctyloxythiophene, were used as the π-bridges of the polymers. The polymers were characterized in detail in terms of their thermal stabilities, cyclic voltammograms, UV-Vis absorption, spectroelectrochemistry, dynamic switching property and so forth. The alkoxy thiophene π-bridged polymers have lower onset oxidation potentials and bandgaps than that of their corresponding alkyl thiophene π-bridged polymers. The selection of the donor units between the carbazole and the fluorene units has nearly no effect on the bandgaps and colors as well as the onset oxidation potentials of the polymers. The increase in the length of the side alkyl chains on the thiophene ring caused a slight increase in the polymer bandgap, which may be caused by the space hindrance effect. The dynamic switching abilities of the polymers were obtained by the chronoabsorptometry method, and the results also suggested that the alkoxy thiophene-containing polymers (as π-bridges have higher contrast ratios than the corresponding alkyl thiophene-containing polymers. Furthermore, the increase in the length of the side alkyl chain might have a detrimental effect on the optical contrast ratios of the polymers.

  12. Barium coordination polymers based on fluorinated and fluorine-free benzene-dicarboxylates: Mechanochemical synthesis and spectroscopic characterization

    Science.gov (United States)

    Al-Terkawi, Abdal-Azim; Scholz, Gudrun; Emmerling, Franziska; Kemnitz, Erhard

    2018-05-01

    A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)·0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflection-infrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments.

  13. Mixed Cu(i)/Au(i) coordination polymers as reversible turn-on vapoluminescent sensors for volatile thioethers.

    Science.gov (United States)

    Varju, Bryton R; Ovens, Jeffrey S; Leznoff, Daniel B

    2017-06-13

    Vapour-phase thioethers play an important role in a wide number of fields, including plant biology, chemical weapon disposal, and brewing but few sensor materials are known. The emissive coordination polymer Cu 1/2 Au 1/2 CN does not react with vapour phase dimethyl sulphide (DMS) or diethyl sulphide (DES) despite the independent synthesis of emissive [Cu 1/2 Au 1/2 CN] 2 (DMS) and [Cu 1/2 Au 1/2 CN] 2 (DES) from their constituent components in solution. However, the doped Cu 2/3 Au 1/3 CN rapidly reacts in the solid state with both of these vapour phase thioethers reversibly, with a change in emission from 380/560 nm to 460 nm (DMS) or 420 nm (DES), illustrating that doping the inactive parent Cu 1/2 Au 1/2 CN with Cu(i) generates an active sensor material. This response can be thermally cycled with little to no loss in functionality. [Cu 1/2 Au 1/2 CN] 2 (DMS), [Cu 2/3 Au 1/3 CN] 2 (DMS), and [Cu 2/3 Au 1/3 CN] 2 (DES) were structurally characterized as 3-D network structures supported by aurophilic interactions.

  14. Colorimetric and Fluorescent Dual Mode Sensing of Alcoholic Strength in Spirit Samples with Stimuli-Responsive Infinite Coordination Polymers.

    Science.gov (United States)

    Deng, Jingjing; Ma, Wenjie; Yu, Ping; Mao, Lanqun

    2015-07-07

    This study demonstrates a new strategy for colorimetric and fluorescent dual mode sensing of alcoholic strength (AS) in spirit samples based on stimuli-responsive infinite coordination polymers (ICPs). The ICP supramolecular network is prepared with 1,4-bis(imidazol-1-ylmethyl)benzene (bix) as the ligand and Zn(2+) as the central metal ion in ethanol, in which rhodamine B (RhB) is encapsulated through self-adaptive chemistry. In pure ethanol solvent, the as-formed RhB/Zn(bix) is well dispersed and quite stable. However, the addition of water into the ethanol dispersion of RhB/Zn(bix) destroys Zn(bix) network structure, resulting in the release of RhB from ICP into the solvent. As a consequence, the solvent displays the color of released RhB and, at the meantime, turns on the fluorescence of RhB, which constitutes a new mechanism for colorimetric and fluorescent dual mode sensing of AS in commercial spirit samples. With the method developed here, we could distinguish the AS of different commercial spirit samples by the naked eye within a wide linear range from 20 to 100% vol and by monitoring the increase of fluorescent intensity of the released RhB. This study not only offers a new method for on-spot visible detection of AS in commercial spirit samples, but also provides a strategy for designing dual mode sensing mechanisms for different analytical purposes based on novel stimuli-responsive materials.

  15. Two New Preyssler-Type Polyoxometalate-Based Coordination Polymers and Their Application in Horseradish Peroxidase Immobilization.

    Science.gov (United States)

    Du, Jing; Cao, Mei-Da; Feng, Shu-Li; Su, Fang; Sang, Xiao-Jing; Zhang, Lan-Cui; You, Wan-Sheng; Yang, Mei; Zhu, Zai-Ming

    2017-10-17

    Enzyme immobilization is of increasing importance for biocatalysis, for which good supports are critical. Herein, two new Preyssler-type polyoxometalate (POM)-based coordination polymers, namely, {[Cu(H 2 biim) 2 ][{Cu(H 2 biim) 2 (μ-H 2 O)} 2 Cu(H 2 biim)(H 2 O) 2 ]H[({Cu(H 2 biim)(H 2 O) 2 } 0.5 ) 2 ((μ-C 3 HN 2 Cl 2 ){Cu(H 2 biim)} 2 ){Z(H 2 O)P 5 W 30 O 110 }]⋅x H 2 O} n (1: Z=Na, x=9; 2: Z=Ag, x=10; H 2 biim=2,2'-biimidazole) were designed and synthesized. Compounds 1 and 2 exhibit the same skeletons, which contain multiple Cu II complex fragments and penta-supported {ZP 5 W 30 } (Z=Na, Ag) clusters. They were first employed to immobilize horseradish peroxidase (HRP). Results show that compounds 1 and 2 are good supports for HRP immobilization, and exhibit higher enzyme loading, lower loading times, and excellent reusability. The immobilized HRP (HRP/1 or HRP/2) was further applied to detect H 2 O 2 , and good sensitivity, wide linear range, low detection limit, and fast response were achieved. This work shows that POM-based hybrid materials are a new kind of promising support for enzyme immobilization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. High-energy coordination polymers (CPs) exhibiting good catalytic effect on the thermal decomposition of ammonium dinitramide

    Science.gov (United States)

    Li, Xin; Han, Jing; Zhang, Sheng; Zhai, Lianjie; Wang, Bozhou; Yang, Qi; Wei, Qing; Xie, Gang; Chen, Sanping; Gao, Shengli

    2017-09-01

    High-energy coordination polymers (CPs) not only exhibit good energetic performances but also have a good catalytic effect on the thermal decomposition of energetic materials. In this contribution, two high-energy CPs Cu2(DNBT)2(CH3OH)(H2O)3·3H2O (1) and [Cu3(DDT)2(H2O)2]n (2) (H2DNBT = 3,3‧-dinitro-5,5‧-bis(1H-1,2,4-triazole and H3DDT = 4,5-bis(1H-tetrazol-5-yl)-2H-1,2,3-triazole) were synthesized and structurally characterized. Furthermore, 1 was thermos-dehydrated to produce Cu2(DNBT)2(CH3OH)(H2O)3 (1a). The thermal decomposition kinetics of 1, 1a and 2 were studied by Kissinger's method and Ozawa's method. Thermal analyses and sensitivity tests show that all compounds exhibit high thermal stability and low sensitivity for external stimuli. Meanwhile, all compounds have large positive enthalpy of formation, which are calculated as being (1067.67 ± 2.62) kJ mol-1 (1), (1464.12 ± 3.12) kJ mol-1 (1a) and (3877.82 ± 2.75) kJ mol-1 (2), respectively. The catalytic effects of 1a and 2 on the thermal decomposition of ammonium dinitramide (ADN) were also investigated.

  17. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    Full Text Available In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs assembled from Cu(II and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1 RCPN binds dye-labeled single-stranded DNA (ssDNA probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2 Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  18. Nanorods of a new metal-biomolecule coordination polymer showing novel bidirectional electrocatalytic activity and excellent performance in electrochemical sensing.

    Science.gov (United States)

    Yang, Jiao; Zhou, Bo; Yao, Jie; Jiang, Xiao-Qing

    2015-05-15

    Metal organic coordination polymers (CPs), as most attractive multifunctional materials, have been studied extensively in many fields. However, metal-biomolecule CPs and CPs' electrochemical properties and applications were studied much less. We focus on this topic aiming at electrochemical biosensors with excellent performance and high biocompatibility. A new nanoscaled metal-biomolecule CP, Mn-tyr, containing manganese and tyrosine, was synthesized hydrothermally and characterized by various techniques, including XRD, TEM, EDS, EDX mapping, elemental analysis, XPS, and IR. Electrode modified with Mn-tyr showed novel bidirectional electrocatalytic ability toward both reduction and oxidation of H2O2, which might be due to Mn. With the assistance of CNTs, the sensing performance of Mn-tyr/CNTs/GCE was improved to a much higher level, with high sensitivity of 543 mA mol(-1) L cm(-2) in linear range of 1.00×10(-6)-1.02×10(-4) mol L(-1), and detection limit of 3.8×10(-7) mol L(-1). Mn-tyr/CNTs/GCE also showed fast response, high selectivity, high steadiness and reproducibility. The excellent performance implies that the metal-biomolecule CPs are promising candidates for using in enzyme-free electrochemical biosensing. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Construction, Structural Diversity and Properties of Five Coordination Polymers Based on 5-Nitroisophthalate and Bis(imidazole) Linkers

    Science.gov (United States)

    Arıcı, Mürsel

    2018-06-01

    Five coordination polymers, namely, [Cd(μ3-5-nip)(μ-obix)]n (1), [Co(μ3-5-nip)(μ-obix)]n (2), [Zn(μ-5-nip)(μ-obix)]n (3 and 4) and [Cd(μ-5-nip)(μ-bisobix)]n (5) (5-nip: 5-nitroisophthalate, obix: 1,2-bis(imidazol-1ylmethyl)benzene, bisobix: 1,2-bis(2-isopropylimidazol-1ylmethyl)benzene) were hydrothermally synthesized and characterized by IR spectroscopy, elemental analysis, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). X-ray results showed that the complexes displayed structural diversity depending on metal ions and conformations of bis(imidazole) linkers. Complexes 1 and 2 were 1D structures and obix ligand displayed cis-conformation. Complexes 3 and 4 exhibited 2D and 3D structures with same components depending on obix conformation. In complex 5, 3D+3D→3D interpenetrated structure was obtained with dia topology when bisobix having sterically hindered groups on imidazole rings was used. Moreover, thermal, photoluminescence and optical properties of the complexes were also investigated.

  20. Two-dimensional coordination polymer matrix for solid-phase extraction of pesticide residues from plant Cordia salicifolia.

    Science.gov (United States)

    de Carvalho, Pedro Henrique Viana; Barreto, Alysson Santos; Rodrigues, Marcelo O; Prata, Vanessa de Menezes; Alves, Péricles Barreto; de Mesquita, Maria Eliane; Alves, Severino; Navickiene, Sandro

    2009-06-01

    The 2D coordination polymer (infinity[Gd(DPA)(HDPA)]) was tested for extraction of acephate, chlorpropham, pirimicarb, bifenthrin, tetradifon, and phosalone from the medicinal plant Cordia salicifolia, whose extracts are commercialized in Brazil as diuretic, appetite suppressant, and weight loss products, using GC/MS, SIM. Considering that there are no Brazilian regulations concerning maximum permissible pesticide residue concentrations in medicinal herbs, recovery experiments were carried out (seven replicates), at two arbitrary fortification levels (0.5 and 1.0 mg/kg), resulting in recoveries in range of 20 to 107.7% and SDRSDs were between 5.6 and 29.1% for infinity[Gd(DPA)(HDPA)] sorbent. Detection and quantification limits for herb ranged from 0.10 to 0.15 mg/kg and from 0.15 to 0.25 mg/kg, respectively, for the different pesticides studied. The developed method is linear over the range assayed, 0.5-10.0 microg/mL, with correlation coefficients ranging from 0.9975 to 0.9986 for all pesticides. Comparison between infinity[Gd(DPA)(HDPA)] sorbent and conventional sorbent (neutral alumina) showed similar performance of infinity[Gd(DPA)(HDPA)] polymeric sorbent for three (bifenthrin, tetradifon, and phosalone) out of six pesticides tested.

  1. Seven 3d-4f coordination polymers of macrocyclic oxamide with polycarboxylates: Syntheses, crystal structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Na [College of Chemistry, Tianjin Normal University, Tianjin 300387 (China); Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (China); Tianjin Key Laboratory of Structure and Performance for Functional Molecules (China); Sun, Ya-Qiu, E-mail: hxxysyq@mail.tjnu.edu.cn [College of Chemistry, Tianjin Normal University, Tianjin 300387 (China); Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (China); Tianjin Key Laboratory of Structure and Performance for Functional Molecules (China); Zheng, Yan-Feng; Xu, Yan-Yan; Gao, Dong-Zhao; Zhang, Guo-Ying [College of Chemistry, Tianjin Normal University, Tianjin 300387 (China); Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (China); Tianjin Key Laboratory of Structure and Performance for Functional Molecules (China)

    2016-11-15

    Seven new 3d–4f heterometallic coordination polymers, [Ln(CuL){sub 2}(Hbtca)(btca)(H{sub 2}O)]·2H{sub 2}O (Ln = Tb{sup III}1, Pr{sup III}2, Sm{sup III}3, Eu{sup III}4, Yb{sup III}5), [Nd(NiL)(nip)(Rnip)]·0·25H{sub 2}O·0.25CH{sub 3}OH (R= 0.6CH{sub 3}, 0.4H) 6 and [Nd{sub 2}(NiL)(nip){sub 3}(H{sub 2}O)]·2H{sub 2}O 7(CuL or NiL, H{sub 2}L = 2, 3-dioxo-5, 6, 14, 15-dibenzo-1, 4, 8, 12-tetraazacyclo-pentadeca-7, 13-dien; H{sub 2}btca = benzotriazole-5-carboxylic acid; H{sub 2}nip = 5-nitroisophthalic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1–5 exhibit a double-strand meso-helical chain structures formed by [Ln{sup III}Cu{sup II}{sub 2}] units via the oxamide and benzotriazole-5-carboxylate bridges, while complex 6 exhibits a four-strand meso-helical chain formed by NdNi unit via the oxamide and 5-nitroisophthalate bridges. Complex 7 consists of a 2D layer framework formed by four-strand meso-helical chain via the nip{sup 2−} bridges. Moreover, the magnetic properties of them were investigated, and the best-fit analysis of χ{sub M}T versus T show that the anisotropic contribution of Ln(III) ions (arising from the spin-orbit coupling or the crystal field perturbation) dominates (weak exchange limit) in these complexes(for 3, λ = 214.6 cm{sup −1}, zj’ = −0.33 cm{sup −1}, g{sub av} = 1.94; for 5, Δ = 6.98 cm{sup −1}, zj’ = 1.53 cm{sup −1}, g{sub av} = 1.85). - Graphical-abstract: Seven novel oxamido-bridged 3d-4f heterometallic coordination polymers with benzotriazole-5-carboxylate or 5-nitroisophthalate co-ligands under solvothermal reaction conditions. Polymers 1–7 hold 1D or 2D framework structure, viz., double-strand meso-helical chain of 1–5, four-strand meso-helical chain of 6, and 2D net of 7 consisting of four-strand meso-helical chain. Moreover, the temperature dependences of magnetic susceptibilities of compounds 1–7 were also studied.

  2. Synthesis and Molecular Structures of Two [1,4-bis(3-pyridyl)-2,3-diazo-1,3-butadiene]-dichloro-Zn(II) Coordination Polymers

    OpenAIRE

    Lee, Gene-Hsiang; Wang, Hsin-Ta

    2006-01-01

    Two novel coordination polymers with 3D metal-organic frameworks (MOFs) have been synthesized by reacting 1,4-bis(3-pyridyl)-2,3-diazo-1,3-butadiene (L) with zinc dichloride. Both compounds have the same repeating unit consisting of a distorted tetrahedral Zn(II) center coordinated by two chlorides and two pyridyl nitrogen atoms of two bridging bismonodentate L ligands, however, different structural conformations have been found, one forming a helical chain and the other producing a square-wa...

  3. Thermally activated 3D to 2D structural transformation of [Ni2(en)2(H2O)6(pyr)]·4H2O flexible coordination polymer

    International Nuclear Information System (INIS)

    Begović, Nebojša N.; Blagojević, Vladimir A.; Ostojić, Sanja B.; Radulović, Aleksandra M.; Poleti, Dejan; Minić, Dragica M.

    2015-01-01

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni 2 (en) 2 (H 2 O) 6 (pyr)]·4H 2 O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system

  4. Synthesis, Crystal Structure, and Electroconducting Properties of a 1D Mixed-Valence Cu(I–Cu(II Coordination Polymer with a Dicyclohexyl Dithiocarbamate Ligand

    Directory of Open Access Journals (Sweden)

    Kenji Nakatani

    2015-04-01

    Full Text Available A new mixed-valence Cu(I–Cu(II 1D coordination polymer, [CuI4CuIIBr4(Cy2dtc2]n, with an infinite chain structure is synthesized by the reaction of Cu(Cy2dtc2 (Cy2dtc− = dicyclohexyl dithiocarbamate, C13H22NS2 with CuBr·S(CH32. The as-synthesized polymer consists of mononuclear copper(II units of CuII(Cy2dtc2 and tetranuclear copper(I cluster units, CuI4Br4. In the cluster unit, all the CuI ions have distorted trigonal pyramidal coordination geometries, and the CuI–CuI or CuI–CuII distances between the nearest copper ions are shorter than the sum of van der Waals radii for Cu–Cu.

  5. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore

    Science.gov (United States)

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-01-01

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu2+. The detection limits of the polymer and vinyl monomer towards Cu2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer. PMID:28867764

  6. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore.

    Science.gov (United States)

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-08-30

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu 2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu 2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu 2+ . The detection limits of the polymer and vinyl monomer towards Cu 2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer.

  7. Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate.

    Science.gov (United States)

    Wang, Lihua; Zeng, Yi; Shen, Aiguo; Zhou, Xiaodong; Hu, Jiming

    2015-02-07

    Novel three-dimensional (3D) nano-assemblies of noble metal nanoparticle (NP)-infinite coordination polymers (ICPs) are conveniently fabricated through the infiltration of HAuCl4 into hollow Au@Ag@ICPs core-shell nanostructures and its replacement reaction with Au@Ag NPs. The present 3D nano-assemblies exhibit highly efficient and specific intrinsic oxidase-like activity even without adding any cosubstrate.

  8. Metallogels derived from silver coordination polymers of C3-symmetric tris(pyridylamide) tripodal ligands: synthesis of Ag nanoparticles and catalysis.

    Science.gov (United States)

    Paul, Mithun; Sarkar, Koushik; Dastidar, Parthasarathi

    2015-01-02

    By applying a recently developed crystal engineering rationale, four C3 symmetric tris(pyridylamide) ligands namely 1,3,5-tris(nicotinamidomethyl)-2,4,6-triethylbenzene, 1,3,5-tris(isonicotinamidomethyl)-2,4,6-triethylbenzene, 1,3,5-tris(nicotinamidomethyl)-2,4,6-trimethylbenzene, and 1,3,5-tris(isonicotinamidomethyl)-2,4,6-trimethylbenzene, which contain potential hydrogen-bonding sites, were designed and synthesized for generating Ag(I) coordination polymers and coordination-polymer-based gels. The coordination polymers thus obtained were characterized by single-crystal X-ray diffraction. The silver metallogels were characterized by transmission electron microscopy (TEM) and dynamic rheology. Upon exposure to visible light, these silver metallogels produced silver nanoparticles (AgNPs), which were characterized by TEM, powder X-ray diffraction, energy dispersive X-ray and X-ray photoelectron spectroscopy. These NPs were found to be effectively catalyzed the reduction of 4-nitrophenolate to 4-aminophenolate without the use of any exogenous reducing agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Series of coordination polymers based on 4-(5-sulfo-quinolin-8-yloxy) phthalate and bipyridinyl coligands: Structure diversity and properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xun [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Liu, Jing [College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001 (China); College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Li, Jin; Ma, Lu-Fang [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473601 (China); Ng, Seik-Weng [Department of Chemistry, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 80203 (Saudi Arabia); Qin, Guo-Zhan [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022 (China)

    2015-10-15

    Reactions between later metal salts and conjugational N-hetrocyclic sulfonate/ carboxylic acid under the presence of bipyridyl auxiliary ligands afforded a series of manganese, nickel, zinc, silver, cadmium coordination polymers bearing with phenyl pendant arm attached to quinoline skeletons, and they have been characterized by elements analysis, thermogravimetry, infrared spectroscopy and single-crystal X-ray diffraction studying. The series of polymers show interesting structural diversity in coordination environment, dimensions and topologies. They are all built from 2-D networks constructed from metal cluster through sulfonate or carboxylate groups, as the secondary building unit (SBU). The thermalgravimetric analyses show that they display framework stabilities in solid state. Variable-temperature magnetic susceptibility studies reveal the existence of antiferromagnetic interactions between adjacent Mn (II) ions in 1, and ferromagnetic interactions between Ni(II) ions for 2, respectively. The photo-luminescence properties of 3-5 have also been investigated systemically. - Highlights: • A series of coordination polymers based on later transition metal ions have been obtained. • They contain conjugational N-hetrocyclic sulfonate-carboxylic acid and bipyridyl auxiliary ligands. • They have been characterized systemically. • They exhibit structure diversity and interesting properties.

  10. Synthesis and characterization of two new zinc(II) coordination polymers with bidentate flexible ligands: Formation of a 2D structure with (44.62)-sql topology

    Science.gov (United States)

    Lalegani, Arash; Khaledi Sardashti, Mohammad; Gajda, Roman; Woźniak, Krzysztof

    2017-12-01

    Zinc(II) coordination polymers [Zn(bip)2(NCS)2]n (1) and [Zn(μ-bbd)(N3)2]n (2) were synthesized by using the neutral flexible bidentate N-donor ligands 1,4-bis(3,5-dimethylpyrazolyl)butane (bbd) and 1,3-bis(imidazolyl)propane (bip), mono-anionic NCS- or N3-ligand and zinc(II) chloride salts. The results of the X-ray analyses demonstrate that in the structure of 1, the zinc(II) ion is located on an inversion center and exhibits an ZnN6 octahedral arrangement while, in the structure of 2, the zinc(II) ion adopts an ZnN4 tetrahedral geometry. In the polymer 1, the NCS groups are terminally N-bonded to the metal center and the each bip with anti-gauche conformation acts as bridging connecting four zinc(II) ions to form a two-dimensional network with a sql [point symbol (44.62)] topology while, in the polymer 1, the N3 groups are terminally bonded to the metal center and each bbd with anti-anti-anti conformation acts as bridging ligand connecting two zinc(II) ions to form a one-dimensional zig-zag chain. Coordination compounds 1 and 2 have been characterized by infrared spectroscopy, elemental analyses and single-crystal X-ray diffraction. Thermal analyses of polymers were also presented.

  11. Syntheses, crystal structures, and properties of four coordination polymers based on mixed multi-N donor and polycarboxylate ligands

    Science.gov (United States)

    Chen, Shui-Sheng; Guo, Xing-Zhe; Zhao, Yue; Li, Wei-Dong

    2018-02-01

    Four new coordination polymers [Ni2(HL1)2(L1)3(BTC)2]·6H2O (1), [Ni2(L1)3(HBTC)2]·4H2O (2), [Cd2(L2)(BTC)(H2O)3]·2H2O (3) and [Cd2(HL2)(BTCA)] (4) were synthesized by reactions of nickel(II)/ cadmium(II) salts with rigid ligands of 1,4-di(1H-imidazol-4-yl)benzene (L1), 1,3-di(1-imidazolyl)-5-(4H-tetrazol-5-yl)benzene (HL2) and polycarboxylic acids of 1,3,5-benzenetricarboxylic acid (H3BTC), 1,2,4,5-benzenetetracarboxylic acid (H4BTCA), respectively. The structures of the complexes were determined by single crystal X-ray diffraction analysis. The complex 1 is one-dimensional (1D) chain while 2 is a (4, 4)-connected two-dimensional (2D) layered structure with 2D → 2D parallel interpenetration. Complex 3 is a rare tetranodal (3,4)-connected three-dimensional (3D) CrVTiSc architecture with Point (Schläfli) symbol of (4·82)(4·84·10)(42·82·102)(83), and compound 4 has the 2D network with (4,4) topology based on the [Cd2(COO)4] SBUs. The weak interactions such as hydrogen bonds and π···π stacking contribute to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. The UV-vis absorption spectra of 1 - 4 are discussed. Moreover, the photo luminescent properties of 3 and 4 and gas sorption property of 2 have been investigated.

  12. Stability and stabilization of polymers under irradiation. Final report of a co-ordinated research project, 1994-1997

    International Nuclear Information System (INIS)

    1999-01-01

    The contributions presented in this technical publication describe progress in understanding and controlling the degradation of polymeric materials induced by exposure to ionizing radiation. This subject area is of widespread importance to industrial use of radiation for two classes of applications: (1) the processing and production of polymeric materials by means of irradiation facilities, and (2) the use of polymeric materials in applications for which they must withstand irradiation throughout the course of their useful lifetimes. Due to extensive and still-growing use of polymeric materials for technological applications of immense variety, and the fact that radiation-processing has the potential to play an expanding role in polymer manufacturing (current uses include crosslinking, curing, sterilization, surface modification, lithography, etc.), the ability to inhibit unwanted material property changes which often occur when materials are irradiated, and to predict useful lifetimes, remains a limiting factor in a number of existing radiation technologies. Additionally, the ability to control unwanted degradation will be necessary for successful implementation of future, more advanced, radiation processing schemes. This co-ordinated research project (CRP) was established for the purpose of focusing the attention of appropriate technical experts on the complex task of establishing a better fundamental basis for understanding and attacking problems or radiation degradation of materials. The group dynamics have been designed to achieve a synergistic interaction among worldwide research facilities for the purposes of identifying degradation problems, exchanging ideas and results on the solution of these problems, and making the emerging information available in an organized and accessible format. From this meeting, it is clear that much remains to be learnt in terms of understanding degradation mechanisms and phenomena. It also appears that important new

  13. Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yu; Wang, Yan-Mei; Xu, Ji; Liu, Pan; Weththasinha, H.A.B.M.D.; Wu, Yun-Long; Lu, Xiao-Qing; Xie, Ji-Min, E-mail: xiejm391@sohu.com

    2014-11-15

    Two lanthanide coordination polymers, namely, ([La(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (La-TTTA) and [Nd(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (Nd-TTTA) have been hydrothermally synthesized through the reaction of lanthanide ions (La{sup 3+} and Nd{sup 3+}) with the flexible tripodal ligand 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid (H{sub 3}TTTA). La-TTTA and Nd-TTTA are isostructural and both show three dimensional structures. La-TTTA and Nd-TTTA show good recognition of amine molecules via quenching the luminescent intensities in amines emulsions. They can also recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions with the quenching the peak around 361 nm when the compounds immersed in ionic solutions. The two compounds act as efficient Lewis acid catalysts for the cyanosilylation of benzaldehyde and derivatives in high yields shortly due to the strong Lewis acidity and the possible open sites of the lanthanide ions. - Graphical abstract: We have synthesized two isostructural 3D compounds based on H{sub 3}TTTA. They are chemical sensor of amine solvents and cations. They have higher yields and TOFs to catalyze cyanosilylation reactions. - Highlights: • The compounds show recognition of amine molecules via quenching luminescent intensities. • The compounds recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions via quenching the peak around 361 nm. • They act as efficient Lewis acid catalysts for the cyanosilylation reactions in high yields.

  14. Green Approach To Synthesize Crystalline Nanoscale ZnII-Coordination Polymers: Cell Growth Inhibition and Immunofluorescence Study.

    Science.gov (United States)

    Mukherjee, Somali; Ganguly, Sumi; Manna, Krishnendu; Mondal, Sanchaita; Mahapatra, Supratim; Das, Debasis

    2018-04-02

    Five new coordination polymers (CPs) namely, [{Zn(μ 2 -H 2 O) 0.5 (5N 3 -IPA)(2,2'-bpe)}] ∞ (1), [{Zn(μ 2 -H 2 O) 0.5 (5N 3 -IPA)(1,10-phen)}] ∞ (2), [{Zn(5N 3 -IPA)(1,2-bpe)}] ∞ (3), [{Zn(5N 3 -IPA)(1,2-bpey)}] ∞ (4), and [{Zn(H 2 O)(5N 3 -IPA)(4,4'-tme)}(H 2 O) 0.5 ] ∞ (5) (5N 3 -H 2 IPA = 5-azidoisophthalic acid, 2,2'-bpe= 2,2'-bipyridine, 1,10-phen = 1,10-phenanthroline, 1,2-bpe = 1,2-bis(4-pyridyl)ethane, 1,2-bpey = 1,2-bis(4-pyridyl)ethylene, 4,4'-tme = 4,4'-trimethylenedipyridine), have been synthesized based on a mixed ligand approach adopting a solvothermal technique. Depending upon the intrinsic structural flexibility of the bis-pyridyl coligands, interesting structural topologies have also been observed in the resulting CPs: Sra SrAl2 type topology for 3 and a 3-fold interpenetrated dmp topology for 4. A green hand grinding technique has been implemented to reduce the particle size of the CPs to generate nanoscale CPs (NCPs). SEM studies of NCPs reveal the formation of square and spherical particles for NCP 1 and 2, respectively, and nano rod for NCP 3, 4, and 5. Remarkably, when scaled down to nano range all the NCPs retain their crystalline nature. The cytotoxic activity of the NCPs (1-5) has been studied using human colorectal carcinoma cells (HCT 116). Significant cell death is observed for NCP 2, which is further corroborated by cell growth inhibition study. The observed cell death is likely to be due to mitochondrial-assisted apoptosis as is evident from immunofluorescence study.

  15. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    Science.gov (United States)

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln2(Hpdc)2(C2O4)(H2O)4]n·2nH2O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H3pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H3pdc was decomposed into (ox)2- with Cu(II)-Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P21/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1-4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities.

  16. Mercury coordination polymers with flexible ethane-1,2-diyl-bis-(pyridyl-3-carboxylate): Synthesis, structures, thermal and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Vallejos, Javier [Departamento de Química, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Brito, Iván, E-mail: ivanbritob@yahoo.com [Departamento de Quimica, Universidad de Antofagasta, Av. Angamos 601, Antofagasta (Chile); Cárdenas, Alejandro [Departamento de Física, Universidad de Antofagasta, Av. Angamos 601, Antofagasta (Chile); Llanos, Jaime [Departamento de Química, Universidad Católica del Norte, Av. Angamos 0610, Antofagasta (Chile); Bolte, Michael [Institut für Anorganische Chemie der Goethe—Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main (Germany); López-Rodríguez, Matías [Instituto de Bio-Orgánica “Antonio González”, Universidad de La Laguna, Astrofísico Francisco Sánchez N° 2, La Laguna, Tenerife (Spain)

    2015-03-15

    The reaction of the flexible ligand, ethane-1,2-diyl-bis-(pyridyl-3-carboxylate), (L) with HgI{sub 2} and HgBr{sub 2} salts under the same experimental conditions leads to the formation of two coordination polymers with different motifs: ([Hg(L)(Br{sub 2})]){sub n}(1) and ([Hg(L)(I{sub 2})]){sub n}(2). In both compounds, the ligand, (L) acts in a μ2-N:N′-bidentate fashion to link HgBr{sub 2} and HgI{sub 2} units to form a linear and helical chain motif, along [1 0 0] for (1) and [0 0 1] for (2). The ethylene moiety of (L) has gauche and trans conformation in compounds (1) and (2), respectively. The flexible conformation of L produces differences in the optical and crystal properties of the two compounds. - Graphical abstract: This work demonstrates how the HgX{sub 2} units are coordinates by bi-dentate ligand forming polymeric coordination complexes by self-assembly of both chemical units.- Highlights: • News 1-D d{sup 10} transition metal coordination polymers. • The photoluminescent properties have been measured. • The thermal properties have been measured.

  17. SYNTHESIS AND STRUCTURAL CHARACTERIZATION OF A Zn(II COORDINATION POLYMER BASED ON 4,4’-BIPYRIDINE AND ACETATO

    Directory of Open Access Journals (Sweden)

    LI-HUA WANG

    2015-05-01

    Full Text Available A novel Zn(II coordination polymer, [Zn(bpy(acetato2]n (bpy = 4,4’-bipyridine, has been synthesized and characterized by elemental analysis and single-crystal X-ray diffraction. The Zn(II coordination polymer is triclinic, space group P-1 with a = 8.046(3 Å, b = 9.161(3 Å, c = 10.663(3 Å, α = 109.769(4º, β = 99.966(5º, γ = 101.666(5º, V= 699.1(4 Å3, Z = 2, Dc = 1.614 mg·m-3, μ = 1.774 mm-1, F(000 = 348, and final R1 = 0.0541, ωR2 = 0.1605. X-ray diffraction analysis reveals that the Zn(II center is six-coordination with a N2O4 distorted octahedral coordination environment. The Zn(II complex forms 1D chain structure by the bridge of 4,4’-bipyridine and acetato.

  18. Syntheses, structures, and magnetic properties of cobalt(II) and nickel(II) coordination polymers based on a V-shaped ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shuang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Yi, Fei-Yan [The School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Guanghua [State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China); Yu, Yang [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Wang, Jing-yuan, E-mail: jywang@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing 100190 (China); Liu, Dan, E-mail: liudan2007@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Song, Shu-Yan [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China)

    2017-06-15

    Two coordination polymers [Co{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 2}]·H{sub 2}O (1) and [Ni{sub 2}(TA)(4,4′-bipy){sub 2}(H{sub 2}O){sub 4}]·3H{sub 2}O (2) were prepared by hydrothermal reactions of MCl{sub 2}·6H{sub 2}O (M = Co, Ni) with a V-shaped ligand TDPA (3,3′,4,4′-thiodiphthalic anhydride) and a I-shaped N-donor co-ligand (4,4′-bipy). They were characterized by elemental analyses, thermogravinetric analyses, and magnetic behavior. As is expected, TDPA hydrolyzes into the corresponding tetra-carboxylate acid H{sub 4}TA (3,3′,4,4′-thiodiphthalic acid) during the reactions. Co{sub 2} dimer and Ni mononuclear center are connected into two-dimensional (2D) layers by H{sub 4}TA and 4,4′-bipy bridge in 1 and 2, respectively. The most amazing feature is that 1 and 2 exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively, with the critical Néel temperature of T{sub N} =4 K for 1 and T{sub N} =13 K for 2, based on variable temperature magnetic susceptibility measurements. In low mono- or dinuclear metal system, such magnetic behaviors have rare been observed. Furthermore, complex 1 will be a potential metamagnet material. - Graphical abstract: Two Co(II) and Ni(II) coordination polymers were synthesized by hydrothermal reactions from a V-shape ligand (3,3′,4,4′-thiodiphthalic anhydride) and a I-shape ligand (4,4′-bipy), which were characterized by single crystal X-ray diffraction, elemental analyses, thermogravinetric analyses, and magnetic behavior, and exhibit interesting spin-canting metamagnetism and weak ferromagnetic behavior, respectively. - Highlights: • Two Co(II) and Ni(II) coordination polymers were successfully synthesized. • Co(II) coordination polymer shows an interesting spin-canting metamagnetism. • Ni(II) coordination polymer exhibits a weak ferromagnetic behavior.

  19. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine

    Directory of Open Access Journals (Sweden)

    Wang Li-Hua

    2017-04-01

    Full Text Available In order to study the catalytic activity of Cu(II coordination polymer material, a novel 1D chained Cu(II coordination polymer material, [CuL(bipy(H2O5]n (A1 (H2L = 1,4-phenylenediacetic acid, bipy = 2,2’-bipyridine, has been prepared by the reaction of 1,4-phenylenediacetic acid, 2,2’-bipyridine, Cu(CH3COO2·H2O and NaOH. The composition of A1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction. The results of characterization show that each Cu(II atom adopts six-coordination and forms a distorted octahedral configuration. The catalytic activity and reusability of A1 catalyst for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene have been investigated. And the results show that the Cu(II complex catalyst has good catalytic activity with a maximum yield of 54.3% and stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 21st October 2016; Revised: 17th November 2016; Accepted: 22nd November 2016 How to Cite: Li-Hua, W., Lei, L., Xin, W. (2017. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 113-118 (doi:10.9767/bcrec.12.1.735.113-118 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.735.113-118

  20. Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer.

    Science.gov (United States)

    He, Zhicai; Wu, Hongbin; Cao, Yong

    2014-02-01

    This Progress Report highlights recent advances in polymer solar cells with special attention focused on the recent rapid-growing progress in methods that use a thin layer of alcohol/water-soluble conjugated polymers as key component to obtain optimized device performance, but also discusses novel materials and device architectures made by major prestigious institutions in this field. We anticipate that due to drastic improvements in efficiency and easy utilization, this method opens up new opportunities for PSCs from various material systems to improve towards 10% efficiency, and many novel device structures will emerge as suitable architectures for developing the ideal roll-to-roll type processing of polymer-based solar cells. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    Science.gov (United States)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-01

    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  2. Role of water in the dynamic disproportionation of Zn-based TCNQ(F4) coordination polymers (TCNQ = tetracyanoquinodimethane).

    Science.gov (United States)

    Nafady, Ayman; Le, Thanh Hai; Vo, Nguyen; Haworth, Naomi L; Bond, Alan M; Martin, Lisandra L

    2014-02-17

    Intriguingly, coordination polymers containing TCNQ(2–) and TCNQF4(2–) (TCNQ = 7,7,8,8-tetracyanoquinodimethane, TCNQF4 = 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, both designated as TCNQ(F4)(2–)) may be generated from reaction of metal ions with TCNQ(F4)•–. An explanation is now provided in terms of a solvent-dependent dynamic disproportionation reaction. A systematic study of reactions associated with TCNQ(F4) and electrochemically generated TCNQ(F4)MeCN•– and TCNQ(F4)MeCN(2–) revealed that disproportionation of TCNQ(F4)MeCN•– radical anions in acetonitrile containing a low concentration of water is facilitated by the presence of ZnMeCN(2+). Thus, while the disproportionation reaction 2TCNQ(F4)MeCN•– TCNQ(F4)MeCN + TCNQ(F4)MeCN(2–) is thermodynamically very unfavorable in this medium (Keq ≈ 9 × 10(–10); TCNQF4), the preferential precipitation of ZnTCNQ(F4)(s) drives the reaction: ZnMeCN(2+) + 2 TCNQ(F4)MeCN•– ZnTCNQ(F4)(s) + TCNQ(F4)MeCN. The concomitant formation of soluble TCNQ(F4)MeCN and insoluble ZnTCNQ(F4)(s) and the loss of TCNQ(F4)MeCN•– were verified by UV–visible and infrared spectroscopy and steady-state voltammetry. Importantly, the reverse reaction of comproportionation rather than disproportionation becomes the favored process in the presence of ≥3% (v/v) water, due to the increased solubility of solid ZnTCNQ(F4)(s). Thus, in this “wet” environment, ZnMeCN(2+) and TCNQ(F4)MeCN•– are produced from a mixture of ZnTCNQ(F4)(s) and TCNQ(F4)MeCN and with the addition of water provides a medium for synthesis of [Zn(TCNQ(F4))2(H2O)2]. An important conclusion from this work is that the redox level of TCNQ(F4)-based materials, synthesized from a mixture of metal cations and TCNQ(F4)•–, is controlled by a solvent-dependent disproportionation/comproportionation reaction that may be tuned to favor formation of solids containing the monoanion radical, the dianion, or even a mixture of both.

  3. Synthesis, structures and properties of a family of four two-dimensional coordination polymers constructed from 5-hydroxyisophthalate

    International Nuclear Information System (INIS)

    Zhang, Kou-Lin; Zhang, Jing-Bo; Jing, Chu-Yue; Zhang, Lei; Walton, Richard I.; Zhu, Peizhi; Ng, Seik Weng

    2014-01-01

    Four 2D coordination polymers (CPs) with different structures containing the multifunctional ligand 5-hydroxyisophthalate (5-OH-BDC 2− ), [Zn(5-OH-BDC)(btb)]·2H 2 O (1), [Cd(5-OH-BDC)(btp)(H 2 O)]·3H 2 O (2), [Cd(5-OH-BDC)(bth) 2 (H 2 O)]·H 2 O (3) and [Pb(5-OH-BDC)]·H 2 O (4) [btp=1, 3-bis(1,2,4-triazol-1-yl)propane, btb=1,4-bis(1,2,4-triazol-1-yl)butane, bth=1, 6-bis(1,2,4-triazol-1-yl)hexane] were obtained. 1–3 were synthesised hydrothermally, while 4 was obtained under ambient condition. The adjacent (2D→2D) polycatenated 2D layers of 1 polythread in a parallel manner to form an unusual 2D→3D polythreaded framework. 2 contains an undulated 2D (4, 4) network and further extends into an “embracing” double-layer structure through the C–H···π and π···π stacking interactions. 3 exhibits a non-interpenetrating 2D (4, 4)-network. 4 exhibits a 2D double-layered binodal (4, 4)-net containing oblong nanochannels with symbol (4 3 6 3 ) 2 . Reversible dehydration–rehydration is observed in 1, 2 and 4, which fall within the category of “recoverable collapsing” and “guest-induced re-formation” frameworks, while 3 exhibits irreversible dehydration–rehydration behaviour. The solid state fluorescent properties of 1–4 have been investigated. -- Graphical abstract: Among four 2D CPs reported, 1 is an unusual 2D→3D polythreaded framework. 4 exhibits 2D double-layered binodal (4, 4)-net containing nanochannels. Reversible dehydration–rehydration is observed in 1, 2 and 4. Highlights: • Four 2D CPs based on 5-hydroxyisophthalate with d 10 and Pb(II) ions were reported. • 1 is an unusual 2D→3D polythreaded framework. • 4 shows a binodal (4, 4)-connected 2D double-layer network with nanochannels. • The materials 1, 2 and 4 show reversible dehydration–rehydration behaviours. • Solid state fluorescent properties were investigated

  4. Synthesis, structures and properties of a family of four two-dimensional coordination polymers constructed from 5-hydroxyisophthalate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kou-Lin, E-mail: klzhang@yzu.edu.cn [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Zhang, Jing-Bo; Jing, Chu-Yue; Zhang, Lei [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Walton, Richard I. [Department of Chemistry, University of Warwick, Coventry CV4 7AL (United Kingdom); Zhu, Peizhi, E-mail: pzzhu@yzu.edu.cn [Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (China); Ng, Seik Weng [Department of Chemistry, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-03-15

    Four 2D coordination polymers (CPs) with different structures containing the multifunctional ligand 5-hydroxyisophthalate (5-OH-BDC{sup 2−}), [Zn(5-OH-BDC)(btb)]·2H{sub 2}O (1), [Cd(5-OH-BDC)(btp)(H{sub 2}O)]·3H{sub 2}O (2), [Cd(5-OH-BDC)(bth){sub 2}(H{sub 2}O)]·H{sub 2}O (3) and [Pb(5-OH-BDC)]·H{sub 2}O (4) [btp=1, 3-bis(1,2,4-triazol-1-yl)propane, btb=1,4-bis(1,2,4-triazol-1-yl)butane, bth=1, 6-bis(1,2,4-triazol-1-yl)hexane] were obtained. 1–3 were synthesised hydrothermally, while 4 was obtained under ambient condition. The adjacent (2D→2D) polycatenated 2D layers of 1 polythread in a parallel manner to form an unusual 2D→3D polythreaded framework. 2 contains an undulated 2D (4, 4) network and further extends into an “embracing” double-layer structure through the C–H···π and π···π stacking interactions. 3 exhibits a non-interpenetrating 2D (4, 4)-network. 4 exhibits a 2D double-layered binodal (4, 4)-net containing oblong nanochannels with symbol (4{sup 3}6{sup 3}){sub 2}. Reversible dehydration–rehydration is observed in 1, 2 and 4, which fall within the category of “recoverable collapsing” and “guest-induced re-formation” frameworks, while 3 exhibits irreversible dehydration–rehydration behaviour. The solid state fluorescent properties of 1–4 have been investigated. -- Graphical abstract: Among four 2D CPs reported, 1 is an unusual 2D→3D polythreaded framework. 4 exhibits 2D double-layered binodal (4, 4)-net containing nanochannels. Reversible dehydration–rehydration is observed in 1, 2 and 4. Highlights: • Four 2D CPs based on 5-hydroxyisophthalate with d{sup 10} and Pb(II) ions were reported. • 1 is an unusual 2D→3D polythreaded framework. • 4 shows a binodal (4, 4)-connected 2D double-layer network with nanochannels. • The materials 1, 2 and 4 show reversible dehydration–rehydration behaviours. • Solid state fluorescent properties were investigated.

  5. Self-assembly of metal-organic supramolecules: from a metallamacrocycle and a metal-organic coordination cage to 1D or 2D coordination polymers based on flexible dicarboxylate ligands.

    Science.gov (United States)

    Dai, Fangna; Dou, Jianmin; He, Haiyan; Zhao, Xiaoliang; Sun, Daofeng

    2010-05-03

    To assemble metal-organic supramolecules such as a metallamacrocycle and metal-organic coordination cage (MOCC), a series of flexible dicarboxylate ligands with the appropriate angle, 2,2'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(1)), 2,2'-(2,5-dimethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(2)), 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dinicotinic acid (H(2)L(3)), and 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(4)), have been designed and synthesized. Using these flexible ligands to assemble with metal ions, six metal-organic supramolecules, Cd(2)(L(1))(2)(dmf)(4)(H(2)O)(2).H(2)O (1), Mn(3)((1)L(2))(2)((2)L(2))(dmf)(2)(H(2)O)(2).5dmf (2), Cu(4)(L(3))(4)(H(2)O)(4).3dmf (3), Cu(4)(L(4))(4)(dmf)(2)(EtOH)(2).8dmf.6H(2)O (4), Mn(4)(L(4))(4)(dmf)(4)(H(2)O)(4).6dmf.H(2)O (5), and Mn(3)(L(4))(3)(dmf)(4).2dmf.3H(2)O (6), possessing a rectangular macrocycle, MOCCs or their extensions, and 1D or 2D coordination polymers, have been isolated. All complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, and thermogravimetric analysis. Complex 1 is a discrete rectangular macrocycle, while complex 2 is a 2D macrocycle-based coordination polymer in which the L(2) ligand adopts both syn and anti conformations. Complexes 3-5 are discrete MOCCs in which two binuclear metal clusters are engaged by four organic ligands. The different geometries of the secondary building units (SBUs) and the axial coordinated solvates on the SBUs result in their different symmetries. Complex 6 is a 1D coordination polymer, extended from a MOCC made up of two metal ions and three L(4) ligands. All of the flexible dicarboxylate ligands adopt a syn conformation except that in complex 2, indicating that the syn conformational ligand is helpful for the formation of a metallamacrocycle and a MOCC. The magnetic properties of complexes 5

  6. A two-dimensional zinc(II) coordination polymer based on mixed dimethyl succinate and bipyridine ligands: synthesis, structure, thermostability and luminescence properties.

    Science.gov (United States)

    Liu, Yang; Feng, Yong Lan; Fu, Wei Wei

    2016-04-01

    From the viewpoint of crystal engineering, the construction of crystalline polymeric materials requires a rational choice of organic bridging ligands for the self-assembly process. Multicarboxylate ligands are of particular interest due to their strong coordination activity towards metal ions, as well as their various coordination modes and versatile conformations. The structural chemistry of dicarboxylate-based coordination polymers of transition metals has been developed through the grafting of N-containing organic linkers into carboxylate-bridged transition metal networks. A new luminescent two-dimensional zinc(II) coordination polymer containing bridging 2,2-dimethylsuccinate and 4,4'-bipyridine ligands, namely poly[[aqua(μ2-4,4'-bipyridine-κ(2)N:N')bis(μ3-2,2-dimethylbutanedioato)-κ(4)O(1),O(1'):O(4):O(4');κ(5)O(1):O(1),O(4):O(4),O(4')-dizinc(II)] dihydrate], {[Zn2(C6H8O4)2(C10H8N2)(H2O)]·2H2O}n, has been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction and elemental, IR and thermogravimetric analyses. In the structure, the 2,2-dimethylsuccinate ligands link linear tetranuclear Zn(II) subunits into one-dimensional chains along the c axis. 4,4'-Bipyridine acts as a tethering ligand expanding these one-dimensional chains into a two-dimensional layered structure. Hydrogen-bonding interactions between the water molecules (both coordinated and free) and carboxylate O atoms strengthen the packing of the layers. Furthermore, the luminescence properties of the complex were investigated. The compound exhibits a blue photoluminescence in the solid state at room temperature and may be a good candidate for potential hybrid inorganic-organic photoactive materials.

  7. Synthesis and Molecular Structures of Two [1,4-bis(3-pyridyl-2,3-diazo-1,3-butadiene]-dichloro-Zn(II Coordination Polymers

    Directory of Open Access Journals (Sweden)

    Hsin-Ta Wang

    2006-08-01

    Full Text Available Two novel coordination polymers with 3D metal-organic frameworks (MOFs have been synthesized by reacting 1,4-bis(3-pyridyl-2,3-diazo-1,3-butadiene (L with zinc dichloride. Both compounds have the same repeating unit consisting of a distorted tetrahedral Zn(II center coordinated by two chlorides and two pyridyl nitrogen atoms of two bridging bismonodentate L ligands, however, different structural conformations have been found, one forming a helical chain and the other producing a square-wave chain. The intermolecular C−H···Cl hydrogen bonds in 1 and 2 play important roles in the formation of three-dimensional coordination polymers. Compound 1 crystallized in an orthorhombic space group Pna21 with a = 7.9652(3, b = 21.4716(7, c = 8.2491(3Å, V = 1410.81(9 Å 3 and Z = 4. Compound 2 crystallized in a monoclinic space group P21/n with a = 9.1752(3, b = 14.5976(4, c = 10.3666(3 Å , β = 98.231(2°, V = 1374.16(7 Å 3 and Z = 4.

  8. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    Energy Technology Data Exchange (ETDEWEB)

    Lun, Huijie; Yang, Jinghe; Jin, Linyu; Cui, Sasa; Bai, Yanlong [Henan Key Laboratory of Polyoxometalate, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China); Zhang, Xudong [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Li, Yamin, E-mail: liyamin@henu.edu.cn [Henan Key Laboratory of Polyoxometalate, Institute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004 (China)

    2015-05-15

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagnetic behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.

  9. Hydrothermal synthesis and crystal structure of a europium(III) coordination polymer with 5-sulfoisophthalate trivalent anions and free 4, 4'-bipyridine molecules

    International Nuclear Information System (INIS)

    Lin Humao; Qing Caixiao; Qian Miao; Ping Xiaohong

    2005-01-01

    A novel europium(III) coordination polymer [Eu(Sip)(H 2 O) 5 ] n · nH 2 O · 1.5 n(Bipy) (I) (Sip is 5-sulfoisophthalate trivalent anion and Bipy is 4,4'-bipyridine) is hydrothermally synthesized and determined by the single crystal X-ray diffraction method. Polymer I crystallizes in the monoclinic system, space group C2/c with a = 30.7515(6), b = 10.9577(2), c = 17.5545(4) A, β = 112.040(1) deg, Z = 4. In I, each Eu 3+ ion is coordinated by four oxygen atoms from two carboxylate groups of two different Sip anions and five oxygen atoms from five coordinated water molecules to complete a deformed mono-cap square antiprism. Moreover, each Sip anion acts as a tetradentate ligand to connect two adjacent Eu 3+ ions through its two chelating carboxylate groups, resulting in one-dimensional linear chains. In addition, fifteen different kinds of hydrogen-bonding interactions link the chains, lattice water molecules, and free Bipy molecules to engender a complicated hydrogen-bonding network [ru

  10. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    CERN Document Server

    2002-01-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical a...

  11. Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)–lithium perchlorate based polymer electrolyte incorporated with TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chin-Shen; Teoh, K.H.; Liew, Chiam-Wen; Ramesh, S., E-mail: rameshtsubra@gmail.com

    2014-01-15

    Electric double layer capacitors (EDLCs) based on activated carbon electrodes and poly (vinyl alcohol)–lithium perchlorate (PVA–LiClO{sub 4})-nanosized titania (TiO{sub 2}) doped polymer electrolyte have been fabricated. Incorporation of TiO{sub 2} into PVA–LiClO{sub 4} system increases the ionic conductivity. The highest ionic conductivity of 1.3 × 10{sup −4} S cm{sup −1} is achieved at ambient temperature upon inclusion of 8 wt.% of TiO{sub 2}. Differential scanning calorimetry (DSC) analyses reveal that addition of TiO{sub 2} into polymer system increases the flexibility of polymer chain and favors the ion migration. Scanning electron microscopy (SEM) analyses display the surface morphology of the nanocomposite polymer electrolytes. The electrochemical stability window of composite polymer electrolyte is in the range of −2.3 V to 2.3 V as shown in cyclic voltammetry (CV) studies. The performance of EDLC is evaluated by electrochemical impedance spectroscopy (EIS), CV and galvanostatic charge–discharge technique. CV test discloses a nearly rectangular shape, which signifies the capacitive behavior of an ELDC. The EDLC containing composite polymer electrolyte gives higher specific capacitance value of 12.5 F g{sup −1} compared to non-composite polymer electrolyte with capacitance value of 3.0 F g{sup −1} in charge–discharge technique. The obtained specific capacitance of EDLC is in good agreement with each method used in this present work. Inclusion of filler into the polymer electrolyte enhances the electrochemical stability of EDLC. - Highlights: • PVA–LiClO{sub 4}–TiO{sub 2} possesses ionic conductivity value of 1.30 × 10{sup −4} S cm{sup −1}. • CV indicates the electrochemical stability window in the range of −2.3 V to 2.3 V. • The EDLC gives specific capacitance value of 12.5 F g{sup −1}.

  12. In situ ligand generation for novel Mn(II) and Ni(II) coordination polymers with disulfide ligand: Solvothermal syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yinfeng, E-mail: hanyinfeng@gmail.com; Wang, Chang' an; Zheng, Zebao; Sun, Jiafeng; Nie, Kun; Zuo, Jian; Zhang, Jianping

    2015-07-15

    Two coordination polymers, ([Mn{sub 2}(L1){sub 2}(μ{sub 2}-H{sub 2}O)(H{sub 2}O){sub 4}]·5H{sub 2}O){sub n}1 and ([Ni(L1)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n}2 (H{sub 2}L1=2,2′-dithiobisnicotinic acid), were prepared by the solvothermal reactions of the Mn(II) or Ni(II) ions with 2-mercaptonanicotinic acid. In 1, the [Mn{sub 2}(COO){sub 4}] units are connected by the 2,2′-dithiobisnicotinic dianion to form a two-dimensional (4,4)-connected network. In 2, the adjacent Ni(II) ions are connected by the carboxyl groups of the 2,2′-dithiobisnicotinic dianion to form an one-dimensional inorganic rod-shaped chain [Ni(COO){sub 2}]{sub n}, which are further interconnected by the 2,2′-dithiobisnicotinic ligand, giving rise to a two-dimensional framework. Variable-temperature magnetic susceptibilities of 1 and 2 exhibit overall weak antiferromagnetic coupling between the adjacent metal ions. - Graphical abstract: Two 2D coordination polymers were synthesized by transition-metal/in-situ oxidation of 2-mercaptonicotinic acid. The compounds pack into 2D frameworks by the carboxyl groups of 2,2′-dithiobisnicotinic dianion and exhibit overall weak antiferromagnetic coupling. - Highlights: • Two 2D coordination polymers containing 2,2′-dithiobisnicotinic dianion. • In situ oxidation and dehydro coupling reaction of 2-mercaptonbenzoic acid. • Two compounds display weak antiferromagnetic exchanges.

  13. A new (4, 6)-connected Cu(I) coordination polymer based on rare tetranuclear [Cu4I2] clusters: Synthesis, crystal structure, luminescent and photocatalytic properties

    Science.gov (United States)

    Cui, Li-Jing; Liu, Chun-Yan; Bian, Ming; Yu, Li-Jun

    2018-03-01

    A new Cu(I) coordination polymer, namely [Cu5I3(L)2]n (1 HL = 3-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazolyl), was solvothermally synthesized using CuI, HL and NaI as the starting materials. Single crystal X-ray structural analysis shows that compound 1 features a (4, 6)-connected 3D framework employing rare tetranuclear [Cu4I2] clusters as building subunits. It exhibits intense metal-to-ligand luminescence and excellent photocatalytic activity on degradation of methylene blue (MB).

  14. A two-dimensional bismuth coordination polymer with tartaric acid: synthesis, characterization and thermal decomposition to Bi.sub.2./sub.O.sub.3./sub. nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Ahadiat, G.; Tabatabaee, M.; Gholivand, K.; Zare, K.; Dušek, Michal; Kučeráková, Monika

    2017-01-01

    Roč. 16, č. 1 (2017), s. 7-16 ISSN 1024-1221 R&D Projects: GA ČR(CZ) GA15-12653S; GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : bismuth coordination polymer * tartrate ligand * thermal decomposition * alpha-Bi 2 O 3 nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.565, year: 2016

  15. A coordination polymer of CdII with benzene-1,3-dicarboxylate and 1,4-bis[1-(2-pyridylmethylbenzimidazol-2-yl]butane

    Directory of Open Access Journals (Sweden)

    Wei-Ping Zhang

    2009-11-01

    Full Text Available The title CdII coordination polymer, catena-poly[[{1,4-bis[1-(2-pyridylmethylbenzimidazol-2-yl]butane}cadmium(II]-μ-benzene-1,3-dicarboxylato], [Cd(C8H4O4(C30H28N6]n, was obtained by reaction of CdCO3, benzene-1,3-dicarboxylic acid (H2btc and 1,4-bis[1-(2-pyridylmethylbenzimidazol-2-yl]butane (L. The CdII cation is six-coordinated by an N2O4-donor set. L acts as a bidentate ligand and btc anions link CdII centers into a chain propagating parallel to [010].

  16. Syntheses, crystal structures and luminescent properties of two new 1D d 1 coordination polymers constructed from 2,2'-bibenzimidazole and 1,4-benzenedicarboxylate

    International Nuclear Information System (INIS)

    Wen Lili; Li Yizhi; Dang Dongbin; Tian Zhengfang; Ni Zhaoping; Meng Qingjin

    2005-01-01

    Two novel interesting d 1 metal coordination polymers, [Zn(H 2 bibzim)(BDC)] n (1) and [Cd(H 2 bibzim)(BDC)] n (2) [H 2 bibzim=2,2'-bibenzimidazole, BDC=1,4-benzenedicarboxylate] have been synthesized under solvothermal conditions and structurally characterized. Both 1 and 2 are constructed from infinite neutral zigzag-like one-dimensional (1D) chains. The π-π interactions and interchain hydrogen-bonding interactions further extend the 1D arrangement to generate a 3D supramolecular architecture for 1 and 2. Both complexes have high thermal stability and display strong blue fluorescent emissions in the solid state upon photo-excitation at 365 nm at room temperature. They are the first two examples that 2,2'-bibenzimidazole has been introduced into the d 1 coordination polymeric framework

  17. 1D Cu(II) coordination polymer derived from 2-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl)benzenesulfonate chelator and pyrazine spacer

    Science.gov (United States)

    Mahmudov, Kamran T.; Haukka, Matti; Sutradhar, Manas; Mizar, Archana; Kopylovich, Maximilian N.; Pombeiro, Armando J. L.

    2013-02-01

    Reaction of 2-(2-(2,4-dioxopentan-3-ylidene)hydrazinyl)benzenesulfonic acid (H2L) with copper(II) nitrate hydrate in the presence of pyrazine (pz) in methanol affords the coordination polymer [Cu2(μ-L)2(H2O)2(μ-pz)]n (1), where the bidentate pz molecule links two Cu(II) centres of two different dimeric units, giving rise to a one-dimensional chain. The dimeric unit [Cu2(μ-L)2(H2O)2] consists of two distorted octahedral Cu(II) centres connected via oxygen atoms of the sulfo group of the bridging L2- ligand. The extensive hydrogen bonding between the coordinated water and pz molecules leads to the formation of a supramolecular 3D associate. Compound 1 has been characterized by elemental analysis, ESI-MS, IR spectroscopy and single-crystal X-ray diffraction analysis.

  18. Specific features of absorption and DSC for the DEA-CuCl4 nanoparticles incorporated into the PMMA polymer matrices

    Czech Academy of Sciences Publication Activity Database

    Ozga, K.; Piasecki, M.; Tkaczyk, S.; Kapustianyk, B.; Bragiel, P.; Reshak, Ali H; Brig, M.G.; Kityk, I. V.

    2008-01-01

    Roč. 403, č. 17 (2008), s. 2561-2566 ISSN 0921-4526 Institutional research plan: CEZ:AV0Z60870520 Keywords : nanocrystallites * polymer nanocomposites * optical materials Subject RIV: BO - Biophysics Impact factor: 0.822, year: 2008

  19. Hydrostatic Stress Effects Incorporated Into the Analysis of the High-Strain-Rate Deformation of Polymer Matrix Composites

    Science.gov (United States)

    Goldberg, Robert K.; Roberts, Gary D.

    2003-01-01

    Procedures for modeling the effect of high strain rate on composite materials are needed for designing reliable composite engine cases that are lighter than the metal cases in current use. The types of polymer matrix composites that are likely to be used in such an application have a deformation response that is nonlinear and that varies with strain rate. The nonlinearity and strain rate dependence of the composite response is primarily due to the matrix constituent. Therefore, in developing material models to be used in the design of impact-resistant composite engine cases, the deformation of the polymer matrix must be correctly analyzed. However, unlike in metals, the nonlinear response of polymers depends on the hydrostatic stresses, which must be accounted for within an analytical model. An experimental program has been carried out through a university grant with the Ohio State University to obtain tensile and shear deformation data for a representative polymer for strain rates ranging from quasi-static to high rates of several hundred per second. This information has been used at the NASA Glenn Research Center to develop, characterize, and correlate a material model in which the strain rate dependence and nonlinearity (including hydrostatic stress effects) of the polymer are correctly analyzed. To obtain the material data, Glenn s researchers designed and fabricated test specimens of a representative toughened epoxy resin. Quasi-static tests at low strain rates and split Hopkinson bar tests at high strain rates were then conducted at the Ohio State University. The experimental data confirmed the strong effects of strain rate on both the tensile and shear deformation of the polymer. For the analytical model, Glenn researchers modified state variable constitutive equations previously used for the viscoplastic analysis of metals to allow for the analysis of the nonlinear, strain-rate-dependent polymer deformation. Specifically, we accounted for the effects of

  20. Syntheses, structures, and photoluminescence of lanthanide coordination polymers based on 4-oxo-1,4-dihydro-2,6-pyridinedicarboxylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Jing; Li, Lei; Peng, Jing-Wei; Qiao, Wei-Wei; Sun, Mei-Mei [College of Chemistry, Tianjin Normal University, Tianjin (China); Gu, Wen [College of Chemistry, Nankai University, Tianjin (China)

    2018-03-15

    Investigating the coordination chemistry of H{sub 2}CDA (4-oxo-1,4-dihydro-2,6-pyridinedicarboxylic acid) with rare earth salts Ln(NO{sub 3}){sub 3} under hydrothermal conditions, structure transformation phenomenon was observed. The ligand, H{sub 2}CDA charged to its position isomer, enol type structure, H{sub 3}CAM (4-hydroxypyridine-2,6-dicarboxylic acid). Six new lanthanide(III) coordination polymers with the formulas [Ln(CAM)(H{sub 2}O){sub 3}]{sub n} [Ln = La (1), Pr, (2)] and {[Ln(CAM)(H_2O)_3].H_2O}{sub n} [Ln = Nd, (3), Sm, (4), Eu, (5), Y, (6)] were synthesized and characterized. The X-ray structure analyses show two kinds of coordination structures. The complexes 1 and 2 and 3-6 are isostructural. Complexes 1 and 2 crystallize in the monoclinic C{sub 2}/c space group, whereas 3-6 crystallize in the monoclinic system with space group P2{sub 1}/n. In the two kinds of structures, H{sub 3}CAM displays two different coordination modes. The Sm{sup III} and Eu{sup III} complexes exhibit the corresponding characteristic luminescence in the visible region at an excitation of 376 nm. (copyright 2018 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong-Liang [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China); Wu, Ya-Pan [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Dong, Wen-Wen [College of Materials & Chemical Engineering, China Three Gorges University, Yichang 443002 (China); Zhou, Chun-Sheng [Department of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shang Luo University, Shang Luo 726000 (China)

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  2. Three d10 coordination polymers assembled from 3,5-bis(imidazole-1-yl)pyridine and different polycarboxylates: Syntheses, structures and luminescence properties

    Science.gov (United States)

    Pan, Jie; Zhang, Di; Xue, Zhen-Zhen; Wei, Li; Han, Song-De; Wang, Guo-Ming

    2017-11-01

    Three novel Zn(II)/Cd(II) coordination polymers, [Cd2(bip)2(m-bdc)2(H2O)2·3H2O]n (1), [Zn2(bip)2(p-bdc)2·2.5H2O]n (2) and [Zn(bip) (p-bdc)·3H2O]n (3), where bip = 3,5-bis(imidazole-1-yl)pyridine, m-H2bdc = 1,3-benzenedicarboxylic acid, p-H2bdc = 1,4-benzenedicarboxylic acid, have been successfully synthesized under solvothermal conditions. The linkage of different ligands with Cd(II) ions in compound 1 affords a (3,5)-connected layer. Furthermore, 2D→3D parallel polycatenation occurs wherein the layers are polycatenated with the adjacent two parallel layers to form a 3D framework. In 2 and 3, the polycarboxylates act as pillars to combine the metal-bip chains, yielding the layered structures. These 2D networks are extended to the final 3D supramolecular architectures by π-π stacking interactions. The results show that bip can act as a versatile building block for the construction of various coordination polymers. Moreover, the fluorescent properties of 1-3 in the solid state at room temperature have been investigated.

  3. Coordination polymers of Fe(iii) and Al(iii) ions with TCA ligand: distinctive fluorescence, CO2 uptake, redox-activity and oxygen evolution reaction.

    Science.gov (United States)

    Dhara, Barun; Sappati, Subrahmanyam; Singh, Santosh K; Kurungot, Sreekumar; Ghosh, Prasenjit; Ballav, Nirmalya

    2016-04-28

    Fe and Al belong to different groups in the periodic table, one from the p-block and the other from the d-block. In spite of their different groups, they have the similarity of exhibiting a stable 3+ oxidation state. Here we have prepared Fe(iii) and Al(iii) based coordination polymers in the form of metal-organic gels with the 4,4',4''-tricarboxyltriphenylamine (TCA) ligand, namely Fe-TCA and Al-TCA, and evaluated some important physicochemical properties. Specifically, the electrical conductivity, redox-activity, porosity, and electrocatalytic activity (oxygen evolution reaction) of the Fe-TCA system were noted to be remarkably higher than those of the Al-TCA system. As for the photophysical properties, almost complete quenching of the fluorescence originating from TCA was observed in case of the Fe-TCA system, whereas for the Al-TCA system a significant retention of fluorescence with red-shifted emission was observed. Quantum mechanical calculations based on density functional theory (DFT) were performed to unravel the origin of such discriminative behaviour of these coordination polymer systems.

  4. New Ag(I)-iminophosphorane coordination polymers as efficient catalysts precursors for the MW-assisted Meyer-Schuster rearrangement of propargylic alcohols in water.

    Science.gov (United States)

    García-Álvarez, Joaquín; Díez, Josefina; Vidal, Cristian; Vicent, Cristian

    2013-06-03

    Treatment of the N-thiophosphorylated iminophosphorane ligands (PTA)═NP(═S)(OR)2 [PTA = 1,3,5-triaza-7-phosphaadamantane, 3a and 3b] and (DAPTA)═NP(═S)(OR)2 [DAPTA = 3,7-diacetyl-1,3,7-triaza-5-bicyclo[3.3.1]nonane, 4a and 4b] with an equimolecular amount of AgSbF6 leads to high-yield formation of the new one-dimensional coordination polymers [Ag{μ(2)-N,S-(PTA)═NP(═S)(OR)2}]x[SbF6]x (5a and 5b) and [Ag{μ(2)-O,S-(DAPTA)═NP(═S)(OR)2}]x[SbF6]x (6a and 6b), respectively. These new (iminophosphorane)silver(I) coordination polymers are efficient catalyst precursors for the Meyer-Schuster isomerization of both terminal and internal alkynols. Reactions proceeded in water, under aerobic conditions and using microwave irradiation as heating source, to afford the corresponding α,β-unsaturated carbonyl compounds in excellent yields, without the addition of any cocatalyst. Remarkably, it should be noted that this catalytic system can be recycled up to 10 consecutive runs (1st cycle 45 min, 99%; 10th cycle 6 h, 97%). ESI-MS analysis of 5a in water has been carried out providing valuable insight into the monomeric active species responsible for catalytic activity in water.

  5. Coordination polymer nanobamboos of {Fe(x)In(1-x)}-MIL-88B: induced formation of a virtual In-MIL-88B.

    Science.gov (United States)

    Park, Shin Ae; Lee, Hee Jung; Cho, Yea Jin; Choi, Sora; Oh, Moonhyun

    2014-05-05

    A precise fabrication of nanobamboo structures made from hybrid coordination polymers of the type {Fex In1-x }-MIL-88B is demonstrated. The compositions of the hybrid coordination polymer nanobamboos of {Fex In1-x }-MIL-88B (x=0.06, 0.19, or 0.75) are regulated by altering the amount of metal ions used in the reactions. Interestingly, the formation of a virtual In-MIL-88B (precise structure, {Fe0.06 In0.94 }-MIL-88B), which cannot be created in a typical reaction, is induced by the assistance of a Fe-MIL-88B structure. The a and c cell parameters of {Fe0.06 In0.94 }-MIL-88B are calculated at 10.95 and 19.86 Å, respectively. These values of {Fe0.06 In0.94 }-MIL-88B are larger than those of pure Fe-MIL-88B owing to the large ionic size of In(3+) within the framework. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Coordination Chemistry Inside Polymeric Nanoreactors: Interparticle Metal Exchange and Ionic Compound Vectorization in Phosphine-Functionalized Amphiphilic Polymer Latexes.

    Science.gov (United States)

    Chen, Si; Gayet, Florence; Manoury, Eric; Joumaa, Ahmad; Lansalot, Muriel; D'Agosto, Franck; Poli, Rinaldo

    2016-04-25

    Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites

    International Nuclear Information System (INIS)

    Gomathi, A.; Gopalakrishnan, K.; Rao, C.N.R.

    2010-01-01

    Polyoctasilsesquioxane (POSS) has been employed to covalently functionalize nanostructures of TiO 2 , ZnO and Fe 2 O 3 as well as carbon nanotubes, nanodiamond and graphene to enable their dispersion in polar solvents. Covalent functionalization of these nanostructures with POSS has been established by electron microscopy, EDAX analysis and infrared spectroscopy. On heating the POSS-functionalized nanostructures, silica-coated nanostructures are obtained. POSS-functionalized nanoparticles of TiO 2 , Fe 2 O 3 and graphite were utilized to prepare polymer-nanostructure composites based on PVA and nylon-6,6.

  8. Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hazari, Debdoot; Jana, Swapan Kumar [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, West Bengal (India); Fleck, Michel [Institute of Mineralogy and Crystallography, University of Vienna, Geozentrum, Althanstr. 9, A-1090 Vienna (Austria); Zangrando, Ennio [Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste (Italy); Dalai, Sudipta, E-mail: sudipta@mail.vidyasagar.ac.in [Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, West Bengal (India)

    2014-11-15

    Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.

  9. Ultrasonic synthesis of two new zinc(II) bipyridine coordination polymers: New precursors for preparation of zinc(II) oxide nano-particles.

    Science.gov (United States)

    Fard, Mohammad Jaafar Soltanian; Hayati, Payam; Firoozadeh, Azita; Janczak, Jan

    2017-03-01

    Nanoparticles of two zinc(II) coordination polymers (CPs), [Zn(μ-4,4'-bipy)Cl 2 ] n (1) and [Zn(μ-4,4'-bipy)Br 2 ] n (2) L=bpy=4,4'-bipyridine ligand, have been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compounds 1 and 2 imply that the Zn +2 ions are four coordinated. Topological analysis shows that 1D coordination networks of 1 and 2 can be classified as underlying nets of topological types 2C1. Nanoparticles of zinc(II) oxide have been prepared by calcination of two different zinc (II) CPs at 450°C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cd (II) and holodirected lead (II) 3D-supramolecular coordination polymers based on nicotinic acid: Structure, fluorescence property and photocatalytic activity

    Science.gov (United States)

    Etaiw, Safaa El-din H.; Abd El-Aziz, Dina M.; Marie, Hassan; Ali, Elham

    2018-05-01

    Two new supramolecular coordination polymers namely {[Cd(NA)2(H2O)]}, SCP 1 and {[Pb(NA)2]}, SCP 2, (NA = nicotinate ligand) were synthesized by self-assembly method and structurally characterized by different analytical and spectroscopic methods. Single-crystal X-ray diffraction showed that SCP 1 extend in three dimensions containing bore structure where the 3D- network is constructed via interweaving zigzag chains. The Cd atom coordinates to (O4N2) atoms forming distorted-octahedral configuration. The structure of SCP 2 extend down the projection of the b-axis creating parallel zigzag 1D-chains connected by μ2-O2 atoms and H-bonds forming a holodirected lead (II) hexagonal bi-pyramid configuration. SCP 2 extend to 3D-network via coordinate and hydrogen bonds. The thermal stability, photoluminescence properties, photocatalytic activity for the degradation of methylene blue dye (MB) under UV-irradiation and sunlight irradiation were also studied.

  11. Crystal structure of a mixed-ligand terbium(III coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology

    Directory of Open Access Journals (Sweden)

    Chainok Kittipong

    2016-01-01

    Full Text Available The title compound, poly[(μ3-formato(μ4-oxalatoterbium(III], [Tb(CHO2(C2O4]n, is a three-dimensional coordination polymer, and is isotypic with the LaIII, CeIII and SmIII analogues. The asymmetric unit contains one TbIII ion, one formate anion (CHO2− and half of an oxalate anion (C2O42−, the latter being completed by application of inversion symmetry. The TbIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic manner by two chelating carboxylate groups from two C2O42− ligands, two carboxylate oxygen atoms from another two C2O42− ligands and three oxygen atoms from three CHO2− ligands, with the Tb—O bond lengths and the O—Tb—O bond angles ranging from 2.4165 (19 to 2.478 (3 Å and 64.53 (6 to 144.49 (4°, respectively. The CHO2− and C2O42− anions adopt μ3-bridging and μ4-chelating-bridging coordination modes, respectively, linking adjacent TbIII ions into a three-dimensional 12-connected fcu topology with point symbol (324.436.56. The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature.

  12. Pulsatile drug delivery to ileo-colonic segments by structured incorporation of disintegrants in pH-responsive polymer coatings

    NARCIS (Netherlands)

    Schellekens, R.C.A.; Stellaard, F.; Mitrovic, D.; Stuurman, F.E.; Kosterink, J.G.W.; Frijlink, H.W.

    2008-01-01

    Conventional pH-responsive coatings used for oral drug delivery to the lower parts of the gastro-intestinal tract often show a poor performance. A new system for site-specific pulsatile delivery in the ileo-colonic regions is described. The system is based on the non-percolating incorporation of

  13. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhi-Hang [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002 (China); Han, Min-Le [College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022 (China); Wu, Ya-Pan; Dong, Wen-Wen [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002 (China); Li, Dong-Sheng, E-mail: lidongsheng1@126.com [College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Non-metallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002 (China); Lu, Jack Y., E-mail: lu@uhcl.edu [Department of Chemistry, University of Houstons-Clear Lake, Houston, TX 77058 (United States)

    2016-10-15

    Two new Co(II) coordination polymers(CPs), namely [Co{sub 2}(bpe){sub 2}(Hbppc)]{sub n} (1) and [Co{sub 3}(μ{sub 3}-OH)(bppc)(bpm)(H{sub 2}O)]·3H{sub 2}O (2) (H{sub 5}bppc=biphenyl-2,4,6,3′,5′-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co{sub 3}(μ{sub 3}-OH)]{sup 5+} units with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II) ions, whereas 2 is a antiferromagnetic system. - Graphical abstract: Two new Co(II) coordination polymers with bi- and trinuclear units have been obtained. 1 shows a binodal (4,6)-connected fsc net with a (4{sup 4}·6{sup 10}·8)(4{sup 4}·6{sup 2}) topology and antiferromagnetic interactions between the adjacent Co(II) ions, while 2 is a binodal (5,7)-connected 3D network with unusual (3.4{sup 6}.5{sup 2}.6)(3{sup 2}.4{sup 6}.5{sup 7}.6{sup 5}.7) topology and a ferromagnetic system. - Highlights: • Two Co(II) coordination polymers with different multimetallic clusters as building units. • A (4,6)-connected fsc net and a (5,7)-connected 3D network. • A antiferromagnetic coupling for 1 and A ferromagnetic coupling for 2.

  14. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Robbins, Julianne; Zhang, Z. John [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Yin, Hong-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Wang, Yu-Hua [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  15. Four thiophene-pyridyl-amide-based Zn{sup II}/Cd{sup II} coordination polymers: Assembly, structures, photocatalytic properties and fluorescent recognition for Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng; Li, Qiao-Min; Lin, Hong-Yan; Wang, Xiang

    2017-05-15

    By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation of methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.

  16. A one-dimensional ladder-like coordination polymer: poly[[hexa-aqua-bis(μ-5-nitro-benzene-1,3-dicarboxyl-ato-κO,O',O'')(μ-oxalato-κO,O':O'',O''')diyttrium(III)] trihydrate].

    Science.gov (United States)

    Fu, Zhong; Lin, Ying; Zhou, Yun-You; Zhang, Hong-Tao

    2007-12-06

    In the crystal structure of the title one-dimensional coordination polymer, [Y(2)(C(8)H(3)NO(6))(2)(C(2)O(4))(H(2)O)(6)]·3H(2)O, each Y(III) ion is bridged to its neighbours by two 5-nitro-benzene-1,3-dicarboxyl-ate (nbdc) dianions and one oxalate dianion (located on an inversion centre) to form a ladder-like polymeric structure. The two carboxylate groups of nbdc assume different modes of coordination, one is chelating whereas the other is monodentate. Three water mol-ecules coordinate to the Y(III) ion to complete an eight-coordinate distorted dodecahedral geometry. The ladder-like polymers are assembled together by hydrogen bonding and π-π stacking [centrio-centriod distance = 3.819 (9) Å] in the crystal structure.

  17. Variations of structures and solid-state conductivity of isomeric silver(I) coordination polymers having linear and V-shaped thiophene-centered ditriazole ligands

    International Nuclear Information System (INIS)

    Hu, Bin; Geng, Jiao; Zhang, Lie; Huang, Wei

    2014-01-01

    A pair of new linear and V-shaped acceptor–donor–acceptor (A−D−A) thiophene-centered ditriazole structural isomers, i.e., 2,5-di(1H-1,2,4-triazol-1-yl)thiophene (L 1 ) and 3,4-di(1H-1,2,4-triazol-1-yl)thiophene (L 2 ), has been synthesized and characterized. They are used as μ 2 -bridging ligands to prepare a pair of silver(I) coordination polymers formulated as [Ag(L 1 )(NO 3 )] n (1) and [Ag(L 2 )(NO 3 )] n (2), which are also structural isomers at the supramolecular level. X-ray single-crystal diffraction analyses for 1 and 2 reveal that they exhibit the same one-dimensional (1D) coordination polymers but different structural architectures because of the distinguishable shape and configuration of isomeric ligands (L 1 and L 2 ) and the alterations of the coordination numbers. More interestingly, compared with the free ligands, 1D silver(I) polymeric isomers 1 and 2 show significant enhancement of solid-state conductivity to different extents (1.42×10 4 and 2.17×10 3 times), where 6.96 times' enhancement of solid-state conductivity from 1 to 2 has been observed. The formation of Ag–N coordinative bonds and the configurational discrepancy of L 1 and L 2 are believed to play important roles in facilitating the electron transport between molecules, which can also be supported by Density Function Theory calculations of their band gaps. - Graphical abstract: A pair of linear and V-shaped isomeric thiophene-centered ditriazole ligands (L 1 ) and L 2 are used to prepare a pair of silver(I) polymeric isomers (1 and 2), where significant enhancement of solid-state conductivity to different extents are observed originating from the distinguishable shape and configuration of isomeric ligands. - Highlights: • A pair of linear and V-shaped thiophene-centered ditriazole structural isomers is prepared. • They are used as µ 2 -bridging ligands to prepare a pair of silver(I) polymeric isomers. • Significant enhancement of solid-state conductivity is observed

  18. Incorporation of ionic liquid into porous polymer monoliths to enhance the separation of small molecules in reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Jiafei; Bai, Ligai; Wei, Zhen; Qin, Junxiao; Ma, Yamin; Liu, Haiyan

    2015-06-01

    An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed-phase high-performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high-performance liquid chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis and characterization of a multifunctional inorganic-organic hybrid mixed-valence copper(I/II) coordination polymer: {[CuCN][Cu(isonic)2]}n

    Science.gov (United States)

    Liu, Dong-Sheng; Chen, Wen-Tong; Ye, Guang-Ming; Zhang, Jing; Sui, Yan

    2017-12-01

    A new multifunctional mixed-valence copper(I/II) coordination polymer, {[CuCN][Cu(isonic)2]}n(1) (Hisonic = isonicotinic acid), was synthesized by treating isonicotinic acid and 5-amino-tetrazolate (Hatz = 5-amino-tetrazolate) with copper(II) salts under hydrothermal conditions, and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction, respectively. The X-ray diffraction analysis reveals that compound exhibit noncentrosymmetric polar packing arrangement. It is three-dimensional (3D) framework with (3,5)-connected 'seh-3' topological network constructed from metal organic framework {[Cu(isonic)2]}n and the inorganic linear chain{Cu(CN)}n subunits. A remarkable feature of 1 is the rhombic open channels that are occupied by a linear chain of {Cu(CN)}n. Impressively compound 1 displays not only a second harmonic generation (SHG) response, but also a ferroelectric behavior and magnetic properties.

  20. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.

    Science.gov (United States)

    Gao, Nan; Zhang, Yunfang; Huang, Pengcheng; Xiang, Zhehao; Wu, Fang-Ying; Mao, Lanqun

    2018-06-05

    Lanthanide-based luminescent sensors have been widely used for the detection of the anthrax biomarker dipicolinic acid (DPA). However, mainly based on DPA sensitization to the lanthanide core, most of them failed to realize robust detection of DPA in bacterial spores. We proposed a new strategy for reliable detection of DPA by perturbing a tandem energy transfer in heterobinuclear lanthanide coordination polymer nanoparticles simply constructed by two kinds of lanthanide ions, Tb 3+ and Eu 3+ , and guanosine 5'-monophosphate. This smart luminescent probe was demonstrated to exhibit highly sensitive and selective visual luminescence color change upon exposure to DPA, enabling accurate detection of DPA in complex biosystems such as bacterial spores. DPA release from bacterial spores on physiological germination was also successfully monitored in real time by confocal imaging. This probe is thus expected to be a powerful tool for efficient detection of bacterial spores in responding to anthrax threats.

  1. Two novel penetrating coordination polymers based on flexible S-containing dicarboxylate acid with sensing properties towards Fe3+ and Cr2O72- ions

    Science.gov (United States)

    Chen, Zhiwei; Mi, Xiuna; Wang, Suna; Lu, Jing; Li, Yunwu; Li, Dacheng; Dou, Jianmin

    2018-05-01

    Two new coordination polymers (CPs), namely, {[Zn(L)(bpp)]·DMF}n (1) and {[Zn(L)(bpe)]·DMF}n (2) (L = 2,2'-[benzene-1,3-diylbis(methanediylsulfanediyl)]dibenzoic acid, bpp= 1,3-bis(4-pyridyl)propane, bpe = 1,2-Bis(4-pyridyl)ethylene, DMF = N,N-Dimethylformamide), have been solvothermally synthesized and fully characterized. Complex 1 displays a 2D→2D three-fold"false" interpenetrating structure while complex 2 possesses a novel 3-D 4-connected structure with fascinating self-penetrating moieties. The luminescence studies reveal that these complexes exhibited excellent selectivity for Fe3+ and Cr2O72- ions in DMF. The sensing mechanism was investigated through PXRD, XPS , EDS mapping measurements, and discussed in details.

  2. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    Science.gov (United States)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  3. Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II Coordination Polymer and NiAl-Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Gonzalo Abellán

    2015-12-01

    Full Text Available The preparation and characterization of a novel hybrid material based on the combination of a 2D-layered double hydroxide (LDH nanosheets and a 1D-coordination polymer (1D-CP has been achieved through a simple mixture of suspensions of both building blocks via an exfoliation/restacking approach. The hybrid material has been thoroughly characterized demonstrating that the 1D-CP moieties are intercalated as well as adsorbed on the surface of the LDH, giving rise to a layered assembly with the coexistence of the functionalities of their initial constituents. This hybrid represents the first example of the assembly of 1D/2D nanomaterials combining LDH with CP and opens the door for a plethora of different functional hybrid systems.

  4. Exploring 3D non-interpenetrated metal-organic framework with malonate-bridged Co(II) coordination polymer: structural elucidation and theoretical study

    Science.gov (United States)

    Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata

    2017-12-01

    A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.

  5. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L.) improves dough mixing properties by their incorporation into glutenin polymers.

    Science.gov (United States)

    Ma, Fengyun; Li, Miao; Li, Tingting; Liu, Wei; Liu, Yunyi; Li, Yin; Hu, Wei; Zheng, Qian; Wang, Yaqiong; Li, Kexiu; Chang, Junli; Chen, Mingjie; Yang, Guangxiao; Wang, Yuesheng; He, Guangyuan

    2013-01-01

    Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS) test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  6. Ion induced transformation of polymer films into diamond-like carbon incorporating silver nano particles; Ioneninduzierte Umwandlung von Polymerschichten zu diamantaehnlichem Kohlenstoff mit darin enthaltenen Silber-Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Florian P.

    2010-03-26

    Silver containing diamond-like carbon (DLC) is an interesting material for medical engineering from several points of view. On the one hand DLC provides high mechanical robustness. It can be used as biocompatible and wear resistant coating for joint replacing implants. On the other hand silver has antimicrobial properties, which could reduce post-operative inflammations. However conventional production of Ag-DLC by co-deposition of silver and carbon in a plasma process is problematic since it does not allow for a separate control of nano particle morphology and matrix properties. In this work an alternative production method has been developed to circumvent this problem. In metall-DLC-production by ion implantation into a nano composite, silver nano particles are initially formed in solution and then incorporated within a polymer matrix. Finally the polymer is transformed into DLC by ion implantation. The aspects and single steps of this method were investigated with regard to the resulting material's properties. The goal was to design an economically relevant deposition method. Based on experimental results a model of the transformation process has been established, which has also been implemented in a computer simulation. Finally the antibacterial properties of the material have been checked in a biomedical test. Here a bacterial killing rate of 90% could be achieved. (orig.)

  7. Overexpression of avenin-like b proteins in bread wheat (Triticum aestivum L. improves dough mixing properties by their incorporation into glutenin polymers.

    Directory of Open Access Journals (Sweden)

    Fengyun Ma

    Full Text Available Avenin-like b proteins are a small family of wheat storage proteins, each containing 18 or 19 cysteine residues. The role of these proteins, with high numbers of cysteine residues, in determining the functional properties of wheat flour is unclear. In the present study, two transgenic lines of the bread wheat overexpressing avenin-like b gene were generated to investigate the effects of Avenin-like b proteins on dough mixing properties. Sodium dodecyl sulfate sedimentation (SDSS test and Mixograph analysis of these lines demonstrated that overexpression of Avenin-like b proteins in both transgenic wheat lines significantly increased SDSS volume and improved dough elasticity, mixing tolerance and resistance to extension. These changes were associated with the increased proportion of polymeric proteins due to the incorporation of overexpressed Avenin-like b proteins into the glutenin polymers. The results of this study were critical to confirm the hypothesis that Avenin-like b proteins could be integrated into glutenin polymers by inter-chain disulphide bonds, which could help understand the mechanism behind strengthening wheat dough strength.

  8. Syntheses, crystal structures and properties of series of 4d–4f ln(III)–Ag(I) heterometallic coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Xing-Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Ning [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Xie, Wei-Ping; Xiong, Yan-Ju; Cheng, Qian [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Long, Yi [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Yue, Shan-Tang, E-mail: yuesht@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou (China); Liu, Ying-Liang [College of Science, South China Agricultural University, Guangzhou 510642 (China)

    2015-05-15

    By control of the experimental parameters such as ligands, pH value and reacting temperature, series of three-dimensional (3D) 4d–4f Ln(III)–Ag(I) porous coordination polymers (PCPs) with interesting chain-layer construction, namely, ([Ln{sup III}Ag{sup I}(na)(ina)(ox)]·2(H{sub 2}O)){sub n} [Ln=Sm(1), Eu(2), Gd(3), Tb(4), Dy(5), Ho(6), Y(7), Yb(8)], have been successfully synthesized under hydrothermal conditions and structurally characterized. All the complexes are characterized by elemental analyses, FT-IR spectroscopy, Powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Furthermore, the luminescence properties of compounds 2 and 4 and the magsnetic properties of complexes 3 and 5 were also investigated in detail. - Graphical abstract: Series of three-dimensional (3D) 4d–4f Ln(III)–Ag(I) porous coordination polymers (PCPs) with interesting chain-layer construction which are featured by tetranuclear Ln{sub 2}Ag{sub 2} and ‘non-linear’ N–Ag–N linkages. - Highlights: • Complexes 1–8 are first built by three kinds of organic ligands based on nicotinic acid and isonicotinic acid. • PCPs 1–8 are featured by tetranuclear Ln{sub 2}Ag{sub 2} and ‘non-linear’ N–Ag–N linkages. • The total solvent-accessible volume of PCP 2 comprises 11.6% of the crystal volume after dislodging the free water molecules. • Complexes 2 and 4 exhibit characteristic lanthanide-centered luminescence, while compounds 3 and 5 show antiferromagnetic behaviors.

  9. Hydrothermal synthesis of Bismuth(III) coordination polymer and its transformation to nano α-Bi{sub 2}O{sub 3} for photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengnbu@163.com; Zhu, Hong-Lin; Wang, Jin-Jian

    2016-07-15

    A new Bi(III) coordination polymer Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O (H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi{sub 2}O{sub 3} nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications. - Graphical abstract: We regard Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O with 1D chain structures as the precursor, then calcinate the complex to prepare nano-powder α-Bi{sub 2}O{sub 3}. The photochemical experiment indicates that Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O can be used as an efficient photocatalyst for the degradation of RhB and MB. Interestingly, nano α-Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of RhB, MB or MO. Display Omitted - Highlights: • A novel dinuclear Bi(III) coordination polymer is hydrothermally synthesized. • Calcinating the precursor Bi-CP will result in the nano Bi{sub 2}O{sub 3} with foliated morphology. • Nano Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of dyes.

  10. Diverse assemblies of the (4,4) grid layers exemplified in Zn(II)/Co(II) coordination polymers with dual linear ligands

    International Nuclear Information System (INIS)

    Liu, Guang-Zhen; Li, Xiao-Dong; Xin, Ling-Yun; Li, Xiao-Ling; Wang, Li-Ya

    2013-01-01

    Diverse (4,4) grid layers are exemplified in five two-dimensional coordination polymers with dual µ 2 -bridged ligands, namely, ([Zn(cbaa)(bpp)]·H 2 O) n (1), [Zn 2 (cbaa) 2 (bpy)] n (2), [Co 2 (cbaa) 2 (bpp) 2 ] n (3), [Co(cbaa)(bpp)] n (4), and [Co(bdaa)(bpp)(H 2 O) 2 ] n (5) (H 2 cbaa=4-carboxybenzeneacetic acid, bpp=1,3-di(4-pyridyl)propane, bpy=4,4′-bipyridyl, and H 2 bdaa=1,4-benzenediacrylic acid). For 1, two (4,4) grid layers with [ZnN 2 O 2 ] tetrahedron as the node are held together by lattice water forming a H-bonding bilayer. Individual (4,4) grid layer in 2 is based on (Zn 2 (OCO) 4 ) paddlewheel unit as the node. Two (4,4) grid layers with (Co 2 O(OCO) 2 ) dimer as the node are covalently interconnected by organic ligands affording a thick bilayer of 3 with new framework topology. The different entanglements between two coincident (4,4) grid layers with [CoN 2 O 4 ] octahedron as the node leads to two 2D→2D interpenetrated structures for 4 and 5. Furthermore, fluorescent properties of 1 and 2 as well as magnetic properties of 3 are investigated. - Graphical abstract: Diverse assemblies of the (4,4) grid layers with different network nodes forms five coordination polymers that are well characterized by IR, TGA, element analysis, fluorescent and magnetic measurement. - Highlights: • Diverse assemblies of the (4,4) grid layers with different structural units as the nodes. • A new topology type with the uninodal 6-connected net of (4 12 .5 2 .6) is found. • Intense fluorescence emissions with a rare blue-shift of 55 nm compared to free carboxylate ligand

  11. Synthesis, vibrational spectrometry and thermal characterizations of coordination polymers derived from divalent metal ions and hydroxyl terminated polyurethane as ligand

    Science.gov (United States)

    Laxmi; Khan, Shabnam; Kareem, Abdul; Zafar, Fahmina; Nishat, Nahid

    2018-01-01

    A series of novel coordination polyurethanes [HTPU-M, where M = Mn(II) 'd5', Ni(II) 'd8', and Zn(II) 'd10'] have been synthesized to investigate the effect of divalent metal ions coordination on structure, thermal and adsorption properties of low molecular weight hydroxyl terminated polyurethane (HTPU). HTPU-M have been synthesized in situ where, sbnd OH group of HTPU (synthesized by the condensation polymerization reaction of ethylene glycol (EG) and toluene diisocyanate (TDI) in presence of catalyst) on condensation polymerization with metal acetate in presence of acid catalyst synthesized HTPU-M followed by coordination of metal ions with hetero atoms. The structure, composition and geometry of HTPU-M have been confirmed by vibrational spectrometry (FTIR), 1H NMR, elemental analysis and UV-Visible spectroscopy. Morphological structures of HTPU-M were analyzed by X-Ray Diffraction analysis (XRD), Field Emission Scanning Electron Microscope (FE-SEM) with Energy Dispersive X-ray spectroscopy (EDX) and High Resolution Transmission Electron Microscope (HR-TEM) techniques. The thermal degradation pattern and thermal stability of HTPU-M in comparison to HTPU was investigated by thermal-gravimetric (TG)/differential thermal (DT), analyses along with Integral procedure decomposition temperature (IPDT) by Doyle method. The molecular weight of HTPU was determined by gel permeation chromatography (GPC). The preliminary adsorption/desorption studies of HTPU-M for Congo red (CR) was studied by batch adsorption techniques. The results indicated that HTPU-M have amorphous, layered morphology with higher number of nano-sized grooves in comparison to HTPU. Coordination of metal to HTPU plays a key role in enhancing the thermal stability [HTPU-Ni(II) > HTPU-Mn(II) > HTPU-Zn(II) > HTPU]. The HTPU-M can be utilized for industrial waste water treatment by removing environmental pollutants.

  12. Crystal structure of the coordination polymer [FeIII2{PtII(CN4}3

    Directory of Open Access Journals (Sweden)

    Maksym Seredyuk

    2015-01-01

    Full Text Available The title complex, poly[dodeca-μ-cyanido-diiron(IIItriplatinum(II], [FeIII2{PtII(CN4}3], has a three-dimensional polymeric structure. It is built-up from square-planar [PtII(CN4]2− anions (point group symmetry 2/m bridging cationic [FeIIIPtII(CN4]+∞ layers extending in the bc plane. The FeII atoms of the layers are located on inversion centres and exhibit an octahedral coordination sphere defined by six N atoms of cyanide ligands, while the PtII atoms are located on twofold rotation axes and are surrounded by four C atoms of the cyanide ligands in a square-planar coordination. The geometrical preferences of the two cations for octahedral and square-planar coordination, respectively, lead to a corrugated organisation of the layers. The distance between neighbouring [FeIIIPtII(CN4]+∞ layers corresponds to the length a/2 = 8.0070 (3 Å, and the separation between two neighbouring PtII atoms of the bridging [PtII(CN4]2− groups corresponds to the length of the c axis [7.5720 (2 Å]. The structure is porous with accessible voids of 390 Å3 per unit cell.

  13. Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II).

    Science.gov (United States)

    Agarwal, Rashmi A

    2018-03-09

    A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr 2 O 3 /CrO 2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.

  14. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-12-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical and biotechnological applications, and modification of surfaces to achieve a specific functionality and/or to immobilize bioactive materials. This publication contains 10 reports of participants; each of the reports has been indexed separately.

  15. Radiation synthesis and modification of polymers for biomedical applications. Final results of a co-ordinated research project. 1996-2000

    International Nuclear Information System (INIS)

    2002-12-01

    Radiation techniques are being used for synthesis of hydrogels, functional polymers, interpenetrating systems, chemical modification of surfaces, immobilization of bioactive materials, synthesis of functional micro- and nanospheres and processing of naturally derived biomaterials. Potential medical applications of these biomaterials include implants, topical dressings, treatment devices and drug delivery systems. Biotechnological applications include diagnostic assays, separation and purification systems, immobilized enzyme and cell bioprocesses and cell culture surfaces. The main objective of the CRP on The use of Radiation Processing to Prepare Biomaterials for Application in Medicine was to co-ordinate the research carried out in the participating countries, to ensure that different research programmes complement each other and the information exchange is available to all. Furthermore, the objective was to expand the use of ionizing radiation in two major areas: synthesis of polymers and gels for medical and biotechnological applications, and modification of surfaces to achieve a specific functionality and/or to immobilize bioactive materials. This publication contains 10 reports of participants; each of the reports has been indexed separately

  16. Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II)

    Science.gov (United States)

    Agarwal, Rashmi A.

    2018-03-01

    A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr2O3/CrO2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.

  17. Mössbauer spectroscopic study on spin crossover coordination polymer Fe(3-Clpy){sub 2}[Pd(CN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kitazawa, Takafumi, E-mail: kitazawa@chem.sci.toho-u.ac.jp; Sekiya, Madoka; Kawasaki, Takeshi; Takahashi, Masashi [Toho University, Department of Chemistry, Faculty of Science (Japan)

    2016-12-15

    {sup 57}Fe Mössbauer spectroscopic results on the alternatively prepared spin crossover coordination polymer Fe(3-Clpy){sub 2}Pd(CN){sub 4} sample I agree with those of SQUID data. Mössbauer specrum at RT shows two diffrent doublets which correspond to the HS1(inner doublet) and HS2(outer doublet). The intensity of the HS1 doublet decreases on cooling to 78 K at the expense of a new one featuring the LS singlet. Almost 100 % of HS1 change to LS singlet due to iron(II) ions coordinated by four N atoms of cyano groups and two N atoms of 3-Clpy ligand in the sample I. The SQUID data of the sample I prepared by a new direct contact method are different from those of the already reported Fe(3-Clpy){sub 2}Pd(CN){sub 4} sample. The differences of the SQUID data are associated with particle size effects in molecule spin crossover samples.

  18. Synthesis, structure, and electrochemistry and magnetic properties of a novel 1D homochiral MnIII(5-Brsalen) coordination polymer with left-handed helical character

    Science.gov (United States)

    Dong, Dapeng; Yu, Naisen; Zhao, Haiyan; Liu, Dedi; Liu, Jia; Li, Zhenghua; Liu, Dongping

    2016-01-01

    A novel homochiral manganese (III) Mn(5-Brsalen) coordination polymer with left-handed helical character by spontaneous resolution on crystallization by using Mn(5-Brsalen) and 4,4-bipyridine, [MnIII(5-Brsalen)(4,4-bipy)]·ClO4·CH3OH (1) (4,4-bipy = 4,4-bipyridine) has been synthesized and structurally characterized by X-ray single-crystal diffraction, elemental analysis and infrared spectroscopy. In compound 1, each manganese(III) anion is six-coordinate octahedral being bonded to four atoms of 5-Brsalen ligand in an equatorial plane and two nitrogen atoms from a 4,4-bipyridine ligand in axial positions. The structure of compound 1 can be described a supramolecular 2D-like structure which was formed by the intermolecular π-stacking interactions between the neighboring chains of the aromatic rings of 4,4-bipyridine and 5-Brsalen molecules. UV-vis absorption spectrum, electrochemistry and magnetic properties of the compound 1 have also been studied.

  19. Anhydrous thallium hydrogen L-glutamate: polymer networks formed by sandwich layers of oxygen-coordinated thallium ions cores shielded by hydrogen L-glutamate counterions.

    Science.gov (United States)

    Bodner, Thomas; Wirnsberger, Bianca; Albering, Jörg; Wiesbrock, Frank

    2011-11-07

    Anhydrous thallium hydrogen L-glutamate [Tl(L-GluH)] crystallizes from water (space group P2(1)) with a layer structure in which the thallium ions are penta- and hexacoordinated exclusively by the oxygen atoms of the γ-carboxylate group of the hydrogen L-glutamate anions to form a two-dimensional coordination polymer. The thallium-oxygen layer is composed of Tl(2)O(2) and TlCO(2) quadrangles and is only 3 Å high. Only one hemisphere of the thallium ions participates in coordination, indicative of the presence of the 6s(2) lone pair of electrons. The thallium-oxygen assemblies are shielded by the hydrogen l-glutamate anions. Only the carbon atom of the α-carboxylate group deviates from the plane spanned by the thallium ions, the γ-carboxylate groups and the proton bearing carbon atoms, which are in trans conformation. Given the abundance of L-glutamic and L-aspartic acid in biological systems on the one hand and the high toxicity of thallium on the other hand, it is worth mentioning that the dominant structural motifs in the crystal structure of [Tl(L-GluH)] strongly resemble their corresponding analogues in the crystalline phase of [K(L-AspH)(H(2)O)(2)].

  20. Synthesis and Characterization of Novel Copper(II 2D Coordination Polymers from a Fluorinated Flexible Ligand with Remarkable Clathration Ability

    Directory of Open Access Journals (Sweden)

    Kayoko Kasai

    2011-11-01

    Full Text Available Two-dimensional (2D grid coordination polymers were prepared by the reaction of 1,4-bis(4-pyridylmethyltetrafluorobenzene (bpf with Cu(NO32 in the presence of aromatic compounds. Crystal structures of {[Cu(bpf2(NO32]·(biphenyl2}n (1, {[Cu(bpf2(NO32]·(m-C6H4(OMe22}n (2, {[Cu(bpf2(NO32]·PhtBu}n (3 and {[Cu(bpf2(NO3(H2O]NO3·(bpf0.5}n (4 were determined. The grid networks were held together by C–H···O and C–H···F hydrogen bonds via the NO3− anions and the tetrafluorophenylene rings of bpf, respectively. Biphenyl, m-dimethoxybenzene, t-butylbenzene, and bpf molecules were clathrated in cyclic cavities of the grid networks through arene-perfluoroarene interactions. These coordination networks have remarkable clathration ability for aromatic compounds.

  1. Incorporating an Electrode Modification Layer with a Vertical Phase Separated Photoactive Layer for Efficient and Stable Inverted Nonfullerene Polymer Solar Cells.

    Science.gov (United States)

    Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Li, Jinyan; Bai, Yiming; Wang, Fuzhi; Bian, Xingming; Hayat, Tasawar; Alsaedi, Ahmed; Tan, Zhan'ao

    2017-12-20

    For bulk heterojunction polymer solar cells (PSCs), the donors and acceptors featuring specific phase separation and concentration distribution within the electron donor/acceptor blends crucially affect the exciton dissociation and charge transportation. Herein, efficient and stable nonfullerene inverted PSCs incorporating a phase separated photoactive layer and a titanium chelate electrode modification layer are demonstrated. Water contact angle (WCA), scanning kelvin probe microscopy (SKPM), and atomic force microscopy (AFM) techniques are implemented to characterize the morphology of photoactive layers. Compared with the control conventional device, the short-circuit current density (J sc ) is enhanced from 14.74 to 17.45 mAcm -2 . The power conversion efficiency (PCE) for the inverted PSCs with a titanium (diisopropoxide)-bis-(2,4-pentanedionate) (TIPD) layer increases from 9.67% to 11.69% benefiting from the declined exciton recombination and fairly enhanced charge transportation. Furthermore, the nonencapsulated inverted device with a TIPD layer demonstrates the best long-term stability, 85% of initial PCE remaining and an almost undecayed open-circuit voltage (V oc ) after 1440 h. Our results reveal that the titanium chelate is an excellent electrode modification layer to incorporate with a vertical phase separated photoactive layer for producing high-efficiency and high-stability inverted nonfullerene PSCs.

  2. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Wang, Xiang-Dong; Tian, Ting; Chu, Li-Qiang, E-mail: chuliqiang@tust.edu.cn

    2017-06-15

    Highlights: • POEGMA/AgNPs composite film prepared via the in-stacking method is employed as 3D SERS substrate. • Control over POEGMA chain length is achieved via SI-ATRP method. • Influence of POEGMA chain length and in-stacking process on SERS performance is investigated. • The 3D SERS substrate is used for the ultrasensitive detection of ATP and S. aureus. - Abstract: Surface-enhanced Raman scattering (SERS) sensors have been extensively studied for ultrasensitive detection of diverse chemical or biological analytes. Facile fabrication of highly sensitive SERS substrates is believed to be of crucial importance in these analytical applications. In this regard, the preparation of 3-dimensional (3D) SERS substrates are explored via the incorporation of multilayered silver nanoparticles (AgNPs) into poly (oligo(ethylene glycol) methacrylate) (POEGMA) brushes by repeating the immersion-rinsing-drying steps for different lengths of time (i.e., the so-called in-stacking method). The POEGMA brushes of different chain lengths are synthesized by surface-initiated atom transfer radical polymerization (ATRP) with various reaction time. The resulting POEGMA/AgNP nanocomposites are characterized by FE-SEM, UV–vis and Raman spectroscopy. FE-SEM and UV–vis results indicate that the AgNPs are successfully incorporated into the POEGMA brushes with a 3D configuration. The nanocomposite films are employed as SERS substrates for the detection of a Raman reporter molecule (i.e., 4-aminothiophenol), giving rise to an enhancement factor of up to 1.29 × 10{sup 7} and also having relatively good uniformity and reproducibility. The obtained 3D SERS substrates are also used for the detection of a typical gram-positive bacterium, Staphylococcus aureus. The limit of detection is found to be as low as ca. 8 CFU/mL.

  3. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Science.gov (United States)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion ®117 membrane (5.04 × 10 -2 S cm -1). The highest proton conductivities 3.58 × 10 -2, 3.51 × 10 -2 and 2.61 × 10 -2 S cm -1 for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 × 10 -7 cm 2 s -1 which was 16 times lower than that of Nafion ®117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes.

  4. Proton conducting membranes prepared by incorporation of organophosphorus acids into alcohol barrier polymers for direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhongyi; Zheng, Xiaohong; Wu, Hong; Pan, Fusheng [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2008-10-15

    A novel type of DMFC membrane was developed via incorporation of organophosphorus acids (OPAs) into alcohol barrier materials (polyvinyl alcohol/chitosan, PVA/CS) to simultaneously acquire high proton conductivity and low methanol permeability. Three kinds of OPAs including amino trimethylene phosphonic acid (ATMP), ethylene diamine tetra(methylene phosphonic acid) (EDTMP) and hexamethylene diamine tetra(methylene phosphonic acid) (HDTMP), with different molecular structure and phosphonic acid groups content were added into PVA/CS blends and served the dual functions as proton conductor as well as crosslinker. The as-prepared OPA-doped PVA/CS membranes exhibited remarkably enhanced proton conducting ability, 2-4 times higher than that of the pristine PVA/CS membrane, comparable with that for Nafion {sup registered} 117 membrane (5.04 x 10{sup -2} S cm{sup -1}). The highest proton conductivities 3.58 x 10{sup -2}, 3.51 x 10{sup -2} and 2.61 x 10{sup -2} S cm{sup -1} for ATMP-, EDTMP- and HDTMP-doped membranes, respectively were all achieved at highest initial OPA doping content (23.1 wt.%) at room temperature. The EDTMP-doped PVA/CS membrane with an acid content of 13.9 wt.% showed the lowest methanol permeability of 2.32 x 10{sup -7} cm{sup 2} s{sup -1} which was 16 times lower than that of Nafion {sup registered} 117 membrane. In addition, the thermal stability and oxidative durability were both significantly improved by the incorporation of OPAs in comparison with pristine PVA/CS membranes. (author)

  5. Target-Triggered Switching on and off the Luminescence of Lanthanide Coordination Polymer Nanoparticles for Selective and Sensitive Sensing of Copper Ions in Rat Brain.

    Science.gov (United States)

    Huang, Pengcheng; Wu, Fangying; Mao, Lanqun

    2015-07-07

    Copper ions (Cu(2+)) in the central nervous system play a crucial role in the physiological and pathological events, so simple, selective, and sensitive detection of cerebral Cu(2+) is of great importance. In this work, we report a facile yet effective fluorescent method for sensing of Cu(2+) in rat brain using one kind of lanthanide coordination polymer nanoparticle, adenosine monophosphate (AMP) and terbium ion (Tb(3+)), i.e., AMP-Tb, as the sensing platform. Initially, a cofactor ligand, 5-sulfosalicylic acid (SSA), as the sensitizer, was introduced into the nonluminescent AMP-Tb suspension, resulting in switching on the luminescence of AMP-Tb by the removal of coordinating water molecules and concomitant energy transfer from SSA to Tb(3+). The subsequent addition of Cu(2+) into the resulting SSA/AMP-Tb can strongly quench the fluorescence because the specific coordination interaction between SSA and Cu(2+) rendered energy transfer from SSA to Tb(3+) inefficient. The decrease ratio of the fluorescence intensities of SSA/AMP-Tb at 550 nm show a linear relationship for Cu(2+) within the concentration range from 1.5 to 24 μM with a detection limit of 300 nM. The method demonstrated here is highly selective and is free from the interference of metal ions, amino acids, and the biological species commonly existing in the brain such as dopamine, lactate, and glucose. Eventually, by combining the microdialysis technique, the present method has been successfully applied in the detection of cerebral Cu(2+) in rat brain with the basal dialysate level of 1.91 ± 0.40 μM (n = 3). This method is very promising to be used for investigating the physiological and pathological events that cerebral Cu(2+) participates in.

  6. Synthesis and characterization of new coordination polymer with l-proline amino acid ligand, new precursor for preparation of pure phase lead(II) oxide nanoparticles via thermal decomposition

    Czech Academy of Sciences Publication Activity Database

    Varzdar, S.; Hashemi, L.; Morsali, A.; Dušek, Michal

    2017-01-01

    Roč. 14, č. 11 (2017), s. 2255-2261 ISSN 1735-207X Institutional support: RVO:68378271 Keywords : coordination polymer * nanoparticle * lead(II) oxide * proline amino acid Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.407, year: 2016

  7. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence

    International Nuclear Information System (INIS)

    Deng, Jingjing; Shi, Guoyue; Zhou, Tianshu

    2016-01-01

    This study demonstrates a new strategy for colorimetric detection of alcoholic strength (AS) in spirit samples based on dual-responsive lanthanide infinite coordination polymer (Ln-ICP) particles with ratiometric fluorescence. The ICP used in this study are composed of two components: one is the supramolecular Ln-ICP network formed by the coordination between the ligand 2,2’-thiodiacetic acid (TDA) and central metal ion Eu"3"+; and the other is a fluorescent dye, i.e., coumarin 343 (C343), both as the cofactor ligand and as the sensitizer, doped into the Ln-ICP network through self-adaptive chemistry. Upon being excited at 300 nm, the red fluorescence of Ln-ICP network itself at 617 nm is highly enhanced due to the concomitant energy transfer from C343 to Eu"3"+, while the fluorescence of C343 at 495 nm is supressed. In pure ethanol solvent, the as-formed C343@Eu-TDA is well dispersed and quite stable. However, the addition of water into ethanolic dispersion of C343@Eu-TDA destructs Eu-TDA network structure, resulting in the release of C343 from ICP network into the solvent. Consequently, the fluorescence of Eu-TDA turns off and the fluorescence of C343 turns on, leading to the fluorescent color change of the dispersion from red to blue, which constitutes a new mechanism for colorimetric sensing of AS in commercial spirit samples. With the method developed here, we could clearly distinguish the AS of different spirit samples within a wide linear range from 10% vol to 100% vol directly by “naked eye” with the help of UV-lamp (365 nm). This study not only offers a new method for on-the-spot visible detection of AS, but also provides a strategy for dual-responsive sensing mode by rational designing the optical properties of the Ln-ICP network and the guest, respectively. - Highlights: • Dual responsive lanthanide coordination polymer particles C343@Eu-TDA were synthesized. • The guest molecular coumarin 343 sensitized the luminescence of Eu-TDA network

  8. Colorimetric assay for on-the-spot alcoholic strength sensing in spirit samples based on dual-responsive lanthanide coordination polymer particles with ratiometric fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jingjing, E-mail: jjdeng@des.ecnu.edu.cn [School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Shi, Guoyue [Department of Chemistry, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Zhou, Tianshu, E-mail: tszhou@des.ecnu.edu.cn [School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China)

    2016-10-26

    This study demonstrates a new strategy for colorimetric detection of alcoholic strength (AS) in spirit samples based on dual-responsive lanthanide infinite coordination polymer (Ln-ICP) particles with ratiometric fluorescence. The ICP used in this study are composed of two components: one is the supramolecular Ln-ICP network formed by the coordination between the ligand 2,2’-thiodiacetic acid (TDA) and central metal ion Eu{sup 3+}; and the other is a fluorescent dye, i.e., coumarin 343 (C343), both as the cofactor ligand and as the sensitizer, doped into the Ln-ICP network through self-adaptive chemistry. Upon being excited at 300 nm, the red fluorescence of Ln-ICP network itself at 617 nm is highly enhanced due to the concomitant energy transfer from C343 to Eu{sup 3+}, while the fluorescence of C343 at 495 nm is supressed. In pure ethanol solvent, the as-formed C343@Eu-TDA is well dispersed and quite stable. However, the addition of water into ethanolic dispersion of C343@Eu-TDA destructs Eu-TDA network structure, resulting in the release of C343 from ICP network into the solvent. Consequently, the fluorescence of Eu-TDA turns off and the fluorescence of C343 turns on, leading to the fluorescent color change of the dispersion from red to blue, which constitutes a new mechanism for colorimetric sensing of AS in commercial spirit samples. With the method developed here, we could clearly distinguish the AS of different spirit samples within a wide linear range from 10% vol to 100% vol directly by “naked eye” with the help of UV-lamp (365 nm). This study not only offers a new method for on-the-spot visible detection of AS, but also provides a strategy for dual-responsive sensing mode by rational designing the optical properties of the Ln-ICP network and the guest, respectively. - Highlights: • Dual responsive lanthanide coordination polymer particles C343@Eu-TDA were synthesized. • The guest molecular coumarin 343 sensitized the luminescence of Eu

  9. Reversible Guest Binding in a Non-Porous FeII Coordination Polymer Host Toggles Spin Crossover

    DEFF Research Database (Denmark)

    Lennartson, Anders; Southon, Peter; Sciortino, Natasha F.

    2015-01-01

    )4 CN)2 ](SbF6 )4 ( 2 ) are low spin at room temperature, as are those in the polymeric adiponitrile-linked acetone solvate polymer {[Fe(bpte)(μ2-NC(CH2)4CN)]-(BPh4)2⋅Me2CO} ( 3⋅ Me2 CO). On heating 3⋅ Me2CO to 80 °C, the acetone is abruptly removed with an accompanying purple to dull lavender colour...... change corresponding to a conversion to a high-spin compound. Cooling reveals that the desolvate 3 shows hysteretic and abrupt spin crossover (SCO) S=0↔S=2 behaviour centred at 205 K. Non-porous 3 can reversibly absorb one equivalent of acetone per iron centre to regenerate the same crystalline phase...

  10. Coordination Chemistry inside Polymeric Nanoreactors: Metal Migration and Cross-Exchange in Amphiphilic Core-Shell Polymer Latexes

    Directory of Open Access Journals (Sweden)

    Si Chen

    2016-01-01

    Full Text Available A well-defined amphiphilic core-shell polymer functionalized with bis(p-methoxy-phenylphosphinophenylphosphine (BMOPPP in the nanogel (NG core has been obtained by a convergent RAFT polymerization in emulsion. This BMOPPP@NG and the previously-reported TPP@NG (TPP = triphenylphosphine and core cross-linked micelles (L@CCM; L = TPP, BMOPPP having a slightly different architecture were loaded with [Rh(acac(CO2] or [RhCl(COD]2 to yield [Rh(acac(CO(L@Pol] or [RhCl(COD(L@Pol] (Pol = CCM, NG. The interparticle metal migration from [Rh(acac(CO(TPP@NG] to TPP@NG is fast at natural pH and much slower at high pH, the rate not depending significantly on the polymer architecture (CCM vs. NG. The cross-exchange using [Rh(acac(CO(BMOPPP@Pol] and [RhCl(COD(TPP@Pol] (Pol = CCM or NG as reagents at natural pH is also rapid (ca. 1 h, although slower than the equivalent homogeneous reaction on the molecular species (<5 min. On the other hand, the subsequent rearrangement of [Rh(acac(CO(TPP@Pol] and [RhCl(COD(TPP@Pol] within the TPP@Pol core and of [Rh(acac(CO(BMOPPP@Pol] and [RhCl(COD(BMOPPP@Pol] within the BMOPPP@Pol core, leading respectively to [RhCl(CO(TPP@Pol2] and [RhCl(CO(BMOPPP@Pol2], is much more rapid (<30 min than on the corresponding homogeneous process with the molecular species (>24 h.

  11. A series of three-dimensional lanthanide coordination polymers with rutile and unprecedented rutile-related topologies.

    Science.gov (United States)

    Qin, Chao; Wang, Xin-Long; Wang, En-Bo; Su, Zhong-Min

    2005-10-03

    The complexes of formulas Ln(pydc)(Hpydc) (Ln = Sm (1), Eu (2), Gd (3); H2pydc = pyridine-2,5-dicarboxylic acid) and Ln(pydc)(bc)(H2O) (Ln = Sm (4), Gd (5); Hbc = benzenecarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, TG analysis, and single-crystal X-ray diffraction. Compounds 1-3 are isomorphous and crystallize in the orthorhombic system, space group Pbcn. Their final three-dimensional racemic frameworks can be considered as being constructed by helix-linked scalelike sheets. Compounds 4 and 5 are isostructural and crystallize in the monoclinic system, space group P2(1)/c. pydc ligands bridge dinuclear lanthanide centers to form the three-dimensional frameworks featuring hexagonal channels along the a-axis that are occupied by one-end-coordinated bc ligands. From the topological point of view, the five three-dimensional nets are binodal with six- and three-connected nodes, the former of which exhibit a rutile-related (4.6(2))(2)(4(2).6(9).8(4)) topology that is unprecedented within coordination frames, and the latter two species display a distorted rutile (4.6(2))(2)(4(2).6(10).8(3)) topology. Furthermore, the luminescent properties of 2 were studied.

  12. 1D and 2D Cobalt(II) Coordination Polymers, Co(ox)(en):Synthesis, Structures and Magnetic Properties

    International Nuclear Information System (INIS)

    Kang, Jae Un; Lee, Yu Mi; Kim, Seung Joo; Yun, Ho Seop; Do, Jung Hwan

    2014-01-01

    Two ethylenediamine cobalt(II) oxalate complexes Co(ox)(en), 1 and Co(ox)(en)·2H 2 O, 2 have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, IR spectrum, TG analysis, and magnetic measurements. In 1, Co atoms are coordinated by two bis-bidentate oxalate ions in transconfiguration to form Co(ox) chains, which are further bridged by ethylenediamine molecules to produce 2D grid layers, Co(ox)(en). In 2, Co atoms are coordinated by bridging oxalate ions in cis - configuration to form Co(ox) chains, and the additional chelation of ethylenediamine to Co atoms completes 1D zigzag chain, Co(en)(ox). Two lattice water molecules stabilize the chains through hydrogen bonding. Magnetic susceptibility measurements indicate that both complexes exhibit weak antiferromagnetic coupling between cobalt(II) ions with the susceptibility maxima at 23 K for 1 and 20 K for 2, respectively. In 1 and 2, the oxalate ligands afford a much shorter and more effective pathway for the magnetic interaction between cobalt ions compared to the ethylenediamine ligands, so the magnetic behaviors of both complexes could be well described with 1D infinite magnetic chain model

  13. Hydrothermal synthesis, crystal structure and properties of a novel chain coordination polymer constructed by tetrafunctional phosphonate anions and cobalt ions

    International Nuclear Information System (INIS)

    Guan, Lei; Wang, Ying

    2015-01-01

    A novel cobalt phosphonate, [Co(HL)(H 2 O) 3 ] n (1) (L=N(CH 2 PO 3 H) 3 3− ) has been synthesized by hydrothermal reaction at 150 °C and structurally characterized by X-ray diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Complex 1 features a 1D chain structure with double-channel built from CoO 6 octahedra bridged together by the phosphonate groups. Each cobalt ion is octahedrally coordinated by three phosphonate oxygen atoms and three water molecules. The coordinated water molecules can form the hydrogen bonds with the phosphonate oxygen atoms to link the 1D chains, building a 2D layered structure, further resulting in a 3D network. The luminescence spectrum indicates an emission maximum at 435 nm. The magnetic susceptibility curve exhibits a dominant antiferromagnetic behavior with a weakly ferromagnetic component at low temperatures. - Graphical abstract: The connectivity between cobalt ions and the ligands results in a chain structure with a 1D double-channel structure, which is constructed by A-type subrings and B-type subrings. - Highlights: • The tetrafunctional phosphonate ligand was used as the ligand. • A novel chain structure can be formed by A-type rings and B-type rings. • Two types of rings can form a 1D double-channel structure, along the c-axis

  14. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material.

    Science.gov (United States)

    Cao, Lei; Wu, Xiaofeng; Wang, Qiugen; Wang, Jiandong

    2018-01-01

    The development and design of polymeric hydrogels for articular cartilage tissue engineering have been a vital biomedical research for recent days. Organic/inorganic combined hydrogels with improved surface activity have shown potential for the repair and regeneration of hard tissues, but have not been broadly studied for articular cartilage tissue engineering applications. In this work, bi-polymeric hydrogel composite was designed with the incorporation some quantities of stick-like TiO 2 nanostructures for favorable surface behavior and enhancement of osteoblast adhesions. The microscopic investigations clearly exhibited that the stick-like TiO 2 nanostructured materials are highly inserted into the PVA/PVP bi-polymeric matrix, due to the long-chain PVA molecules are promoted to physical crosslinking density in hydrogel network. The results of improved surface topography of hydrogel matrixes show that more flatted cell morphologies and enhanced osteoblast attachment on the synthesized nanocomposites. The crystalline bone and stick-like TiO 2 nanocomposites significantly improved the bioactivity via lamellipodia and filopodia extension of osteoblast cells, due to its excellent intercellular connection and regulated cell responses. Consequently, these hydrogel has been enhanced the antibacterial activity against Staphylococcus aureus and Escherichia coli bacterial pathogens. Hence it is concluded that these hydrogel nanocomposite with improved morphology, osteoblast behavior and bactericidal activity have highly potential candidates for articular cartilage tissue regeneration applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Two novel alkaline earth coordination polymers constructed from cinnamic acid and 1,10-phenanthroline: synthesis and structural and thermal properties.

    Science.gov (United States)

    Bendjellal, Nassima; Trifa, Chahrazed; Bouacida, Sofiane; Boudaren, Chaouki; Boudraa, Mhamed; Merazig, Hocine

    2018-02-01

    In coordination chemistry and crystal engineering, many factors influence the construction of coordination polymers and the final frameworks depend greatly on the organic ligands used. The diverse coordination modes of N-donor ligands have been employed to assemble metal-organic frameworks. Carboxylic acid ligands can deprotonate completely or partially when bonding to metal ions and can also act as donors or acceptors of hydrogen bonds; they are thus good candidates for the construction of supramolecular architectures. We synthesized under reflux or hydrothermal conditions two new alkaline earth(II) complexes, namely poly[(1,10-phenanthroline-κ 2 N,N')bis(μ-3-phenylprop-2-enoato-κ 3 O,O':O)calcium(II)], [Ca(C 10 H 7 O 2 ) 2 (C 10 H 8 N 2 )] n , (1), and poly[(1,10-phenanthroline-κ 2 N,N')(μ 3 -3-phenylprop-2-enoato-κ 4 O:O,O':O')(μ-3-phenylprop-2-enoato-κ 3 O,O':O)barium(II)], [Ba(C 10 H 7 O 2 ) 2 (C 10 H 8 N 2 )] n , (2), and characterized them by FT-IR and UV-Vis spectroscopies, thermogravimetric analysis (TGA) and single-crystal X-ray diffraction analysis, as well as by powder X-ray diffraction (PXRD) analysis. Complex (1) features a chain topology of type 2,4 C4, where the Ca atoms are connected by O and N atoms, forming a distorted bicapped trigonal prismatic geometry. Complex (2) displays chains of topology type 2,3,5 C4, where the Ba atom is nine-coordinated by seven O atoms of bridging/chelating carboxylate groups from two cinnamate ligands and by two N atoms from one phenanthroline ligand, forming a distorted tricapped prismatic arrangement. Weak C-H...O hydrogen bonds and π-π stacking interactions between phenanthroline ligands are responsible to the formation of a supramolecular three-dimensional network. The thermal decompositions of (1) and (2) in the temperature range 297-1173 K revealed that they both decompose in three steps and transform to the corresponding metal oxide.

  16. Synthesis, structure and magnetic properties of cobalt(II) and copper(II) coordination polymers assembled by phthalate and 4-methylimidazole

    International Nuclear Information System (INIS)

    Baca, S.G.; Malinovskii, S.T.; Franz, Patrick; Ambrus, Christina; Stoeckli-Evans, Helen; Gerbeleu, Nicolae; Decurtins, Silvio

    2004-01-01

    New coordination polymers [M(Pht)(4-MeIm) 2 (H 2 O)] n (M=Co (1), Cu (2); Pht 2- =dianion of o-phthalic acid; 4-MeIm=4-methylimidazole) have been synthesized and characterized by IR spectroscopy, X-ray crystallography, thermogravimetric analysis and magnetic measurements. The crystal structures of 1 and 2 are isostructural and consist of [M(4-MeIm) 2 (H 2 O)] building units linked in infinite 1D helical chains by 1,6-bridging phthalate ions which also act as chelating ligands through two O atoms from one carboxylate group in the case of 1. In complex 1, each Co(II) atom adopts a distorted octahedral N 2 O 4 geometry being coordinated by two N atoms from two 4-MeIm, three O atoms of two phthalate residues and one O atom of a water molecule, whereas the square-pyramidal N 2 O 3 coordination of the Cu(II) atom in 2 includes two N atoms of N-containing ligands, two O atoms of two carboxylate groups from different Pht, and a water molecule. An additional strong O-H↑··O hydrogen bond between a carboxylate group of the phthalate ligand and a coordinated water molecule join the 1D helical chains to form a 2D network in both compounds. The thermal dependences of the magnetic susceptibilities of the polymeric helical Co(II) chain compound 1 were simulated within the temperature range 20-300 K as a single ion case, whereas for the Cu(II) compound 2, the simulations between 25 and 300 K, were made for a linear chain using the Bonner-Fisher approximation. Modelling the experimental data of compound 1 with MAGPACK resulted in: g=2.6, vertical bar D vertical bar=62 cm -1 . Calculations using the Bonner-Fisher approximation gave the following result for compound 2: g=2.18, J=-0.4 cm -1

  17. Cd(II)-coordination polymers based on tetracarboxylic acid and diverse bis(imidazole) ligands: Synthesis, structural diversity and photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Yeşilel, Okan Zafer [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Taş, Murat [Department of Science Education, Education Faculty, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2017-01-15

    Three new Cd(II)-coordination polymers, namely, ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,5-bipe){sub 2}]·2H{sub 2}O){sub n} (1), ([Cd{sub 2}(μ{sub 6}-ao{sub 2}btc)(μ-1,4-bix){sub 2}]{sub n}·2DMF) (2) and ([Cd{sub 2}(μ{sub 8}-abtc)(μ-1,4-betix)]·DMF·H{sub 2}O){sub n} (3) (ao{sub 2}btc=di-oxygenated form of 3,3′,5,5′-azobenzenetetracarboxylate, 1,5-bipe: 1,5-bis(imidazol-1yl)pentane, 1,4-bix=1,4-bis(imidazol-1ylmethyl)benzene, 1,4-betix=1,4-bis(2-ethylimidazol-1ylmethyl)benzene) were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi-flexible substituted bis(imidazole) linker was used, 3D framework of complex 3 was obtained with the paddlewheel Cd{sub 2}(CO{sub 2}){sub 4}-type binuclear SBU. Moreover, thermal and photoluminescence properties of the complexes were determined in detailed. - Graphical abstract: In this study, three novel Cd(II)-coordination polymers were synthesized with 3,3′,5,5′-azobenzenetetracarboxylic acid and flexible, semi-flexible and semi-flexible substituted bis(imidazole) linkers. They were characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, powder X-ray diffractions (PXRD) and thermal analyses (TG/DTA). Complexes 1–3 exhibited structural diversities depending on flexible, semi-flexible and semi-flexible substituted bis(imidazole) ligands. Complex 1 was 2D structure with 3,6L18 topology. Complex 2 had a 3D pillar-layered framework with the rare sqc27 topology. When semi

  18. Syntheses, structures and selective dye adsorption of five formic-based coordination polymers prepared by in-situ hydrolysis of N, N′-dimethylformamide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zheng; Meng, Xiang-min; Zhang, Dong-mei; Zhang, Xia; Wang, Mei [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100 (China); Jin, Fan [Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg 35043 (Germany); Fan, Yu-hua [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100 (China)

    2017-04-15

    Five functional coordination polymers (formic-based CPs) namely: ([Cu{sub 2}(CHOO){sub 3}(bibp){sub 2}]·CHOO){sub n} (1), ([Co{sub 2}(CHOO){sub 3}(bibp){sub 2}]·NO{sub 3}·H{sub 2}O)n (2), ([Ni{sub 2}(CHOO){sub 3}(bibp){sub 2}]·NO{sub 3}·H{sub 2}O){sub n} (3) [Co(CHOO){sub 2}(bbibp)]{sub n} (4) and [Zn(CHOO){sub 2}(bbibp)]{sub n} (5) (bibp=4,4′-bis(imidazolyl)biphenyl, bbibp=4,4′-bis(benzoimidazo-1-yl)biphenyl) have been successfully hydrothermally synthesized using the in-situ hydrolysis of N, N′-dimethylformamide (DMF) as the source of formate. All of these five polymers were characterized by single-crystal X-ray diffraction, elemental analysis, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analysis. Complexes 1–3 have the similar three-dimensional 3D kag topological framework built from the bibp ligand as the support member between the neighboring formic planes. Both complexes 4 and 5 have the similar one-dimensional 1D linear chain which is further assembled into 3D supermolecular structure by C–H…O hydrogen bonds. The dyes adsorption experiments have also been investigated systematically. The results show that complexes 2 and 3 exhibit high selective adsorption ability towards anionic dyes in their aqueous solution. Moreover, complex 2 displays good reversibility in the process of the dyes adsorption-release. Meanwhile, the unusual blocking phenomenon was firstly observed when complex 2 was in MO/OIV aqueous solutions with different concentration.

  19. Coordination polymers with the chiral ligand N-p-tolylsulfonyl-L-glutamic acid: Influence of metal ions and different bipyridine ligands on structural chirality

    International Nuclear Information System (INIS)

    He Rong; Song Huihua; Wei Zhen; Zhang Jianjun; Gao Yuanzhe

    2010-01-01

    Four new polymers, namely [Ni(-tsgluO)(2,4'-bipy) 2 (H 2 O) 2 ] n .5nH 2 O (1), [Co(-tsgluO)(2,4'-bipy) 2 (H 2 O) 2 ] n .5nH 2 O (2), [Ni(-tsgluO)(4,4'-bipy)] n .0.5nH 2 O (3), and [Co(-tsgluO)(4,4'-bipy)] n .0.5nH 2 O (4), where tsgluO 2- =(+)-N-p-tolylsulfonyl-L-glutamate dianion, 2,4'-bipy=2,4'-bipyridine, and 4,4'-bipy=4,4'-bipyridine, have been prepared and structurally characterized. Compounds 1 and 2 are isostructural and mononuclear, and crystallize in the acentric monoclinic space group Cc, forming 1D chain structures. Compound 3 is also mononuclear, but crystallizes in the chiral space group P2 1 , forming a homochiral 2D architecture. In contrast to the other complexes, compound 4 crystallizes in the space group P-1 and is composed of binuclear [Co 2 O 6 N 2 ] n 4- units, which give rise to a 2D bilayer framework. Moreover, compounds 1, 2, and 4 self-assemble to form 3D supramolecular structures through π-π stacking and hydrogen-bonding interactions, while compound 3 is further hydrogen-bonded to form 3D frameworks. We have demonstrated the influence of the central metal and bipyridine ligands on the framework chirality of the coordination complexes. - Graphical abstract: Four novel polymers based on a chiral ligand were prepared and structurally characterized; it represents the first series of investigations about the effect of central metals and bipyridine ligands on framework chirality.

  20. Synthesis, structural characterization and photoluminescent properties of 2D multilayer Cu+ coordination polymers via Csbnd H⋯π and π⋯π interactions

    Science.gov (United States)

    Huang, Ting-Hong; Zhu, Sheng-Lan; Xiong, Xian-Lian; Li, Jia-Dong; Yang, Hu; Huang, Xin; Huang, Xue-Ren; Zhang, Kunming

    2017-09-01

    Two Cu(I) coordination polymers, {[Cu(pmbb)0.5(4,4'-bipy)0.5(PPh3)](BF4) (H2O)2}n (1) and {[Cu(pmbb)0.5(bpe)0.5(PPh3)](BF4)(DMF)}n (2) (pmbb = N, N'-bis(pyridin-2-ylmethylene)biphenyl -4,4'-diamine, 4,4'-bipy = 4,4'-bipyridine, bpe = 1,2-bis(4-pyridyl)ethylene), PPh3 = triphenyl phosphine), have been synthesized and characterized by IR, 1H NMR, 13C NMR, 31P NMR, 19F NMR, 11B-NMR, TG and X-ray crystal structure analysis. The structural analysis shows that complexes 1 and 2 contain diverse and interesting 2D supramolecular networks based on inter-chain interactions. Complex 1 displays a 1D zig-zag chain and a 1D+1D→2D supramolecular network formed by intermolecular Csbnd H···π interaction. For 2, each 1D zig-zag chain interacts with neighboring ones via intermolecular Csbnd H···π and π···π stacking interactions, leading to the formation of a 2D-stacking network. Furthermore, solid-state UV-Vis absorption spectra of complexes 1 and 2 indicate the existence of MLCT absorption. Complexes 1 and 2 show efficient luminescent emission peaks at 435 and 452 nm assigned to MLCT excited states, and the emission decay lifetimes are 20.82 μs for 1 and 20.72 μs for 2, displaying strong room-temperature solid-state photoluminescence. Moreover, thermogravimetric analysis shows that the heat stability of polymers is 1>2.

  1. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei; Liu, Xin-Xin [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Su, Zhong-Min, E-mail: zmsu@nenu.edu.cn [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China); Ma, Jian-Fang [Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin (China)

    2012-12-15

    Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated. - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit

  2. In-situ carboxylation and synthesis of two novel Sm(III) coordination polymers assembled from 5-hydroxyisophthalate and nitrate, chloride in hydrothermal reaction

    International Nuclear Information System (INIS)

    Huang Yan; Yan Bing; Shao Min

    2008-01-01

    By reactions of 5-hydroxyisophthalic acid (H 2 hisp) with Sm(NO 3 ) 3 .6H 2 O or SmCl 3 .6H 2 O in the presence of NaOH, two kinds of samarium coordination polymers, [Sm(H 2 hbtc)(ox) 0.5 (H 2 O) 3 ] n .nH 2 O (1) (H 2 hbtc 2- =6-hydroxy-1,2,4-benzenetricarboxylate) and [Sm(hisp)(Hhisp)(H 2 O) 2 ] n .2nH 2 O (2), have been hydrothermal synthesized and characterized. Single-crystal X-ray analyses reveal that compound 1 features a novel two-dimensional (2D) stair-like structure with oxalate ligands and the new organic ligand (H 2 hbtc 2- ) but without 5-hydroxyisophthalate ligands, while compound 2 gives the expected product and displays a novel layer structure. The oxalate ligands have been formed via the in-situ reductive coupling of CO 2 molecules released from the decomposition of carboxylate ligands with the reduction of NO 3 - and the new organic ligands have been formed via the in-situ carboxylation under the presence of NO 3 - . Reported herein are the syntheses of compounds 1 and 2, crystal structures and possible mechanism information regarding the in-situ carboxylation. - Graphical abstract: Hydrothermal reactions of Sm(NO 3 ) 3 .6H 2 O or SmCl 3 .6H 2 O with 5-hydroxyisophthalic acid (H 2 hisp) have given rise to two different kinds of Sm(III) coordination polymers. Single-crystal X-ray analyses reveal that compound 1 features a novel 2D stair-like structure with oxalate and a new organic ligand, 6-hydroxy-1,2,4-benzenetricarboxylate, while compound 2 gives the normal product and displays a novel 2D layer structure. Oxalate ligands have been formed via the in-situ reductive coupling of CO 2 molecules released from the decomposition of 5-hydroxyisophthalate ligands with the reduction of NO 3 - and the new organic ligands have been formed via the in-situ carboxylation under the presence of NO 3 -

  3. Syntheses, structures and luminescence for zinc coordination polymers based on a multifunctional 4′-(3-carboxyphenyl)- 3,2′:6′,3″-terpyridine ligand

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yue; Yang, Meng-Lin; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN; Xu, Bing; Wang, Xiaofang; Xue, Ganglin

    2016-07-15

    Six new coordination polymers, [ZnLCl]{sub n}(1), [ZnL{sub 2}]{sub n}·2nH{sub 2}O (2), [Zn{sub 2}L(o-bdc)(OH)]{sub n}·0.5nH{sub 2}O (3), [Zn{sub 2}L(m-bdc)(OH)]{sub n}·nH{sub 2}O (4), [Zn{sub 2}L{sub 2}(p-bdc) (H{sub 2}O){sub 2}]{sub n}·nH{sub 2}O (5), [Zn{sub 2}L(1,2,4-btc)(H{sub 2}O)]{sub n}(6), (HL=4′-(3-carboxyphenyl)- 3,2′:6′,3″-terpyridine, H{sub 2}(o-bdc)= benzene-1,2-dicarboxylic acid, H{sub 2}(m-bdc)= benzene-1,3-dicarboxylic acid, H{sub 2}(p-bdc)= benzene-1,4-dicarboxylic acid, H{sub 3}(1,2,4-btc)= benzene-1,2,4-tricarboxylic acid) have been synthesized under the hydrothermal conditions. Compound 1 displays a 3-connected 2D network structure with point symbol of {8"2.10}. Compound 2 exhibits 1D infinite loop chain structure. Compound 3 possesses a (3,8)-connected 3D framework composed of tetranuclear units with point symbol of {4"3}{sub 2}{4"6.6"1"8.8"4}. Compound 4 features a typical 2D hcb network based on tetranuclear zinc(II) units with point symbol of {4"4.6"2}. Compound 5 presents a classical two-fold penetration sql network with point symbol of {6"3}. Compound 6 can be seen as a (3,3,6)-connected 3D net with point symbol of {4"2.6"4.8"9}{4"2.6}{6"3}. The thermal stability and luminescent properties of compounds 1–6 in the solid state are discussed in detail. - Graphical abstract: Six new Zn(II) coordination polymers based on multicarboxylate and terpyridyl derivative ligands have synthesized under the hydrothermal conditions and the thermal stability and luminescence are discussed. Display Omitted.

  4. Diverse assemblies of the (4,4) grid layers exemplified in Zn(II)/Co(II) coordination polymers with dual linear ligands

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guang-Zhen; Li, Xiao-Dong; Xin, Ling-Yun; Li, Xiao-Ling [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022 (China); Wang, Li-Ya, E-mail: wlya@lynu.edu.cn [College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan 471022 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061 (China)

    2013-07-15

    Diverse (4,4) grid layers are exemplified in five two-dimensional coordination polymers with dual µ{sub 2}-bridged ligands, namely, ([Zn(cbaa)(bpp)]·H{sub 2}O){sub n} (1), [Zn{sub 2}(cbaa){sub 2}(bpy)]{sub n} (2), [Co{sub 2}(cbaa){sub 2}(bpp){sub 2}]{sub n} (3), [Co(cbaa)(bpp)]{sub n} (4), and [Co(bdaa)(bpp)(H{sub 2}O){sub 2}]{sub n} (5) (H{sub 2}cbaa=4-carboxybenzeneacetic acid, bpp=1,3-di(4-pyridyl)propane, bpy=4,4′-bipyridyl, and H{sub 2}bdaa=1,4-benzenediacrylic acid). For 1, two (4,4) grid layers with [ZnN{sub 2}O{sub 2}] tetrahedron as the node are held together by lattice water forming a H-bonding bilayer. Individual (4,4) grid layer in 2 is based on (Zn{sub 2}(OCO){sub 4}) paddlewheel unit as the node. Two (4,4) grid layers with (Co{sub 2}O(OCO){sub 2}) dimer as the node are covalently interconnected by organic ligands affording a thick bilayer of 3 with new framework topology. The different entanglements between two coincident (4,4) grid layers with [CoN{sub 2}O{sub 4}] octahedron as the node leads to two 2D→2D interpenetrated structures for 4 and 5. Furthermore, fluorescent properties of 1 and 2 as well as magnetic properties of 3 are investigated. - Graphical abstract: Diverse assemblies of the (4,4) grid layers with different network nodes forms five coordination polymers that are well characterized by IR, TGA, element analysis, fluorescent and magnetic measurement. - Highlights: • Diverse assemblies of the (4,4) grid layers with different structural units as the nodes. • A new topology type with the uninodal 6-connected net of (4{sup 12}.5{sup 2}.6) is found. • Intense fluorescence emissions with a rare blue-shift of 55 nm compared to free carboxylate ligand.

  5. Seven new Zn(II)/Cd(II) coordination polymers with 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid: Synthesis, structures and properties

    Science.gov (United States)

    Wang, Xin-Fang; Zhou, Sheng-Bin; Du, Ceng-Ceng; Wang, Duo-Zhi; Jia, Dianzeng

    2017-08-01

    Using a new simi-rigid multitopic ligand 2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid (H2L), seven new coordination polymers [Zn3(L)2(μ2-OH)2]n (1), {[Zn2(HL)2(H2O)2]·SiF6}n (2), [Zn(HL)(SCN)]n (3), {[Zn2(HL)2(SO4)]·(4,4‧-bpy)}n (4) [4,4‧-bpy =4,4‧-bipyridine], {[Zn(HL)2]·2H2O}n (5), {[Cd(HL)2]·2H2O}n (6) and [Cd2(HL)2(H2O)2(SO4)]n (7) have been successfully obtained from H2L ligand under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR spectroscopy. In addition, UV-vis diffuse-reflectance spectra demonstrate wide band gaps. Complex 1 features a 3D topological net of {412·63} with the stoichiometry (6-c), contains 1D channels with the accessible solvent volume of 42.1%. 3, 4, 5 and 6 have a 1D chain structure, 5 and 6 further assemble to form 2D sheet and 3D supramolecular frameworks by hydrogen-bonding interactions, respectively. Complexes 2 and 7 possess a 2D layered structure, and the 2D supramolecular network of 2 can be rationalized to be four-connected {44·62} topological sql network with the dinuclear units, while 7 shows a 3-nodal 2D net with a point symbol of {63}. Moreover, the fluorescent emission, fluorescence lifetimes of 1-7 have been investigated and discussed. Interesting enough, complex 1 showed high efficiency for catalyzing the Knoevenagel condensation reaction between 4-substituted aromatic aldehydes and malononitrile as selective heterogeneous catalyst. The CPs combining catalytic and fluorescent properties could further meet the requirement as a multifunctional material. Seven new Zn(II)/Cd(II) coordination polymers with simi-rigid multitopic ligand, [(2-(hydroxymethyl)-1H-benzo[d]imidazole-5-carboxylic acid) (H2L)] have been successfully obtained and structurally characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, powder X-ray diffraction and IR

  6. Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li; Xia, Nan-Nan; Yin, Wen-Yu; Zhu, Wei; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin, E-mail: yuanrx@cslg.edu.cn

    2015-12-15

    Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were also investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.

  7. Structural diversity and fluorescence properties of three 2-sulfoterephthalate Cd{sup II}/Zn{sup II} coordination polymers employing 1,4-bisbenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yixia, E-mail: renyixia1@163.com; Chai, Hongmei; Tang, Long; Hou, Xiangyang; Wang, Jijiang

    2016-02-15

    Three novel coordination polymers, namely, [Cd(2-Hstp)(1,4-bbi)(H{sub 2}O){sub 2}]·3H{sub 2}O (1), [Cd{sub 1.5}(2-stp)(1,4-bbi)(H{sub 2}O){sub 2}]·H{sub 2}O (2) and [Zn{sub 2}(2-stp)(μ{sub 2}-OH)(1,4-bbi){sub 1.5}(H{sub 2}O)]·6H{sub 2}O (3) (2-H{sub 3}stp is equal to 2-sulfoterephthalate and 1,4-bisbenzimidazole is equal to 1,4-bbi), have been synthesized by hydrothermal reaction. The structural analyses show that 1 and 2 possess different structural features despite the same raw materials, which are 1D chain structure featuring 6-member-water H-bonds cluster and 3D bbi-pillared wavy-like layer framework, respectively. As changing the metal ion to zinc ion, 3 exhibits 3D stp-pillared layer architecture, which discovers the effect of the central metal ions on the formation of metal–organic frameworks. The fluorescence studies show that the emissions of the coordination polymers are attributed to the ligand π–π* transition, which means they could be potential fluorescence materials. - Graphical abstract: Three new Cd{sup II}/Zn{sup II} 2-sulfoterephthalate (2-H{sub 3}stp) complexes with 1,4-bisbenzimidazole (1,4-bbi) are described. Complex 1 exhibits one-dimensional chain-like structure, 2 is a three-dimensional bbi-pillared wavy-like layer framework, while 3 is a three-dimensional stp-pillared layer architecture. Fluorescence spectra exhibit the π–π* transition of two organic ligands. - Highlights: • Three Cd{sup II}/Mn{sup II} 2-sulfoterephthalate complexes containing 1,4-bisbenzimidazole. • Different structural features despite the same raw materials for 1 and 2. • Fluorescence spectra exhibit the π–π* transition of organic ligands.

  8. Alkyl group dependence on structure and magnetic properties in layered cobalt coordination polymers containing substituted glutarate ligands and 4,4'-bipyridine

    International Nuclear Information System (INIS)

    Nettleman, Joseph H.; Supkowski, Ronald M.; LaDuca, Robert L.

    2010-01-01

    Five two-dimensional divalent cobalt coordination polymers containing 4,4'-bipyridine (bpy) and substituted or unsubstituted glutarate ligands have been prepared hydrothermally and structurally characterized by single-crystal X-ray diffraction. [Co(mg)(bpy)] n (1, mg=3-methylglutarate) forms a (4,4) rhomboid grid structure based on the connection of {Co 2 (CO 2 ) 2 } dimeric units. Using the more sterically encumbered ligands 3,3-dimethylglutarate (dmg) and 3-ethyl, 3-methylglutarate (emg) generated {[Co(dmg)(bpy)(H 2 O)].2H 2 O} n (2) and {[Co(emg)(bpy)(H 2 O)].H 2 O} n (3), respectively. These complexes manifest {Co(CO 2 )} n chains linked into 2-D by aliphatic dicarboxylate and bpy ligands. The 'tied-back' substituted glutarate ligand 1,1-cyclopentanediacetate (cda) afforded [Co(cda)(bpy)] n (4), and the unsubstituted glutarate (glu) generated [Co(glu)(bpy)] n (5), both of which exhibit a topology similar to that of 1. The magnetic properties of complexes 1-4 were analyzed successfully with a recently developed phenomenological chain model accounting for both magnetic coupling (J) and zero-field splitting effects (D), even though 1 and 4 contain isolated, discrete {Co 2 (CO 2 ) 2 } dimers. The D parameter in this series varied between 21.8(8) and 48.0(9) cm -1 . However weak antiferromagnetic coupling was observed in 1 (J=-2.43(4) cm -1 ) and 4 (J=-0.89(2) cm -1 ), while weak ferromagnetic coupling appears to be operative in both 2 (J=0.324(5) cm -1 ) and 3 (J=0.24(1) cm -1 ). - Five two-dimensional divalent cobalt coordination polymers containing 4,4'-bipyridine (bpy) and substituted or unsubstituted glutarate ligands have been prepared and structurally characterized by single-crystal X-ray diffraction. Three contain dimeric {Co 2 (CO 2 ) 2 } units, while two manifest {Co(CO 2 )} n chains, depending on the steric bulk of the substituent. The magnetic properties of the complexes were analyzed successfully with a recently developed phenomenological chain model

  9. Solvent-regulated assemblies of four Zn(II) coordination polymers constructed by flexible tetracarboxylates and pyridyl ligands

    Science.gov (United States)

    Fang, Kang; He, Xiang; Shao, Min; Li, Ming-Xing

    2016-08-01

    Four unique complexes with diverse coordination architectures were synthesized upon complexation of 5,5-(1,4-phenylenebis (methylene))bis (oxy)- diisophthalic acid (H4L) with zinc ions by using different solvent. namely, {[Zn(H2L) (bpp)]·DEF}n (1), {[Zn2(L) (bpp)2]·4H2O}n (2), {[Zn2(L) (pdp)2]·3H2O·DEF}n (3), {[Zn2(L) (pdp)2].4H2O}n (4). Complexes 1,2 and 3,4 are obtained by varying solvents to control their structures. The size of solvent molecular plays an important role to control different structure of these compounds. Compound 1 is 2D waved framework with (4, 4) grid layer as sql topology. Compound 3 displays a (4,6)-connected 2-nodal net with a fsc topology. Compounds 2 and 4 are all three-dimensional network simplified as (4,4)-connected 2-nodal net with a bbf topology. The photochemical properties of compounds 1-4 were tested in the solid state at room temperature, owing to their strong luminescent emissions, complexes 1-4 are good candidates for photoactive materials.

  10. Position Accuracy of Implant Analogs on 3D Printed Polymer versus Conventional Dental Stone Casts Measured Using a Coordinate Measuring Machine.

    Science.gov (United States)

    Revilla-León, Marta; Gonzalez-Martín, Óscar; Pérez López, Javier; Sánchez-Rubio, José Luis; Özcan, Mutlu

    2017-11-17

    To compare the accuracy of implant analog positions on complete edentulous maxillary casts made of either dental stone or additive manufactured polymers using a coordinate measuring machine (CMM). A completely edentulous maxillary model of a patient with 7 implant analogs was obtained. From this model, two types of casts were duplicated, namely conventional dental stone (CDS) using a custom tray impression technique after splinting (N = 5) and polymer cast using additive manufacturing based on the STL file generated. Polymer casts (N = 20; n = 5 per group) were fabricated using 4 different additive manufacturing technologies (multijet printing-MJP1, direct light processing-DLP, stereolithography-SLA, multijet printing-MJP2). CMM was used to measure the correct position of each implant, and distortion was calculated for each system at x-, y-, and z-axes. Measurements were repeated 3 times per specimen in each axis yielding a total of 546 measurements. Data were analyzed using ANOVA, Sheffé tests, and Bonferroni correction (α = 0.05). Compared to CMM, the mean distortion (μm) ranged from 22.7 to 74.9, 23.4 to 49.1, and 11.0 to 85.8 in the x-, y-, and z-axes, respectively. CDS method (x-axis: 37.1; z-axis: 27.62) showed a significant difference compared to DLP on the x-axis (22.7) (p = 0.037) and to MJP1 on the z-axis (11.0) (p = 0.003). Regardless of the cast system, x-axes showed more distortion (42.6) compared to y- (34.6) and z-axes (35.97). Among additive manufacturing technologies, MJP2 presented the highest (64.3 ± 83.6), and MJP1 (21.57 ± 16.3) and DLP (27.07 ± 20.23) the lowest distortion, which was not significantly different from CDS (32.3 ± 22.73) (p > 0.05). For the fabrication of the definitive casts for implant prostheses, one of the multijet printing systems and direct light processing additive manufacturing technologies showed similar results to conventional dental stone. Conventional dental stone casts could be accurately duplicated using some

  11. Three PbII coordination polymers based on 2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid: Syntheses, crystal structures, and fluorescent properties

    International Nuclear Information System (INIS)

    Yu, Xiao-Yang; Xin, Rui; Gao, Wei-Ping; Wang, Na; Zhang, Xiao; Yang, Yan-Yan; Qu, Xiao-Shu

    2013-01-01

    Three lead coordination polymers, [PbCl(C 10 H 6 N 3 O 4 )(H 2 O)·H 2 O] n (1), [Pb(C 10 H 6 N 3 O 4 ) 2 (H 2 O)] n (2) and [Pb 3 (C 10 H 5 N 3 O 4 ) 3 ] n (3) (C 10 H 7 N 3 O 4 =2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid), have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. In 1, Cl anions connected neighboring wave-like 2D layers, which are constructed with left- and right-handed helical chains, into a 3D network structure with a (6 3 )(6 5 ·8) topology. In 2, Pb cations are linked into a 3D 6 6 network with left- and right-handed helixes by μ 2 -bridging C 10 H 6 N 3 O 4 − ligands. In 3, C 10 H 5 N 3 O 4 2− ligands link Pb 6 O 12 clusters into a 3D (4 12 ·6 3 ) network. Their fluorescent properties were also investigated. - Graphical abstract: Three 3D lead compounds based on 2-(pyridin-2-yl)-1H-imidazole-4,5-dicarboxylic acid have been hydrothermally synthesized. Four new coordination modes of the organic ligand are first reported. Display Omitted - Highlights: • Three new Pb(II) complexes have been synthesized and characterized. • Left- and right-handed helical chains can be found in the 3D networks of 1 and 2. • Pb 6 O 12 clusters are connected into (4 12 ·6 3 ) network in 3

  12. A two-dimensional CdII coordination polymer: poly[diaqua[μ3-5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylato-κ5O2:O3:O3,N4,N5]cadmium

    Directory of Open Access Journals (Sweden)

    Monserrat Alfonso

    2016-09-01

    Full Text Available The reaction of 5,6-bis(pyridin-2-ylpyrazine-2,3-dicarboxylic acid with cadmium dichloride leads to the formation of the title two-dimensional coordination polymer, [Cd(C16H8N4O4(H2O2]n. The metal atom is sevenfold coordinated by one pyrazine and one pyridine N atom, two water O atoms, and by two carboxylate O atoms, one of which bridges two CdII atoms to form a Cd2O2 unit situated about a centre of inversion. Hence, the ligand coordinates to the cadmium atom in an N,N′,O-tridentate and an O-monodentate manner. Within the polymer network, there are a number of O—H...O hydrogen bonds present, involving the water molecules and the carboxylate O atoms. There are also C—H...N and C—H...O hydrogen bonds present. In the crystal, the polymer networks lie parallel to the bc plane. They are aligned back-to-back along the a axis with the non-coordinating pyridine rings directed into the space between the networks.

  13. Polymer Solar Cells – Non Toxic Processing and Stable Polymer Photovoltaic Materials

    DEFF Research Database (Denmark)

    Søndergaard, Roar

    The field of polymer solar cell has experienced enormous progress in the previous years, with efficiencies of small scale devices (~1 mm2) now exceeding 8%. However, if the polymer solar cell is to achieve success as a renewable energy resource, mass production of sufficiently stable and efficient...... and development of more stable materials. The field of polymer solar cells has evolved around the use of toxic and carcinogenic solvents like chloroform, benzene, toluene, chlorobenzene, dichlorobenzene and xylene. As large scale production of organic solar cells is envisaged to production volumes corresponding...... synthesis of polymers carrying water coordinating side chains which allow for processing from semi-aqueous solution. A series of different side chains were synthesized and incorporated into the final polymers as thermocleavable tertiary esters. Using a cleavable side chain induces stability to solar cells...

  14. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana

    2015-04-16

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  15. Thermal conductivity and stability of a three-phase blend of carbon nanotubes, conductive polymer, and silver nanoparticles incorporated into polycarbonate nanocomposites

    KAUST Repository

    Patole, Archana; Ventura, Isaac Aguilar; Lubineau, Gilles

    2015-01-01

    Metallic and non-metallic nanofillers can be used together in the design of polycarbonate (PC) nanocomposites with improved electrical properties. Here, the preparation of three-phase blend (carbon nanotubes (CNT), silver nanoparticles, and conductive polymer) in a two-step process before incorporation in the PC is reported. First, ethylene diamine functionalized multiwall carbon nanotubes (MWCNT-EDA) were decorated with Ag nanoparticles. Next, the Ag-decorated CNTs were coated with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). Due to the high thermal conductivity instrinsic to both metallic and non-metallic phases, it is expected that the thermal properties of the resulting nanocomposite would largely differ from those of pristine PC. We thus investigated in detail how this hybrid conductive blend affected properties such as the glass transition temperature, the thermal stability, and the thermal conductivity of the nanocomposite. It was found that this strategy results in improved thermal conductivity and thermal stability of the material. © 2015 Wiley Periodicals, Inc.

  16. Syntheses and Characterization of New Nickel Coordination Polymers with 4,4’-Dipyridylsulfide. Dynamic Rearrangements of One-Dimensional Chains Responding to External Stimuli: Temperature Variation and Guest Releases/Re-Inclusions

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawaguchi

    2010-08-01

    Full Text Available Crystal structures and dynamic rearrangements of one-dimensional coordination polymers with 4,4'-dipyridylsulfide (dps have been studied. Reaction of Ni(NO32·6H2O with dps in EtOH yielded [Ni(dps2(NO32]·EtOH (1, which had channels filled with guest EtOH molecules among the four Ni(dps2 chains. This coordination polymer reversibly transformed the channel structure responding to temperature variations. Immersion of 1 in m-xylene released guest EtOH molecules to yield a guest-free coordination polymer [Ni(dps2(NO32] (2a, which was also obtained by treatment of Ni(NO32·6H2O with dps in MeOH. On the other hand, removal of the guest molecules from 1 upon heating at 130 °C under reduced pressure produced a guest-free coordination polymer [Ni(dps2(NO32] (2b. Although the 2a and 2b guest-free coordination polymers have the same formula, they showed differences in the assembled structures of the one-dimensional chains. Exposure of 2b to EtOH vapor reproduced 1, while 2a did not convert to 1 in a similar reaction. Reaction of Ni(NO32·6H2O with dps in acetone provided [Ni(dps(NO32(H2O]·Me2CO (4 with no channel structure. When MeOH or acetone was used as a reaction solvent, the [Ni(dps2(NO32]·(guest molecule type coordination polymer ,which was observed in 1, was not formed. Nevertheless, the reaction of Ni(NO32·6H2O with dps in MeOH/acetone mixed solution produced [Ni(dps2(NO32]·0.5(MeOH·acetone (5, which has an isostructural Ni-dps framework to 1.

  17. Formation of Rosette-Shaped Cd(II) Thiolate Coordination Polymer in Aqueous Solution and Conversion to CdS by Calcination

    International Nuclear Information System (INIS)

    Han, Sung June; Lee, Myung Han; Jeon, Young Jin

    2010-01-01

    We have synthesized rosette-shaped Cd-MSA CPs by a reaction between Cd(II) ions and MSA in aqueous solution and calcined the obtained CPs to obtain CdS microstructures. Upon calcination, the morphology of the CPs does not undergo any significant change, but the particle diameter decreases by 74%. This indicates that our strategy can be used for the synthesis of CPs from other metal thiolates as well. We expect this strategy to be suitable for the preparation of important metal chalcogenide nanostructures and microstructures that can be used in future applications. Coordination polymers (CPs) have attracted considerable attention because of their potential applications in gas storage, catalysis, ion exchange, separation, biomedicine, etc. For use in the above mentioned applications, the structure and morphology of these CPs have been controlled by judicious choice of metals, ligands, and reaction conditions. Recently, Oh and coworkers have reported that CPs can be successfully converted into metal oxides by calcination without causing any significant change in their morphology

  18. An efficient p-n heterojunction photocatalyst constructed from a coordination polymer nanoplate and a partically reduced graphene oxide for visible-light hydrogen production.

    Science.gov (United States)

    Xu, Xinxin; Lu, Tingting; Liu, Xiaoxia; Wang, Xiuli

    2015-10-05

    A new p-n heterojunction photocatalyst has been synthesized successfully through chemical-bond-mediated combination of coordination polymer nanoplates (CPNPs) and partially reduced graphene oxide (PRGO) with a simple colloidal blending process. Photocatalytic H2 production by the p-n heterojunction photocatalyst PRGO/CPNP was investigated under visible-light irradiation, which illustrates that PRGO/CPNP exhibits a much higher photocatalytic H2 production rate than neat the CPNPs. The improvement of this photocatalytic property can be attributed to the inner electrical field formed in the p-n heterojunction, which impedes recombination of photogenerated electrons and holes. In PRGO/CPNP, the existence of the p-n heterojunction has been confirmed by electrochemical methods clearly. For PRGO/CPNP, the reductive degree of the PRGO has a great influence on the H2 production rate and an ideal condition to get a PRGO/CPNP photocatalyst with higher performance has been obtained. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. N-donor co-ligands driven two new Co(II)- coordination polymers with bi- and trinuclear units: Crystal structures, and magnetic properties

    Science.gov (United States)

    Zhou, Zhi-Hang; Han, Min-Le; Wu, Ya-Pan; Dong, Wen-Wen; Li, Dong-Sheng; Lu, Jack Y.

    2016-10-01

    Two new Co(II) coordination polymers(CPs), namely [Co2(bpe)2(Hbppc)]n (1) and [Co3(μ3-OH)(bppc)(bpm)(H2O)]·3H2O (2) (H5bppc=biphenyl-2,4,6,3‧,5‧-pentacarboxylic acid, bpe=1,2-bis(4-pyridyl)ethene, bpm=bis(4-pyridyl)amine), have been obtained and characterized by elemental analysis, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), IR spectra and thermogravimetric analysis (TGA). 1 shows a binodal (4,6)-connected fsc net with a (44·610·8)(44·62) topology, while 2 shows a binodal (5,7)-connected 3D network based on trinuclear [Co3(μ3-OH)]5+ units with unusual (3.46.52.6)(32.46.57.65.7) topology. Variable-temperature magnetic susceptibility measurements reveals that complex 1 shows ferromagnetic interactions between the adjacent Co(II) ions, whereas 2 is a antiferromagnetic system.

  20. Selective sensing of two novel coordination polymers based on tris(4-carboxylphenyl)phosphine oxide for organic molecules and Fe3+ and Hg2+ ions

    Science.gov (United States)

    Huo, Liangqin; Zhang, Jie; Gao, Lingling; Wang, Xiaoqing; Fan, Liming; Fang, Kegong; Hu, Tuoping

    2017-12-01

    Two novel coordination polymers, formulated as {[Zn(HTPO)(bib)]·4H2O}n (1), {[Cu3(TPO)2 (bib)3]·2DMF·0.5EtOH·0.5H2O}n (2) (H3TPO = tris(4-carboxylphenyl)phosphine oxide; bib = 1,4-bis(1H-imidazol-4-yl) benzene), have been synthesized under solvothermal method and characterized by single-crystal X-ray diffraction, elemental analysis (EA), IR spectra, thermogravimetric (TG) analysis, powder X-ray diffraction (PXRD). Structural analysis reveals that complex 1 is a 2D 4-connected sheet with an intriguing 2D + 2D→2D network. Complex 2 displays a 3D 3,4-connected net with the point symbol of {103}2{106}3. Furthermore, the photoluminescence properties of 1 and 2 were investigated in the solid state and various solvent emulsions, the results show that 1 and 2 have better fluorescent recognition for organic molecules, Fe3+ and Hg2+ ions.

  1. Three coordination polymers based on a star-like geometry 4, 4', 4'' -nitrilotribenzoic acid ligand and their framework dependent luminescent properties

    Science.gov (United States)

    Hu, Zhiyong; Zhao, Meng; Su, Jian; Xu, Shasha; Hu, Lei; Liu, Hui; Zhang, Qiong; Zhang, Jun; Wu, Jieying; Tian, Yupeng

    2018-02-01

    Three novel coordination polymers, [Zn(μ2-HTCA)(Phen)]n (1), {[Cd(μ3-HTCA)(Phen)]·2H2O}n (2), [Mn(μ2-HTCA)(Phen)(H2O)]n (3) were prepared by hydrothermal synthesis from the 4, 4', 4''-nitrilotribenzoicacid (H3TCA) and 1, 10-phenanthroline monohydrate (Phen) with different transition metal salts, which were characterized by elemental analysis, IR spectra, powder and single-crystal X-ray diffraction and thermogravimetric analysis. The photophysical properties of the complexes were investigated by solid-state diffuse reflectance spectra, photoluminescent properties, lifetime and quantum yield. For these complexes, it was found that the band gaps follow the order: 3 < 2 < 1 < 2.80 eV, fluorescence intensity order: 1 > H3TCA > 2 > 3; quantum yield order: H3TCA > 1 > 2 > 3; while the lifetime order: 1 > 2 > H3TCA > 3.

  2. Solid-Phase Extraction of Hemoglobin from Human Whole Blood with a Coordination-Polymer-Derived Composite Material Based on ZnO and Mesoporous Carbon.

    Science.gov (United States)

    Jia, Yuan; Xu, Xinxin; Ou, Jinzhao; Liu, Xiaoxia

    2017-11-13

    A composite material, ZnO@MC, has been synthesized successfully by calcination using a one-dimensional zinc-based coordination polymer as the precursor. In ZnO@MC, ZnO particles with a size of about 5-8 nm are dispersed evenly in a mesoporous carbon matrix. Adsorption experiments at pH 6.8 with 2 mg ZnO@MC as adsorbent illustrated an adsorption efficiency of 92.3 % in 5 mL hemoglobin (Hb) solution with a concentration of 100 mg L -1 . In contrast, the adsorption of bovine serum albumin can almost be ignored under the same conditions. The selectivity originates from a strong Zn II -histidine interaction between ZnO@MC and hemoglobin. The adsorption behavior of hemoglobin on ZnO@MC fits the Temkin model perfectly with a capacity as high as 11646 mg g -1 . The hemoglobin adsorbed on the composite material can be eluted easily with sodium dodecyl sulfate stripping reagent with an extraction efficiency of 87.7 %. Circular dichroism spectra and protein activity studies suggest the structure and biological activity of hemoglobin is the same before and after the adsorption/desorption experiment. Finally, the ZnO@MC composite material was employed to extract hemoglobin from human whole blood without any pretreatment, and gave a very satisfactory result. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Gamma-radiation induced polymerization of methyl methacrylate in aliphatic hydrocarbons: kinetics and evidence for incorporation of hydrocarbon in the polymer chain

    International Nuclear Information System (INIS)

    Mohan, H.; Iyer, R.M.

    1989-01-01

    On γ-radiolysis, the rate of polymerization of methyl methacrylate in hydrocarbon solvents is observed to decrease. It is explained by hydrocarbon entry into the polymer chains. The hydrocarbon entry into the polymer chains is observed to take place at later stages of polymerization and increases with hydrocarbon chain length. The extent of hydrocarbon entry into the polymer chains is estimated by NMR and GLC analysis. It is observed to be equal to ∼ 12% corresponding to ∼ 97 hexadecane molecules in each polymer chain. The IR, DSC, MW determination and radiation effects on the polymer showed evidences for hydrocarbon entry into the polymer. It is explained by chain transfer from the growing polymer radical to the hydrocarbon molecules. The chain transfer constant is determined to be equal to 1 x 10 -2 . (author)

  4. A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710127 (China); College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Bai, Chao [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710127 (China); Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710127 (China); Yuan, Fei; Xue, Gang-Lin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi' an 710127 (China)

    2017-05-15

    Eight Zn(II)-based coordination polymers, namely, [Zn{sub 2}L{sub 2}(2,2’-bipy)]{sub n}·nH{sub 2}O (1), [Zn{sub 2}L{sub 2}(phen)]{sub n}·nH{sub 2}O (2), [ZnL(phen)(H{sub 2}O)]{sub n} (3), [Zn{sub 3}L{sub 3}(4,4’-bipy)]{sub n} (4), [Zn{sub 2}L{sub 2}(4,4’-bipy){sub 2}]{sub n} [Zn{sub 2}L{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (5), [Zn{sub 4}L{sub 4}(bpp){sub 2}]{sub n} (6), [ZnL(bbi){sub 0.5}]{sub n} (7), [ZnL(bpz)]{sub n} (8) (H{sub 2}L=4,4’-([1,2-phenylenebis-(methylene)]bis(oxy))dibenzoic acid, 2,2’-bipy =2,2’-bipyridine, phen =1,10-phenanthroline, 4,4’-bpy=4,4’-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3′,5,5′-tetramethyl-4,4′-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1–8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1–8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu{sup 2+} cations and CrO{sub 4}{sup 2-} anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials. - Graphical abstract: Eight new Zn(II)-based coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and different N-donor ligands have been hydrothermally synthesized through fixing the metal salts and the solvent systems. The photoluminescent properties of complexes 1−8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu{sup 2

  5. A family of entangled coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and auxiliary N-donor ligands: Luminescent sensing

    International Nuclear Information System (INIS)

    Wang, Jun; Bai, Chao; Hu, Huai-Ming; Yuan, Fei; Xue, Gang-Lin

    2017-01-01

    Eight Zn(II)-based coordination polymers, namely, [Zn 2 L 2 (2,2’-bipy)] n ·nH 2 O (1), [Zn 2 L 2 (phen)] n ·nH 2 O (2), [ZnL(phen)(H 2 O)] n (3), [Zn 3 L 3 (4,4’-bipy)] n (4), [Zn 2 L 2 (4,4’-bipy) 2 ] n [Zn 2 L 2 (H 2 O) 2 ] n ·2nH 2 O (5), [Zn 4 L 4 (bpp) 2 ] n (6), [ZnL(bbi) 0.5 ] n (7), [ZnL(bpz)] n (8) (H 2 L=4,4’-([1,2-phenylenebis-(methylene)]bis(oxy))dibenzoic acid, 2,2’-bipy =2,2’-bipyridine, phen =1,10-phenanthroline, 4,4’-bpy=4,4’-bipyridine, bpp =1,3-bis(4-pyridyl)propane, bbi=1,4-bis(imidazol-1-yl)butane, bpz=3,3′,5,5′-tetramethyl-4,4′-bipyrazole), have been hydrothermally synthesized and structurally characterized. 1–8 display various coordination motifs with different entangled forms and conformations due to the effect of the assistant N-donor ligands. The photoluminescent properties of compounds 1–8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu 2+ cations and CrO 4 2- anions, as well as detection ability for the different organic solvents and nitro explosives. These results indicated that it could be utilized as a multi-responsive luminescent sensor. Furthermore, compound 3 also shows good chemical resistance to both acidity and alkalinity solutions with pH ranging from 2 to 13. Thus, multi-photofunctionality and fluorescent response to pH have been combined in the 3, which is the first example in the Zn-based hybrid materials. - Graphical abstract: Eight new Zn(II)-based coordination polymers constructed from a flexible V-shaped long bicarboxylic acid and different N-donor ligands have been hydrothermally synthesized through fixing the metal salts and the solvent systems. The photoluminescent properties of complexes 1−8 in solid state were studied. Interestingly, 3 exhibits highly efficient luminescent sensing for Cu 2+ cations and CrO 4 2- anions, as well as detection ability for the different organic solvents and nitro explosives, in which indicates it could be

  6. Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers: Synthesis, luminescence detection of acetone and optical properties

    International Nuclear Information System (INIS)

    Arıcı, Mürsel; Zafer Yeşilel, Okan; Büyükgüngör, Orhan

    2017-01-01

    Four coordination polymers including, [Co(µ-Htbip) 2 (µ-dib)] n (1), [Co(µ-tbip)(µ-dmib) 0.5 ] n (2), [Zn 2 (µ-tbip)(µ 3 -tbip)(µ-dmib) 1.5 ] n (3) and [Cd(µ 3 -tbip)(µ-dib) 0.5 (H 2 O)] n (4) (tbip: 5-tert-butylisophthalate, dib: 1,4-bis(imidazol-1yl)benzene, dmib: 1,4-bis(imidazol-1yl)-2,5-dimethylbenzene), were hydrothermally synthesized and characterized by elemental analysis, IR spectra, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). The structural diversity is observed depending on ligands and coordination number of metal centers in the synthesized complexes. The tbip ligand displayed five different coordination modes in its complexes. In 1 and 2, complex 1 is 3D framework with the dia topology while complex 2 has 2D structure with the sql topology depending on coordination geometries of Co ions. Complex 3 is 3D framework with the fsh 4,6-conn topology and complex 4 has 2D 4-connected sql topology. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Graphical abstract: Four coordination polymers were hydrothermally synthesized and characterized by various techniques. The complexes showed the structural diversity depending on ligands and coordination number of metal centers. The tbip ligand displayed four different coordination modes in its complexes. In 1 and 2, complexes 1 and 2 are 3D and 2D structures with the dia and sql topologies depending on coordination geometries of Co ions, respectively. Complexes 3 and 4 are 3D and 2D structures with the fsh 4,6-conn and sql topology, respectively. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the

  7. Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers: Synthesis, luminescence detection of acetone and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Arıcı, Mürsel, E-mail: marici@ogu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Zafer Yeşilel, Okan [Department of Chemistry, Faculty of Arts and Sciences, Eskişehir Osmangazi University, 26480 Eskişehir (Turkey); Büyükgüngör, Orhan [Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun (Turkey)

    2017-05-15

    Four coordination polymers including, [Co(µ-Htbip){sub 2}(µ-dib)]{sub n} (1), [Co(µ-tbip)(µ-dmib){sub 0.5}]{sub n} (2), [Zn{sub 2}(µ-tbip)(µ{sub 3}-tbip)(µ-dmib){sub 1.5}]{sub n} (3) and [Cd(µ{sub 3}-tbip)(µ-dib){sub 0.5} (H{sub 2}O)]{sub n} (4) (tbip: 5-tert-butylisophthalate, dib: 1,4-bis(imidazol-1yl)benzene, dmib: 1,4-bis(imidazol-1yl)-2,5-dimethylbenzene), were hydrothermally synthesized and characterized by elemental analysis, IR spectra, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). The structural diversity is observed depending on ligands and coordination number of metal centers in the synthesized complexes. The tbip ligand displayed five different coordination modes in its complexes. In 1 and 2, complex 1 is 3D framework with the dia topology while complex 2 has 2D structure with the sql topology depending on coordination geometries of Co ions. Complex 3 is 3D framework with the fsh 4,6-conn topology and complex 4 has 2D 4-connected sql topology. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied. - Graphical abstract: Four coordination polymers were hydrothermally synthesized and characterized by various techniques. The complexes showed the structural diversity depending on ligands and coordination number of metal centers. The tbip ligand displayed four different coordination modes in its complexes. In 1 and 2, complexes 1 and 2 are 3D and 2D structures with the dia and sql topologies depending on coordination geometries of Co ions, respectively. Complexes 3 and 4 are 3D and 2D structures with the fsh 4,6-conn and sql topology, respectively. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in

  8. Thermally activated 3D to 2D structural transformation of [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O flexible coordination polymer

    Energy Technology Data Exchange (ETDEWEB)

    Begović, Nebojša N. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Institute of General and Physical Chemistry, Belgrade (Serbia); Blagojević, Vladimir A. [Faculty of Physical Chemistry, University of Belgrade (Serbia); Ostojić, Sanja B.; Radulović, Aleksandra M. [Institute of General and Physical Chemistry, Belgrade (Serbia); Poleti, Dejan [Faculty of Technology and Metallurgy, University of Belgrade (Serbia); Minić, Dragica M., E-mail: dminic@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade (Serbia); Department of Biomedical Sciences, State University of Novi Pazar (Serbia)

    2015-01-15

    Thermally activated 3D to 2D structural transformation of the binuclear [Ni{sub 2}(en){sub 2}(H{sub 2}O){sub 6}(pyr)]·4H{sub 2}O complex was investigated using a combination of theoretical and experimental methods. Step-wise thermal degradation (dehydration followed by release of ethylene diamine) results in two layered flexible coordination polymer structures. Dehydration process around 365 K results in a conjugated 2D structure with weak interlayer connectivity. It was shown to be a reversible 3D to 2D framework transformation by a guest molecule, and rehydration of the dehydration product occurs at room temperature in saturated water vapor. Rehydrated complex exhibits lower dehydration temperature, due to decreased average crystalline size, with higher surface area resulting in easier release and diffusion of water during dehydration. Thermal degradation of dehydration around 570 K, results in loss of ethylene diamine, producing a related 2D layered polymer structure, without interconnectivity between individual polymer layers. - Highlights: • Reversible 3D to 2D framework topochemical transformation on dehydration around 365 K. • Resulting polymer exhibits 2D layered structure with weak interlayer connectivity. • Dehydration is fully reversible in saturated water vapor at room temperature. • Further degradation around 570 K yields 2D polymer without interlayer connectivity. • 2D polymer exhibits conjugated electronic system.

  9. [Cu.sub.2./sub.(μ-Me.sub.2./sub.N-ba).sub.2./sub.bn)I].sub.n./sub., 1D coordination polymer of copper(I) iodide: synthesis, characterization, and crystal structure

    Czech Academy of Sciences Publication Activity Database

    Khalaji, A.D.; Jafari, K.; Bahramian, B.; Fejfarová, Karla; Dušek, Michal

    2013-01-01

    Roč. 144, č. 11 (2013), s. 1621-1626 ISSN 0026-9247 Grant - others:AV ČR(CZ) AP0701 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : coordination polymer * Schiff base * copper * x-ray diffraction * structure analysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.347, year: 2013

  10. Incorporating Embedded Microporous Layers into Topologically Equivalent Pore Network Models for Oxygen Diffusivity Calculations in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    International Nuclear Information System (INIS)

    Fazeli, Mohammadreza; Hinebaugh, James; Bazylak, Aimy

    2016-01-01

    Highlights: • Pore network model for modeling PEMFC MPL-coated GDL effective diffusivity. • Bilayered GDL (substrate and MPL) is modeled with a hybrid network of block MPL elements combined with discrete substrate pores. • Diffusivities of MPL-coated GDLs agree with analytical solutions. - Abstract: In this work, a voxel-based methodology is introduced for the hybridization of a pore network with interspersed nano-porous material elements allowing pore network based oxygen diffusivity calculations in a 3D image of a polymer electrolyte membrane (PEM) fuel cell gas diffusion layer (GDL) with an embedded microporous layer (MPL). The composite GDL is modeled by combining a hybrid network of block MPL elements with prescribed bulk material properties and a topologically equivalent network of larger discrete pores and throats that are directly derived from the 3D image of the GDL substrate. This hybrid network was incorporated into a pore network model, and effective diffusivity predictions of GDL materials with MPL coatings were obtained. Stochastically generated numerical models of carbon paper substrates with and without MPLs were used, and the pore space was directly extracted from this realistic geometry as the input for the pore network model. The effective diffusion coefficient of MPL-coated GDL materials was predicted from 3D images in a pore network modeling environment without resolving the nano-scale structure of the MPL. This method is particularly useful due to the disparate length scales that are involved when attempting to capture pore-scale transport in the GDL. Validation was performed by comparing our predicted diffusivity values to analytical predictions, and excellent agreement was observed. Upon conducting a mesh sensitivity study, it was determined that an MPL element size of 7 μm provided sufficiently high resolution for accurately describing the MPL nano-structure.

  11. Syntheses, structures and luminescence of three copper(I) cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene ligand

    Science.gov (United States)

    Shao, Min; Li, Ming-Xing; Lu, Li-Ruo; Zhang, Heng-Hua

    2016-09-01

    Three Cu(I)-cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene (tib) ligand, namely [Cu3(CN)3(tib)]n (1), [Cu4(CN)4(tib)]n (2), and [Cu2(CN)2(tib)]n (3), have been prepared and characterized by elemental analysis, IR, PXRD, thermogravimetry and single-crystal X-ray diffraction analysis. Complex 1 displays a 3D metal-organic framework with nanosized pores. Complex 2 is a 3D coordination polymer assembled by three μ2-cyanides and a μ3-cyanide with a very short Cu(I)···Cu(I) metal bond(2.5206 Å). Complex 3 is a 2D coordination polymer constructing from 1D Cu(I)-cyanide zigzag chain and bidentate tib spacer. Three Cu(I) complexes are thermally stable up to 250-350 °C. Complexes 1-3 show similar orange emission band at 602 nm originating from LMCT mechanism.

  12. Effects of π-conjugation attenuation on the photophysics and exciton dynamics of poly(p-phenylenevinylene) polymers incorporating 2,2'-bipyridines

    International Nuclear Information System (INIS)

    Chen, L. X.; Jager, W. J.; Niemczyk, M. P.; Wasielewski, M. R.

    1999-01-01

    The effect of π-conjugation attenuation on the photophysics and exciton dynamics of two conjugated polymers 1 and 2 are examined in solution. The structures of polymers 1 and 2 have 2,2'-bipyridyl-5-vinylene units that alternate with one and three 2,5-bis(n-decyloxy)-1,4-phenylenevinylene monomer units, respectively. The photophysics and exciton dynamics of polymers 1 and 2 were compared to those of the homopolymer, poly(2,5-bis(2'-ethylhexyloxy)-1,4-phenylenevinylene) (BEH-PPV). A series of changes in the photophysics of polymers 1 and 2 were found as a result of π-conjugation attenuation. These changes include blue shifts in absorption and emission spectra, spectral diffusion in stimulated emission, enhancement in photoluminescence quantum yields and lifetimes, and increases in photoinduced absorption intensities and lifetimes. These changes are systematically more pronounced in polymer 1 than in polymer 2 and are correlated with π-conjugation attenuation in the polymers due to twisting of the 2,2'-bipyridine groups about the 2,2' single bond. An exciton dynamics model involving an ensemble of initial exciton states localized on oligomeric segments within the polymer with different conjugation lengths is proposed to describe the observed differences between polymers 1 and 2 and BEH-PPV. When the electronic coupling between these segments is strong, the polymer displays characteristics that are close to those of a one-dimensional semiconductor. However, when these couplings are weakened by groups, such as the 2,2'-bipyridine that attenuate π-conjugation, the polymer displays properties of an ensemble of oligomers

  13. Three two-dimensional coordination polymers constructed from transition metals and 2,3-norbornanedicarboxylic acid: Hydrothermal synthesis, crystal structures and photocatalytic properties

    Science.gov (United States)

    Zhang, Jia; Wang, Chong-Chen

    2017-02-01

    Three novel coordination polymers based on transition metals like Co(II), Cu(II) and Mn(II), namely [Co2(bpy)2(nbda)2(H2O)2]·2H2O (denoted as BUC-1), [Cu2(bpy)2(nbda)2(H2O)2]·2H2O (BUC-2), [Mn2(bpy)2(nbda)2(H2O)2]·2H2O (BUC-3), (where bpy = 4,4‧-bipyridine, H2nbda = 2,3-norbornanedicarboxylic acid, BUC = Beijing University of Civil Engineering and Architecture), were synthesized under hydrothermal conditions, and characterized by CNH elemental analyses (EA), Fourier Transform infrared spectroscopy (FTIR), and single crystal X-ray diffraction (SCXRD). BUC 1-3 were isostructural and crystallized in the monoclinic space group C2/c, in which the corresponding metal atoms were linked by typical bidentate bpy ligands into two adjacent 1D [M1(bpy)]n2n+ and [M2(bpy)]n2n+ (M = Co(II), Cu(II), Mn(II)), further joined by versatile nbda2- ligands into 2D [M2(bpy)2(nbda)2]n sheets. Finally, three-dimensional supramolecular frameworks were constructed with the aid of the intermolecular hydrogen bonding interactions. BUC 1-3 exhibited different photocatalytic degradation ability to decompose methylene blue (MB) and methyl orange (MO) under UV light irradiation. Additionally, a possible photocatalytic mechanism HOMO-LUMO was proposed and discussed, which was further confirmed by radicals trapping experiments using isopropanol as radical scavenger.

  14. Design and synthesis of four coordination polymers generated from 2,2'-biquinoline-4,4'-dicarboxylate and aromatic bidentate ligands

    International Nuclear Information System (INIS)

    Ye Junwei; Zhang Ping; Ye Kaiqi; Zhang Hongyu; Jiang Shimei; Ye Ling; Yang Guangdi; Wang Yue

    2006-01-01

    Four coordination polymers [Zn(bqdc)(phen)] n (1), [Zn(bqdc)(bpy)(H 2 O)] n (2), [Mn(bqdc)(bpy)(H 2 O) 2 ] n (3) and [Mn(bqdc)(phen)(H 2 O) 2 ] n (4) (H 2 bqdc=2,2'-biquinoline-4,4'-dicarboxylic acid, phen=1,10-phenanthroline and bpy=2,2'-bipyridyl) have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction. Crystal data for 1: monoclinic system, C2/c, a=14.141(3)A, b=10.021(2)A, c=18.511(4)A, β=103.78(3) o , V=2547.6(9)A 3 , Z=4. Crystal data for 2: monoclinic system, p2 1 /n, a=13.656(3)A, b=10.015(2)A, c=19.127(4)A, β=107.13(7) o , V=2500.1(9)A 3 , Z=4. Crystal data for 3: monoclinic system, C2/c, a=14.5050(8)A, b=15.1932(8)A, c=12.7549(6)A, β=116.8010(11) o , V=2508.9(2)A 3 , Z=4. Crystal data for 4: monoclinic system, C2/c, a=14.1732(17)A, b=16.115(3)A, c=12.809(3)A, β=117.04(3) o , V=2605.7(8)A 3 , Z=4. Single helix-like chains exist in 1. The supramolecular structure of 1 exhibits extended two-dimensional network while 2-4 display extended three-dimensional architectures based on interchain hydrogen bonding and π-π interactions. Compounds 1 and 2 show blue photoluminescence under UV light suggesting that they may be employed to develop luminescent materials. Compounds 3 and 4 show interesting magnetic behaviors

  15. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands

    International Nuclear Information System (INIS)

    Wang, Chao; Zhao, Jun; Xia, Liang; Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan

    2016-01-01

    Three new coordination polymers, namely, {[Ni(H 2 L)(bix)(H 2 O) 2 ]·2h 2 O} n (1), {[Ni(HL)(Hdpa)(H 2 O) 2 ]·H 2 O} n (2), {[Ni(L) 0.5 (bpp)(H 2 O)]·H 2 O} n (3) (H 4 L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H 4 L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6 6 -dia-type framework with H 4 L ligand adopts a μ 2 -bridging mode with two symmetry-related carboxylate groups in μ 1 -η 1 :η 0 monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)] n ribbon chains motif, in which the H 4 L ligand adopts a μ 2 -bridging mode with two carboxylate groups in μ 1 -η 1 :η 1 and μ 1 -η 1 :η 0 monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H 4 L ligand displays a μ 4 -bridging coordination mode. The H 4 L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6 6 -dia net, 1D ribbon chains for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)] n ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled” strategy is significant potential for network design.

  16. Utilization of mixed ligands to construct diverse Ni(II)-coordination polymers based on terphenyl-2,2′,4,4′-tetracarboxylic acid and varied N-donor co-ligands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); Zhao, Jun, E-mail: junzhao08@126.com [College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China); Xia, Liang [College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China); State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002 (China); Wu, Xue-Qian; Wang, Jian-Fang; Dong, Wen-Wen; Wu, Ya-Pan [College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, China Three Gorges University, Yichang 443002 (China)

    2016-06-15

    Three new coordination polymers, namely, {[Ni(H_2L)(bix)(H_2O)_2]·2h_2O}{sub n} (1), {[Ni(HL)(Hdpa)(H_2O)_2]·H_2O}{sub n} (2), {[Ni(L)_0_._5(bpp)(H_2O)]·H_2O}{sub n} (3) (H{sub 4}L=terphenyl-2,2′,4,4′-tetracarboxylic acid; bix=1,4-bis(imidazol-1-ylmethyl)benzene; dpa =4,4′-dipyridylamine; bpp=1,3-bis(4-pyridyl)propane), based on rigid H{sub 4}L ligand and different N-donor co-ligands, have been synthesized under hydrothermal conditions. Compound 1 features a 3D 4-connected 6{sup 6}-dia-type framework with H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two symmetry-related carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 0} monodentate mode. Compound 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, in which the H{sub 4}L ligand adopts a μ{sub 2}-bridging mode with two carboxylate groups in μ{sub 1}-η{sup 1}:η{sup 1} and μ{sub 1}-η{sup 1}:η{sup 0} monodentate modes, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology, with H{sub 4}L ligand displays a μ{sub 4}-bridging coordination mode. The H{sub 4}L ligand displays not only different deprotonated forms but also diverse coordination modes and conformations. The structural diversities among 1–3 have been carefully discussed, and the roles of N-donor co-ligands in the self-assembly of coordination polymers have been well documented. - Graphical abstract: Three nickel coordination polymers with different architectures based on mixed ligand system were synthesized and structurally characterized. Topology analyses indicate that 1 shows the 4-connected 6{sup 6}-dia net, 1D ribbon chains for 2 and 3D (4,4)-connected bbf network for 3. Display Omitted - Highlights: • Three Ni-based coordination polymers with distinct features have been prepared. • Compound 1 features a 3D 4-connected 66-dia-type framework, 2 displays a 1D [Ni(HL)(Hdpa)]{sub n} ribbon chains motif, while 3 possesses a (4,4)-connected 3D frameworks with bbf topology. • The “mixed ligand assembled

  17. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    International Nuclear Information System (INIS)

    Jiang Xianrong; Yuan Hongyan; Feng Yunlong

    2012-01-01

    Five Zn(II) and Cd(II) coordination polymers, [Zn 2 (BOABA)(bpp)(OH)]·0.5H 2 O (1), [Cd 3 (BOABA) 2 (bpp) 2 (H 2 O) 6 ]·2H 2 O (2), [Cd 3 (BOABA) 2 (2,2′-bipy) 3 (H 2 O) 4 ]·5.5H 2 O (3), [CdNa(BOABA)(H 2 O)] 2 ·H 2 O (4) and [Cd 2 (BOABA)(bimb)Cl(H 2 O) 2 ]·H 2 O (5) (H 3 BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2′-bipy=2,2′-bipyridine, bimb=1,4-bis(imidazol-1′-yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2′-bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {Cd 2 Na 2 } clusters and BOABA 3– ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {Cd 4 Cl 2 } clusters and BOABA 3– ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d 10 metal(II) coordination polymers based on H 3 BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: ► Five d 10 metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. ► The polymers were structurally characterized by single-crystal X-ray diffraction. ► Polymers 1–5 display different topological structures. ► They show strong fluorescent emission bands in the solid state.

  18. Binuclear and tetranuclear Mn(II) clusters in coordination polymers derived from semirigid tetracarboxylate and N‑donor ligands: syntheses, new topology structures and magnetism

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiao-Ling [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Liu, Guang-Zhen, E-mail: gzliuly@126.com [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Xin, Ling-Yun [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Wang, Li-Ya [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang, Henan 473061 (China)

    2017-02-15

    Two topologically new Mn(II) coordination polymers, namely ([Mn{sub 2}(H{sub 4}ipca)(4,4′-bpy){sub 1.5}(CH{sub 3}CH{sub 2}OH){sub 0.5}(H{sub 2}O){sub 1.5}]·0.5CH{sub 3}CH{sub 2}OH·2.5H{sub 2}O){sub n} (1) and (Mn{sub 4}(H{sub 4}ipca){sub 2}(bze)(H{sub 2}O){sub 4}){sub n} (2) were prepared by the solvothermal reactions of Mn(II) acetate with 5-(2’,3’-dicarboxylphenoxy)isophthalic acid (H{sub 4}ipca) in the presence of different N-donor coligands (4,4′-bpy=4,4′-bipyridyl and bze=1, 4-bis(1-imidazoly)benzene). The single crystal X-ray diffractions reveal that two complexes display 3D metal-organic frameworks with binuclear and tetranuclear Mn(II) units, respectively. Complex 1 features a (3,4,6)-connected porous framework based on dinuclear Mn(II) unit with the (4.5{sup 2}){sub 2}(4{sup 2}.6{sup 8}.8{sup 3}.9{sup 2})(5{sup 2}.8.9{sup 2}.10) new topology, and complex 2 possesses a (3,8)-connected network based on tetranuclear Mn(II) unit with the (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 14}.7{sup 7}.8{sup 2}.9) new topology. Magnetic analyses indicate that both two compounds show weak antiferromagnetic interactions within binuclear and tetranuclear Mn(II) units. - Graphical abstract: Two topologically new Mn(II) metal-organic frameworks with dinuclear and tetranuclear Mn(II) units respectively were assembled by using 5-(2′,3′-Dicarboxylphenoxy)isophthalic acid and N-donor ancillary coligands. Magnetic analysis revealed the existence of dominant antiferromagnetic interactions within the polynuclear Mn(II) units. - Highlights: • Mixed ligand strategy produces two topologically new MOFs with dinuclear and tetranuclear Mn(II) respectively. • Magnetic fitting gives weak antiferromagnetic interactions within the polynuclear Mn(II) units.

  19. Single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers: Reactant- and stoichiometry-dependent syntheses, effective photocatalytic properties

    International Nuclear Information System (INIS)

    Zhang, Jinfang; Wang, Chao; Wang, Yinlin; Chen, Weitao; Cifuentes, Marie P.; Humphrey, Mark G.; Zhang, Chi

    2015-01-01

    The systematic study on the reaction variables affecting single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers (CPs) is firstly demonstrated. Five anionic single cyanide-bridged Mo(W)/S/Cu cluster-based CPs {[Pr_4N][WS_4Cu_3(CN)_2]}_n (1), {[Pr_4N][WS_4Cu_4(CN)_3]}_n (2), {[Pr_4N][WOS_3Cu_3(CN)_2]}_n (3), {[Bu_4N][WOS_3Cu_3(CN)_2]}_n (4) and {[Bu_4N][MoOS_3Cu_3(CN)_2]}_n (5) were prepared by varying the molar ratios of the starting materials, and the specific cations, cluster building blocks and central metal atoms in the cluster building blocks. 1 possesses an anionic 3D diamondoid framework constructed from 4-connected T-shaped clusters [WS_4Cu_3]"+ and single CN"− bridges. 2 is fabricated from 6-connected planar ‘open’ clusters [WS_4Cu_4]"2"+ and single CN"− bridges, forming an anionic 3D architecture with an “ACS” topology. 3 and 4 exhibit novel anionic 2-D double-layer networks, both constructed from nest-shaped clusters [WOS_3Cu_3]"+ linked by single CN"− bridges, but containing the different cations [Pr_4N]"+ and [Bu_4N]"+, respectively. 5 is constructed from nest-shaped clusters [MoOS_3Cu_3]"+ and single CN"− bridges, with an anionic 3D diamondoid framework. The anionic frameworks of 1-5, all sustained by single CN"− bridges, are non-interpenetrating and exhibit huge potential void volumes. Employing differing molar ratios of the reactants and varying the cluster building blocks resulted in differing single cyanide-bridged Mo(W)/S/Cu cluster-based CPs, while replacing the cation ([Pr_4N]"+ vs. [Bu_4N]"+) was found to have negligible impact on the nature of the architecture. Unexpectedly, replacement of the central metal atom (W vs. Mo) in the cluster building blocks had a pronounced effect on the framework. Furthermore, the photocatalytic activities of heterothiometallic cluster-based CPs were firstly explored by monitoring the photodegradation of methylene blue (MB) under visible light irradiation, which reveals that 2

  20. Redox-active porous coordination polymers prepared by trinuclear heterometallic pivalate linking with the redox-active nickel(II) complex: synthesis, structure, magnetic and redox properties, and electrocatalytic activity in organic compound dehalogenation in heterogeneous medium.

    Science.gov (United States)

    Lytvynenko, A S; Kolotilov, S V; Kiskin, M A; Cador, O; Golhen, S; Aleksandrov, G G; Mishura, A M; Titov, V E; Ouahab, L; Eremenko, I L; Novotortsev, V M

    2014-05-19

    Linking of the trinuclear pivalate fragment Fe2CoO(Piv)6 by the redox-active bridge Ni(L)2 (compound 1; LH is Schiff base from hydrazide of 4-pyridinecarboxylic acid and 2-pyridinecarbaldehyde, Piv(-) = pivalate) led to formation of a new porous coordination polymer (PCP) {Fe2CoO(Piv)6}{Ni(L)2}1.5 (2). X-ray structures of 1 and 2 were determined. A crystal lattice of compound 2 is built from stacked 2D layers; the Ni(L)2 units can be considered as bridges, which bind two Fe2CoO(Piv)6 units. In desolvated form, 2 possesses a porous crystal lattice (SBET = 50 m(2) g(-1), VDR = 0.017 cm(3) g(-1) estimated from N2 sorption at 78 K). At 298 K, 2 absorbed a significant quantity of methanol (up to 0.3 cm(3) g(-1)) and chloroform. Temperature dependence of molar magnetic susceptibility of 2 could be fitted as superposition of χMT of Fe2CoO(Piv)6 and Ni(L)2 units, possible interactions between them were taken into account using molecular field model. In turn, magnetic properties of the Fe2CoO(Piv)6 unit were fitted using two models, one of which directly took into account a spin-orbit coupling of Co(II), and in the second model the spin-orbit coupling of Co(II) was approximated as zero-field splitting. Electrochemical and electrocatalytic properties of 2 were studied by cyclic voltammetry in suspension and compared with electrochemical and electrocatalytic properties of a soluble analogue 1. A catalytic effect was determined by analysis of the catalytic current dependency on concentrations of the substrate. Compound 1 possessed electrocatalytic activity in organic halide dehalogenation, and such activity was preserved for the Ni(L)2 units, incorporated into the framework of 2. In addition, a new property occurred in the case of 2: the catalytic activity of PCP depended on its sorption capacity with respect to the substrate. In contrast to homogeneous catalysts, usage of solid PCPs may allow selectivity due to porous structure and simplify separation of product.

  1. Investigation of the potential of polymer-bound co-ordination compounds as catalysts for the photolytic production of hydrogen from water. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, J M; Clear, J M; Grayson, D H; Johnston, D S; Pepper, D C; Vos, J G

    1981-01-01

    Organic polymers containing polymer-bound complexes of the type (Ru(bpy)/sub 2/(PVP)X)/sup n+/ (n=1, X=Cl; n=2, X=CO,py,H/sub 2/O,PVP) have been prepared. Synthetic routes proceed either from preformed polymer and Ru(bpy)/sub 2/Cl/sub 2/ or (Ru(bpy)/sub 2/(OH/sub 2/)/sub 2/)/sup 2 +/ or via polymerization of the corresponding monomer complex. The dependence of the chemical and physical properties on the nature of the polymer backbone and on the loading of the metal complex on the polymer (the Ru:PVP) ratio has been studied. The complexes prepared from homo-PVP are soluble in methanol and aqueous acid but not in neutral water. Water-soluble complexes may be prepared from water-soluble copolymers. (Ru(bpy)/sub 2/(PVP)Cl)/sup +/ and (Ru(bpy)/sub 2/(PVP)/sub 2/)/sup 2 +/ luminesce strongly in methanol at 77/sup 0/K but not at room temperature. Their behavior upon irradiation in methanol solution is similar to that of the pyridine complexes (Ru(bpy)/sub 2/(py)X)/sup n+/ which undergo photosubstitution and photoanation. The rate and extent of these reactions, which eventually lead to removal of the complex from the polymer backbone, are sensitive to the Ru:PVP ratio, and evidence has been found for intrachain recombination of the (Ru(bpy)/sub 2/X)/sup n+/ fragment with the polymer. This leads to enhanced photostability of the polymer. The water-soluble (Ru(bpy)/sub 2/(PVP)(OH/sub 2/))/sup 2 +/ is rather photostable. Water-insoluble films of the polymeric complexes may be cast on glass slides. Under these conditions they are luminescent at room temperature. They are quite photostable upon irradiation, even in water, and there is little tendency for dissociation of the metal complex from the polymer.

  2. Zn(II) coordination polymer of an in situ generated 4-pyridyl (4Py) attached bis(amido)phosphate ligand, [PO2(NH4Py)2]- showing preferential water uptake over aliphatic alcohols.

    Science.gov (United States)

    Gupta, Arvind K; Nagarkar, Sanjog S; Boomishankar, Ramamoorthy

    2013-08-14

    Two polymorphic 2D-coordination polymers of composition [ZnL(HCO2)]∞ were synthesized from an in situ generated ligand [PO2(NH(4)Py)2](-) (L(-)). The ligand L(-) was generated by a facile metal-assisted P-N bond hydrolysis reaction from the corresponding phosphonium salt 1, [P(NH(4)Py)4]Cl, or from the neutral phosphoric triamide 2, [PO(NH(4)Py)3]. The de-solvated sample of the polymer [ZnL(HCO2)]∞ features polar micropores and shows a type I isotherm for CO2 sorption whereas a type II behaviour was observed for N2. The vapour sorption isotherm of the de-solvated sample of [ZnL(HCO2)]∞ shows preferential adsorption of water vapour over aliphatic alcohols.

  3. Three luminescent d{sup 10} metal coordination polymers assembled from a semirigid V-shaped ligand with high selective detecting of Cu{sup 2+} ion and nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Institute of Functional Materials, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Liu, Ping; Liang, Yu-Tong; Cui, Lin; Xi, Zheng-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Wang, Yao-Yu, E-mail: wyaoyu@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China)

    2015-08-15

    Three 2D luminescent coordination polymers with helical frameworks, [ZnL{sub 2}]{sub n} (1) and ([ML{sub 2}]·(H{sub 2}O)){sub n} (M=Zn (2), Cd (3)) (HL=4-((2-methyl-1 H-imidazol-1-yl)methyl)benzoic acid), have been assembled under hydro(solvo)thermal conditions. Complex 1 is in chiral space group and displays a rare 2D→2D 2-fold parallel interpenetrated layer network with two types of chiral double helixes. Interestingly, the single crystal structure analyses indicate the coexistence of enantiomers la and 1b in one pot, while the bulk crystallization of 1 are racemic mixtures based on the CD measurement. 2 and 3 are isostructural, in the structure, there are two kinds of 2D chiral helical-layers which stack in an -ABAB- sequence leading to the overall structure are mesomer and achiral. All compounds display intense luminescence in solid state at room temperature with high chemical and thermal stability. More importantly, 1 has been successfully applied in the detection of Cu{sup 2+} ions in aqueous media and nitrobenzene and the probable detecting mechanism was also discussed. - Graphical abstract: Three luminescent d{sup 10} metal coordination polymers with helical-layer based on 4-((2-methyl-1H-imidazol-1-yl)methyl)benzoic acid have been obtained. Compound 1 shows high selective detecting for Cu{sup 2+} ion in aqueous and nitrobenzene. - Highlights: • Three coordination polymers with chiral helical-layer have been obtained. • 1 Can luminescent detect Cu{sup 2+} ion in aqueous media and nitrobenzene. • Racemic mixture or mesomer compounds can be obtained by controlling the reaction conditions.

  4. Toward a Novel Strategy for Magnetic–Resonance Molecular Imaging and Therapy of Tumor Angiogenesis: Nickel Superparamagnetic Nanoparticles Incorporated into Radiation-Functionalized Polymer Nano-Carriers

    Energy Technology Data Exchange (ETDEWEB)

    Rizza, G.; Clochard, M. C.; Berthelot, T. [Laboratoire des Solides Irradiés, Ecole Polytechnique, Palaiseau Cedex (France)

    2009-07-01

    The more recent research activity of the Irradiated Polymers team focused mainly on nanostructures membranes for nanofiltration and nanofluidic systems in biomedical and energy fields. The so called track-etched membranes were made by chemical revealing of tracks induced from swift heavy ions irradiations in collaboration with the CIRIL laboratory (GANIL, France). The background experience of the tem about electron-polymer interaction allowed us to predict the behavior of the radio-induced grafting, namely radografting, inside ion-tracks. It was the necessary to adapt our detection tools to chemical modification of picomole range and to nanometer scale architecture of these membranes. Consequently, we resorted to the use of high-cost techniques such as small angle neutron scattering to be able to characterize accurately polymer membrane nanopores. In parallel, more accessible techniques like gas permeation have been developed for a rapid evaluation of nanopore radii. The labeling of introduced chemical functionalities with fluorescent probes was a very effective mean to visualize very few amounts of molecules by confocal microscopy and to localize, for the first time, the radiografting inside theetched tracks. The study of such nanostructures has enlarged our perspectives and collaborations. Indeed, it pushed us to electrodeposite metallic nanowires and to create conductive polymer nanotubes to study the conduction in nanochannels of such systems (Biosensors and optoelectronic applications) and to study the ionic conduction in nano-channels filled of hydrogen (Polymer Electrolyte Membrane Fuel Cell application). More recently, since January 2007, we are developing a subject on another kind of polylmer device on which we are applying our known-how in radiografting. It is about the functionalized fluoropolymer nanoparticles for medical imaging. In the following, I describe in more details some of the recent works being carried out at our laboratory on the irradiated

  5. Toward a Novel Strategy for Magnetic–Resonance Molecular Imaging and Therapy of Tumor Angiogenesis: Nickel Superparamagnetic Nanoparticles Incorporated into Radiation-Functionalized Polymer Nano-Carriers

    International Nuclear Information System (INIS)

    Rizza, G.; Clochard, M.C.; Berthelot, T.

    2009-01-01

    The more recent research activity of the Irradiated Polymers team focused mainly on nanostructures membranes for nanofiltration and nanofluidic systems in biomedical and energy fields. The so called track-etched membranes were made by chemical revealing of tracks induced from swift heavy ions irradiations in collaboration with the CIRIL laboratory (GANIL, France). The background experience of the tem about electron-polymer interaction allowed us to predict the behavior of the radio-induced grafting, namely radografting, inside ion-tracks. It was the necessary to adapt our detection tools to chemical modification of picomole range and to nanometer scale architecture of these membranes. Consequently, we resorted to the use of high-cost techniques such as small angle neutron scattering to be able to characterize accurately polymer membrane nanopores. In parallel, more accessible techniques like gas permeation have been developed for a rapid evaluation of nanopore radii. The labeling of introduced chemical functionalities with fluorescent probes was a very effective mean to visualize very few amounts of molecules by confocal microscopy and to localize, for the first time, the radiografting inside theetched tracks. The study of such nanostructures has enlarged our perspectives and collaborations. Indeed, it pushed us to electrodeposite metallic nanowires and to create conductive polymer nanotubes to study the conduction in nanochannels of such systems (Biosensors and optoelectronic applications) and to study the ionic conduction in nano-channels filled of hydrogen (Polymer Electrolyte Membrane Fuel Cell application). More recently, since January 2007, we are developing a subject on another kind of polylmer device on which we are applying our known-how in radiografting. It is about the functionalized fluoropolymer nanoparticles for medical imaging. In the following, I describe in more details some of the recent works being carried out at our laboratory on the irradiated

  6. A detailed study on the interaction of a novel water-soluble glycine bridged zinc(II) Schiff base coordination polymer with BSA: synthesis, crystal structure, molecular docking and cytotoxicity effect against A549, Jurkat and Raji cell lines

    Czech Academy of Sciences Publication Activity Database

    Asadi, Z.; Golchin, M.; Eigner, Václav; Dušek, Michal; Amirghofran, Z.

    2017-01-01

    Roč. 465, Aug (2017), s. 50-60 ISSN 0020-1693 R&D Projects: GA MŠk LO1603; GA ČR(CZ) GA14-03276S EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : water-soluble * coordination polymer * BSA * docking study * anticancer activity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.002, year: 2016

  7. Construction of Six Coordination Polymers Based on a 5,5′-(1,2-Ethynyl)bis-1,3-benzenedicarboxylic Ligand: Synthesis, Structure, Gas Sorption, and Magnetic Properties

    KAUST Repository

    Zheng, Bing; Luo, Jiahuan; Wang, Fang; Peng, Yu; Li, Guanghua; Huo, Qisheng; Liu, Yunling

    2013-01-01

    Six novel coordination polymers based on a multifunctional ligand, 5,5'-(1,2-ethynyl)bis-1,3-benzenedicarboxylic (H4EBDC), namely, |(C3H7NO)2(H2O)7(C 2H5OH)3| [Zn2(C18H 6O8)(C10H8N2) 2] (1), |(C3H7NO)3(H2O)30- (CH3CN)2|[Zn 6(C18H6O8)3(C 6H12N2O2)2

  8. Synthesis, crystal structure, and magnetic properties of two-dimensional divalent metal glutarate/dipyridylamine coordination polymers, with a single crystal-to-single crystal transformation in the copper derivative

    International Nuclear Information System (INIS)

    Montney, Matthew R.; Supkowski, Ronald M.; Staples, Richard J.; LaDuca, Robert L.

    2009-01-01

    Hydrothermal reaction of divalent metal chlorides with glutaric acid and 4,4'-dipyridylamine (dpa) has afforded an isostructural family of coordination polymers with formulation [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate). Square pyramidal coordination is seen in 1-3, with semi-ligation of a sixth donor to produce a '5+1' extended coordination sphere. Neighboring metal atoms are linked into 1D [M(glu)] n neutral chains through chelating/monodentate bridging glutarate moieties with a syn-anti binding mode, and semi-chelation of the pendant carboxylate oxygen. These chains further connect into 2D layers through dipodal dpa ligands. Neighboring layers stack into the pseudo 3D crystal structure of 1-3 through supramolecular hydrogen bonding between dpa amine units and the semi-chelated glutarate oxygen atoms. The variable temperature magnetic behavior of 1-3 was explored and modeled as infinite 1D Heisenberg chains. Notably, complex 3 undergoes a thermally induced single crystal-to-single crystal transformation between centric and acentric space groups, with a conformationally disordered unilayer structure at 293 K and an ordered bilayer structure at 173 K. All materials were further characterized via infrared spectroscopy and elemental and thermogravimetric analyses. - Graphical abstract: The coordination polymers [M(glu)(dpa)] n (M=Co (1), Ni (2), Cu (3); glu=glutarate, dpa=4,4'-dipyridylamine) exhibit 2D layer structures based on 1D [M(glu)] n chains linked through dpa tethers. Antiferromagnetic coupling is observed for 2 and 3, while ferromagnetism is predominant in 1. Compound 3 undergoes a thermally induced single crystal-to-single crystal transformation from an acentric to a centrosymmetric space group

  9. Four coordination polymers based on 5-tert-butyl isophthalic acid and rigid bis(imidazol-1yl)benzene linkers: Synthesis, luminescence detection of acetone and optical properties

    Science.gov (United States)

    Arıcı, Mürsel; Zafer Yeşilel, Okan; Büyükgüngör, Orhan

    2017-05-01

    Four coordination polymers including, [Co(μ-Htbip)2(μ-dib)]n (1), [Co(μ-tbip)(μ-dmib)0.5]n (2), [Zn2(μ-tbip)(μ3-tbip)(μ-dmib)1.5]n (3) and [Cd(μ3-tbip)(μ-dib)0.5 (H2O)]n (4) (tbip: 5-tert-butylisophthalate, dib: 1,4-bis(imidazol-1yl)benzene, dmib: 1,4-bis(imidazol-1yl)-2,5-dimethylbenzene), were hydrothermally synthesized and characterized by elemental analysis, IR spectra, single crystal and powder X-ray diffraction and thermal analysis (TG/DTA). The structural diversity is observed depending on ligands and coordination number of metal centers in the synthesized complexes. The tbip ligand displayed five different coordination modes in its complexes. In 1 and 2, complex 1 is 3D framework with the dia topology while complex 2 has 2D structure with the sql topology depending on coordination geometries of Co ions. Complex 3 is 3D framework with the fsh 4,6-conn topology and complex 4 has 2D 4-connected sql topology. Photoluminescent properties of complex 3 dispersed in various organic solvents were investigated and the results showed that 3 dispersed in methanol could be used as a fluorescent sensor for the detection of acetone. Moreover, thermal and optical properties of the complexes were also studied.

  10. Single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers: Reactant- and stoichiometry-dependent syntheses, effective photocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinfang, E-mail: zjf260@jiangnan.edu.cn [China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Wang, Chao [China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Wang, Yinlin; Chen, Weitao [China-Australia Joint Research Center for Functional Molecular Materials, Scientific Research Academy, Jiangsu University, Zhenjiang 212013 (China); Cifuentes, Marie P.; Humphrey, Mark G. [Research School of Chemistry, Australian National University, Canberra ACT 0200 (Australia); Zhang, Chi, E-mail: chizhang@jiangnan.edu.cn [China-Australia Joint Research Center for Functional Molecular Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-11-15

    The systematic study on the reaction variables affecting single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers (CPs) is firstly demonstrated. Five anionic single cyanide-bridged Mo(W)/S/Cu cluster-based CPs {[Pr_4N][WS_4Cu_3(CN)_2]}{sub n} (1), {[Pr_4N][WS_4Cu_4(CN)_3]}{sub n} (2), {[Pr_4N][WOS_3Cu_3(CN)_2]}{sub n} (3), {[Bu_4N][WOS_3Cu_3(CN)_2]}{sub n} (4) and {[Bu_4N][MoOS_3Cu_3(CN)_2]}{sub n} (5) were prepared by varying the molar ratios of the starting materials, and the specific cations, cluster building blocks and central metal atoms in the cluster building blocks. 1 possesses an anionic 3D diamondoid framework constructed from 4-connected T-shaped clusters [WS{sub 4}Cu{sub 3}]{sup +} and single CN{sup −} bridges. 2 is fabricated from 6-connected planar ‘open’ clusters [WS{sub 4}Cu{sub 4}]{sup 2+} and single CN{sup −} bridges, forming an anionic 3D architecture with an “ACS” topology. 3 and 4 exhibit novel anionic 2-D double-layer networks, both constructed from nest-shaped clusters [WOS{sub 3}Cu{sub 3}]{sup +} linked by single CN{sup −} bridges, but containing the different cations [Pr{sub 4}N]{sup +} and [Bu{sub 4}N]{sup +}, respectively. 5 is constructed from nest-shaped clusters [MoOS{sub 3}Cu{sub 3}]{sup +} and single CN{sup −} bridges, with an anionic 3D diamondoid framework. The anionic frameworks of 1-5, all sustained by single CN{sup −} bridges, are non-interpenetrating and exhibit huge potential void volumes. Employing differing molar ratios of the reactants and varying the cluster building blocks resulted in differing single cyanide-bridged Mo(W)/S/Cu cluster-based CPs, while replacing the cation ([Pr{sub 4}N]{sup +} vs. [Bu{sub 4}N]{sup +}) was found to have negligible impact on the nature of the architecture. Unexpectedly, replacement of the central metal atom (W vs. Mo) in the cluster building blocks had a pronounced effect on the framework. Furthermore, the photocatalytic activities of heterothiometallic

  11. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R., E-mail: jrgm@uniovi.es; García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  12. Rethinking Sensitized Luminescence in Lanthanide Coordination Polymers and MOFs: Band Sensitization and Water Enhanced Eu Luminescence in [Ln(C15H9O5)3(H2O)3]n (Ln = Eu, Tb).

    Science.gov (United States)

    Einkauf, Jeffrey D; Kelley, Tanya T; Chan, Benny C; de Lill, Daniel T

    2016-08-15

    A coordination polymer [Ln(C15H9O9)3(H2O)3]n (1-Ln = Eu(III), Tb(III)) assembled from benzophenonedicarboxylate was synthesized and characterized. The organic component is shown to sensitize lanthanide-based emission in both compounds, with quantum yields of 36% (Eu) and 6% (Tb). Luminescence of lanthanide coordination polymers is currently described from a molecular approach. This methodology fails to explain the luminescence of this system. It was found that the band structure of the organic component rather than the molecular triplet state was able to explain the observed luminescence. Deuterated (Ln(C15H9O9)3(D2O)3) and dehydrated (Ln(C15H9O9)3) analogues were also studied. When bound H2O was replaced by D2O, lifetime and emission increased as expected. Upon dehydration, lifetimes increased again, but emission of 1-Eu unexpectedly decreased. This reduction is reasoned through an unprecedented enhancement effect of the compound's luminescence by the OH/OD oscillators in the organic-to-Eu(III) energy transfer process.

  13. A series of Zn/Cd coordination polymers constructed from 1,4-naphthalenedicarboxylate and N-donor ligands: Syntheses, structures and luminescence sensing of Cr{sup 3+} in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dong-Cheng [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063 (China); Fan, Yan; Si, Chang-Dai; Wu, Ya-Jun; Dong, Xiu-Yan; Yang, Yun-Xia; Yao, Xiao-Qiang [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu, Jia-Cheng, E-mail: jcliu8@nwnu.edu.cn [College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2016-09-15

    A novel series of Zn/Cd coordination polymers based on H{sub 3}L, namely, [Zn{sub 2}(HL){sub 2}(bipy){sub 2}(H{sub 2}O){sub 6}]{sub n} (1), [Zn(HL)(phen)]{sub n} (2), [Cd{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (3), [Zn{sub 3}L{sub 2}(bbi){sub 3}]{sub n} (4) [(H{sub 3}L =4-[(1-carboxynaphthalen-2-yl)oxy]phthalic acid, bipy =4,4′-bipyridine, phen =1,10-phenanthroline, bbi =1,1′-(1,4-butanediyl)bis(imidazole] have been successfully synthesized by solvothermal reaction. Compound 1 possesses two diverse 1D chains constructed by different bipy coligands, which were further connected to form a 3D supramolecular architecture by hydrogen bonding interactions. Compound 2 possesses a complicated 1D chain based on secondary building unit (SBU) with binuclear Zn cluster. Compounds 3 and 4 exhibit similar 2D→3D framework, which can be rationalized as (3,4,4)-connected 3D net with a Schläfli symbol of (6{sup 3}.8.10{sup 2}){sub 2}(6{sup 3}){sub 2}(6{sup 4}.8.10). In particular, compound 3 exhibited a high sensitivity for Cr{sup 3+} in aqueous solutions, which suggest that compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+}. - Graphical abstract: A series of novel Zn/Cd coordination polymers have been successfully synthesized by solvothermal reaction. The unique 3D Cd{sup 2+} polymer containing bbi as second ligand demonstrates high sensitivity for detection of toxic Cr{sup 3+} in aqueous solutions. Display Omitted - Highlights: • π-conjugated semirigid tricarboxylate ligands with naphthalene rings(H{sub 3}L) were rationally designed. • Four Zn/Cd coordination polymers based on H{sub 3}L have been successfully synthesized by solvothermal reaction. • Compound 3 is a promising luminescent probe for selectively sensing Cr{sup 3+} with high sensitivity in aqueous solutions.

  14. Preliminary investigation of the NMR, optical and x-ray CT dose-response of polymer gel dosimeters incorporating cosolvents to improve dose sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Koeva, V I; McAuley, K B [Department of Chemical Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Olding, T [Department of Physics, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Jirasek, A [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Schreiner, L J [Cancer Centre of Southeastern Ontario, Kingston, ON, K7L5P9 (Canada)], E-mail: kim.mcauley@chee.queensu.ca

    2009-05-07

    This study reports on efforts to increase the dose sensitivity of polymer gel dosimeters used in 3D radiation dosimetry. The potential of several different cosolvents is investigated, with the aim of increasing the solubility of N,N'-methylene-bisacrylamide crosslinker in polymer gel dosimeters. Glycerol and isopropanol increase the limit for the crosslinker solubility from approximately 3% to 5% and 10% by weight, respectively. This enables the manufacture of polymer gel dosimeters with much higher levels of crosslinking than was previously possible. New dosimeter recipes containing up to 5 wt% N,N'-methylene-bisacrylamide were subjected to spatially uniform radiation and were studied using nuclear magnetic resonance (NMR), as well as x-ray and optical CT techniques. The resulting dosimeters exhibit dose sensitivities that are up to 2.7 times higher than measured for a typical dosimeters with 3% N,N'-methylene-bisacrylamide without the addition of cosolvent. Two additional cosolvents (n-propanol and sec-butanol) were deemed unsuitable for practical dosimeters due to incompatibility with gelatin, cloudiness prior to irradiation, and immiscibility with water when large quantities of cosolvent were used. The dosimeters with high N,N'-methylene-bisacrylamide content that used isopropanol or glycerol as cosolvents had high optical clarity prior to irradiation, but did not produce suitable optical CT results for non-uniformly irradiated gels due to polymer development outside of the high dose regions of the pencil beams and significant light scatter. Further experiments are required to determine whether cosolvents can be used to manufacture gels with sufficiently high dose sensitivity for readout using x-ray computed tomography.

  15. Preliminary investigation of the NMR, optical and x-ray CT dose-response of polymer gel dosimeters incorporating cosolvents to improve dose sensitivity

    International Nuclear Information System (INIS)

    Koeva, V I; McAuley, K B; Olding, T; Jirasek, A; Schreiner, L J

    2009-01-01

    This study reports on efforts to increase the dose sensitivity of polymer gel dosimeters used in 3D radiation dosimetry. The potential of several different cosolvents is investigated, with the aim of increasing the solubility of N,N'-methylene-bisacrylamide crosslinker in polymer gel dosimeters. Glycerol and isopropanol increase the limit for the crosslinker solubility from approximately 3% to 5% and 10% by weight, respectively. This enables the manufacture of polymer gel dosimeters with much higher levels of crosslinking than was previously possible. New dosimeter recipes containing up to 5 wt% N,N'-methylene-bisacrylamide were subjected to spatially uniform radiation and were studied using nuclear magnetic resonance (NMR), as well as x-ray and optical CT techniques. The resulting dosimeters exhibit dose sensitivities that are up to 2.7 times higher than measured for a typical dosimeters with 3% N,N'-methylene-bisacrylamide without the addition of cosolvent. Two additional cosolvents (n-propanol and sec-butanol) were deemed unsuitable for practical dosimeters due to incompatibility with gelatin, cloudiness prior to irradiation, and immiscibility with water when large quantities of cosolvent were used. The dosimeters with high N,N'-methylene-bisacrylamide content that used isopropanol or glycerol as cosolvents had high optical clarity prior to irradiation, but did not produce suitable optical CT results for non-uniformly irradiated gels due to polymer development outside of the high dose regions of the pencil beams and significant light scatter. Further experiments are required to determine whether cosolvents can be used to manufacture gels with sufficiently high dose sensitivity for readout using x-ray computed tomography.

  16. Syntheses, structures, electrochemistry and catalytic oxidation degradation of organic dyes of two new coordination polymers derived from Cu(II) and Mn(II) and 1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ming; Mu, Bao; Huang, Ru-Dan, E-mail: huangrd@bit.edu.cn

    2017-02-15

    Two new coordination polymers (CPs), namely, [Cu{sub 2}(ttbz)(H{sub 2}btc){sub 2}(OH)]{sub n} (1) and [Mn(ttbz){sub 2}(H{sub 2}O){sub 2}]{sub n} (2) (Httbz =1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene, H{sub 3}btc =1,3,5-benzenetricarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a (3,5,5,5)-connected 2D layer with a Schläfli symbol of (3·4{sup 2})(3·4{sup 4}0.5{sup 2}0.6{sup 3})(3{sup 2}0.4{sup 4}0.5{sup 2}0.6{sup 2})(3{sup 2}0.4{sup 4}0.5{sup 3}0.6), in which the ttbz{sup -} ligand can be described as μ{sub 5}-bridge, linking Cu(II) ions into a 2D layer and H{sub 2}btc{sup -} ions play a supporting role in complex 1. The ttbz{sup -} ligand in complex 2 represents the bridging coordination mode, connecting two Mn(II) ions to form the infinite 1D zigzag chains, respectively, which are further connected by two different types of hydrogen bonds to form a 3D supramolecular. Furthermore, catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated at room temperature in aqueous solutions, indicating these complexes may be applicable to color removal in a textile wastewater stream and practical applications in areas of electrocatalytic reduction toward nitrite, respectively. - Graphical abstract: Two new coordination polymers based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated. - Highlights: • The organic ligand containing the tetrazolyl group and triazolyl group with some advantages has been used. • Two new coordination polymers with different structural characteristics has been discussed in detail. • Catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated.

  17. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C{sub 3}N{sub 4}/TiO{sub 2} photoanode

    Energy Technology Data Exchange (ETDEWEB)

    Senthil, R.A.; Theerthagiri, J. [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Madhavan, J., E-mail: jagan.madhavan@gmail.com [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Murugan, K. [Department of Zoology, Bharathiar University, Coimbatore 641046 (India); Arunachalam, Prabhakarn [Electrochemistry Research Group, Chemistry Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Arof, A.K. [Centre for Ionics University Malaya, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-10-15

    This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I{sub 2}) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C{sub 3}N{sub 4}/TiO{sub 2} composite as photoanode. The g-C{sub 3}N{sub 4} was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C{sub 3}N{sub 4}/TiO{sub 2} composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymer blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C{sub 3}N{sub 4}/TiO{sub 2} composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10{sup −5} and 1.87×10{sup −4} Scm{sup −1} respectively. The UV–vis absorption spectroscopy was carried out for the pure and different wt% of g-C{sub 3}N{sub 4}/TiO{sub 2} composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO{sub 2} (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C{sub 3}N{sub 4}/TiO{sub 2} as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a

  18. Enhanced performance of dye-sensitized solar cells based on organic dopant incorporated PVDF-HFP/PEO polymer blend electrolyte with g-C3N4/TiO2 photoanode

    International Nuclear Information System (INIS)

    Senthil, R.A.; Theerthagiri, J.; Madhavan, J.; Murugan, K.; Arunachalam, Prabhakarn; Arof, A.K.

    2016-01-01

    This work describes the effect of 2-aminopyrimidine (2-APY) on poly(vinylidinefluoride-co-hexafluoropropylene) (PVDF-HFP)/polyethylene oxide (PEO) blend polymer electrolyte along with binary iodide salts (tetrabutylammonium iodide (TBAI) and potassium iodide (KI)) and iodine (I 2 ) were studied for enhancing the efficiency of the dye-sensitized solar cells (DSSCs) consisting of g-C 3 N 4 /TiO 2 composite as photoanode. The g-C 3 N 4 was synthesized from low cost urea by thermal condensation method. It was used as a precursor to synthesize the various weight percentage ratios (5%, 10% and 15%) of g-C 3 N 4 /TiO 2 composites by wet-impregnation method. The pure and 2-APY incorporated PVDF-HFP/PEO polymer blend electrolytes were arranged by wet chemical process (casting method) using DMF as a solvent. The synthesized g-C 3 N 4 /TiO 2 composites and polymer blend electrolytes were studied and analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The ionic conductivity values of the pure and 2-APY incorporated PVDF-HFP/PEO blend electrolytes were estimated to be 4.53×10 −5 and 1.87×10 −4 Scm −1 respectively. The UV–vis absorption spectroscopy was carried out for the pure and different wt% of g-C 3 N 4 /TiO 2 composites coated FTO films after N3 dye-sensitization. The 10 wt% g-C 3 N 4 /TiO 2 composite film showed a maximum absorption compared to the others. The DSSC assembled with 10 wt% g-C 3 N 4 /TiO 2 as photoanode using the pure polymer blend electrolyte exhibited a power conversion efficiency (PCE) of 3.17% , which was superior than that of DSSC based pure TiO 2 (2.46%). However, the PCE was increased to 4.73% for the DSSC assembled using 10 wt% g-C 3 N 4 /TiO 2 as photoanode with 2-APY incorporated polymer blend electrolyte. Hence, the present study is a successful attempt to provide a new pathway to enhance the performance of DSSCs. - Graphical abstract: In this study, the g-C 3 N

  19. Five new Zn(II) and Cd(II) coordination polymers constructed by 3,5-bis-oxyacetate-benzoic acid: Syntheses, crystal structures, network topologies and luminescent properties

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Xianrong; Yuan Hongyan [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China); Feng Yunlong, E-mail: sky37@zjnu.edu.cn [Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004 (China)

    2012-07-15

    Five Zn(II) and Cd(II) coordination polymers, [Zn{sub 2}(BOABA)(bpp)(OH)]{center_dot}0.5H{sub 2}O (1), [Cd{sub 3}(BOABA){sub 2}(bpp){sub 2}(H{sub 2}O){sub 6}]{center_dot}2H{sub 2}O (2), [Cd{sub 3}(BOABA){sub 2}(2,2 Prime -bipy){sub 3}(H{sub 2}O){sub 4}]{center_dot}5.5H{sub 2}O (3), [CdNa(BOABA)(H{sub 2}O)]{sub 2}{center_dot}H{sub 2}O (4) and [Cd{sub 2}(BOABA)(bimb)Cl(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O (5) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid, bpp=1,3-bi(4-pyridyl)propane, 2,2 Prime -bipy=2,2 Prime -bipyridine, bimb=1,4-bis(imidazol-1 Prime -yl)butane), have been solvothermally synthesized and characterized by single-crystal X-ray diffraction, elemental analyses, IR spectra and TG analyses. 1 is an uninodal 4-connected 2D square grid network based on binuclear zinc clusters. 2 is 2D wavelike layer structure and further linked by hydrogen bonds into the final 3D (5,6,6)-connected topology network. 3 is 3-connected 2D topology network and the 2,2 Prime -bipy ligands decorate in two different types. 4 is a (4,8)-connected 2D topology network with heterocaryotic {l_brace}Cd{sub 2}Na{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. 5 can be rationalized as a (3,10)-connected 3D topology network with tetranuclear {l_brace}Cd{sub 4}Cl{sub 2}{r_brace} clusters and BOABA{sup 3-} ligands. Meanwhile, photoluminescence studies revealed that these five coordination polymers display strong fluorescent emission bands in the solid state at room temperature. - Graphical abstract: Five new d{sup 10} metal(II) coordination polymers based on H{sub 3}BOABA ligand were obtained and characterized. They display different topological structures and luminescent properties. Highlights: Black-Right-Pointing-Pointer Five d{sup 10} metal(II) polymers based on 3,5-bis-oxyacetate-benzoic acid were obtained. Black-Right-Pointing-Pointer The polymers were structurally characterized by single-crystal X-ray diffraction. Black-Right-Pointing-Pointer Polymers 1-5 display different

  20. Nanofibers extraction from palm mesocarp fiber for biodegradable polymers incorporation; Extracao de nanofibras a partir do mesocarpo do dende para incorporacao em polimeros biodegradsveis

    Energy Technology Data Exchange (ETDEWEB)

    Kuana, Vanessa A.; Rodrigues, Vanessa B.; Takahashi, Marcio C., E-mail: ayu.kuana@gmail.com [Universidade Federal de Sao Carlos (UFSCar), Sao Carlos, SP (Brazil); Campos, Adriana de; Sena Neto, Alfredo R.; Mattoso, Luiz H.C.; Marconcini, Jose M. [Embrapa Instrumentacao (EMBRAPA/CNPDIA), Sao Carlos, SP (Brazil)

    2015-07-01

    The palm mesocarp fibers are residues produced by the palm oil industries. The objective of this paper is to determine an efficient treatment to extract crystal cellulose nanofibers from the palm mesocarp fibers to be incorporated in biodegradable polymeric composites. The fibers were saponified, bleached and analyzed with thermal gravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. (author)

  1. A one-dimensional ladder-like coordination polymer: poly[[hexaaquabis(μ-5-nitrobenzene-1,3-dicarboxylato-κ3O,O′,O′′(μ-oxalato-κ4O,O′:O′′,O′′′diyttrium(III] trihydrate

    Directory of Open Access Journals (Sweden)

    Zhong Fu

    2008-01-01

    Full Text Available In the crystal structure of the title one-dimensional coordination polymer, [Y2(C8H3NO62(C2O4(H2O6]·3H2O, each YIII ion is bridged to its neighbours by two 5-nitrobenzene-1,3-dicarboxylate (nbdc dianions and one oxalate dianion (located on an inversion centre to form a ladder-like polymeric structure. The two carboxylate groups of nbdc assume different modes of coordination, one is chelating whereas the other is monodentate. Three water molecules coordinate to the YIII ion to complete an eight-coordinate distorted dodecahedral geometry. The ladder-like polymers are assembled together by hydrogen bonding and π–π stacking [centrio–centriod distance = 3.819 (9 Å] in the crystal structure.

  2. Thermo- and piezochromic properties of [Fe(hyptrz)]A{sub 2}·H{sub 2}O spin crossover 1D coordination polymer: Towards spin crossover based temperature and pressure sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jureschi, Catalin-Maricel [Department of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Stefan cel Mare University, University Street 13, Suceava 720229 (Romania); LISV, UVSQ, 78035 Versailles Cedex (France); Rusu, Ionela [Department of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Stefan cel Mare University, University Street 13, Suceava 720229 (Romania); Codjovi, Epiphane [Groupe d’Etude de la Matière Condensée (GEMaC), CNRS-UMR 8635, UVSQ, 78035 Versailles Cedex (France); Linares, Jorge, E-mail: jorge.linares@uvsq.fr [Groupe d’Etude de la Matière Condensée (GEMaC), CNRS-UMR 8635, UVSQ, 78035 Versailles Cedex (France); Garcia, Yann [Institute of Condensed Matter and Nanosciences, Molecules, Solids, Reactivity (IMCN/MOST), Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve (Belgium); Rotaru, Aurelian, E-mail: rotaru@eed.usv.ro [Department of Electrical Engineering and Computer Science and Advanced Materials and Nanotechnology Laboratory (AMNOL), Stefan cel Mare University, University Street 13, Suceava 720229 (Romania)

    2014-09-15

    We have used reflectance measurements to investigate the effect of a hydrostatic pressure on the molecular 1D spin crossover coordination polymer [Fe(hyptrz)]A{sub 2}·H{sub 2}O (hyptrz=4-(3′-hydroxypropyl)-1,2,4-triazole and A=4-chloro-benzenesulfonate) Rev. Sci. Instrum. 80 (2009) 123901. Both thermal and pressure hysteresis have been recorded at different pressures and temperatures, respectively, in order to obtain valuable information about the optimal conditions of their use as wireless temperature and pressure sensors. The experimental analysis has been completed with a theoretical study and potential applications in terms of temperature and pressure wireless detection are discussed.

  3. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    International Nuclear Information System (INIS)

    Xin Lingyun; Liu Guangzhen; Wang Liya

    2011-01-01

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H 2 PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H 2 O)] n (1), [Zn(PHDA)(BPP)] n (2), and [Cu 2 (PHDA) 2 (BPP)] n (3) (H 2 PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D→2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4 8 6 6 8 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state. - Graphical Abstract: We show diverse supramolecular frameworks based on the same ligands (PHDA and BPP) and different metal acetate salts including 1D double-stranded chain, 2D → 2D twofold interpenetrated layer, and 3D self-penetration networks. Highlights: → Three metal(II = 2 /* ROMAN ) coordination polymers were synthesized using H 2 PHDA and BPP. → The diversity of structures show a remarked sensitivity to metal(II) center. → Complexes show the enhancement of fluorescence compared to that of free ligand.

  4. Mo-II Cluster Complex-Based Coordination Polymer as an Efficient Heterogeneous Catalyst in the Suzuki–Miyaura Coupling Reaction

    Czech Academy of Sciences Publication Activity Database

    Bůžek, Daniel; Hynek, Jan; Kučeráková, Monika; Kirakci, Kaplan; Demel, Jan; Lang, Kamil

    2016-01-01

    Roč. 2016, č. 28 (2016), s. 4668-4673 ISSN 1434-1948 R&D Projects: GA ČR GA13-05114S; GA ČR GA15-12653S EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:61388980 ; RVO:68378271 Keywords : C–C coupling * Heterogeneous catalysis * Molybdenum * Palladium * Polymers Subject RIV: CA - Inorganic Chemistry ; CF - Physical ; Theoretical Chemistry (FZU-D) Impact factor: 2.444, year: 2016

  5. High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers.

    Science.gov (United States)

    Terasawa, Naohiro; Asaka, Kinji

    2014-12-02

    The electrochemical and electromechanical properties of polymeric actuators prepared using nickel peroxide hydrate (NiO2·xH2O) or nickel peroxide anhydride (NiO2)/vapor-grown carbon nanofibers (VGCF)/ionic liquid (IL) electrodes were compared with actuators prepared using solely VGCFs or single-walled carbon nanotubes (SWCNTs) and an IL. The electrode in these actuator systems is equivalent to an electrochemical capacitor (EC) exhibiting both electrostatic double-layer capacitor (EDLC)- and faradaic capacitor (FC)-like behaviors. The capacitance of the metal oxide (NiO2·xH2O or NiO2)/VGCF/IL electrode is primarily attributable to the EDLC mechanism such that, at low frequencies, the strains exhibited by the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators primarily result from the FC mechanism. The VGCFs in the NiO2·xH2O/VGCF/IL and NiO2/VGCF/IL actuators strengthen the EDLC mechanism and increase the electroconductivity of the devices. The mechanism underlying the functioning of the NiO2·xH2O/VGCF/IL actuator in which NiO2·xH2O/VGCF = 1.0 was found to be different from that of the devices produced using solely VGCFs or SWCNTs, which exhibited only the EDLC mechanism. In addition, it was found that both NiO2 and VGCFs are essential with regard to producing actuators that are capable of exhibiting strain levels greater than those of SWCNT-based polymer actuators and are thus suitable for practical applications. Furthermore, the frequency dependence of the displacement responses of the NiO2·xH2O/VGCF and NiO2/VGCF polymer actuators were successfully simulated using a double-layer charging kinetic model. This model, which accounted for the oxidization and reduction reactions of the metal oxide, can also be applied to SWCNT-based actuators. The results of electromechanical response simulations for the NiO2·xH2O/VGCF and NiO2/VGCF actuators predicted the strains at low frequencies as well as the time constants of the devices, confirming that the model is applicable

  6. The Specific Refractive Index Increments for POSS Polymers in Solution

    National Research Council Canada - National Science Library

    Largo, Sheryl

    2004-01-01

    Partial contents: Hybrid Inorganic/Organic Polymers, Introduction to POSS, Anatomy of a POSS Nanostructure, POSS Polymer Incorporation, POSS Styrene Monomer Synthesis, POSS Styrene Copolymer Synthesis, 1HNMR...

  7. A review of the application Acoustic Emission (AE) incorporating mechanical approach to monitor Reinforced concrete (RC) strengthened with Fiber Reinforced Polymer (FRP) properties under fracture

    Science.gov (United States)

    Syed Mazlan, S. M. S.; Abdullah, S. R.; Shahidan, S.; Noor, S. R. Mohd

    2017-11-01

    Concrete durability may be affected by so many factors such as chemical attack and weathering action that reduce the performance and the service life of concrete structures. Low durability Reinforced concrete (RC) can be greatly improved by using Fiber Reinforce Polymer (FRP). FRP is a commonly used composite material for repairing and strengthening RC structures. A review on application of Acoustic Emission (AE) techniques of real time monitoring for various mechanical tests for RC strengthened with FRP involving four-point bending, three-point bending and cyclic loading was carried out and discussed in this paper. Correlations between each AE analyses namely b-value, sentry and intensity analysis on damage characterization also been critically reviewed. From the review, AE monitoring involving RC strengthened with FRP using b-value, sentry and intensity analysis are proven to be successful and efficient method in determining damage characterization. However, application of AE analysis using sentry analysis is still limited compared to b-value and intensity analysis in characterizing damages especially for RC strengthened with FRP specimen.

  8. Field-Induced Single-Ion Magnet Behaviour in Two New Cobalt(II Coordination Polymers with 2,4,6-Tris(4-pyridyl-1,3,5-triazine

    Directory of Open Access Journals (Sweden)

    Dong Shao

    2017-12-01

    Full Text Available We herein reported the syntheses, crystal structures, and magnetic properties of a two-dimensional coordination polymer {[CoII(TPT2/3(H2O4][CH3COO]2·(H2O4}n (1 and a chain compound {[CoII(TPT2(CHOO2(H2O2]}n (2 based on the 2,4,6-Tris(4-pyridyl-1,3,5-triazine (TPT ligand. Structure analyses showed that complex 1 had a cationic hexagonal framework structure, while 2 was a neutral zig-zag chain structure with different distorted octahedral coordination environments. Magnetic measurements revealed that both complexes exhibit large easy-plane magnetic anisotropy with the zero-field splitting parameter D = 47.7 and 62.1 cm−1 for 1 and 2, respectively. This magnetic anisotropy leads to the field-induced slow magnetic relaxation behaviour. However, their magnetic dynamics are quite different; while complex 1 experienced a dominating thermally activated Orbach relaxation at the whole measured temperature region, 2 exhibited multiple relaxation pathways involving direct, Raman, and quantum tunneling (QTM processes at low temperatures and Orbach relaxation at high temperatures. The present complexes enlarge the family of framework-based single-ion magnets (SIMs and highlight the significance of the structural dimensionality to the final magnetic properties.

  9. Solvent-Induced Change of Electronic Spectra and Magnetic Susceptibility of Co(II) Coordination Polymer with 2,4,6-Tris(4-pyridyl)-1,3,5-triazine.

    Science.gov (United States)

    Polunin, Ruslan A; Burkovskaya, Nataliya P; Satska, Juliya A; Kolotilov, Sergey V; Kiskin, Mikhail A; Aleksandrov, Grigory G; Cador, Olivier; Ouahab, Lahcène; Eremenko, Igor L; Pavlishchuk, Vitaly V

    2015-06-01

    One-dimensional coordination polymer [Co(Piv)2(4-ptz)(C2H5OH)2]n (compound 1, Piv(-) = pivalate, 4-ptz = 2,4,6-tris(4-pyridyl)-1,3,5-triazine) was synthesized by interaction of Co(II) pivalate with 4-ptz. Desolvation of 1 led to formation of [Co(Piv)2(4-ptz)]n (compound 2), which adsorbed N2 and H2 at 78 K as a typical microporous sorbent. In contrast, absorption of methanol and ethanol by 2 at 295 K led to structural transformation probably connected with coordination of these alcohols to Co(II). Formation of 2 from 1 was accompanied by change of color of sample from orange to brown and more than 2-fold decrease of molar magnetic susceptibility (χM) in the temperature range from 2 to 300 K. Resolvation of 2 by ethanol or water resulted in restoration of spectral characteristics and χM values almost to the level of that of 1. χMT versus T curves for 1 and samples, obtained by resolvation of 2 by H2O or C2H5OH, were fitted using a model for Co(II) complex with zero-field splitting of this ion.

  10. A one-dimensional ladder-like coordination polymer: poly[[hexa­aqua­bis(μ-5-nitro­benzene-1,3-dicarboxyl­ato-κ3 O,O′,O′′)(μ-oxalato-κ4 O,O′:O′′,O′′′)diyttrium(III)] trihydrate

    OpenAIRE

    Fu, Zhong; Lin, Ying; Zhou, Yun-You; Zhang, Hong-Tao

    2007-01-01

    In the crystal structure of the title one-dimensional coordination polymer, [Y2(C8H3NO6)2(C2O4)(H2O)6]·3H2O, each YIII ion is bridged to its neighbours by two 5-nitrobenzene-1,3-dicarboxylate (nbdc) dianions and one oxalate dianion (located on an inversion centre) to form a ladder-like polymeric structure. The two carboxylate groups of nbdc assume different modes of coordination, one is chelating whereas the other is monodentate. Three water molecules coordinate to the YIII ion to comple...

  11. COORDINATION COMPOUNDS OF NICKEL(II, COPPER(II AND COBALT(II BASED ON S-METHYLISOTHIOSEMICARBAZIDE AS DYES FOR THERMOPLASTIC POLYMERS

    Directory of Open Access Journals (Sweden)

    Ştefan Manole

    2011-12-01

    Full Text Available We have researched the color properties of coordination compounds synthesized by us previously [1] (8-(1',2'-naphthyl-1- R3-methyl-6-thiomethyl-4,5,7-triazaocta-1,3,5,7-tetraenato-1,1'-diolato(-O, O', N4, N7-M(II, where R=CH3, C6H5, M=Ni, Co, Cu, which can be used for coloring thermoplastic masses. They meet the requirements for use as a pigment for coloring thermoplastic masses.

  12. COORDINATION COMPOUNDS OF NICKEL(II), COPPER(II) AND COBALT(II) BASED ON S-METHYLISOTHIOSEMICARBAZIDE AS DYES FOR THERMOPLASTIC POLYMERS

    OpenAIRE

    Ştefan Manole; Maria Cocu

    2011-01-01

    We have researched the color properties of coordination compounds synthesized by us previously [1] (8-(1',2'-naphthyl)-1- R3-methyl-6-thiomethyl-4,5,7-triazaocta-1,3,5,7-tetraenato-1,1'-diolato(-)O, O', N4, N7-M(II), where R=CH3, C6H5, M=Ni, Co, Cu), which can be used for coloring thermoplastic masses. They meet the requirements for use as a pigment for coloring thermoplastic masses.

  13. Synthesis, crystal structure and catalytic effect on thermal decomposition of RDX and AP: An energetic coordination polymer [Pb{sub 2}(C{sub 5}H{sub 3}N{sub 5}O{sub 5}){sub 2}(NMP)·NMP]{sub n}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jin-jian [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yancheng Teachers College, Yancheng 224002 (China); Liu, Zu-Liang, E-mail: liuzl@mail.njust.edu.cn [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Cheng, Jian [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yancheng Teachers College, Yancheng 224002 (China); Fang, Dong, E-mail: fangdong106@163.com [Yancheng Teachers College, Yancheng 224002 (China)

    2013-04-15

    An energetic lead(II) coordination polymer based on the ligand ANPyO has been synthesized and its crystal structure has been got. The polymer was characterized by FT-IR spectroscopy, elemental analysis, DSC and TG-DTG technologies. Thermal analysis shows that there are one endothermic process and two exothermic decomposition stages in the temperature range of 50–600 °C with final residues 57.09%. The non-isothermal kinetic has also been studied on the main exothermic decomposition using the Kissinger's and Ozawa–Doyle's methods, the apparent activation energy is calculated as 195.2 KJ/mol. Furthermore, DSC measurements show that the polymer has significant catalytic effect on the thermal decomposition of ammonium perchlorate. - Graphical abstract: An energetic lead(II) coordination polymer of ANPyO has been synthesized, structurally characterized and properties tested. Highlights: ► We have synthesized and characterized an energetic lead(II) coordination polymer. ► We have measured its molecular structure and thermal decomposition. ► It has significant catalytic effect on thermal decomposition of AP.

  14. Synthesis and Preliminary Characterization of a PPE-Type Polymer Containing Substituted Fullerenes and Transition Metal Ligation Sites

    Directory of Open Access Journals (Sweden)

    Corinne A. Basinger

    2015-01-01

    Full Text Available A substituted fullerene was incorporated into a PPE-conjugated polymer repeat unit. This subunit was then polymerized via Sonogashira coupling with other repeat units to create polymeric systems approaching 50 repeat units (based on GPC characterization. Bipyridine ligands were incorporated into some of these repeat units to provide sites for transition metal coordination. Photophysical characterization of the absorption and emission properties of these systems shows excited states located on both the fullerene and aromatic backbone of the polymers that exist in a thermally controlled equilibrium. Future work will explore other substituted polyaromatic systems using similar methodologies.

  15. A series of novel metal–organic coordination polymers constructed from the new 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole spacer and aromatic carboxylates: Synthesis, crystal structures, and luminescence properties

    International Nuclear Information System (INIS)

    Sun, Jiayin; Zhang, Daojun; Wang, Li; Zhang, Renchun; Wang, Junjie; Zeng, Ying; Zhan, Jinling; Xu, Jianing; Fan, Yong

    2013-01-01

    Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers, [Zn(L)(1,4-bdc) 0.5 ] (1), [Zn 1.5 (L)(2,5-pydc)] (2), [Zn(HL)(1,2,4,5-btec) 0.5 ] (3), and [Cd(HL)(1,2,4,5-btec) 0.5 ] (4) (1,4-bdc, 1,4-benzenedicarboxylate; 2,5-pydc, 2,5-pyridinedicarboxylate; 1,2,4,5-btec, 1,2,4,5-benzenetetracarboxylate) have been successfully synthesized and analyzed. Compound 1 features the 2D [Zn(L)] n layers built by μ 3 -L bridging ligands and Zn(II) ions, which are further linked by pillared 1,4-bdc 2− ligands to form a 2-fold interpenetrating dmc framework. The 3D network of compound 2 can be simplified as a rare 2-nodal (3,6)-connected rtl (rutile) topology. Compound 3 possesses a 2D layer structure which is accomplished by connecting ladder-chains to L ligands. Compound 4 exhibits 2D [Cd(1,2,4,5-btec)] layers with infinite Cd–O–Cd rods and the adjacent 2D networks are further pillared by L with terminal bidentate coordination mode to generate the final 3D structure. The solid-state luminescent studies show that compounds 1–4 display intense fluorescent emissions. - Graphical abstract: Using bifunctional organic ligand 5-(4-imidazol-1-yl-phenyl)-2H-tetrazole (HL) and different aromatic carboxylates as secondary ligands, four novel metal-organic coordination polymers have been obtained. All compounds show good luminescence properties at room temperature. Display Omitted - Highlights: • Four Zn(II)/Cd(II)-MOCPs have been successfully prepared with the rigid bifunctional ligand 5-(4-imidazol -1-yl-phenyl) -2H-tetrazole and different aromatic carboxylates mixed ligands. • Compound 2 is a 2-nodal rtl (rutile) net and compound 4 is a binodal (5, 6)-connected net with yav topology. • Compounds 1-4 display intense fluorescent emissions at room temperature

  16. Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent.

    Science.gov (United States)

    Ma, Wanwan; Row, Kyung Ho

    2018-07-20

    A type of magnetic ionic liquid based molecularly imprinted polymer coated on SiO 2 (Fe 3 O 4 @SiO 2 @IL-MIPs) was prepared with 1-vinyl-3-ethylimidazole ionic liquid as functional monomer, and 1,4-butane-3,3'-bis-1-ethylimidazole ionic liquid as cross linker, 4-Chlorophenol as template was successfully applied as a selective adsorbent for selective extraction of 5 chlorophenols in seawater samples by using the magnetic solid-phase extraction (MSPE) method. 11 types of Fe 3 O 4 @SiO 2 @IL-MIPs were synthesized and investigated for their different compositions of functional monomer (such as [C 2 min][Br], [C 2 min][BF 4 ], [C 2 min][PF 6 ], acrylamide, methacrylic acid and 4-vinyl pyridine) and cross-linker (such as [C 4 min 2 ][Br], [C 4 min 2 ][BF 4 ], [C 4 min 2 ][PF 6 ], divinylbenzene, and ethylene glycol dimethacrylate), respectively. The [C 2 min][BF 4 ] and [C 4 min 2 ][PF 6 ] based Fe 3 O 4 @SiO 2 @IL-MIP with the highest extraction efficiencies was applied to the optimization experiment of MSPE process (including extraction time, adsorbent mass and desorption solvents). Good linearity was obtained with correlation coefficients (R 2 ) over 0.9990 and the relative standard deviations for the intra-day and inter-day determination were less than 3.10% with the extraction recoveries ranged from 85.0% to 98.4%. The results indicated that the proposed Fe 3 O 4 @SiO 2 @IL-MIPs possesses great identification and adsorption properties, and could be used as a good sorbent for selective extraction of CPs in environment waters. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Advanced polymers in medicine

    CERN Document Server

    Puoci, Francesco

    2014-01-01

    The book provides an up-to-date overview of the diverse medical applications of advanced polymers. The book opens by presenting important background information on polymer chemistry and physicochemical characterization of polymers. This serves as essential scientific support for the subsequent chapters, each of which is devoted to the applications of polymers in a particular medical specialty. The coverage is broad, encompassing orthopedics, ophthalmology, tissue engineering, surgery, dentistry, oncology, drug delivery, nephrology, wound dressing and healing, and cardiology. The development of polymers that enhance the biocompatibility of blood-contacting medical devices and the incorporation of polymers within biosensors are also addressed. This book is an excellent guide to the recent advances in polymeric biomaterials and bridges the gap between the research literature and standard textbooks on the applications of polymers in medicine.